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Abstract

Singular Spectrum Analysis (SSA) is a nonparametric time series analysis and

forecasting technique which has witnessed an augment in applications in the

recent past. The increased application of SSA is closely associated with its

superior filtering and signal extraction capabilities which also differentiates it

from the classical time series methods. In brief, the SSA process consists of

decomposing a time series for signal extraction and then reconstructing a less

noisy series which is used for forecasting. The aim of this research is to develop

theoretical advancements in SSA, supported by empirical evidence to further

promote the value, effectiveness and applicability of the technique in the field

of time series analysis and forecasting. To that end, this research has four main

contributions.

Initially, given the reliance of this research towards improving forecasting

processes, it is mandatory to compare and distinguish between the predictive ac-

curacy of forecasts for statistically significant differences. The first contribution

of this research is the introduction of a complement statistical test for compar-

ing between the predictive accuracy of two forecasts. The proposed test is based

on the principles of cumulative distribution functions andstochastic dominance,

and is evaluated via both a simulation study and empirical evidence.

Governments, practitioners, researchers and private organizations publish a

variety of forecasts each year. Such forecasts are generally computed using

multivariate models and are widely used in decision making processes given the
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considerably high level of anticipated forecast accuracy.The classical multi-

variate methods consider modelling multiple information pertaining to the same

time period or with a time lag into the past. Multivariate Singular Spectrum

Analysis (MSSA) is a relatively new and alternative technique for generating

forecasts from multiple time series. The second contribution of this research is

the introduction of a novel theoretical development which seeks to exploit the

information contained in published forecasts (which represent data with a time

lag into the future) for generating a new and improved (comparatively more

accurate) forecast by taking advantage of the MSSA technique’s capability at

modelling time series with different series lengths. In brief, the proposed mul-

tivariate theoretical development seeks to exploit the forecastability of forecasts

by considering not only official and professional forecasts, but also forecasts

obtained via other time series models.

The productive application of SSA and MSSA depends largely on the selec-

tion of SSA and MSSA parameters, i.e. the Window Length,L, and the number

of eigenvaluesr which are used for decomposition and reconstruction of timese-

ries. Over the years, a variety of mathematically complex, time consuming and

labour intensive approaches which require detailed knowledge on the theory un-

derlying SSA have been proposed and developed for the selection of SSA and

MSSA parameters. However, the highly labour intensive and complex nature

of such approaches have not only discouraged the application of this method

by those not conversant with the underlying theory, but alsolimited SSA and

MSSA to offline applications. The third and final contribution of this research

proposes new, automated and optimized, SSA and MSSA algorithms for the

selection of SSA parameters and thereby enables obtaining optimal SSA and

MSSA forecasts (optimized by minimising a loss function). This development

opens up the possibility of using SSA and MSSA for online forecasting in the

future.
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Chapter 1

Introduction

1.1 Time Series Analysis and Forecasting

In a world troubled with ever increasing uncertainty following the on-set of the

recent financial crisis in 2008 there is a renewed and opportune demand for

methods which can generate improved and accurate forecasts. Such predictions

into the future are facilitated via a process known as time series analysis and

forecasting. In brief, all time series analysis and forecasting methods can be

listed as either parametric or nonparametric techniques. Parametric techniques

have the disadvantage of being restricted by assumptions relating to normality

and stationarity, whereas nonparametric techniques are model free and are not

restricted by any such assumptions. In addition, time series methods can be

further classified as univariate and multivariate. Univariate methods consider a

single time series whereas multivariate methods consider multiple time series

for generating a forecast.

Research and development has led to a wide range of classical(parametric)

and novel time series analysis techniques (nonparametric)which include (but

are not limited to) Autoregressive Integrated Moving Average (ARIMA), Holt-
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Winters (HW), Exponential Smoothing (ETS) and Neural Networks (NN). Each

technique has its own benefits and drawbacks, and there is no single method

which is identified as universally best at present. This in turn means that the

forecasting performance of each technique is largely dependent on both its the-

oretical underpinning and the nature of the data that is input into the model. As

such, different applications will provide different outcomes showing one model

outperforming another and vice-versa. Therefore, researchers constantly en-

deavour to develop more efficient time series analysis models which can provide

greater accuracy in comparison to the existing methods.

However, the forecasting models alone are not the only concern for a broad

field such as time series analysis. It is clear that when we forecast any vari-

able, there is always an associated loss or error when the forecast is compared

with actual data. Various loss functions have been developed to quantify these

errors and few which are used in this research are discussed in the chapters

which follow. Whilst these loss functions enable comparisons between forecasts

from different models, they are unable to determine the statistical significance

of these differences. Accordingly, various statistical tests have also been devel-

oped over the years to compare between the predictive accuracy of forecasts. In

this sense, it is possible to summarize the time series analysis and forecasting

process as one which begins with the modelling of data using time series analy-

sis techniques, followed by the generation of forecasts andending with tests for

statistically significant differences between forecasts from competing models.

The gist of this thesis concentrates on a popular nonparametric time se-

ries analysis and forecasting technique known as Singular Spectrum Analysis

(SSA). The emergence of SSA is closely associated with the work of Broom-

head and King (1986a,b) where the authors show that SingularValue Decom-

position (SVD) can be used as an effective tool for noise reduction. This was

followed by several methodological advancements in SSA andrelated applica-
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tions through Danilov and Zhigljavsky (1997); Fraedrich (1986); Vautard and

Ghil (1989); Vautard et al. (1992). In brief, the SSA technique seeks to decom-

pose and filter a time series, and then reconstruct a less noisy series which can be

used for forecasting (Hassani, 2007). As such, SSA performsthree distinct tasks

which can be categorized as decomposition, reconstructionand forecasting. At

present, SSA is widely adopted for solving complex issues inthe field of time

series analysis not only as a forecasting model (Hassani et al., 2009, 2013b), but

also as a filtering technique (Hassani et al., 2010a,b). The increasing popular-

ity of SSA is further attributable to its capability of handling both linear, and

nonlinear, stationary and non-stationary time series (Hassani, 2007).

A Google Scholar search for applications of SSA shows increased appli-

cation especially in the new millennium and mostly in the recent past, since

2007 in particular. Accordingly, there is a huge scope for further improving and

enhancing the SSA technique as a viable and effective tool for modelling and

forecasting in the future. This research study takes advantage of this opportunity

and seeks to introduce lucrative theoretical developmentsfor the SSA technique,

well supported via empirical evidence.

1.1.1 Research Aim and Objectives

This research is governed by a single aim which is supported by several objec-

tives. These objectives not only enable achieving the aim ofthe research, but

also represents the contributions to SSA and the field of timeseries analysis and

forecasting. The aim of this research is to introduce a complement statistical test

for comparing between the predictive accuracy of forecastsand develop theoret-

ical advancements in SSA, supported by empirical evidence to further promote

the value, effectiveness and applicability of SSA in the field of time series anal-

ysis and forecasting. To that end, this research has four main objectives.
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• Introduce a test for comparing the predictive accuracy of two forecasts.

• Develop a new Multivariate SSA (MSSA) based theory for exploiting the

forecastability of forecasts.

• Develop a new approach for the selection of SSA and MSSA parameters.

The realization of these objectives will indeed result in considerable the-

oretical advancements for SSA and also the field of time series analysis and

forecasting in general. In addition, emphasis is also placed on providing empiri-

cal evidence to portray the practicality of each of the contributions, and some of

the applications themselves are the first instances in whichthe SSA technique is

exploited for modelling and forecasting in certain industries.

1.2 Motivation

1.2.1 Why Singular Spectrum Analysis?

Given that the research aims and objectives have been specifically identified

above, in this section the objectives are further elaborated upon as the motivation

for the selection of SSA, and each of the objectives of this research are concisely

explained.

The choice of SSA as the main forecasting tool of interest forthis research is

motivated by different aspects. Prior to explaining these,it is important to briefly

outline the components of a time series. In general, a time series comprises of

the signal and noise. As an example, shown in Figure 1.1 is a time seriesY

which is what we are faced with in reality. However,Y consists of signal and
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noise, and as indicated, this signal could be further decomposed into the trend

component and sine component in this particular example.

First and foremost, there is a difference in the modelling procedure em-

ployed by SSA and classical time series techniques. The classical time series

methods consider modelling and forecastingY. However, the SSA technique

will filter Y such that the trend, signal and noise could be identified separately.

Thereafter, SSA reconstructs a new time series which corresponds to a less

noisy approximation of the signal, for generating forecasts. As such, by us-

ing a method such as SSA one is able to obtain a richer understanding of the

dynamics underlying a given time series, forecast time series components sep-

arately (for example, forecast the trend or seasonal variation alone), and obtain

a more accurate overall forecast as the model considers filtering noise which is

effectively the random, unexplained components in any given time series.

Sine

0 2000 4000 6000 8000 10000

−
1.

0
0.

0
1.

0

Trend

0 2000 4000 6000 8000 10000

1.
0

2.
0
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0.
0

1.
5

3.
0

Noise

0 2000 4000 6000 8000 10000

−
2

0
1
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0 2000 4000 6000 8000 10000

−
1

1
3

5

Fig. 1.1 Sine, trend, signal and noise components inY (Sanei and Hassani, 2015).

Secondly, SSA is a nonparametric technique which does not rely on the as-
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sumptions of normality for the residuals, stationarity of the data, and linearity

for the model (Hassani et al., 2013a) which are highly unlikely to hold in real

world applications. As such, by adopting SSA one is able to model the data

sans data transformations which in turn enables a true approximation of the real

situation without the loss of any information (Hassani et al., 2013c).

Thirdly, unnatural phenomenal events are known to create outliers in time

series data and such outliers in turn result in making a time series non-stationary

(Hassani et al., 2014; Tsay, 1998). Given the highly volatile economic condi-

tions experienced in the modern world, it is almost certain that most (economic)

time series are affected by the presence of such outliers. Therefore, developing a

method such as SSA which is less sensitive to recessions (Hassani et al., 2013a;

Silva and Hassani, 2015) can be of added use to future generations.

1.2.2 Why These Objectives?

In general, this research study is primarily aimed at improving a time series

analysis and forecasting technique. As such, comparing thepredictive accuracy

of forecasts generated via different models is not only goodstatistical practice,

but also a mandatory component in ensuring the reliability and validity of the

results. At present there exists various statistical testswhich are used for com-

paring between the predictive accuracy of forecasts. See for example, Diebold

and Mariano (1995); Hansen (2005); Hansen et al. (2011) and references therein.

As the first contribution of this research, a complement statistical test which is

founded upon the principles of cumulative distribution functions and stochastic

dominance is introduced. The reliability and applicability of the proposed test

is evaluated via a simulation study and a corresponding application to real data.

Following the successful introduction of a complement statistical test the thesis

continues to focus on enhancing SSA and MSSA techniques. It is noteworthy
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that for consistency, all applications pertaining to achieving the objectives of

this thesis considers tourism data as a common front. This isin addition to the

consideration given to data from various other industries in order to portray the

applicability and relevance of the proposed approaches in general. Moreover,

selected components of the R codes used in this work have beenpresented via

the appendix.

Forecasting is now universal. Practitioners, researchers, professional fore-

casters and government organizations in particular publish forecasts monthly,

quarterly and annually for a variety of variables. Such forecasts are generated

via both new and complex univariate and multivariate modelswhich are com-

paratively more accurate than most classical time series methods. The second

objective of this research aims to answer an interesting question, that is, once a

forecast is generated, is there a possibility of exploitingthis forecast for obtain-

ing a more accurate forecast?

The SSA technique is blessed with both univariate (SSA) and multivariate

(MSSA) capabilities. In general, the classical multivariate methods (for exam-

ple, Vector Autoregression) consider modelling information pertaining to the

same time period or with a time lag into the past. In particular, most of the

existing multivariate methods can only model and forecast using multiple time

series with the same length. However, MSSA has the ability ofmodelling and

forecasting using time series with different series lengths (Hassani and Mah-

moudvand, 2013) and this prime advantage in MSSA is used to find a solution

to achieve the first objective of this research.

Accordingly, the second contribution of this study is a theoretical develop-

ment which seeks to exploit the forecastability of forecasts, and thereby pro-

mote modelling and forecasting using data with a time lag into the future. The

proposed MSSA theoretical development is evaluated for itsability at improv-

ing not only existing official and professional forecasts, but also forecasts from
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other time series models. It is believed that the results from this research will be

of utmost importance to forecasters in general as an innovative and promising

research avenue is created in the area of multivariate forecasting.

The third objective of this research is concerned with the selection of SSA

and MSSA parameters. This is important because the success of SSA and MSSA

techniques depends largely on the accurate selection of itsparameters which are

referred to as the Window Length (L), and the number of eigenvalues (r) (Sanei

and Hassani, 2015). For example, the success of the decomposition stage of SSA

and MSSA depends onL whilst the success of the reconstruction and forecasting

stages depend on the correct choice ofr. Over the years, a variety of mathemat-

ically complex, time consuming and labour intensive approaches which require

detailed knowledge on the theory underlying SSA have been proposed and de-

veloped for the selection ofL andr.

Whilst these existing approaches are extremely useful in improving the accu-

racy of SSA and MSSA functions, they do have two major disadvantages which

act as a restriction for the application and use of SSA and MSSA. Firstly, the

highly labour intensive nature of the historical approaches for selectingL and

r are not only time consuming, but also restricts SSA and MSSA to offline ap-

plications. Secondly, the complex and advanced statistical knowledge required

to understand the process underlying the selection ofL andr in most instances

act as a hindrance for the application and use of SSA and MSSA by those not

conversant with the advanced statistical theory underlying these techniques.

However, it is important to remember that problems related to complexi-

ties surrounding the selection of model parameters in time series analysis and

forecasting techniques are universal. As a solution, researchers endeavour to

develop automated time series analysis and forecasting methods, and a sound

example is the forecast package inR (Hyndman and Khandakar, 2008). Moti-

vated by such efforts, and the interest in promoting the application of SSA, pro-
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posed as the third and final contribution of this research is novel, automated and

optimized, SSA and MSSA algorithms for the selection ofL andr for obtaining

optimal SSA and MSSA forecasts (optimized by minimising a loss function).

This algorithm for the automation of the SSA and MSSA processes opens up

the possibility of using SSA and MSSA for online forecasting.

The remainder of this thesis is organized as follows. Chapter 2 presents

SSA and MSSA methodology. Chapter 3 introduces the test for comparing the

predictive accuracy of forecasts. Chapter 4 is devoted to the new theoretical

development for exploiting the forecastability of forecasts and related empirical

applications. Chapter 5 presents the automated and optimized SSA and MSSA

algorithms along with empirical evidence and this thesis ends in Chapter 7 along

with conclusions, limitations and pathways for future research.





Chapter 2

Methodology

The aim of this Chapter is to introduce the methodology relevant to this study.

The main focus is on the theory underlying SSA and MSSA. In addition, the

other forecasting techniques and metrics considered for comparative purposes

are also briefly explained.

2.1 Singular Spectrum Analysis

The Singular Spectrum Analysis (SSA) technique consists oftwo stages known

as decomposition and reconstruction, each with two complementary steps (Has-

sani, 2007) which are explained in detail below. In brief, SSA decomposes

a time series and thereby enables differentiation between trend, harmonic and

noise components, and then reconstructs a less noisy time series using the es-

timated trend and harmonic components, and this newly reconstructed series is

then used to compute forecasts (Golyandina et al., 2001). Asa nonparamet-

ric method, SSA can be used without making any assumptions pertaining to

stationarity and normality of the data (Sanei and Hassani, 2015). This in turn

means that no data transformations are required and it is advantageous as the

use of parametric techniques would require data transformations in most cases



12 Methodology

to ensure the data conforms with the parametric restrictions, and such transfor-

mations result in a loss of information (Hassani et al., 2013c).

As a time series method, the SSA technique has both univariate and multi-

variate capabilities. Applications of univariate SSA for finding solutions to real

world problems are diverse, and some recent examples are Ghodsi et al. (2015);

Hassani et al. (2010a, 2013a, 2009); Hassani and Thomakos (2010); Rodrıguez-

Aragón and Zhigljavsky (2010); Sanei et al. (2011); Silva and Hassani (2015).

On the other hand, applications of MSSA are comparatively sparse as MSSA is

considered to be relatively new in relation to its univariate counterpart, see for

example Groth and Ghil (2011); Hassani et al. (2013b); Hassani and Mahmoud-

vand (2013); Kapl and Müller (2010); Oropeza and Sacchi (2011); Patterson

et al. (2011).

The performance of the SSA technique depends upon the selection of its two

parameters known asi) the window lengthL, andii ) the number of eigenvalues

r. The choice ofL andr is discussed in detail in the next chapter. In brief, Sanei

and Hassani (2015) notes that the choice ofL can vary based on the data one is

analysing, the aim of the analysis and the forecasting horizon whilst the incor-

rect selection ofr can result in some parts of the signal(s) being lost, or noise

included in the reconstructed series which is effectively made less accurate. In

terms of its forecasting capabilities, the SSA technique has two univariate fore-

casting approaches called recurrent and vector algorithms(Golyandina et al.,

2001). In this research, both forecasting approaches for univariate and multi-

variate SSA are exploited and improved upon.

The entire SSA process can be summarized with the aid of the flow chart in

Figure 2.1. According to Sanei and Hassani (2015), initially we are faced with a

noisy time seriesYN and the single SSA choice applicable to the decomposition

stage,L as inputs. Following a process termed as embedding, we obtain the Han-

kel matrixX which is then forwarded as an input into the SVD step. The SVD
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step results in singular values which are analyzed to identify and differentiate

between signal and noise components. At the reconstructionstage, the singular

values are grouped along with the input of the second and finalSSA parameter

r which results in the grouping matricesX1, . . . ,XL as either signal or noise. Fi-

nally, diagonal averaging is used to to transform the matrices containing signal

components into a Hankel matrix so that it can subsequently be converted into a

time series which can then be used to forecast future data points.

Fig. 2.1 A summary of the basic SSA process (Sanei and Hassani, 2015).

The theory underlying univariate SSA is explained below by following Has-

sani (2007) and Sanei and Hassani (2015).

2.2 Univariate SSA

Prior to explaining the theory underlying SSA, a simple explanation of the gen-

eral idea underlying SSA is introduced by following Hassani(2007) and Sanei
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and Hassani (2015). Let us consider a noisy time seriesYN with any arbitrary

series lengthN, such that:

YN = (y1, . . . ,yN). (2.1)

Then, let us assume thatYN comprises of signal and noise. Therefore,YN can

also be represented as:

YN = SN +EN =




y1

y2
...

yN




=




s1

s2
...

sN




+




e1

e2
...

eN



, (2.2)

whereSN represents the signal andEN represents noise.

Recall Figure 1.1 where the signal is formed by combining sine and an ex-

ponential trend. The classical time series methods will model and forecastYN

which suggests that such methods consider both the signal and noise in a given

series. However, SSA will begin withYN, and seek to separate the signal from

the noise. Thereafter, it is the filtered, approximated signal that is used to fore-

cast future data points, leaving aside the approximatedEN. Note that the term

‘approximated’ is used as in practice one is unable to extract the complete signal.

2.2.1 Stage 1: Decomposition

At the decomposition stage, the Window LengthL is the only parameter which

is relevant as SSA organizes the one dimensional time seriesYN into a multidi-

mensional series. Note thatL, is an integer such that 2≤ L ≤ N/1.
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Step 1: Embedding

In the most basic terms, embedding is a mapping operation that transfers a one-

dimensional time seriesYN into a multidimensional seriesX1, . . . ,XK with vec-

tors

Xi = [yi ,yi+1,yi+2, . . . ,yi+L−1]
T , (2.3)

for i = 1,2, . . . ,K andT denotes transposition. As mentioned in Sanei and Has-

sani (2015), there is no single rule for the choice ofL to cover all applications.

Hassani (2007) and Golyandina et al. (2001) notes that in generalL should be

proportional to the periodicity of the data, large enough toobtain sufficiently

separated components but not greater thanN/2. The output from the embed-

ding step is the trajectory matrixX which is a Hankel matrix, where all the

elements along the diagonali + j = constare constant (Hassani, 2007):

X = [X1, . . . ,XK] =
(
xi j

)L,K
i, j=1 =




y1 y2 y3 . . . yK

y2 y3 y4 . . . yK+1
...

...
...

. . .
...

yL yL+1 yL+2 . . . yT



. (2.4)

Step 2: Singular Value Decomposition (SVD)

Step two of the decomposition stage is aimed at obtaining thesingular values of

the trajectory matrixX. These singular values or eigenvalues are able to capture

all information in the time seriesYN. In order to obtain the SVD, we need to

calculate the matrixXXT which provides us with positive eigenvaluesλ1, . . . ,λL
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in decreasing order of magnitude. Then, the SVD ofX can be written as:

X = X1+ . . .+XL, (2.5)

whereX i are rank-one bi-orthogonal elementary matrices,X i =
√

λiUiVT
i , and

Vi = XTUi/
√

λi . Here,Ui andVi are more commonly known as principal com-

ponents and represents the left and right eigenvectors of the trajectory matrix

X.

The
√

λ i are also known as the singular values ofX whilst{
√

λ 1,
√

λ 2, . . . ,
√

λ L}
are called the spectrum. The name “Singular Spectrum Analysis” is derived

from this property and represents the motive underlying this technique which

concentrates on obtaining, and analysing this spectrum of singular values for

any given time series in order to identify and differentiatebetween the signal

and noise.

2.2.2 Stage 2: Reconstruction

The reconstruction stage in SSA is concerned with analysingthe spectrum of

singular values in order to identify and differentiate between the signal and

noise, and thereby enable the reconstruction of a less noisytime series which

can be used to forecast future data points. The only parameter used at this stage

is also the second and final SSA parameter, the number of eigenvalues,r.

Step 1: Grouping

Grouping is the first step in the reconstruction stage. In brief, the grouping

step corresponds to splitting the elementary matricesX i into several groups and

summing the matrices within each group. As noted in Silva andHassani (2015),

if we denoteI = {i1, . . . , ip} as a group of indicesi1, . . . , ip, then the matrixXI

corresponding to the groupI is defined asXI = X i1 + · · ·+X ip. The spilt of
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the set of indices{1, . . . ,L} into disjoint subsetsI1, . . . , Im corresponds to the

representationX = XI1 + · · ·+XIm. The procedure of choosing the setsI1, . . . , Im

is called the grouping. For a given groupI, the contribution of the component

XI is measured by the share of the corresponding eigenvalues:∑i∈I λi/∑d
i=1λi .

If the original series contains signal and noise, one then considers two groups

of indices,I1 = {1, . . . , r} andI2 = {r +1, . . . ,L} and associate the groupI = I1

with the signal component and the groupI2 with noise.

Note that at the grouping step we have several options for analyzing and

differentiating between the signal and noise in a given timeseries. These include

the option of analyzing the periodogram, scatterplot of right eigenvectors or the

eigenvalue functions graph (see, Hassani (2007) or Sanei and Hassani (2015)).

Once the selection of eigenvalues corresponding to signal and noise is made, it is

possible to evaluate the effectiveness of the separation wepropose via a statistic

known as the weighted correlation (w-correlation). As noted in Golyandina et al.

(2001), thew-correlation statistic shows the dependence between two time series

and can be calculated as:

ρ(w)
12 =

(
Y(1)

N ,Y(2)
N

)
w

‖Y(1)
N ‖w‖Y(2)

N ‖w,

whereY(1)
N andY(2)

N are two time series,‖Y(i)
N ‖w=

√(
Y(i)

N ,Y(i)
N

)
w
,
(
Y(i)

N ,Y( j)
N

)
w
=

∑N
k=1wky

(i)
k y( j)

k (i, j = 1,2), wk=min{k,L,N−k} (here, assumeL ≤ N/2).

Accordingly, if thew-correlation between two reconstructed components are

close to 0, this confirms that the corresponding time series arew-orthogonal and

that the two components are well separable (Hassani et al., 2009). In contrast, if

the w-correlation between two reconstructed components are large, this shows
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that the components should be considered as one group.

Step 2: Diagonal averaging

Diagonal averaging is a process which enables one to transform a matrix into

a Hankel matrix which can subsequently be converted to a timeseries, and this

is the purpose of the final step in SSA. Sanei and Hassani (2015) elaborates the

process concisely as follows. Supposezi j stands for an element of a matrixZ.

Then, thek-th term of the resulting series is obtained by averagingzi j over alli, j

such thati + j = k+1. Following diagonal averaging of all matrix components

of XI j in the expansion ofX above, we end up with another expansion:X =

X̃I1 + . . .+ X̃Im, whereX̃I j is the diagonalized version of the matrixXI j .

Note that the SVD of the trajectory matrixX can be represented as:

X =
d

∑
i=1

√
λiUiV

T
i = X1+ . . . ,Xd = ∑

i∈I
X i +∑

i 6∈I

X i,

whered=max{i; i =1, . . . ,L|λi >0} (rankX =d),Vi =XT Ui/
√

λi (i =1, . . . ,d),

X i =
√

λiUiVT
i and I ⊂ {1, . . . ,d}. The noise reduced series is reconstructed

by XI = ∑i∈I X i by selecting a set of indicesI . However,XI does not have

a Hankel structure and is not the trajectory matrix of some time series. By

performing diagonal averaging over the diagonalsi + j = const which corre-

sponds to averaging the matrix elements over the ‘antidiagonals’ i + j = k+1,

the aforementioned issue is overcome: the choicek=1 givesy1= y1,1, for k= 2,

y2 = (y1,2+y2,1)/2,y3 = (y1,3+y2,2+y3,1)/3 and so on. Applying diagonal av-

eraging to the matrixXI provides a reconstructed signalst , and yields the SSA

decomposition of the original seriesyt as followsyt = st + εt (t = 1,2, . . . ,N),

whereεt is the residual series following signal extraction.
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2.2.3 Forecasting with SSA

Following the introduction of the basic SSA process which enables filtering and

signal extraction in time series, here the two different forecasting approaches

in SSA are presented. These are known as Recurrent SSA (SSA-R) and Vector

SSA (SSA-V). As a forecasting technique, SSA gives us the option of forecast-

ing either the individual components of the series (which may relate to season-

ality or trend for example) or the entire reconstructed seriesŶN (Hassani and

Thomakos, 2010).

According to Sanei and Hassani (2015) the SSA technique can be applied

in forecasting any time series that approximately satisfiesthe linear recurrent

formula (LRF):

y j =
L−1

∑
i=1

αiy j−i , L ≤ j ≤ N (2.6)

where the coefficientsα1, . . . ,αd are achieved based onUi.

The SSA-R forecasting algorithm can be presented as in Golyandina et al.

(2001) and Sanei and Hassani (2015).

1. We begin with a time seriesYN = (y1, . . . ,yN) of lengthN.

2. SetL.

3. Consider the linear spaceLr ⊂ RL of dimensionr < L. Here, assume that

eL /∈ Lr , whereeL = (0,0, . . . ,1) ∈ RL.

4. Construct the trajectory matrixX = [X1, . . . ,XK] of YN.

5. Construct the vectorsUi (i = 1, . . . , r) from the SVD ofX.

6. Compute matrix̂X = [X̂1 : . . . : X̂K] = ∑r
i=1UiUT

i X. The vectorX̂i is the

orthogonal projection ofXi onto the spaceLr .

7. Construct the matrix̃X = H X̂ = [X̃1 : . . . : X̃K].
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8. Setv2 = π2
1 + . . .+ π2

r , whereπi is the last component of the vectorUi

(i = 1, . . . , r). Moreover, assume thateL /∈ Lr . This implies thatLr is not

a vertical space. Therefore,v2 < 1.

9. Determine vectorA= (α1, . . . ,αL−1):

A=
1

1−v2

r

∑
i=1

πiU
▽

i ,

whereU▽ ∈ RL−1 is the vector consisting of the firstL−1 components of

the vectorU ∈ RL.

10. Define the time seriesYN+h = (y1, . . . ,yN+h) by the formula

yi =





ỹi for i = 1, . . . ,N

∑L−1
j=1 α jyi− j for i = N+1, . . . ,N+h

(2.7)

whereỹi (i = 1, . . . ,N) are the reconstructed series. Then,yN+1, . . . ,yN+h

are theh-step ahead recurrent forecasts.

An alternative approach to forecasting with SSA is the SSA-Vforecasting

algorithm. The main difference between the two approaches is that in SSA-R

we consider only the last component of the reconstructed vector for forecast-

ing whereas with SSA-V the entire eigenvector is consideredfor computing the

forecast. The SSA-V approach can be presented as follows, and in doing so

Sanei and Hassani (2015) is followed. Consider the following matrix:

Π = V▽(V▽)T +(1−v2)AAT , (2.8)

whereV▽ = [U▽

1 , ...,U▽

r ]. Now consider the linear operator

θ (v) : Lr 7→ RL, (2.9)
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where

θ (v)U =


 ΠU▽

ATU▽


 . (2.10)

Define vectorZi as follows:

Zi =





X̃i for i = 1, . . . ,K

θ (v)Zi−1 for i = K+1, . . . ,K +h+L−1
(2.11)

where,X̃i ’s are the reconstructed columns of the trajectory matrix after group-

ing and filtering the noise components. Finally, by constructing matrix Z =

[Z1, ...,ZK+h+L−1] and performing diagonal averaging we can obtain a new se-

ries y1, ...,yN+h+L−1, whereyN+1, ...,yN+h forms theh-step ahead vector fore-

casts.

2.3 Multivariate SSA

Where the SSA technique is applied jointly to several seriesit is referred to

as MSSA (Hassani and Mahmoudvand, 2013). According to Saneiand Has-

sani (2015), the main difference between the recurrent and vector approaches

in MSSA is a result of organizing the single trajectory matrix X of each series

into the block trajectory matrix. As such the trajectory matrices can be orga-

nized either in vertical or horizontal form. This leads to two different forms of

MSSA which are referred to as VMSSA where the vertical form isused and

HMSSA where the horizontal form is adopted. Accordingly, there are four dif-

ferent MSSA forecasting algorithms as shown below (Hassaniand Mahmoud-

vand, 2013).
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MSSAforecastingapproach=





HMSSA





Recurrentapproach

Vectorapproach

VMSSA





Recurrentapproach

Vectorapproach

In what follows, the theory underlying VMSSA and HMSSA are presented

by following the representations in Hassani and Mahmoudvand (2013) and Sanei

and Hassani (2015).

2.3.1 Vertical MSSA (VMSSA)

ConsiderM time series with different series lengthNi ; Y(i)
Ni

= (y(i)1 , . . . ,y(i)Ni
) (i =

1, . . . ,M). Note that the univariate form can be acquired by settingM = 1 for all

multivariate algorithms considered in this chapter.

Stage 1: Decomposition

Step 1: Embedding.

Embedding, as previously mentioned is a mapping that transfers a one-dimensional

time seriesY(i)
Ni

= (y(i)1 , . . . ,y(i)Ni
) into a multidimensional matrix[X(i)

1 , . . . ,X(i)
Ki
]

with vectorsX(i)
j = (y(i)j , . . . ,y(i)j+Li+1)

T ∈ RLi , whereLi (2≤ Li ≤ Ni −1) is the

window length for each series with lengthNi andKi = Ni − Li + 1. The out-

put from the embedding step is the trajectory matrix (which is a Hankel matrix)

X(i) = [X(i)
1 , . . . ,X(i)

Ki
] = (xmn)

Li ,Ki
m,n=1. Therefore applying the above procedure

for each series separately providesM different Li ×Ki trajectory matricesX(i)
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(i = 1, . . . ,M). In order to form a block Hankel matrix in a vertical form, itis

required to haveK1 = . . . ,KM = K. Note that VMSSA enables us to have vari-

ous window lengthLi and different series lengthNi , but similarKi for all series.

The result of this step is the following block Hankel trajectory matrix

XV =




X(1)

...

X(M)


 ,

whereXV , the output of the first step is a block Hankel trajectory matrix formed

in vertical form.

Step 2: Singular Value Decomposition (SVD)

This step performs the SVD ofXV . If we denoteλV1, . . . ,λVLsum
as the eigenval-

ues ofXVXT
V , arranged in decreasing order

(
λV1 ≥ . . .λVLsum

≥ 0
)

andUV1, . . . ,UVLsum
,

the corresponding eigenvectors, whereLsum= ∑M
i=1Li , then the structure of the

matrixXVXT
V is as follows:

XVXT
V =




X(1)X(1)T X(1)X(2)T · · · X(1)X(M)T

X(2)X(1)T X(2)X(2)T · · · X(2)X(M)T

...
...

. . .
...

X(M)X(1)T X(M)X(2)T · · · X(M)X(M)T



. (2.12)

Note that the matrixX(i)X(i)T , which is used in univariate SSA, for the series

Y(i)
Ni

, appears along the main diagonal and the products of two Hankel matrices

X(i)X( j)T(i 6= j), which are related to the seriesY(i)
Ni

andY( j)
Nj

, appears in the

off-diagonal. The SVD ofXV can be written asXV = XV1 + · · ·+XVLsum
, where

XVi =
√

λ iUViVVi
T andVVi = XT

VUVi/
√

λVi (XVi = 0 if λVi = 0).
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Stage 2: Reconstruction

Step 1: Grouping

The grouping step, as with univariate SSA, corresponds to splitting the matrices

XV1, . . . ,XVLsum
into several disjoint groups and summing the matrices within

each group. The split of the set of indices{1, . . . ,Lsum} into disjoint subsets

I1, . . . , Im corresponds to the representationXv = XI1 + · · ·+XIm. The procedure

of choosing the setsI1, . . . , Im is termed grouping. Assuming that we have only

signal and noise components, we use two groups of indices,I1 = {1, . . . , r} and

I2 = {r +1, . . . ,Lsum} such that the groupI = I1 is associated with signal com-

ponent and the groupI2 with noise.

Step 2: Diagonal averaging or Hankelization.

Diagonal averaging is used to transform the reconstructed matrix X̂Vi to the form

of a Hankel matrix, which can be subsequently converted to a time series. Let

X̃(i) be the approximation ofX(i) obtained following diagonal averaging. Ifx̃(i)mn

stands for an element of a matrix̃X(i), then thej-th term of the reconstructed

series̃Y(i)
Ni

= (ỹ(i)1 , . . . , ỹ(i)j , . . . , ỹ(i)Ni
) is achieved by arithmetic averaging̃x(i)mn over

all (m,n) such thatm+n−1= j.

2.3.2 Horizontal MSSA (HMSSA)

The decomposition and reconstruction stages of the HMSSA algorithm are sim-

ilar to those provided above for VMSSA except for the structure of the block

Hankel matrix. Assume that we haveM differentLi ×Ki trajectory matricesX(i)

(i = 1, . . . ,M). To construct a block Hankel matrix in the horizontal form we

need to haveL1 = L2 = . . .= LM = L. This means that we have different values

of Ki and series lengthNi , but similarLi . The result of this step is as follows:
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XH =
[

X(1) : X(2) : · · · : X(M)
]
.

Hence, the structure of the matrixXHXT
H is such that:

XHXT
H = X(1)X(1)T + · · ·+X(M)X(M)T . (2.13)

The structure of the matrixXHXT
H implies that in HMSSA, we do not have

any cross-product between Hankel matricesX(i) andX( j). Moreover, in this

format, the sum ofX(i)X(i)T provides the block Hankel matrix. Note also that

performing the SVD ofXH in HMSSA yieldsL eigenvalues as with SSA, whilst

we haveLsum= ∑M
i=1Li eigenvalues in VMSSA.

2.3.3 Forecasting with MSSA

VMSSA Recurrent (VMSSA-R) Forecasting Algorithm

Let us haveM seriesY(i)
Ni

= (y(i)1 , . . . ,y(i)Ni
) and corresponding window length

Li , 1 < Li < Ni , i = 1. . . ,M. Then, theh-step ahead VMSSA-R forecasting

algorithm is as follows (Hassani and Mahmoudvand, 2013; Sanei and Hassani,

2015).

1. For a fixed value ofK, construct the trajectory matrixX(i)= [X(i)
1 , . . . ,X(i)

K ] =

(xmn)
Li ,K
m,n=1 for each single seriesY(i)

Ni
(i = 1, . . . ,M) separately.

2. Construct the block trajectory matrixXV as follows:

XV =




X(1)

...

X(M)


 .
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3. Let UVj = (U (1)
j , . . . ,U (M)

j )T be the jth eigenvector of theXVXT
V , where

U (i)
j with lengthLi corresponds to the seriesY(i)

Ni
(i = 1, . . . ,M).

4. Consider̂XV = [X̂1 : . . . : X̂K] =∑r
i=1UViU

T
Vi

XV as the reconstructed matrix

achieved fromr eigentriples:

X̂V =




X̂(1)

...

X̂(M)


 .

5. Consider matrix̃X(i) = H X̂(i) (i = 1, . . . ,M) as the result of the Han-

kelization procedure of the matrix̂X(i) obtained from the previous step,

whereH is a Hankel operator.

6. AssumeU (i)▽
j denotes the vector of the firstLi − 1 components of the

vectorU (i)
j andπ(i)

j is the last component of the vectorU (i)
j (i = 1, . . . ,M).

7. Select the number ofr eigentriples for the reconstruction stage that can

also be used for forecasting purposes.

8. Define matrixU▽M =
(
U▽M

1 , . . . ,U▽M
r

)
, whereU▽M

j is as follows:

U▽M
j =




U (1)▽
j

...

U (M)▽
j


 .

9. Define matrixW as follows:
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W =




π(1)
1 π(1)

2 · · · π(1)
r

π(2)
1 π(2)

2 · · · π(2)
r

...
... · · · ...

π(M)
1 π(M)

2 · · · π(M)
r



.

10. If the matrix
(
IM×M −WWT

)−1
exists andr ≤ Lsum−M, then theh-step

ahead VMSSA forecasts exist and is achieved by the followingformula:





[
ỹ(1)j1

, . . . , ỹ(M)
jM

]
, j i = 1, . . . ,Ni

(
IM×M −WWT

)−1
WU▽MTZh , j i = Ni +1, . . . ,Ni +h,

(2.14)

where,Zh =
[
Z(1)

h , . . . ,Z(M)
h

]T
andZ(i)

h =
[
ŷ(i)Ni−Li+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i =

1, . . . ,M). It should be noted that equation (4.10) indicates that theh-step

ahead forecasts of the refined seriesŶ(i)
Ni

are obtained by a multi dimen-

sional linear recurrent formula (LRF). For the univariate case, there is only

the one dimensional LRF.

HMSSA Recurrent (HMSSA-R) Forecasting Algorithm

1. For a fixed value ofL, construct the trajectory matrixX(i)= [X(i)
1 , . . . ,X(i)

K ] =

(xmn)
L,Ki
m,n=1 for each single seriesY(i)

Ni
(i = 1, . . . ,M) separately.

2. Construct the block trajectory matrixXH as follows:

XH =
[

X(1) : X(2) : · · · : X(M)
]
.

3. Let vectorUH j = (u1 j , . . . ,uL j)
T , with lengthL, be thejth eigenvector of

XHXT
H .
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4. Consider̂XH =∑r
i=1UHiU

T
Hi

XH as the reconstructed matrix obtained using

r eigentriples:

XH =
[

X̂(1) : X̂(2) : · · · : X̂(M)
]
.

5. Consider matrix̃X(i) = H X̂(i) (i = 1, . . . ,M) as the result of the Hanke-

lization procedure of the matrix̂X(i) obtained from the previous step.

6. LetU▽

H j
denotes the vector of the firstL−1 coordinates of the eigenvectors

UH j , andπH j indicates the last coordinate of the eigenvectorsUH j ( j =

1, . . . , r).

7. Defineυ2 =
r
∑
j=1

π2
H j

.

8. Denote the linear coefficients vectorR as follows:

R =
1

1−υ2

r

∑
j=1

πH jU
▽

H j . (2.15)

9. If υ2 < 1, then theh-step ahead HMSSA forecasts exist and can be calcu-

lated by the formula:

[
ŷ(1)j1

, . . . , ŷ(M)
jM

]T
=





[
ỹ(1)j1

, . . . , ỹ(M)
jM

]
, j i = 1, . . . ,Ni,

R
TZh, j i = Ni +1, . . . ,Ni +h,

(2.16)

where,Zh =
[
Z(1)

h , . . . ,Z(M)
h

]T
andZ(i)

h =
[
ŷ(i)Ni−L+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i =

1, . . . ,M).
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Note that equation (5.8) indicates that theh-step ahead forecasts of each

series are achieved by the same LRF generated considering all series in a mul-

tivariate system. In what follows, the MSSA Vector forecasting algorithms are

explained by following Hassani and Mahmoudvand (2013), theauthors who in-

troduced these two algorithms.

HMSSA Vector (HMSSA-V) Forecasting Algorithm

The procedure for HMSSA-V is very similar to its univariate version, SSA-

V and HMSSA-R. We begin by following items (1)-(7) of HMSSA-R. Then,

consider the following matrix

Π = U▽U▽T +(1−v2)RRT , (2.17)

whereU▽ = [U▽

1 , ...,U▽

r ]. Now consider the linear operator

P
(v) : Lr 7→ R

L, (2.18)

where

P
(v)Y =


 ΠY△

RTY△


 , Y ∈ Lr , (2.19)

andY△ is vector of lastL−1 elements ofY.

1. Define vectorZ(i)
j (i = 1, . . . ,M) as follows:

Z(i)
j =





X̃(i)
j for j = 1, . . . ,ki

P
(v)Z(i)

j−1 for j = ki +1, . . . ,ki +h+L−1
(2.20)
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where,X̃(i)
j ’s are the reconstructed columns of trajectory matrix of theith

series after grouping and leaving noise components.

2. Now, by constructing matrixZ(i)= [Z(i)
1 , ...,Z(i)

ki+h+L−1] and performing di-

agonal averaging we obtain a new series ˆy(i)1 , ..., ŷ(i)Ni+h+L−1, where ˆy(i)Ni+1, ..., ŷ
(i)
Ni+h

provides theh-step ahead of HMSSA-V forecast.

VMSSA Vector (VMSSA-V) Forecasting Algorithm

Begin by considering items (1)-(10) of VMSSA-R. Consider the matrix:

Π = U▽U▽T
+R

(
IM×M −WWT)

R
T , (2.21)

where,R = U▽WT
(
IM×M −WWT

)−1
. The following algorithm is proposed

for calculating the VMSSA-V forecasts (see, Hassani and Mahmoudvand (2013)

for theorem and proof).

1. Define vectorsZi as follows:

Zi =





X̃i for i = 1, . . . ,k

P
(ν)Zi−1 for i = k+1, . . . ,k+h+Lmax−1,

(2.22)

where,Lmax= max{L1, . . . ,LM}.

2. Constructing the matrixZ = [Z1 : ... : ZK+h+Lmax−1] and making its hanke-

lization. Using this calculation we obtain ˆy(i)1 , . . . , ŷ(i)N+h+Lmax
(i =1, . . . ,M).

3. The numbers ˆy(i)Ni+1, . . . , ŷ
(i)
Ni+h (i =1, . . . ,M) form thehstep ahead VMSSA-

V forecasts.

Given that there are two different MSSA approaches it is pertinent to note

their similarities and differences which can be useful whenchoosing between
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them. Hassani and Mahmoudvand (2013)considers various perspectives such

as series length, the value of the Window Length (Li), the number of nonzero

singular values obtained from the block trajectory matrix and LRF. Table 2.1

presents this summary. As evident from this table there are some restrictions on

selecting values ofL andK depending on the MSSA approach used. However,

to this date there is no definitive study that notes which MSSAapproach is best.

In terms of selecting between the Recurrent or Vector forecasting approaches,

the Vector forecasting algorithm is known to be more robust than the Recurrent

forecasting algorithm if there are outliers in the series being analysed (Hassani

et al., 2014).

Table 2.1 Similarities and dissimilarities between the VMSSA and HMSSA algorithms.

Method Series Length Li Ki Number ofλi LRF
VMSSA Different Different Equal ∑Li Different
HMSSA Different Equal Different L Equal

2.4 Benchmark Forecasting Models

As explained in Chapter 1, automated forecasting models arebecoming increas-

ingly popular in the modern age. Given that this thesis seeksto automate and op-

timize the SSA and MSSA techniques, selected as benchmark models for com-

parison purposes are the automated forecasting algorithmsfor ARIMA, Holt-

Winters, ETS and Neural Networks as provided via the forecast package inR.In

addition, the choice of these benchmark models have also been influenced by

previous applications in literature. However, it is important to note that the ap-

plications which follow do not intend on presenting the newly proposed SSA

and MSSA approaches as universally best at this time. In terms of the fore-

casting strategy, unless stated otherwise the applications which follow exploit
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a recursive forecasting strategy. Details on the selected benchmark models are

concisely presented below and in doing so Ghodsi et al. (2015) is mainly fol-

lowed.

2.4.1 Autoregressive Integrated Moving Average (ARIMA)

ARIMA is recognized as one of the most popular benchmark forecasting tech-

niques. Used in this research isauto.arima which is an optimized version of

the ARIMA model and provided via the forecast package inR.A detailed de-

scription of the algorithm can be found in Hyndman and Khandakar (2008). In

brief, the number of differencesd is determined using either a KPSS test, Aug-

mented Dickey Fuller test or the Phillips-Perron test. Thereafter, the algorithm

minimises the Akaike Information Criterion (AIC) to determine the values for

the order of autoregressive termsp, and the order of the moving average process

q. The optimal model is chosen to be the model which representsthe smallest

AIC. The decision on the inclusion or exclusion of the constant c is dependent

on the value ofd.

According to Hyndman and Athanasopoulos (2012) a non-seasonal ARIMA

model may be written as:

(1−φ1B− . . .φpBp)(1−B)dyt = c+(1+φ1B+ . . .+φqBq)et , (2.23)

or

(1−φ1B− . . .φpBp)(1−B)d(yt −µtd/d!) = (1+φ1B+ . . .+φqBq)et , (2.24)

whereµ is the mean of(1−B)d(yt , c= µ(1−φ1− . . .−φp) andB is the back-
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shift operator. InR,the inclusion of a constant in a non-stationary ARIMA

model is equivalent to inducing a polynomial trend of orderd in the forecast

function and whend=0, µ is the mean ofyt . Likewise, Hyndman and Khan-

dakar (2008) presents the seasonal ARIMA model as:

Φ(Bm)φ(B)(1−Bm)D(1−B)dyt = c+Θ(Bm)θ(B)εt, (2.25)

whereΦ(z) andΘ(z) are the polynomials of ordersP andQ, andεt is white

noise. Note that ifc 6= 0, there is an implied polynomial of orderd+D in the

forecast function. In order to determine the values ofp andq the AIC of the

following form is minimised:

AIC=−2log(l)+2(p+q+P+Q+k), (2.26)

wherek = 1 if c 6= 0 and 0 otherwise, andl represents the maximum likelihood

of the fitted model.

2.4.2 Holt-Winters (HW)

The Holt-Winters models is a popular time series analysis and forecasting tech-

nique which continues to be used by Central Banks around the globe. It was

developed through the work by Holt in 1957 as published in Holt (2004) and

Winters (1960). TheR software allows for calculating forecasts from the HW

model via the stats package.

The HW forecasting equations are presented below, and in doing so Holt

(2004) and Winters (1960) are followed. The additive HW prediction function

(for a time series with period lengthp) is

Ŷt+h = at +h∗bt +s[t−p+1+(h−1)modp], (2.27)
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whereat , bt andst are given by

at = α(Yt −st−p)+(1−α)(at−1+bt−1), (2.28)

bt = β (at −at−1)+(a−β )bt−1, (2.29)

st = γ(Yt −at)+(1− γ)st−p. (2.30)

The multiplicative HW prediction function (for a time series with period length

p) is

Ŷt+h = (at +h∗bt)∗s[t−p+1+(h−1)modp], (2.31)

whereat , bt andst are given by

at = α(Yt/st−p)+(1−α)(at−1+bt−1), (2.32)

bt = β (at −at−1)+(a−β )bt−1, (2.33)

st = γ(Yt/at)+(1− γ)st−p. (2.34)

The algorithm is programmed to find the optimal values ofα, β andγ by

minimizing the squared one-step prediction error1.

1Those interested in the details of the algorithm are referred to https://stat.ethz.ch/
R-manual/R-devel/library/stats/html/HoltWinters.html

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/HoltWinters.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/HoltWinters.html
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2.4.3 Exponential Smoothing (ETS)

The ETS technique in the forecast package inR overcomes a limitation found in

earlier exponential smoothing models which failed to provide a method for easy

calculation of prediction intervals (Makridakis et al., 1998). A detailed descrip-

tion of ETS can be found in (Hyndman and Athanasopoulos, 2012). In brief,

this ETS model takes into account the error, trend and seasonal components

along with over 30 possible options for choosing the best exponential smooth-

ing model via optimization of initial values and parametersusing the MLE, and

selecting the best model based on the AIC. Figure 2.2 summarises the several

ETS formulae that are evaluated in the forecast package to select the best model

to fit the data. Note that in this figure,ellt denotes the series level at timet, bt

denotes the slope,st denotes the seasonal component of the series, andm de-

notes the number of seasons in a year;α,β ,γ andφ are smoothing parameters,

φh = φ + φ2 + . . .+ φh and h+m = [(h− 1)modm] + 1 (Hyndman and Athana-

sopoulos, 2012).
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Fig. 2.2 State space equations for each of the models in the ETS framework (Hyndman
and Athanasopoulos, 2012).
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2.4.4 Neural Networks (NN)

The NN model in the forecast package inR is referred to asnnetar. A detailed

description of the model can be found in Hyndman and Athanasopoulos (2012)

along with an explanation of the underlying dynamics. In brief, thennetarfunc-

tion trains 25 neural networks by adopting random starting values and then ob-

tains the mean of the resulting predictions to compute the forecasts. The neural

network takes the form

ŷt = β̂0+
k

∑
j=1

β̂ jψ(xT
t .γ̂ j), (2.35)

wherext consist ofp lags ofyt andT denotes transpose. Then, the functionψ

has the logistic form

ψ(x
′
t .γ̂ j) = [1+exp(−γ̂ j0+

p

∑
i=1

γ̂ ji .yt−1)]
−1. j = 1, . . . ,k (2.36)

This form of neural networks is referred to as a one hidden layer feed forward

neural network model. The nonlinearity arises through the laggedyt entering in

a flexible way through the logistic functions of (2.28). The number of logistic

functions (k) included, is known as the number of hidden nodes. The parameters

in the neural network model are selected based on a loss function embedded into

learning algorithm. It may be noted that in all cases the selected neural network

model has onlyk=1 hidden node,p=2 lags.

2.5 Metrics

Presented in this section are the various metrics which are used to compare the

forecasting results obtained via the many applications which follow. This thesis

considers both loss functions and direction of change criterions for comparing
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between forecasts. This is because a loss function should becoupled with a cri-

terion such as direction of change in order to determine if a forecast is reliable

enough for decision making. Also it is possible that those interested in identi-

fying business cycle changes such as recessions or expansions would prefer a

criterion such as direction of change to be more important and useful than a loss

function alone.

2.5.1 Root Mean Squared Error (RMSE)

The applications which follow rely mainly on the RMSE as a metric. The choice

of RMSE as the main criterion is for several reasons. Firstly, the RMSE contin-

ues to remain a popular measure of forecast accuracy (see, for example, Zhang

et al. (1998), Hassani et al. (2009), and Hassani et al. (2013b)). Secondly,

the RMSE is able to indicate the error in the same units as the original data.

Given that each application which follows considers comparing between data

sets with identical units it is easier to compare between theforecasts by relying

on the RMSE which is also easier to interpret in relation to business decisions

(Armstrong and Collopy, 1992). Thirdly, the applications which follow requires

comparisons between forecast errors with a Gaussian distribution, and Chai and

Draxler (2014) notes that the RMSE is better at representingmodel performance

when the error distribution is expected to be Gaussian. As anexample, the

RMSE ratios of SSA to that of ETS are provided:

RRMSE=
SSA
ETS

=

(
∑N

i=1(ŷT+h,i −yT+h,i)
2
)1/2

(
∑N

i=1(ỹT+h,i −yT+h,i)2
)1/2

,

where,ŷT+h represents theh-step ahead forecast obtained by SSA,ỹT+h is the

h-step ahead forecast from the ETS model, andN is the number of the forecasts.
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If SSA
ETS is less than 1, then the SSA outperforms ETS by 1-SSA

ETS percent.

2.5.2 Mean Absolute Percentage Error (MAPE)

The MAPE measure is also used in this thesis for quantifying forecast accuracy.

In brief, the lower the MAPE value, the more accurate the forecast.

MAPE=
1
N

N

∑
t=1

|100× yT+h− ŷT+h,i

yT+h
|,

whereyT+h represents the actual data corresponding to theh step ahead forecast,

and ŷT+h,i is theh step ahead forecasts obtained from a particular forecasting

model.

2.5.3 Direction of Change (DC)

The DC criterion is a measure of the percentage of forecasts that accurately

predict the direction of change (Hassani et al., 2013b; Hassani and Thomakos,

2010). Here, the concept of DC is explained in brief by following Hassani et al.

(2013b).

In the univariate case, for forecasts obtained usingXT , let DXi be equal to

1 if the forecast is able to correctly predict the actual direction of change and 0

otherwise. Then,̃DX = ∑n
i=1DXi/n shows the proportion of forecasts that cor-

rectly identify the direction of change in the actual series. As noted in Hassani

and Thomakos (2010), based on the Moivre-Laplace central limit theorem, for

large samples, the test statistic 2(D̃X −0.5)n1/2 is approximately distributed as

standard normal. Where the results for the DC criterion are statistically sig-

nificant, it shows whether they are significantly greater than the pure chance

(Hassani et al., 2013a). Accordingly, ifD̃X is significantly greater than 0.5, then

the forecast is said to have the ability of predicting the DC,and if D̃X is signifi-

cantly less than 0.5, then the forecast tends to give an incorrect DC (Hassani and
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Thomakos, 2010).

Several authors have discussed the importance of the DC criterion as a mea-

sure of forecast accuracy. In particular, Ash et al. (1997) are of the view that a

smaller prediction error and a misforecasted direction of change is more prob-

lematic than a larger directionally correct error for some purposes. Clements

and Smith (1999) subscribe to a similar view as they note thatthe DC criterion

is a better measure of the quality of forecasts. However, Heravi et al. (2004) are

more explicit when they state that the DC criterion is particularly important for

capturing business cycle fluctuations pertaining to recessions and expansions.

2.5.4 Diebold-Mariano (DM) Test

One of the statistical tests considered as a measure for comparing between the

predictive accuracy of two sets of forecasts in this thesis is the DM test. The DM

test was introduced by Diebold and Mariano (1995) but was improved through

the work of Harvey et al. (1997) whereby the authors sought toovercome several

issues with the original DM test. The modified DM test statistic is (Harvey et al.,

1997):

[
n+1−2h+n−1h(h−1)

n
]1/2∗Si , (2.37)

whereSi is the original DM statistic which is explained in detail in Chapter 3

and is therefore not reproduced here. The hypothesis of the test used here are:

H0 : E(dt) = 0,H1 : E(dt) 6= 0. (2.38)

where the null hypothesisH0 states that both forecasts have the same accuracy

and the alternative hypothesisH1 states that the two forecasts have different

levels of accuracy. Note thatdt is the loss differential between two different
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forecasts.





Chapter 3

A Kolmogorov-Smirnov based Test

for Comparing the Predictive

Accuracy of Two Sets of Forecasts

Presented in this chapter is the first contribution of this thesis which is a com-

plement statistical test for comparing between the predictive accuracy of two

sets of forecasts. This test has been founded upon the principles of cumulative

distribution functions and stochastic processes.

3.1 Introduction

There is a consensus that any attempt to justify the comparative superiority of

forecasts from a given model is both incomplete and inadmissible if no consid-

eration has been given to the statistical significance associated with the com-

parison. Tests on forecast evaluation and comparison have along and detailed

history which can be found in Chapter 3 of Elliot and Timmermann (2013). Few

historically popular examples of such statistical tests are discussed in Christiano

(1989); Diebold and Mariano (1995); Meese and Rogoff (1988)and Harvey
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et al. (1997). Of these, the Diebold-Mariano (DM) test (Diebold and Mariano,

1995) is one which is highly cited, and its popularity is evident via statements

such as that in Diebold (2013), pp.8 according to which, “forcomparing fore-

casts, DM is the only game in town."

Whilst there is indeed no question regarding the popularityof the DM test, it

is pertinent to note that the DM test is by no means a panacea. At present there

exists other improved variants for evaluating the statistical significance between

forecasts. Two sound examples would be Hansen’s Hansen (2005) Superior

Predictive Ability (SPA) test, and Hansen et al.’s Hansen etal. (2011) Model

Confidence Set (MCS) which are superior to the DM test. In addition, recently

there has been a renewed interest in research focussing on testing the predictive

accuracy of forecasts through the work of Clark and McCracken (2009, 2012);

Gilleland and Roux (2015); Gneiting and Raftery (2007). Clark and McCracken

Clark and McCracken (2012) in particular shows that the DM test is inferior or

inappropriate for use alongside nested forecasting models.

The aim of this chapter is to introduce a complement statistical test (which

differs from the tests noted above) for comparing between the predictive ac-

curacy of forecasts whilst overcoming the constraints of the DM test which are

identified below. Interestingly, regardless of the existence of more superior tests,

the DM test continues to be cited in forecasting literature both in isolation and

at times along side SPA and MCS tests, see for example Hassaniet al. (2015);

Silva and Hassani (2015). This research uses the DM test as a benchmark with

the reasons being justified in what follows.

The DM test can be briefly introduced as an asymptoticz-test for the hy-

pothesis that the loss differential is zero (Diebold, 2013)1. Whilst it is not the

intention of this research to ridicule any proven test currently adopted for com-

1Note that the Granger and Newbold (1977) assumption of forecast errors having zero mean
is not essential according to Morgan (1939).
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paring the accuracy of forecasts, it is evident that the needfor a complement

statistical test arises owing to the following reasons which relate to both theo-

retical and empirical issues with the DM test. Firstly, the original DM test was

limited by finite sample properties (Diebold and Mariano, 1995). Secondly, as

a parametric test, the DM test requires that the loss differential has a stationary

covariance (Diebold, 2013). The failure to meet this assumption invalidates the

results and imposes a restriction on the applicability of this test. These issues

were later addressed in Harvey et al. (1997) when a solution was achieved via

the inclusion of a new assumption whereby all autocovariances of the mean loss

differential beyond some lag length are assumed to be 0. However, according

to the recent findings in Hassani (2010) and Hassani et al. (2012a) it has been

proven that when the lag of a sample autocorrelation function (ACF) exceeds 1,

the sum of the ACF is always equal to -1
2. In fact, according to Harvey et al.

(1997) the modified DM statistic continues to be multiplied by the original DM

statistic[ V̂(d̄)]−0.5d̄, whereV̂(d̄)≈n−1[γ0+2∑h−1
k=1γk] andγk is thekth autocovari-

ance ofdt. Then, as per recent findings (Hassani, 2010; Hassani et al.,2012a)

it implies that the sum of the autocovariance,∑h−1
k=1γk=−1

2γ0 which in turn en-

sures that the expectation ofV̂(d̄)=0, and therefore the modified DM test statistic

tends to infinity. Thus, if two models are used to forecastn data points without

repeating or updating the data, then the modified DM test cannot be applied as

the sum of the covariance will be zero. Thirdly, the modified DM test statistic

for improved small sample properties is dependent on the Student’st distribu-

tion (Harvey et al., 1997) which cannot be justified unless the forecast errors

are independent and normally distributed. In addition, even though Harvey et al.

(1997) asserts that the modified DM test can provide efficientresults when faced

with small sample properties, in practice there can be instances when this asser-

tion fails to hold. For example, in some instances where the Ratio of the Root

Mean Squared Error (RRMSE) criterion shows that the forecasts from a partic-
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ular model are for example 60% more accurate than the forecasts from another

model (with a large sample size), the DM test fails to show a statistically signif-

icant difference between such forecasts. Moreover, when faced with comparing

for example a small sample ofh= 12 steps ahead forecasts there is a tendency

for the modified DM test to always report a significant difference between fore-

casts even when the RRMSE criterion is at around 99%. Finally, according to

the simulation results reported in Harvey et al. (1997) the modified DM test is

not accurately sized for both small and large samples beyondthe one-step ahead

forecasting horizon.

The proposed test is founded upon the principles of the Kolmogorov-Smirnov

(KS) test (Kolmogorov, 1933) and is non-parametric in nature. The choice of

a non-parametric test is important as in the real world we aremostly faced

with data which fails to meet the assumptions of normality and stationarity un-

derlying parametric tests. The proposed test (referred to as the Kolmogorov-

Smirnov Predictive Accuracy or KSPA test) was motivated by the work of Has-

sani et al. (2009) and Hassani et al. (2013b), where cumulative distribution func-

tions (c.d.f.’s) relating to the absolute value of forecasterrors are exploited to

determine if one forecasting technique provides superior forecasts in compari-

son to another technique. The approach presented in the aforementioned papers

are in fact based on the concept of stochastic dominance. However, the evidence

presented relies purely on graphical representations and lacks a formal statisti-

cal test for significance which in turn leaves the final resultopen for debate. It

should be noted that the KSPA test is an extension of the KS statistic for compar-

ing between the predictive accuracy of two data sets. At present the KS statistic

is used for the purposes of distinguishing between the distributions of data and

this research presents an additional use of this statistic which is supported by

both simulation studies and applications to empirical data.

The beauty of the proposed KSPA test is that it not only enables distinguish-
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ing between the distribution of forecasts from two models, but also enables

to determine whether the model with the lowest error also reports the lowest

stochastic error in comparison to the alternate model. Moreover, this test is not

affected by the potential autocorrelation that may be present in forecast errors

which is yet another advantage. The ability of exploiting the KSPA test for de-

termining the model with the lowest stochastic error stems from the work of

literature on stochastic dominance and as such deserves to be noted. Whilst the

consideration of stochastic dominance in forecasting literature is novel, as noted

in Horváth et al. (2006) stochastic dominance is widely usedin econometric and

actuarial literature and is therefore a well established and recognized concept.

The use of KS tests for first and second order stochastic dominance dates back

to the work of McFadden (1989) where the author considered KStests with in-

dependent samples with equal number of observations. Moreover, as the KS test

compares each point of the c.d.f. (Barrett and Donald, 2003;McFadden, 1989) it

has the potential of being a consistent test which considersall of the restrictions

imposed by stochastic dominance (Barrett and Donald, 2003).

The nature of the proposed KSPA test is such that it evaluatesthe differences

in the distribution of forecasting errors as opposed to relying on the mean dif-

ference in errors as is done in the DM approach. This in itselfenables the KSPA

test to benefit from several advantages. Firstly, relying onthe distribution of

errors enables the KS test to have more power than the DM test.This is because

the KSPA test essentially considers an infinite number of moments whilst the

DM test only tests the first moment which is popularly referred to as the mean.

Secondly, the presence of outliers can severely impact the DM test as the mean

is highly sensitive to outliers in data whereas the cumulative distribution func-

tion for errors are less affected. Thirdly, a test statisticwhich is concentrated

around a mean fails to account for the variation around the data. For example,

it is possible to have two populations with identical means and yet these two
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populations would not really be identical if the variation around the mean is not

the same. By considering the distribution of the data as is done via the pro-

posed KSPA test, we are able to study and obtain a richer understanding of the

underlying characteristics which in turn enables a more efficient and accurate

decision.

The remainder of this chapter is organized as follows. The section which

follows presents the theoretical foundation underlying the proposed statistical

test for comparing between forecasting models. Section 6.3is dedicated to the

results from the simulation study which compares the size and power properties

of both the KSPA and modified DM tests for different sample sizes and fore-

casting horizons. Section 6.4 presents empirical evidencefrom applications to

real data where the performance of the KSPA test is compared alongside the

modified DM test, and conclusions relating to this chapter are drawn in Section

6.5.

3.2 Theoretical Foundation

This section is dedicated to briefly introducing the theory underlying the Kolmogorov-

Smirnov test which is followed by the introduction of the hypothesis for the

two-sided and one-sided KS tests which are of interest to this research. There-

after, the KSPA test is presented for distinguishing between the distribution of

forecasts errors and identifying the model with the lower stochastic error. The

first part of the KSPA test, which is the two-sample two-sidedKSPA test, aims

at identifying a statistically significant difference between the distribution of

two forecast errors (and thereby comparing the predictive accuracy of forecasts).

The second part, which is the two-sample one-sided KSPA testaims at ascertain-

ing whether the forecast with the lowest error according to some loss function

also has a stochastically smaller error in comparison to thecompeting forecast
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(and thereby enables the comparison of the predictive accuracy of forecasts).

3.2.1 The Kolmogorov-Smirnov (KS) Test

The cumulative distribution function (c.d.f.) is an integral component of the KS

test. As such, let us begin by defining the c.d.f.,F(x) for a random variableX.

The c.d.f ofX is denoted as:

F(x) = P(X ≤ x), (3.1)

wherex includes a set of possible values for the random variableX. In brief,

the c.d.f. shows the probability ofX taking on a value less than or equal tox.

The next step is to obtain the empirical c.d.f. This is because the one sample KS

test (which is introduced below) aims at comparing the theoretical c.d.f. with

an empirical c.d.f., whereby the latter is an approximationfor the former. The

empirical c.d.f. can be defined as:

Fn(x) = Pn(X ≤ x) =
1
n

n

∑
i=1

I(Xi ≤ x), (3.2)

wheren is the number of observations, andI is an indicator function such thatI

equals 1 ifXi ≤ x and 0 otherwise. According to DeGroot and Schervish (2012),

as implied by the law of large numbers, for any fixed pointx ε R, the proportion

of the sample contained in the set(−∞,x] approximates the probability of this

set as:

Fn(x) =
1
n

n

∑
i=1

I(Xi ≤ x)⇒ EI(X ≤ x) = F(x), (3.3)

whereE represents the expectation.

Then, the one sample Kolmogorov–Smirnov statistic for any givenF(x) can
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be calculated as

Dn = max
x

|Fn(x)−F(x)|, (3.4)

where max
x

denotes the maximum of the set of distances. Note that the onesam-

ple KS test in Equation (6.4) compares the empirical c.d.f. with a theoretical

c.d.f. However, presented next is the two sample KS test statistic which is of di-

rect relevance to the proposed KSPA test. In contrast to the one sample KS test,

the two sample KS test compares the empirical c.d.f.’s of tworandom variables

in order to find out whether both random variables share an identical distribu-

tion, or whether they come from different distributions. Assuming two random

variablesX andY, the two sample KS test statistic will be

Dn1,n2 = max
x

|FX,n1(x)−FY,n2(x)|. (3.5)

Next, we introduce the hypothesis which are relevant for theproposed KSPA

test. Let us begin by presenting the hypothesis for the two-sided KS test. Let

X andY be two random variables with c.d.f.’sFX andFY, respectively. Then,

a two sample, two-sided KS test will test the hypothesis thatboth c.d.f.’s have

an identical distribution, and the resulting null and alternate hypothesis can be

expressed as:

H0 : FX(z)≡ FY(z) ∀ z ∈ Z,H1 : FX(z) 6= FY(z), for somez ∈ Z. (3.6)

In simple terms, the null hypothesis in Equation (5.6) states that bothX andY

share an identical distribution whilst the alternate hypothesis states thatX andY

do not share the same distribution.

Finally, the hypothesis for the two sample one-sided KS testwhich is also



3.2 Theoretical Foundation 51

known as the one-sided test of stochastic dominance is presented as in McFad-

den (1989):

H0 : FX(z)≤ FY(z) ∀ z ∈ Z,H1 : FX(z)> FY(z), for somez ∈ Z. (3.7)

The important point to note here is that the alternate hypothesis in Equation (6.9)

states that the c.d.f. ofX lies above and to the left of the c.d.f. ofY, which in

turn means thatX has a lower stochastic error thanY. Note that in our case we

considerX andY in absolute or squared terms for example.

As with all tests, the decision making process requires the calculation of the

probability value. For the KS test, there are various formulas for calculating

the p-value, each with its own advantages and limitations. See for example,

Birnbaum and Tingey (1951); Marsaglia et al. (2003) and Simard and L’Ecuyer

(2011). The KSPA test relies on the formulae used in Simard and L’Ecuyer

(2011) to calculate thep-values for both two-sided and one-sided KS tests. In-

troduced below are the two-sided and one-sided KSPA tests which are based on

the foundations of the KS test which has been concisely explained above.

3.2.2 Testing for Statistically Significant Differences between

the Distribution of Two Sets of Forecast Errors

The aim here is to exploit the two sample two-sided KS test (which is referred to

as the two-sided KSPA test hereafter) to ascertain the existence of a statistically

significant difference between the distributions of two forecast errors. Let us

begin by defining forecast errors. Suppose we have a real valued, non zero time

seriesYN = (y1, . . . ,yt , . . .yN) of sufficient lengthN. YN is divided into two parts,

i.e., training set and test set such thatY1 = (y1, . . . ,yt) represents the training set
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andY2 = (yt+1, . . . ,yN) represents the test set. The observations inY1 are used

to model the data whilst the observations inY2 are set aside for evaluating the

forecasting accuracy of each model. Assume we use two forecasting techniques

known asm1 andm2. A loss functionL can be used to assess and compare

between the out-of-sample forecast errors. Whilst there are varied options for

L , here we defineL as:

L (yi+h− ŷi+h), (i = t, . . . ,N−h) (3.8)

whereh≥ 1 denotes the forecasting horizon, and ˆyi+h denotes theh-step ahead

forecast ofYi . If the forecast error is denoted byε, then we have the expression

εi+h = yi+h− ŷi+h. (3.9)

In this case the forecast errors forY2, obtained using modelsm1 andm2 can be

denoted by

εm1
i+h = yi+h− ŷm1

i+h, εm2
i+h = yi+h− ŷm2

i+h, (3.10)

whereεm1
i+h is theh-step ahead forecast errors generated from modelm1 andεm2

i+h

is theh-step ahead forecast errors generated from modelm2. The most common

loss functions consider errors in the form of absolute values or squared values

(see for example, the MAPE and RMSE). As such, we can use either the absolute

value of errors or squared errors when calculating the KSPA test depending on

the loss function in use. Then, the absolute values and squared values of forecast

errors can be calculated as

εm1
i+h = |yi+h− ŷm1

i+h|, εm2
i+h = |yi+h− ŷm2

i+h|. (3.11)
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εm1
i+h = (yi+h− ŷm1

i+h)
2, εm2

i+h = (yi+h− ŷm2
i+h)

2. (3.12)

The forecast errors in (3.11) or (3.12) are inputs into the KSPA test for deter-

mining the existence of a statistically significant difference in the distribution of

forecasts from modelsm1 andm2. As the requirement is to test the distribution

between two samples of forecast errors, the two sample two-sided KSPA test

statistic can be calculated as:

Di,i+h = max
x

|Fεm1
i+h
(x)−Fεm2

i+h
(x)|, (3.13)

whereFεm1
i+h
(x) andFεm2

i+h
(x) denote the empirical c.d.f.’s for the forecast errors

from two different models.

Accordingly, in terms of forecast errors, the two-sided KSPA test hypothesis

can be approximately represented as follows; whereεm1
i+h andεm2

i+h are the ab-

solute or squared forecast errors from two forecasting models m1 andm2 with

unknown continuous empirical c.d.f’s, the two-sided KSPA test will test the hy-

pothesis:

H0 : Fεm1
i+h
(z)≡ Fεm2

i+h
(z),H1 : Fεm1

i+h
(z) 6= Fεm2

i+h
(z). (3.14)

Then, if the observed significance value of the two-sample two-sided KSPA test

statisticDi,i+h is less thanα (which is usually considered at the 1%, 5% or

10% level), we reject the null hypothesis and accept the alternate which is that

the forecast errorsεm1
i+h and εm2

i+h do not share the same distribution. In such

circumstances we are able to conclude with 1-α confidence that there exists a

statistically significant difference between the distribution of forecasts provided

by modelsm1 andm2, and thereby conclude the existence of a statistically sig-

nificant difference between the two forecasts based on the two-sided KSPA test.
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3.2.3 Testing for the Lower Stochastic Error

The aim of the two sample one-sided KS test (referred to as theone-sided KSPA

test hereafter) is to identify whether the model which reports the lowest error

based on some loss function also reports a stochastically smaller error in com-

parison to the alternate model. The usefulness of the one-sided KSPA test in

distinguishing between the predictive accuracy of forecasts is most apparent in

circumstances where forecasts from two models may share an identical distribu-

tion with some degree of error (as otherwise this would mean the two forecasts

are exactly the same), such that one model will clearly report a comparatively

lower forecast error based on some loss function. In such instances, the two-

sided KSPA test would fail to identify a statistically significant difference be-

tween the two forecasts, but the one-sided KSPA test has the ability of testing

the out-of-sample forecasts further in order to identify whether the model with

the lower error also reports a stochastically smaller error, and thereby test for

the existence of a statistically significant difference between two forecasts.

In terms of forecast errors, the two-sample, one-sided KSPAtest hypothesis

can be approximately represented as follows. Once again, whereεm1
i+h andεm2

i+h

are the absolute or squared forecast errors from two forecasting modelsm1 and

m2 with unknown continuous empirical c.d.f.’s, the two sampleone-sided KSPA

test will test the hypothesis:

H0 : Fεm1
i+h
(z)≤ Fεm2

i+h
(z),H1 : Fεm1

i+h
(z)> Fεm2

i+h
(z). (3.15)

The acceptance of the alternate hypothesis in this case translates to the c.d.f.

of forecast errors from modelm1 lying towards the left and above the c.d.f. of

forecast errors from modelm2. More specifically the acceptance of the alternate

hypothesis confirms that modelm1 reports a lower stochastic error than model

m2. Recall the relationship identified in Hassani et al. (2009)that if the c.d.f.
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for absolute value of forecast errors from one model lies above and hence to the

left of that for the other model, the model lying above had a lower stochastic

error than the other model. The one-sided KSPA test evaluates this notion and

provides a statistically valid foundation which was previously lacking.

3.3 Simulation Results

3.3.1 Size of the Test

The first part of the simulation study focuses mainly on the size properties of the

proposed KSPA test. The actual size of nominal 10% level tests are estimated

against a two-sided alternative as in Diebold and Mariano (1995) and Harvey

et al. (1997), and the simulation study itself follows the exact process as in

Harvey et al. (1997). This research has considered and reported the results from

errors generated via various noise distributions, and as anexample explained

below is one of the processes, i.e. the process involved in the Gaussian white

noise simulation. Independent standard normal white noiseerror series were

simulated(e1t ,e2t), t = 1,2, . . . ,n, for various sample sizesn. Forecasts which

cover both short and long run horizons, more specifically up to h = 10 were

evaluated. As in Harvey et al. (1997), the information related to the simulated

white noise error series were incorporated in the test statistics only in the case

of h= 1. In order to enable comparison with the results in Harvey etal. (1997),

the squared errors were considered, i.e.e2
1t ande2

2t over the entire simulation

study. All simulation results reported are based on 10,000 replications and were

programmed inR.

The results for the size properties are reported in Table 3.1. Firstly, as noted

in Harvey et al. (1997) the modified DM test remains somewhat oversized as

visible in the results shown in Table 3.1. Yet, the authors concluded this was
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acceptable as the modified DM test results showed a major improvement over

the previous version. Based on the results, we see that for the Guassian white

noise errors which are directly comparable with the modifiedDM test results in

Harvey et al. (1997), the proposed KSPA test is correctly sized across all sample

sizes, both large and small, and across all horizons of up to 10 steps-ahead.

Unlike the results reported in Harvey et al. (1997), also shown here are the

outcomes from the simulation study which considered Uniform distribution,

Cauchy distribution, and heavy tailed errors. The Cauchy white noise distri-

butions are likely in time series which are affected by catastrophic events. The

heavy tailed distribution is a Student’st distribution with six degrees of free-

dom as considered and explained in Harvey et al. (1997). The findings from the

simulation study indicates the superiority of the proposedKSPA test over the

modified DM test in terms of being correctly sized across all sample sizes and

all horizons even when faced with varying noise distributions.

It is noteworthy that the results reported in Table 3.1 represents a subset of

results obtained from an extensive simulation study. Following the simulation

study in Harvey et al. (1997), also considered are(1) contemporaneously corre-

lated forecast errors with contemporaneous correlations of 0.5 and 0.9, and(2)

autocorrelated forecast errors. The results were similar to what is reported for

the other distributions in Table 3.1 as it continued to illustrate that the KSPA test

is indeed correctly sized across all sample sizes and forecasting horizons. As

such in order to save space these results are not reported here.

In summary, it is evident that in comparison to the modified DMtest, the

KSPA test shows major improvements not only across different forecasting hori-

zons, but more importantly over small sample sizes. As notedin Harvey et al.

(1997) it is the performance over small sample sizes that is of utmost impor-

tance to practitioners as in reality very large number of forecasts are not often

available for comparison purposes, and the proposed KSPA test has proven to
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be comparatively more accurate in this case with far better results.

3.3.2 Power of the Test

Next, the power of the modified DM test and the proposed KSPA test are consid-

ered. For this purpose, forecast errors were generated fromdifferent combina-

tions of distributions which will certainly result in significantly different forecast

errors, so that one can obtain an accurate evaluation of the power of the tests in

relation to small and large sample sizes. The details of the combinations eval-

uated are explained in the footnotes of Table 3.2 which also reports the results.

The power of the two tests were evaluated over the one-step horizon because

power calculations are only valid if a given test is correctly sized, and the mod-

ified DM test suffers from problems of being oversized especially beyondh= 1

Harvey et al. (1997).

Once again, reported here is a subset of all results as the general conclusion

remains similar. Firstly, it is evident that the KSPA test ismore powerful than

the modified DM test for both small and large sample sizes. Secondly, the KSPA

test converging towards a power of 100% faster than the modified DM test in all

cases

whereas on most instances the results (including those not reported here)

showed that the modified DM test fails to converge to 100% overthese sample

sizes. The only exception being in the case of autocorrelated errors as in Case

3, skewed errors as in Case 4 or where forecast errors generated from a MA(1)

process was compared against those generated from an AR(1) process.

In summary, the simulation study has shown that the proposedKSPA test

is correctly sized across all sample sizes and forecasting horizons, and that it is

more powerful than the DM test, and thereby proving its practicality and suit-

ability as a complement statistical test for distinguishing between the predictive
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Table 3.1 Percentage of rejections of the true null hypothesis of equal prediction mean
squared errors for the Diebold-Mariano test and equal distribution of squared prediction
errors for the KSPA test at nominal 10% level.

h Error Distribution Test n=8 n=16 n=32 n=64 n=128 n=256 n=512
1 Gaussian DM 8.4 9.6 9.7 10.1 9.9 10.4 10.6

Gaussian KSPA 8.6 9.4 8.9 9.6 8.4 9.4 8.6
Uniform KSPA 9.1 8.9 8.6 9.4 8.9 8.9 8.5
Cauchy KSPA 9.0 9.1 8.4 9.2 8.5 8.9 8.6
Student’st KSPA 8.5 9.4 9.3 9.5 9.0 8.7 8.6

2 Gaussian DM 16.4 14.2 12.2 11.2 10.8 10.5 10.3
Gaussian KSPA 9.0 9.5 8.5 9.2 8.6 9.1 8.4
Uniform KSPA 9.1 9.4 8.9 9.8 8.8 9.2 8.8
Cauchy KSPA 9.3 9.5 9.0 9.3 8.8 9.4 9.0
Student’st KSPA 8.7 9.3 9.1 9.1 8.4 9.7 8.9

3 Gaussian DM 18.1 18.5 14.3 12.2 10.7 10.8 10.9
Gaussian KSPA 8.6 9.6 8.7 9.2 8.7 9.1 9.1
Uniform KSPA 8.7 9.8 9.0 9.2 8.6 9.4 8.7
Cauchy KSPA 8.4 9.4 9.3 9.7 8.7 9.5 8.7
Student’st KSPA 8.2 9.7 8.8 9.5 8.9 9.1 8.6

4 Gaussian DM 16.3 19.8 16.1 13.4 11.5 10.9 11.0
Gaussian KSPA 8.5 9.4 8.3 8.9 8.6 9.2 9.0
Uniform KSPA 8.7 9.6 8.6 9.2 9.4 9.6 9.1
Cauchy KSPA 8.4 9.4 9.0 9.4 9.6 9.7 8.7
Student’st KSPA 8.7 9.1 8.8 9.9 8.7 9.7 8.8

5 Gaussian DM 12.9 19.9 17.8 14.9 12.2 11.1 11.0
Gaussian KSPA 8.4 9.4 8.9 9.4 8.3 9.7 8.3
Uniform KSPA 8.2 9.2 8.7 9.1 8.4 9.3 8.9
Cauchy KSPA 8.8 9.6 8.5 9.5 9.0 8.8 8.9
Student’st KSPA 8.4 9.3 9.1 9.9 9.1 9.6 8.6

6 Gaussian DM 10.6 19.8 18.8 16.0 12.9 11.4 11.2
Gaussian KSPA 8.6 9.5 8.9 9.5 8.6 9.1 9.0
Uniform KSPA 8.7 9.4 8.8 9.1 8.4 9.2 8.3
Cauchy KSPA 8.9 9.8 9.1 9.9 8.5 9.2 8.6
Student’st KSPA 8.7 9.3 8.8 9.4 9.0 9.8 9.1

7 Gaussian DM 9.9 18.2 19.5 16.8 13.6 11.6 11.4
Gaussian KSPA 8.6 9.5 9.3 8.9 8.8 9.3 9.0
Uniform KSPA 8.4 9.0 8.7 9.9 9.0 9.1 8.7
Cauchy KSPA 8.5 9.2 8.7 9.1 9.0 9.4 8.9
Student’st KSPA 8.8 9.1 9.0 9.0 8.6 8.8 9.2

8 Gaussian DM - 17.4 20.2 18.0 13.8 11.9 11.4
Gaussian KSPA - 9.3 8.6 9.1 8.5 9.5 8.7
Uniform KSPA - 9.5 8.7 9.8 9.0 9.7 8.7
Cauchy KSPA - 9.5 8.3 9.2 8.8 8.9 8.9
Student’st KSPA - 9.7 8.3 9.6 8.6 9.1 9.1

9 Gaussian DM - 15.1 20.2 19.0 14.7 12.4 11.6
Gaussian KSPA - 9.5 8.6 9.2 8.5 9.4 8.8
Uniform KSPA - 9.4 9.0 9.7 8.0 9.5 8.9
Cauchy KSPA - 9.8 8.6 8.9 8.6 9.4 8.8
Student’st KSPA - 9.1 8.6 9.2 8.9 9.6 9.0

10 Gaussian DM - 14.0 20.2 19.1 15.1 12.6 11.8
Gaussian KSPA - 9.2 8.9 9.3 8.7 9.7 9.0
Uniform KSPA - 9.2 8.7 9.8 8.7 9.1 9.4
Cauchy KSPA - 9.2 8.8 9.7 9.1 9.5 9.3
Student’st KSPA - 9.3 8.8 9.0 8.7 9.1 8.6

Note: The DM test results relate to modified DM test and were extracted from Table 1 in Harvey et al. (1997).

accuracy of forecasts.
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Table 3.2 Percentage of rejections of the false null hypothesis of equal one-step predic-
tion mean squared errors for the Diebold-Mariano test and equal one-step distribution
of squared prediction errors for the KSPA test at nominal 10%level.

Combinations Test n=8 n=16 n=32 n=64 n=128 n=256 n=512
Case 1 DM 7.3 17.5 31.9 37.3 39.3 40.3 40.9

KSPA 19.6 35.8 61.0 91.7 99.9 100.0 100.0

Case 2 DM 5.2 13.4 26.5 35.4 39.5 41.0 40.8
KSPA 15.9 25.8 42.0 75.3 97.6 100.0 100.0

Case 3 DM 59.3 96.0 99.7 100.0 100.0 100.0 100.0
KSPA 65.1 92.0 100.0 100.0 100.0 100.0 100.0

Case 4 DM 91.6 99.7 100.0 100.0 100.0 100.0 100.0
KSPA 97.3 100.0 100.0 100.0 100.0 100.0 100.0

Note: Case 1: Compares errors from a Cauchy distribution with mean 0 and standard deviation
1 against errors from aN(0,1) distribution. Case 2: Compares errors from a Student’st

distribution with 6 d.f. against errors from a Cauchy distribution. Case 3: Compares errors
from N(0,1) against autocorrelated errors. Case 4: Compares errors from a skewedχ2

distribution with 3 d.f. against errors from aχ2 distribution with 10 d.f.

3.4 Empirical Evidence

Following the simulation study which illustrated the superiority of the proposed

KSPA test in terms of being correctly sized and more powerfulthan the modified

DM test, discussed in this section is the use of the KSPA test for several real

world applications. Note that all applications here use theRMSE as the loss

function, and therefore the KSPA test like the DM test relieson squared errors

in all instances. These real world applications have been carefully selected to

illustrate that: (i) The KSPA test can accurately perform the same task as the

modified DM test in practice when faced with real data. (ii) Both two-sided

and one-sided KSPA tests can be of benefit in practice. (iii) The KSPA test is

applicable where the modified DM test cannot be applied. (iv)The KSPA test

can handle both small and large sample sizes. (v) The KSPA test is suitable

across different forecasting horizons. (vi) The KSPA test is not affected by the

generation of forecast errors from either parametric or non-parametric models.
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3.4.1 Scenario 1: Tourism Series

The rationale for this application is to mainly show that theKSPA test can per-

form the same task as the modified DM test in practice in addition to showing its

performance when faced with a relatively large number of out-of-sample fore-

cast errors. We consider testing forecasts from two models,i.e. Singular Spec-

trum Analysis (SSA) which is non-parametric and ARIMA (parametric) for a

statistically significant difference in terms of providingh = 1 step ahead fore-

casts for total U.S. tourist arrivals2. This monthly data set is used in Chapter 3

where more information pertaining to the data is available,and the related fore-

casts of 69 observations were extracted from that application. Figure 3.1 shows

the out-of-sample forecasts, distribution of errors and the empirical c.d.f. for

U.S. tourist arrivals obtained via SSA and ARIMA models. Based on the fore-

casts figure alone one is not able to determine whether there exists a statistically

significant difference between the forecasts from SSA and ARIMA. As such,

we then look to the distribution of the squared forecast errors from ARIMA

and SSA which can be seen in Figure 3.1 (middle). However, without a formal

statistical test it is not possible to determine whether there exists a statistically

significant difference between the distribution of these errors. Thirdly, we look

at the empirical c.d.f.’s shown in Figure 3.1 (right) to identify if one model does

indeed provide a lower stochastic error than the other modelas suggested in

Hassani et al. (2009). In this case it is clear that based on the empirical c.d.f.,

it appears that the out-of-sample forecasts from SSA provide a lower stochastic

error than the out-of-sample forecasts from ARIMA. However, as mentioned in

the introduction this conclusion is open to debate as it lacks a mandatory statis-

tical test.

When we calculate the RRMSE statistic, it shows that the forecasts obtained

2Data source: http://travel.trade.gov/research/monthly/arrivals/
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from the SSA model are 60% better than the forecasts obtainedvia the ARIMA

model. Accordingly one would expect a statistically significant difference be-

tween the forecasts of SSA and ARIMA. Both the modified DM and KSPA tests

are applied. The results are reported in Table 3.3. In this case, the modified

DM test correctly identifies that there exists a statistically significant difference

between the forecasts from SSA and ARIMA. In terms of the newly proposed

KSPA test, firstly the two-sided KSPA test confirms that thereis indeed a statisti-

cally significant difference between the distribution of forecast errors from SSA

and ARIMA for U.S. tourist arrivals ath= 1 step ahead, and thereby confirms

the existence of a statistically significant difference between the two forecasts.

Next, the one-sided KSPA test is applied to find out whether SSA forecasts

(which has the lower RMSE) reports a lower stochastic error than ARIMA fore-

casts. The one-sided KSPA test confirms that SSA does in fact provide forecasts

which report a lower stochastic error than the ARIMA model assuggested by the

empirical c.d.f.’s in Figure 3.1 (right), and provides supplementary evidence to

the conclusion from the two-sided KSPA test for the existence of a statistically

significant difference between the two forecasts. The results from the modified

DM test and KSPA tests are significant at a 95% confidence level.

Table 3.3 Evaluatingh = 1 step ahead forecasts for U.S. tourist arrivals.

Test Two-sided (p-value) One-sided (p-value)
Modified DM <0.01* N/A
KSPA <0.01* <0.01*

Note:* indicates results are statistically significant based ona p-value of 0.05. N/A refers to not
applicable as a directly comparable alternative form of theDM test was not available in the

code used.

3.4.2 Scenario 2: Accidental Deaths Series

The main reason to present this next application is to show how the KSPA test

can overcome a limitation of the modified DM test. The well known U.S. death
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series includes monthly data with 78 observations recordedbetween January

1973-June 1979 and has been used widely in previous time series analysis and

forecasting applications (see for example, (Brockwell andDavis, 2002; Hassani,

2007; Hassani et al., 2014)). This application follows a similar forecasting ap-

proach to that reported in Hassani (2007). The application looks at forecasting

the last 12 points of the death series such that the first forecast point represents

the horizon ofh = 1, the second forecast point representsh = 2 and so on, up

until the final forecast point which represents theh = 12 steps ahead forecast.

As explained in Section 6.1, the modified DM test cannot be used in such sce-

narios where the out-of-sample forecast errors relate to various horizons within

a single forecasting exercise as the sum of the covariance will equate to zero.

However, it is possible to rely on the original DM test (i.e. without considering

the covariance effect) in such scenarios, but it is not advisable owing to the many

limitations of the original DM test as identified in Harvey etal. (1997). The

forecasts are obtained via the parametric ARIMA model and a non-parametric

Neural Networks (NN) model, and the ARIMA forecasts report alower RMSE.

Figure 3.2 shows the out-of-sample forecasts, distribution of errors and the

empirical c.d.f. for the U.S. death series obtained via ARIMA and NN mod-

els. In this case based on the empirical c.d.f. we are able to state that the

ARIMA forecasts report a stochastically smaller error thanthe NN forecasts.

The two-sided KSPA test can be used to test for statisticallysignificant differ-

ences between the two forecasts whilst the one-sided KSPA test can be exploited

to provide statistical evidence for the claim based on Hassani et al. (2009). The

resulting output from the KSPA and original DM tests are reported in Table 3.4.

Initially, the two-sided KSPA test confirms that there is indeed a statistically

significant difference between the distribution of forecast errors from ARIMA

and NN at a 95% confidence level. Secondly, the one-sided KSPAtest confirms

that ARIMA does in fact provide forecasts which report a lower stochastic error
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than forecasts from the NN model as suggested by the empirical c.d.f.’s in Fig-

ure 3.2 (right). Note that whilst the original DM test too proves the existence

of a statistically significant difference between the two forecasts, the two-sided

KSPA test reports a lowerp-value than the original DM test.

Table 3.4 Evaluatingh= 1, . . . ,h= 12 steps ahead forecasts for the U.S. death series.

Test Two-sided (p-value) Greater (p-value)
DM 0.04* N/A
Modified DM N/A N/A
KSPA 0.03* 0.02*

Note:* indicates results are statistically significant based ona p-value of 0.05. N/A refers to not
applicable as a directly comparable alternative form of theDM test was not available in the

code used.

3.4.3 Scenario 3: Trade Series

Finally, the purpose of this empirical example is to show thesuperiority of the

KSPA test over the modified DM test, and also to show how the one-sided KSPA

test is useful when the two-sided KSPA test fails at showing astatistically signif-

icant difference between two forecasts. In this application we consider forecasts

for monthly U.S. imports3 between March 2011-December 2011 (10 observa-

tions) ath= 3 steps ahead using ETS and SSA which are both non-parametric

techniques. This data set was recently used in Silva and Hassani (2015) and

the forecasts considered here are those generated in that study. This is another

example of a scenario with a small sample size i.e.n = 10. Figure 3.3 shows

the out-of-sample forecasts, distribution of errors and the empirical c.d.f. of er-

rors obtained via ETS and SSA. Here, unlike on previous occasions, based on

this forecast figure alone one is able to see that there existsa significant differ-

ence between the forecasts from both models. However, it cannot be verified

in the absence of statistical evidence. The distribution ofout-of-sample fore-

3Data source: http://www.bea.gov/international/index.htm.
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cast errors are shown in Figure 3.3 (middle) and the resulting empirical c.d.f.

for the squared forecast errors are also presented (right).Based on the empir-

ical c.d.f. in Figure 3.3 we can see that except for three points, at every other

observation, the forecasts from SSA appear to report a smaller stochastic error

than the forecasts from the ETS model (according to the inference in Hassani

et al. (2009)). Once again, relying solely on this empiricalc.d.f. in Figure 3.3

(right) will only result in conclusions which are debatable. The RRMSE crite-

rion shows that forecasts from the SSA model are 54% better than those from

the ETS model. The expectation would be that such a significant gain reported

through the RRMSE will appear as statistically significant.In order to confirm

the expectations we apply both modified DM and KSPA tests.

The results from the two tests are reported in Table 3.5. Based on the modi-

fied DM test we are inclined to conclude that there exists no statistically signifi-

cant difference between the forecasts obtained via ETS and SSA. The modified

DM test statistic reports ap-value which exceeds 10% thus leading to the ac-

ceptance of the null hypothesis. Likewise, the two-sided KSPA test suggests

that forecast errors obtained via ETS and SSA share an identical distribution.

Accordingly, there is no sufficient evidence based on the modified DM test and

the two-sided KSPA test for a statistically significant difference between the

two forecasts. However, this is where the one-sided KSPA test becomes ex-

ceedingly useful. We know based on the RRMSE criterion that forecasts from

SSA report a lower RMSE than forecasts from ETS. As such, we can use the

one-sided KSPA test to find out whether the SSA forecast whichreports a lower

error based on the RMSE loss function also reports the loweststochastic error in

comparison to the ETS forecast. Accordingly there is sufficient evidence based

on the one-sided KSPA test at the 10% significance level to conclude that SSA

forecasts report a lower stochastic error than forecasts from ETS. Thereby, one

can confirm the existence of a statistically significant difference between the two
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forecasts which is expected given that forecasts from SSA are 54% better than

forecasts from ETS according to the RRMSE criterion.

The results from this case not only show the advantage of the one-sided

KSPA test, but also proves that the graph of one c.d.f. need not lie ‘strictly’

above the graph of another c.d.f. as suggested in Hassani et al. (2009) in order

for one model to report a stochastically smaller error than the alternate model.

It is clear that if a larger proportion of the c.d.f. of errorsfrom one model lies

above the c.d.f. of errors from another model, then the KSPA test is able to

accurately show that one model reports a lower stochastic error than the other,

and thereby pick up a statistically significant difference between the forecasts

from two models.

Table 3.5 Evaluatingh= 3 step ahead forecasts for U.S. imports.

Test Two-sided (p-value) Greater (p-value)
Modified DM 0.30 N/A
KSPA 0.17 0.08*

Note:* indicates results are statistically significant based ona p-value of 0.10. N/A refers to not
applicable as a directly comparable alternative form of theDM test was not available in the

code used.

3.5 Discussion

Developing on the ideas presented in Hassani et al. (2009) and Hassani et al.

(2013b) with respect to using an empirical c.d.f. for determining whether the

forecast errors from one model are stochastically smaller than those obtained

from a competing model, introduced in this chapter is a complement statistical

test for distinguishing between the predictive accuracy offorecasts. The pro-

posed non-parametric Kolmogorov-Smirnov Predictive Accuracy (KSPA) test

serves two purposes via the two-sided KSPA test and the one-sided KSPA test.

A simulation study is called upon to evaluate the efficiency and robustness of
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the KSPA test which is followed by an application to real data. The need for the

KSPA test is further evidenced by limitations of the DM test in relation to issues

in sample size or inherent assumptions which have been left invalidated in the

face of recent findings.

Through the simulation study, the KSPA test is directly compared with the

widely accepted modified DM test. In order to enable a meaningful compari-

son, the same distributions as used in Harvey et al. (1997) for their simulation

study are considered here. The simulation results provide aclear indication that

the proposed KSPA test is more robust than the DM test especially when the

number of out-of-sample forecast errors available for comparison purposes are

considerably small.

Also considered are applications to real data which captureforecasts from

different cases in real world applications for validating the proposed KSPA test,

and compare the results against those obtained via the modified DM test. As

expected, it was observed that when the number of observations are small the

KSPA test is able to accurately identify a statistically significant difference be-

tween forecasts whilst the modified DM test fails. Furthermore, through another

scenario in real world applications it is shown that the KSPAtest can be applied

in forecasting exercises where the modified DM test is not applicable. In addi-

tion, another scenario is used to show that the two variations of the KSPA test

can be extremely useful in practice.

Yet another advantage in the proposed KSPA test is that givenits nature,

which is to compare the empirical c.d.f. of errors from two forecasting models,

one is able to compare both parametrically estimated model-based forecasts and

survey-based forecasts with no restrictions on whether these models are nested

or non-nested. This is because regardless of the model used,a forecast error

will always be calculated as the actual value minus the predicted value, and the

proposed KSPA test will compare the distribution of these errors to differentiate
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between them. In addition, as the KSPA test is non-parametric it is not depen-

dent on any assumptions relating to the properties of the underlying errors which

is also advantageous in practice.

In conclusion, the KSPA test has shown promising results in comparison to

the modified DM test and is presented as a viable alternative for comparing be-

tween the predictive accuracy of forecasts. The non-parametric nature of the

test enables one to overcome issues with the assumptions underlying the DM

test which have recently been proven void (see for example, (Hassani, 2010;

Hassani et al., 2012a)). Additionally, this research provides statistical validity

to the ideas presented in Hassani et al. (2009) and Hassani etal. (2013b) whilst

showing the relevance and applicability of the KSPA test viasimulations and ap-

plications to real data. Future research relating to this test continues to ascertain

whether there is a possibility of extending the use of the KSPA test to enable

comparisons between more than two forecasts as this would add more value to

its practical use.
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Fig. 3.1 U.S. Tourist arrivals forecast, distribution of errors and empirical c.d.f. of errors.
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Chapter 4

Exploiting the Forecastability of

Forecasts

This Chapter is aimed at the introduction of a new theoretical framework for

exploiting the forecastability of forecasts which is also the second contribution

of this thesis. The chapter begins with a concise introduction which discusses

the need and significance of the proposed theory and is then followed by the

introduction of the theory itself. The chapter also includes applications to real

data.

4.1 Introduction

Forecasting continues to remain a top priority for planningand decision making

in any given company, industry or economy. Whilst the ever increasing volatil-

ity and uncertainty in markets has further augmented the difficulty associated

with obtaining accurate forecasts, the emergence of Big Data on the other hand

has provided new insights and opportunities for improving and enhancing the

accuracy of forecasts for any given variable. In the past, univariate forecasting

(i.e. for example using historical monthly GDP forecasts for obtaining future
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monthly GDP forecasts) has been the most popular norm with a wide range of

applications. The results from such efforts have been productive, but the intro-

duction and applications of multivariate forecasting approaches have provided

far greater outcomes with increased accuracy levels.

Governments, practitioners, researchers and private organizations publish a

variety of forecasts each year. Such forecasts are generally computed using

multivariate models and are widely used in decision making processes given the

considerably high level of anticipated forecast accuracy.The classical multi-

variate methods consider modelling multiple information pertaining to the same

time period or with a time lag into the past. However, the focus of this research

goes beyond the classical approaches and considers devising a novel theoret-

ical framework for exploiting information pertaining to the future for further

enhancing the accuracy of such predictions.

The aim of this chapter is to introduce a novel theoretical development which

seeks to exploit the information contained in published forecasts (which repre-

sent data with a time lag into the future) for generating a newand improved

(comparatively more accurate) forecast by taking advantage of the MSSA tech-

nique’s capability at modelling time series with differentseries lengths. In brief,

the proposed multivariate theoretical development seeks to exploit the forecasta-

bility of forecasts by considering not only official and professional forecasts, but

also forecasts obtained via other time series models. As mentioned previously,

the SSA technique has both univariate and multivariate forecasting capabilities

along with two main forecasting options known as the Recurrent and Vector

approach. The MSSA technique further divides into HMSSA andVMSSA.

Here in lies the beauty of MSSA in comparison to other multivariate fore-

casting methods. The HMSSA algorithm enables one to model and forecast time

series with the same length whereas the VMSSA algorithm enables modelling

and forecasting using time series with different lengths. This research takes ad-
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vantage of this unique modelling capability of VMSSA and develops a theory

for exploiting the forecastability of forecasts by modelling data with a time lag

into the future. In brief, the main idea is to evaluate whether it is possible to ex-

ploit VMSSA by making use of historical data for a given variable in combina-

tion with either an official or professional forecast to improve upon the existing

forecast’s accuracy. The theory is evaluated with real datawhich considers not

only official and professional forecasts, but also forecasts generated via other

time series models. The main objective is to ascertain whether the new theoret-

ical proposition enables to generate a forecast which can outperform the official

forecast accuracy (or professional forecast or forecasts from another model as

relevant). In addition, the SSA-R and SSA-V forecasts are also considered as

benchmarks. Given the introductory nature of this theoretical concept the one

of the most important points to initially evaluate is whether the proposed MSSA

approach can successfully outperform the SSA benchmarks. This is because if

it cannot do so, then there is no sufficient evidence for researching further into

improving this theory further.

In practice it is possible that during the model training andtesting procedure

we would experience certain models which are capable of providing forecasts

which outperforms forecasts from SSA. Likewise, official and professional fore-

casts are very likely to be extremely accurate given the wideranging information

that has been considered in arriving at the said predictions. Via the proposed the-

oretical development, this research attempts to exploit such superior forecasts

from either other models, official or professional forecasts in order to improve

the existing forecasts by modelling with VMSSA. This research also marks the

first ever attempt at exploiting information contained within official or profes-

sional forecasts for generating a more accurate forecast. Two important points

to note are that; firstly, the usual multivariate modelling problem involves using

two different time series and extracting any useful information for improving
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the accuracy of forecasts for both variables or one of the twovariables. How-

ever, considered here is the same variable and a forecast forthat same variable

to generate a new set of forecasts which can provide better accuracy. Secondly,

not all multivariate forecasting models can exploit this new idea as they can-

not model when faced with different series lengths which is amajor advantage

and flexibility of the MSSA technique. Given the novel natureof this proposed

approach it is important to note that there is no published academic literature

which seeks to exploit the forecastability of forecasts by re-modelling a forecast

which represents data with a time lag into the future in combination with his-

torical data for developing a new and improved forecast. In particular it should

be noted that this proposed methodology does not fall in linewith literature on

forecast combining which has been developed over the years.

4.2 Theoretical Development

Assume that we have a monthly time seriesY(1)
N on lengthN, and further auxil-

iary information of ah-step ahead forecast for that series contained inΩ. Note

thatY(1)
N andΩ are time series with different series lengths as shown below. The

data inΩ can represent an official or professional forecast forY(1)
N , achievable

using any method of forecasting. The hypothesis is that, provided the informa-

tion contained inΩ is of some level of accuracy, then we can model this infor-

mation alongside historical information for that same variable in a MSSA frame-

work to develop an all new forecast forY(1)
N . The MSSA technique which can

model time series with different lengths allows the exploitation of any auxiliary

information contained withinΩ and uses this in combination with the historical

information found inY(1)
N , to produce a new forecast which can outperform the

forecasts obtained by onlyY(1)
N in terms of accuracy. For explanation purposes,

let us assumeY(1)
N is the actual monthly inflation values andΩ is the h-step
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ahead forecast for inflation such that:

Y(1)
N =




y1

y2
...

yN




andΩ =




ωN+1

ωN+2
...

ωN+h



, (4.1)

A new time series can be constructed by incorporating the forecasted values

with the actual values such that,Y(2)
N+h = (Y(1)

N ,Ω).

Y(2)
N+h =




y1
...

yN

ωN+1
...

ωN+h




. (4.2)

and the following corresponding trajectory matrixX(2) = [X1, ...,XK, . . . ,XK+h]

can be computed, such that

X(2) = (xi j )
L,K+h
i, j=1 =




y1 y2 · · · yK yK+1 · · · ωK+h

y2 y3 · · · yK+1 yK+2 · · · ωK+h+1
...

...
. . .

...
...

. . .
...

yL yL+1 · · · yN ωN+1 · · · ωN+h



. (4.3)

Recall that the hypothesis states, if the information contained inΩ is accu-

rate, then it is possible to exploit this information in a MSSA framework to ob-

tain a new forecast that can outperform the accuracy of usingonlyY(1)
N . Similar

to the process in SSA, we can define the trajectory matricesX(i) (i = 1,2) of the

one-dimensional time seriesY(i)
Ni

(i = 1,2) with different series length. Thus, ap-
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plying the above procedure to each series separately provides 2 differentLi ×Ki

trajectory matricesX(i) (i = 1,2).

After embedding we organise a block Hankel matrix. According to Hassani

and Mahmoudvand (2013) the MSSA approach has two main variations based

on how one organizes the trajectory matrixX. These are referred to as Hori-

zontal MSSA (HMSSA) and Vertical MSSA (VMSSA). Here, we consider the

MSSA approach in a vertical form, however there are some restrictions in selec-

tion the values ofK and it is required to haveK1 = K2 = K. Accordingly, the

VMSSA approach enables us to have various window lengthLi and different

series lengthNi , but as we mentioned above similarKi for all series. The block

Hankel trajectory matrix can then be defined as

XV =


 X(1)

X(2)


 , (4.4)

where,XV indicates that the output of the embedding step is in avertical form.

Next, we obtain the SVD ofXV . DenoteλV1, . . . ,λVLsum
as the eigenvalues of

XVXT
V , arranged in decreasing order

(
λV1 ≥ . . .λVLsum

≥ 0
)

andUV1, . . . ,UVLsum
,

the corresponding eigenvectors, whereLsum= L1+L2. Note also that the struc-

ture of the matrixXVXT
V is as follows:

XVXT
V =


 X(1)X(1)T X(1)X(2)T

X(2)X(1)T X(2)X(2)T


 . (4.5)

The structure of the matrixXVXT
V is similar to the variance-covariance ma-

trix in the classical multivariate statistical analysis literature. The matrixX(i)X(i)T ,

which is used in SSA, for the seriesY(i)
Ni

, appears along the main diagonal and

the products of two Hankel matricesX(i)X( j)T(i 6= j), which are related to the

seriesY1 andY2, appears in the off-diagonal. The SVD ofXV can be written

as XV = XV1 + · · ·+XVLsum
, whereXVi =

√
λ iUViVVi

T andVVi = XT
VUVi/

√
λVi
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(XVi = 0 if λVi = 0). In what follows we briefly outline the VMSSA forecast-

ing algorithms. Given that this is a new theoretical development, it is pertinnt

to recall the VMSSA forecasting algorithms and in doing so Hassani and Mah-

moudvand (2013) is mainly followed.

4.2.1 VMSSA Recurrent Forecasting Algorithm (VMSSA-R)

Let us have two series with different lengthY(i)
Ni

= (y(i)1 , . . . ,y(i)Ni
) and correspond-

ing window lengthLi , 1< Li < Ni , i = 1,2. The VMSSA-R forecasting algo-

rithm for theh-step ahead forecast is as follows.

1. For a fixed value ofK, construct the trajectory matrixX(i)= [X(i)
1 , . . . ,X(i)

K ] =

(xmn)
Li ,K
m,n=1 for each single seriesY(1)

N1
, andY(2)

N2
separately.

2. Construct the block trajectory matrixXV as follows:

XV =


 X(1)

X(2)


 . (4.6)

3. DenoteλV1 ≥ . . . ≥ λVLsum
≥ 0 are the eigenvalues of theXVXT

V , where

Lsum= L1+L2.

4. Let UVj = (U (1)
j ,U (2)

j )T be the jth eigenvector of theXVXT
V , whereU (i)

j

with lengthLi corresponds to the seriesY(i)
Ni

(i = 1,2).

5. Consider̂XV = [X̂1 : . . . : X̂K] =∑r
i=1UViU

T
Vi

XV as the reconstructed matrix

achieved fromr eigentriples:

X̂V =


 X̂(1)

X̂(2)


 . (4.7)
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6. Consider matrix̃X(i) =H X̂(i) (i = 1,2) as the result of the Hankelization

procedure of the matrix̂X(i) obtained from the previous step, whereH is

a Hankel operator.

7. AssumeU (i)▽
j denotes the vector of the firstLi − 1 components of the

vectorU (i)
j andπ(i)

j is the last component of the vectorU (i)
j (i = 1,2).

8. Select the number ofr eigentriples for the reconstruction stage that can

also be used for forecasting purpose.

9. Define matrixU▽(1,2) =
(
U▽(1,2)

1 , . . . ,U▽(1,2)
r

)
, whereU▽(1,2)

j is as fol-

lows:

U▽(1,2)
j =


 U (1)▽

j

U (2)▽
j


 . (4.8)

10. Define matrixW as follows:

W =


 π(1)

1 π(1)
2 · · · π(1)

r

π(2)
1 π(2)

2 · · · π(2)
r


 . (4.9)

11. If the matrix
(
I2×2−WWT

)−1
exists andr ≤ Lsum− 2, then theh-step

ahead VMSSA forecasts exist and is achieved by the followingformula:

[
ŷ(1)j1

, ŷ(2)j2

]T
=





[
ỹ(1)j1

, ỹ(2)j2

]
, j i = 1, . . . ,Ni

(
I2×2−WWT

)−1
WU▽2T

Zh, j i = Ni +1, . . . ,Ni+h,

(4.10)

where,Zh =
[
Z(1)

h ,Z(2)
h

]T
andZ(i)

h =
[
ŷ(i)Ni−Li+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i = 1,2).

It should be noted that equation (4.10) indicates that theh-step ahead fore-

casts of the refined seriesŶ(i)
Ni

are obtained by a multi dimensional linear
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recurrent formula (LRF). For the univariate case, there is only one dimen-

sional LRF.

4.2.2 VMSSA Vector Forecasting Algorithm (VMSSA-V)

Let us have items (1)-(10) of VMSSA-R. Consider the matrix:

Π = U▽U▽T
+R

(
I2×2−WWT)

R
T , (4.11)

where,R = U▽WT
(
I2×2−WWT

)−1
.

Let Π =
(

Π(1),Π(2)
)T

andR =
(
R(1),R(2)

)T
, whereΠ(i) with dimension

(Li −1)× (Lsum−2) andR(i) (i = 1,2) with lengthLsum−2 correspond to the

seriesY(i)
Ni

. Then, Theorem 1 in Hassani and Mahmoudvand (2013) indicates that

the linear projectionP(ν) :Lr 7→R
Lsum−2 by the following formula provides the

continuation vectors for the multivariate V-forecasting.

P
(ν)Y =




Π(1)Y△

R
(1)TY△

Π(2)Y△

R
(2)TY△



,Y ∈ Lr , (4.12)

where,YT
△
=

(
Y(1)
△ ,Y(2)

△

)
such thatY(i)

△ (i = 1,2) denotes the lastLi −1 entities

of Yi with lengthLi . Using above notations, the following algorithm is proposed

for calculating the VMSSA-V forecasts.

1. Define vectorsZi as follows:

Zi =





X̃i for i = 1, . . . ,k

P
(ν)Zi−1 for i = k+1, . . . ,k+h+Lmax−1,

(4.13)

where,Lmax= max{L1,L2}.
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2. Constructing the matrixZ = [Z1 : ... : ZK+h+Lmax−1] and making its han-

kelization. Using this calculation we obtain ˆy(i)1 , . . . , ŷ(i)N+h+Lmax
(i = 1,2).

3. The numbers ˆy(i)Ni+1, . . . , ŷ
(i)
Ni+h (i = 1,2) form theh step ahead VMSSA-V

forecasts.

4.3 Applications

This section considers applications of the proposed theoryunder various scenar-

ios which include official forecasts, professional forecasts and forecasts from

other time series models. In the real world, publishers of official forecasts are

usually interested in providing predictions for the comingyear (i.e. 12 steps

ahead for monthly data and 4 steps ahead for quarterly data).In line with this,

considered here are applications which provide out-of-sample forecasts for the

next year. For example, if we are dealing with monthly data, the last 12 observa-

tions for which 12 forecasted data are available are set aside as the out-of-sample

data and the remainder is used for training and testing the forecasting models

which are used for comparison purposes. Where 12 observations are forecasted,

this means the first forecasted data point is theh = 1 step ahead forecast, the

second forecasted data point is theh= 2 steps ahead forecast and so on up until

the final forecasted data point which will represent theh= 12 steps ahead fore-

cast or the 12 months ahead value of a given variable. All applications consider

the RMSE as the loss function and all outcomes are evaluated for statistical sig-

nificance using the Diebold-Mariano (DM) test in Diebold andMariano (1995)

and the Kolmogorov-Smirnov Predictive Accuracy (KSPA) test in Chapter 3. It

should be noted that as a result of a small number of observations for evaluat-

ing forecast accuracy, it is likely that statistical tests will experience issues with

picking up significant outcomes.
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4.3.1 Using Forecasts from Other Forecasting Models as More

Information

Considered in the first scenario is the use of forecasts from avariety of other

time series analysis models such as ARIMA, Exponential Smoothing and Holt-

Winters for improving the accuracy of these forecasts further via VMSSA. This

is important as especially in government organizations, methods such as ARIMA

and Holt-Winters are widely accepted and continue to be usedowing to tradi-

tions and familiarity with such models. Figure 1 plots the time series used here

as examples. Each time series has been obtained via Datamarket1.

These monthly time series include the popular U.S. Accidental deaths time

series (monthly data, 78 observations, January 1973-June 1979), milk produc-

tion (monthly data, 168 observations, January 1962-December 1975), number

of city births in New York over time (monthly data, 168 observations, January

1946-December 1959) and residential electricity usage in Iowa, U.S. (monthly

data, 106 observations, January 1971-October 1979). It is clear via Figure 4.1

that the series chosen via Datamarket include those which captures stationarity,

non-stationarity, increasing trends, seasonality and structural breaks. In reality

we are likely to be faced with such varying time series and it is therefore im-

portant to consider such phenomenons as examples. In addition, considered as

an example is also an application which seeks to forecast international tourist

arrivals into Germany compiled via the Eurostat database (monthly data, 168

observations, January 2000-December 2013). In each case, the last 12 monthly

observations are left aside as out-of-sample and the modelsare trained over the

remainder of the observations.

The results from the applications are presented in Table 4.1. The out-of-

sample forecasting RMSE’s are obtained via ARIMA, HW, ETS, SSA-V, SSA-

1https://datamarket.com/
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Fig. 4.1 Four time series used as examples from Datamarket.

R, VMSSA-V and VMSSA-R for each data set. Note that when modelling with

MSSA, forecasts from the univariate model which reports thelowest in-sample

forecasting RMSE for the training data is selected as more information in the

MSSA model to obtain out-of-sample forecasts.

The U.S. Accidental deaths series has been widely adopted intime series

literature, see for example Hassani (2007) and Brockwell and Davis (2002). For

the death series, ARIMA provided the lowest in-sample forecasting RMSE and

therefore the out-of-sample forecasts from ARIMA were considered as addi-

tional information for the MSSA model. It is important to evaluate whether

the newly proposed approach can result in forecasts which not only outperform

the accuracy of the initial forecast, but also forecasts from SSA. Based on the

RMSE criterion, it is evident that VMSSA can provide forecasts with the low-

est RMSE in comparison to all other models for this series, and VMSSA-V in
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particular reports the lowest RMSE. However, these forecasting differences can

be attributed to chance occurrences. In order to evaluate ifthe VMSSA forecast

is significantly better, all outcomes are tested for statistical significance with the

results being reported in Table 4.2 along with the RRMSE.

Based on the RRMSE, the VMSSA-V forecasts are 6% better than ARIMA,

28% better than HW, 8% better than ETS, 58% better than SSA-V forecasts.

Likewise, VMSSA-R forecasts are 2% better than ARIMA, 24% better than

HW, 3% better than ETS and 48% better than SSA-R. In this case,based on

both DM and KSPA tests we find evidence of statistically significant differences

between the forecasts of VMSSA-V and SSA-V, and VMSSA-R and SSA-R at

the 10% significance level. However we do not find similar evidence in relation

to the other models. Yet, the fact that VMSSA forecasts are significantly better

than the SSA forecasts indicate that the proposed approach is viable.

Table 4.1 RMSE for forecasting last year of each data set.

Series ARIMA HW ETS SSA-V SSA-R VMSSA-V VMSSA-R
Death 332 432 338 736 624 312 327
Milk Prod. 14.10 14.80 8.63 19.50 13.70 7.28 7.69
NY Births 0.91 1.06 1.13 1.38 1.46 0.85 0.88
Elec. Use 51.6 78.10 39.90 57.30 53.70 38.73 36.40
Tourism 58251 80504 82217 55334 42089 46211 40010

Note: Forecasts from the univariate model providing the lowest in-sample forecasting RMSE is
used as additional information for the MSSA model.

Table 4.2 RRMSE for forecasting last year of each data set.

Series VMSSA−V
ARIMA

VMSSA−R
ARIMA

VMSSA−V
HW

VMSSA−R
HW

VMSSA−V
ET S

VMSSA−R
ET S

VMSSA−V
SSA−V

VMSSA−R
SSA−R

Death 0.94 0.98 0.72 0.76 0.92 0.97 0.42∗,† 0.52∗,†

Milk Prod. 0.52∗,† 0.55∗ 0.49∗,† 0.52∗,† 0.84 0.89 0.37∗,† 0.56∗
NY Births 0.93 0.97 0.80 0.83 0.75 0.76 0.62 0.60
Elec. Use 0.75 0.71 0.50∗,† 0.47∗,† 0.97 0.91† 0.68∗,† 0.68∗,†

Tourism 0.79 0.69 0.57∗,† 0.50∗,† 0.56∗,† 0.49∗,† 0.84† 0.95

Note: ∗ indicates a statistically significant difference between the two forecasts based on the
modified Diebold-Mariano test atp= 0.10. † indicates a statistically significant difference

between the two forecasts based on the KSPA test atp= 0.10.

Considered next is the monthly milk production series. In this case, ETS

forecasts were found to be best in-sample and is therefore considered as the ad-

ditional information for the VMSSA model. Once again, basedon the RMSE
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in Table 4.1, it is clear that the VMSSA forecasts can outperform the rest of

the models considered here. These performances convert such that VMSSA-V

forecasts are 48% better than ARIMA, 51% better than HW, 16% better than

ETS, and 63% better than SSA-V forecasts (Table 4.2). Likewise, VMSSA-R

forecasts are 45% better than ARIMA, 48% better than HW, 11% better than

ETS, and 44% better than SSA-R forecasts (Table 4.2). Interestingly, in relation

to the previous application, there are a higher number of statistically significant

outcomes in this case. VMSSA forecasts via the proposed approach are signifi-

cantly better than ARIMA, ETS and SSA-V and SSA-R forecasts.

The third application in this sub section considers monthlycity births in

New York. In this instance ARIMA provided the best in-sampleforecast and

was therefore selected as the model which will provide more information for

the VMSSA process. Table 4.1 shows that VMSSA once again outperforms all

models based on the RMSE, and that VMSSA-V records the lowestRMSE. The

RRMSE values in Table 4.2 indicates that VMSSA-V forecasts are 7%, 20%,

25% and 38% better than ARIMA, HW, ETS and SSA-V forecasts respectively

whilst VMSSA-R forecasts are 3%, 7%, 24% and 40% better than ARIMA, HW,

ETS and SSA-V forecasts respectively. Regardless of the gains suggested via

the RRMSE criterion there is no sufficient evidence of statistically significant

differences between the VMSSA and competing forecasts in this case. Given

the comparatively large gains reported here, the inabilityof the statistical tests

at picking up significant differences could be a result of small sample sizes.

The fourth application relating to the use of forecasts fromother models

as more information looks at monthly average residential electricity usage in

Iowa. ETS provided the best in-sample forecast for this series and therefore

its out-of-sample forecast was considered as more information in the VMSSA

framework. As reported in Table Table 4.1, once again the VMSSA models

outperform the rest based on the RMSE criterion. The RRMSE indicates that
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VMSSA-V forecast reports gains of 25%, 50%, 3% and 32% in relation to the

forecasts from ARIMA, HW, ETS and SSA-V respectively. At thesame time,

VMSSA-R forecast reports gains of 29%, 53%, 9%, 32% in relation to the fore-

casts from ARIMA, HW, ETS and SSA-V respectively. The tests for statistical

significance indicates there exists significant differences between VMSSA and

HW forecasts and VMSSA and SSA forecast. In addition, there is a statistically

significant difference between the VMSSA-R and ETS forecast.

The final application here looks at the monthly international tourist arrivals

into Germany. The univariate SSA-R forecast was seen providing the most accu-

rate in-sample forecast for these series based on the lowestRMSE and therefore

forecasts generated by this model over the out-of-sample period was considered

as more information. The RMSE results reported in Table 4.1 shows that in

terms of the univariate models, SSA-R reports the forecast with the lowest error.

However, an application of the new approach proposed in thischapter results

in forecasts by VMSSA-R which outperforms the rest of the models. Table 4.2

indicates that the VMSSA-R forecasts are 31%, 50%, 51%, and 5% better than

ARIMA, HW, ETS and SSA-R forecasts respectively with statistically signif-

icant differences reported between VMSSA-R forecasts and those of HW and

ETS.

4.3.2 Using Official Forecasts as More Information

Having considered the use of forecasts calculated from other models as auxil-

iary information for the VMSSA process, this sub section looks at exploiting

the forecastability of official forecasts. As such, these official or professional

forecasts which are calculated using complex multivariatemodels in most in-

stances are considered as more information. The applications consider as official

forecasts (OF), those obtained via the U.S. Energy Information Administration
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(EIA)2 for a variety of variables and a professional forecast (PF) for inflation by

a group of non-financial service providers who include manufacturers, universi-

ties, forecasting firms, investment advisors, pure research firms and consulting

firms. The EIA time series are shown in Figure 4.2 whereby all data are monthly

and the Oil Price, Gas Price, Electricity Sales and Electricity Series each have

81 observations from January 2008-September 2014. The CPI time series for

which a professional forecast is available is shown in Figure 4.3 and this series

includes quarterly data with 126 observations recorded between Q3 of 1981 and

Q4 of 2012. The last year is considered as out-of-sample dataand the results

from the forecasting exercise are reported in Tables 4.3 and4.4.
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Fig. 4.2 The EIA time series used as examples.

The first application looks at the West Texas Intermediary (WTI) oil price

series. The RMSE results in Table 4.3 shows that VMSSA outperforms the EIA

2http://www.eia.gov/forecasts/steo/outlook.cfm
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Fig. 4.3 Quarterly consumer price index data.

official forecast and also the SSA forecasts along with the VMSSA-V model re-

porting the lowest RMSE. In terms of the RRMSE criterion, as reported in Table

4.4, the VMSSA-V forecasts are 2% better than the official forecasts, and 22%

better than the SSA-V forecasts. Likewise, the VMSSA-R forecasts are 1% bet-

ter than the official forecasts, and 57% better than the SSA-Rforecasts. How-

ever, when tested for statistically significant differences between the forecasts

evidence was found only for significant differences betweenthe VMSSA-R and

SSA-V forecasts.

The next application considers average residential natural gas prices in the

United States. Again, based on the RMSE values the VMSSA forecasts out-

perform the official EIA forecast and the SSA forecasts and VMSSA-V reports

the lowest RMSE (Table 4.3. The RRMSE values in this case showvery minor

gains whereby VMSSA-V is 6% better than the official forecastand 9% bet-



88 Exploiting the Forecastability of Forecasts

ter than the SSA-V forecast, whereas the VMSSA-R forecast is5% better than

the official forecast and 8% better than the SSA-R forecast. Here there is no

evidence of statistically significant differences betweenany of the forecasts.

Table 4.3 RMSE when using official forecasts for forecastinglast year of each data set.

Series OF SSA-V SSA-R VMSSA-V VMSSA-R
EIA
WTIPUUS 4.34 5.42 10.01 4.25 4.32
NGRCUUS 0.87 0.90 0.90 0.82 0.83
EXRCP.US 253.46 392.69 306.44 253.95 248.53
ESICU.US 0.24 0.31 0.31 0.23 0.23
PF
CPI 0.53 1.17 2.40 0.31 0.40

Note: OF: Official forecast. WTIPUUS - West Texas Intermediate Spot Average Crude Oil
Price. NGRCUUS - Average Residential Natural Gas Price. EXRCP.US - Residential Sector

Total Electricity Sales. ESICU.US - Industrial Sector Average Regional Electricity Prices. PF:
Professional forecast from group of non-financial service providers. CPI - Consumer Price

Index.

The third application which considers an official forecast looks at data on

total electricity sales in the U.S. residential sector. TheRMSE results in Table

4.3 shows that VMSSA-R can provide the forecast with the lowest error whilst

the VMSSA-V forecast is on par with the official forecast. TheRRMSE values

in Table 4.4 indicates that VMSSA-V forecast is 35% better than the SSA-V

forecast whilst the VMSSA-R forecast is 2% better than the official forecast and

19% better than the SSA-R forecast. All outcomes are once again tested for

statistical significance, but there is no evidence at the 10%significance level in

this case.

The fourth application considers modelling the U.S. industrial sector aver-

age regional electricity prices. The RMSE values in Table 4.3 shows that both

MSSA models are outperforming the official forecast and the SSA models in

this case. The RRMSE criterion as per Table 4.4 indicates that both MSSA fore-

casts are 4% better than the official forecast and 26% better than the SSA-R

forecast. In this case there is evidence of the newly proposed VMSSA approach
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outperforming SSA forecasts with statistically significant results.

Table 4.4 RRMSE when using official forecasts for forecasting last year of each data
set.

Series VMSSA−V
OF

VMSSA−R
OF

VMSSA−V
SSA−V

VMSSA−R
SSA−R

EIA
WTIPUUS 0.98 0.99 0.78 0.43∗,†

NGRCUUS 0.94 0.95 0.91 0.92
EXRCP.US 1.00 0.98 0.65 0.81
ESICU.US 0.96 0.96 0.74∗ 0.74∗,†

PF
CPI 0.58 0.75 0.26 0.17

Note: ∗ indicates a statistically significant difference between the two forecasts based on the
modified Diebold-Mariano test atp= 0.10. † indicates a statistically significant difference

between the two forecasts based on the KSPA test atp= 0.10.

The final application considers forecasting the last four quarters of the quar-

terly consumer price index growth rate series. The professional forecast is used

as more information and the resulting RMSE is reported in Table 4.3. Given that

there are only four out-of-sample observations it isn’t realistic to expect statis-

tically significant differences between the forecasts in this case. However, the

RRMSE results in Table 4.4 can provide a reasonable indication of the compar-

ative performance. The RMSE shows that both VMSSA models outperform not

only SSA but also the professional forecast with VMSSA-V reporting the lowest

RMSE. The RRMSE criterion shows that the VMSSA-V forecast is42% better

than the professional forecast and 74% better than the SSA-Vforecast. Like-

wise, the VMSSA-R forecast is 25% better than the professional forecast and

83% better than the SSA-R forecast. Figure 4.4 provides a graphical represen-

tation of the out-of-sample forecasts. It is evident that the VMSSA-V forecast

is the only one which remains comparatively aligned with theactual inflation

values.
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Fig. 4.4 Out-of-sample forecasts for the last four quartersof the CPI.

4.4 Discussion

This chapter begins with the aim of introducing a theoretical framework for ex-

ploiting the forecastability of forecasts. That is, once a forecast is generated by

official or professional forecasters, is there any possibility of exploiting the in-

formation contained with the given forecast for generatinga new and more accu-

rate forecast? The idea for exploiting the forecastabilityof forecasts was derived

from the methodology underlying VMSSA (Hassani and Mahmoudvand, 2013)

which is a technique that enables modelling multiple time series with different

series lengths.

The proposed methodology seeks to exploit data with a time lag into the

future and couples this information with historical data pertaining to the same

variable in order to generate a new and improved forecast. The only condi-
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tion is that the forecast has to have some level of good accuracy as otherwise

there would not be any useful auxiliary information that canbe extracted from

the forecast. Given the proposed theory, this chapter applies it to several real

world applications. The results indicate that VMSSA forecasts which exploits

the proposed theory are able to outperform its univariate counterpart, SSA in all

instances (with statistically significant results in some cases). Moreover, there

has always been at least one VMSSA model which can outperformthe official,

professional or other forecasts in all cases based on the RMSE criterion. The low

number of out-of-sample forecast available for comparisonpurposes makes it an

arduous task for the statistical tests to pick up significantdifferences. However,

the RRMSE criterion is able to show that in certain cases the VMSSA models

report gains of well over 20% in relation to a competing forecast.

The introductory nature of this theoretical concept opens up a new research

avenue with specific interests for the future discussed in the final chapter. How-

ever, the initial findings not only introduces a novel theoretical approach for

exploiting the forecastability of forecasts, but also shows that it is indeed worth-

while to research in-depth into this concept so as to developmore efficient

VMSSA models which will be of utmost importance to forecasters across the

globe.





Chapter 5

Automated & Optimized Singular

Spectrum Analysis

This chapter focuses on introducing the automated and optimized SSA and

MSSA forecasting algorithms. The chapter begins with an introduction which

considers the reasons for, and the importance of automatingand optimizing the

SSA and MSSA processes which is then followed by a concise literature re-

view which evaluates the historical approaches to parameter selection in SSA

and MSSA whilst indicating how the proposed method fills an existing research

gap. The algorithms are presented next, and an application of the automated

SSA process to forecasting a real data set is presented as empirical evidence.

5.1 Introduction

In the 21st century, Econometricians are no longer the only individuals who are

interested in time series analysis and forecasting as both large and small scale

firms now seek to exploit time series analysing and forecasting methods to en-

able better decision making and risk management. The increasing availability of

large data sets and access to time series information on the world wide web has
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further added to the interest in exploiting this widely available information for

improving managerial decisions. However, this increasinginterest by the masses

towards the application of time series analysis techniquesis greatly restricted by

the nature of the time series techniques themselves. This isbecause, with the

exception of the Random Walk, almost every other time seriestechnique has a

complex econometric framework underlying its understanding, usage and per-

formance which in turn restricts the ability of those who arenot fortunate enough

to comprehend such complexities from exploiting these methods.

In 2008, researchers from Monash University in Australia having understood

the need for large scale forecasting and the lack of trained personnel in the field

of time series analysis and forecasting techniques even when a small number of

forecasts are required, introduced the ‘forecast package’for R which in brief en-

ables automatic time series forecasting (Hyndman and Khandakar, 2008). This

meant that individuals no longer need to understand the complex economic the-

ory underlying methods such as ARIMA, Exponential Smoothing, and Neural

Networks (among other techniques introduced through this package) in order to

generate forecasts using these methods. The concept was well received and the

authors went a step further to complement the ‘forecast package’ with an online

text book on forecasting using these methods, see Hyndman and Athanasopou-

los (2012).

The success of the Singular Spectrum Analysis technique depends solely

on the correct specification of its two parameters, the Window LengthL and

the number of eigenvaluesr (Hassani and Mahmoudvand, 2013; Hassani et al.,

2011, 2012b), which are used for decomposing a time series and then recon-

structing a less noisy time series respectively. Over the years, a variety of math-

ematically complex, time consuming and labour intensive approaches which re-

quire detailed knowledge on the theory underlying SSA have been proposed and

developed for the selection of SSA and MSSA parameters. However, the highly
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labour intensive and complex nature of such approaches havenot only discour-

aged the application of this method by those not conversant with the underlying

theory, but also limited SSA and MSSA to offline applications. As such there

remains a need for automating SSA and MSSA. At this juncture it is pertinent to

note some key initial attempts at automating SSA. Firstly, Vautard et al. (1992)

sought to automate trend and periodicity extraction in SSA.Several years later,

Alonso et al. (2004) presented automated denoising for SSA in the case of big

signal to noise ratios. This was followed by Alexandrov (2009) who presented

a method for automating trend extraction using SSA. Whilst the previous au-

tomation attempts have lead to positive outcomes in terms ofenabling users to

extract trend and harmonic components with ease, these methods are not aimed

at enabling the best possible forecast from SSA or MSSA.

Accordingly, through this research, an automated and optimized algorithm

is presented for forecasting with SSA and MSSA. The key pointbeing that this

algorithm is optimized by minimizing a loss function which enables the users to

automatically determine the optimal SSA or MSSA parametersfor obtaining the

best possible forecast without the need for an extensive or in-depth knowledge

into the complex theory underlying SSA and MSSA.

5.2 Parameter Selection in SSA & MSSA

The selection of the window lengthL depends on the structure of the data, the

purpose of the analysis and the forecasting horizon (Hassani et al., 2009; Has-

sani and Mahmoudvand, 2013). Following some discussion, Elsner and Tsonis

(1996) notes that selectingL = T/4 is common practice. However, theoretical

results thereafter suggest that the window lengthL should be large enough but

not greater thanN/2 (Ghodsi et al., 2009; Golyandina et al., 2001; Hassani,

2007). The selection ofL is both crucial and problematic as whenL is too large
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there are too few observations left to choose the covariancematrix of theL vari-

ables (Hassani et al., 2011) and this is known to make the forecasting results

inaccurate (Hassani et al., 2012b). Moreover, settingL too large could lead to

some parts of the noise mixing up with the signal whilst choosing L too small

opens up the risk of losing some parts of the signal to the noise (Golyandina

et al., 2001). Hassani (2007) notes that if the time series has a periodic compo-

nent with an integer period, then it is advisable to selectL proportional to that

period as this enables better separability of the periodic components.

Golyandina (2010) recommends settingL close to half of the time series

length to achieve optimal signal-noise separation based onevidence from a sim-

ulation study. However, Khan and Poskitt (2013a) provides evidence which

shows that the Golyandina (2010) claim does not hold universally. Hassani

et al. (2011) and Hassani et al. (2012b) suggested considering the selection of

L based on the concept of separability between signal and noise. The authors

show that by settingL = [T+1
2 ] whereT is the length of the series, one is able to

attain the minimum value for the weighted correlation (w-correlation) statistic

which is a natural measure of the similarity between two series (Hassani et al.,

2011). Through the work of Khan and Poskitt (2013b) it is suggested that set-

ting L much shorter than the upper boundN/2 can result in better SSA forecasts.

In other words, their recommendation is thatL ≤≤≤≤ N/2 andL = (logN)c,

wherec> log(2)/ loglog(N) (Khan and Poskitt, 2013b). In summary, there is

no one rule for selectingL, and instead it largely depends on the structure of the

data, purpose of analysis and the forecasting horizon of interest.

The selection of the correct number of eigenvaluesr is equally important in

the overall SSA process as it has a direct effect on the reconstruction in SSA.

As Hassani and Mahmoudvand (2013) notes, ifr is chosen to be greater than

exactly what it should be, then we increase the noise in the reconstructed series

whereas choosingr to be smaller than the exact requirement results in ignor-
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ing some parts of the signal which ought to be included in the reconstruction.

Literature shows that there are various approaches to select r. Hassani (2007)

suggests analysing the scree plot and pairwise scatter plots. However, as Khan

and Poskitt (2013b) points out there is no defined statistical decision rules when

using these approaches and so the modelling procedure is left to be a highly

subjective assessment. Accordingly, the selection ofr in SSA continues to re-

main an open problem. Parameter selection is even more complex in the case of

MSSA. As Hassani and Mahmoudvand (2013) states, the similarity and orthog-

onality among series, the use of a block trajectory Hankel matrix as opposed to

one Hankel matrix makes the selection ofL a difficult task whereas the selection

of r is made difficult by the fact that each eigenvalue contains information of all

time series considered in the multivariate analysis.

5.3 New Forecasting Algorithms for SSA and MSSA

Presented in this section are new forecasting algorithm forSSA and MSSA

which enables the automatic selection ofL andr for obtaining the optimal SSA

or MSSA forecast for a given data set. The algorithms are optimized via the

minimisation of a loss function and is the first step towards enabling the use

of SSA and MSSA for online applications. Moreover, the automated nature of

the algorithms enable users who are not conversant with the complex theory

underlying SSA and MSSA to be able to exploit these techniques for their work.

5.3.1 Automated & Optimized SSA Forecasting Algorithm

Shown below is the automated and optimized SSA forecasting algorithm.

1. Consider a real-valued nonzero time seriesYN = (y1, . . . ,yN) of lengthN.
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2. Divide the time series into two parts;2
3

rd
of observations for model train-

ing and testing, and13
rd

for validating the selected model.

3. Use the training data to construct the trajectory matrixX = (xi j )
L,K
i, j=1 =

[X1, ...,XK], whereXj = (y j , ...,yL+ j−1)
T andK = N−L+1. Initially, we

begin withL = 2 (2≤ L ≤ N
2 ) and in the process, evaluate all possible

values ofL for YN.

4. Obtain the SVD ofX by calculatingXXT for whichλ1, . . . ,λL denotes the

eigenvalues in decreasing order(λ1 ≥ . . .λL ≥ 0) and byU1, . . . ,UL the

corresponding eigenvectors. The output of this stage isX = X1+ . . .+XL

whereX i =
√

λ iUiVT
i andVi = XTUi/

√
λ i .

5. Evaluate all possible combinations ofr (1 ≤ r ≤ L− 1) singular values

(step by step) for the selectedL and split the elementary matricesX i (i =

1, . . . ,L) into several groups and sum the matrices within each group.

6. Perform diagonal averaging to transform the matrix with the selectedr

singular values into a Hankel matrix which can then be converted into a

time series (the steps up to this stage filters the noisy series). The output

is a filtered series that can be used for forecasting.

7. Depending on the forecasting approach one wishes to use, select the SSA-

R approach or SSA-V approach which are explained below at theend of

this algorithm.

8. When forecasting a seriesYN h-steps ahead, the forecast error is min-

imised by settingL (XK+h− X̂K+h) where the vector̂XK+h contains the

h-step ahead forecasts obtained using the corresponding forecasting algo-

rithm as chosen in Step 7.



5.3 New Forecasting Algorithms for SSA and MSSA 99

9. Find the combination ofL andr which minimisesL and thus represents

the optimal SSA choices ofL andr.

10. Finally use the optimalL to decompose the series comprising of the val-

idation set, and then selectr singular values for reconstructing the less

noisy time series, and use this newly reconstructed series for forecasting

the remaining1
3

rd
observations.

Recurrent SSA (SSA-R)

Let v2 = π2
1 + . . .+ π2

r , whereπi is the last component of the eigenvectorUi

(i = 1, . . . , r). Moreover, suppose for any vectorU ∈ RL denoted byU▽ ∈
RL−1 the vector consisting of the firstL−1 components of the vectorU . Let

yN+1, . . . ,yN+h show theh terms of the SSA recurrent forecast. Then, theh-step

ahead forecasting procedure can be obtained by the following formula

yi =





ỹi for i = 1, . . . ,N

∑L−1
j=1 α jyi− j for i = N+1, . . . ,N+h

(5.1)

whereỹi (i = 1, . . . ,N) creates the reconstructed series (noise reduced series) and

vectorA= (αL−1, . . . ,α1) is computed by:

A=
1

1−v2

r

∑
i=1

πiU
▽

i . (5.2)

Vector SSA (SSA-V)

Consider the following matrix

Π = V▽(V▽)T +(1−v2)AAT (5.3)
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whereV▽ = [U▽

1 , ...,U▽

r ]. Now consider the linear operator

θ (v) : Lr 7→ RL (5.4)

where

θ (v)U =


 ΠU▽

ATU▽


 . (5.5)

Define vectorZi as follows:

Zi =





X̃i for i = 1, . . . ,K

θ (v)Zi−1 for i = K+1, . . . ,K +h+L−1
(5.6)

where,X̃i ’s are the reconstructed columns of the trajectory matrix after grouping

and eliminating noise components. Now, by constructing matrix Z = [Z1, ...,ZK+h+L−1]

and performing diagonal averaging we obtain a new seriesy1, ...,yN+h+L−1,

whereyN+1, ...,yN+h form theh terms of the SSA vector forecast.

5.3.2 Automated & Optimized MSSA Forecasting Algorithms

In what follows, the automated and optimized HMSSA-R and HMSSA-V fore-

casting algorithms are presented. In presenting these two algorithms the nota-

tions in Hassani and Mahmoudvand (2013) have been relied upon.

HMSSA-R Optimal Forecasting Algorithm

1. ConsiderM time series with identical series lengths ofNi , such thatY(i)
Ni

=

(y(i)1 , . . . ,y(i)Ni
) (i = 1, . . . ,M).

2. Split each time series into three parts leaving2
3

rd
for model training and

testing, and1
3

rd
for validation.
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3. Beginning with a fixed value ofL = 2 (2≤ L ≤ N
2 ) and in the process,

evaluating all possible values ofL for YNi , using the training data construct

the trajectory matrixX(i) = [X(i)
1 , . . . ,X(i)

K ] = (xmn)
L,Ki
m,n=1 for each single

seriesY(i)
Ni

(i = 1, . . . ,M) separately.

4. Then, construct the block trajectory matrixXH as follows:

XH =
[

X(1) : X(2) : · · · : X(M)
]
.

5. Let vectorUH j = (u1 j , . . . ,uL j)
T , with lengthL, be thejth eigenvector of

XHXT
H which represents the SVD.

6. Evaluate all possible combinations ofr (1 ≤ r ≤ L−1) step by step for

the selectedL and construct̂XH = ∑r
i=1UHiU

T
Hi

XH as the reconstructed

matrix obtained usingr eigentriples:

XH =
[

X̂(1) : X̂(2) : · · · : X̂(M)
]
.

7. Consider matrix̃X(i) = H X̂(i) (i = 1, . . . ,M) as the result of the Hanke-

lization procedure of the matrix̂X(i) obtained from the previous step for

each possible combination of SSA choices.

8. LetU▽

H j
denote the vector of the firstL−1 coordinates of the eigenvectors

UH j , andπH j indicate the last coordinate of the eigenvectorsUH j ( j =

1, . . . , r).

9. Defineυ2 =
r
∑
j=1

π2
H j

.
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10. Denote the linear coefficients vectorR as follows:

R =
1

1−υ2

r

∑
j=1

πH jU
▽

H j . (5.7)

11. If υ2 < 1, then theh-step ahead HMSSA forecasts exist and is calculated

by the following formula:

[
ŷ(1)j1

, . . . , ŷ(M)
jM

]T
=





[
ỹ(1)j1

, . . . , ỹ(M)
jM

]
, j i = 1, . . . ,Ni,

RTZh, j i = Ni +1, . . . ,Ni +h,

(5.8)

where,Zh =
[
Z(1)

h , . . . ,Z(M)
h

]T
andZ(i)

h =
[
ŷ(i)Ni−L+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i =

1, . . . ,M).

12. Seek the combination ofL and r which minimises a loss function,L

and thus represents the optimal HMSSA-R choices for decomposing and

reconstructing in a multivariate framework.

13. Finally use the selected optimalL to decompose the series comprising of

the validation set, and then selectr singular values for reconstructing the

less noisy time series, and use this newly reconstructed series for forecast-

ing the remaining1
3

rd
observations.

HMSSA-V Optimal Forecasting Algorithm

1. Begin by following the steps in 1-9 of the HMSSA-R optimal forecasting

algorithm above.
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2. Consider the following matrix

Π = U▽U▽T +(1−v2)RRT , (5.9)

whereU▽ = [U▽

1 , ...,U▽

r ]. Now consider the linear operator

P
(v) : Lr 7→ R

L, (5.10)

where

P
(v)Y =


 ΠY△

RTY△


 , Y ∈ Lr , (5.11)

andY△ is vector of lastL−1 elements ofY.

3. Define vectorZ(i)
j (i = 1, . . . ,M) as follows:

Z(i)
j =





X̃(i)
j for j = 1, . . . ,ki

P(v)Z(i)
j−1 for j = ki +1, . . . ,ki +h+L−1

(5.12)

where,X̃(i)
j ’s are the reconstructed columns of trajectory matrix of theith

series after grouping and leaving noise components.

4. Now, by constructing matrixZ(i)= [Z(i)
1 , ...,Z(i)

ki+h+L−1] and performing di-

agonal averaging we obtain a new series ˆy(i)1 , ..., ŷ(i)Ni+h+L−1, where ˆy(i)Ni+1, ..., ŷ
(i)
Ni+h

provides theh step ahead HMSSA-V forecast for the selected combination

of L andr.

5. Finally, follow steps 12-13 in the HMSSA-R optimal forecasting algo-

rithm to find the optimalL andr, and use these to obtain the HMSSA-V

forecasts.
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5.4 Application

This section considers the application of the automated andoptimized SSA al-

gorithm for tourism demand forecasting in order to illustrate its usefulness and

validity in practice.

Previous research has highlighted the importance of accurate demand fore-

casting to the tourism sector. The dependence of tourism on both investment

and infrastructure development make a degree of advance planning essential, as

many authors have recognised. Well informed investment decisions are vital for

efficient resource allocation in both tourism and supporting sectors. The eco-

nomic downturn and an increased awareness of world economicvolatility have

strengthened rather than weakened this need to forecast tourist demand accu-

rately.

As discussed in the following sub-section there is an extensive and high

profile existing literature on forecasting tourism demand.This literature covers

a wide range of different forecasting techniques, applied to a wide range of

different countries or locations. The purpose of this application is to add to

this literature by introducing a new model for forecasting tourist arrivals and to

apply it to inbound U.S. tourist arrivals. Forecasting U.S.tourist arrivals is both a

demanding and important task, mainly because these data exhibit a high degree

of fluctuation over time. Figure 5.1 depicts the time series for total monthly

U.S. tourist arrivals between January 1996 and November 2012. As can be seen

from the graph, although the series increases over our sample period (with the

exception of year 2001), its movements are dominated by seasonality. Since

2002 U.S. tourist arrivals exhibit a strong upward trend. The need to allocate

resources for future growth is further evidence of the importance of developing

accurate demand forecasting for investors, managers and policy makers in the

tourism sector.
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Fig. 5.1 Total monthly U.S. tourist arrivals time series (Jan. 1996 - Nov. 2012).

There are a number of components which define a good demand forecasting

model for tourism management. Firstly, the forecasting model has to be able to

pick up strong variations in tourist arrivals as most tourist demand time series

show increasing fluctuations with seasons. Secondly, giventhe seasonal fluctu-

ations, the measure of forecasting accuracy based on the forecasting error alone

is not sufficient. It is important that the forecasting modelis equally able to

predict the actual direction of change. If not, investment decisions and the re-

sources allocated to tourism could find themselves cateringfor a peak in demand

but actually experiencing a trough. Thirdly, a tourism demand forecasting model

needs to be efficient both in the short and long run. This is because long term

investments are needed to be able to supply to the short term demand fluctua-

tions. In this application all these aspects are consideredas the SSA technique
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is introduced for modelling and forecasting U.S. tourist arrivals, and compared

with other forecasting models currently used to forecast tourism demand.

5.4.1 Literature Review

The existing literature on the forecasting of tourism demand is wide ranging

both in terms of the different techniques employed and in terms of the different

countries covered. A common theme in almost all of the papersalso helps to

explain the reasons behind this extensive interest in forecasting tourism demand.

A large number of authors including Chan and Lim (2011), Chu (2008), Coshall

and Charlesworth (2011) and, Goh and Law (2002) emphasise the importance of

forecasting for investment and development planning in tourism. This message

is re-enforced by authors, such as Gounopoulos et al. (2012)and Hui and Yuen

(2002), who add that such forecasts are also important as a consequence of the

vulnerability of tourism to large fluctuations in demand. Some authors also

emphasise the importance of tourism to a particular economyto re-enforce the

importance of accurately forecasting tourism demand. Examples include work

by Jackman and Greenidge (2010) for Barbados, and Chu (2011)for Macau.

Those readers seeking a detailed review of the literature, the paper by Song

and Li (2008) covers 121 studies produced from 2000 to the date of publication.

This review article offers a further reason for the sustained and extensive interest

in forecasting tourism demand. They found that no single forecasting model

outperforms all other in all possible situations. This implies that the literature

is not only of importance but also in need of further research. A more recent

review of forecasting and the closely related issue of tourism demand modelling

is included in the paper by Song et al. (2012).

Perhaps the most common form of study is one that assesses theperformance

of one or more forecast techniques relative to a set of alternatives. Álvarez-Díaz
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and Rosselló-Nadal (2010) examine forecasts of UK tourist arrivals in the Ba-

lerics, using meteorological variables. They compare the performance of an

ARIMA model and a non-causal autoregressive neural network, finding that the

latter performs better. Assaf et al. (2011) examine persistence and seasonality in

data for tourist arrivals into Australia. They compare the performance of three

different forecasting models, two standard methods using stationarity of degrees

0 and 1 and a model with fractional degrees of integration. Athanasopoulos and

de Silva (2012), in a study of tourist arrivals in Australia and New Zealand pro-

pose a model which captures time varying seasonality withina vector innovation

time series model. They produce evidence that this model offers greater forecast

accuracy than a number of alternatives. Cho (2003) investigates three different

techniques (exponential smoothing, univariate ARIMA and artificial neural net-

works) to forecast tourist arrivals in Hong Kong, finding theartificial neural

networks forecasts to be the most accurate.

Chu (2008) explores fractionally integrated ARMA models inforecasting

tourism arrivals in Singapore, observing that they performwell in comparison

to more traditional ARIMA models. Chu (2011) compares a piecewise linear

model with autoregressive trend, seasonal ARIMA and fractionally integrated

ARMA models in forecasting tourism demand for Macau, concluding the piece-

wise linear model to be the most accurate. Likewise, Gil-Alana (2005) considers

forecasts using monthly data for tourist arrivals into the US using a procedure

combining unit and fractional integration in seasonal variation. He finds evi-

dence of long memory and mean reverting behaviour. Goh and Law (2002) use

data for Hong Kong tourist arrivals to compare forecasts from a stochastic non-

stationary seasonality model (SARIMA) and an interventioncomponent model

(MARIMA) with a selection of eight other time series models.Their results sug-

gest the SARIMA and MARIMA models to have the highest forecast accuracy

of the models analysed.
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Greenidge (2001) uses a structural time series model to provide and evalu-

ate forecasts for tourism arrivals in Barbados. Jackman andGreenidge (2010)

further explore the structural time series model for tourist arrivals in Barbados,

finding that it produces more accurate forecasts than a number of alternatives.

Hadavandi et al. (2011) present forecasts for tourism arrivals in Taiwan using a

hybrid artificial intelligence model, involving a fuzzy rule-based system, which

they found to be more accurate than a selection of three alternative approaches.

Kim et al. (2011) consider the performance of prediction intervals for tourism

arrivals into Hong Kong and Australia for a selection of timeseries forecasting

models. They find an autoregressive bias corrected bootstrap model to perform

best of those tested. Lim and McAleer (2001) analysed the performance of var-

ious different exponential smoothing models in forecasting tourist arrivals in

Australia, concluding that using models expressed in first differences increased

forecast accuracy. Shareef and McAleer (2007) evaluate theabilities of ARMA

models to capture the effects of volatility in the time series of tourism arrivals

in the Maldives. Song et al. (2010) focus on a different aspect of forecasting

tourism demand - what is the appropriate measure of demand? Using data for

Hong Kong they find use of tourism arrivals to be more affectedby income in the

country of origin and tourism expenditure to be more sensitive to prices. Wan

et al. (2013), also using tourist arrival data for Hong Kong,assess the properties

of disaggregated forecasts using a seasonal ARIMA model relative to aggre-

gate forecasts. They find the sum of disaggregated forecaststo provide greater

accuracy than an aggregate forecast.

A very closely related strand in the literature seeks to combine two or more

forecasting models into a new hybrid model and to test whether this results

in greater forecast accuracy. Andrawis et al. (2011) finds that, in forecasts of

tourism arrivals into Egypt, combining short and long term forecasts improves

accuracy compared to the individual forecasts. Cang (2011)examines tourism
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arrivals into the U.K. and examines three different forecasting models - support

vector neural networks, seasonal ARIMA and an exponential smoothing model.

He finds that non-linear combinations of these models offer greater forecast ac-

curacy than the individual specifications. Coshall and Charlesworth (2011) con-

sider a number of forecasting models, both individually andin combination.

Using data on UK outbound tourism they also find that forecastaccuracy is im-

proved by using a combination of forecasts.

Shen et al. (2008) focus on outward leisure tourism from the U.S. and exam-

ine seven different types of individual forecasting techniques. Their results also

suggest that forecast accuracy is improved by combining forecasts. Shen et al.

(2011) conduct a similar analysis of UK outward tourism, using seven different

individual forecasting methods and six combinations. Again their findings sug-

gest that forecast accuracy is improved by using combinations of forecasts. Song

et al. (2011) develop a model to forecast Hong Kong tourist arrivals which com-

bines a structural time series model with a time varying parameter one. They

find that, relative to a number of time series models, their hybrid model exhibits

greater forecast accuracy. Song et al. (2013), again with respect to tourism ar-

rivals in Hong Kong, consider a model which combines quantitative forecasts

which judgemental forecasting from an online survey. They find that adding a

judgemental component improves forecast accuracy.

A number of papers consider the implications of shocks to oneor more fore-

casting models of tourism demand. Gounopoulos et al. (2012)consider the fore-

casting of the impact on tourism arrivals in Greece of macro-economic shocks.

They compare a number of different forecasting methods, finding an ARIMA

model to be the most accurate and also develop a VAR model. Smeral (2010)

examines the effects on forecasts of outbound travel of global recession for a

sample of countries. Mao et al. (2010) use a cusp catastrophemodel to fore-

cast the rates of recovery of tourist arrivals in Taiwan fromthe SARS epidemic.
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Their results suggest that tourism from China and the U.S. recovered quickly but

that from Japan did not. In a similar vein Page et al. (2012) estimate the nega-

tive effect of the Swine flu epidemic on U.K. tourist arrivalsusing a time varying

parameter model. Fourie and Santana-Gallego (2011) use a gravity model to es-

timate and predict the impact of mega-sports tourism eventson tourist arrivals.

Studies which examine the determinants of demand for tourism are not anal-

ysis of forecasting models but are so closely related to the forecasting of tourism

demand that they merit consideration. Chan and Lim (2011) analyse seasonality

in New Zealand tourism demand using spectral analysis. Theyfind different cat-

egories of inbound tourism share common cyclical behaviour. Naudé and Saay-

man (2005) consider the determinants of tourist arrivals in43 African countries,

finding tourism infrastructure and health risks to be of particular importance.

Nelson et al. (2011) estimate a demand model for visitors to Hawaii from main-

land U.S. Their results suggest home state income, airfaresand (log) distance to

be important. Seetanah et al. (2010) estimate tourism demand for South Africa

using a gravity model. Their analysis suggests prices, level of development and

common borders to all be important determinants. Seetaram (2010) uses dy-

namic panel cointegration to estimate demand elasticitiesfor tourism arrivals

into Australia, finding demand to be inelastic in the short run but elastic in the

long run.

Volatility models are built upon an ARIMA model to which theyadd a sec-

ond equation to explain the conditional variance. Coshall (2009) provides a

good overview of these techniques and their application to forecasting tourism

demand. The most commonly used specification is the GARCH model, de-

veloped by Bollerslev (1986). This adds to the ARIMA model anequation to

explain the conditional variance. This equation models thecurrent period con-

ditional variance in terms of lagged squared residuals (capturing the short run

impact of past shocks) and long term effects from lagged values of the condi-
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tional variance. Extensions of the GARCH model include the TGARCH (which

use dummy variables to model asymmetric shocks) and EGARCH models. For

example, Kim and Wong (2006) use both the EGARCH and TGARCH mod-

els to provide forecasts of tourism demand in Korea with asymmetric responses

to “news” shocks. Coshall (2009), in an application to UK outbound tourism,

shows that forecasts using the EGARCH model can be combined with those

from an exponential smoothing model such that the combined forecast is more

accurate than either of the individual methods.

The use of SSA in the tourism sector was firstly evaluated by Beneki et al.

(2012) via an application into signal extraction and forecasting of U.K. Tourist

income. However, this application introduces SSA as a new model for forecast-

ing tourism demand in the future. As noted above, there existvarious different

techniques which have been applied for forecasting tourismdemand in the past.

The performance of SSA forecasts are compared with the forecasting results

from ARIMA (Automatic-ARIMA), Exponential Smoothing (ETS) and Neural

Networks (nnetar). The ETS methodology gained popularity through its per-

formance at the M3-competition. The state space framework which underlies

the new developments in ETS is widely applicable, and like ARIMA, under-

pins forecasts with a sound stochastic model (Hyndman et al., 2002). Neural

networks have frequently been adopted in tourism demand forecasting as pre-

viously mentioned. A further key feature is that used in thisapplication is the

most basic version of SSA-V with optimal choices. Given the choice of fore-

casting methods, the forecasting accuracy of both parametric and nonparametric

time series analysis and forecasting techniques are compared. Unlike paramet-

ric forecasting techniques, nonparametric techniques arenot bound by any of

the usual assumptions such as stationarity and normality. As such, nonparamet-

ric models are better able to provide a true approximation ofthe real situation.

However, it is important to note that this application does not intend on showing
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that SSA is the universally best model for forecasting tourist arrivals. Instead,

the aim is the introduction of SSA as an alternative method, and further research

is required to compare SSA’s performance against many otherforecasting tech-

niques.

5.4.2 The Data

Used for application purposes is the monthly U.S. tourist arrivals data from

January 1996 to November 2012 (203 observations) obtained via the U.S. De-

partment of Commerce: Office of Travel and Tourism Industries1. Table 5.1

provides some descriptives for the data. According to the data, average total

monthly tourist arrivals into the U.S. between January 1996-November 2012

were 3,798,000. The maximum number of tourist arrivals during the sample

period of concern was recorded at 7,249,000 in July 2012 and the minimum

2,096,000 (in November 2001). By region the lowest average monthly tourist

arrivals into U.S. were recorded from Africa whilst Canada accounts for an av-

erage of 1,346,000 tourist arrivals, the highest influx of tourists into U.S. from

a single country. The skewness statistic indicates that alltime series analysed in

this study are in fact skewed and not normally distributed. An analysis of the

kurtosis suggests that all the series have Platykurtic distributions except for Italy

which has a Leptokurtic distribution. Accordingly, this information tells us that

the Italian time series for tourist arrivals into U.S. has a high probability for ex-

treme values with thicker tails and values concentrated around the mean whilst

all other time series for U.S. tourist arrivals have a lesserprobability for extreme

values in comparison to a normal distribution and consist ofvalues which have

a wider spread around the mean. In order to confirm the information provided

through the skewness and kurtosis statistics, the data was tested for normality

1http://travel.trade.gov/research/monthly/arrivals/
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using the Shapiro-Wilk test. Accordingly, it was found thatWestern Europe,

Total Overseas, Asia and Central America were in fact normally distributed at a

p-value of 0.05. The last column in Table 5.1 shows the seasonal R-square. This

is obtained as the conventional R-square in a regression of the first difference se-

ries against twelve monthly dummy variables. The R-square for Canada is the

largest and accounts for 92% of total variation in the series. It is noteworthy that

with the single exception of Hong Kong, monthly dummy variables account for

over 60% of the variation for each country. Thus it is possible to conclude that

seasonality is generally strong for these series.

Table 5.1 Descriptive statistics: U.S. tourist arrivals (Jan. 1996 - Nov. 2012).

Series Mean Min. Max. Std. Dev. Skew. Kurtosis Seasonal R2

Total Arrivals 3798000 2096000 7249000 994944 0.86 0.63 0.88

Arrivals by country

Canada 1346000 727300 2945000 417184 1.07 1.24 0.92
Mexico 491100 67960 1668000 338299 1.25 0.74 0.67
Total Overseas 1961000 1119000 3089000 382831 0.34 -0.06 0.77
Western Europe 859700 418800 1320000 187797 0.14 -0.50 0.78
Eastern Europe 39000 17610 76360 11875 0.69 -0.15 0.78
Asia 550500 246500 934300 106414 0.22 0.71 0.71
Middle East 51600 22930 120200 17996 1.09 1.21 0.63
Africa 22870 7869 48080 6863 0.63 0.51 0.87
Oceania 65190 28090 165600 23470 1.26 1.81 0.87
South America 215200 98580 420300 68877 0.62 0.06 0.67
Central America 59510 29730 91860 12097 0.29 -0.14 0.83
Caribbean 97440 48330 191100 31712 1.05 0.51 0.89
France 86290 36920 201800 31954 1.20 1.39 0.83
Germany 136800 54920 235600 39695 0.24 -0.80 0.71
Italy 51460 17170 157400 23127 1.88 4.65 0.85
Netherlands 41180 20340 90430 12554 1.26 2.23 0.83
Spain 36260 13110 104600 16651 1.40 2.15 0.67
Sweden 25820 11070 51560 7680 0.84 0.96 0.75
Switzerland 29090 13270 74220 10514 1.24 2.22 0.82
United Kingdom 338400 164300 475400 64735 -0.46 -0.34 0.74
Japan 331200 141600 549100 80225 0.36 -0.21 0.66
South Korea 62490 19510 130300 22956 0.78 0.24 0.78
PRC & Hongkong 46480 11480 207000 28966 2.63 8.62 0.43
ROC (Taiwan) 27830 9451 63400 10223 0.90 0.70 0.70
Australia 51380 21000 142400 20462 1.41 2.17 0.72
Argentina 30780 9279 64240 13845 0.25 -1.00 0.60
Brazil 65960 18680 171000 34633 1.11 0.69 0.72
Colombia 31810 11110 74670 12050 0.79 0.18 0.83
Venezuela 39330 15780 86160 14841 0.93 0.51 0.83

Next the U.S. tourist arrivals series are tested for unit root problems as cer-

tain external shocks such as recessions (for example) are infamous for creating
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structural breaks and making a time series nonstationary inmean and variance.

Table 5.2 reports the findings from the Bai and Perron (2003) test for structural

breaks in the U.S. tourist arrivals series. Whilst analysing the causes and rea-

sons behind these structural breaks are beyond the mandate of this application,

certain interesting observations are outlined. Firstly, it is evident that based on

the Bai and Perron (2003) test, the time series relating to tourist arrivals from

the Caribbean is the only series that has not been affected bystructural breaks.

Secondly, except for Canada, Mexico, Africa, Central America, Germany, Italy,

Spain, United Kingdom, South Korea, PRC & Hongkong, Australia and Colom-

bia, all other time series considered in this study are affected by a structural

break in the year 2001. Furthermore, the Bai and Perron (2003) test indicates

there has been a delayed impact of the 2008 recession on U.S. tourist arrivals

with all series reporting structural breaks in 2010 with theexception of Mexico,

Western Europe, Africa, Germany, Italy, Netherlands, Spain, United Kingdom,

Japan, ROC (Taiwan), Colombia and Venezuela. Finally, in terms of U.S. tourist

arrivals by country of origin, the most number of structuralbreaks visible in a

time series is seen in tourist arrivals from Brazil.

Table 5.3 presents the model parameters (SSA choices) for each of the fore-

casting techniques considered in this study for forecasting total U.S. tourist ar-

rivals at horizons ofh = 1, 3, 6, 12, 24 and 36 months ahead. It is important

to note that each of the techniques have chosen the model parameters (SSA

choices) automatically using the respective algorithms (as explained in Chap-

ters 2.4 and 4.3.1) to provide the best possible modelling and forecast for U.S.

tourist arrivals.

Considered next are the SSA-V decompositions which is an integral part of

the SSA process. The weighted correlation (w-correlation) statistic is used to

show the appropriateness of the various decompositions achieved by SSA (see,

Table 4.3 and Table 4.9). As mentioned in Golyandina et al. (2001), thew-
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Table 5.2 Break points in U.S. tourist arrivals time series.

Series Structural Break
Total Arrivals 2001(9), 2004(3), 2007(2), 2010(2)

Arrivals by country

Canada 2006(2), 2010(2)
Mexico 1998(6), 2006(3), 2009(12)
Total Overseas 2001(8), 2004(3), 2007(4), 2010(4)
Western Europe 2001(8), 2004(2), 2007(6)
Eastern Europe 2001(8), 2004(5), 2007(4), 2010(5)
Asia 2001(8), 2004(4), 2010(4)
Middle East 1999(2), 2001(8), 2006(5), 2010(5)
Africa 2008(4)
Oceania 2001(9), 2004(3), 2007(3), 2010(4)
South America 2001(8), 2007(5), 2010(5)
Central America 1998(6), 2001(8), 2007(4)
Caribbean No structural break in series.
France 2001(8), 2007(3), 2010(3)
Germany 2000(10), 2007(2)
Italy 2007(6)
Netherlands 2001(8), 2007(3)
Spain 2007(5)
Sweden 2001(6), 2004(2), 2007(2), 2010(5)
Switzerland 2001(7), 2007(3), 2010(5)
United Kingdom 1998(6), 2008(12)
Japan 2001(8)
South Korea 2005(4), 2010(4)
PRC & Hongkong 2007(4), 2010(5)
ROC (Taiwan) 2001(8)
Australia 2005(4), 2010(4)
Argentina 2001(8), 2006(12), 2010(4)
Brazil 1999(1), 2001(7), 2005(4), 2007(11), 2010(5)
Colombia 2009(5)
Venezuela 2001(12), 2007(6)

Table 5.3 Forecasting model parameters for total U.S. tourist arrivals.

h ARIMA ETS(α,γ,σ ) NN(p,P,k) SSA(L, r)
1 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0.05)M NNAR(2,1,1) (38,17)
3 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0.05)M NNAR(2,1,1) (25,14)
6 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0.05)M NNAR(2,1,1) (29,21)
12 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0.05)M NNAR(2,1,1) (15,6)
24 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0.05)M NNAR(2,1,1) (40,25)
36 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0.05)M NNAR(2,1,1) (48,6)

Note:M is an ETS model with multiplicative seasonality.
α,γ,σ are the ETS smoothing parameters.p is the number of lagged inputs,P is the

automatically selected value for seasonal time series, andk is the number of nodes in the
hidden layer.L is the window length andr is the number of eigenvalues.

correlation statistic which shows the dependence between two time series can

be calculated as:
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Accordingly, if thew-correlation between two reconstructed components are

close to 0, this implies that the corresponding series arew-orthogonal and in turn

we know the two components are well separable (Hassani et al., 2009). Table

5.4 presents thew-correlations for all the decompositions by comparing the two

components of signal and noise. Here, used as signal is the reconstructed se-

ries containing optimalr components whilst the remainingr (which does not

belong to the reconstruction) are selected as noise. The results indicate that all

w-correlations are close to 0 which in turn suggests that a sound decomposition

has been achieved using the automated & optimized SSA-V forecasting algo-

rithm explained in Section 4.3.1. In other words, thesew-correlations indicate

that the newly proposed SSA-V forecasting algorithm works exceedingly well

at separating the noise from the signal.
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Table 5.4W-correlations between signal and residuals for U.S. tourist arrivals.

Series 1 3 6 12 24 36

Total U.S. tourist Arrivals 0.007 0.009 0.009 0.012 0.008 0.009

U.S. tourist Arrivals by country

Canada 0.013 0.010 0.010 0.028 0.010 0.012

Mexico 0.020 0.020 0.021 0.047 0.032 0.035

Total Overseas 0.009 0.009 0.014 0.014 0.008 0.006

Western Europe 0.010 0.014 0.015 0.019 0.024 0.012

Eastern Europe 0.020 0.016 0.014 0.015 0.022 0.020

Asia 0.008 0.008 0.008 0.017 0.007 0.006

Middle East 0.027 0.047 0.044 0.029 0.022 0.024

Africa 0.019 0.020 0.015 0.031 0.013 0.010

Oceania 0.010 0.009 0.014 0.018 0.007 0.007

South America 0.012 0.019 0.023 0.016 0.020 0.023

Central America 0.013 0.016 0.014 0.021 0.012 0.016

Caribbean 0.021 0.021 0.031 0.051 0.034 0.019

France 0.014 0.027 0.040 0.015 0.014 0.015

Germany 0.015 0.015 0.014 0.017 0.017 0.017

Italy 0.026 0.026 0.026 0.016 0.035 0.024

Netherlands 0.016 0.018 0.018 0.018 0.027 0.014

Spain 0.030 0.014 0.031 0.027 0.016 0.027

Sweden 0.012 0.012 0.012 0.011 0.012 0.017

Switzerland 0.024 0.016 0.021 0.017 0.020 0.020

United Kingdom 0.013 0.016 0.015 0.013 0.012 0.016

Japan 0.009 0.015 0.008 0.009 0.07 0.012

South Korea 0.016 0.016 0.012 0.016 0.016 0.012

PRC & Hongkong 0.025 0.051 0.022 0.030 0.025 0.022

ROC (Taiwan) 0.019 0.031 0.025 0.025 0.015 0.015

Australia 0.011 0.011 0.011 0.011 0.011 0.011

Argentina 0.028 0.010 0.046 0.029 0.007 0.010

Brazil 0.025 0.023 0.026 0.027 0.030 0.027

Colombia 0.022 0.023 0.012 0.012 0.019 0.038

Venezuela 0.026 0.025 0.026 0.046 0.022 0.021

The U.S. tourist arrivals series exhibits several seasonalpatterns. In order

to illustrate SSA’s capabilities at extracting various seasonal patterns in U.S.

tourist arrivals, also presented via Figure 5.2 as an example, is the in-sample
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decomposition of total U.S. tourist arrivals ath = 1 step ahead. Firstly, it is ob-

servable that the extracted trend in U.S. tourist arrivals which corresponds with

the total arrivals pattern and clearly shows the general trend of increasing and

decreasing tourist arrivals over time. Also interesting isthe difference between

the four month and twelve month seasonal components. The 4 month seasonal

component is increasing over time whilst the 12 month seasonal component is

seen to be decreasing over time. Furthermore, there is more fluctuation in the 4

month seasonal component of total U.S. tourist arrivals in comparison to the 12

month component.
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Fig. 5.2 In-sample SSA decomposition of total monthly U.S. tourist arrivals ath = 1
step ahead.
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5.4.3 Empirical Results

The application considers23
rd

of the data as in-sample for model training and

testing, and set aside13
rd

of the data as out-of-sample for evaluating the fore-

casting accuracy. The data was forecasted at horizons ofh = 1, 3, 6, 12, 24 and

36 steps ahead which corresponds to 1, 3, 6, 12, 24 and 36 months ahead fore-

casts. These forecasting horizons have been considered because for the tourism

industry, horizons beyond 12 months are considered to be long term. Moreover,

both short and long run forecasts are vital for this sector asa country needs

to be geared to accommodate the tourists and planning of large scale building

works or the purchase of new aircrafts for example would require managerial

decisions to be made well in advance. Therefore, this application is effectively

evaluating the performance of the forecasting models both in the short and long

run in terms of obtaining forecasts for U.S. tourist arrivals. Initially total U.S.

tourist arrivals are analyzed. Table 5.5 reports the RMSE and MAPE results

for the out-of-sample forecasts of total U.S. tourist arrivals using SSA, ARIMA,

ETS and NN. In order to ensure the parametric models are correctly specified,

a Ljung-Box test was carried out on the residuals for autocorrelation and the

results indicated that the residuals are independently distributed at ap-value of

0.05, and are thus not autocorrelated.

Table 5.5 Out-of-sample RMSE(MAPE) results for total U.S. tourist arrivals.

h ARIMA ETS NN SSA SSA−V
ARIMA

SSA−V
ETS

SSA−V
NN

1 601512 (9%) 760599 (13%) 1147080 (19%) 242601(4%) 0.40* 0.32* 0.21*
3 720751 (11%) 723556 (13%) 1124242 (19%) 316049(6%) 0.44* 0.44* 0.28*
6 738630 (12%) 1037666 (20%) 1180780 (19%) 445614(8%) 0.60*0.43* 0.38*
12 937129 (14%) 1097366 (17%) 1385339 (23%) 517912(9%) 0.55* 0.47* 0.37*
24 1136616 (19%) 1300442 (20%) 1780513 (30%) 526323(9%) 0.46* 0.40* 0.30*
36 1002685 (17%) 1149585 (18%) 1684799 (24%) 605448(9%) 0.60* 0.53* 0.36*

Average 856221 (14%) 1011536 (17%) 1383792 (22%) 442325(8%) 0.52 0.44 0.32
Note:* indicates results are statistically significant based onDiebold-Mariano atp= 0.05.

Firstly, based on the MAPE criterion reported in Table 5.5, it is clear that

the Neural Network model is the worst performer at all horizons with an overall
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average MAPE of 22% at forecasting total U.S. tourist arrivals. Interestingly

the SSA technique is the only model which reports MAPE valuesbelow 10%

at all horizons and is in turn the model providing the most accurate forecasts

for total U.S. tourist arrivals with a comparatively low average MAPE of 8%.

Based on the MAPE one is also able to identify that the ARIMA model is the

second best model for forecasting total U.S. tourist arrivals as its average MAPE

of 14% is lower than the ETS model’s average MAPE of 17%. Moreover, it is

interesting to note that the SSA model’s MAPE remains approximately constant

over the forecasting horizons ofh = 12, 24 and 36 months ahead, and thereby

portrays SSA’s capabilities of providing comparatively stable and more accurate

forecasts in the long run. The remainder of the analysis focusses on the RMSE

criterion for evaluating forecast accuracy.

It is evident from Table 5.5 that based on the RMSE criterion,SSA outper-

forms ARIMA, ETS and Neural Networks comfortably by recording the lowest

forecasting error for total U.S. tourist arrivals at all horizons. The RRMSE statis-

tic shows that SSA is 60%, 56%, 40%, 45%, 54% and 40% better than ARIMA

at forecasting total U.S. tourist arrivals ath = 1, 3, 6, 12, 24 and 36 months ahead

respectively. Likewise, in comparison to ETS, SSA is 68%, 56%, 57%, 53%,

60% and 47% better ath = 1, 3, 6, 12, 24 and 36 steps ahead respectively. An-

alyzed finally are the forecasting results between SSA and the Neural Network

model. Accordingly it is possible to conclude that the SSA model is 79%, 72%,

62%, 63%, 70% and 64% better than the feed-forward Neural Network model

at h = 1, 3, 6, 12, 24 and 36 months ahead respectively.

In order to ensure the results reported are not chance occurrences, they were

further tested for statistical significance using the modified Diebold-Mariano

test found in Harvey et al. (1997). The test results indicatethat all the RRMSE

results are statistically significant at all horizons and thus provides concrete ev-

idence for the inferences made via the application. Finally, from Table 5.5 one
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can infer that when forecasting total U.S. tourist arrivals, on average, the SSA

model is 48% better than ARIMA, 56% better than ETS and 68% better than

Neural Networks based on the forecasting accuracy. The results from Table 5.5

also show that on average, ARIMA provides a better forecasting accuracy in

comparison to ETS and Neural Networks for U.S. tourist arrivals both in the

short and long run, and is therefore chosen to be the second best model in gen-

eral for this purpose. The feed-forward Neural Network model with one hidden

layer provides the least favourable forecasts for total U.S. tourist arrivals.

The impact of the 9/11 terrorist attack on U.S. soil is clearly identifiable in

Figure 5.1. The breakpoints test carried out earlier has confirmed this particular

structural break occurred in September 2001. As economic literature provides

evidence of such breaks impacting unit root tests such as KPSS, the ARIMA

and SSA models are further tested for robustness to this break. Accordingly,

the data were re-modelled by considering data post September 2001 to ascertain

whether this major break in the series has a significant impact on ARIMA or

SSA’s modelling capabilities. The out-of-sample forecasting results from the re-

modelling is presented in Table 5.6. As appears from these results both models

now perform better than previously in the absence of this break. However, it is

clear that SSA continues to dominate with the lowest RMSE andMAPE results

at all horizons in comparison to ARIMA thus provides furtherevidence for the

reliability of the results presented in Table 5.5.

Thereafter, the Direction of Change (DC) criterion was usedto evaluate the

extent to which the forecasts from all models are able to predict the actual di-

rection of change in total U.S. tourist arrivals. Table 5.7 presents the DC results.

Firstly, it is evident that only three outcomes are in fact statistically significant

for DC. However, based on the criterion itself one could infer that SSA provides

a more accurate prediction of direction of change in comparison to ARIMA at

all horizons when forecasting total U.S. tourist arrivals,and on average, SSA is
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Table 5.6 Out-of-sample RMSE(MAPE) results for total U.S. tourist arrivals (adjusted
for the 9/11 breakpoint).

h ARIMA SSA-V SSA−V
ARIMA

1 648372 (10%) 289642 (5%) 0.45*
3 683034 (11%) 354762 (6%) 0.52*
6 834528 (12%) 422322 (7%) 0.51*
12 846094 (11%) 345101 (5%) 0.41*
24 827373 (11%) 388009 (5%) 0.47*
36 813722 (10%) 447459 (6%) 0.55*

Average 775521 (11%) 374549 (6%) 0.48
Note:* indicates results are statistically significant based onDiebold-Mariano atp= 0.05.

able to provide a 83% accurate direction of change prediction whilst ARIMA

can only provide a 63% accurate prediction of the direction of change. Like-

wise, in comparison to both ETS and Neural Networks, SSA provides a better

prediction of the direction of change at all horizons. However ETS outperforms

the ARIMA model in terms of DC ath = 3 and 24 months ahead and the DC

predictions of the NN model is better than ETS ath = 12 and 24 steps ahead.

Furthermore, at 36 steps ahead the SSA model obtains 100% accurate DC pre-

dictions whilst ARIMA is able to report a significant 91% accuracy. Thus, it is

clear that the SSA model stands out as the most superior modelfor forecasting

total U.S. tourist arrivals at all horizons based on the RMSE, RRMSE and DC

criterions in comparison to ARIMA, ETS and Neural Network models. Fur-

thermore, it is clear that the SSA model can pick up both shortand long run

fluctuations in total U.S. tourist arrivals comparatively better than ARIMA, ETS

and Neural Networks.

As an example of the out-of-sample forecasting capabilities of the selected

models, and also to show the accuracy of the DC results, presented in Figure 5.3

is a graphical representation of the forecasting results ath = 24 steps ahead for

total U.S. tourist arrivals. The choice of this particular horizon as the example

is for the following reasons. First and foremost, it is well known that forecast-

ing any variable becomes increasingly difficult as the horizon increases. In this
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Table 5.7 Direction of change results for total U.S. touristarrivals forecasts.

h ARIMA ETS NN SSA-V
1 0.74* 0.57 0.48 0.87**
3 0.70* 0.73* 0.57 0.85**
6 0.67* 0.63* 0.56 0.81*
12 0.47 0.36 0.45 0.66*
24 0.30 0.52 0.63* 0.78*
36 0.91** 0.56 0.56 1.00**

Average 0.63 0.56 0.54 0.83
Note:** indicates results are statistically significant based on a t-test atp= 0.05.

* indicates results are statistically significant based on at-test atp= 0.10.

case,h = 24 steps ahead represents a long run forecast horizon considered in this

application and thus can show the reader how well or poorly the models fare at

predicting total U.S. tourist arrivals in the long run. Secondly, this also happens

to be the forecasting horizon at which SSA reports 78% accuracy in terms of

the correct direction of change prediction whilst ARIMA reports 30% accuracy

which is also the lowest ARIMA recorded over all horizons considered in this

application. As such, this plot can show the reader a furtherclear difference be-

tween the best (SSA) and second best (ARIMA) forecasts for total U.S. tourist

arrivals. Thirdly, this is the only horizon at which NN reports a statistically sig-

nificant direction of change prediction at 63%. As such this plot also enables to

notify the reader of the fact that the direction of change criterion should be taken

into consideration alongside a loss function when determining which model is

best for forecasting. In fact if one was to pick the second best model based

on the DC criterion alone, then in this case they would opt forNN whilst in

terms of the loss function it is the worst performing model reporting the highest

MAPE of 30% across all horizons considered in this application. Whilst NN

would provide a better DC prediction than ARIMA in this case,relying on NN

forecasts for planning and decision making would result in major unproductive

resource allocations given that the actual forecasts themselves report very high
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errors. This particular figure also clearly indicates the very poor nature of fore-

casts achieved via the NN model. In terms of Figure 5.3 itself, it is evident that

both ETS and NN models experience great difficulty in pickingup the seasonal

fluctuations seen in the U.S. tourist arrivals time series and that the NN model is

indeed the worst performer in this case. The results from both Tables 5.5 and 5.6

proves that as the horizon increases from 1 month ahead to 24 months ahead,

the forecasting performance of the parametric model (ARIMA), ETS and NN

worsens immensely in comparison to that of the nonparametric model of SSA.
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The positive outcome when forecasting Total U.S. tourist arrivals using the

new SSA algorithm inspired considering same for forecasting U.S. tourist ar-

rivals by country of origin. The total U.S. tourist arrivalsforecasting results

show ARIMA to be the second best forecasting model in comparison to SSA,
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ETS and Neural Networks. As such, here ARIMA is employed as a benchmark

as it is evident that ETS and feed-forward Neural Networks cannot provide ac-

curate forecasts in this case. Presented in Tables 4.8 and 5.9 are the ARIMA

parameters and SSA-V choices which were used for forecasting U.S. tourist ar-

rivals by country of origin. Once again the correct specification of the models

were ensured via a Ljung-Box test for the independent distribution of residuals.

Where the residuals were not found to be independently distributed the model

parameters we redefined to ensure the model specification wasvalid. In most

cases the test results indicated that the residuals were white noise at ap-value of

0.05, and that no further model review was required.

Table 5.10 reports the results for out-of-sample forecasting of U.S. tourist ar-

rivals by country of origin. The RRMSE criterion shows that,SSA outperforms

ARIMA at forecasting U.S. Tourist arrivals at all horizons for all countries of

origin with the exception of Mexico ath = 3 steps ahead. Furthermore, it is

clear from the results that on average, SSA is 53%, 49%, 44%, 47%, 46% and

41% better than ARIMA at horizons ofh = 1, 3, 6, 12, 24 and 36 months ahead

respectively for forecasting U.S. tourist arrivals by individual country of origin.

These results prove that by employing SSA to analyse and forecast the monthly

U.S. tourist arrivals data by country of origin we can obtainsignificantly more

accurate forecasts than those possible with ARIMA for both short and long

term fluctuations in tourist arrivals into the U.S. from eachcountry. The re-

sults are tested further for statistical significance. The testing showed that ex-

cept for tourist arrivals from Mexico, every other forecasting result obtained in

this study is statistically significant. This suggests thatwhen forecasting tourist

arrivals from Mexico there is no difference between the forecasting accuracy of

the ARIMA and SSA models.

Interestingly, when forecasting U.S. tourist arrivals from Mexico, the opti-

mal SSA choice for the number of eigenvalues,r is r = 1 at horizons of 1, 3 and 6
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Table 5.8 ARIMA model parameters for U.S. tourist arrivals by country of origin.

Series ARIMA Series ARIMA
Canada (0,0,1)(0,1,2) Mexico (1,1,3)(0,1,2)
Total Overseas (0,1,1)(2,0,2) Western Europe (1,0,0)(2,0,1)
Eastern Europe (2,0,1)(1,1,2) Asia (0,1,0)(2,0,1)
Middle East (2,0,1)(2,0,2) Africa (2,0,3)(2,1,2)
Oceania (3,0,3)(1,1,1) South America (0,1,2)(2,0,1)
Central America (2,1,1)(2,1,1) Caribbean (0,0,1)(1,1,2)
France (1,1,1)(2,0,2)† Germany (2,1,3)(2,0,2)
Italy (2,0,2)(1,1,2)† Netherlands (4,0,4)(2,1,2)
Spain (3,0,3)(1,1,1) Sweden (2,1,1)(1,1,2)
Switzerland (5,1,4)(2,0,2) UK (2,1,4)(2,0,1)
Japan (2,1,2)(2,0,1) South Korea (1,0,1)(2,1,0)†

PRC & Hongkong (1,0,0)(2,0,2)* ROC (4,1,2)(2,0,2)
Australia (4,1,5)(0,1,1) Argentina (1,1,1)(2,0,1)
Brazil (1,1,2)(2,0,1) Colombia (2,0,4)(2,1,0)
Venezuela (3,1,1)(1,1,1)

Note:† ARIMA with drift. * ARIMA with non-zero mean.

steps ahead. This in turn means that the SSA model is relying on the trend alone

to forecast future data points for Mexico. As such it is important to briefly com-

ment on this fact. For this purpose, shown in Figure 5.4 are the time series for

Mexico and three other time series which were found to have structural breaks

as per Table 5.2. Upon closer analysis it is clear that whilstall four time series

shown here are affected by structural breaks, the time series for Mexico shows

signs of a major structural break shifting U.S. tourist arrivals from Mexico start-

ing December 2009. The magnitude of this break has implications on SSA’s

modelling capabilities especially as this particular SSA-V forecasting algorithm

does not incorporate change point detection methods. Moreover, it is clear from

Figure 5.4 that U.S. tourist arrivals from Mexico differs from the other nations

in terms of seasonality, as Mexico does not illustrate a strong seasonality. It is

pertinent to keep in mind that in line with ensuring equalitybetween the other

forecasting models adopted in this application, used here is the most basic ver-

sion of SSA with optimal choices for the purpose of forecasting U.S. tourist
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Table 5.9 U.S. tourist arrivals by country of origin - SSA-V choices (L, r).

Series 1 3 6 12 24 36
Canada (22,16) (28,19) (28,19) (16,9) (33,20) (36,15)
Mexico (5,1) (5,1) (4,1) (51,3) (39,9) (49,26)
Total Overseas (28,16) (29,16) (20,10) (18,11) (38,25) (50,29)
Western Europe (29,17) (23,14) (23,12) (19,14) (21,13) (28,21)
Eastern Europe (14,13) (22,11) (23,11) (20,14) (18,13) (49,5)
Asia (29,23) (25,22) (29,23) (23,11) (31,28) (49,40)
Middle East (24,15) (15,13) (17,13) (22,18) (44,36) (38,15)
Africa (18,14) (17,14) (24,20) (14,12) (47,17) (24,16)
Oceania (39,25) (42,27) (31,19) (34,12) (33,27) (33,27)
South America (27,14) (23,15) (16,12) (26,15) (46,28) (35,24)
Central America (29,17) (29,19) (26,17) (29,25) (47,24) (46,27)
Caribbean (24,20) (24,20) (24,11) (18,12) (24,12) (46,26)
France (15,13) (30,14) (25,12) (43,31) (23,20) (40,21)
Germany (32,10) (25,8) (25,9) (32,15) (24,12) (24,12)
Italy (44,15) (34,15) (34,15) (57,27) (18,14) (30,23)
Netherlands (36,14) (37,14) (26,19) (26,19) (22,10) (32,11)
Spain (28,8) (12,6) (24,8) (14,9) (14,3) (14,9)
Sweden (39,11) (39,11) (39,11) (38,15) (23,20) (24,15)
Switzerland (15,12) (44,38) (16,13) (31,21) (26,17) (26,17)
UK (24,14) (22,14) (32,24) (51,38) (41,34) (47,14)
Japan (31,25) (28,9) (47,19) (23,21) (47,34) (39,9)
South Korea (32,18) (27,17) (28,25) (31,21) (39,15) (50,36)
PRC and Hongkong (40,18) (16,13) (41,21) (25,15) (50,21) (42,34)
ROC (40,21) (40,31) (37,33) (37,33) (37,16) (37,16)
Australia (55,19) (37,21) (37,12) (36,12) (49,33) (48,33)
Argentina (23,15) (30,26) (15,13) (17,15) (41,39) (41,40)
Brazil (26,15) (14,11) (46,12) (39,24) (39,22) (50,12)
Colombia (29,15) (29,16) (39,11) (36,11) (27,23) (19,10)
Venezuela (30,15) (28,15) (26,15) (18,15) (48,15) (37,17)

arrivals.

5.4.4 Discussion

The starting point of this application, as with many other authors, was the im-

portance of accurate forecasts of tourism demand to investors, managers and

policy makers. The existence of a high degree of seasonalityin tourism demand

not only increases this need, but also creates a need for forecasting techniques
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Table 5.10 Forecasting results for U.S. tourist arrivals bycountry of origin.

SSA−V
ARIMA

Origin 1 3 6 12 24 36

Canada 0.27* 0.32* 0.40* 0.37* 0.30* 0.36*
Mexico 0.98 0.96 1.07 0.99 0.93 0.77**
Total Overseas 0.44* 0.48* 0.42* 0.48* 0.33* 0.43*
Western Europe 0.46* 0.50* 0.53* 0.47* 0.43* 0.44*
Eastern Europe 0.34* 0.37* 0.42* 0.41* 0.42* 0.39*
Asia 0.54* 0.68* 0.72 0.91 0.80* 0.91
Middle East 0.55* 0.42* 0.47* 0.37* 0.38* 0.46*
Africa 0.28* 0.39* 0.45* 0.36* 0.26* 0.24*
Oceania 0.40* 0.43* 0.51* 0.53* 0.60* 0.75**
South America 0.43* 0.45* 0.56* 0.50* 0.49* 0.82
Central America 0.44* 0.45* 0.52* 0.46* 0.34* 0.46*
Caribbean 0.34* 0.38* 0.43* 0.34* 0.49* 0.61*
France 0.36* 0.45* 0.42* 0.36* 0.52* 0.42*
Germany 0.60* 0.51* 0.64* 0.61* 0.64* 0.60*
Italy 0.31* 0.37* 0.41* 0.38* 0.35* 0.44*
Netherlands 0.48* 0.53* 0.47* 0.44* 0.44* 0.43*
Spain 0.60* 0.78* 0.76** 0.62* 0.65* 0.93
Sweden 0.53* 0.62* 0.72* 0.69* 0.62* 0.47*
Switzerland 0.48* 0.50* 0.54* 0.50* 0.48* 0.42*
United Kingdom 0.52* 0.49* 0.61* 0.65* 0.72** 0.92
Japan 0.62* 0.83* 0.82 0.71** 0.66* 0.96
South Korea 0.48* 0.49* 0.73* 0.79* 0.88 0.91
PRC & Hongkong 0.51* 0.52* 0.56* 0.47* 0.73** 0.64*
ROC (Taiwan) 0.50* 0.44* 0.48* 0.58* 0.50* 0.40*
Australia 0.44* 0.45* 0.48* 0.49* 0.61* 0.59*
Argentina 0.54* 0.62* 0.75* 0.64* 0.61* 0.59*
Brazil 0.53* 0.53* 0.58* 0.53* 0.49* 0.49*
Colombia 0.34* 0.38* 0.41* 0.41* 0.35* 0.66*
Venezuela 0.42* 0.34* 0.34* 0.44* 0.53* 0.52*

Average 0.47 0.51 0.56 0.53 0.54 0.59

Note:* indicates results are statistically significant based onDiebold-Mariano atp= 0.05.
** indicates statistical significance atp= 0.10.

that cope well with this seasonality in time series. Singular Spectrum Analysis

is introduced as a new model for forecasting inbound U.S. tourist arrivals. The

U.S. tourist arrivals time series’ are analyzed in total andby country of origin.

This analysis compared the forecasting accuracy of the newly proposed tech-

nique, the automated and optimized SSA-V model, with the forecasting accu-

racy of the several different widely used forecasting models. These include an

optimized version of ARIMA, known as Automatic-ARIMA, an Exponential

Smoothing model known as ETS and a feed-forward Neural Network model

known as nnetar. Automatic-ARIMA, ETS and nnetar are all provided as auto-

matic forecasting techniques through the forecast packagewithin theR software.
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Fig. 5.4 Selected U.S. tourist arrivals time series (Jan. 1996 - Nov. 2012).

The results showed that the proposed SSA model of U.S. tourist arrivals out-

performs all three of these models (ARIMA, ETS and Neural Networks). The

w-correlations also provide an explanation for one reason behind the outstand-

ing performance recorded by the SSA-V model as they clearly indicate that the

SSA-V forecasting algorithm is highly successful in separating the signal from

the noise found in the U.S. tourist arrivals series.

This application further uncovers substantial evidence tosupport the discon-

tinuation of the use of ETS and feed-forward Neural Networksas models for

forecasting inbound U.S. tourist arrivals in the future. This evidence is based on

the MAPE, RMSE, RRMSE and DC criteria with statistically significant results.

The results also show that the basic SSA-V model with optimaldecomposition

is able to outperform Automatic-ARIMA, ETS and nnetar models of Hyndman
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and Khandakar (2008) in forecasting U.S. tourist arrivals.The results show

that the nonparametric SSA-V model is on average 48% more accurate than

the parametric model of ARIMA, 56% more accurate than ETS, and 68% more

accurate than the feed-forward Neural Network model (nnetar) at forecasting

tourist arrivals based on the RRMSE. In terms of the MAPE, SSAreports the

lowest average MAPE at 8% in comparison to the ARIMA model’s 14%, ETS’

17% and NN’s 22% MAPEs. It is also noteworthy that SSA is the only model

which is able to report a MAPE of less than 10% across all forecasting horizons

which covers both the long and short run. This provides soundevidence for Na-

tional Statistical Agencies in U.S. and elsewhere to consider introducing SSA

as a more reliable method of forecasting tourist arrivals.

This application contributes to the literature on forecasting tourism demand

in several ways. Firstly, it shows that the SSA technique canbe used as a reliable

demand forecasting technique for tourism in the future, using its application to

inbound tourist arrivals in the U.S. as an example. This alsoresults in an increase

in the number of options available for demand forecasting intourism. Secondly,

the results show that SSA outperforms the ARIMA model of Hyndman and

Khandakar (2008). This is an important finding as ARIMA models are widely

used in forecasting tourism demand at present. Given the introduction of SSA

and its strong performance with U.S. data it would be interesting to see how well

the model performs in forecasting tourism demand in other nations. Thirdly,

also evaluated is the performance of the SSA technique against an exponential

smoothing and neural network model which shows the basic SSA-V forecasts

are superior. The results are statistically significant andprovide strong evidence

to support the discontinuation of models such as ETS and feedforward Neural

Networks with one hidden layer as tourism demand forecasting techniques for

the U.S. Whilst more research work should be conducted on thecomparison

of SSA especially against neural networks in the future, theinitial evidence is
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supportive of the use of SSA.

Overall, given the importance of forecasting tourism demand and the im-

portant requirement that such forecasts be able to cope wellwith seasonality in

demand, this application offers a new technique to forecasters in this area. The

evidence from the U.S. data is that it offers the prospect of better forecasting

accuracy than the pick of those techniques previously employed. Improvements

in forecasting accuracy should provide a basis for more efficient resource allo-

cation by, in particular, investors and managers in tourism.

In terms of the implications of this paper for further research there are sev-

eral. Compared in this application is the performance of SSAto three of the most

important existing alternative techniques. It would be worthwhile extending this

analysis in the future to a wider range of alternative techniques. The encouraging

results from employing SSA to forecast U.S. inbound tourismreported in this

application also suggests that it may be worthwhile in future research to build

a multivariate SSA model to forecast tourist arrivals. Here, it would be inter-

esting to evaluate the spatio-temporal correlations between tourist arrivals from

various countries (as proposed in Sato (2012)) so that this information could be

used to enhance the multivariate SSA model to enable more accurate forecasts.

Finally, the use of hybrid models has been common in the literature concerning

the forecasting of tourism demand. It would be both interesting and of potential

value for future research to consider how the SSA technique performs in a hy-

brid model. Moreover, the presence of structural breaks in U.S. tourist arrivals

suggests that it would also be interesting to evaluate the impact on the forecasts

of replacing KPSS tests with the Bai and Perron (2003) test for determining the

differencing in ARIMA models. The results from forecastingtourist arrivals

from Mexico also makes it clear that future studies should consider incorporat-

ing SSA change point detection for forecasting U.S. touristarrivals. Finally, it

is possible that different categories of tourism may be behaviourally different
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in a way that is relevant for other forecasting uses. In this application, owing

to data limitations it was not possible to analyse U.S. tourist arrivals based on

purpose of visit and future research could benefit immenselyif such data were

made freely accessible and available by the relevant authorities.



Chapter 6

Conclusions

This thesis begins with an overall aim of ensuring lucrativetheoretical devel-

opments in SSA which are well supported by empirical evidence. Chapter One

begins with a general introduction which is followed by the introduction of the

methodology in Chapter 2 in addition to the presentation of benchmark fore-

casting techniques and metrics used throughout this research. The remaining

chapters (up until Chapter Seven) are organized such that each Chapter focuses

on addressing the four objectives of this study. Accordingly, there are several

contributions to the field.

The first contribution of this research was the introductionof a statistical

test for comparing between the predictive accuracy of forecasts as presented

via Chapter Three. This statistical test which exploits theconcepts of stochas-

tic dominance and cumulative distribution functions, extends the use of the

Kolomogorov-Smirnov test and introduces it to the field of time series analy-

sis and forecasting. In the past the application of the KS test was limited to its

intended use which was the comparison of distributions between two data sets

(Kolmogorov, 1933). This research has shown via both simulation studies and

empirical results that the KS test can be extended as a methodfor comparing
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between the predictive accuracy of forecasts to determine the existence of sta-

tistically significant differences between two sets of forecasts. In addition this

alternate statistical test is able to overcome several problems with the original

DM test (Diebold and Mariano, 1995) and the modified DM test (Harvey et al.,

1997) pertaining to size, theoretical and applicability related issues. The simu-

lation study was able to show that the proposed KSPA test is both better sized

and more powerful than the modified DM test in Harvey et al. (1997), whilst

the real world applications were used as evidence to illustrate the usefulness and

applicability of the proposed test. This chapter opens up anentirely new area

of research pertaining to the extension and improvement of the KSPA test. In

particular, future studies should consider researching into the possibility of ex-

tending the test such that it could be used to compare betweenmore than two

forecasts at the same time and thereby further increase its practical value. In

addition, the performance of the KSPA test in relation to other alternatives such

as Hansen’s Hansen (2005) Superior Predictive Ability (SPA) test and Hansen

et al.’s Hansen et al. (2011) Model Confidence Set (MCS) should be evaluated.

The second contribution was the development of a new MSSA based theory

for exploiting the forecastability of forecasts as presented via Chapter Four. This

theoretical development which considers data with a time lag into the future, i.e.

forecasts generated by official or professional forecasters for constructing a new

and improved forecast, has shown that MSSA has the potentialto extract auxil-

iary information from an existing forecast and create a moreaccurate forecast.

An application to real data has illustrated the feasibilityof the proposed theory.

Forecast combining has been a long existing field of researchin time series anal-

ysis. However, it is noteworthy that the proposed theoretical approach does not

relate to this particular area where researchers seek to combine competing fore-

casts and develop a new forecast by exploiting variance-covariance based meth-

ods or regression based methods (see for example, Diebold and Lopez (1996)).
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Instead, this novel approach considers combining historical data with a forecast

which represents data with a time lag into the future and seeks to extract the

auxiliary information contained within the forecast via multivariate modelling

to develop a new and improved forecast. As such, having opened up an entirely

new research avenue in the field of MSSA and multivariate timeseries analy-

sis literature, future research should consider using thisdevelopment alongside

SSA change point detection and with automated algorithms which will promote

the effective use of this new theoretical development. For example, firstly, an

automated algorithm should be developed for extracting theVMSSA parameters

for a given data set. Thereafter, extensive simulation studies which takes into ac-

count different noise levels, stationarity and non-stationarity amongst other time

series features should be carried out to provide more justification for this theory.

The third and final contribution of this research (as discussed in Chapter

Five) was the development of a new approach for the selectionof parameters in

SSA and MSSA. This was achieved by introducing new algorithms which en-

able both automation and optimization of SSA and MSSA forecasting by min-

imizing a loss function. This is a vital contribution to SSA as it opens up the

possibility of using both univariate and multivariate versions for online forecast-

ing applications and also enables users who are not conversant with the theory

underlying SSA to continue exploiting this technique. Thisnew automation of

SSA and MSSA for forecasting contributes to existing literature and extends

previous studies in several ways. Historically, the selection of SSA and MSSA

parameters has been a highly labour intensive approach, seefor example Elsner

and Tsonis (1996); Golyandina et al. (2001); Hassani (2007). However, the ap-

proach presented in this thesis enables users to obtain the best values forL andr

for out-of-sample forecasting without the need to analyse the data, periodogram

or scree plot. In addition, the approach presented here has provided a form of

statistical foundation for the selection ofr by minimising a loss function. Such
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statistical justification was lacking in the earlier approaches which were seen as

highly subjective according to Khan and Poskitt (2013b). Moreover, the pre-

vious attempts at automating SSA focussed on trend and periodicity extraction

(Alexandrov, 2009; Vautard et al., 1992), and denoising with SSA when faced

with big signal to noise ratios (Alonso et al., 2004). This thesis extends this

line of research by presenting a new approach for automatingSSA and MSSA

to obtain the best possible out-of-sample forecast. It should be noted that the

approach presented in this thesis is not optimized for signal extraction, and in-

stead is purely designed with a focus on forecasting. It is expected that this

algorithm will result in an increased application of SSA in future as seen with

models such as ARIMA, ETS and NN which are provided via the forecast pack-

age in R (Hyndman and Athanasopoulos, 2012). The application which follows

after the introduction of automated SSA also has several contributions. Firstly,

it shows that the automated SSA forecasting algorithm is able to outperform the

automated ARIMA, ETS and NN algorithms by (Hyndman and Athanasopou-

los, 2012) with statistically significant outcomes in relation to forecasting U.S.

tourist arrivals. Secondly, the application also marks thefirst instance in which

SSA is successfully applied for tourism demand forecastingand thereby adds to

the extensive literature on forecasting tourist arrivals.Thirdly, the application

rules out the use of ETS and a feed-forward NN model with one hidden layer

for forecasting U.S. tourist arrivals in future and presents SSA as a viable alter-

native. Given the vast range of forecasting techniques available this study helps

researchers to rule out two models whilst the need to compareSSA with several

other models remains open. However, the algorithms presented herewith do not

cover VMSSA. As such, future research should consider extending the proposed

algorithms for VMSSA. In addition, at present these automated algorithms do

not consider change point detection which can enable further improvements in

forecast accuracy. As such, future research should also consider incorporating
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SSA change point detection along with these automated algorithms.

In summary, this research has presented several important contributions to

the field of time series analysis and SSA in particular. Theserange from the

opening up of new research avenues via the introduction of analternative to

the Diebold-Mariano test for comparing between the predictive accuracy of two

forecasts (Chapter 3) and a theoretical framework for exploiting the forecasta-

bility of forecasts (Chapter 4) to improving the user friendliness of a complex

method such as SSA and MSSA (Chapter 5). In general, future research should

consider comparing the proposed SSA and MSSA methods in relation to a va-

riety of other benchmark techniques not included in this current work. These

could include various other benchmark models provided through the forecast

package (e.g. TBATS, ARFIMA) and other time series analysisand forecasting

techniques such as GARCH and HAR.
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Appendix A

R Codes

The following reports as examples, selected components of the R codes devel-

oped for the applications used in this study. The full code isavailable upon

request.

Chapter 3

The Kolmogorov-Smirnov Predi
tive A

ura
y test

# Install and load the "stats" pa
kage in R.

install.pa
kages("stats")

library(stats)

# Input the fore
ast errors from two models. Let Error1 show

errors from the model with the lower error based on some

loss fun
tion.

Error1<-s
an()

Error2<-s
an()

# Convert the raw fore
ast errors into absolute values or

squared values

depending on the loss fun
tion.
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abs1<-abs(Error1)

abs2<-abs(Error2)

sqe1<-(Error1)^2

sqe2<-(Error2)^2

# Perform the KSPA test for distinguishing between

the predi
tive a

ura
y of fore
asts from the two models*.

#Two-sided KSPA test:

ks.test(abs1,abs2)

#One-sided KSPA test:

ks.test(abs1,abs2, alternative = 
("greater"))

Chapter 5

Shown initially is a section of the code used to minimize the loss function in the

SSA algorithms.

Fore
ast<-fun
tion(L,steps,M,S){

N=length(S);Lsize=length(L)

Fore
ast=array(dim=M)

MSE=array(0,dim=
((max(L)-1),Lsize))

for(l in 1:Lsize){

for(r1 in 1:(L[l℄-1)){

for(i in 1:M){

X=S[1:(N-M-steps+i)℄

if((N-M+i)<(N+1)){

Fore
ast[i℄=VSSA.Fore
asting(L[l℄,r1,X,steps)[steps℄

MSE[r1,l℄=MSE[r1,l℄+(Fore
ast[i℄-S[(N-M+i)℄)^2/(M)

}}}}

RMSE=sqrt(MSE)
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dimnames(RMSE)=list(paste("r=",(1:(max(L)-1)),sep=""),

paste("L=",L,sep=""))

round( RMSE,4)

}

Presented next is a section of the code used to minimize the loss function in the

MSSA algorithms.

mg=ms=r1=r2=r3=r4=array(1000,dim=
(length(L),

length(L)))

#k1=M-L1+1;k2=M-L2+1;

N1=nrow(Y)-M-h+1

f1=f2=array(0,dim=
(N1,n
ol(Y)))

for(j in 1:length(L)){

r=seq(1,L[j℄-1,1)

for(i in 1:r[j℄){

for(p in 1:N1){


t=M+p-1

f1[p,℄= HMSSA.R(L[j℄,seq(1,r[i℄,1),h,Y[1:
t,℄)[h,℄

f2[p,℄= HMSSA.V(L[j℄,seq(1,r[i℄,1),h,Y[1:
t,℄)[h,℄

}

r1[i,j℄=rmse(f1[,1℄,Y[(nrow(Y)-N1+1):nrow(Y),1℄)

r2[i,j℄=rmse(f1[,2℄,Y[(nrow(Y)-N1+1):nrow(Y),2℄)

r3[i,j℄=rmse(f2[,1℄,Y[(nrow(Y)-N1+1):nrow(Y),1℄)

r4[i,j℄=rmse(f2[,2℄,Y[(nrow(Y)-N1+1):nrow(Y),2℄)

}

}

rl1=whi
h(r1 == min(r1), arr.ind = TRUE)

rl2=whi
h(r2 == min(r2), arr.ind = TRUE)
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rl3=whi
h(r3 == min(r3), arr.ind = TRUE)

rl4=whi
h(r4 == min(r4), arr.ind = TRUE)

min(r1)

min(r2)

min(r3)

min(r4)
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