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Abstract

Singular Spectrum Analysis (SSA) is a nonparametric timeeseanalysis and
forecasting technique which has witnessed an augment ilcappns in the

recent past. The increased application of SSA is closelgcased with its

superior filtering and signal extraction capabilities whalso differentiates it
from the classical time series methods. In brief, the SSAgse consists of
decomposing a time series for signal extraction and theonstoucting a less
noisy series which is used for forecasting. The aim of tregaech is to develop
theoretical advancements in SSA, supported by empiriddeece to further
promote the value, effectiveness and applicability of g#@hhique in the field
of time series analysis and forecasting. To that end, tisisaieh has four main

contributions.

Initially, given the reliance of this research towards impng forecasting
processes, itis mandatory to compare and distinguish leetthe predictive ac-
curacy of forecasts for statistically significant diffeces. The first contribution
of this research is the introduction of a complement siasibtest for compar-
ing between the predictive accuracy of two forecasts. Thpgsed test is based
on the principles of cumulative distribution functions atdchastic dominance,

and is evaluated via both a simulation study and empiricalesce.

Governments, practitioners, researchers and privatenaigons publish a
variety of forecasts each year. Such forecasts are gepe@ihputed using

multivariate models and are widely used in decision makioggsses given the



considerably high level of anticipated forecast accuratige classical multi-

variate methods consider modelling multiple informati@ntpining to the same
time period or with a time lag into the past. Multivariate @uhar Spectrum
Analysis (MSSA) is a relatively new and alternative teclugidor generating
forecasts from multiple time series. The second contriloudif this research is
the introduction of a novel theoretical development whiebks to exploit the
information contained in published forecasts (which repre data with a time
lag into the future) for generating a new and improved (caempzely more

accurate) forecast by taking advantage of the MSSA teclefsqapability at

modelling time series with different series lengths. Irefrthe proposed mul-
tivariate theoretical development seeks to exploit thedastability of forecasts
by considering not only official and professional forecabist also forecasts
obtained via other time series models.

The productive application of SSA and MSSA depends largelihe selec-
tion of SSA and MSSA parameters, i.e. the Window Lengttand the number
of eigenvalues which are used for decomposition and reconstruction of §exe
ries. Over the years, a variety of mathematically complexe tconsuming and
labour intensive approaches which require detailed knidgéen the theory un-
derlying SSA have been proposed and developed for the melexft SSA and
MSSA parameters. However, the highly labour intensive anmdpiex nature
of such approaches have not only discouraged the applicafithis method
by those not conversant with the underlying theory, but &leded SSA and
MSSA to offline applications. The third and final contributiof this research
proposes new, automated and optimized, SSA and MSSA digwifor the
selection of SSA parameters and thereby enables obtaiptigya SSA and
MSSA forecasts (optimized by minimising a loss functionhisTdevelopment
opens up the possibility of using SSA and MSSA for online ¢asging in the

future.
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Chapter 1

Introduction

1.1 Time Series Analysis and Forecasting

In a world troubled with ever increasing uncertainty follagythe on-set of the
recent financial crisis in 2008 there is a renewed and oppertiemand for
methods which can generate improved and accurate foreGsik predictions
into the future are facilitated via a process known as timeeseanalysis and
forecasting. In brief, all time series analysis and foréngsmethods can be
listed as either parametric or nonparametric techniquasarRetric techniques
have the disadvantage of being restricted by assumptidetsngeto normality
and stationarity, whereas nonparametric techniques adeinfiee and are not
restricted by any such assumptions. In addition, time sariethods can be
further classified as univariate and multivariate. Uniaaimethods consider a
single time series whereas multivariate methods considgtipte time series

for generating a forecast.

Research and development has led to a wide range of clagsazametric)
and novel time series analysis techniques (nonparamethimh include (but

are not limited to) Autoregressive Integrated Moving AgadARIMA), Holt-
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Winters (HW), Exponential Smoothing (ETS) and Neural NeksdNN). Each
technigue has its own benefits and drawbacks, and there isgle snethod
which is identified as universally best at present. This im tmeans that the
forecasting performance of each technique is largely dégr@on both its the-
oretical underpinning and the nature of the data that istinpga the model. As
such, different applications will provide different outnes showing one model
outperforming another and vice-versa. Therefore, rebeascconstantly en-
deavour to develop more efficient time series analysis nsomeich can provide

greater accuracy in comparison to the existing methods.

However, the forecasting models alone are not the only carfoe a broad
field such as time series analysis. It is clear that when wecast any vari-
able, there is always an associated loss or error when thedst is compared
with actual data. Various loss functions have been develtpeuantify these
errors and few which are used in this research are discussteichapters
which follow. Whilst these loss functions enable comparsbetween forecasts
from different models, they are unable to determine thessitzdl significance
of these differences. Accordingly, various statisticatéehave also been devel-
oped over the years to compare between the predictive agcafdorecasts. In
this sense, it is possible to summarize the time series sisaynd forecasting
process as one which begins with the modelling of data ugimg series analy-
sis techniques, followed by the generation of forecastseaaihg with tests for

statistically significant differences between forecasisfcompeting models.

The gist of this thesis concentrates on a popular nonparanighe se-
ries analysis and forecasting technique known as SinguydactBim Analysis
(SSA). The emergence of SSA is closely associated with tivk wioBroom-
head and King (1986a,b) where the authors show that Sinyalae Decom-
position (SVD) can be used as an effective tool for noise ¢gdn. This was

followed by several methodological advancements in SSArataded applica-
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tions through Danilov and Zhigljavsky (1997); Fraedricl®86); Vautard and
Ghil (1989); Vautard et al. (1992). In brief, the SSA techuregeeks to decom-
pose and filter a time series, and then reconstruct a lesgseries which can be
used for forecasting (Hassani, 2007). As such, SSA perftiinee distinct tasks
which can be categorized as decomposition, reconstruatdrforecasting. At
present, SSA is widely adopted for solving complex issugbenfield of time
series analysis not only as a forecasting model (Hassahj 2089, 2013b), but
also as a filtering technique (Hassani et al., 2010a,b). nteasing popular-
ity of SSA is further attributable to its capability of hamdj both linear, and
nonlinear, stationary and non-stationary time series ggais 2007).

A Google Scholar search for applications of SSA shows irsgéaappli-
cation especially in the new millennium and mostly in theerdgcpast, since
2007 in particular. Accordingly, there is a huge scope foihfer improving and
enhancing the SSA technique as a viable and effective toahfdelling and
forecasting in the future. This research study takes adganf this opportunity
and seeks to introduce lucrative theoretical developnfentee SSA technique,

well supported via empirical evidence.

1.1.1 Research Aim and Objectives

This research is governed by a single aim which is supporgeskberal objec-

tives. These objectives not only enable achieving the aith®fesearch, but
also represents the contributions to SSA and the field of senes analysis and
forecasting. The aim of this research is to introduce a cempht statistical test
for comparing between the predictive accuracy of forecastisdevelop theoret-
ical advancements in SSA, supported by empirical evideméerther promote

the value, effectiveness and applicability of SSA in thedfigf time series anal-

ysis and forecasting. To that end, this research has four aigéectives.
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* Introduce a test for comparing the predictive accuracyvofforecasts.

» Develop a new Multivariate SSA (MSSA) based theory for eipig the

forecastability of forecasts.

» Develop a new approach for the selection of SSA and MSSApeie's.

The realization of these objectives will indeed result imgiderable the-
oretical advancements for SSA and also the field of time sem®lysis and
forecasting in general. In addition, emphasis is also placeproviding empiri-
cal evidence to portray the practicality of each of the dbatrons, and some of
the applications themselves are the first instances in WheBSA technique is

exploited for modelling and forecasting in certain indiestr

1.2 Motivation

1.2.1 Why Singular Spectrum Analysis?

Given that the research aims and objectives have been spdyifidentified
above, in this section the objectives are further elabdrnap®n as the motivation
for the selection of SSA, and each of the objectives of theeaech are concisely
explained.

The choice of SSA as the main forecasting tool of interesttisrresearch is
motivated by different aspects. Prior to explaining thésgjmportant to briefly
outline the components of a time series. In general, a timesseomprises of
the signal and noise. As an example, shown in Figure 1.1 ima seriesy

which is what we are faced with in reality. Howev¥rconsists of signal and
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noise, and as indicated, this signal could be further decsexgb into the trend
component and sine component in this particular example.

First and foremost, there is a difference in the modellingcpdure em-
ployed by SSA and classical time series techniques. Theickddime series
methods consider modelling and forecastiig However, the SSA technique
will filter Y such that the trend, signal and noise could be identifiedratgg
Thereafter, SSA reconstructs a new time series which quorets to a less
noisy approximation of the signal, for generating foresasAs such, by us-
ing a method such as SSA one is able to obtain a richer unddistpof the
dynamics underlying a given time series, forecast timeessertomponents sep-
arately (for example, forecast the trend or seasonal vamialone), and obtain
a more accurate overall forecast as the model considersrfgteoise which is

effectively the random, unexplained components in anyrgtirae series.

-1.0 0.0 1.0
L1

0 2000 4000 6000 8000 10000
Signal = Trend + Sine

00 15 3.0
Ll

0 2000 4000 6000 8000 10000
Y = Signal + Noise

-1 1 3 5
Ll

T T T T T T
0 2000 4000 6000 8000 10000

Fig. 1.1 Sine, trend, signal and noise componeni$ (Banei and Hassani, 2015).

Secondly, SSA is a nonparametric technique which does hobrethe as-
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sumptions of normality for the residuals, stationarity loé data, and linearity
for the model (Hassani et al., 2013a) which are highly unikte hold in real

world applications. As such, by adopting SSA one is able taehthe data
sans data transformations which in turn enables a true appaton of the real

situation without the loss of any information (Hassani et2013c).

Thirdly, unnatural phenomenal events are known to creatieaiin time
series data and such outliers in turn result in making a tenies non-stationary
(Hassani et al., 2014; Tsay, 1998). Given the highly vaatitonomic condi-
tions experienced in the modern world, it is almost certhat most (economic)
time series are affected by the presence of such outlieexefdre, developing a
method such as SSA which is less sensitive to recessionsdhiest al., 2013a;

Silva and Hassani, 2015) can be of added use to future gesresat

1.2.2 Why These Objectives?

In general, this research study is primarily aimed at imprg\a time series
analysis and forecasting technique. As such, comparingreictive accuracy
of forecasts generated via different models is not only getatistical practice,
but also a mandatory component in ensuring the reliability @alidity of the

results. At present there exists various statistical tekish are used for com-
paring between the predictive accuracy of forecasts. Seexample, Diebold

and Mariano (1995); Hansen (2005); Hansen et al. (2011)efedances therein.
As the first contribution of this research, a complemenisteal test which is

founded upon the principles of cumulative distributiondtions and stochastic
dominance is introduced. The reliability and applicaibf the proposed test
is evaluated via a simulation study and a correspondingagijun to real data.
Following the successful introduction of a complementistiatl test the thesis

continues to focus on enhancing SSA and MSSA techniques. nibteworthy
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that for consistency, all applications pertaining to acimg the objectives of
this thesis considers tourism data as a common front. Thisaddition to the
consideration given to data from various other industmesrder to portray the
applicability and relevance of the proposed approacheemeial. Moreover,
selected components of the R codes used in this work havefdresanted via
the appendix.

Forecasting is now universal. Practitioners, researcipecsessional fore-
casters and government organizations in particular pulitisecasts monthly,
quarterly and annually for a variety of variables. Such dasts are generated
via both new and complex univariate and multivariate moadigh are com-
paratively more accurate than most classical time serighads. The second
objective of this research aims to answer an interestingtopre that is, once a
forecast is generated, is there a possibility of exploitiig forecast for obtain-
ing a more accurate forecast?

The SSA technique is blessed with both univariate (SSA) aoliivariate
(MSSA) capabilities. In general, the classical multivegienethods (for exam-
ple, Vector Autoregression) consider modelling inforroatpertaining to the
same time period or with a time lag into the past. In particutaost of the
existing multivariate methods can only model and forecastgumultiple time
series with the same length. However, MSSA has the abilityodlelling and
forecasting using time series with different series leadgtiassani and Mah-
moudvand, 2013) and this prime advantage in MSSA is used daafisolution
to achieve the first objective of this research.

Accordingly, the second contribution of this study is a ttetcal develop-
ment which seeks to exploit the forecastability of foresasind thereby pro-
mote modelling and forecasting using data with a time lag the future. The
proposed MSSA theoretical development is evaluated faltkty at improv-

ing not only existing official and professional forecastst &lso forecasts from
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other time series models. It is believed that the results fitus research will be
of utmost importance to forecasters in general as an inivevahd promising
research avenue is created in the area of multivariatedstieg.

The third objective of this research is concerned with tHecsi®n of SSA
and MSSA parameters. This is important because the sudc8S&\and MSSA
techniques depends largely on the accurate selectionpdigsneters which are
referred to as the Window Length)( and the number of eigenvalue3 (Sanei
and Hassani, 2015). For example, the success of the dectimpstage of SSA
and MSSA depends dnwhilst the success of the reconstruction and forecasting
stages depend on the correct choice.dver the years, a variety of mathemat-
ically complex, time consuming and labour intensive apphea which require
detailed knowledge on the theory underlying SSA have beepgsed and de-
veloped for the selection af andr.

Whilst these existing approaches are extremely usefuljpmoring the accu-
racy of SSA and MSSA functions, they do have two major disathges which
act as a restriction for the application and use of SSA and M$38stly, the
highly labour intensive nature of the historical approacfo selecting. and
r are not only time consuming, but also restricts SSA and MS5éfftine ap-
plications. Secondly, the complex and advanced statidtrcavledge required
to understand the process underlying the selectidnaridr in most instances
act as a hindrance for the application and use of SSA and MSSAdse not
conversant with the advanced statistical theory undagliiese techniques.

However, it is important to remember that problems relateddmplexi-
ties surrounding the selection of model parameters in tienes analysis and
forecasting techniques are universal. As a solution, rekees endeavour to
develop automated time series analysis and forecastingoai®t and a sound
example is the forecast packageRr{Hyndman and Khandakar, 2008). Moti-
vated by such efforts, and the interest in promoting theiegipbn of SSA, pro-
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posed as the third and final contribution of this researclov&h automated and
optimized, SSA and MSSA algorithms for the selectioh@ndr for obtaining
optimal SSA and MSSA forecasts (optimized by minimising ssléunction).
This algorithm for the automation of the SSA and MSSA proessspens up
the possibility of using SSA and MSSA for online forecasting

The remainder of this thesis is organized as follows. Chaptpresents
SSA and MSSA methodology. Chapter 3 introduces the testdimparing the
predictive accuracy of forecasts. Chapter 4 is devoted éontéw theoretical
development for exploiting the forecastability of foretsasnd related empirical
applications. Chapter 5 presents the automated and optini3A and MSSA
algorithms along with empirical evidence and this thesdsan Chapter 7 along

with conclusions, limitations and pathways for future eesé.






Chapter 2

Methodology

The aim of this Chapter is to introduce the methodology @atévo this study.
The main focus is on the theory underlying SSA and MSSA. Initaag the
other forecasting techniques and metrics considered fmpeoative purposes

are also briefly explained.

2.1 Singular Spectrum Analysis

The Singular Spectrum Analysis (SSA) technique consist&ofstages known
as decomposition and reconstruction, each with two comgheany steps (Has-
sani, 2007) which are explained in detail below. In brief AS&composes
a time series and thereby enables differentiation betwesrdt harmonic and
noise components, and then reconstructs a less noisy tines sising the es-
timated trend and harmonic components, and this newly stnarted series is
then used to compute forecasts (Golyandina et al., 2001)a Asnparamet-
ric method, SSA can be used without making any assumptioriaipig to

stationarity and normality of the data (Sanei and Hass&@1i52 This in turn

means that no data transformations are required and it snd@lyeous as the

use of parametric techniques would require data transfoonsin most cases



12 Methodology

to ensure the data conforms with the parametric restristiand such transfor-
mations result in a loss of information (Hassani et al., 2013

As a time series method, the SSA technique has both unigarat multi-
variate capabilities. Applications of univariate SSA farding solutions to real
world problems are diverse, and some recent examples am@sGétal. (2015);
Hassani et al. (2010a, 2013a, 2009); Hassani and ThomaBd8)Rodriguez-
Aragoén and Zhigljavsky (2010); Sanei et al. (2011); Silvd &tassani (2015).
On the other hand, applications of MSSA are comparativedysspas MSSA is
considered to be relatively new in relation to its univagiabunterpart, see for
example Groth and Ghil (2011); Hassani et al. (2013b); Hassad Mahmoud-
vand (2013); Kapl and Muller (2010); Oropeza and Sacchi 120Ratterson
et al. (2011).

The performance of the SSA technique depends upon theisaletits two
parameters known aythe window length., andii) the number of eigenvalues
r. The choice of. andr is discussed in detail in the next chapter. In brief, Sanei
and Hassani (2015) notes that the choicé ofn vary based on the data one is
analysing, the aim of the analysis and the forecasting bonhilst the incor-
rect selection of can result in some parts of the signal(s) being lost, or noise
included in the reconstructed series which is effectivedmless accurate. In
terms of its forecasting capabilities, the SSA techniqueth@ univariate fore-
casting approaches called recurrent and vector algorif@on$/andina et al.,
2001). In this research, both forecasting approaches fadate and multi-
variate SSA are exploited and improved upon.

The entire SSA process can be summarized with the aid of tivechiart in
Figure 2.1. According to Sanei and Hassani (2015), inyt\akk are faced with a
noisy time serie¥y and the single SSA choice applicable to the decomposition
stagel as inputs. Following a process termed as embedding, wendth&aHan-

kel matrix X which is then forwarded as an input into the SVD step. The SVD



2.2 Univariate SSA 13

step results in singular values which are analyzed to ifjeatid differentiate

between signal and noise components. At the reconstrustame, the singular
values are grouped along with the input of the second and $i8&l parameter
r which results in the grouping matric#s, ..., X as either signal or noise. Fi-
nally, diagonal averaging is used to to transform the meagrimontaining signal
components into a Hankel matrix so that it can subsequeatbpbverted into a

time series which can then be used to forecast future dataspoi

Input: Noisy Series
Yy =g d) =Sy +ey

Qutput: Hankel
Input: L Matrix, X
Decomposition Embedding Singular Value
Decomposition
Output: Singular Values, X=X, + ...+ X
Qutput:
X, +X o+ X,
Reconstruction Grouping Diagonal
Averaging
Output: Qutput: Filtered Series,
Signal: ( A, ..., 4,) Yo = @aooevs¥y) = 8

Noise: [/1,.+1, ...,).L:l

Fig. 2.1 A summary of the basic SSA process (Sanei and HasX5).

The theory underlying univariate SSA is explained belowdidiofving Has-
sani (2007) and Sanei and Hassani (2015).

2.2 Univariate SSA

Prior to explaining the theory underlying SSA, a simple axgition of the gen-
eral idea underlying SSA is introduced by following Hass@@07) and Sanei
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and Hassani (2015). Let us consider a noisy time séfiesith any arbitrary

series lengtiN, such that:

YN:(Y17-~-7YN)- (21)

Then, let us assume thgy comprises of signal and noise. Thereforg,can

also be represented as:

Y1 S €1
2 S 57)

we=sSutEn=| 2= 2+ ] %], (2.2)
YN SN eN

whereSy represents the signal akg, represents noise.

Recall Figure 1.1 where the signal is formed by combining sind an ex-
ponential trend. The classical time series methods will ehatid forecasyy
which suggests that such methods consider both the sigdai@se in a given
series. However, SSA will begin withy, and seek to separate the signal from
the noise. Thereatfter, it is the filtered, approximatedai¢imat is used to fore-
cast future data points, leaving aside the approximiigdNote that the term

‘approximated’ is used as in practice one is unable to ektineaccomplete signal.

2.2.1 Stage 1: Decomposition

At the decomposition stage, the Window Lengtfs the only parameter which
is relevant as SSA organizes the one dimensional time Séyigdo a multidi-

mensional series. Note thiatis an integer such that L < N/1.
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Step 1. Embedding

In the most basic terms, embedding is a mapping operatianréresfers a one-
dimensional time seriegy into a multidimensional serie%,, ..., Xk with vec-

tors

X = Vi, Yiss Yisze - YirL-1] (2.3)

fori=1,2,...,K andT denotes transposition. As mentioned in Sanei and Has-
sani (2015), there is no single rule for the choicd.db cover all applications.
Hassani (2007) and Golyandina et al. (2001) notes that iergéh should be
proportional to the periodicity of the data, large enougloltain sufficiently
separated components but not greater tN@8. The output from the embed-
ding step is the trajectory matriX which is a Hankel matrix, where all the

elements along the diagonal j = constare constant (Hassani, 2007):

yi Y2 Y3 < YK
_(_j)L,K Y2 ?/3 ?’4 ?/K+1 (2.4)

YL Yi+1 V2 oo YT
Step 2: Singular Value Decomposition (SVD)

Step two of the decomposition stage is aimed at obtainingitigular values of
the trajectory matrix. These singular values or eigenvalues are able to capture
all information in the time serie¥y. In order to obtain the SVD, we need to

calculate the matriXX T which provides us with positive eigenvalues .. ., AL
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in decreasing order of magnitude. Then, the SVIXafan be written as:

X =Xq1+...+ XL, (2.5)

whereX; are rank-one bi-orthogonal elementary matricgs= \/)TiUiViT, and

V, = XTUi/\/)Ti. Here,U; andV; are more commonly known as principal com-
ponents and represents the left and right eigenvectorseatréifectory matrix
X.

The/A; are also known as the singular valueXakhilst {v/A1,vA,,...,VAL}
are called the spectrum. The name “Singular Spectrum Aisdlys derived
from this property and represents the motive underlying technique which
concentrates on obtaining, and analysing this spectruningtiar values for
any given time series in order to identify and differentibetween the signal

and noise.

2.2.2 Stage 2: Reconstruction

The reconstruction stage in SSA is concerned with analyiagspectrum of
singular values in order to identify and differentiate beéw the signal and
noise, and thereby enable the reconstruction of a less tiaigyseries which
can be used to forecast future data points. The only paramste at this stage

is also the second and final SSA parameter, the number ofvailyes .

Step 1: Grouping

Grouping is the first step in the reconstruction stage. lefpthe grouping

step corresponds to splitting the elementary matiGeasto several groups and
summing the matrices within each group. As noted in Silvatdassani (2015),

if we denotel = {iy,...,ip} as a group of indices, ..., ip, then the matrixX|

corresponding to the groupis defined asX; = Xj, +--- + Xj,. The spilt of
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the set of indiceq1,...,L} into disjoint subsets,, ...,y corresponds to the

representatioX = X, +-- -+ Xj,,. The procedure of choosing the skts . ., I

is called the grouping. For a given grouypthe contribution of the component
X\ is measured by the share of the corresponding eigenvazqgs);i/zszl)\i.

If the original series contains signal and noise, one thetsiders two groups

ofindices,ly = {1,...,r} andl, = {r+1,...,L} and associate the grolip= I,

with the signal component and the grogwith noise.

Note that at the grouping step we have several options fdyzng and
differentiating between the signal and noise in a given seréges. These include
the option of analyzing the periodogram, scatterplot diitrigjgenvectors or the
eigenvalue functions graph (see, Hassani (2007) or SaddHassani (2015)).
Once the selection of eigenvalues corresponding to signbhaise is made, itis
possible to evaluate the effectiveness of the separatiqreyose via a statistic
known as the weighted correlation-Correlation). As noted in Golyandina et al.
(2001), then-correlation statistic shows the dependence between megeries

and can be calculated as:

o (),

12 — 1 2
RARA MR

o = [0, (50 ), -

whereY,\(ll) andY,\(lz) are two time series

z’g‘zlwkyl((i)yl((j) (i,j =1,2), wye=min{k,L,N — k} (here, assumke < N/2).

Accordingly, if thew-correlation between two reconstructed components are
close to 0, this confirms that the corresponding time sereg-@rthogonal and
that the two components are well separable (Hassani e08l9)2In contrast, if

the w-correlation between two reconstructed components age léhis shows
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that the components should be considered as one group.

Step 2: Diagonal averaging

Diagonal averaging is a process which enables one to tnansdianatrix into

a Hankel matrix which can subsequently be converted to agenes, and this
is the purpose of the final step in SSA. Sanei and Hassani {204Borates the
process concisely as follows. Suppagestands for an element of a matix
Then, thek-th term of the resulting series is obtained by averagingver alli, |
such that + j = k+ 1. Following diagonal averaging of all matrix components
of X|; in the expansion oK above, we end up with another expansioh:=

>~<I1 +...+ )~(|m, where>~(|j is the diagonalized version of the matb'(xj.

Note that the SVD of the trajectory matrkcan be represented as:
d
X = Z\/)TiUiViT =X1+...,Xg= in +;Xi,
i= e 1€l

whered = max{i;i=1,...,L|A; >0} (rankX =d),V, = XTU; /A (i=1,...,d),

X = \/)TiUiViT andl C {1,...,d}. The noise reduced series is reconstructed
by X = 5 Xi by selecting a set of indicds However, X, does not have

a Hankel structure and is not the trajectory matrix of someetseries. By
performing diagonal averaging over the diagonalsj = constwhich corre-
sponds to averaging the matrix elements over the ‘antighalgoi + j = k+ 1,

the aforementioned issue is overcome: the chiied. givesy; =y1 1, fork=2,
y2=(Y1,2+Y¥21)/2,y3= (Y1,3+Y22+Y31)/3 and so on. Applying diagonal av-
eraging to the matriX; provides a reconstructed sigregl and yields the SSA
decomposition of the original serigsas followsy; = s+ & (t =1,2,...,N),

whereg; is the residual series following signal extraction.



2.2 Univariate SSA 19

2.2.3 Forecasting with SSA

Following the introduction of the basic SSA process whical#es filtering and
signal extraction in time series, here the two differenearsting approaches
in SSA are presented. These are known as Recurrent SSA ($3AeR/ector
SSA (SSA-V). As a forecasting technique, SSA gives us theoutf forecast-
ing either the individual components of the series (whicly mgate to season-
ality or trend for example) or the entire reconstructedeseYj, (Hassani and
Thomakos, 2010).

According to Sanei and Hassani (2015) the SSA technique eapplied
in forecasting any time series that approximately satigfieslinear recurrent

formula (LRF):
L-1

yj = Z aiyj-i, L<j<N (2.6)

&
where the coefficientay,. .., aq are achieved based k.
The SSA-R forecasting algorithm can be presented as in @Gdiga et al.
(2001) and Sanei and Hassani (2015).

1. We begin with a time serieg; = (y1,...,yn) of lengthN.
2. Setl.

3. Consider the linear spagg c R" of dimensiorr < L. Here, assume that
e ¢ £, whereg = (0,0,...,1) ¢ R-.

4. Construct the trajectory matr = [Xy, ..., Xk] of Yn.
5. Construct the vectotd; (i =1,...,r) from the SVD ofX.

6. Compute matrixX = [)A(l Lo )?K] = Zir:lUiUiTX- The vectorX; is the

orthogonal projection oX; onto the space,.

7. Construct the matriX = /X = [X1 : ... : Xk].
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8. Setv? = n12+ R rl,2 whererTt is the last component of the vector
(i=1,...,r). Moreover, assume that ¢ £,. This implies thatC, is not
a vertical space. Thereforé < 1.
9. Determine vectoA = (0y,...,00_1):
1 r
A= U’
lﬂﬁ;m"
whereU "V € RY1 is the vector consisting of the first— 1 components of
the vectolU € RL.
10. Define the time serié§.n = (y1,...,Yn+h) by the formula

Yi fori=1,...,N
= L1 : (2.7)
Sioiajyioj fori=N+1,...,N+h
wherey; (i=1,...,N) are the reconstructed series. Thaq,1,...,YN+th

are theh-step ahead recurrent forecasts.

An alternative approach to forecasting with SSA is the SSfoiécasting

algorithm. The main difference between the two approachdisat in SSA-R

we consider only the last component of the reconstructetbrwéaor forecast-

ing whereas with SSA-V the entire eigenvector is considésedomputing the

forecast. The SSA-V approach can be presented as followisinadoing so

Sanei and Hassani (2015) is followed. Consider the follgwiratrix:

N=VvY(V")T +(1-V?)AAT, (2.8)

whereVY = [U/,...,U,”]. Now consider the linear operator

oM : g — R, (2.9)
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where

nuv
oMU = . (2.10)
ATUY
Define vectoiz; as follows:

X fori=1,...,K
Zi = (2.11)
oMz, fori=K+1,....K+h+L—-1

where,X;’s are the reconstructed columns of the trajectory mattieragroup-

ing and filtering the noise components. Finally, by consingcmatrix Z =
[Z1,...,Z¢ +neL 1] @and performing diagonal averaging we can obtain a new se-
resyi,...,ynthel—1, Whereyn.s,...,Ynonh forms theh-step ahead vector fore-

casts.

2.3 Multivariate SSA

Where the SSA technique is applied jointly to several setiés referred to

as MSSA (Hassani and Mahmoudvand, 2013). According to SamekiHas-

sani (2015), the main difference between the recurrent aetbv approaches
in MSSA is a result of organizing the single trajectory maiXi of each series
into the block trajectory matrix. As such the trajectory ntas can be orga-
nized either in vertical or horizontal form. This leads tatdifferent forms of

MSSA which are referred to as VMSSA where the vertical fornused and

HMSSA where the horizontal form is adopted. Accordinglgréhare four dif-

ferent MSSA forecasting algorithms as shown below (HasasadiMahmoud-

vand, 2013).
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( ( Recurrentapproach
HMSSA
\ Vectorapproach
MSSA forecasting approach
( Recurrentapproach
VMSSA
\ \ Vectorapproach

In what follows, the theory underlying VMSSA and HMSSA aregented
by following the representations in Hassani and Mahmoudy2613) and Sanei

and Hassani (2015).

2.3.1 \Vertical MSSA (VMSSA)

ConsideM time series with different series lengtky Y,\(l:) = ( g), . ..,yf\ih)) (i=
1,...,M). Note that the univariate form can be acquired by setting 1 for all

multivariate algorithms considered in this chapter.

Stage 1: Decomposition
Step 1: Embedding.

Embedding, as previously mentioned is a mapping that teasisfone-dimensional
time seriesY,\(,:) = (ygi),..., l(\ll.)) into a multidimensional matri*xl(i),...,x}g)]
with vectorsxj(i) = (ygi),...,ygi}rLiH)T e RY, whereL; (2<Lj <N, —1)is the
window length for each series with length andK; = N, — Lj + 1. The out-
put from the embedding step is the trajectory matrix (wh&ch Hankel matrix)
X)) = [Xl(i),...,X}g)] = (an);’rl,(i:l- Therefore applying the above procedure

for each series separately providdddifferentL; x K; trajectory matrices (V)
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(i=1,...,M). In order to form a block Hankel matrix in a vertical form,ist
required to havé&k; = ..., Ky = K. Note that VMSSA enables us to have vari-
ous window length.; and different series lengti, but similarK; for all series.

The result of this step is the following block Hankel tragagt matrix

N
XV = ’
X (M)
whereXy, the output of the first step is a block Hankel trajectory imdormed

in vertical form.

Step 2: Singular Value Decomposition (SVD)

This step performs the SVD &fy. If we denotedy,, ..., Ay, as the eigenval-
ues ofXy Xy, arranged in decreasing ordex;, > .. A, = 0) andUy,, ..., Uy,
the corresponding eigenvectors, wheggm= M, Lj, then the structure of the

matrix Xy X is as follows:

[ DxDT  x@W)x(@)T XDXMT ]
XOXOT  x@x@T ... x@xMT

XuXy = | ~ _ o : (2.12)
KMy (DT s (M)x (2T X (M) (M)T

Note that the matrixX ()X T which is used in univariate SSA, for the series
Y,\(l:), appears along the main diagonal and the products of two élan&trices
XOX DT (i = j), which are related to the seriafé:) andY,\(,f), appears in the
off-diagonal. The SVD oKy can be written aXy = Xy, +--- + Xy, where
Xv = VAUW; T andW, = XJUv /Ay, (Xy, = 0 if Ay, = 0).
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Stage 2: Reconstruction
Step 1: Grouping

The grouping step, as with univariate SSA, correspondslitbisg the matrices
Xvps -5 X, INto several disjoint groups and summing the matrices withi
each group. The split of the set of indic€s,. .., Lsym} into disjoint subsets
l1,...,Im corresponds to the representatdop= X, +-- -+ X|,,. The procedure
of choosing the setl, ..., Iy is termed grouping. Assuming that we have only
signal and noise components, we use two groups of indiges{1,...,r} and

I, ={r+1,...,Lsum} such that the group= I is associated with signal com-

ponent and the group with noise.

Step 2: Diagonal averaging or Hankelization.

Diagonal averaging is used to transform the reconstructaﬁcbni?(\/i to the form
of a Hankel matrix, which can be subsequently converted tma $eries. Let
X () be the approximation of 1) obtained following diagonal averaging. s,
stands for an element of a matd&?, then thej-th term of the reconstructed
series\?,\(l:) = ()7(1”, ... ,37?), . ,37(,\2)) is achieved by arithmetic averagils“lﬁ)n over

all (mn) such tham+n—1=j.

2.3.2 Horizontal MSSA (HMSSA)

The decomposition and reconstruction stages of the HMS§dévrithm are sim-
ilar to those provided above for VMSSA except for the struetof the block
Hankel matrix. Assume that we halkdifferentL; x K; trajectory matricexX (V)
(i=1,...,M). To construct a block Hankel matrix in the horizontal forne w
need to havé, =L, = ... = Ly = L. This means that we have different values

of K; and series length;, but similarL;. The result of this step is as follows:
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Hence, the structure of the matify XL is such that:

XX = XOx®T 4o x My ()T (2.13)

The structure of the matriXHXL implies that in HMSSA, we do not have
any cross-product between Hankel matriéé8 and X!). Moreover, in this
format, the sum oX X" provides the block Hankel matrix. Note also that
performing the SVD oKy in HMSSA yieldsL eigenvalues as with SSA, whilst

we haveLgym= TM, L eigenvalues in VMSSA.,

2.3.3 Forecasting with MSSA

VMSSA Recurrent (VMSSA-R) Forecasting Algorithm

Let us haveM seriesY,\(,:) = ( g),...,yﬂi)

Li, 1< Li <N,i=1...,M. Then, theh-step ahead VMSSA-R forecasting

) and corresponding window length

algorithm is as follows (Hassani and Mahmoudvand, 2013e5amd Hassani,
2015).

1. For afixed value dk, construct the trajectory matri® =[xV ... x] =

(an)hi],’rl](:l for each single seriéﬁfl:) (i=1,...,M) separately.

2. Construct the block trajectory matix, as follows:
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3. LetUy, = (Uj(l),...,Uj('v'))T be thej" eigenvector of theXy X{,, where

Uj(i) with lengthL; corresponds to the serike’,é,:) i=1,...,M).

4. ConsideXy = [X; :...: Xk] = ¥]_, Uy Uy Xv as the reconstructed matrix

achieved fronr eigentriples:

5. Consider matrixX® = ZX (i = 1,...,M) as the result of the Han-
kelization procedure of the matrix() obtained from the previous step,

where# is a Hankel operator.

6. Assumeuj(i)v denotes the vector of the firk{ — 1 components of the

vectorUj(i) and nj(i) is the last component of the vectdfi) (i=1,...,M).

7. Select the number af eigentriples for the reconstruction stage that can

also be used for forecasting purposes.

8. Define matrixU"™ = (UM, ... U"M) whereU M is as follows:

9. Define matriXW as follows:
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_Tél) rél) e Y
TéZ) TéZ) e 2

M M M
i ré ) ré U
10. Ifthe matrix(l MxM —WWT)f1 exists and < Lgym— M, then theh-step

ahead VMSSA forecasts exist and is achieved by the follofongula:

(1) m) o |
[yjl,...,ij], li=1...,Ni
(2.14)

(IMXM_WWT)_:LWUVMTZh? ji:Ni+l7"'7Ni+h7
T . . .
where,Zp, = [Zﬁl),...,ZéM)] andz” = [A,(\',i)_LﬁhH,...,yg\"i)Jrh_l (i=
1,...,M). It should be noted that equation (4.10) indicates thahtktep
ahead forecasts of the refined seﬁ’éf% are obtained by a multi dimen-
sional linear recurrent formula (LRF). For the univarisase, there is only

the one dimensional LRF.

HMSSA Recurrent (HMSSA-R) Forecasting Algorithm

1. Forafixed value df, construct the trajectory matri® =[x\ ... x{] =

(an)an’ﬁi:l for each single seriéﬁﬁ:) (i=1,...,M) separately.

2. Construct the block trajectory matriky as follows:

3. Let vectolUy; = (U]_j,...,ULj)T, with lengthL, be thejt" eigenvector of

Xy X[
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4, ConsideDA(H = Zir:lUHiUJiXH as the reconstructed matrix obtained using

r eigentriples:

. Consider matriX = X" (i = 1,...,M) as the result of the Hanke-

lization procedure of the matriX (") obtained from the previous step.

(o2}

: LetU,_V|j denotes the vector of the fist- 1 coordinates of the eigenvectors

Un;, and TH; indicates the last coordinate of the eigenvectdm§ (j =

1,....r).

\‘

.
. Definev? = jzlnﬁi'

. Denote the linear coefficients vecigras follows:

o

1 r
X=—-=Y myjUy,. (2.15)
1-v? jZl ’

. If u? < 1, then theh-step ahead HMSSA forecasts exist and can be calcu-

O

lated by the formula:

|:y§§||_-)7.,y§m):|, ji:17"‘7Ni7
NE (V) L
[yjl,...,y,-M] = (2.16)
ji:Ni—l—l,...,Ni—l—h,

A7,
T . . .
where,Zy, = [Zr(]l),...,zr(]M)] andz) = yﬂ,i)fwhﬂ,...,yg}mfl (i =

1,...,M).
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Note that equation (5.8) indicates that thatep ahead forecasts of each
series are achieved by the same LRF generated considersgyiak in a mul-
tivariate system. In what follows, the MSSA Vector fore@agtalgorithms are
explained by following Hassani and Mahmoudvand (2013)atht&ors who in-

troduced these two algorithms.

HMSSA Vector (HMSSA-V) Forecasting Algorithm

The procedure for HMSSA-V is very similar to its univariatersion, SSA-
V and HMSSA-R. We begin by following items (1)-(7) of HMSSA-Rhen,
consider the following matrix

N=U"U"T+(1-V)RR, (2.17)

whereUY = [U/’, ...,U,”]. Now consider the linear operator

2V g R (2.18)
where
ny,
VY = >l veg, (2.19)
RTY,

andY, is vector of lasL. — 1 elements oY.

1. Define vectozj(i) (i=1,...,M) as follows:

XM forj=1,....k

| (2.20)
2WzV | forj=k+1,... k+htL-1
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Where,)zj(i)’s are the reconstructed columns of trajectory matrix ofithe

series after grouping and leaving noise components.

2. Now, by constructing matrix(!) = [Zf), ces Zlglhﬂ_fl] and performing di-
agonal averaging we obtain a new seyi%)s S yﬂiLMH, whereyﬂ3+1, ...,yﬂ,i)m

provides théh-step ahead of HMSSA-V forecast.

VMSSA Vector (VMSSA-V) Forecasting Algorithm

Begin by considering items (1)-(10) of VMSSA-R. Consides thatrix:
MN=U"0""+2 (Inm —WWT) 27, (2.21)

where,Z = UYWT (Imxm —WWT)_l. The following algorithm is proposed
for calculating the VMSSA-V forecasts (see, Hassani andriviaidvand (2013)

for theorem and proof).

1. Define vectorg; as follows:

Xi fori=1,...,k
Zi = (2.22)
PVzZ_4 fori=k+1,...,K+h+Lmax—1,

where,Lmax=max{Ly,...,Lm}.

2. Constructing the matriX = [Z; : ... : Zk 1 h+L 1) @nd making its hanke-

lization. Using this calculation we obtaj/fj)j. .. ,9§\P+h+LmaX (i=1,...,M).

3. The numberyﬂ?ﬂ, . ,yﬁ‘,}m (i=1,...,M)formthehstep ahead VMSSA-

V forecasts.

Given that there are two different MSSA approaches it isipent to note

their similarities and differences which can be useful whkaosing between
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them. Hassani and Mahmoudvand (2013)considers variogp@eaives such
as series length, the value of the Window Lendt}),(the number of nonzero
singular values obtained from the block trajectory matrxl & RF. Table 2.1
presents this summary. As evident from this table there@reegestrictions on
selecting values df andK depending on the MSSA approach used. However,
to this date there is no definitive study that notes which M@Bproach is best.

In terms of selecting between the Recurrent or Vector fat@og approaches,
the Vector forecasting algorithm is known to be more roblightthe Recurrent
forecasting algorithm if there are outliers in the seriesdp@nalysed (Hassani

etal., 2014).

Table 2.1 Similarities and dissimilarities between the \V@ASand HMSSA algorithms.

Method | Series Length L; Ki Number ofA; LRF
VMSSA Different Different  Equal > Li Different
HMSSA Different Equal Different L Equal

2.4 Benchmark Forecasting Models

As explained in Chapter 1, automated forecasting modelsesmeming increas-
ingly popular in the modern age. Given that this thesis seeéatomate and op-
timize the SSA and MSSA techniques, selected as benchmatklmfor com-
parison purposes are the automated forecasting algoritbimsRIMA, Holt-
Winters, ETS and Neural Networks as provided via the fortgzaskage ik . In
addition, the choice of these benchmark models have also inlaenced by
previous applications in literature. However, it is im@ort to note that the ap-
plications which follow do not intend on presenting the newitoposed SSA
and MSSA approaches as universally best at this time. Insteririhe fore-

casting strategy, unless stated otherwise the applicatidnch follow exploit
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a recursive forecasting strategy. Details on the selea@dhmark models are
concisely presented below and in doing so Ghodsi et al. (R31®mainly fol-

lowed.

2.4.1 Autoregressive Integrated Moving Average (ARIMA)

ARIMA is recognized as one of the most popular benchmarkcfsng tech-
niques. Used in this researchastoarima which is an optimized version of
the ARIMA model and provided via the forecast package iA detailed de-
scription of the algorithm can be found in Hyndman and Kh&ad#2008). In
brief, the number of differenceskis determined using either a KPSS test, Aug-
mented Dickey Fuller test or the Phillips-Perron test. €aéer, the algorithm
minimises the Akaike Information Criterion (AIC) to detema the values for
the order of autoregressive termsand the order of the moving average process
g- The optimal model is chosen to be the model which represbatsmallest
AIC. The decision on the inclusion or exclusion of the constais dependent
on the value ofl.

According to Hyndman and Athanasopoulos (2012) a non-s@agdRIMA

model may be written as:

(1-@B—...¢B")(1-B)dy=c+(1+@B+...+@Bha,  (2.23)

or

(1-@B—...BP)(1-B)d(yy —utd/d!) = (1+ @B +... + @BNa, (2.24)

wherey is the mean of1—B)9(y;, ¢ = p(1— @ — ... — @) andB is the back-



2.4 Benchmark Forecasting Models 33

shift operator. InR,the inclusion of a constant in a non-stationary ARIMA
model is equivalent to inducing a polynomial trend of orden the forecast
function and wherd=0, u is the mean of;. Likewise, Hyndman and Khan-

dakar (2008) presents the seasonal ARIMA model as:

®(BM@(B)(1-BMP(1-B)%; = c+O(BMO(B)s, (2.25)

where®(z) and©(z) are the polynomials of ordei® andQ, andg is white
noise. Note that it # 0, there is an implied polynomial of orddr+ D in the
forecast function. In order to determine the valuegp@ndq the AIC of the

following form is minimised:

AIC=—-2log(l)+2(p+q+P+Q+k), (2.26)

wherek = 1 if ¢ # 0 and 0 otherwise, andrepresents the maximum likelihood

of the fitted model.

2.4.2 Holt-Winters (HW)

The Holt-Winters models is a popular time series analysisfarecasting tech-
nique which continues to be used by Central Banks aroundltieg It was
developed through the work by Holt in 1957 as published intK2004) and
Winters (1960). The& software allows for calculating forecasts from the HW
model via the stats package.

The HW forecasting equations are presented below, and imgdsn Holt
(2004) and Winters (1960) are followed. The additive HW prgdn function

(for a time series with period length) is

Yich = ac+hxby+Se_p 14 (h-1)modps (2.27)
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wherea;, by ands are given by

a=0M-—S-p)+(1-0a)(@a-1+b-1), (2.28)
bt =B(a —a—1)+(a—B)b_1, (2.29)
s=yM—a)+(1-y)sp. (2.30)

The multiplicative HW prediction function (for a time sesivith period length

p) is

Yirn = (8 +hxby) * St_p 114 (h-1)modg» (2.31)

wherea, by ands; are given by

a=0a/s—p)+(1-0)(a 1+b1), (2.32)
bt = B(a —a-—1)+ (a— B)br_1, (2.33)
s=yM"/a)+(1-y)s—p (2.34)

The algorithm is programmed to find the optimal valuesof3 andy by

minimizing the squared one-step prediction efror

Those interested in the details of the algorithm are re@eteehttps://stat.ethz.ch/
R-manual/R-devel/library/stats/html/HoltWinters.htm


https://stat.ethz.ch/R-manual/R-devel/library/stats/html/HoltWinters.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/HoltWinters.html
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2.4.3 Exponential Smoothing (ETS)

The ETS technique in the forecast package avercomes a limitation found in
earlier exponential smoothing models which failed to pdeva method for easy
calculation of prediction intervals (Makridakis et al.,98). A detailed descrip-
tion of ETS can be found in (Hyndman and Athanasopoulos, ROLRbrief,
this ETS model takes into account the error, trend and sahsomponents
along with over 30 possible options for choosing the besbegptial smooth-
ing model via optimization of initial values and parametessg the MLE, and
selecting the best model based on the AIC. Figure 2.2 sursasathe several
ETS formulae that are evaluated in the forecast packageect ske best model
to fit the data. Note that in this figurell; denotes the series level at tirhe
denotes the slopes denotes the seasonal component of the seriesmate-
notes the number of seasons in a yeaiB, y and ¢ are smoothing parameters,
Gh=0@+@+...+¢"andht = [(h— 1)modm + 1 (Hyndman and Athana-
sopoulos, 2012).
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ADDITIVE ERROR MODELS

Trend Seasonal
N A M
N ye=li-1 te Yo=Llic1 +51-m+e Yo = li—18t-m + €t
b =01+ agy b=l +ae b=y + ag/s1—m
51 = Si_m + e 5t = St—m +7et/li1
w=bo1+b-1+e Y=l F b1+ S1-m & Y = (b1 + be—1)St—m + &1
A b=l + b1 + g b=ty + b1 + g b=l +biy+0e/st-m
by = b1+ Per by = bi—1 4 Per b =bi—1 + Pet/si—m
St = St—m T V€ St = St—m + 7€t/ (li—1 +bi—1)
y=lio1+ b1+ Yo =Llio1 + Obi—1 4 St-m + e Yo = (b1 + Obi—1)St-m + &1
Aq by=Lli1 4 ¢bi—1 + aey by =1li1 4 b1 + aey by =li—y + @bt + agt/Si—m
bi = ¢bi—1 + Pe: be = ¢bi—1 + Pet be = dbi—1 + Ber/st-m
St = St—m T V€t 5t = St—m + et/ (li-1 + Obi-1)
Yo =Lliotbi1 +e Yo =Llioitbi1 +5iom & Yo = li1bi-181-m + &
M b=l 1bi—1 4 aey b =l1bi1 4 agy by = b1 + agt/Si—m
b =bi—1 4 Ber/li—1 b =bi—1 + Bei /i1 be = bi—1 4 Per/(s1—mli-1)
St = St—m + V€t 5t = St—m + et/ (li-1bi-1)
Yt 1617117?,1 +eét Yt :éi—lb;&,l + St—m + €t Yt :Zl—lbf,lsi—m +é
My b=lab])  +as b= etflbfz,l +ag b =l_1b)_| +agi/si—m

b= + B/l

b= b7, + Beu/li-s
St = St—m T V€t

b = bf,l + Bet/(st-mli-1)
st = St—m + e/ (li-1b_,)

MULTIPLICATIVE ERROR MODELS

Trend Seasonal
N A M
N y=lb-i(l+e) Yo = (b1 + 8t-m)(1 + &) Yr = li—1st-m(1 +€t)
b =li1 (14 aet) b=l +o(lio1 + St-m)e b =l-1(1 4 aer)
St = St—m + V(U1 + St—m)er st=St-m(L+7er)
Yo = (b1 + bi-1) (1 + &) Yo = (b1 + b1 4 St-m) (1 + 1) Yr = (liy +Di-1)s0-m(1 +€1)
A b = (b1 +bi-1)(1+ aey) bo=boy b1+ alli—1 +bi—1 + S—m)er b= (b1 +bi-1)(1 +agy)
b =bi—1 4 Bli-1 + bi—1)ee b =bi—1 4+ B(li—1 + bi—1 + St—m)e b =bi—1+ B(li—1 + bi—1)e
$t = St—m + Y(li—1 + bim1 + Si—m)&r 5t =St-m(1+ 1)
Y = (b1 +¢b¢—l)(l+5t) Yo = (li—1 4 Obi—1 + s1-m)(1 + 1) Y = (b1 + Obi—1)St-m (1 + &)
A L=l +0ba)(1+aer) G=by+ by +allis+dbiy+sim)er o= Gy + dbi1)(1+ 0ey)
by = db—1 + B(lim1 + dbi—1)er by = dbi—1 + B(li—1 + Pbi—1 + S1—m et be = @bi—1 + B(li—1 + dbi—1)e:
St = St—m +Y(l—1 + Obi—1 + St—m)e: st = St—m(L+7e1)
Y = Lio1bi1 (1 + ) Yt = (Ci—1bi—1 + st-m)(1 + &) Yt = li—1bi-18t-m(1 + 1)
M b= li—1b—1 (1 + azgr) b= li—abi—1 + a(li—1bi-1 + s1-m)ed b= liabi-1(1 4 aer)
be = bi-1(14 Ber) be =bi—1 + B(l—1bi—1 + st—m)et/li-1 be = bi-1(1 4 Per)
St = St—m + Y(li—1bi—1 + S1—m &1 st = Si—m(L+7&1)
Y= Zt—lb?,l(l +ét) Y= (Zf—lbf,l + st—m)(l +et) Yo =Llaby_ si-m(1+e1)
Md é{ :folb(ffl(l%—aa) [ﬁ :éfflb?,l+O¢(&71b?,1+5pm)5f g{ :éfflb?il(l‘\'ac”’)

b = b{_, (14 fe1)

b= b?,l + ﬂ(kt—lb?,1 + S1—m)et/li—1
St = St—m + 'Y(et—lb?,l + S1-m)er

bt = b?’,l(l + /36f)
st = st-m(L+et)

Fig. 2.2 State space equations for each of the models in tisefigfmework (Hyndman

and Athanasopoulos, 2012).
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2.4.4 Neural Networks (NN)

The NN model in the forecast packagerims referred to asinetar. A detailed
description of the model can be found in Hyndman and Athgmasios (2012)
along with an explanation of the underlying dynamics. Iehiihennetarfunc-
tion trains 25 neural networks by adopting random startelges and then ob-
tains the mean of the resulting predictions to compute thectsts. The neural

network takes the form

- k.
$o="DBo+ S Biw{ %), (2.35)
=1

wherex consist ofp lags ofy; andT denotes transpose. Then, the functipn

has the logistic form

AN A p A _ .
W(%.%) = [1+exr(—yjo+_Zyji.yt,1)] li=1,...k (2.36)
i=

This form of neural networks is referred to as a one hiddearléged forward
neural network model. The nonlinearity arises through siggédy; entering in
a flexible way through the logistic functions of (2.28). Thawber of logistic
functions K) included, is known as the number of hidden nodes. The pdease
in the neural network model are selected based on a lossdarehbedded into
learning algorithm. It may be noted that in all cases thecseteneural network

model has onlk=1 hidden nodep=2 lags.

2.5 Metrics

Presented in this section are the various metrics whichsed to compare the
forecasting results obtained via the many applicationswfollow. This thesis

considers both loss functions and direction of changerasite for comparing
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between forecasts. This is because a loss function showduped with a cri-
terion such as direction of change in order to determine dfradast is reliable
enough for decision making. Also it is possible that thogergsted in identi-
fying business cycle changes such as recessions or expanstuld prefer a
criterion such as direction of change to be more importadtuseful than a loss

function alone.

2.5.1 Root Mean Squared Error (RMSE)

The applications which follow rely mainly on the RMSE as ameeflThe choice
of RMSE as the main criterion is for several reasons. Firgtly RMSE contin-
ues to remain a popular measure of forecast accuracy (sesdmple, Zhang
et al. (1998), Hassani et al. (2009), and Hassani et al. (2013Secondly,
the RMSE is able to indicate the error in the same units as tiiggnal data.
Given that each application which follows considers conmgpbetween data
sets with identical units it is easier to compare betweeridrexasts by relying
on the RMSE which is also easier to interpret in relation tsibess decisions
(Armstrong and Collopy, 1992). Thirdly, the applicationisieh follow requires
comparisons between forecast errors with a Gaussianalistn, and Chai and
Draxler (2014) notes that the RMSE is better at representiodel performance
when the error distribution is expected to be Gaussian. Asxample, the

RMSE ratios of SSA to that of ETS are provided:

~ 1/2
SSA (31 (Yreni —Yr+hi)?) /

RRMSE= =
1/2°
ETS (ZiNzl( 21l

YT+hi — YT+h,i)

where,yr ., represents thb-step ahead forecast obtained by S$A, is the

h-step ahead forecast from the ETS model, Hnd the number of the forecasts.
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If 22&is less than 1, then the SSA outperforms ETS g52%-percent.

2.5.2 Mean Absolute Percentage Error (MAPE)

The MAPE measure is also used in this thesis for quantifyamgdast accuracy.

In brief, the lower the MAPE value, the more accurate thedast

1 N _ .
MAPE = — Z\|1oo>< M|

N & YT+h
whereyt , represents the actual data corresponding th8tep ahead forecast,
andyr.n; is theh step ahead forecasts obtained from a particular foregpstin

model.

2.5.3 Direction of Change (DC)

The DC criterion is a measure of the percentage of forecastsaccurately
predict the direction of change (Hassani et al., 2013b; &d@sand Thomakos,
2010). Here, the concept of DC is explained in brief by follegvHassani et al.
(2013Db).

In the univariate case, for forecasts obtained u3ffnglet Dx; be equal to
1 if the forecast is able to correctly predict the actual dion of change and O
otherwise. ThenDx = S, Dxi/n shows the proportion of forecasts that cor-
rectly identify the direction of change in the actual serids noted in Hassani
and Thomakos (2010), based on the Moivre-Laplace centna theorem, for
large samples, the test statisti@ — 0.5)n'/? is approximately distributed as
standard normal. Where the results for the DC criterion gaBssically sig-
nificant, it shows whether they are significantly greatentktize pure chance
(Hassani et al., 2013a). AccordinglyfJ is significantly greater than 0.5, then
the forecast is said to have the ability of predicting the B if Dy is signifi-

cantly less than 0.5, then the forecast tends to give anreciddC (Hassani and
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Thomakos, 2010).

Several authors have discussed the importance of the D&ioritas a mea-
sure of forecast accuracy. In particular, Ash et al. (199&)cd the view that a
smaller prediction error and a misforecasted directionhainge is more prob-
lematic than a larger directionally correct error for sonueposes. Clements
and Smith (1999) subscribe to a similar view as they notettieaDC criterion
is a better measure of the quality of forecasts. However¥et al. (2004) are
more explicit when they state that the DC criterion is pattady important for

capturing business cycle fluctuations pertaining to recessand expansions.

2.5.4 Diebold-Mariano (DM) Test

One of the statistical tests considered as a measure forarargetween the
predictive accuracy of two sets of forecasts in this thesise DM test. The DM

test was introduced by Diebold and Mariano (1995) but wagavgd through

the work of Harvey et al. (1997) whereby the authors sougbvéscome several
issues with the original DM test. The modified DM test statist (Harvey et al.,

1997):

n+1-—2h+nth(h—1)
n

[ Y2485, (2.37)

where§ is the original DM statistic which is explained in detail irn&pter 3

and is therefore not reproduced here. The hypothesis oé#t@ised here are:

Ho: E(ck) = 0,Hy : E(ck) # O. (2.38)

where the null hypothesidg states that both forecasts have the same accuracy
and the alternative hypothedity states that the two forecasts have different

levels of accuracy. Note thak is the loss differential between two different
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forecasts.






Chapter 3

A Kolmogorov-Smirnov based Test
for Comparing the Predictive

Accuracy of Two Sets of Forecasts

Presented in this chapter is the first contribution of thestk which is a com-
plement statistical test for comparing between the prediciccuracy of two
sets of forecasts. This test has been founded upon theges®f cumulative

distribution functions and stochastic processes.

3.1 Introduction

There is a consensus that any attempt to justify the comparsuiperiority of
forecasts from a given model is both incomplete and inadbiesg§ no consid-
eration has been given to the statistical significance &ssacwith the com-
parison. Tests on forecast evaluation and comparison hbwegeand detailed
history which can be found in Chapter 3 of Elliot and Timmemnm#§2013). Few
historically popular examples of such statistical testéstasscussed in Christiano

(1989); Diebold and Mariano (1995); Meese and Rogoff (198&) Harvey
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et al. (1997). Of these, the Diebold-Mariano (DM) test (ikband Mariano,
1995) is one which is highly cited, and its popularity is e@ntlvia statements
such as that in Diebold (2013), pp.8 according to which, fomparing fore-

casts, DM is the only game in town."

Whilst there is indeed no question regarding the populafithe DM test, it
is pertinent to note that the DM test is by no means a panadgare8ent there
exists other improved variants for evaluating the stagsignificance between
forecasts. Two sound examples would be Hansen’s Hanseb)Zi{perior
Predictive Ability (SPA) test, and Hansen et al.'s Hanseale{2011) Model
Confidence Set (MCS) which are superior to the DM test. Intamdirecently
there has been a renewed interest in research focussingtomgtehe predictive
accuracy of forecasts through the work of Clark and McCradk®09, 2012);
Gilleland and Roux (2015); Gneiting and Raftery (2007).riCkEnd McCracken
Clark and McCracken (2012) in particular shows that the DM iginferior or

inappropriate for use alongside nested forecasting models

The aim of this chapter is to introduce a complement staéiktest (which
differs from the tests noted above) for comparing betweenpttedictive ac-
curacy of forecasts whilst overcoming the constraints efM test which are
identified below. Interestingly, regardless of the exisgeof more superior tests,
the DM test continues to be cited in forecasting literatusthbn isolation and
at times along side SPA and MCS tests, see for example Hastsahi(2015);
Silva and Hassani (2015). This research uses the DM test aschimark with

the reasons being justified in what follows.

The DM test can be briefly introduced as an asymptoatiest for the hy-
pothesis that the loss differential is zero (Diebold, 2813)hilst it is not the

intention of this research to ridicule any proven test autfyeadopted for com-

INote that the Granger and Newbold (1977) assumption of &stegrrors having zero mean
is not essential according to Morgan (1939).
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paring the accuracy of forecasts, it is evident that the feed complement
statistical test arises owing to the following reasons Whiglate to both theo-
retical and empirical issues with the DM test. Firstly, tmgimal DM test was
limited by finite sample properties (Diebold and Mariano93p Secondly, as
a parametric test, the DM test requires that the loss difteakhas a stationary
covariance (Diebold, 2013). The failure to meet this asgionpnvalidates the
results and imposes a restriction on the applicability of test. These issues
were later addressed in Harvey et al. (1997) when a solutemachieved via
the inclusion of a new assumption whereby all autocovaaaimnd the mean loss
differential beyond some lag length are assumed to be 0. Wawaccording
to the recent findings in Hassani (2010) and Hassani et al.2@0it has been
proven that when the lag of a sample autocorrelation fund#@F) exceeds 1,
the sum of the ACF is always equal té.-ln fact, according to Harvey et al.
(1997) the modified DM statistic continues to be multipligdtbe original DM
statistic[ V(d)] ~*°d, whereV(d)~n[yo+23 "} y] andy is thek!" autocovari-
ance ofd;. Then, as per recent findings (Hassani, 2010; Hassani @0dl2a)
it implies that the sum of the autocovariangg,_1y=—1y which in turn en-
sures that the expectation‘@(&):o, and therefore the modified DM test statistic
tends to infinity. Thus, if two models are used to forecadata points without
repeating or updating the data, then the modified DM testaiaoe applied as
the sum of the covariance will be zero. Thirdly, the modified Best statistic
for improved small sample properties is dependent on thdedtist distribu-
tion (Harvey et al., 1997) which cannot be justified unless ftirecast errors
are independent and normally distributed. In additionpeti@eugh Harvey et al.
(1997) asserts that the modified DM test can provide efficesults when faced
with small sample properties, in practice there can be m&swhen this asser-
tion fails to hold. For example, in some instances where thigoRf the Root

Mean Squared Error (RRMSE) criterion shows that the fotsdasm a partic-
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ular model are for example 60% more accurate than the fasefrasn another
model (with a large sample size), the DM test fails to shovatistcally signif-
icant difference between such forecasts. Moreover, whesdfavith comparing

for example a small sample bf= 12 steps ahead forecasts there is a tendency
for the modified DM test to always report a significant diffeze between fore-
casts even when the RRMSE criterion is at around 99%. Firetiyording to

the simulation results reported in Harvey et al. (1997) tluelifired DM test is

not accurately sized for both small and large samples betfendne-step ahead

forecasting horizon.

The proposed test is founded upon the principles of the Kgbmmv-Smirnov
(KS) test (Kolmogorov, 1933) and is non-parametric in natufhe choice of
a non-parametric test is important as in the real world wenaostly faced
with data which fails to meet the assumptions of normalitgt arationarity un-
derlying parametric tests. The proposed test (referred tthh@ Kolmogorov-
Smirnov Predictive Accuracy or KSPA test) was motivatedhsywork of Has-
sani et al. (2009) and Hassani et al. (2013b), where cumaldistribution func-
tions (c.d.f.’s) relating to the absolute value of forecasbrs are exploited to
determine if one forecasting technique provides supeadasts in compari-
son to another technique. The approach presented in thenadoitioned papers
are in fact based on the concept of stochastic dominanceetawthe evidence
presented relies purely on graphical representationsaks la formal statisti-
cal test for significance which in turn leaves the final respkn for debate. It
should be noted that the KSPA test is an extension of the KiStstdor compar-
ing between the predictive accuracy of two data sets. Atlgmtethe KS statistic
is used for the purposes of distinguishing between theibligtons of data and
this research presents an additional use of this statidtichnis supported by

both simulation studies and applications to empirical data

The beauty of the proposed KSPA test is that it not only ersatiiginguish-
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ing between the distribution of forecasts from two modelst &dlso enables
to determine whether the model with the lowest error als@mspthe lowest
stochastic error in comparison to the alternate model. b\ae this test is not
affected by the potential autocorrelation that may be prieiseforecast errors
which is yet another advantage. The ability of exploiting KSPA test for de-
termining the model with the lowest stochastic error steromfthe work of
literature on stochastic dominance and as such deservestotéd. Whilst the
consideration of stochastic dominance in forecastingditee is novel, as noted
in Horvéath et al. (2006) stochastic dominance is widely usetonometric and
actuarial literature and is therefore a well establishadl rcognized concept.
The use of KS tests for first and second order stochastic doroendates back
to the work of McFadden (1989) where the author consideretelk& with in-
dependent samples with equal number of observations. Mergas the KS test
compares each point of the c.d.f. (Barrett and Donald, 20@Badden, 1989) it
has the potential of being a consistent test which consalko$ the restrictions

imposed by stochastic dominance (Barrett and Donald, 2003)

The nature of the proposed KSPA test is such that it evaltia¢adifferences
in the distribution of forecasting errors as opposed toinglyn the mean dif-
ference in errors as is done in the DM approach. This in itsedbles the KSPA
test to benefit from several advantages. Firstly, relyinghendistribution of
errors enables the KS test to have more power than the DMTikistis because
the KSPA test essentially considers an infinite number of erdmwhilst the
DM test only tests the first moment which is popularly refdrte as the mean.
Secondly, the presence of outliers can severely impact Med3t as the mean
is highly sensitive to outliers in data whereas the cumwgadiistribution func-
tion for errors are less affected. Thirdly, a test statistigch is concentrated
around a mean fails to account for the variation around the. déor example,

it is possible to have two populations with identical meand get these two
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populations would not really be identical if the variatiowand the mean is not
the same. By considering the distribution of the data as reedoa the pro-

posed KSPA test, we are able to study and obtain a richer stasheling of the

underlying characteristics which in turn enables a moreiefit and accurate
decision.

The remainder of this chapter is organized as follows. Tiutic® which
follows presents the theoretical foundation underlying pinoposed statistical
test for comparing between forecasting models. Sectioms@i@&dicated to the
results from the simulation study which compares the siziepanver properties
of both the KSPA and modified DM tests for different sampleesiand fore-
casting horizons. Section 6.4 presents empirical evidénooe applications to
real data where the performance of the KSPA test is compdoediside the
modified DM test, and conclusions relating to this chapterdzawn in Section

6.5.

3.2 Theoretical Foundation

This section is dedicated to briefly introducing the theargterlying the Kolmogorov-
Smirnov test which is followed by the introduction of the loyipesis for the
two-sided and one-sided KS tests which are of interest sordgearch. There-
after, the KSPA test is presented for distinguishing betwthe distribution of
forecasts errors and identifying the model with the loweckastic error. The
first part of the KSPA test, which is the two-sample two-si#&PA test, aims

at identifying a statistically significant difference betn the distribution of

two forecast errors (and thereby comparing the predicticeiacy of forecasts).
The second part, which is the two-sample one-sided KSPAest at ascertain-

ing whether the forecast with the lowest error accordingaimes loss function

also has a stochastically smaller error in comparison ta@dmepeting forecast
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(and thereby enables the comparison of the predictive acgwf forecasts).

3.2.1 The Kolmogorov-Smirnov (KS) Test

The cumulative distribution function (c.d.f.) is an intagcomponent of the KS
test. As such, let us begin by defining the c.df(x) for a random variabl&.
The c.d.f ofX is denoted as:

F(x) =P(X <Xx), (3.1)

wherex includes a set of possible values for the random varixblén brief,
the c.d.f. shows the probability &f taking on a value less than or equalxto
The next step is to obtain the empirical c.d.f. This is beedhe one sample KS
test (which is introduced below) aims at comparing the teecal c.d.f. with
an empirical c.d.f., whereby the latter is an approximafmrthe former. The

empirical c.d.f. can be defined as:

Fa(X) = Ph(X <x) = %il (X <x), (3.2)

wheren is the number of observations, aht an indicator function such that
equals 1 ifX; < xand 0 otherwise. According to DeGroot and Schervish (2012),
as implied by the law of large numbers, for any fixed paiatR, the proportion

of the sample contained in the geto, x| approximates the probability of this
set as:

Fn(X) = %il (X <x) = EI(X <x) =F(x), (3.3)

wherekE represents the expectation.

Then, the one sample Kolmogorov—Smirnov statistic for aagrgF (x) can
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be calculated as

Do = max|Fy(x) — F (¥)]. (3.4)

where mxa>denotes the maximum of the set of distances. Note that theame
ple KS test in Equation (6.4) compares the empirical c.ditha theoretical
c.d.f. However, presented next is the two sample KS tessstavhich is of di-

rect relevance to the proposed KSPA test. In contrast tortkesample KS test,
the two sample KS test compares the empirical c.d.f.’s ofravmlom variables
in order to find out whether both random variables share amtichd distribu-

tion, or whether they come from different distributions.s@iming two random

variablesX andY, the two sample KS test statistic will be

Dn17n2 = m?X|FX7n1(X) - FY,nz (X)| (3.5)

Next, we introduce the hypothesis which are relevant foptioposed KSPA
test. Let us begin by presenting the hypothesis for the tdedsKS test. Let
X andY be two random variables with c.d.f% andFy, respectively. Then,
a two sample, two-sided KS test will test the hypothesis lioah c.d.f.’s have
an identical distribution, and the resulting null and altge hypothesis can be

expressed as:

Ho: Fx(2) =K (2) Vz e Z,H1:Fx(2) # R (2), forsomez € Z. (3.6)

In simple terms, the null hypothesis in Equation (5.6) stétat bothX andY
share an identical distribution whilst the alternate hingsts states that andY

do not share the same distribution.

Finally, the hypothesis for the two sample one-sided KSw#éscth is also
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known as the one-sided test of stochastic dominance isrgezsas in McFad-
den (1989):

Ho: Fx(2) <K (2) Vze Z,Hi:F(2) > R~ (z), forsomez € Z. (3.7)

The important point to note here is that the alternate hygs#in Equation (6.9)
states that the c.d.f. of lies above and to the left of the c.d.f. ¥f which in
turn means thaX has a lower stochastic error th¥n Note that in our case we

considerX andY in absolute or squared terms for example.

As with all tests, the decision making process requires dtautation of the
probability value. For the KS test, there are various foasubr calculating
the p-value, each with its own advantages and limitations. Seefample,
Birnbaum and Tingey (1951); Marsaglia et al. (2003) and $ihaad L'Ecuyer
(2011). The KSPA test relies on the formulae used in SimadilaBcuyer
(2011) to calculate the-values for both two-sided and one-sided KS tests. In-
troduced below are the two-sided and one-sided KSPA testdwaine based on

the foundations of the KS test which has been concisely aeiaabove.

3.2.2 Testing for Statistically Significant Differences beveen

the Distribution of Two Sets of Forecast Errors

The aim here is to exploit the two sample two-sided KS testdwis referred to
as the two-sided KSPA test hereafter) to ascertain theemastof a statistically
significant difference between the distributions of twoeftast errors. Let us
begin by defining forecast errors. Suppose we have a readahon zero time
seriesyy = (Y1,---, W, - - - Yn) Of sufficient lengthN. Yy is divided into two parts,

i.e., training set and test set such tiat= (y1,...,y;) represents the training set
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andYz = (\t+1,---,YN) represents the test set. The observationq iare used

to model the data whilst the observationsyinare set aside for evaluating the
forecasting accuracy of each model. Assume we use two fetiagaechniques
known asm; andnp. A loss function.Z can be used to assess and compare
between the out-of-sample forecast errors. Whilst thezevaried options for
Z, here we defineZ as:

Z(Yish—Yi+h), (i=t,...,N—h) (3.8)

whereh> 1 denotes the forecasting horizon, and, denotes thé-step ahead

forecast ofY;. If the forecast error is denoted lsythen we have the expression

Ei+h = Yith— Yith- (3.9)

In this case the forecast errors 61, obtained using models; andny, can be

denoted by
Eh =Yieh—Yiths & = Yich— Y 2hs (3.10)
whereg™}, is theh-step ahead forecast errors generated from mogehde/™,

is theh-step ahead forecast errors generated from mmglelhe most common
loss functions consider errors in the form of absolute valresquared values
(see for example, the MAPE and RMSE). As such, we can use éitabsolute
value of errors or squared errors when calculating the K&R&depending on
the loss function in use. Then, the absolute values and eqwaiues of forecast

errors can be calculated as

Eirilh = [Yi+h _ymth %TZh = Yith—Yidnl- (3.11)



3.2 Theoretical Foundation 53

%Tlh = (Yi+h —)A’imfh>2, Eirizh = (Yith— Ai+h)2- (3.12)

The forecast errors in (3.11) or (3.12) are inputs into th@K st for deter-
mining the existence of a statistically significant diffece in the distribution of
forecasts from models, andny. As the requirement is to test the distribution
between two samples of forecast errors, the two sample ichemt SKSPA test

statistic can be calculated as:

Dijivh = max|Fm (x) — Fyme (X)], (3.13)

i+h i+h
wherer_mlh (x) and Fs_mzh (x) denote the empirical c.d.f.’s for the forecast errors
1+ 1+

from two different models.

Accordingly, in terms of forecast errors, the two-sided K$&st hypothesis
can be approximately represented as follows; wh:éffﬁ and eirffh are the ab-
solute or squared forecast errors from two forecasting isodgandmy, with
unknown continuous empirical c.d.f’s, the two-sided KSBEstwill test the hy-

pothesis:

Ho:Fom (2) = Fgm(z), Hy: ngTlh<Z) #F.m (2). (3.14)

i+h i+h

Then, if the observed significance value of the two-samptedisled KSPA test
statisticD; j is less thana (which is usually considered at the 1%, 5% or
10% level), we reject the null hypothesis and accept theralte which is that
the forecast errors™, and &%, do not share the same distribution. In such
circumstances we are able to conclude withr tonfidence that there exists a
statistically significant difference between the disttibn of forecasts provided
by modelsm; andnmy, and thereby conclude the existence of a statistically sig-

nificant difference between the two forecasts based on tbesttled KSPA test.
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3.2.3 Testing for the Lower Stochastic Error

The aim of the two sample one-sided KS test (referred to asrthesided KSPA
test hereafter) is to identify whether the model which réptine lowest error
based on some loss function also reports a stochastica#iilesnerror in com-
parison to the alternate model. The usefulness of the ale®d{SPA test in
distinguishing between the predictive accuracy of forecesmost apparent in
circumstances where forecasts from two models may shackeatigal distribu-
tion with some degree of error (as otherwise this would mbartwo forecasts
are exactly the same), such that one model will clearly tep@omparatively
lower forecast error based on some loss function. In sudhnoss, the two-
sided KSPA test would fail to identify a statistically si§oant difference be-
tween the two forecasts, but the one-sided KSPA test hashihty af testing
the out-of-sample forecasts further in order to identifyetiter the model with
the lower error also reports a stochastically smaller eand thereby test for
the existence of a statistically significant differencenmstn two forecasts.

In terms of forecast errors, the two-sample, one-sided K&BAhypothesis
can be approximately represented as follows. Once agaier,e/xzﬁ}h and ei”fh
are the absolute or squared forecast errors from two fatiegas®odelsm and
mp with unknown continuous empirical c.d.f.’s, the two samphe-sided KSPA

test will test the hypothesis:

Ho : Fymy (2) < Fyme (2),Hyt Fom (2) > Fome (2). (3.15)

i+h i+h i+h i+h
The acceptance of the alternate hypothesis in this cassldtas to the c.d.f.
of forecast errors from modeah, lying towards the left and above the c.d.f. of
forecast errors from modet,. More specifically the acceptance of the alternate
hypothesis confirms that modek reports a lower stochastic error than model

mp. Recall the relationship identified in Hassani et al. (200Y if the c.d.f.



3.3 Simulation Results 55

for absolute value of forecast errors from one model liesyalamd hence to the
left of that for the other model, the model lying above hadwadostochastic
error than the other model. The one-sided KSPA test evauhis notion and

provides a statistically valid foundation which was prexsty lacking.

3.3 Simulation Results

3.3.1 Size of the Test

The first part of the simulation study focuses mainly on tze properties of the
proposed KSPA test. The actual size of nominal 10% leves teist estimated
against a two-sided alternative as in Diebold and Mariarg®%) and Harvey
et al. (1997), and the simulation study itself follows thea@xprocess as in
Harvey et al. (1997). This research has considered andtegpibre results from
errors generated via various noise distributions, and asxample explained
below is one of the processes, i.e. the process involvederGéussian white
noise simulation. Independent standard normal white neisa series were
simulated(ey,ex), t = 1,2,...,n, for various sample sizas Forecasts which
cover both short and long run horizons, more specificallyap £ 10 were
evaluated. As in Harvey et al. (1997), the information mdatio the simulated
white noise error series were incorporated in the testssigionly in the case
of h=1. In order to enable comparison with the results in Harveal.€t1997),
the squared errors were considered, e§.ande5, over the entire simulation
study. All simulation results reported are based on 10,8@0aations and were
programmed irR.

The results for the size properties are reported in TableR3r4tly, as noted
in Harvey et al. (1997) the modified DM test remains somewhatzed as

visible in the results shown in Table 3.1. Yet, the authonscbaded this was
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acceptable as the modified DM test results showed a majoloveprent over
the previous version. Based on the results, we see thatdoGtlassian white
noise errors which are directly comparable with the modib®di test results in
Harvey et al. (1997), the proposed KSPA test is correctlgdsacross all sample
sizes, both large and small, and across all horizons of up gieps-ahead.

Unlike the results reported in Harvey et al. (1997), alsonghbere are the
outcomes from the simulation study which considered Umifatistribution,
Cauchy distribution, and heavy tailed errors. The Cauchijtemmoise distri-
butions are likely in time series which are affected by datgic events. The
heavy tailed distribution is a Student'distribution with six degrees of free-
dom as considered and explained in Harvey et al. (1997). Tdenfys from the
simulation study indicates the superiority of the propoK&PA test over the
modified DM test in terms of being correctly sized across afhgle sizes and
all horizons even when faced with varying noise distribogio

It is noteworthy that the results reported in Table 3.1 repnés a subset of
results obtained from an extensive simulation study. kolg the simulation
study in Harvey et al. (1997), also considered @npecontemporaneously corre-
lated forecast errors with contemporaneous correlatibssoand 0.9, and?2)
autocorrelated forecast errors. The results were sinolarhat is reported for
the other distributions in Table 3.1 as it continued to illate that the KSPA test
is indeed correctly sized across all sample sizes and fstiagahorizons. As
such in order to save space these results are not reporied her

In summary, it is evident that in comparison to the modified Dddt, the
KSPA test shows major improvements not only across diftdoercasting hori-
zons, but more importantly over small sample sizes. As niotiéthrvey et al.
(1997) it is the performance over small sample sizes that igrnost impor-
tance to practitioners as in reality very large number oédassts are not often

available for comparison purposes, and the proposed KS§/é&s proven to
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be comparatively more accurate in this case with far bedtsults.

3.3.2 Power of the Test

Next, the power of the modified DM test and the proposed KSBake consid-
ered. For this purpose, forecast errors were generatedditbenent combina-
tions of distributions which will certainly result in sigigantly different forecast
errors, so that one can obtain an accurate evaluation ofalverpof the tests in
relation to small and large sample sizes. The details of dinebinations eval-
uated are explained in the footnotes of Table 3.2 which aponts the results.
The power of the two tests were evaluated over the one-steponobecause
power calculations are only valid if a given test is corngsiked, and the mod-
ified DM test suffers from problems of being oversized esgcbeyondh =1
Harvey et al. (1997).

Once again, reported here is a subset of all results as tlegajeonclusion
remains similar. Firstly, it is evident that the KSPA testrisre powerful than
the modified DM test for both small and large sample sizesois#ly, the KSPA
test converging towards a power of 100% faster than the nealdidiV test in all
cases

whereas on most instances the results (including thoseepaoirted here)
showed that the modified DM test fails to converge to 100% tvese sample
sizes. The only exception being in the case of autocortkators as in Case
3, skewed errors as in Case 4 or where forecast errors geddram a MA(1)
process was compared against those generated from an ARCESS.

In summary, the simulation study has shown that the prop&S#eA test
is correctly sized across all sample sizes and forecastinigdns, and that it is
more powerful than the DM test, and thereby proving its peatity and suit-

ability as a complement statistical test for distinguigiibetween the predictive
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Table 3.1 Percentage of rejections of the true null hypahefsequal prediction mean
squared errors for the Diebold-Mariano test and equalidigton of squared prediction
errors for the KSPA test at nominal 10% level.

h Error Distribution Test n=8 n=16 n=32 n=64 n=128 n=256 n=512

1 Gaussian DM 8.4 9.6 9.7 10.1 9.9 10.4 10.6
Gaussian KSPA 86 9.4 8.9 9.6 8.4 9.4 8.6
Uniform KSPA 9.1 8.9 8.6 9.4 8.9 8.9 85
Cauchy KSPA 9.0 9.1 8.4 9.2 85 8.9 8.6
Student'st KSPA 85 9.4 9.3 9.5 9.0 8.7 8.6

2 Gaussian DM 16.4 14.2 12.2 11.2 10.8 10.5 10.3
Gaussian KSPA 9.0 9.5 8.5 9.2 8.6 9.1 8.4
Uniform KSPA 9.1 9.4 8.9 9.8 8.8 9.2 8.8
Cauchy KSPA 9.3 9.5 9.0 9.3 8.8 9.4 9.0
Student's KSPA 8.7 9.3 9.1 9.1 8.4 9.7 8.9

3 Gaussian DM 18.1 18.5 14.3 12.2 10.7 10.8 10.9
Gaussian KSPA 8.6 9.6 8.7 9.2 8.7 9.1 9.1
Uniform KSPA 87 9.8 9.0 9.2 8.6 9.4 8.7
Cauchy KSPA 8.4 9.4 9.3 9.7 8.7 9.5 8.7
Student'st KSPA 82 9.7 8.8 9.5 8.9 9.1 8.6

4 Gaussian DM 16.3 19.8 16.1 13.4 11.5 10.9 11.0
Gaussian KSPA 85 9.4 8.3 8.9 8.6 9.2 9.0
Uniform KSPA 87 9.6 8.6 9.2 9.4 9.6 9.1
Cauchy KSPA 8.4 9.4 9.0 9.4 9.6 9.7 8.7
Student'st KSPA 87 9.1 8.8 9.9 8.7 9.7 8.8

5 Gaussian DM 12.9 19.9 17.8 14.9 12.2 111 11.0
Gaussian KSPA 84 9.4 8.9 9.4 8.3 9.7 8.3
Uniform KSPA 8.2 9.2 8.7 9.1 8.4 9.3 8.9
Cauchy KSPA 8.8 9.6 85 9.5 9.0 8.8 8.9
Student'st KSPA 84 9.3 9.1 9.9 9.1 9.6 8.6

6 Gaussian DM 10.6 19.8 18.8 16.0 12.9 11.4 11.2
Gaussian KSPA 86 9.5 8.9 9.5 8.6 9.1 9.0
Uniform KSPA 8.7 9.4 8.8 9.1 8.4 9.2 8.3
Cauchy KSPA 8.9 9.8 9.1 9.9 85 9.2 8.6
Student'st KSPA 87 9.3 8.8 9.4 9.0 9.8 9.1

7 Gaussian DM 9.9 18.2 19.5 16.8 13.6 11.6 11.4
Gaussian KSPA 86 9.5 9.3 8.9 8.8 9.3 9.0
Uniform KSPA 8.4 9.0 8.7 9.9 9.0 9.1 8.7
Cauchy KSPA 8.5 9.2 8.7 9.1 9.0 9.4 8.9
Student'st KSPA 88 9.1 9.0 9.0 8.6 8.8 9.2

8 Gaussian DM - 17.4 20.2 18.0 13.8 11.9 114
Gaussian KSPA - 9.3 8.6 9.1 8.5 9.5 8.7
Uniform KSPA - 9.5 8.7 9.8 9.0 9.7 8.7
Cauchy KSPA - 9.5 8.3 9.2 8.8 8.9 8.9
Student'st KSPA - 9.7 8.3 9.6 8.6 9.1 9.1

9 Gaussian DM - 15.1 20.2 19.0 14.7 12.4 11.6
Gaussian KSPA - 9.5 8.6 9.2 85 9.4 8.8
Uniform KSPA - 9.4 9.0 9.7 8.0 9.5 8.9
Cauchy KSPA - 9.8 8.6 8.9 8.6 9.4 8.8
Student'st KSPA - 9.1 8.6 9.2 8.9 9.6 9.0

10 Gaussian DM - 14.0 20.2 19.1 15.1 12.6 11.8
Gaussian KSPA - 9.2 8.9 9.3 8.7 9.7 9.0
Uniform KSPA - 9.2 8.7 9.8 8.7 9.1 9.4
Cauchy KSPA - 9.2 8.8 9.7 9.1 9.5 9.3
Student'st KSPA - 9.3 8.8 9.0 8.7 9.1 8.6

Note The DM test results relate to modified DM test and were exgdhfrom Table 1 in Harvey et al. (1997).

accuracy of forecasts.
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Table 3.2 Percentage of rejections of the false null hysithef equal one-step predic-
tion mean squared errors for the Diebold-Mariano test anglegne-step distribution
of squared prediction errors for the KSPA test at nominal 16%I.

Combinations Test n=8 n=16 n=32 n=64 n=128 n=256 n=512
Case 1l DM 7.3 17.5 31.9 37.3 39.3 40.3 40.9
KSPA 196 35.8 61.0 91.7 99.9 100.0 100.0

Case 2 DM 5.2 13.4 26.5 354 39.5 41.0 40.8
KSPA 159 25.8 42.0 75.3 97.6 100.0 100.0

Case 3 DM 59.3 96.0 99.7 100.0 100.0 100.0 100.0
KSPA 651 92.0 100.0 100.0 100.0 100.0 100.0

Case 4 DM 91.6 99.7 100.0 100.0 100.0 100.0 100.0
KSPA 973 100.0 100.0 100.0 100.0 100.0 100.0

Note Case 1: Compares errors from a Cauchy distribution withm@eand standard deviation
1 against errors from (0, 1) distribution. Case 2: Compares errors from a Studént’s
distribution with 6 d.f. against errors from a Cauchy diafition. Case 3: Compares errors
from N(0, 1) against autocorrelated errors. Case 4: Compares erronsafiskewedy?
distribution with 3 d.f. against errors fromyg distribution with 10 d.f.

3.4 Empirical Evidence

Following the simulation study which illustrated the supgty of the proposed
KSPA testin terms of being correctly sized and more powehiah the modified
DM test, discussed in this section is the use of the KSPA tassdveral real
world applications. Note that all applications here useRMSE as the loss
function, and therefore the KSPA test like the DM test rebiessquared errors
in all instances. These real world applications have beesfully selected to
illustrate that: (i) The KSPA test can accurately perforra #ame task as the
modified DM test in practice when faced with real data. (iitBowo-sided
and one-sided KSPA tests can be of benefit in practice. (g KSPA test is
applicable where the modified DM test cannot be applied. Thg KSPA test
can handle both small and large sample sizes. (v) The KSRAstesiitable
across different forecasting horizons. (vi) The KSPA tesiot affected by the

generation of forecast errors from either parametric orp@ametric models.
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3.4.1 Scenario 1: Tourism Series

The rationale for this application is to mainly show that KfePA test can per-
form the same task as the modified DM test in practice in amlutt showing its
performance when faced with a relatively large number ofadtgample fore-
cast errors. We consider testing forecasts from two modelsSingular Spec-
trum Analysis (SSA) which is non-parametric and ARIMA (patric) for a
statistically significant difference in terms of providihg= 1 step ahead fore-
casts for total U.S. tourist arriv&ls This monthly data set is used in Chapter 3
where more information pertaining to the data is availadte] the related fore-
casts of 69 observations were extracted from that apphicatigure 3.1 shows
the out-of-sample forecasts, distribution of errors arelémpirical c.d.f. for
U.S. tourist arrivals obtained via SSA and ARIMA models. &hsn the fore-
casts figure alone one is not able to determine whether tlhests a statistically
significant difference between the forecasts from SSA andV#R As such,
we then look to the distribution of the squared forecastrerfoom ARIMA
and SSA which can be seen in Figure 3.1 (middle). Howevehowit a formal
statistical test it is not possible to determine whetherdlexists a statistically
significant difference between the distribution of theserst Thirdly, we look
at the empirical c.d.f’s shown in Figure 3.1 (right) to iti§nif one model does
indeed provide a lower stochastic error than the other masleduggested in
Hassani et al. (2009). In this case it is clear that based ernmpirical c.d.f.,
it appears that the out-of-sample forecasts from SSA peoaitbwer stochastic
error than the out-of-sample forecasts from ARIMA. Howeasrmentioned in
the introduction this conclusion is open to debate as itdacknandatory statis-

tical test.

When we calculate the RRMSE statistic, it shows that thecksts obtained

2Data source: http://travel.trade.gov/research/mordhiiyals/
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from the SSA model are 60% better than the forecasts obtaiadtie ARIMA
model. Accordingly one would expect a statistically sigrafit difference be-
tween the forecasts of SSA and ARIMA. Both the modified DM ai®PRA tests
are applied. The results are reported in Table 3.3. In thée,céne modified
DM test correctly identifies that there exists a statislycsilgnificant difference
between the forecasts from SSA and ARIMA. In terms of the ggwbposed
KSPA test, firstly the two-sided KSPA test confirms that theredeed a statisti-
cally significant difference between the distribution afdcast errors from SSA
and ARIMA for U.S. tourist arrivals ah = 1 step ahead, and thereby confirms
the existence of a statistically significant differencenssn the two forecasts.
Next, the one-sided KSPA test is applied to find out whethek &8ecasts
(which has the lower RMSE) reports a lower stochastic elran tARIMA fore-
casts. The one-sided KSPA test confirms that SSA does infacide forecasts
which report a lower stochastic error than the ARIMA modedaggested by the
empirical c.d.f’s in Figure 3.1 (right), and provides slgrpentary evidence to
the conclusion from the two-sided KSPA test for the existenica statistically
significant difference between the two forecasts. The te$wdm the modified

DM test and KSPA tests are significant at a 95% confidence.level

Table 3.3 Evaluatingy = 1 step ahead forecasts for U.S. tourist arrivals.

Test Two-sided§-value) One-sidedg-value)
Modified DM <0.01* N/A
KSPA <0.01* <0.01*

Note* indicates results are statistically significant based@avalue of 0.05. N/A refers to not
applicable as a directly comparable alternative form of@hetest was not available in the
code used.

3.4.2 Scenario 2: Accidental Deaths Series

The main reason to present this next application is to shawthe KSPA test

can overcome a limitation of the modified DM test. The wellndJ.S. death
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series includes monthly data with 78 observations recotmdieen January
1973-June 1979 and has been used widely in previous timessamalysis and
forecasting applications (see for example, (Brockwell Baslis, 2002; Hassani,
2007; Hassani et al., 2014)). This application follows ailsinforecasting ap-
proach to that reported in Hassani (2007). The applicabokd at forecasting
the last 12 points of the death series such that the firstdstgmint represents
the horizon ofh = 1, the second forecast point represemts 2 and so on, up
until the final forecast point which represents the: 12 steps ahead forecast.
As explained in Section 6.1, the modified DM test cannot bel isesuch sce-
narios where the out-of-sample forecast errors relateriowshorizons within
a single forecasting exercise as the sum of the covarianiteqguate to zero.
However, it is possible to rely on the original DM test (i.eittvout considering
the covariance effect) in such scenarios, but it is not adhésowing to the many
limitations of the original DM test as identified in Harveyat (1997). The
forecasts are obtained via the parametric ARIMA model andraparametric

Neural Networks (NN) model, and the ARIMA forecasts repdadvaer RMSE.

Figure 3.2 shows the out-of-sample forecasts, distributioerrors and the
empirical c.d.f. for the U.S. death series obtained via ARIEhd NN mod-
els. In this case based on the empirical c.d.f. we are abl¢ate that the
ARIMA forecasts report a stochastically smaller error thia@ NN forecasts.
The two-sided KSPA test can be used to test for statisticijgificant differ-
ences between the two forecasts whilst the one-sided K&®ada be exploited
to provide statistical evidence for the claim based on Hassaal. (2009). The
resulting output from the KSPA and original DM tests are rggabin Table 3.4.
Initially, the two-sided KSPA test confirms that there iseled a statistically
significant difference between the distribution of foréasors from ARIMA
and NN at a 95% confidence level. Secondly, the one-sided K&R4&onfirms

that ARIMA does in fact provide forecasts which report a los@chastic error
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than forecasts from the NN model as suggested by the enmlgiraté’s in Fig-
ure 3.2 (right). Note that whilst the original DM test too pes the existence
of a statistically significant difference between the tweefasts, the two-sided

KSPA test reports a lowgr-value than the original DM test.

Table 3.4 Evaluatingg = 1,... ,h = 12 steps ahead forecasts for the U.S. death series.

Test Two-sidedg-value) Greaterg-value)
DM 0.04* N/A
Modified DM N/A N/A
KSPA 0.03* 0.02*

Note* indicates results are statistically significant based@avalue of 0.05. N/A refers to not
applicable as a directly comparable alternative form of@hetest was not available in the
code used.

3.4.3 Scenario 3: Trade Series

Finally, the purpose of this empirical example is to showghperiority of the
KSPA test over the modified DM test, and also to show how thesided KSPA
test is useful when the two-sided KSPA test fails at showisigastically signif-
icant difference between two forecasts. In this applicetwe consider forecasts
for monthly U.S. import3 between March 2011-December 2011 (10 observa-
tions) ath = 3 steps ahead using ETS and SSA which are both non-parametric
techniques. This data set was recently used in Silva andadaé2015) and
the forecasts considered here are those generated indbgt Jthis is another
example of a scenario with a small sample size ne- 10. Figure 3.3 shows
the out-of-sample forecasts, distribution of errors ardeimpirical c.d.f. of er-
rors obtained via ETS and SSA. Here, unlike on previous eooasbased on
this forecast figure alone one is able to see that there exstmificant differ-
ence between the forecasts from both models. However, itatdre verified

in the absence of statistical evidence. The distributionwfof-sample fore-

3Data source: http://www.bea.gov/international/indéx.h
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cast errors are shown in Figure 3.3 (middle) and the reguémpirical c.d.f.

for the squared forecast errors are also presented (rigaged on the empir-
ical c.d.f. in Figure 3.3 we can see that except for threetppmt every other
observation, the forecasts from SSA appear to report a snstichastic error
than the forecasts from the ETS model (according to theenfe in Hassani
et al. (2009)). Once again, relying solely on this empiradlf. in Figure 3.3
(right) will only result in conclusions which are debatablghe RRMSE crite-
rion shows that forecasts from the SSA model are 54% better tthose from
the ETS model. The expectation would be that such a signtfgain reported
through the RRMSE will appear as statistically significdntorder to confirm

the expectations we apply both modified DM and KSPA tests.

The results from the two tests are reported in Table 3.5. dBase¢he modi-
fied DM test we are inclined to conclude that there exists atissically signifi-
cant difference between the forecasts obtained via ETS 8Ad Bhe modified
DM test statistic reports g-value which exceeds 10% thus leading to the ac-
ceptance of the null hypothesis. Likewise, the two-sidedPK$est suggests
that forecast errors obtained via ETS and SSA share an odémlistribution.
Accordingly, there is no sufficient evidence based on theifisadDM test and
the two-sided KSPA test for a statistically significant erfnce between the
two forecasts. However, this is where the one-sided KSPAltesomes ex-
ceedingly useful. We know based on the RRMSE criterion thisdasts from
SSA report a lower RMSE than forecasts from ETS. As such, weusa the
one-sided KSPA test to find out whether the SSA forecast wigipbrts a lower
error based on the RMSE loss function also reports the losteshastic error in
comparison to the ETS forecast. Accordingly there is s@fitevidence based
on the one-sided KSPA test at the 10% significance level tolade that SSA
forecasts report a lower stochastic error than forecasts &#TS. Thereby, one

can confirm the existence of a statistically significantadéhce between the two
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forecasts which is expected given that forecasts from S8&/54% better than
forecasts from ETS according to the RRMSE criterion.

The results from this case not only show the advantage of tieesaed
KSPA test, but also proves that the graph of one c.d.f. needientstrictly’
above the graph of another c.d.f. as suggested in Hassan(20@9) in order
for one model to report a stochastically smaller error thenalternate model.
It is clear that if a larger proportion of the c.d.f. of errdrsm one model lies
above the c.d.f. of errors from another model, then the KS#A is able to
accurately show that one model reports a lower stochastc #ran the other,
and thereby pick up a statistically significant differenetvieen the forecasts

from two models.

Table 3.5 Evaluatingp = 3 step ahead forecasts for U.S. imports.

Test Two-sidedg-value) Greaterg-value)
Modified DM 0.30 N/A
KSPA 0.17 0.08*

Note* indicates results are statistically significant based@avalue of 0.10. N/A refers to not
applicable as a directly comparable alternative form of@hetest was not available in the
code used.

3.5 Discussion

Developing on the ideas presented in Hassani et al. (20@9Hassani et al.
(2013b) with respect to using an empirical c.d.f. for detering whether the
forecast errors from one model are stochastically smdtlan those obtained
from a competing model, introduced in this chapter is a cemgint statistical
test for distinguishing between the predictive accuracjooécasts. The pro-
posed non-parametric Kolmogorov-Smirnov Predictive Aacy (KSPA) test
serves two purposes via the two-sided KSPA test and the ided-EKSPA test.

A simulation study is called upon to evaluate the efficienog eobustness of
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the KSPA test which is followed by an application to real ddiae need for the
KSPA test is further evidenced by limitations of the DM testelation to issues
in sample size or inherent assumptions which have beemiegdtidated in the
face of recent findings.

Through the simulation study, the KSPA test is directly canggl with the
widely accepted modified DM test. In order to enable a meduairgpmpari-
son, the same distributions as used in Harvey et al. (199%h&r simulation
study are considered here. The simulation results provdesa indication that
the proposed KSPA test is more robust than the DM test edlyeaiaen the
number of out-of-sample forecast errors available for cangpn purposes are
considerably small.

Also considered are applications to real data which cagtnecasts from
different cases in real world applications for validatihg proposed KSPA test,
and compare the results against those obtained via the ewdifil test. As
expected, it was observed that when the number of obsengatice small the
KSPA test is able to accurately identify a statisticallymsiigant difference be-
tween forecasts whilst the modified DM test fails. Furthermthrough another
scenario in real world applications it is shown that the K$&#& can be applied
in forecasting exercises where the modified DM test is notiegipe. In addi-
tion, another scenario is used to show that the two variatafrihe KSPA test
can be extremely useful in practice.

Yet another advantage in the proposed KSPA test is that gisemature,
which is to compare the empirical c.d.f. of errors from tweeftasting models,
one is able to compare both parametrically estimated mioaistd forecasts and
survey-based forecasts with no restrictions on whethesetngodels are nested
or non-nested. This is because regardless of the model adedecast error
will always be calculated as the actual value minus the ptedivalue, and the

proposed KSPA test will compare the distribution of thesererto differentiate



3.5 Discussion 67

between them. In addition, as the KSPA test is non-parami¢is not depen-
dent on any assumptions relating to the properties of thenyidg errors which
is also advantageous in practice.

In conclusion, the KSPA test has shown promising result®mparison to
the modified DM test and is presented as a viable alternativedmparing be-
tween the predictive accuracy of forecasts. The non-parameture of the
test enables one to overcome issues with the assumptiorslying the DM
test which have recently been proven void (see for examplasgani, 2010;
Hassani et al., 2012a)). Additionally, this research pesistatistical validity
to the ideas presented in Hassani et al. (2009) and Hassain(2013b) whilst
showing the relevance and applicability of the KSPA testuiaulations and ap-
plications to real data. Future research relating to tlssdentinues to ascertain
whether there is a possibility of extending the use of the X&#3t to enable
comparisons between more than two forecasts as this wodldhade value to

its practical use.
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Chapter 4

Exploiting the Forecastability of

Forecasts

This Chapter is aimed at the introduction of a new theorkfreenework for
exploiting the forecastability of forecasts which is alke second contribution
of this thesis. The chapter begins with a concise introdactvhich discusses
the need and significance of the proposed theory and is thienvéal by the
introduction of the theory itself. The chapter also inclsi@pplications to real

data.

4.1 Introduction

Forecasting continues to remain a top priority for planrang decision making
in any given company, industry or economy. Whilst the everaasing volatil-

ity and uncertainty in markets has further augmented thedify associated
with obtaining accurate forecasts, the emergence of Big Datthe other hand
has provided new insights and opportunities for improving anhancing the
accuracy of forecasts for any given variable. In the pastaniate forecasting

(i.e. for example using historical monthly GDP forecastsdbtaining future
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monthly GDP forecasts) has been the most popular norm witlde r@nge of
applications. The results from such efforts have been mtnd) but the intro-
duction and applications of multivariate forecasting agghes have provided
far greater outcomes with increased accuracy levels.

Governments, practitioners, researchers and privateniza#ons publish a
variety of forecasts each year. Such forecasts are gene@thputed using
multivariate models and are widely used in decision maknog@sses given the
considerably high level of anticipated forecast accuratiye classical multi-
variate methods consider modelling multiple informati@ntpining to the same
time period or with a time lag into the past. However, the ®ofithis research
goes beyond the classical approaches and considers desisiovel theoret-
ical framework for exploiting information pertaining togHuture for further
enhancing the accuracy of such predictions.

The aim of this chapter is to introduce a novel theoreticaétigpment which
seeks to exploit the information contained in publishe@dassts (which repre-
sent data with a time lag into the future) for generating a aes improved
(comparatively more accurate) forecast by taking advantdghe MSSA tech-
nique’s capability at modelling time series with differaetries lengths. In brief,
the proposed multivariate theoretical development see&sloit the forecasta-
bility of forecasts by considering not only official and pesgional forecasts, but
also forecasts obtained via other time series models. Asiomea previously,
the SSA technique has both univariate and multivariatecistng capabilities
along with two main forecasting options known as the Recuramd Vector
approach. The MSSA technique further divides into HMSSA ¥MESA.

Here in lies the beauty of MSSA in comparison to other muliate fore-
casting methods. The HMSSA algorithm enables one to modkfiaacast time
series with the same length whereas the VMSSA algorithmlesabodelling

and forecasting using time series with different lengthss Tesearch takes ad-
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vantage of this unique modelling capability of VMSSA and eleps a theory
for exploiting the forecastability of forecasts by modadjidata with a time lag
into the future. In brief, the main idea is to evaluate whethis possible to ex-
ploit VMSSA by making use of historical data for a given vat@in combina-
tion with either an official or professional forecast to irope upon the existing
forecast’s accuracy. The theory is evaluated with real déiiah considers not
only official and professional forecasts, but also forecgsnerated via other
time series models. The main objective is to ascertain vengtie new theoret-
ical proposition enables to generate a forecast which cgredorm the official
forecast accuracy (or professional forecast or forecasta inother model as
relevant). In addition, the SSA-R and SSA-V forecasts ase abnsidered as
benchmarks. Given the introductory nature of this theoca¢éttoncept the one
of the most important points to initially evaluate is whettiee proposed MSSA
approach can successfully outperform the SSA benchmatks.ig because if
it cannot do so, then there is no sufficient evidence for reb@zg further into

improving this theory further.

In practice it is possible that during the model training &exting procedure
we would experience certain models which are capable ofighray forecasts
which outperforms forecasts from SSA. Likewise, officiatigmofessional fore-
casts are very likely to be extremely accurate given the vadging information
that has been considered in arriving at the said predictdiaghe proposed the-
oretical development, this research attempts to explaih Swperior forecasts
from either other models, official or professional foresastorder to improve
the existing forecasts by modelling with VMSSA. This resbaalso marks the
first ever attempt at exploiting information contained wntbfficial or profes-
sional forecasts for generating a more accurate forecagi.important points
to note are that; firstly, the usual multivariate modellimglgem involves using

two different time series and extracting any useful infatiorafor improving
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the accuracy of forecasts for both variables or one of theviav@bles. How-
ever, considered here is the same variable and a forecasiafosame variable
to generate a new set of forecasts which can provide betteraxy. Secondly,
not all multivariate forecasting models can exploit thisvridea as they can-
not model when faced with different series lengths whichmsagor advantage
and flexibility of the MSSA technique. Given the novel natafehis proposed
approach it is important to note that there is no publishediamic literature
which seeks to exploit the forecastability of forecastsdsynodelling a forecast
which represents data with a time lag into the future in caration with his-
torical data for developing a new and improved forecast.drtigular it should
be noted that this proposed methodology does not fall iniitle literature on

forecast combining which has been developed over the years.

4.2 Theoretical Development

Assume that we have a monthly time seﬁ’é@ on lengthN, and further auxil-
iary information of ah-step ahead forecast for that series contained.ifNote
thatY,\(,l) andQ are time series with different series lengths as shown bélbe
data inQ can represent an official or professional forecast‘rﬁ&, achievable
using any method of forecasting. The hypothesis is thatjigeal the informa-
tion contained imM2 is of some level of accuracy, then we can model this infor-
mation alongside historical information for that sameable in a MSSA frame-
work to develop an all new forecast ftﬁ,ﬁl). The MSSA technique which can
model time series with different lengths allows the exjltdn of any auxiliary
information contained withi®2 and uses this in combination with the historical
information found inY,\(,l), to produce a new forecast which can outperform the
forecasts obtained by on}'gél) in terms of accuracy. For explanation purposes,

let us assume/,\(ll) is the actual monthly inflation values a2l is the h-step
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ahead forecast for inflation such that:

Y1 ON+1
vV =|"|anda=| N2, (4.1)
YN N +h

A new time series can be constructed by incorporating trecsted values

with the actual values such tha‘[\(‘i)h = (Y,\(,l),Q).

Y1
YN
v, = . (4.2)
N +1
WN-+h

and the following corresponding trajectory mati{® = (X1, XK - -+ Xk th)

can be computed, such that

Yr Y2 0 YK YK41 0 WK+h
Yo V3 0 YK+l Yk+2 o OKthtl

X@ = ()" = o T T | . (4.3)
Yo Yir1r 0 YN ON+1 o0 ON+h

Recall that the hypothesis states, if the information doethin Q is accu-
rate, then it is possible to exploit this information in a MSBamework to ob-
tain a new forecast that can outperform the accuracy of uzrinr;gY,\(ll). Similar
to the process in SSA, we can define the trajectory matiéesi = 1,2) of the

one-dimensional time seriefé:)(i =1, 2) with different series length. Thus, ap-
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plying the above procedure to each series separately me2different; x K|
trajectory matriceX ) (i = 1,2).

After embedding we organise a block Hankel matrix. Accogdim Hassani
and Mahmoudvand (2013) the MSSA approach has two main warg&abased
on how one organizes the trajectory matkix These are referred to as Hori-
zontal MSSA (HMSSA) and Vertical MSSA (VMSSA). Here, we cales the
MSSA approach in a vertical form, however there are somectens in selec-
tion the values oK and it is required to havi; = K, = K. Accordingly, the
VMSSA approach enables us to have various window lehgtnd different
series lengtiN;, but as we mentioned above simil&rfor all series. The block

Hankel trajectory matrix can then be defined as

Xy = ) (4.4)

where, Xy indicates that the output of the embedding step isveréical form.
Next, we obtain the SVD oKy. Denotely,,...,Ay . as the eigenvalues of
Xv Xy, arranged in decreasing ordgy, > ... Ay, > 0) andUy,,...,Uy, .
the corresponding eigenvectors, wheggn= L1 + L. Note also that the struc-

ture of the matrixXVX\T, is as follows:

.| x
Xy Xy = . (4.5)

The structure of the matriXVX\T, is similar to the variance-covariance ma-
trix in the classical multivariate statistical analystetature. The matrixX ()X ®T,
which is used in SSA, for the serié{é:), appears along the main diagonal and
the products of two Hankel matrice€ X T (i = j), which are related to the
seriesY; andY,, appears in the off-diagonal. The SVD X{; can be written

asXy = Xy, + -+ + Xy, WhereXy = vVAUyW; T and\; = XyUy /vy,
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Xy =0 if A = 0). In what follows we briefly outline the VMSSA forecast-
ing algorithms. Given that this is a new theoretical develept, it is pertinnt
to recall the VMSSA forecasting algorithms and in doing s@$¢eni and Mah-

moudvand (2013) is mainly followed.

4.2.1 VMSSA Recurrent Forecasting Algorithm (VMSSA-R)

Let us have two series with different Ieng:q(,‘i yl), ,y,(\i,i)) and correspond-

ing window lengthL;, 1 < L; < N;,i = 1,2. The VMSSA-R forecasting algo-
rithm for theh-step ahead forecast is as follows.

1. For afixed value d, construct the trajectory matrk® =[x x{) =

(xmn)rr']’r'f , for each single serléq\I andY,\(é) separately.

2. Construct the block trajectory mati, as follows:
N
Xy = : 4.6
v=| o (4.6)
3. DenoteAy, > ... > )‘VLsum > 0 are the eigenvalues of the/X\T,, where

Lsum= L1+ L.

4. LetUy, = (Uj(l),uj(z))T be thej" eigenvector of they Xy, Wherer(i)

with lengthL; corresponds to the seri&f,ﬁ:) i=12).

5. ConsideDA(V = [)A(l L )A(K] = z{zlu\/iUJiXV as the reconstructed matrix

achieved fronr eigentriples:

e
N (4.7)
X
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10.

11.

Consider matrixX ) = s#X () (i = 1,2) as the result of the Hankelization
procedure of the matriX (1) obtained from the previous step, whex€ is

a Hankel operator.

. Assumer(i)v denotes the vector of the firkf — 1 components of the

(i)

vectorU; " and nj(i) is the last component of the vecldlm (i=1,2).

Select the number of eigentriples for the reconstruction stage that can

also be used for forecasting purpose.

Define matrixu?(1:2) = (Uf(l’z),...,urv(l’2)>, Whererv(l’Z) is as fol-
lows:
v(1,2) U'(l)v
u'd =1 . (4.8)
J Uj(z)v

Define matriXV as follows:

I G
W{Téz) 2| (4.9)

If the matrix (122 —WWT)_1 exists and < Lgym— 2, then theh-step
ahead VMSSA forecasts exist and is achieved by the follofongula:

(s,
99 =

(IZXZ_WWT)ilWUVZTZha ji = Ni + 17 SR Ni+h7
\
(4.10)

T . . .
where,Z, = [z,gl),zf)] andz’ = [A,(\'h)fl_ﬁhﬂ,...,yﬂihhfl (i=1,2).
It should be noted that equation (4.10) indicates thahthep ahead fore-

casts of the refined serié’é:) are obtained by a multi dimensional linear
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recurrent formula (LRF). For the univariate case, theralg one dimen-

sional LRF.

4.2.2 VMSSA Vector Forecasting Algorithm (VMSSA-V)

Let us have items (1)-(10) of VMSSA-R. Consider the matrix:
N=U"U"+2Z (22— WWT) %", (4.11)

where,Z = UTWT (I 20— WWT) ™,

LetM = (I‘I(l), I'I(2)>T andZ = (92(1),92(2)>T, wheren® with dimension
(Li — 1) x (Lsum—2) and2) (i = 1,2) with lengthLsym— 2 correspond to the
seriesY,\(l:). Then, Theorem 1 in Hassani and Mahmoudvand (2013) inditiade
the linear projection?(V) : &, — Rbsum2 by the following formula provides the

continuation vectors for the multivariate V-forecasting.

Ny,

gg(l)TYA
VY = , YeES, (4.12)
n®@y,

gg(Z)TYA

where,Y] = (YA(l),YA(Z)> such thatYA(i)(i =1,2) denotes the ladt; — 1 entities
of Y; with lengthL;. Using above notations, the following algorithm is propbse

for calculating the VMSSA-V forecasts.
1. Define vectorg; as follows:

X fori=1,...,k
Z= (4.13)
PWVz_4 fori=k+1,....k+h+Lmax—1,

where,Lmax = max{L,L>}.
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2. Constructing the matriX = [Z1 : ... ! Zk thtLy1) @nd making its han-
kelization. Using this calculation we obta}ﬂ)f. .. ,y,(\i,)+h+Lmax (i=12).

3. The numberyf\?ﬂ, . ,9§\ili)+h (i =1,2) form theh step ahead VMSSA-V

forecasts.

4.3 Applications

This section considers applications of the proposed thedgr various scenar-
ios which include official forecasts, professional forésaand forecasts from
other time series models. In the real world, publishers 6iaf forecasts are
usually interested in providing predictions for the comyegr (i.e. 12 steps
ahead for monthly data and 4 steps ahead for quarterly datéihe with this,
considered here are applications which provide out-ofpdarforecasts for the
next year. For example, if we are dealing with monthly ddte Jast 12 observa-
tions for which 12 forecasted data are available are se¢ asithe out-of-sample
data and the remainder is used for training and testing tlexdsting models
which are used for comparison purposes. Where 12 obsengaie forecasted,
this means the first forecasted data point istihe 1 step ahead forecast, the
second forecasted data point is the 2 steps ahead forecast and so on up until
the final forecasted data point which will representlthe 12 steps ahead fore-
cast or the 12 months ahead value of a given variable. Alliegibns consider
the RMSE as the loss function and all outcomes are evaluateddtistical sig-
nificance using the Diebold-Mariano (DM) test in Diebold dvidriano (1995)
and the Kolmogorov-Smirnov Predictive Accuracy (KSPAY) te<Chapter 3. It
should be noted that as a result of a small number of obsensator evaluat-
ing forecast accuracy, it is likely that statistical testh experience issues with

picking up significant outcomes.
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4.3.1 Using Forecasts from Other Forecasting Models as More

Information

Considered in the first scenario is the use of forecasts frovariaty of other
time series analysis models such as ARIMA, Exponential Shiog and Holt-
Winters for improving the accuracy of these forecasts &ntha VMSSA. This
is important as especially in government organizationshous such as ARIMA
and Holt-Winters are widely accepted and continue to be osedg to tradi-
tions and familiarity with such models. Figure 1 plots thediseries used here
as examples. Each time series has been obtained via Dattark

These monthly time series include the popular U.S. Accalesgaths time
series (monthly data, 78 observations, January 1973-Jir@) 1milk produc-
tion (monthly data, 168 observations, January 1962-Deeerh®75), number
of city births in New York over time (monthly data, 168 obsasiens, January
1946-December 1959) and residential electricity usagewa] U.S. (monthly
data, 106 observations, January 1971-October 1979). le@s wvia Figure 4.1
that the series chosen via Datamarket include those whyatiuies stationarity,
non-stationarity, increasing trends, seasonality andc&tral breaks. In reality
we are likely to be faced with such varying time series and therefore im-
portant to consider such phenomenons as examples. In@dditnsidered as
an example is also an application which seeks to forecastnational tourist
arrivals into Germany compiled via the Eurostat databasen{hty data, 168
observations, January 2000-December 2013). In each teskst 12 monthly
observations are left aside as out-of-sample and the madesained over the
remainder of the observations.

The results from the applications are presented in Table %l out-of-

sample forecasting RMSE’s are obtained via ARIMA, HW, ETSASV, SSA-

https://datamarket.com/
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Fig. 4.1 Four time series used as examples from Datamarket.

R, VMSSA-V and VMSSA-R for each data set. Note that when nmiodgWwith
MSSA, forecasts from the univariate model which reportddleest in-sample
forecasting RMSE for the training data is selected as mdmgnmation in the
MSSA model to obtain out-of-sample forecasts.

The U.S. Accidental deaths series has been widely adoptgcheseries
literature, see for example Hassani (2007) and BrockwellRavis (2002). For
the death series, ARIMA provided the lowest in-sample fastiag RMSE and
therefore the out-of-sample forecasts from ARIMA were idered as addi-
tional information for the MSSA model. It is important to éwate whether
the newly proposed approach can result in forecasts whitbhmg outperform
the accuracy of the initial forecast, but also forecastmf@SA. Based on the
RMSE criterion, it is evident that VMSSA can provide foresawith the low-

est RMSE in comparison to all other models for this seried, @MSSA-V in
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particular reports the lowest RMSE. However, these fotaugslifferences can
be attributed to chance occurrences. In order to evalu#tie MSSA forecast
is significantly better, all outcomes are tested for stagsignificance with the
results being reported in Table 4.2 along with the RRMSE.

Based on the RRMSE, the VMSSA-V forecasts are 6% better thiivIA,
28% better than HW, 8% better than ETS, 58% better than SSAr¥ChSts.
Likewise, VMSSA-R forecasts are 2% better than ARIMA, 24%térethan
HW, 3% better than ETS and 48% better than SSA-R. In this dassed on
both DM and KSPA tests we find evidence of statistically digant differences
between the forecasts of VMSSA-V and SSA-V, and VMSSA-R aBA-R at
the 10% significance level. However we do not find similar enick in relation
to the other models. Yet, the fact that VMSSA forecasts ageiticantly better
than the SSA forecasts indicate that the proposed appreacalile.

Table 4.1 RMSE for forecasting last year of each data set.

Series ARIMA HW ETS SSA-V  SSA-R VMSSA-V  VMSSA-R
Death 332 432 338 736 624 312 327
Milk Prod. 14.10 14.80 8.63 19.50 13.70 7.28 7.69
NY Births 0.91 1.06 1.13 1.38 1.46 0.85 0.88
Elec. Use 51.6 78.10 39.90 57.30 53.70 38.73 36.40
Tourism 58251 80504 82217 55334 42089 46211 40010

Note Forecasts from the univariate model providing the lowestample forecasting RMSE is
used as additional information for the MSSA model.

Table 4.2 RRMSE for forecasting last year of each data set.

Series M MSSAR MSSAS MSSAR MSSAS M R MSSAS M R
ARIMA ARIMA HW HW ETS ETS SSAV SSAR
Death 0.94 0.98 0.72 0.76 0.92 0.97 0.42 0.52T
Milk Prod. 0521 0.55" 0.49-1 052" 0.84 0.89 037t 0.56°
NY Births 0.93 0.97 0.80 0.83 0.75 0.76 0.62 0.60
Elec. Use 0.75 0.71 0.50 0.471 0.97 0.9f 0.68" 0.681
Tourism 0.79 0.69 0.57" 0.50~ 056" 0.49-1 0.84" 0.95

Note * indicates a statistically significant difference betwdsmtivo forecasts based on the
modified Diebold-Mariano test gt= 0.10. T indicates a statistically significant difference
between the two forecasts based on the KSPA tgsta0.10.

Considered next is the monthly milk production series. lis tase, ETS
forecasts were found to be best in-sample and is therefor@dered as the ad-

ditional information for the VMSSA model. Once again, basedthe RMSE
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in Table 4.1, it is clear that the VMSSA forecasts can outpenfthe rest of
the models considered here. These performances convértisatcVMSSA-V
forecasts are 48% better than ARIMA, 51% better than HW, 1@&%eb than
ETS, and 63% better than SSA-V forecasts (Table 4.2). LigeyWWMSSA-R
forecasts are 45% better than ARIMA, 48% better than HW, 1¥%#eb than
ETS, and 44% better than SSA-R forecasts (Table 4.2). stiagdy, in relation
to the previous application, there are a higher number ¢isstally significant
outcomes in this case. VMSSA forecasts via the proposedapbrare signifi-

cantly better than ARIMA, ETS and SSA-V and SSA-R forecasts.

The third application in this sub section considers monthity births in
New York. In this instance ARIMA provided the best in-samfideecast and
was therefore selected as the model which will provide mofermation for
the VMSSA process. Table 4.1 shows that VMSSA once agaireoiatms all
models based on the RMSE, and that VMSSA-V records the IGREISE. The
RRMSE values in Table 4.2 indicates that VMSSA-V forecasts @0, 20%,
25% and 38% better than ARIMA, HW, ETS and SSA-V forecastpeesvely
whilst VMSSA-R forecasts are 3%, 7%, 24% and 40% better thHRIVM, HW,
ETS and SSA-V forecasts respectively. Regardless of thesgaiggested via
the RRMSE criterion there is no sufficient evidence of stiaadly significant
differences between the VMSSA and competing forecastsisnctise. Given
the comparatively large gains reported here, the inalfitthe statistical tests

at picking up significant differences could be a result of lksample sizes.

The fourth application relating to the use of forecasts fratimer models
as more information looks at monthly average residentttekity usage in
lowa. ETS provided the best in-sample forecast for thiseseand therefore
its out-of-sample forecast was considered as more infeomat the VMSSA
framework. As reported in Table Table 4.1, once again the M $nodels

outperform the rest based on the RMSE criterion. The RRM$kcates that
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VMSSA-V forecast reports gains of 25%, 50%, 3% and 32% intiatato the

forecasts from ARIMA, HW, ETS and SSA-V respectively. At tkeme time,
VMSSA-R forecast reports gains of 29%, 53%, 9%, 32% in retato the fore-

casts from ARIMA, HW, ETS and SSA-V respectively. The testsdtatistical

significance indicates there exists significant differsnoetween VMSSA and
HW forecasts and VMSSA and SSA forecast. In addition, theeegtatistically
significant difference between the VMSSA-R and ETS forecast

The final application here looks at the monthly internatidgaarist arrivals
into Germany. The univariate SSA-R forecast was seen praytie most accu-
rate in-sample forecast for these series based on the IRMSE and therefore
forecasts generated by this model over the out-of-sampiegp@as considered
as more information. The RMSE results reported in Table Adws that in
terms of the univariate models, SSA-R reports the forecdbttive lowest error.
However, an application of the new approach proposed indmépter results
in forecasts by VMSSA-R which outperforms the rest of the eiedTable 4.2
indicates that the VMSSA-R forecasts are 31%, 50%, 51%, &hthé&iter than
ARIMA, HW, ETS and SSA-R forecasts respectively with statally signif-
icant differences reported between VMSSA-R forecasts hodet of HW and
ETS.

4.3.2 Using Official Forecasts as More Information

Having considered the use of forecasts calculated fronr atioelels as auxil-
iary information for the VMSSA process, this sub sectionkl®at exploiting
the forecastability of official forecasts. As such, thedgciall or professional
forecasts which are calculated using complex multivamatelels in most in-
stances are considered as more information. The appinsatmnsider as official

forecasts (OF), those obtained via the U.S. Energy Infaonadministration
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(EIA)? for a variety of variables and a professional forecast (BFirflation by

a group of non-financial service providers who include maauirers, universi-
ties, forecasting firms, investment advisors, pure reseffmns and consulting
firms. The EIA time series are shown in Figure 4.2 wherebyathére monthly
and the Oil Price, Gas Price, Electricity Sales and Eleatyri8eries each have
81 observations from January 2008-September 2014. Thei@PIseries for

which a professional forecast is available is shown in FeguB and this series
includes quarterly data with 126 observations recordeadsst Q3 of 1981 and
Q4 of 2012. The last year is considered as out-of-sampleatatahe results

from the forecasting exercise are reported in Tables 4.3lahd
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Fig. 4.2 The EIA time series used as examples.

The first application looks at the West Texas Intermediary (Wil price
series. The RMSE results in Table 4.3 shows that VMSSA otdpes the EIA

2http://www.eia.gov/forecasts/steo/outlook.cfm
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Fig. 4.3 Quarterly consumer price index data.

official forecast and also the SSA forecasts along with theS&A-V model re-
porting the lowest RMSE. In terms of the RRMSE criterion,ezarted in Table
4.4, the VMSSA-V forecasts are 2% better than the officiaddasts, and 22%
better than the SSA-V forecasts. Likewise, the VMSSA-Rdasts are 1% bet-
ter than the official forecasts, and 57% better than the SSér&casts. How-
ever, when tested for statistically significant differemtetween the forecasts
evidence was found only for significant differences betwbervVMSSA-R and
SSA-V forecasts.

The next application considers average residential nagiasprices in the
United States. Again, based on the RMSE values the VMSSAc#sts out-
perform the official EIA forecast and the SSA forecasts andS8W-V reports
the lowest RMSE (Table 4.3. The RRMSE values in this case sleoyminor
gains whereby VMSSA-V is 6% better than the official forecastl 9% bet-
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ter than the SSA-V forecast, whereas the VMSSA-R foreca&&¥idetter than
the official forecast and 8% better than the SSA-R forecasire Hhere is no

evidence of statistically significant differences betweaw of the forecasts.

Table 4.3 RMSE when using official forecasts for forecastisy year of each data set.

Series OF SSAV SSA-R VMSSAV VMSSAR
EIA

WTIPUUS 434 542 10.01 4.25 4.32

NGRCUUS 0.87 090  0.90 0.82 0.83

EXRCP.US 253.46 392.69 306.44  253.95 248.53
ESICUUS 024 031 031 0.23 0.23

ﬂ:

CPI 053 117  2.40 0.31 0.40

Note OF: Official forecast. WTIPUUS - West Texas IntermediatetShverage Crude Oil
Price. NGRCUUS - Average Residential Natural Gas Price. ERRIS - Residential Sector
Total Electricity Sales. ESICU.US - Industrial Sector Avge Regional Electricity Prices. PF:
Professional forecast from group of non-financial service/igers. CPI - Consumer Price
Index.

The third application which considers an official forecasilds at data on
total electricity sales in the U.S. residential sector. RIMSE results in Table
4.3 shows that VMSSA-R can provide the forecast with the kiveeror whilst
the VMSSA-V forecast is on par with the official forecast. TRRMSE values
in Table 4.4 indicates that VMSSA-V forecast is 35% bettamtlhe SSA-V
forecast whilst the VMSSA-R forecast is 2% better than tlieiaf forecast and
19% better than the SSA-R forecast. All outcomes are onci agsted for
statistical significance, but there is no evidence at the &@Hificance level in
this case.

The fourth application considers modelling the U.S. indaksector aver-
age regional electricity prices. The RMSE values in TabBshows that both
MSSA models are outperforming the official forecast and tB& $odels in
this case. The RRMSE criterion as per Table 4.4 indicatédbtith MSSA fore-
casts are 4% better than the official forecast and 26% bétder the SSA-R

forecast. In this case there is evidence of the newly prapus4SSA approach
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outperforming SSA forecasts with statistically significegsults.

Table 4.4 RRMSE when using official forecasts for forecastast year of each data
set.

Series  VMSSAV VNMSSAR VWSSKV VISSAR
EIA

WTIPUUS 0.98 0.99 0.78 0.43
NGRCUUS  0.94 0.95 0.91 0.92
EXRCP.US 1.00 0.98 0.65 0.81
ESICU.US 0.96 0.96 0.74 0.74°1
ﬂ:

CPI 0.58 0.75 0.26 0.17

Note * indicates a statistically significant difference betwdemtivo forecasts based on the
modified Diebold-Mariano test gt= 0.10. T indicates a statistically significant difference
between the two forecasts based on the KSPA tgsta0.10.

The final application considers forecasting the last fowartprs of the quar-
terly consumer price index growth rate series. The prodesgiforecast is used
as more information and the resulting RMSE is reported inelat8. Given that
there are only four out-of-sample observations it isn'listia to expect statis-
tically significant differences between the forecasts ia tase. However, the
RRMSE results in Table 4.4 can provide a reasonable indicati the compar-
ative performance. The RMSE shows that both VMSSA modelsartarm not
only SSA but also the professional forecast with VMSSA-Varing the lowest
RMSE. The RRMSE criterion shows that the VMSSA-V forecagtd%o better
than the professional forecast and 74% better than the S$#edast. Like-
wise, the VMSSA-R forecast is 25% better than the profesditorecast and
83% better than the SSA-R forecast. Figure 4.4 provides phgral represen-
tation of the out-of-sample forecasts. It is evident that WMSSA-V forecast
is the only one which remains comparatively aligned with als&ual inflation

values.
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Fig. 4.4 Out-of-sample forecasts for the last four quarbétse CPI.

4.4 Discussion

This chapter begins with the aim of introducing a theoréfiganework for ex-
ploiting the forecastability of forecasts. That is, onc®getast is generated by
official or professional forecasters, is there any possf exploiting the in-
formation contained with the given forecast for generaéimgw and more accu-
rate forecast? The idea for exploiting the forecastabilitiprecasts was derived
from the methodology underlying VMSSA (Hassani and Mahnvaundl, 2013)
which is a technique that enables modelling multiple tinrgesewith different
series lengths.

The proposed methodology seeks to exploit data with a tigant the
future and couples this information with historical datataming to the same

variable in order to generate a new and improved forecase drtty condi-
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tion is that the forecast has to have some level of good acgwas otherwise
there would not be any useful auxiliary information that tenextracted from
the forecast. Given the proposed theory, this chapter epjplito several real
world applications. The results indicate that VMSSA forgsavhich exploits
the proposed theory are able to outperform its univariata@part, SSA in all
instances (with statistically significant results in sorases). Moreover, there
has always been at least one VMSSA model which can outpettogrofficial,
professional or other forecasts in all cases based on theERivi®rion. The low
number of out-of-sample forecast available for comparmmposes makes it an
arduous task for the statistical tests to pick up significéiferences. However,
the RRMSE criterion is able to show that in certain cases t&SS8A models
report gains of well over 20% in relation to a competing fasc

The introductory nature of this theoretical concept opgma new research
avenue with specific interests for the future discussedaeriittal chapter. How-
ever, the initial findings not only introduces a novel th¢iced approach for
exploiting the forecastability of forecasts, but also shomat it is indeed worth-
while to research in-depth into this concept so as to devetope efficient
VMSSA models which will be of utmost importance to forecastacross the

globe.






Chapter 5

Automated & Optimized Singular

Spectrum Analysis

This chapter focuses on introducing the automated and g@inSSA and
MSSA forecasting algorithms. The chapter begins with arodction which
considers the reasons for, and the importance of automatidgptimizing the
SSA and MSSA processes which is then followed by a conciseatitre re-
view which evaluates the historical approaches to paransetection in SSA
and MSSA whilst indicating how the proposed method fills aistéxg research
gap. The algorithms are presented next, and an applicatitmecautomated

SSA process to forecasting a real data set is presented asoaigvidence.

5.1 Introduction

In the 21st century, Econometricians are no longer the ardividuals who are
interested in time series analysis and forecasting as bogle land small scale
firms now seek to exploit time series analysing and foreegstiethods to en-
able better decision making and risk management. The isicrgavailability of

large data sets and access to time series information ondHé wide web has
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further added to the interest in exploiting this widely dable information for
improving managerial decisions. However, this increasitgrest by the masses
towards the application of time series analysis technitgigeeatly restricted by
the nature of the time series techniques themselves. Thisdause, with the
exception of the Random Walk, almost every other time séeelsnique has a
complex econometric framework underlying its understagdusage and per-
formance which in turn restricts the ability of those whom@oefortunate enough

to comprehend such complexities from exploiting these outh

In 2008, researchers from Monash University in Australimgunderstood
the need for large scale forecasting and the lack of traieesiomnel in the field
of time series analysis and forecasting techniques even @aisenall number of
forecasts are required, introduced the ‘forecast packaga'which in brief en-
ables automatic time series forecasting (Hyndman and Kdieard2008). This
meant that individuals no longer need to understand the Bn@zonomic the-
ory underlying methods such as ARIMA, Exponential Smoaghaind Neural
Networks (among other techniques introduced through @igg@ge) in order to
generate forecasts using these methods. The concept wagseetved and the
authors went a step further to complement the ‘forecastagekwvith an online
text book on forecasting using these methods, see HyndnthAtlianasopou-
los (2012).

The success of the Singular Spectrum Analysis techniquendispsolely
on the correct specification of its two parameters, the WindengthL and
the number of eigenvaluegHassani and Mahmoudvand, 2013; Hassani et al.,
2011, 2012b), which are used for decomposing a time serigéghemn recon-
structing a less noisy time series respectively. Over tlagsya variety of math-
ematically complex, time consuming and labour intensiyeragches which re-
quire detailed knowledge on the theory underlying SSA hasnlproposed and

developed for the selection of SSA and MSSA parameters. Menvehe highly
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labour intensive and complex nature of such approachesrwvanly discour-

aged the application of this method by those not conversdhttixe underlying

theory, but also limited SSA and MSSA to offline applicatiods such there
remains a need for automating SSA and MSSA. At this junctusgoiertinent to

note some key initial attempts at automating SSA. Firsthyterd et al. (1992)
sought to automate trend and periodicity extraction in SSéveral years later,
Alonso et al. (2004) presented automated denoising for $3Ad case of big
signal to noise ratios. This was followed by Alexandrov (@0@ho presented
a method for automating trend extraction using SSA. Whiist pprevious au-
tomation attempts have lead to positive outcomes in ternemabling users to
extract trend and harmonic components with ease, theseodseé#ne not aimed
at enabling the best possible forecast from SSA or MSSA.

Accordingly, through this research, an automated and apgithalgorithm
is presented for forecasting with SSA and MSSA. The key pogmg that this
algorithm is optimized by minimizing a loss function whichadles the users to
automatically determine the optimal SSA or MSSA paramdt®rgbtaining the
best possible forecast without the need for an extensive-depth knowledge

into the complex theory underlying SSA and MSSA.

5.2 Parameter Selection in SSA & MSSA

The selection of the window lengthdepends on the structure of the data, the
purpose of the analysis and the forecasting horizon (Has$ah, 2009; Has-
sani and Mahmoudvand, 2013). Following some discussi@andgland Tsonis
(1996) notes that selectiig= T /4 is common practice. However, theoretical
results thereafter suggest that the window lerighould be large enough but
not greater thamM/2 (Ghodsi et al., 2009; Golyandina et al., 2001; Hassani,

2007). The selection df is both crucial and problematic as wheris too large
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there are too few observations left to choose the covarianatax of thel vari-

ables (Hassani et al., 2011) and this is known to make thedstang results
inaccurate (Hassani et al., 2012b). Moreover, settingo large could lead to
some parts of the noise mixing up with the signal whilst clig& too small

opens up the risk of losing some parts of the signal to theen@®lyandina
et al., 2001). Hassani (2007) notes that if the time serissaly@eriodic compo-
nent with an integer period, then it is advisable to seleptoportional to that

period as this enables better separability of the pericaiicponents.

Golyandina (2010) recommends settibglose to half of the time series
length to achieve optimal signal-noise separation basexigience from a sim-
ulation study. However, Khan and Poskitt (2013a) providadence which
shows that the Golyandina (2010) claim does not hold uraligrs Hassani
et al. (2011) and Hassani et al. (2012b) suggested consif#re selection of
L based on the concept of separability between signal an@.ndise authors
show that by setting = [%] whereT is the length of the series, one is able to
attain the minimum value for the weighted correlationgorrelation) statistic
which is a natural measure of the similarity between twoesefiHassani et al.,
2011). Through the work of Khan and Poskitt (2013Db) it is gigd that set-
ting L much shorter than the upper boudd2 can result in better SSA forecasts.
In other words, their recommendation is thatt <<< N/2 andL = (logN)°®,
wherec > log(2)/loglog(N) (Khan and Poskitt, 2013b). In summary, there is
no one rule for selectinly, and instead it largely depends on the structure of the
data, purpose of analysis and the forecasting horizon efest.

The selection of the correct number of eigenvaluesequally important in
the overall SSA process as it has a direct effect on the récmti®n in SSA.
As Hassani and Mahmoudvand (2013) notes, ig chosen to be greater than
exactly what it should be, then we increase the noise in thenstructed series

whereas choosing to be smaller than the exact requirement results in ignor-
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ing some parts of the signal which ought to be included in dw®@mnstruction.
Literature shows that there are various approaches totgelétassani (2007)
suggests analysing the scree plot and pairwise scattey. ptmwever, as Khan
and Poskitt (2013b) points out there is no defined statisieasion rules when
using these approaches and so the modelling proceduret i® b€ a highly
subjective assessment. Accordingly, the selectioninfSSA continues to re-
main an open problem. Parameter selection is even more egnmphe case of
MSSA. As Hassani and Mahmoudvand (2013) states, the sityitard orthog-
onality among series, the use of a block trajectory Hanketimas opposed to
one Hankel matrix makes the selectioridd difficult task whereas the selection
of r is made difficult by the fact that each eigenvalue contaifegimation of all

time series considered in the multivariate analysis.

5.3 New Forecasting Algorithms for SSA and MSSA

Presented in this section are new forecasting algorithnStA and MSSA
which enables the automatic selectior_adndr for obtaining the optimal SSA
or MSSA forecast for a given data set. The algorithms aremopéd via the
minimisation of a loss function and is the first step towardalding the use
of SSA and MSSA for online applications. Moreover, the awted nature of
the algorithms enable users who are not conversant with dheglex theory

underlying SSA and MSSA to be able to exploit these techrsdoetheir work.

5.3.1 Automated & Optimized SSA Forecasting Algorithm

Shown below is the automated and optimized SSA forecashyzgithm.

1. Consider a real-valued nonzero time sevies= (y1,...,yn) of lengthN.
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2. Divide the time series into two part%*r;OI of observations for model train-

ing and testing, anérd for validating the selected model.

LK

. Use the training data to construct the trajectory marix (xij); =, =

(X1, ..., X], whereXj = (yj,...,¥L+j-1)" andK = N—L+1. Initially, we
begin withL =2 (2<L < %) and in the process, evaluate all possible

values ofL for Yy.

. Obtain the SVD oK by calculating<X T for which A1, ..., AL denotes the

eigenvalues in decreasing ordén > ... AL > 0) and byUs,...,U the
corresponding eigenvectors. The output of this stagfe=sX1+...+ X
whereX; = VAUV andV; = XTU; /V/A;.

. Evaluate all possible combinationsofl < r < L — 1) singular values

(step by step) for the selectédand split the elementary matric¥s (i =

1,...,L) into several groups and sum the matrices within each group.

. Perform diagonal averaging to transform the matrix wité selecteda

singular values into a Hankel matrix which can then be cdedeinto a
time series (the steps up to this stage filters the noisysjeride output

is a filtered series that can be used for forecasting.

. Depending on the forecasting approach one wishes toelsef the SSA-

R approach or SSA-V approach which are explained below agrldeof

this algorithm.

. When forecasting a serié§ h-steps ahead, the forecast error is min-

imised by setting?(Xxh — Xk+n) Where the vectoKy_ ., contains the
h-step ahead forecasts obtained using the correspondiecgiting algo-

rithm as chosen in Step 7.
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9. Find the combination df andr which minimises? and thus represents

the optimal SSA choices &f andr.

10. Finally use the optimdl to decompose the series comprising of the val-
idation set, and then selectsingular values for reconstructing the less
noisy time series, and use this newly reconstructed sevref®fecasting

.. rd .
the remaining}~ observations.

Recurrent SSA (SSA-R)

Let V2 = nf +...+ Tr,2 whererTs is the last component of the eigenvectyr
(i=1,...,r). Moreover, suppose for any vector ¢ R- denoted byu" ¢
R~ the vector consisting of the firét— 1 components of the vectaf. Let
YN+1,-- -, YNLh Show theh terms of the SSA recurrent forecast. Then, likstep

ahead forecasting procedure can be obtained by the folgpfermula

Yi fori=1,...,N
Yi = L1 ' (5.1)
Yi—iajyi—j fori=N+1,...,N+h

wherey; (i=1,...,N) creates the reconstructed series (noise reduced sars) a

vectorA= (a._1,...,01) is computed by:

1

A—

ilmuiv. (5.2)

Vector SSA (SSA-V)

Consider the following matrix

N=V'(V")T +(1-V2)AAT (5.3)
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whereV" = [U/',...,U,”]. Now consider the linear operator

oM : g —R" (5.4)
where
nuv
oMU = . (5.5)
ATUVY
Define vectoz; as follows:
X fori=1,...,K
Z = X (5.6)

oVz,_4 fori=K+1,....K+h+L—-1

where X;’s are the reconstructed columns of the trajectory mattirafrouping
and eliminating noise components. Now, by constructingimat= [Zy, ..., Zx ths1 1]
and performing diagonal averaging we obtain a new sedes.,YnihiL 1,

whereyn1, ..., Ynoh form theh terms of the SSA vector forecast.

5.3.2 Automated & Optimized MSSA Forecasting Algorithms

In what follows, the automated and optimized HMSSA-R and EBAS/ fore-
casting algorithms are presented. In presenting these Ityaoithms the nota-

tions in Hassani and Mahmoudvand (2013) have been relied.upo

HMSSA-R Optimal Forecasting Algorithm

1. ConsideM time series with identical series lengthS\yf such thaV,\(,:) =

W) =1, M),

2. Split each time series into three parts Ieav%ﬁdgfor model training and

testing, and%rd for validation.
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3. Beginning with a fixed value df =2 2<L < %) and in the process,

evaluating all possible values bffor Yy, using the training data construct

the trajectory matriX() = [X{"...., X{"] = (xmn)sx_; for each single

seriesY,\(l:) (i=1,...,M) separately.
Then, construct the block trajectory matky as follows:

Xu=| x: x@; : X M)

Let vectolUy; = (Ulj,...,ULj)T, with lengthL, be thejt" eigenvector of

Xu X[, which represents the SVD.

Evaluate all possible combinationsrofl <r < L — 1) step by step for

the selected. and construch(H = z{zluHiU,]iXH as the reconstructed

matrix obtained using eigentriples:

)
=

Xp=| XD: X@;:

. Consider matriX ) = XD (i = 1,...,M) as the result of the Hanke-
lization procedure of the matriX(") obtained from the previous step for

each possible combination of SSA choices.

LetUHVJ_ denote the vector of the firkt— 1 coordinates of the eigenvectors

Uy;, and rgy; indicate the last coordinate of the eigenvectdrg (j =

1,...,r).

r
9. Definev? = jzl ;-
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10. Denote the linear coefficients vect@ras follows:

r

1
o7 > iU (5.7)
=1

t%:

11. If u? < 1, then theh-step ahead HMSSA forecasts exist and is calculated

by the following formula:

(
(1) (M) - .
. [yjlw"?ij}? JI_17"'7N|7
(1) M) |
[yjl oo Yim } = (5.8)
A7, ji=Ni+1,...,N+h,
\
T . . .
where,Zy = [Zﬁl),...,zr(l'\")] ande(") = ygg_L+h+l,...,y§g3+h_l (i=
1...,M).

12. Seek the combination &f andr which minimises a loss function?’
and thus represents the optimal HMSSA-R choices for decemgand

reconstructing in a multivariate framework.

13. Finally use the selected optimato decompose the series comprising of
the validation set, and then selectingular values for reconstructing the
less noisy time series, and use this newly reconstructezsder forecast-

. .. rd .
ing the remamm% observations.

HMSSA-V Optimal Forecasting Algorithm

1. Begin by following the steps in 1-9 of the HMSSA-R optimatdcasting

algorithm above.
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2. Consider the following matrix
N=uU"U"T +(1-V’)RR',
whereUY = [U/’,...,U,”]. Now consider the linear operator
2V g RY

where

Y,
PVy — Sl ves,
R'Y,

andY, is vector of lasL. — 1 elements oY.

3. Define vectozj(i) (i=1,...,M) as follows:

(i): S(V](I) forjzl,...,ki

y |
20z, forj=k+1,....k+h+L-1

(5.9)

(5.10)

(5.11)

(5.12)

where,)N(j(i)’s are the reconstructed columns of trajectory matrix ofithe

series after grouping and leaving noise components.

4. Now, by constructing matriz = [z, ...,z ., ;] and performing di-
agonal averaging we obtain a new seyi@s .?.,yﬂ,i)mﬂfl, Whereyﬂi)H, e 9§\ili)+h

provides thén step ahead HMSSA-V forecast for the selected combination

of L andr.

5. Finally, follow steps 12-13 in the HMSSA-R optimal foretag algo-

rithm to find the optimalL andr, and use these to obtain the HMSSA-V

forecasts.
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5.4 Application

This section considers the application of the automatedogtichized SSA al-
gorithm for tourism demand forecasting in order to illustras usefulness and
validity in practice.

Previous research has highlighted the importance of atcdemand fore-
casting to the tourism sector. The dependence of tourismotim ibvestment
and infrastructure development make a degree of advanoeiptpessential, as
many authors have recognised. Well informed investmensibers are vital for
efficient resource allocation in both tourism and suppgrsectors. The eco-
nomic downturn and an increased awareness of world econaftatility have
strengthened rather than weakened this need to forecastttdamand accu-
rately.

As discussed in the following sub-section there is an extensnd high
profile existing literature on forecasting tourism demanlis literature covers
a wide range of different forecasting techniques, applea wide range of
different countries or locations. The purpose of this aggtion is to add to
this literature by introducing a new model for forecastiagrist arrivals and to
apply ittoinbound U.S. tourist arrivals. Forecasting Udbrist arrivals is both a
demanding and important task, mainly because these daitaitexhigh degree
of fluctuation over time. Figure 5.1 depicts the time sermstbtal monthly
U.S. tourist arrivals between January 1996 and Novembe2.284 can be seen
from the graph, although the series increases over our sgpepiod (with the
exception of year 2001), its movements are dominated byosedig.. Since
2002 U.S. tourist arrivals exhibit a strong upward trende Tieed to allocate
resources for future growth is further evidence of the inguoee of developing
accurate demand forecasting for investors, managers dmmy pawakers in the

tourism sector.
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Fig. 5.1 Total monthly U.S. tourist arrivals time seriesn(JA996 - Nov. 2012).

There are a number of components which define a good demaswhi&ing
model for tourism management. Firstly, the forecasting ehbds to be able to
pick up strong variations in tourist arrivals as most tautismand time series
show increasing fluctuations with seasons. Secondly, ghveseasonal fluctu-
ations, the measure of forecasting accuracy based on theafsting error alone
is not sufficient. It is important that the forecasting moeequally able to
predict the actual direction of change. If not, investmestisions and the re-
sources allocated to tourism could find themselves catérimgpeak in demand
but actually experiencing a trough. Thirdly, a tourism dachBorecasting model
needs to be efficient both in the short and long run. This isbee long term
investments are needed to be able to supply to the short temmand fluctua-

tions. In this application all these aspects are considasdtie SSA technique
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is introduced for modelling and forecasting U.S. tourisivats, and compared

with other forecasting models currently used to forecastison demand.

5.4.1 Literature Review

The existing literature on the forecasting of tourism dechenwide ranging
both in terms of the different techniques employed and ims$eof the different
countries covered. A common theme in almost all of the pagkss helps to
explain the reasons behind this extensive interest in &stéty tourism demand.
A large number of authors including Chan and Lim (2011), GQ0g), Coshall
and Charlesworth (2011) and, Goh and Law (2002) emphassmfportance of
forecasting for investment and development planning imisont This message
is re-enforced by authors, such as Gounopoulos et al. (209PHui and Yuen
(2002), who add that such forecasts are also important asseqaence of the
vulnerability of tourism to large fluctuations in demand. n#&oauthors also
emphasise the importance of tourism to a particular economg-enforce the
importance of accurately forecasting tourism demand. Eesninclude work
by Jackman and Greenidge (2010) for Barbados, and Chu (26dMacau.
Those readers seeking a detailed review of the literattwee paper by Song
and Li (2008) covers 121 studies produced from 2000 to theafgtublication.
This review article offers a further reason for the sustdised extensive interest
in forecasting tourism demand. They found that no singledasting model
outperforms all other in all possible situations. This imaplthat the literature
is not only of importance but also in need of further reseasimore recent
review of forecasting and the closely related issue of smnilemand modelling
is included in the paper by Song et al. (2012).

Perhaps the most common form of study is one that assesgesrtbemance

of one or more forecast techniques relative to a set of @taes. Alvarez-Diaz
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and Rossell6-Nadal (2010) examine forecasts of UK touristas in the Ba-
lerics, using meteorological variables. They compare thidopmance of an
ARIMA model and a non-causal autoregressive neural netwiordting that the
latter performs better. Assaf et al. (2011) examine penscst and seasonality in
data for tourist arrivals into Australia. They compare tieefprmance of three
different forecasting models, two standard methods ugatgearity of degrees
0 and 1 and a model with fractional degrees of integratiohaAasopoulos and
de Silva (2012), in a study of tourist arrivals in AustraliedaNew Zealand pro-
pose a model which captures time varying seasonality wélwvector innovation
time series model. They produce evidence that this modetffreater forecast
accuracy than a number of alternatives. Cho (2003) invastsgthree different
techniques (exponential smoothing, univariate ARIMA artdieial neural net-
works) to forecast tourist arrivals in Hong Kong, finding taetificial neural

networks forecasts to be the most accurate.

Chu (2008) explores fractionally integrated ARMA modelsfanecasting
tourism arrivals in Singapore, observing that they perfovell in comparison
to more traditional ARIMA models. Chu (2011) compares a @ase linear
model with autoregressive trend, seasonal ARIMA and foaetily integrated
ARMA models in forecasting tourism demand for Macau, codrig the piece-
wise linear model to be the most accurate. Likewise, Gilralg2005) considers
forecasts using monthly data for tourist arrivals into tHe lWsing a procedure
combining unit and fractional integration in seasonal a@on. He finds evi-
dence of long memory and mean reverting behaviour. Goh and2802) use
data for Hong Kong tourist arrivals to compare forecastsfeostochastic non-
stationary seasonality model (SARIMA) and an interventomponent model
(MARIMA) with a selection of eight other time series modél$eir results sug-
gest the SARIMA and MARIMA models to have the highest foréeasuracy

of the models analysed.
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Greenidge (2001) uses a structural time series model tageg@nd evalu-
ate forecasts for tourism arrivals in Barbados. JackmanGreenidge (2010)
further explore the structural time series model for tdwarsivals in Barbados,
finding that it produces more accurate forecasts than a nuaitsternatives.
Hadavandi et al. (2011) present forecasts for tourismagivm Taiwan using a
hybrid artificial intelligence model, involving a fuzzy mtbased system, which
they found to be more accurate than a selection of threenaliee approaches.
Kim et al. (2011) consider the performance of predictioriiwls for tourism
arrivals into Hong Kong and Australia for a selection of tisezies forecasting
models. They find an autoregressive bias corrected boptstoalel to perform
best of those tested. Lim and McAleer (2001) analysed thipeance of var-
ious different exponential smoothing models in forecastiourist arrivals in
Australia, concluding that using models expressed in fifigrénces increased
forecast accuracy. Shareef and McAleer (2007) evaluatelitiées of ARMA
models to capture the effects of volatility in the time serd tourism arrivals
in the Maldives. Song et al. (2010) focus on a different aspéforecasting
tourism demand - what is the appropriate measure of demarsit®y data for
Hong Kong they find use of tourism arrivals to be more affetigthcome in the
country of origin and tourism expenditure to be more seresiib prices. Wan
et al. (2013), also using tourist arrival data for Hong Koaggess the properties
of disaggregated forecasts using a seasonal ARIMA modativelto aggre-
gate forecasts. They find the sum of disaggregated foretmaptevide greater

accuracy than an aggregate forecast.

A very closely related strand in the literature seeks to dambwo or more
forecasting models into a new hybrid model and to test wietthis results
in greater forecast accuracy. Andrawis et al. (2011) finds, tim forecasts of
tourism arrivals into Egypt, combining short and long teoretasts improves

accuracy compared to the individual forecasts. Cang (26gaines tourism
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arrivals into the U.K. and examines three different foréogsmodels - support
vector neural networks, seasonal ARIMA and an exponentalsthing model.
He finds that non-linear combinations of these models offeatgr forecast ac-
curacy than the individual specifications. Coshall and @sarorth (2011) con-
sider a number of forecasting models, both individually am@¢ombination.
Using data on UK outbound tourism they also find that foreaastiracy is im-

proved by using a combination of forecasts.

Shen et al. (2008) focus on outward leisure tourism from ti& End exam-
ine seven different types of individual forecasting tecquas. Their results also
suggest that forecast accuracy is improved by combiningctsts. Shen et al.
(2011) conduct a similar analysis of UK outward tourismngsseven different
individual forecasting methods and six combinations. Adheir findings sug-
gest that forecast accuracy is improved by using combinsatidforecasts. Song
et al. (2011) develop a model to forecast Hong Kong touristas which com-
bines a structural time series model with a time varying pa&tar one. They
find that, relative to a number of time series models, theridymodel exhibits
greater forecast accuracy. Song et al. (2013), again wéheict to tourism ar-
rivals in Hong Kong, consider a model which combines quati forecasts
which judgemental forecasting from an online survey. Theg fthat adding a

judgemental component improves forecast accuracy.

A number of papers consider the implications of shocks toasmeore fore-
casting models of tourism demand. Gounopoulos et al. (26dr&ider the fore-
casting of the impact on tourism arrivals in Greece of maronomic shocks.
They compare a number of different forecasting methodsinghen ARIMA
model to be the most accurate and also develop a VAR modelrabii2©10)
examines the effects on forecasts of outbound travel ofajlodression for a
sample of countries. Mao et al. (2010) use a cusp catastnmple| to fore-

cast the rates of recovery of tourist arrivals in Taiwan friby@ SARS epidemic.
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Their results suggest that tourism from China and the Uc®vered quickly but
that from Japan did not. In a similar vein Page et al. (201f&)nede the nega-
tive effect of the Swine flu epidemic on U.K. tourist arrivalsing a time varying
parameter model. Fourie and Santana-Gallego (2011) useéiygmodel to es-

timate and predict the impact of mega-sports tourism evamtsurist arrivals.

Studies which examine the determinants of demand for touai® not anal-
ysis of forecasting models but are so closely related todrechsting of tourism
demand that they merit consideration. Chan and Lim (2014lyar seasonality
in New Zealand tourism demand using spectral analysis. fihdylifferent cat-
egories of inbound tourism share common cyclical behavidaudé and Saay-
man (2005) consider the determinants of tourist arrivafs3ilfrican countries,
finding tourism infrastructure and health risks to be of igatar importance.
Nelson et al. (2011) estimate a demand model for visitorsawaii from main-
land U.S. Their results suggest home state income, airdar@¢log) distance to
be important. Seetanah et al. (2010) estimate tourism defiearSouth Africa
using a gravity model. Their analysis suggests prices| tehaevelopment and
common borders to all be important determinants. Seeta2®h0] uses dy-
namic panel cointegration to estimate demand elastiditiesourism arrivals
into Australia, finding demand to be inelastic in the short but elastic in the
long run.

Volatility models are built upon an ARIMA model to which thegld a sec-
ond equation to explain the conditional variance. CosH#00) provides a
good overview of these techniques and their applicatiomtedasting tourism
demand. The most commonly used specification is the GARCHemale-
veloped by Bollerslev (1986). This adds to the ARIMA modelesuation to
explain the conditional variance. This equation modelsctimeent period con-
ditional variance in terms of lagged squared residualst{caqg the short run

impact of past shocks) and long term effects from laggedegbf the condi-
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tional variance. Extensions of the GARCH model include t&ARCH (which
use dummy variables to model asymmetric shocks) and EGARG#EM. For
example, Kim and Wong (2006) use both the EGARCH and TGARCH-mo
els to provide forecasts of tourism demand in Korea with asgtnic responses
to “news” shocks. Coshall (2009), in an application to UKmund tourism,
shows that forecasts using the EGARCH model can be combinbdtose
from an exponential smoothing model such that the combioeztést is more

accurate than either of the individual methods.

The use of SSA in the tourism sector was firstly evaluated byeReet al.
(2012) via an application into signal extraction and fosticey of U.K. Tourist
income. However, this application introduces SSA as a nedeaifor forecast-
ing tourism demand in the future. As noted above, there gaisbus different
techniques which have been applied for forecasting toudiemand in the past.
The performance of SSA forecasts are compared with the dstig results
from ARIMA (Automatic-ARIMA), Exponential Smoothing (ET)S&nd Neural
Networks (nnetar). The ETS methodology gained populahitgugh its per-
formance at the M3-competition. The state space framewdrkiwunderlies
the new developments in ETS is widely applicable, and likd MR, under-
pins forecasts with a sound stochastic model (Hyndman e2@02). Neural
networks have frequently been adopted in tourism demaretésting as pre-
viously mentioned. A further key feature is that used in #pglication is the
most basic version of SSA-V with optimal choices. Given theice of fore-
casting methods, the forecasting accuracy of both paranagetd nonparametric
time series analysis and forecasting techniques are ceapbinlike paramet-
ric forecasting techniques, nonparametric techniquesardound by any of
the usual assumptions such as stationarity and normaktgush, nonparamet-
ric models are better able to provide a true approximatiocimefreal situation.

However, it is important to note that this application doesintend on showing
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that SSA is the universally best model for forecasting &fuarrivals. Instead,
the aim is the introduction of SSA as an alternative method farther research
is required to compare SSA's performance against many fthecasting tech-

nigues.

5.4.2 The Data

Used for application purposes is the monthly U.S. tourisivalls data from
January 1996 to November 2012 (203 observations) obtaiiketh® U.S. De-
partment of Commerce: Office of Travel and Tourism IndustrieTable 5.1
provides some descriptives for the data. According to thea,daverage total
monthly tourist arrivals into the U.S. between January 18@&ember 2012
were 3,798,000. The maximum number of tourist arrivals rduthe sample
period of concern was recorded at 7,249,000 in July 2012 hedninimum
2,096,000 (in November 2001). By region the lowest averagathty tourist
arrivals into U.S. were recorded from Africa whilst Canadaaunts for an av-
erage of 1,346,000 tourist arrivals, the highest influx airigts into U.S. from
a single country. The skewness statistic indicates théhadl series analysed in
this study are in fact skewed and not normally distributed. akalysis of the
kurtosis suggests that all the series have Platykurtidbligtons except for Italy
which has a Leptokurtic distribution. Accordingly, thiganmation tells us that
the Italian time series for tourist arrivals into U.S. hasghtprobability for ex-
treme values with thicker tails and values concentratedratahe mean whilst
all other time series for U.S. tourist arrivals have a lepsebability for extreme
values in comparison to a normal distribution and consistabdies which have
a wider spread around the mean. In order to confirm the infoomg@rovided

through the skewness and kurtosis statistics, the dataesésdtfor normality

Ihttp://travel.trade.gov/research/monthly/arrivals/
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using the Shapiro-Wilk test. Accordingly, it was found tiaéstern Europe,
Total Overseas, Asia and Central America were in fact ndynalidtributed at a
p-value of 0.05. The last column in Table 5.1 shows the sedsbsquare. This
is obtained as the conventional R-square in a regressidwedirst difference se-
ries against twelve monthly dummy variables. The R-squar€tnada is the
largest and accounts for 92% of total variation in the seitas noteworthy that
with the single exception of Hong Kong, monthly dummy valésbaccount for
over 60% of the variation for each country. Thus it is posstblconclude that

seasonality is generally strong for these series.

Table 5.1 Descriptive statistics: U.S. tourist arrivasnJ1996 - Nov. 2012).

Series Mean Min. Max. Std. Dev. Skew. Kurtosis Seasofal R
Total Arrivals 3798000 2096000 7249000 994944 0.86 0.63 80.8

Arrivals by country

Canada 1346000 727300 2945000 417184 1.07 1.24 0.92
Mexico 491100 67960 1668000 338299 1.25 0.74 0.67
Total Overseas 1961000 1119000 3089000 382831 0.34 -0.06 77 O.
Western Europe 859700 418800 1320000 187797 0.14 -0.50 0.78
Eastern Europe 39000 17610 76360 11875 0.69 -0.15 0.78
Asia 550500 246500 934300 106414 0.22 0.71 0.71
Middle East 51600 22930 120200 17996 1.09 121 0.63
Africa 22870 7869 48080 6863 0.63 0.51 0.87
Oceania 65190 28090 165600 23470 1.26 181 0.87
South America 215200 98580 420300 68877 0.62 0.06 0.67
Central America 59510 29730 91860 12097 0.29 -0.14 0.83
Caribbean 97440 48330 191100 31712 1.05 0.51 0.89
France 86290 36920 201800 31954 1.20 1.39 0.83
Germany 136800 54920 235600 39695 0.24 -0.80 0.71
Italy 51460 17170 157400 23127 1.88 4.65 0.85
Netherlands 41180 20340 90430 12554 1.26 2.23 0.83
Spain 36260 13110 104600 16651 1.40 2.15 0.67
Sweden 25820 11070 51560 7680 0.84 0.96 0.75
Switzerland 29090 13270 74220 10514 1.24 2.22 0.82
United Kingdom 338400 164300 475400 64735 -0.46 -0.34 0.74
Japan 331200 141600 549100 80225 0.36 -0.21 0.66
South Korea 62490 19510 130300 22956 0.78 0.24 0.78
PRC & Hongkong 46480 11480 207000 28966 2.63 8.62 0.43
ROC (Taiwan) 27830 9451 63400 10223 0.90 0.70 0.70
Australia 51380 21000 142400 20462 141 2.17 0.72
Argentina 30780 9279 64240 13845 0.25 -1.00 0.60
Brazil 65960 18680 171000 34633 1.11 0.69 0.72
Colombia 31810 11110 74670 12050 0.79 0.18 0.83
Venezuela 39330 15780 86160 14841 0.93 0.51 0.83

Next the U.S. tourist arrivals series are tested for unit ppoblems as cer-

tain external shocks such as recessions (for example) f@maus for creating
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structural breaks and making a time series nonstationameian and variance.
Table 5.2 reports the findings from the Bai and Perron (208&)for structural
breaks in the U.S. tourist arrivals series. Whilst analysime causes and rea-
sons behind these structural breaks are beyond the marfdatie application,
certain interesting observations are outlined. Firstlis evident that based on
the Bai and Perron (2003) test, the time series relatinguadbarrivals from
the Caribbean is the only series that has not been affectstristural breaks.
Secondly, except for Canada, Mexico, Africa, Central AweeriGermany, Italy,
Spain, United Kingdom, South Korea, PRC & Hongkong, Ausdrahd Colom-
bia, all other time series considered in this study are &dteby a structural
break in the year 2001. Furthermore, the Bai and Perron (2@88Bindicates
there has been a delayed impact of the 2008 recession ondui&ttarrivals
with all series reporting structural breaks in 2010 withéxeeption of Mexico,
Western Europe, Africa, Germany, Italy, Netherlands, §pdnited Kingdom,
Japan, ROC (Taiwan), Colombia and Venezuela. Finallyrmseof U.S. tourist
arrivals by country of origin, the most number of structuregdaks visible in a

time series is seen in tourist arrivals from Brazil.

Table 5.3 presents the model parameters (SSA choices)dbrafdhe fore-
casting techniques considered in this study for forecggotal U.S. tourist ar-
rivals at horizons oh = 1, 3, 6, 12, 24 and 36 months ahead. It is important
to note that each of the techniques have chosen the modehets (SSA
choices) automatically using the respective algorithnssefglained in Chap-
ters 2.4 and 4.3.1) to provide the best possible modellingfarecast for U.S.
tourist arrivals.

Considered next are the SSA-V decompositions which is agrat part of
the SSA process. The weighted correlatisnrcprrelation) statistic is used to
show the appropriateness of the various decompositionewszhby SSA (see,

Table 4.3 and Table 4.9). As mentioned in Golyandina et &012, thew-
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Table 5.2 Break points in U.S. tourist arrivals time series.

Series Structural Break

Total Arrivals 2001(9), 2004(3), 2007(2), 2010(2)

Arrivals by country

Canada 2006(2), 2010(2)

Mexico 1998(6), 2006(3), 2009(12)

Total Overseas 2001(8), 2004(3), 2007(4), 2010(4)

Western Europe 2001(8), 2004(2), 2007(6)

Eastern Europe 2001(8), 2004(5), 2007(4), 2010(5)

Asia 2001(8), 2004(4), 2010(4)

Middle East 1999(2), 2001(8), 2006(5), 2010(5)

Africa 2008(4)

Oceania 2001(9), 2004(3), 2007(3), 2010(4)

South America 2001(8), 2007(5), 2010(5)

Central America 1998(6), 2001(8), 2007(4)

Caribbean No structural break in series.

France 2001(8), 2007(3), 2010(3)

Germany 2000(10), 2007(2)

Italy 2007(6)

Netherlands 2001(8), 2007(3)

Spain 2007(5)

Sweden 2001(6), 2004(2), 2007(2), 2010(5)

Switzerland 2001(7), 2007(3), 2010(5)

United Kingdom 1998(6), 2008(12)

Japan 2001(8)

South Korea 2005(4), 2010(4)

PRC & Hongkong 2007(4), 2010(5)

ROC (Taiwan) 2001(8)

Australia 2005(4), 2010(4)

Argentina 2001(8), 2006(12), 2010(4)

Brazil 1999(1), 2001(7), 2005(4), 2007(11), 2010(5)

Colombia 2009(5)

Venezuela 2001(12), 2007(6)

Table 5.3 Forecasting model parameters for total U.S.gbarrivals.

h ARIMA ETS(a,y,0) NN(p,Pk) SSA(L,r)
1 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0"05NNAR(2,1,1) (38,17)
3 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0705NNAR(2,1,1) (25,14)
6 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0'05NNAR(2,1,1) (29,21)
12 order(2,0,1)seasonal(1,1,2) (0.55,0.18,#05NNAR(2,1,1)  (15,6)
24 order(2,0,1)seasonal(1,1,2) (0.55,0.18,0"05SNNAR(2,1,1)  (40,25)
36 order(2,0,1)seasonal(1,1,2) (0.55,0.18,"05SNNAR(2,1,1)  (48,6)

NoteM is an ETS model with multiplicative seasonality.
a,y,o are the ETS smoothing parametgpss the number of lagged inputB,is the
automatically selected value for seasonal time seriesk@nthe number of nodes in the

hidden layerL is the window length andis the number of eigenvalues.

correlation statistic which shows the dependence betweertiine series can

be calculated as:
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w w

Zl'z'zlwkyl((i)yl((j) (i,j =1,2), we=min{k,L,N — k} (here, assumke < N/2).

Accordingly, if thew-correlation between two reconstructed components are
close to 0, this implies that the corresponding seriesvamethogonal and in turn
we know the two components are well separable (Hassani,€10f19). Table
5.4 presents the-correlations for all the decompositions by comparing the t
components of signal and noise. Here, used as signal is tbaseucted se-
ries containing optimat components whilst the remainirg(which does not
belong to the reconstruction) are selected as noise. Thégésdicate that all
w-correlations are close to 0 which in turn suggests that acdecomposition
has been achieved using the automated & optimized SSA-\tdstag algo-
rithm explained in Section 4.3.1. In other words, theseorrelations indicate
that the newly proposed SSA-V forecasting algorithm workseedingly well

at separating the noise from the signal.
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Table 5.4WN-correlations between signal and residuals for U.S. tbariivals.

Series 1 3 6 12 24 36
Total U.S. tourist Arrivals 0.007 0.009 0.009 0.012 0.008 009.

U.S. tourist Arrivals by country

Canada 0.013 0.010 0.010 0.028 0.010 0.012
Mexico 0.020 0.020 0.021 0.047 0.032 0.035
Total Overseas 0.009 0.009 0.014 0.014 0.008 0.006
Western Europe 0.010 0.014 0.015 0.019 0.024 0.012
Eastern Europe 0.020 0.016 0.014 0.015 0.022 0.020
Asia 0.008 0.008 0.008 0.017 0.007 0.006
Middle East 0.027 0.047 0.044 0.029 0.022 0.024
Africa 0.019 0.020 0.015 0.031 0.013 0.010
Oceania 0.010 0.009 0.014 0.018 0.007 0.007
South America 0.012 0.019 0.023 0.016 0.020 0.023
Central America 0.013 0.016 0.014 0.021 0.012 0.016
Caribbean 0.021 0.021 0.031 0.051 0.034 0.019
France 0.014 0.027 0.040 0.015 0.014 0.015
Germany 0.015 0.015 0.014 0.017 0.017 0.017
Italy 0.026 0.026 0.026 0.016 0.035 0.024
Netherlands 0.016 0.018 0.018 0.018 0.027 0.014
Spain 0.030 0.014 0.031 0.027 0.016 0.027
Sweden 0.012 0.012 0.012 0.0112 0.012 0.017
Switzerland 0.024 0.016 0.021 0.017 0.020 0.020
United Kingdom 0.013 0.016 0.015 0.013 0.012 0.016
Japan 0.009 0.015 0.008 0.009 0.07 0.012
South Korea 0.016 0.016 0.012 0.016 0.016 0.012
PRC & Hongkong 0.025 0.051 0.022 0.030 0.025 0.022
ROC (Taiwan) 0.019 0.031 0.025 0.025 0.015 0.015
Australia 0.011 0.011 0.011 0.011 0.011 o0.011
Argentina 0.028 0.010 0.046 0.029 0.007 0.010
Brazil 0.025 0.023 0.026 0.027 0.030 0.027
Colombia 0.022 0.023 0.012 0.012 0.019 0.038
Venezuela 0.026 0.025 0.026 0.046 0.022 0.021

The U.S. tourist arrivals series exhibits several seaspaigérns. In order
to illustrate SSA's capabilities at extracting various sse®l patterns in U.S.

tourist arrivals, also presented via Figure 5.2 as an exaniplthe in-sample
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decomposition of total U.S. tourist arrivalstat 1 step ahead. Firstly, it is ob-
servable that the extracted trend in U.S. tourist arrivdigctv corresponds with
the total arrivals pattern and clearly shows the generabtd increasing and
decreasing tourist arrivals over time. Also interestinthis difference between
the four month and twelve month seasonal components. Thendhnseasonal
component is increasing over time whilst the 12 month sessmmponent is

seen to be decreasing over time. Furthermore, there is matedtion in the 4

month seasonal component of total U.S. tourist arrivalompgarison to the 12

month component.
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Fig. 5.2 In-sample SSA decomposition of total monthly Udirist arrivals ath = 1
step ahead.
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5.4.3 Empirical Results

The application consider%;,rd of the data as in-sample for model training and
testing, and set asid?rd of the data as out-of-sample for evaluating the fore-
casting accuracy. The data was forecasted at horizonhsdf, 3, 6, 12, 24 and
36 steps ahead which corresponds to 1, 3, 6, 12, 24 and 36 shamttad fore-
casts. These forecasting horizons have been consideraddeefor the tourism
industry, horizons beyond 12 months are considered to lgetkrm. Moreover,
both short and long run forecasts are vital for this sectoa asuntry needs
to be geared to accommodate the tourists and planning of Eragle building
works or the purchase of new aircrafts for example would ireguanagerial
decisions to be made well in advance. Therefore, this agipdic is effectively
evaluating the performance of the forecasting models bothe short and long
run in terms of obtaining forecasts for U.S. tourist argvalnitially total U.S.
tourist arrivals are analyzed. Table 5.5 reports the RMSEE MAPE results
for the out-of-sample forecasts of total U.S. tourist aiswising SSA, ARIMA,
ETS and NN. In order to ensure the parametric models areattyrispecified,

a Ljung-Box test was carried out on the residuals for autetation and the
results indicated that the residuals are independentiilalised at ap-value of

0.05, and are thus not autocorrelated.

Table 5.5 Out-of-sample RMSE(MAPE) results for total Udirist arrivals.

h ARIMA ETS NN SSA Shy SR SV
1 601512 (9%) 760599 (13%) 1147080 (19%) 242601(4%) 0.40* 32'0. 0.21*
3 720751 (11%) 723556 (13%) 1124242 (19%) 316049(6%) 0.44* 440 0.28*
6 738630 (12%) 1037666 (20%) 1180780 (19%) 445614(8%)  0.600.43*  0.38*
12 937129 (14%) 1097366 (17%) 1385339 (23%) 517912(9%) *0.550.47*  0.37*

24 1136616 (19%) 1300442 (20%) 1780513 (30%) 526323(9%) 6*0.4 0.40*  0.30*
36 1002685 (17%) 1149585 (18%) 1684799 (24%) 605448(9%) 0*0.6 0.53*  0.36*
Average 856221 (14%) 1011536 (17%) 1383792 (22%) 44232p(8%0.52  0.44  0.32

Note* indicates results are statistically significant basedabold-Mariano ap = 0.05.

Firstly, based on the MAPE criterion reported in Table 5t5s iclear that

the Neural Network model is the worst performer at all hangavith an overall
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average MAPE of 22% at forecasting total U.S. tourist alsivdnterestingly
the SSA technique is the only model which reports MAPE vahssw 10%
at all horizons and is in turn the model providing the mostusate forecasts
for total U.S. tourist arrivals with a comparatively low aage MAPE of 8%.
Based on the MAPE one is also able to identify that the ARIMAdeias the
second best model for forecasting total U.S. tourist alsiaa its average MAPE
of 14% is lower than the ETS model's average MAPE of 17%. Meeeat is
interesting to note that the SSA model’'s MAPE remains apprately constant
over the forecasting horizons bf= 12, 24 and 36 months ahead, and thereby
portrays SSA's capabilities of providing comparativelgtde and more accurate
forecasts in the long run. The remainder of the analysissees on the RMSE

criterion for evaluating forecast accuracy.

It is evident from Table 5.5 that based on the RMSE criter®BA outper-
forms ARIMA, ETS and Neural Networks comfortably by recarglithe lowest
forecasting error for total U.S. tourist arrivals at all izons. The RRMSE statis-
tic shows that SSA is 60%, 56%, 40%, 45%, 54% and 40% bettarARAMA
at forecasting total U.S. tourist arrivalstet 1, 3, 6, 12, 24 and 36 months ahead
respectively. Likewise, in comparison to ETS, SSA is 68%%6567%, 53%,
60% and 47% better &= 1, 3, 6, 12, 24 and 36 steps ahead respectively. An-
alyzed finally are the forecasting results between SSA amdNtural Network
model. Accordingly it is possible to conclude that the SSAdelas 79%, 72%,
62%, 63%, 70% and 64% better than the feed-forward Neurakdt&tmodel
ath=1, 3, 6, 12, 24 and 36 months ahead respectively.

In order to ensure the results reported are not chance ecwas, they were
further tested for statistical significance using the medifDiebold-Mariano
test found in Harvey et al. (1997). The test results inditade all the RRMSE
results are statistically significant at all horizons angstprovides concrete ev-

idence for the inferences made via the application. Fin&ityn Table 5.5 one
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can infer that when forecasting total U.S. tourist arriyals average, the SSA
model is 48% better than ARIMA, 56% better than ETS and 68%ebéhan
Neural Networks based on the forecasting accuracy. Thésdsam Table 5.5
also show that on average, ARIMA provides a better forecgsticcuracy in
comparison to ETS and Neural Networks for U.S. tourist ats\both in the
short and long run, and is therefore chosen to be the secatanoelel in gen-
eral for this purpose. The feed-forward Neural Network medth one hidden

layer provides the least favourable forecasts for total th&ist arrivals.

The impact of the 9/11 terrorist attack on U.S. soil is cheatentifiable in
Figure 5.1. The breakpoints test carried out earlier hadirooed this particular
structural break occurred in September 2001. As econotei@ture provides
evidence of such breaks impacting unit root tests such asSKife ARIMA
and SSA models are further tested for robustness to thikbr&ecordingly,
the data were re-modelled by considering data post Septezibé to ascertain
whether this major break in the series has a significant ilnpaRIMA or
SSA's modelling capabilities. The out-of-sample forecagtesults from the re-
modelling is presented in Table 5.6. As appears from thesétssboth models
now perform better than previously in the absence of thialarélowever, it is
clear that SSA continues to dominate with the lowest RMSEMA®E results
at all horizons in comparison to ARIMA thus provides furtle®idence for the

reliability of the results presented in Table 5.5.

Thereafter, the Direction of Change (DC) criterion was useelvaluate the
extent to which the forecasts from all models are able toiptrélde actual di-
rection of change in total U.S. tourist arrivals. Table S.@sents the DC results.
Firstly, it is evident that only three outcomes are in faetistically significant
for DC. However, based on the criterion itself one couldriifiat SSA provides
a more accurate prediction of direction of change in conspario ARIMA at

all horizons when forecasting total U.S. tourist arrivalsg on average, SSA is
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Table 5.6 Out-of-sample RMSE(MAPE) results for total Ud@urist arrivals (adjusted
for the 9/11 breakpoint).

h ARIMA SSA-V =¥
1 648372 (10%) 289642 (5%) 0.45*
3 683034 (11%) 354762 (6%) 0.52*
6 834528 (12%) 422322 (7%) 0.51*
12 846094 (11%) 345101 (5%) 0.41*
24 827373 (11%) 388009 (5%) 0.47*
36 813722 (10%) 447459 (6%) 0.55*

Average 775521 (11%) 374549 (6%) 0.48

Note* indicates results are statistically significant basedabold-Mariano ap = 0.05.

able to provide a 83% accurate direction of change prediatibilst ARIMA
can only provide a 63% accurate prediction of the directibonhange. Like-
wise, in comparison to both ETS and Neural Networks, SSAiges/a better
prediction of the direction of change at all horizons. Hoered TS outperforms
the ARIMA model in terms of DC ah = 3 and 24 months ahead and the DC
predictions of the NN model is better than ETShat 12 and 24 steps ahead.
Furthermore, at 36 steps ahead the SSA model obtains 100%@ase®C pre-
dictions whilst ARIMA is able to report a significant 91% acacy. Thus, it is
clear that the SSA model stands out as the most superior farderecasting
total U.S. tourist arrivals at all horizons based on the RMBEMSE and DC
criterions in comparison to ARIMA, ETS and Neural Network alets. Fur-
thermore, it is clear that the SSA model can pick up both saod long run
fluctuations in total U.S. tourist arrivals comparativestter than ARIMA, ETS
and Neural Networks.

As an example of the out-of-sample forecasting capalsliviethe selected
models, and also to show the accuracy of the DC results, pexsen Figure 5.3
is a graphical representation of the forecasting resulhis=aR4 steps ahead for
total U.S. tourist arrivals. The choice of this particularizon as the example
is for the following reasons. First and foremost, it is wedbkvn that forecast-

ing any variable becomes increasingly difficult as the rarincreases. In this
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Table 5.7 Direction of change results for total U.S. tousisivals forecasts.

h ARIMA ETS NN SSA-V

1 0.74* 057 0.48 0.87*
3 0.70* 0.73* 0.57 0.85**
6 0.67* 0.63* 0.56 0.81*
12 0.47 0.36 0.45 0.66*
24 0.30 0.52 0.63* 0.78*

36 091 056 0.56 1.00**

Average 0.63 0.56 0.54 0.83
Note** indicates results are statistically significant basedad-test app = 0.05.
* indicates results are statistically significant based ¢itest atp = 0.10.

caseh = 24 steps ahead represents a long run forecast horizordeoegiin this
application and thus can show the reader how well or poodyntledels fare at
predicting total U.S. tourist arrivals in the long run. Sedly, this also happens
to be the forecasting horizon at which SSA reports 78% acguraterms of
the correct direction of change prediction whilst ARIMA cefs 30% accuracy
which is also the lowest ARIMA recorded over all horizons sidered in this
application. As such, this plot can show the reader a furttear difference be-
tween the best (SSA) and second best (ARIMA) forecasts fat th.S. tourist
arrivals. Thirdly, this is the only horizon at which NN rep®a statistically sig-
nificant direction of change prediction at 63%. As such tlhi$ plso enables to
notify the reader of the fact that the direction of changeedon should be taken
into consideration alongside a loss function when detangiwhich model is
best for forecasting. In fact if one was to pick the second besdel based
on the DC criterion alone, then in this case they would optNbdl whilst in
terms of the loss function it is the worst performing modelarting the highest
MAPE of 30% across all horizons considered in this applcatiWhilst NN
would provide a better DC prediction than ARIMA in this casglying on NN
forecasts for planning and decision making would result @anunproductive

resource allocations given that the actual forecasts telesreport very high
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errors. This particular figure also clearly indicates they/ymor nature of fore-
casts achieved via the NN model. In terms of Figure 5.3 itgal evident that

both ETS and NN models experience great difficulty in pickipghe seasonal
fluctuations seen in the U.S. tourist arrivals time serigsthat the NN model is
indeed the worst performer in this case. The results frorh Bhables 5.5 and 5.6
proves that as the horizon increases from 1 month ahead tcobdhsahead,
the forecasting performance of the parametric model (ARJMATS and NN

worsens immensely in comparison to that of the nonparacetoidel of SSA.
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——  SSA Forecast /\

8e+06
|

Total U.S. Tourist Arrivals
6e+06
|

4e+06
!

2e+06
|

2009 2010 2011 2012

Time

Fig. 5.3h = 24 months ahead forecast for U.S. tourist arrivals (Feb9200ov. 2012).

The positive outcome when forecasting Total U.S. tourisvals using the
new SSA algorithm inspired considering same for forecgstinS. tourist ar-
rivals by country of origin. The total U.S. tourist arrivéflsrecasting results

show ARIMA to be the second best forecasting model in consparto SSA,
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ETS and Neural Networks. As such, here ARIMA is employed asrecbmark
as it is evident that ETS and feed-forward Neural Networksoaprovide ac-
curate forecasts in this case. Presented in Tables 4.8 Sraféthe ARIMA
parameters and SSA-V choices which were used for forecpstig. tourist ar-
rivals by country of origin. Once again the correct spediitwaof the models
were ensured via a Ljung-Box test for the independent Bigion of residuals.
Where the residuals were not found to be independentlyillisérd the model
parameters we redefined to ensure the model specificatiowalids In most
cases the test results indicated that the residuals wete ndise at @-value of
0.05, and that no further model review was required.

Table 5.10 reports the results for out-of-sample forengsif U.S. tourist ar-
rivals by country of origin. The RRMSE criterion shows tHa§A outperforms
ARIMA at forecasting U.S. Tourist arrivals at all horizore fall countries of
origin with the exception of Mexico at = 3 steps ahead. Furthermore, it is
clear from the results that on average, SSA is 53%, 49%, 44%, 46% and
41% better than ARIMA at horizons &f= 1, 3, 6, 12, 24 and 36 months ahead
respectively for forecasting U.S. tourist arrivals by wmdual country of origin.

These results prove that by employing SSA to analyse anddstéhe monthly
U.S. tourist arrivals data by country of origin we can obtsigmificantly more
accurate forecasts than those possible with ARIMA for bdtbrisand long
term fluctuations in tourist arrivals into the U.S. from eauntry. The re-
sults are tested further for statistical significance. Tdsting showed that ex-
cept for tourist arrivals from Mexico, every other fore@agtresult obtained in
this study is statistically significant. This suggests thiaen forecasting tourist
arrivals from Mexico there is no difference between thedasting accuracy of
the ARIMA and SSA models.

Interestingly, when forecasting U.S. tourist arrivalsnfrdélexico, the opti-

mal SSA choice for the number of eigenvalues,r = 1 at horizons of 1, 3and 6
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Table 5.8 ARIMA model parameters for U.S. tourist arrivayscountry of origin.

Series ARIMA Series ARIMA
Canada (0,0,1)(0,1,2) Mexico (1,1,3)(0,1,2)
Total Overseas (0,1,1)(2,0,2) Western Europe  (1,0,0%2,0
Eastern Europe (2,0,1)(1,1,2) Asia (0,1,0)(2,0,1)
Middle East (2,0,1)(2,0,2)  Africa (2,0,3)(2,1,2)
Oceania (3,0,3)(1,1,1) South America  (0,1,2)(2,0,1)
Central America (2,1,1)(2,1,1) Caribbean (0,0,1)(1,1,2)
France (1,1,1)(2,0,2) Germany (2,1,3)(2,0,2)
Italy (2,0,2)(1,1,2) Netherlands (4,0,4)(2,1,2)
Spain (3,0,3)(1,1,1) Sweden (2,1,1)(1,1,2)
Switzerland (5,1,4)(2,0,2) UK (2,1,4)(2,0,1)
Japan (2,1,2)(2,0,1)  South Korea (1,0,1)(2,1,0)
PRC & Hongkong  (1,0,0)(2,0,2)* ROC (4,1,2)(2,0,2)
Australia (4,1,5)(0,1,1) Argentina (1,1,1)(2,0,1)
Brazil (1,1,2)(2,0,1) Colombia (2,0,4)(2,1,0)
Venezuela (3,1,1)(1,1,1)

Note™ ARIMA with drift. * ARIMA with non-zero mean.

steps ahead. This in turn means that the SSA model is relyitigeotrend alone
to forecast future data points for Mexico. As such it is intpat to briefly com-
ment on this fact. For this purpose, shown in Figure 5.4 aedithe series for
Mexico and three other time series which were found to hawesiral breaks
as per Table 5.2. Upon closer analysis it is clear that whlldbur time series
shown here are affected by structural breaks, the timesseeviexico shows
signs of a major structural break shifting U.S. touristwis from Mexico start-
ing December 2009. The magnitude of this break has imptinaton SSA's
modelling capabilities especially as this particular S&£orecasting algorithm
does not incorporate change point detection methods. Mergibis clear from
Figure 5.4 that U.S. tourist arrivals from Mexico differsifin the other nations
in terms of seasonality, as Mexico does not illustrate angtiseasonality. It is
pertinent to keep in mind that in line with ensuring equalistween the other
forecasting models adopted in this application, used fsetieei most basic ver-

sion of SSA with optimal choices for the purpose of forecapt.S. tourist
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Table 5.9 U.S. tourist arrivals by country of origin - SSA-Naices [, r).

Series 1 3 6 12 24 36
Canada (22,16) (28,19) (28,19) (16,9) (33,20) (36,15)
Mexico (5,1) (5,1) (4,2) (51,3) (39,9 (49,26)
Total Overseas (28,16) (29,16) (20,10) (18,11) (38,25) ,290
Western Europe (29,17) (23,14) (23,12) (19,14) (21,13) ,228
Eastern Europe (14,13) (22,11) (23,11) (20,14) (18,13) 549
Asia (29,23) (25,22) (29,23) (23,11) (31,28) (49,40)
Middle East (24,15) (15,13) (17,13) (22,18) (44,36) (38,15
Africa (18,14) (17,14) (24,20) (14,12) (47,17) (24,16)
Oceania (39,25) (42,27) (31,19) (34,12) (33,27) (33,27)
South America (27,14) (23,15) (16,12) (26,15) (46,28) 28y,
Central America (29,17) (29,19) (26,17) (29,25) (47,24)6,24)
Caribbean (24,20) (24,20) (24,11) (18,12) (24,12) (46,26)
France (15,13) (30,14) (25,12) (43,31) (23,20) (40,21)
Germany (32,10) (25,8) (25,90 (32,15) (24,12) (24,12)
Italy (44,15) (34,15) (34,15) (57,27) (18,14) (30,23)
Netherlands (36,14) (37,14) (26,19) (26,19) (22,10) (BR,1
Spain (28,8) (12,6) (24,80 (14,9 (14,3) (149
Sweden (39,11) (39,11) (39,11) (38,15) (23,20) (24,15)
Switzerland (15,12) (44,38) (16,13) (31,21) (26,17) (26,1
UK (24,14) (22,14) (32,24) (51,38) (41,34) (47,14)
Japan (31,25) (28,9) (47,19) (23,21) (47,34) (39,9
South Korea (32,18) (27,17) (28,25) (31,21) (39,15) (5p,36
PRC and Hongkong (40,18) (16,13) (41,21) (25,15) (50,21)2,34)
ROC (40,21) (40,31) (37,33) (37,33) (37,16) (37,16)
Australia (55,19) (37,21) (37,12) (36,12) (49,33) (48,33)
Argentina (23,15) (30,26) (15,13) (17,15) (41,39) (41,40)
Brazil (26,15) (14,11) (46,12) (39,24) (39,22) (50,12)
Colombia (29,15) (29,16) (39,11) (36,11) (27,23) (19,10)
Venezuela (30,15) (28,15) (26,15) (18,15) (48,15) (37,17)
arrivals.

5.4.4 Discussion

The starting point of this application, as with many othethaus, was the im-
portance of accurate forecasts of tourism demand to inkesteanagers and
policy makers. The existence of a high degree of seasomaliburism demand

not only increases this need, but also creates a need faraktiag techniques
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Table 5.10 Forecasting results for U.S. tourist arrivalsdyntry of origin.

SSAV

ARIMA
Origin 1 3 6 12 24 36
Canada 0.27* 0.32* 0.40* 0.37* 0.30* 0.36*
Mexico 0.98 0.96 1.07 0.99 0.93 0.77*
Total Overseas 0.44* 0.48* 0.42* 0.48* 0.33* 0.43*
Western Europe 0.46* 0.50* 0.53* 0.47* 0.43* 0.44*
Eastern Europe 0.34* 0.37* 0.42* 0.41* 0.42* 0.39*
Asia 0.54*  0.68* 0.72 0.91 0.80* 0.91
Middle East 0.55* 0.42*  0.47* 0.37* 0.38* 0.46*
Africa 0.28* 0.39* 0.45* 0.36* 0.26* 0.24*
Oceania 0.40* 0.43* 0.51* 0.53* 0.60*  0.75**

South America 0.43* 0.45* 0.56* 0.50* 0.49* 0.82
Central America 0.44*  0.45* 0.52* 0.46* 0.34* 0.46*

Caribbean 0.34* 0.38* 0.43* 0.34* 0.49* 0.61*
France 0.36* 0.45* 0.42* 0.36* 0.52* 0.42*
Germany 0.60* 0.51* 0.64* 0.61* 0.64* 0.60*
Italy 0.31* 0.37* 0.41* 0.38* 0.35* 0.44*
Netherlands 0.48* 0.53* 0.47* 0.44* 0.44* 0.43*
Spain 0.60* 0.78* 0.76**  0.62* 0.65* 0.93
Sweden 0.53* 0.62* 0.72* 0.69* 0.62* 0.47*
Switzerland 0.48* 0.50* 0.54* 0.50* 0.48* 0.42*
United Kingdom 0.52* 0.49* 0.61* 0.65*  0.72* 0.92
Japan 0.62* 0.83* 0.82 0.71**  0.66* 0.96
South Korea 0.48* 0.49* 0.73* 0.79* 0.88 0.91
PRC & Hongkong  0.51* 0.52*  0.56* 0.47* 0.73*  0.64*
ROC (Taiwan) 0.50* 0.44* 0.48* 0.58* 0.50* 0.40*
Australia 0.44* 0.45* 0.48* 0.49* 0.61* 0.59*
Argentina 0.54* 0.62* 0.75* 0.64* 0.61* 0.59*
Brazil 0.53* 0.53* 0.58* 0.53* 0.49* 0.49*
Colombia 0.34* 0.38* 0.41* 0.41* 0.35* 0.66*
Venezuela 0.42* 0.34* 0.34* 0.44* 0.53* 0.52*
Average 0.47 0.51 0.56 0.53 0.54 0.59

Note* indicates results are statistically significant basedwbold-Mariano ap = 0.05.
** indicates statistical significance at= 0.10.

that cope well with this seasonality in time series. Sing&laectrum Analysis
is introduced as a new model for forecasting inbound U.Sigbarrivals. The
U.S. tourist arrivals time series’ are analyzed in total bypa@ountry of origin.
This analysis compared the forecasting accuracy of theynyewposed tech-
nique, the automated and optimized SSA-V model, with thedasting accu-
racy of the several different widely used forecasting medéhese include an
optimized version of ARIMA, known as Automatic-ARIMA, an Ranential
Smoothing model known as ETS and a feed-forward Neural Né&tweodel
known as nnetar. Automatic-ARIMA, ETS and nnetar are alvjated as auto-

matic forecasting techniques through the forecast pack#fen ther software.
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Fig. 5.4 Selected U.S. tourist arrivals time series (JaA6XNov. 2012).

The results showed that the proposed SSA model of U.S. tamsals out-
performs all three of these models (ARIMA, ETS and Neuramieks). The
w-correlations also provide an explanation for one reasdinbethe outstand-
ing performance recorded by the SSA-V model as they cleadicate that the
SSA-V forecasting algorithm is highly successful in sepagathe signal from

the noise found in the U.S. tourist arrivals series.

This application further uncovers substantial evidenciport the discon-
tinuation of the use of ETS and feed-forward Neural Netwa@&snodels for
forecasting inbound U.S. tourist arrivals in the futureisiévidence is based on
the MAPE, RMSE, RRMSE and DC criteria with statisticallyrsificant results.
The results also show that the basic SSA-V model with optoheabmposition

is able to outperform Automatic-ARIMA, ETS and nnetar madafi Hyndman
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and Khandakar (2008) in forecasting U.S. tourist arrivalie results show
that the nonparametric SSA-V model is on average 48% moreratecthan
the parametric model of ARIMA, 56% more accurate than ET#,68% more
accurate than the feed-forward Neural Network model (mhetiaforecasting
tourist arrivals based on the RRMSE. In terms of the MAPE, $§#orts the
lowest average MAPE at 8% in comparison to the ARIMA mode#%a ETS’

17% and NN's 22% MAPEs. It is also noteworthy that SSA is thiy omodel

which is able to report a MAPE of less than 10% across all fsstog horizons
which covers both the long and short run. This provides s@awndkence for Na-
tional Statistical Agencies in U.S. and elsewhere to casittroducing SSA

as a more reliable method of forecasting tourist arrivals.

This application contributes to the literature on foregstourism demand
in several ways. Firstly, it shows that the SSA techniquebsansed as a reliable
demand forecasting technique for tourism in the futurengigis application to
inbound tourist arrivals in the U.S. as an example. Thisi@@solts in an increase
in the number of options available for demand forecastirtgumism. Secondly,
the results show that SSA outperforms the ARIMA model of Hylatt and
Khandakar (2008). This is an important finding as ARIMA madaie widely
used in forecasting tourism demand at present. Given theduattion of SSA
and its strong performance with U.S. data it would be interggo see how well
the model performs in forecasting tourism demand in othéongs. Thirdly,
also evaluated is the performance of the SSA technique stgamnexponential
smoothing and neural network model which shows the basic-83drecasts
are superior. The results are statistically significant@mogide strong evidence
to support the discontinuation of models such as ETS andfteadrd Neural
Networks with one hidden layer as tourism demand forecggénhniques for
the U.S. Whilst more research work should be conducted orcdhgparison

of SSA especially against neural networks in the future,initeal evidence is
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supportive of the use of SSA.

Overall, given the importance of forecasting tourism dethand the im-
portant requirement that such forecasts be able to copenitblseasonality in
demand, this application offers a new technique to forecash this area. The
evidence from the U.S. data is that it offers the prospectetifelb forecasting
accuracy than the pick of those techniques previously eyegloimprovements
in forecasting accuracy should provide a basis for moreiefficesource allo-

cation by, in particular, investors and managers in tourism

In terms of the implications of this paper for further resfathere are sev-
eral. Compared in this application is the performance of 83Aree of the most
important existing alternative techniques. It would betivatile extending this
analysis in the future to a wider range of alternative teghes. The encouraging
results from employing SSA to forecast U.S. inbound tounisported in this
application also suggests that it may be worthwhile in fattgsearch to build
a multivariate SSA model to forecast tourist arrivals. Herevould be inter-
esting to evaluate the spatio-temporal correlations betvieurist arrivals from
various countries (as proposed in Sato (2012)) so thatrifesmation could be
used to enhance the multivariate SSA model to enable motgaedforecasts.
Finally, the use of hybrid models has been common in thealitee concerning
the forecasting of tourism demand. It would be both inténgstind of potential
value for future research to consider how the SSA technigu®pns in a hy-
brid model. Moreover, the presence of structural breaks.® tburist arrivals
suggests that it would also be interesting to evaluate tipaatnon the forecasts
of replacing KPSS tests with the Bai and Perron (2003) tesidétermining the
differencing in ARIMA models. The results from forecastitayrist arrivals
from Mexico also makes it clear that future studies shoultsater incorporat-
ing SSA change point detection for forecasting U.S. towigtvals. Finally, it

is possible that different categories of tourism may be biehaally different
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in a way that is relevant for other forecasting uses. In tpliaation, owing
to data limitations it was not possible to analyse U.S. siwarrivals based on
purpose of visit and future research could benefit immengslych data were

made freely accessible and available by the relevant atitsor



Chapter 6

Conclusions

This thesis begins with an overall aim of ensuring lucrativeoretical devel-
opments in SSA which are well supported by empirical eviéer@hapter One
begins with a general introduction which is followed by th&oduction of the
methodology in Chapter 2 in addition to the presentationefdhmark fore-
casting techniques and metrics used throughout this @sedihe remaining
chapters (up until Chapter Seven) are organized such tbht@aapter focuses
on addressing the four objectives of this study. Accordintilere are several

contributions to the field.

The first contribution of this research was the introductdra statistical
test for comparing between the predictive accuracy of fagecas presented
via Chapter Three. This statistical test which exploitsdbecepts of stochas-
tic dominance and cumulative distribution functions, exi® the use of the
Kolomogorov-Smirnov test and introduces it to the field ofi¢i series analy-
sis and forecasting. In the past the application of the KBwas limited to its
intended use which was the comparison of distributions betwtwo data sets
(Kolmogorov, 1933). This research has shown via both sitimratudies and

empirical results that the KS test can be extended as a mé&hadmparing
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between the predictive accuracy of forecasts to deternhieexistence of sta-
tistically significant differences between two sets of t@sts. In addition this
alternate statistical test is able to overcome severallpnobwith the original
DM test (Diebold and Mariano, 1995) and the modified DM tesdr{iey et al.,
1997) pertaining to size, theoretical and applicabilitated issues. The simu-
lation study was able to show that the proposed KSPA testtls lbetter sized
and more powerful than the modified DM test in Harvey et al9{)9 whilst
the real world applications were used as evidence to ilitssthe usefulness and
applicability of the proposed test. This chapter opens uprditely new area
of research pertaining to the extension and improvemereKiSPA test. In
particular, future studies should consider researchitwtime possibility of ex-
tending the test such that it could be used to compare betweea than two
forecasts at the same time and thereby further increaseaitsiqgal value. In
addition, the performance of the KSPA test in relation taeothternatives such
as Hansen’s Hansen (2005) Superior Predictive Ability (Steéat and Hansen
et al.’'s Hansen et al. (2011) Model Confidence Set (MCS) shibellevaluated.

The second contribution was the development of a new MSSAdideory
for exploiting the forecastability of forecasts as presdmntia Chapter Four. This
theoretical development which considers data with a tirgerito the future, i.e.
forecasts generated by official or professional forecagterconstructing a new
and improved forecast, has shown that MSSA has the poténtitract auxil-
iary information from an existing forecast and create a nam®&urate forecast.
An application to real data has illustrated the feasibibtyhe proposed theory.
Forecast combining has been a long existing field of reseataine series anal-
ysis. However, it is noteworthy that the proposed thecaéapproach does not
relate to this particular area where researchers seek tbineraompeting fore-
casts and develop a new forecast by exploiting variances@we based meth-

ods or regression based methods (see for example, Dieboldagpez (1996)).
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Instead, this novel approach considers combining histbdata with a forecast
which represents data with a time lag into the future and séelextract the
auxiliary information contained within the forecast via ltiuariate modelling
to develop a new and improved forecast. As such, having apep@n entirely
new research avenue in the field of MSSA and multivariate serges analy-
sis literature, future research should consider usingdénglopment alongside
SSA change point detection and with automated algorithmshwiill promote
the effective use of this new theoretical development. Kan®le, firstly, an
automated algorithm should be developed for extractinytM&SA parameters
for a given data set. Thereafter, extensive simulationssughich takes into ac-
count different noise levels, stationarity and non-steiity amongst other time

series features should be carried out to provide more jcestiifin for this theory.

The third and final contribution of this research (as disedss Chapter
Five) was the development of a new approach for the seleofiparameters in
SSA and MSSA. This was achieved by introducing new algorithvhich en-
able both automation and optimization of SSA and MSSA fasgog by min-
imizing a loss function. This is a vital contribution to SSA & opens up the
possibility of using both univariate and multivariate vers for online forecast-
ing applications and also enables users who are not comievsth the theory
underlying SSA to continue exploiting this technique. Tigsv automation of
SSA and MSSA for forecasting contributes to existing litera and extends
previous studies in several ways. Historically, the s&@cdf SSA and MSSA
parameters has been a highly labour intensive approachyrseeample Elsner
and Tsonis (1996); Golyandina et al. (2001); Hassani (200@yvever, the ap-
proach presented in this thesis enables users to obtaieth&ddues foL. andr
for out-of-sample forecasting without the need to analiisediata, periodogram
or scree plot. In addition, the approach presented hereroagipd a form of

statistical foundation for the selectionoby minimising a loss function. Such
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statistical justification was lacking in the earlier apprioas which were seen as
highly subjective according to Khan and Poskitt (2013b). rétwer, the pre-
vious attempts at automating SSA focussed on trend anddietioextraction
(Alexandrov, 2009; Vautard et al., 1992), and denoisind\@8A when faced
with big signal to noise ratios (Alonso et al., 2004). Thisdis extends this
line of research by presenting a new approach for autom&8sy and MSSA
to obtain the best possible out-of-sample forecast. It lshbea noted that the
approach presented in this thesis is not optimized for $igxtaaction, and in-
stead is purely designed with a focus on forecasting. It eeted that this
algorithm will result in an increased application of SSA uture as seen with
models such as ARIMA, ETS and NN which are provided via thedast pack-
age in R (Hyndman and Athanasopoulos, 2012). The applicatioch follows
after the introduction of automated SSA also has severdtibotions. Firstly,
it shows that the automated SSA forecasting algorithm is tthbutperform the
automated ARIMA, ETS and NN algorithms by (Hyndman and Atdsapou-
los, 2012) with statistically significant outcomes in raatto forecasting U.S.
tourist arrivals. Secondly, the application also marksfits¢ instance in which
SSA is successfully applied for tourism demand forecastmdjthereby adds to
the extensive literature on forecasting tourist arrivalbirdly, the application
rules out the use of ETS and a feed-forward NN model with odedm layer
for forecasting U.S. tourist arrivals in future and presé®®A as a viable alter-
native. Given the vast range of forecasting techniquedablaithis study helps
researchers to rule out two models whilst the need to contp@rewith several
other models remains open. However, the algorithms preddrrewith do not
cover VMSSA. As such, future research should consider elxtgrthe proposed
algorithms for VMSSA. In addition, at present these aut@udatigorithms do
not consider change point detection which can enable fuity@rovements in

forecast accuracy. As such, future research should alssid®mincorporating
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SSA change point detection along with these automateditigus.

In summary, this research has presented several impoatilmtions to
the field of time series analysis and SSA in particular. Thresge from the
opening up of new research avenues via the introduction dlt@nnative to
the Diebold-Mariano test for comparing between the prediciccuracy of two
forecasts (Chapter 3) and a theoretical framework for etiptpthe forecasta-
bility of forecasts (Chapter 4) to improving the user friendss of a complex
method such as SSA and MSSA (Chapter 5). In general, futseareh should
consider comparing the proposed SSA and MSSA methods itiarek® a va-
riety of other benchmark techniques not included in thigenirwork. These
could include various other benchmark models providedutdpnothe forecast

package (e.g. TBATS, ARFIMA) and other time series analgsis forecasting
techniques such as GARCH and HAR.






References

Alexandrov, T. (2009). A method of trend extraction usinggsilar spectrum
analysis.REVSTAT7(1):1-22.

Alonso, J. F., Castillo, J. M. D., and Pintado, P. (2004). Atoanatic filtering
procedure for processing biomechanical kinematic sighalBarreiro, J. M.,
Martin-Sanchez, F., Maojo, V., and Sanz, F., edit&is)ogical and Medical
Data AnalysisSpringer, Berlin Heidelberg.

Alvarez-Diaz, M. and Rossell6-Nadal, J. (2010). Foreoastiritish tourist ar-
rivals in the balearic islands using meteorological vdaab Tourism Eco-
nomics 16(1):153-168.

Andrawis, R. R., Atiya, A. F., and EI-Shishiny, H. (2011). i@bination of long
term and short term forecasts, with application to touriemand forecasting.
International Journal of Forecastin@7(3):870—886.

Armstrong, J. S. and Collopy, F. (1992). Error measures éoregalizing about
forecasting methods: Empirical comparisotgernational Journal of Fore-
casting 8(1):69-80.

Ash, J. C. K., Smyth, D. J., and Heravi, S. (1997). The acqucdoecd fore-
casts for japanPacific Economic Reviev2(1):25-44.

Assaf, A. G., Barros, C. P., and Gil-Alana, L. A. (2011). Rstence in the
short and long-term tourist arrivals to australnurnal of Travel Research
50(2):213-229.

Athanasopoulos, G. and de Silva, A. (2012). Multivariateanential smoothing
for forecasting tourist arrivalslournal of Travel Resear¢tb1(5):640-652.

Bai, J. and Perron, P. (2003). Computation and analysis dipteustructural
change modelslournal of Applied Econometric48(1):1-22.

Barrett, G. F. and Donald, S. G. (2003). Consistent teststfmrhastic domi-
nance.Econometrica71(1):71-104.

Beneki, C., Eeckels, B., and Leon, C. (2012). Signal extwacnd forecasting
of the uk tourism income time series: A singular spectrunyemsapproach.
Journal of Forecasting31(5):391-400.



140 References

Birnbaum, Z. W. and Tingey, F. H. (1951). One-sided configeoantours
for probability distribution functionsThe Annals of Mathematical Statistics
22(4):592-596.

Bollerslev, T. (1986). Generalized autoregressive coml heteroskedasticity.
Journal of Econometri¢s31(3):307-327.

Brockwell, P. J. and Davis, R. A. (2002ntroduction to Time Series and Fore-
casting Springer.

Broomhead, D. S. and King, G. P. (1986a). Extracting quatgadynamics
from experimental data?hysica D: Nonlinear Phenomen20(2):217-236.

Broomhead, D. S. and King, G. P. (1986b). On the qualitatiedysis of ex-
perimental dynamical systemB1. Nonlinear Phenomena and Chagsages
113-144.

Cang, S. (2011). A non-linear tourism demand forecast coatlmn model.
Tourism Economigsl7(1):5-20.

Chai, T. and Draxler, R. R. (2014). Root mean square erros€jror mean
absolute error (mae)? — arguments against avoiding rmdeeititerature.
Geoscientific Model Developmefit1247-1250.

Chan, F. and Lim, C. (2011). Spectral analysis of seasgnaliburism demand.
Mathematics and Computers in Simulati®i(7):1409-1418.

Cho, V. (2003). A comparison of three different approacletrist arrival
forecasting.Tourism Managemen24(3):323-330.

Christiano, L. J. (1989). p*: not the inflation forecastemdyhgrail. Federal
Reserve Bank of Minneapolis Quarterly Revié®(4):3-18.

Chu, F. L. (2008). A fractionally integrated autoregressivoving average ap-
proach to forecasting tourism deman@urism Managemen9(1):79-88.

Chu, F. L. (2011). A piecewise linear approach to modelind Bmecasting
demand for macau tourisnfourism Managemen82(6):1414-1420.

Clark, T. E. and McCracken, M. W. (2009). In-sample testsrefiictive abil-
ity: A new approach.Research Division Federal Reserve Bank of St. Louis
Working Paper Serie2009-051A:1-34.

Clark, T. E. and McCracken, M. W. (2012). Nested forecast@hodmparisons:
A new approach to testing equal accuraRgsearch Division Federal Reserve
Bank of St. Louis Working Paper Seri@909-050B:1-59.

Clements, M. P. and Smith, J. (1999). A monte carlo investgaof forecast-
ing performance of emprical setar modéburnal of Applied Econometrics
14:123-141.



References 141

Coshall, J. T. (2009). Combining volatility and smoothimgefcasts of uk de-
mand for international tourisnTourism Managemen80(4):495-511.

Coshall, J. T. and Charlesworth, R. (2011). A managememntaied ap-
proach to combination forecasting of tourism demaralrism Management
32(4):759-769.

Danilov, D. and Zhigljavsky, A. (1997)Principal Components of Time Series:
the ‘Caterpillar method University of St. Petersburg, St. Petersburg.

DeGroot, M. H. and Schervish, M. J. (2012)Probability and Statistics
Addison-Wesley.

Diebold, F. X. (2013). Comparing predictive accuracy, tygrears later: A per-
sonal perspective on the use and abuse of diebold-mariatsoManuscript,
Department of Economics, University of Pennsylvapages 1-22.

Diebold, F. X. and Lopez, J. A. (1996). 8 forecast evaluaiind combination.
Handbook of Statistics - Statistical Methods in Fingnbé&241-268.

Diebold, F. X. and Mariano, R. S. (1995). Comparing predeticcuracyJour-
nal of Business and Economic Statistit3(3):253—-263.

Elliot, G. and Timmermann, A. (2013)Handbook of Economic Forecasting
North Holland.

Elsner, J. B. and Tsonis, A. A. (199@ingular Spectrum Analysis: A New Tool
in Time Series Analysiflenum.

Fourie, J. and Santana-Gallego, M. (2011). The impact ofarsgmprt events on
tourist arrivals.Tourism Managemen82(6):1364-1370.

Fraedrich, K. (1986). Estimating the dimension of weathet elimate attrac-
tors. Journal of the Atmospheric Sciencd8(5):419-432.

Ghodsi, M., Hassani, H., Sanei, S., and Hicks, Y. (2009). U&e of noise
information for detection of temporomandibular disord&iomedical Signal
Processing and Contrp#(2):79-85.

Ghodsi, Z., Silva, E. S., and Hassani, H. (2015). Bicoid sigxtraction with a
selection of parametric and nonparametric signal prooggsichniquesGe-
nomics, Proteomics & Bioinformatic$3(3):183-191.

Gil-Alana, L. A. (2005). Modelling international monthlyravals using sea-
sonal univariate long-memory processd@surism Managemenf6(6):867—
878.

Gilleland, E. and Roux, G. (2015). A new approach to testongdast predictive
accuracyMeteorological Application22(3):534-543.



142 References

Gneiting, T. and Raftery, A. E. (2007). Strictly proper sogrrules, pre-
diction, and estimation. Journal of the American Statistical Association
102(477):359-378.

Goh, C. and Law, R. (2002). Modeling and forecasting tourdemand for
arrivals with stochastic nonstationary seasonality ameruention. Tourism
Management23(5):499-510.

Golyandina, N. (2010). On the choice of parameters in sexgggectrum analy-
sis and related subspace-based methsi@gistics and Its Interfac@(3):259—
279.

Golyandina, N., Nekrutkin, V., and Zhigljavsky, A. (2001Analysis of time
series structure: SSA and related techniqueRC Press.

Gounopoulos, D., Petmezas, D., and Santamaria, D. (20b2@cé&sting tourist
arrivals in greece and the impact of macroeconomic shooks fhe countries
of tourists’ origin. Annals of Tourism ResearcB9(2):641-666.

Granger, C. W. J. and Newbold, P. (197Forecasting Economic Time Series
Academic Press, New York.

Greenidge, K. (2001). Forecasting tourism demand: An stonageh. Annals
of Tourism Researcl28(1):98-112.

Groth, A. and Ghil, M. (2011). Multivariate singular spestr analysis and the
road to phase synchronizatioBhysical Review FB4(3):036206.

Hadavandi, E., Ghanbari, A., Shahanaghi, K., and AbbaS&ghneh, S.
(2011). Tourist arrival forecasting by evolutionary fuzzystems. Tourism
Management32(5):1196-1203.

Hansen, P. R. (2005). A test for superior predictive abilityurnal of Business
and Economic Statistic23(4):365-380.

Hansen, P. R., Lunde, A., and Nason, J. M. (2011). Model cenéid set.
Journal of Business and Economic Statistic®(2):453—-497.

Harvey, D. I., Leybourne, S. J., and Newbold, P. (1997). imgsthe equal-
ity of prediction mean squared errorgiternational Journal of Forecasting
13(2):281-291.

Hassani, H. (2007). Singular spectrum analysis: methayodmd comparison.
Journal of Data Sciengé(2):239-257.

Hassani, H. (2010). A note on the sum of the sample autoetioal function.
Physica A: Statistical Mechanics and its Applicatipf89(8):1601-1606.



References 143

Hassani, H., Dionisio, A., and Ghodsi, M. (2010a). The dffdnoise reduc-
tion in measuring the linear and nonlinear dependency ohéia markets.
Nonlinear Analysis: Real World Applicationk1(1):492-502.

Hassani, H., Heravi, S., Brown, G., and Ayoubkhani, D. (2013orecasting
before, during, and after recession with singular spectualysis. Journal
of Applied Statistics40(10):2290-2302.

Hassani, H., Heravi, S., and Zhigljavsky, A. (2009). Fostice european in-
dustrial production with singular spectrum analydigernational journal of
forecasting 25(1):103-118.

Hassani, H., Heravi, S., and Zhigljavsky, A. (2013b). Fastmg uk industrial
production with multivariate singular spectrum analysisurnal of Forecast-
ing, 32(5):395-408.

Hassani, H., Leonenko, N., and Patterson, K. (2012a). Theleaautocor-
relation function and the detection of long-memory proess$hysica A:
Statistical Mechanics and its Applicatiqrg91(24):6367—-6379.

Hassani, H. and Mahmoudvand, R. (2013). Multivariate deiggpectrum anal-
ysis: A general view and new vector forecasting approattternational
Journal of Energy and Statistic$(1):55-83.

Hassani, H., Mahmoudvand, R., Omer, H. N., and Silva, E.&L42 A prelim-
inary investigation into the effect of outlier(s) on singuspectrum analysis.
Fluctuation and Noise Letterd3(4):1450029.

Hassani, H., Mahmoudvand, R., and Yarmohammadi, M. (201Ghlxering
and denoising in the linear regression moddluctuation and Noise Letters
9(4):343-358.

Hassani, H., Mahmoudvand, R., and Zokaei, M. (2011). Sé&gdayaand win-
dow length in singular spectrum analysi€omptes Rendus Mathematique
349(17-18):987-990.

Hassani, H., Mahmoudvand, R., Zokaei, M., and Ghodsi, M122). On the
separability between signal and noise in singular spectamatysis.Fluctua-
tion and Noise Lettersl1(2):1250014.

Hassani, H., Silva, E. S., Gupta, R., and Segnon, M. K. (20E&)ecasting the
price of gold. Applied Economics47(39):4141-4152.

Hassani, H., Soofi, A. S., and Zhigljavsky, A. (2013c). Pec&dg inflation
dynamics with singular spectrum analysidournal of the Royal Statistical
Society: Series A (Statistics in SocietlJ6(3):743—760.

Hassani, H. and Thomakos, D. (2010). A review on singulactspm analysis
for economic and financial time serieStatistics and its Interfac&(3):377—
397.



144 References

Heravi, S., Osborn, D. R., and Birchenhall, C. R. (2004).€ainversus neural
network forecasts for european industrial productioneserilnternational
Journal of Forecasting20:435-446.

Holt, C. C. (2004). Forecasting trends and seasonals bynexpially weighted
moving averagednternational Journal of Forecasting@0(1):5-10.

Horvath, L., Kokoszka, P., and Zitikis, R. (2006). Testing $tochastic domi-
nance using the weighted mcfadden-type statistomrnal of Econometrigs
133(1):191-205.

Hui, T. K. and Yuen, C. C. (2002). A study in the seasonal venmeof japanese
tourist arrivals in singaporélourism Managemen23(2):127-131.

Hyndman, R. J. and Athanasopoulos, G. (201&)recasting: principles and
practice O Texts.

Hyndman, R. J. and Khandakar, Y. (2008). Automatic timeeseforecasting:
the forecast package forInternational Economic27(3):1-22.

Hyndman, R. J., Koehler, A. B., Snyder, R. D., and Grose, 80Z2 A
state space framework for automatic forecasting using rexpial smooth-
ing methodsInternational Journal of Forecasting.8(3):439-454.

Jackman, M. and Greenidge, K. (2010). Modelling and foreegsourist flows
to barbados using structural time series modé&tsirism and Hospitality Re-
search 10(1):1-13.

Kapl, M. and Mller, W. G. (2010). Prediction of steel pricdscomparison be-
tween a conventional regression model and mSsatistics and Its Interface
3:369-275.

Khan, M. A. R. and Poskitt, D. (2013a). Moment tests for wiwdength se-
lection in singular spectrum analysis of short— and longrory processes.
Journal of Time Series Analysi34(2):141-155.

Khan, M. A. R. and Poskitt, D. (2013b). A note on window lenggiection in
singular spectrum analysi8ustralian and New Zealand Journal of Statistics
55(2):87-108.

Kim, J. H., Wong, K., Athanasopoulos, G., and Liu, S. (201Beyond point
forecasting: Evaluation of alternative prediction ints/for tourist arrivals.
International Journal of Forecastin@7(3):887-901.

Kim, S. S. and Wong, K. K. (2006). Effects of news shock on untbtourist
demand volatility in koreaJournal of Travel Researcid4(4):457—-466.

Kolmogorov, A. N. (1933). Sulla determinazione emperichedeggi di prob-
abilita. Giornale dell’ Istituto Italiano degli Attuari4:83-91.



References 145

Lim, C. and McAleer, M. (2001). Forecasting tourist arrszannals of Tourism
Research28(4):965-977.

Makridakis, S. G., Wheelright, S. C., and Hyndman, R. J. 8)9Borecasting:
Methods and ApplicationdViley, New York.

Mao, C. K., Ding, C. G., and Lee, H. Y. (2010). Post-sars ttairival recovery
patterns: An analysis based on a catastrophe thelmyrism Management
31(6):855-861.

Marsaglia, G., Tsang, W. W., and Wang, J. (2003). Evaluatmighogorov’s
distribution. Journal of Statistical Softway&(18):1-4.

McFadden, D. (1989). Testing for stochastic dominance.admly, T. B. and
Seo, T. K., editorsStudies in the Economics of Uncertainty: In Honor of
Josef Hadar Springer, New York, Berlin, London, and Tokyo.

Meese, R. and Rogoff, K. (1988). Was it real? the exchangein&trest rate
differential relation over the modern floating-rate periddurnal of Finance
43(4):933-948.

Morgan, W. A. (1939). A test for significance of the differencetween two
variances in a sample from a normal bivariate populatB®iometrikg 31(1-
2):13-19.

Naudé, W. A. and Saayman, A. (2005). Determinants of toarrstals in africa:
a panel data regression analySisurism Economigsl1(3):365—-391.

Nelson, L. A., Dickey, D. A., and Smith, J. M. (2011). Estinngttime series
and cross section tourism demand models: Mainland unitgdssto hawaii
data. Tourism Managemen82(1):28-38.

Oropeza, V. and Sacchi, M. (2011). Simultaneous seismia dahoising
and reconstruction via multichannel singular spectruntyasiea Geophysics
76(3):V25-V32.

Page, S., Song, H., and Wu, D. C. (2012). Assessing the impéthe global
economic crisis and swine flu on inbound tourism demand iuttied king-
dom. Journal of Travel Research1(2):142-153.

Patterson, K., Hassani, H., Heravi, S., and Zhigljavsky2811). Multivariate
singular spectrum analysis for forecasting revisions &b-tieme dataJournal
of Applied Statistics38(10):2183-2211.

Rodriguez-Aragon, L. J. and Zhigljavsky, A. (2010). Sirayuidpectrum analysis
for image processingstatistics and Its Interfac&(3):419-426.

Sanei, S., Ghodsi, M., and Hassani, H. (2011). An adaptivgusar spectrum
analysis approach to murmur detection from heart souvdslical Engineer-
ing & Physics 33(3):362—-367.



146 References

Sanei, S. and Hassani, H. (20153ingular Spectrum Analysis of Biomedical
Signals CRC Press.

Sato, A. H. (2012). Impact of the great east japan earthqaak®tel industry
in pacific tohoku prefecturesProgress of Theoretical Physics Supplement
194:165-172.

Seetanah, B., Durbarry, R., and Ragodoo, J. F. (2010). Ukmganel coin-
tegration approach to analyse the determinants of touresmeacd in south
africa. Tourism Economigsl6(3):715-729.

Seetaram, N. (2010). Use of dynamic panel cointegratiomcamb to model
international arrivals to australidournal of Travel Resear¢cd9(4):414-422.

Shareef, R. and McAleer, M. (2007). Modelling the uncetaim monthly
international tourist arrivals to the maldiv@@urism Managemen28(1):23—
45,

Shen, S., Li, G., and Song, H. (2008). An assessment of congptourism
demand forecasts over different time horizodsurnal of Travel Research
47(2):197-207.

Shen, S, Li, G., and Song, H. (2011). Combination forecafisternational
tourism demandAnnals of Tourism ResearcB8(1):72—-89.

Silva, E. S. and Hassani, H. (2015). On the use of singulastapa analysis
for forecasting u.s. trade before, during and after the 2668ssioninterna-
tional Economics141:34—49.

Simard, R. and L'Ecuyer, P. (2011). Computing the two-si@ebhogorov-
smirnov distribution.Journal of Statistical Softwar&9(11):1-18.

Smeral, E. (2010). Impacts of the world recession and ecanonsis on
tourism: Forecasts and potential risdeurnal of Travel Resear¢cd9(1):31—
38.

Song, H., Dwyer, L., Li, G., and Cao, Z. (2012). Tourism eawoits research:
A review and assessmeminnals of Tourism ResearcB9(3):1653-1682.

Song, H., Gao, B. Z., and Lin, V. S. (2013). Combining statédtand judg-
mental forecasts via a web-based tourism demand foregaststem.Inter-
national Journal of Forecasting29(2):295-310.

Song, H. and Li, G. (2008). Tourism demand modelling anddaséng - a
review of recent researcfiourism Managemen29(2):203-220.

Song, H., Li, G., Witt, S. F., and Athanasopoulos, G. (20Ebrecasting tourist
arrivals using time-varying parameter structural timeesemodels.Interna-
tional Journal of Forecasting27(3):855-8609.



References 147

Tsay, R. S. (1998). Outliers, level shifts, and variancengesa in time series.
Journal of Forecasting7(1):1-20.

Vautard, R. and Ghil, M. (1989). Singular spectrum analysisonlinear dy-
namics, with applications to paleoclimatic time seriébysica D: Nonlinear
Phenomena35(3):395-424.

Vautard, R., Yiou, P., and Ghil, M. (1992). Singular-spentranalysis: A
toolkit for short, noisy chaotic signalPhysica D: Nonlinear Phenomena
58(1-4):95-126.

Wan, S. K., Wang, S. H., and Woo, C. K. (2013). Aggregate \sagljregate
forecast: Case of hong konénnals of Tourism Research2:434—-438.

Winters, P. R. (1960). Forecasting sales by exponentiadighted moving av-
eragesManagement Scienc6(3):324-342.

Zhang, G., Patuwo, B. E., and Hu, M. Y. (1998). Forecastinth\artificial
neural networks: the state of the atternational Journal of Forecasting
14(1):35-62.






Appendix A

R Codes

The following reports as examples, selected componentseoRtcodes devel-
oped for the applications used in this study. The full codawuailable upon

request.

Chapter 3

The Kolmogorov-Smirnov Predictive Accuracy test

# Install and load the "stats" package in R.
install.packages("stats")

library(stats)

# Input the forecast errors from two models. Let Errorl show
errors from the model with the lower error based on some
loss function.

Errori<-scan()

Error2<-scan()

# Convert the raw forecast errors into absolute values or
squared values

depending on the loss function.
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abs1<-abs(Erroril)

abs2<-abs (Error2)

sgel<-(Errorl) -2

sge2<- (Error2) "2

# Perform the KSPA test for distinguishing between

the predictive accuracy of forecasts from the two modelsx.
#Two-sided KSPA test:

ks.test(abs1,abs?2)

#0ne-sided KSPA test:

ks.test(absl,abs2, alternative = c("greater"))

Chapter 5

Shown initially is a section of the code used to minimize theslfunction in the

SSA algorithms.

Forecast<-function(L,steps,M,S){

N=length(S) ;Lsize=length(L)

Forecast=array(dim=M)

MSE=array(0,dim=c ((max(L)-1) ,Lsize))

for(1l in 1:Lsize){

for(rl in 1:(L[1]1-1)){

for(i in 1:M){

X=S[1: (N-M-steps+i)]

if ((N-M+i)<(N+1)){
Forecast[i]=VSSA.Forecasting(L[1],r1,X,steps) [steps]
MSE[r1,11=MSE[r1,1]+(Forecast[i]-S[(N-M+i)]1)~2/(M)
33}

RMSE=sqrt (MSE)
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dimnames (RMSE)=1list (paste("r=", (1: (max(L)-1)),sep=""),
paste("L=",L,sep=""))

round ( RMSE,4)

}

Presented next is a section of the code used to minimize ssgflmction in the
MSSA algorithms.

mg=ms=r1=r2=r3=r4=array(1000,dim=c (length(L),
length(L)))
#k1=M-L1+1;k2=M-L2+1;
Ni=nrow(Y)-M-h+1
fi1=f2=array(0,dim=c (N1,ncol(Y)))
for(j in 1:length(L)){
r=seq(1,L[j1-1,1)
for(i in 1:r[j1){
for(p in 1:N1){
ct=M+p-1
filp,1= HMSSA.R(L[jl,seq(1,r[il,1),h,Y[1:ct,]) [h,]
f2[p,]= HMSSA.V(L[jl,seq(1,r[i],1),h,Y[1:ct,]) [h,]
}
rili,jl=rmse(f1[,1],Y[(nrow(Y)-N1+1) :nrow(Y),1])
r2[i,jl=rmse(f1[,2],Y[(nrow(Y)-N1+1) :nrow(Y),2])
r3[i,jl=rmse(£f2[,1],Y[(nrow(Y)-N1+1) :nrow(Y),1])
ra[i,jl=rmse(£f2[,2],Y[(nrow(Y)-N1+1) :nrow(Y),2])

+
rli=which(rl == min(rl), arr.ind = TRUE)
r12=which(r2 == min(r2), arr.ind = TRUE)
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rl13=which(r3 == min(r3), arr.ind = TRUE)
rl4=which(r4 == min(r4), arr.ind = TRUE)
min(rl)
min(r2)
min(r3)

min(r4)
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