
Planning Runtime Software Adaptation
through Pragmatic Goal Model

Felipe Pontes Guimarãesa,∗, Genaína Nunes Rodriguesb, Raian Alic, Daniel
Macêdo Batistaa

aDepartment of Computer Science, University of São Paulo (IME-USP), Brazil
bDepartment of Computer Science, University of Brasilia, Brazil

cFaculty of Science and Technology, Bournemouth University, United Kingdom

Abstract

Adaptivity is a capability that enables a system to choose amongst various
alternatives to satisfy or maintain the satisfaction of certain requirements. The
criteria of requirements satisfaction could be pragmatic and context-dependent.
Contextual Goal Models (CGM) capture the power of context on banning or
allowing certain alternatives to reach requirements (goals) and also deciding
the quality of those alternatives with regards to certain quality measures (soft-
goals). It is used to depict facets of the decision making strategy and rationale
of an adaptive system at the preliminary level of requirements. In this paper
we argue the case for pragmatic requirements and extend the CGM with addi-
tional constructs to capture them and allow their analysis. We also develop an
automated analysis which aids the planning and scheduling of tasks execution
to meet pragmatic goals. Moreover, we evaluate our modelling and analysis
regarding correctness and performance. Such an evaluation showed the applica-
bility of the approach and its usefulness in aiding sensible decisions. It has also
shown its capability to do so in a time short enough to suit run-time adaptation
decision making.

Keywords: Requirements Engineering, Adaptive Systems, Context-awareness,
Quality of Service

1. Introduction

Adaptive systems are designed to enjoy a degree of flexibility in meeting
their requirements and maintaining them. Adaptivity requires variability so
that the system can choose amongst alternatives and optimize certain perfor-
mance indicators. In requirements engineering literature, a main-stream model5

∗Corresponding author
Email addresses: felipepg@ime.usp.br (Felipe Pontes Guimarães),

genaina@cic.unb.br (Genaína Nunes Rodrigues), rali@bournemouth.ac.uk (Raian Ali),
batista@ime.usp.br (Daniel Macêdo Batista)

Preprint submitted to Journal of Data & Knowledge Engineering October 28, 2016

to capture and analyse such variability is Goal-Model (GM) [1]. It provides the
requirements (goals) for which the system is designed and the various possible
ways to reach those goals (alternatives) and their quality (soft-goals). It also
allows breaking down the system to a set of autonomous entities (actors) who
can also decide adaptively how to depend on each others to reach requirements.10

Adaptivity is triggered by contextual factors which could be internal, e.g.
errors and availability of computational resources, or external, e.g., newly avail-
able services and packages, physical and social environment of the user, their
skills and computing device. In Ali et al. [2], traditional goal models [3, 4, 5] were
extended to capture the notion of context and its relation with requirements.15

The proposed Contextual Goal Model (CGM) treats context as an adaptation
driver which can help filtering the space of applicable alternatives to reach goals
and dependencies between actors and deciding the quality of such alternatives
and dependencies with regards to certain quality measures (softgoals). The
Runtime Goal Models proposed in Dalpiaz et al. [6] elaborate on specifying20

the possible valid alternatives to reach goals and the possible sequences for that
achievement.

However, we advocate that requirements satisfaction is itself pragmatic.
Pragmatism is the capability of solving problems in a sensible way that suits
the current context rather than obeying fixed rules. This implies that goals25

refinements are not causal relations and the mere achievement of the sub-goals
or execution of tasks does not necessarily imply that the parent goal has been
achieved. There may be quality requirements to be achieved in order to consider
a goal satisfied. Even more, such requirement can be lightened and strengthened
dynamically depending on the context.30

As an example, let’s consider a scientifical paper’s submission process. To
have a paper accepted, one must have an idea, write about it, experiment on
it and submit a paper. These steps could be seen as the decompositions of
"Having a paper accepted" goal. However, performing these tasks would mean
little if the submission’s deadline is not met. This is a hard and clearcut quality35

criteria for achieving the root goal. Failing to meet this time constraint means
failing the goal altogether, thus rendering it a pragmatic goal.

In Guimarães et al. [7], we have introduced the Pragmatic Goal Models
(Pragmatic GM) embracing the concept of pragmatic requirements and prag-
matic goals to grasp and model the idea that a goal’s interpretation varies40

according to context. We have also developed an algorithm to compute if a goal
is achievable under context-dependent quality of service (QoS) constraints and,
if so, it returns a set of tasks that abide by such constraints.

In this paper we extend our model with goal annotations proposed by Dalpiaz
et al.[6], which allows the Pragmatic GM to specify the runtime system be-45

haviour. Now, instead of providing a simple yes/no goal achievability answer
and applicable alternatives sets, through our new analysis and planning algo-
rithm, the Pragmatic GM provides, through the new Pragmatic Planning Algo-
rithm (PPA), a comprehensive goal fulfilment plan which achieves the pragmatic
requirements and respects the allowable system behaviour at runtime. On top of50

that, we have conceived the new PPA algorithm certifying that it is still within

2

a complexity suitable for runtime decision making. By these means, runtime
adaptation of a software system benefits from our planning algorithm so as to
schedule tasks execution and, therefore, meet the intended pragmatic goal. We
evaluate our approach using a Mobile Personal Emergency Response System55

(MPERS) case study [9] and a scalability analysis. Results show that a plan for
the MPERS case study was generated in less than a second. While scalability
results point out that even for models with up to 10000 goals and 20 contexts
sets the analysis and corresponding planning outcome can be reached within a
minute.60

The paper is organized as follows. Section 2 presents the CGM and RGM
models on which the Pragmatic GM builds and extends. Section 3 presents
the pragmatic goal and achievability concepts. Section 4 presents the proposed
model, its component parts and the automated reasoning and plan engineering
algorithm to find a suitable execution plan for the pragmatic model. Section 565

evaluates the applicability of our modelling and analysis approach. Section 6
presents related work and Section 7 concludes the paper and outlines our future
work.

2. Goal Models

Goal-Models (GM) are well established requirements engineering tools to70

depict and break-down systems using socio-technical concepts [1]. In other
words, they provides the goals for which the system should be designed and
the various possible ways to reach those goals. However, as pointed out in Ali
et al. [2] and Dalpiaz et al. [6] three aspects of real-life cannot be captured in
the traditional goal model [3, 4, 5]: the notion of contexts [2], the determination75

whether a task sequencing is valid within the model and the exploration of
alternative system configurations to restore the system to a valid state [6].

2.1. Contextual Goal-Model
Contextual Goal Model, proposed in [2], are meant to capture the relation

between requirements and their dynamic environment. Context can guide adap-80

tation and support the decision in the goals to activate and filter the space of
alternative strategies - subgoal, task or delegation - which can be applied to
achieve activated goals. Context can also have an effect on the quality of those
alternatives and this is captured through the notion of contextual contribution
from goals and tasks to softgoals.85

Context is description that concretize relevant factors in the system’s en-
vironment, i.e., the surrounding in which it operates [8]. In goal modelling
terminology, context is a specification of a partial state of the world relevant to
an actor’s goals [2]. Actors are social entities, or software representing them,
in an organization. Actors exist to have and be responsible of achieving goals90

and they have degree of flexibility how to achieve them. A context that affects
that choice could be the time of the day, a weather condition, patient’s chronic
cardiac problem, etc.

3

Fig. 1 present a CGM that depicts the requirements of a Mobile Personal
Emergency Response System meant to respond to emergency situations for peo-95

ple in an assisted living environment. The root goal is “respond to emergency",
which is performed by the actor Mobile Personal Emergency Response. The
root goal is divided into 4 subgoals: “emergency is detected", “[p] is notified
about emergency", “central receives [p] info" and “medical care reaches [p]”
([p] stands for “patient”). Such goals are then further decomposed, within the100

boundary of an actor, to finally reach executable tasks or delegations to other
actors. A task is a process performed by the actor and a delegation is the act
of passing a goal on to another actor that can perform it.

[p] is notified
about emergency

medical care
reaches [p]

emergency is
detected

ambulance is
dispatched to [p]

location
central

receives [p] info

setup
automated [p]

info

and

processes
sensors data

notifies [p]
by mobile
vibration

or

[p] info is sent
to emergency

and

[p] location is
identified

access [p]
location [l] from

triangulation

send [p] info
by SMS

acess data
from

database

C2

C2

c5

Mobile
Personal

Emergency
Response

C2

Ambulance
Dispatching

System

situations are
identified

identifies
situation

notifies [p]
by light alert

centrals
calls [p]

vital signs are
monitored

and

collects data
from sensors

persists data
to database

and [p] situation
data is recovered

and

identifies [p]
location [l]

by voice call

send [p] info
by internet

C3 v C4

respond to
emergency

or

notifies [p]
by sound alert

C8C1

C7C6[p] call for
help is accepted

receives
emergency
button call

notify central
by SMS

notify central
by Internet

C3 v C4

confirms
emergency

by call

false alarm is
checked

accepts
emergency

and

C2¬C2
access [p] location

[l] from aGPS

or

C2
or

or

or

[p] is contacted

Consider last known
location [l] of [p]

[p] info is
prepared

get info from
responsible for [p]

contact
responsible for

[p]

or

C1:
C2:
C3:
C4:
C5:
C6:
C7:
C8:

Quiet Ambient
GSM Coverage
Internet is available
Mobile Connection is configured
Data Coverage
Location tolerate phone ring
[p] is in a dim area
A staff is available to call

Figure 1: A Pragmatic GM for responding to emergencies in an assisted living environment
(adapted from Mendonça et al. [9])

It is important to highlight that not all the subgoals, delegations and/or
tasks are always applicable. Some of them depend on certain contexts whether105

they hold.

2.2. Runtime Goal-Model
In [6] Dalpiaz et al. present a framework for bridging the gap between

design-time goal-models and runtime behaviour. Starting with an early re-
quirements model representing stakeholder goals (Design-time Goal Model or110

DGM) they refine it with additional behavioural detail about how goals are to
be achieved. Specifically, they add constraints on valid orderings for pursuing
sub-goals thereby creating a Runtime Goal-Model (RGM).

4

Annotation Meaning
R1;R2 Sequential execution of R1 then R2

R1#R2 Parallel execution of R1, R2 or both
Rk# Parallel execution of k instances of R, with k > 0
Rk+ Sequential execution of k iterations of R, with k > 0
try(R1)?R2 : R3 Attempt R1. If R1 is fulfilled, R2; otherwise R3

R1|R2 Alternative execution of R1 or R2, not both
opt(R) R is optional
skip do nothing;

Table 1: Goal annotations syntax and meaning [6]

Dalpiaz argues that DGMs are in some ways too abstract to enable run-
time monitoring of requirements. In this sense, they pose some questions:(1)115

Is observed behaviour compliant with the system specification?; (2) How does
system behaviour relate to the fulfilment of stakeholders (root) goals? and; (3)
Can the system switch to an alternative behaviour to restore fulfilment?

Furthermore, they state that such questions may be projected over a time
frame, similarly to the Awareness Requirements proposed by Silva Souza et al.120

[10]. In this sense, one would also be able to question: (4) What is the percentage
of success for a given goal during the last month? and ; (5) What is the trend
for failure of a given goal in the last week?

Dalpiaz’s work on runtime goal models focus on the first two questions:
providing algorithms for deciding whether a given execution trace is compliant125

with the specification and with the relationship of the system behaviour with
the stakeholders’ goals.

To do so, Dalpiaz proposed the goal annotations depicted in Table 1. In
addition to the traditional AND- and OR- decomposition semantics, Dalpiaz’s
goal annotations guarantee it is fulfilled in accordance with the runtime rules130

associated with R for sequential and parallel executions.
Suppose a goal R is decomposed into R1 and R2. While the AND/OR-

decomposition rules define if all of R subgoals must be achieved, the goal anno-
tations define the order in which they may be achieved. As such, an (R1;R2)
annotation requires the fulfilment of R1 prior to R2, while an (R1#R2) does not135

impose any order on the fulfilment of R1 and R2 allowing for parallel execution
of both.

For the other rules, the fulfilment of the node follows runtime rules. If R
must be repeated k times, k instances of R must be executed serially (Rk+)
or in parallel (Rk#). The ternary try (try(R1)?R2 : R3) is interpreted as the140

attempt of R1 followed by R2 (if R1 succeeds) or R3 (should R1 fail). Finally,
alternative rule (R1|R2) is interpreted of either R1 or R2, but not both.

In the remainder of this paper, we have tackled the concept brought about
by Dalpiaz’s third question: the search, within the acceptable system configu-
rations, of some set up to allow it to restore fulfilment of the root goal.145

5

3. Pragmatism in Requirements

In Goal Modelling, the relations between sub-nodes and parent nodes are
supposed to be causal. Achieving one (OR-Decomposition) or all (AND- De-
composition) of the subgoals is seen as a satisfactory precondition for achieving
the parent goal. However, in [7] we argued that the achievement of goals would150

in certain cases need to be seen in a pragmatic fashion and not as a direct
causation of the achievement of other goals or the execution of certain tasks.
The decision whether a goal is achieved could be context-dependent. Our work
advocates the need for a more flexible definition of goals to accommodate their
contextual interpretation and achievement measures.155

It is paramount to note that the representation of the perceived quality
of a goal as a softgoal is innately different from the pragmatism of the goal
achievement. From a pragmatic point of view, a proposition is true if it works
satisfactorily. Thus, a pragmatic goal is achieved if it provides a satisfactory
quality level. It is not a matter of achieving it with higher or lower quality, but160

achieving it at all. Such level depends on the model but may also depend on the
system’s context at runtime, which may render it more or less strict for distinct
situations.

Take the example of Fig. 1: in general, let’s consider that the ambulance
may take up to ten minutes to arrive. For a patient with a minor discomfort165

it can take its time and arrive in 20 minutes without suffering any penalty. On
the other hand, if the patient is having a heart attack, one cannot say the goal
was achieved. In these situations, the delivered level of quality may not be a
separate part from the boolean answer of whether a goal is achieved or not, but
an integral part of it.170

A pragmatic goal model, just like a regular goal-model, describes the means
to achieve it but it also describes the interpretation of such achievement. This
interpretation, which depicts the goal’s pragmatic fulfilment criteria, can be
expressed as a set of quality constraints (QCs). Unlike softgoals, which are a
special type of goal with no clear-cut satisfaction criteria[10], these QCs are175

mandatory and crisp, therefore quantifiable, constraints needed for the fulfil-
ment of a goal and an inherent part of its definition. For instance, take goal
“[p] location is identified” from Fig. 1(Gloc for short): it could be defined as “in
order to reach Gloc, the location must be identified within an error radius of
maximum 500 meters and in less than 2 minutes”.180

But then again, this would not suffice as a radius of 500m and 2 minutes
might be an over-relaxed condition for patients under critical conditions.This
brings into light another aspect to be taken into account for the pragmatic re-
quirements: the fact that the interpretation for the achievement of a goal is itself
context-dependent. We consider that there is a default condition for achieving185

a goal. However, for specific contexts, we could relax or further strengthen the
condition which interprets whether a goal is achieved. We propose that the con-
textual QCs on the achievement of a goal should be captured together with the
other effects of context in the CGM. One advantage of capturing the pragmatic
goals within the CGM is to enable reasoning on the possibility of achieving a190

6

Figure 2: Gloc graphical representation as a pragmatic goal

goal under the current context and QCs. We differentiate these interpretations
in the sense that a relaxation condition is not mandatory but a requirement
that further strengthen the QC must necessarily be considered.

In the previous example, a QC of getting a location within 500m in less than
2 minutes is a default constraint. However, if the user has access to mobile195

data (context C5) then a much preciser location can be obtained from the GPS.
Under these circumstances, a lock within 500m may seem like an over-relaxed
constraint. For a patient with cardiac arrhythmia (context C10), a more strict
QC is needed. Suppose that the system has to ensure that an ambulance reaches
the patient’s home within 5 minutes. Possibly, in this case, a faster but less200

precise location would be better suited. The requirements for a minor discomfort
(context C9) are also more flexible than those for an arrhythmia (C10). In the
three specific contexts, the interpretation must differ from the original baseline.

Figure 2 sums up Gloc’s interpretation criteria and presents it as a box
connected to the goal itself. However, not only the goal’s interpretation may vary205

according to the context but also the delivered quality of service (QoS) levels.
When executed in different contexts, a task may provide different QoS levels,
represented by the boxes linked to the tasks in Figure 2. Furthermore, provided
that Gloc is annotated with G1;G2;G3;G4, the consequent task sequencing -
derived from the goal’s annotation - will too impact on the goal’s perceived210

QoS. For instance, for Gloc this means that, although no individual task has a
time constraint of over 120 seconds, unless context C9 is active at least one of
such tasks will obligatorily not be chosen so that the total time stays under 120
seconds.

The set of QCs that represent the pragmatic aspects of a goal and the vari-215

able delivered QoS levels extend the traditional CGM into a Pragmatic CGM
and allow for the reasoning over the achievability of a goal under a certain
context.

3.1. Achievability of Pragmatic Goals
Pragmatic goals can only be achieved if their provided QoS levels comply220

with the QCs specified for them, both of which are context-dependent. This
means that we extended the basic effect of context on a CGM to cover suc-
cess and achievement criteria. Such expressiveness enables further analysis for
a key adaptation decision: how to, under the current context, pick a task set
and arrange them into a valid task sequence in order to reach our goals while225

respecting its interpretation when the goals’ interpretations, the space of appli-

7

cable alternatives to reach them and the QoS levels provided by the tasks are
all context-dependent?

Such adaptation decision may also lead down a dire path. It is inevitable
for one to wonder: “what to do when such a sequence cannot be found? ”.230

Situations where it may not be possible to meet the goal’s interpretation QoS
standards through any of the applicable sub goals, tasks and/or delegations
are also considered in our approach. This is a rather likely scenario considering
that the tasks deliver not a static but a context-dependent QoS level. Whenever
there is no possible task sequencing able to deliver the goal’s required QoS we235

classify the goal as unachievable. This is expected to happen and the proper
way of dealing with such goals is explained in the reasoning part.

Let’s get back to the example in Figure 1: if we consider the goal Gloc

and the contexts impacting on its interpretation, the conclusion is that under a
certain context the system may not be able to determine the patient’s location240

with the required precision. This, in practice, does not mean doing nothing.
The motivation of doing this analysis and deeming the goal unachievable is
simply to have such knowledge beforehand. At design-time, this allows the goal
model designer to add new strategies for reaching the goal with that particular
context in mind, thus covering a larger range of contexts. At runtime, this early245

conclusion would lead to search for a better variant at a higher-level goal by
choosing another task sequencing, which is able to deliver the required quality
standard. Therefore, our analysis is both meant for design-time - reasoning to
evaluate and validate the comprehensiveness of the solution - and for runtime -
devising the suitable planning strategy to reach goals in a specific context under250

a certain set of quality constraints.

4. Pragmatic Goal Model

In this section, we take the concepts for pragmatic goals and concretize them
as our extension to the CGM. For each of the new constructs we elaborate on its
semantics. Mainly, we have enhanced the CGM with the goal annotations for255

specification of valid decomposition orderings, context-dependent goal interpre-
tations, the expected delivered QoS for tasks - also context-dependent, in order
to reason about the achievability of goals and to engineer a suitable execution
plan to achieve them.

4.1. Meta-Model260

Figure 3 presents a conceptual model of our extension to the CGM. For the
focus of this paper, the CGM could be seen as an aggregation of Requirements.
Requirements may be specialized into several types: Tasks, Delegations and
Goals. A Delegation represents when the Goal or Task (dependum) is pursued
not by the current but by an external actor (delegatee). Tasks are performed by265

the actor in order to achieve a goal. Tasks may report the expected delivered
quality for each metric through the providedQuality method.

A Goal is a useful abstraction to represent stakeholders’ needs and expecta-
tions and they offer a very intuitive way to elicit and analyse requirements[2].

8

Goals have a refinements set which define the Requirements (subgoals, tasks270

and/or delegations) that can be used for achieving it as well as a method to
distinguish AND- from OR-compositions. Each goal is annotated with a Goal
Annotation which describes the required behaviour of the goal’s requirement
instances. Goal annotations are thoroughly discussed in Section 4.2. Context is
also strongly related to goals, for it changes the current goals of a stakeholder275

and the possible ways to satisfy them[2]. In this sense, the goal’s decomposition
may vary according to the context and this is modelled in the meta-model as
the method getApplicableRefinements.

1 n

1 1

1
n

1

1

11

1

n

CGM

+ getRoot();
+ getVariant();
+ isAchievable();

Requirement

+ applicableContexts

+ isApplicable()
+ isAchievable()

Delegation

+ delegatee
+ dependum

Task

+ myProvidedQuality()

Goal

+ getApplicableRefinements();
+ isOrDecomposition();
+ isAndDecomposition();

Pragmatic Goal

+ getInterpretation()

Interpretation

+ contextualQC

+ getQualityConstraints();

QualityConstraint

+ getQualityRequirement();

CompositeQC

+ getQualReq();

TaskQC

+ getQualReq();

Goal Annotation

+ getPossiblePlans();

CompositeMetric

Figure 3: Metamodel for the Pragmatic Goal Model with QoS-constrained planning

Pragmatic Goals extend the Goal concept with the Interpretation of its
achievement. A goal’s Interpretation is an abstract concept that has the func-280

tion of cross-referencing a context and the appropriate QualityConstraints for
that given context. The Pragmatic Goal is said to be achieved if, and only if,
such requirements are met. Otherwise, the goal’s delivered QoS is considered
inappropriate and the goal is not achieved regardless of achieving one or all of
its Requirements.285

The Quality Constraints are expressed in terms of the
applicableContext in which it holds, the metric that should be considered,
the threshold which is a numerical value that represents the scalar value for
such metric and the comparison which defines whether the threshold described
is the maximum allowed value or the minimum. For instance, to state a quality290

requirement of at most 250ms for the execution time when context C1 holds,
the metric would be “ms", threshold would be 250, condition would be “Less or
Equal" and applicableContext would be C1. Quality constraintsmay have
task (TaskQC) or workflow scope (CompositeQC). TaskQCs impose a restriction

9

on the applicable tasks whereas CompositeQCs restrictions apply to the work-295

flow as a whole. The composition rules for the calculation of Composite QCs
are expressed via the CompositeMetric objects, which are able to estimate the
resulting metric depending on the goal annotation being considered (Section
4.2). The difference between these two kinds of quality constraints (QCs) is
further discussed in Section 4.3 whereas their usage in the PPA algorithm is300

explained in Section 4.4.
Every Requirement inherits the isAchievable method. This method can

be used either by the final users or by the higher level goals to define whether
a particular goal can be achieved for a given quality requirement under the
current context. While this is obviously necessary for the root goal, as the305

ultimate objective, we also allow certain subgoals to be defined as pragmatic,
i.e., they may also have their own predefined interpretation. In principle, actors
should be able to impose further constraints on the criteria for achieving any
goal within their boundary. The importance of the subgoals quality requirement
becomes obvious when dealing with delegation of goals where the external actor310

may have itself a different, more relaxed or more strict, quality constraint, not
necessarily compatible with what the delegator intends.

In this model, the goal annotations, the expectation of delivered quality by
the tasks, the quality constraints for the goals, subgoals or delegations and the
metrics compositional rules are added to the traditional CGM. This is meant to315

be done by the requirements expert or the domain experts due to the need for
specialized knowledge to define such metrics.

4.2. Goal Annotations
As previously discussed in Section 2.2, goal annotations were first defined

in Dalpiaz et al. [6]. They are intended to express the expected behaviour320

of a goal, regarding the manners in which its refinements may be sequenced.
Following the meaning, allowed set of traces for goal annotations and annotation
creation rules, the interleaved and sequential annotations are applicable to AND-
Goals whereas try and alternative annotations are applicable to OR-Goals. The
remaining annotations are unary therefore indifferently applicable to AND and325

OR decompositions.
In our case, goals are to be fulfilled by the system by taking into account (1)

contextual specifications and (2) the possible valid configurations for goals and
tasks, following RGM runtime rules, extended from Dalpiaz et al. [6].

In our model, the goal annotations are used to determine, together with the330

goal decomposition type, the different possible approaches for dealing with the
goal’s underlying requirements. It is the goal’s annotation that first envisions the
possible plans for achieving the goal. It is also the goal annotation, together with
the Composite Quality metrics’ QoS functions, that estimate the overall plan
quality measures for each possibility. Only then, does the Qos Constrained335

Planning algorithm (see Section 4.4.1) compare the possible plans and chooses
an appropriate one. For the sake of examplification we will deal with time and
reliability constraints in the remainder of the paper, although the solution itself

10

Annotation QoS Function QoS Function
Time Reliability

R1;R2 t(R1) + t(R2) rel(R1) ∗ rel(R2)
R1#R2 max(t(R1), t(R2)) rel(R1) ∗ rel(R2)

Rk# t(R) rel(R)k

Rk+ t(R) ∗ k rel(R)k

R1|R2
R1 was chosen: t(R1) rel(R1)
R2 was chosen: t(R2) rel(R2)

try(R)?R1 : R2
R is achievable: t(r) + t(R1) rel(R) ∗ rel(R1)
R is unachievable: t(r) + t(R2) (1− rel(R) ∗ rel(R2)

Table 2: Goal annotations Plan Alternatives and respective evaluated QoS Functions)

can be applied to any quality measure as it will be explained later on Section
4.3.340

As depicted in Table 2, the runtime annotations we have used are:

Sequential (R1;R2) Serial execution of two refinements, with composed time
equals to the sum of their individual execution times (t(R1) + t(R2))
and reliability equals to the chance of successfully executing R1 and R2

(rel(R1) ∗ rel(R2));345

Interleaved (R1#R2) Refinement executions performed in parallel, with com-
posed time equals to that of the most time consuming one (MAX(t(R1), t(R2)))and
reliability equals to the chance of successfully executing R1 and R2 suc-
cessfully (rel(R1) ∗ rel(R2));

Sequential iterations (Rk+) serial execution of k instances of the plan R,350

with composed time equal to the time spent for a single execution multi-
plied by the amount of repetitions (t(R) ∗ k) and reliability equals to the
chance of successfully executing all the k instances (rel(R)k);

Interleaved iterations (Rk#) Parallel execution of k instances of the plan R,
with total time estimate equivalent to that of a single task (t(R)), since355

the model allows them all to be executed in parallel and reliability equals
to the chance of successfully executing all the k instances (rel(R)k);

Alternative (R1|R2) Alternative execution of plan R1 or R2, with the same
time and reliability QoS levels as that of the chosen alternative;

Try (try(R)?R1 : R2) Annotation that depends on the achievability of R. If360

it is achievable, performs R and R1 sequentially, otherwise, performs R
- which will fail - and R2. The time QoS is then evaluated similarly
to the sequential annotation and the reliability becomes the chance of
successfully executing R and R1 (R achievable) or just R2 (since R will
fail per design).365

In Dalpiaz’s original work, there was also the opt(G) annotation which meant
G was optional and applicable only under certain circumstances. Accordingly,
we map the original annotation as a context-dependency on the goal itself.

11

Figure 4 presents the Pragmatic GM from Figure 1 but now with annotated
goals (the goal annotations are represented as the black boxes on top of the370

goals). Because of such annotations, the possible behaviours of the system
are now thoroughly specified and the dependencies between tasks can now be
represented and taken into consideration when planning the system adaptation.

[p] info is prepared[p] info is sent to emergency

Central receives [p] info

Situations are identified

[p] call for help is accepted

[p] is notifedabout emergency
Ambulance is dispatched to [p] location

Medical care reaches [p]
G3

G2
G5

G6
G7

G4

G8 G9

G10

G11

G12

G13
G14

G17 G18T1

T3

T5
T6

T7 T8

T9

T10 T11
T12

T13
T14

T15

T16
T17

T18

T2

Respond to Emergency
G1

Emergency is Detected Ambulance Dispatching System
Notifies [p] by mobile vibration

Notifies [p] by sound alert
Notifies [p] by light alert

Central calls [p]

setup automated [p] info

contact responsible for [p]
G15

[p] situation data is recovered[p] location is identified

Vital signs are monitored

False alarm is checked

[p] is contacted
G16

Receives emergency button call Process sensors data
Identify situation

Collects data from sensors Persist data to database

notify central by SMS notify central by Internet

Accepts emergency
Confirms emergency by call

Consider last known locationof [p]
Identify [p] location by voice call Access [p] location from triangulation

Access [p] location from aGPS

Access data from database

Get info from responsible for [p]
T20

T19

Send info by SMS Send info by Internet

Mobile Personal Emergency Response

G11;G12

G9;G8

G10

Try(T14)?skip:T13

G2;G3;G4;G5

G17#G18
T203+

T173#

T5#T6

Try(G16)?skip:T3

T43+

T1|T2

G6|G7

Try(G14)? Skip:G15

T9|T10|T11|T12

T15|T16|T17|T18

T7#G13#T9

Baseline: (falseNegatives < 30%)C3: (falseNegatives < 10%)C9: (falseNegatives < 5%)

Baseline: (time<600)C9: (time<900)C10: (time<300)

Baseline: (time<60)

Baseline: (time<900)C10: (time<600)

Base:(error<500) & (time<120)C5:(error<20) & (time<120)C9:(error<500) & (time<240)C10:(error<200) & (time< 20)

Baseline: (error<500) & (time<15)

Baseline: (error < 100) & (time<45)C11: (error < 300) & (time<45) Baseline: (error < 40) & (time<30)C11: (error < 300) & (time<30)

Baseline: (noise<10)C9: (noise<3)
C1 C8C6 C7

C2 C3 v C4

¬C2C2

T4

C2 C2
C5

C2 C3 v C4

Baseline: (error < 20) & (time<45)C11: (error < 400) & (time<30)

C1:C2:C3:C4:C5:C6:
C7:C8:C9:C10:C11:

Quiet ambientGSM coverageInternet AvailableMobile ConnectionData CoverageLocation toleratesnoise[p] is in a dim areaA staff is availableMinor discomfort[p] has arrythmiaLow GSM tower density

D1

Figure 4: The goal-annotated Pragmatic Goal for MPERS

4.3. Quality Constraints
To enhance goals with context-dependent interpretation, we must revisit375

the classical concept of achievability of a goal to fit the nature of Pragmatic
CGMs. On top of the basic context effect on a CGM, we enable a higher model
expressiveness through the goal interpretation.

The goal interpretation, as stated in Section 3, is a set of mandatory and
crisp, therefore quantifiable, quality constraints needed for the fulfilment of a380

goal. Since we are dealing with a goal annotated model and considering the
tasks interdependencies are accurately modelled, we must also further divide
the quality constraints into two classes based on their scope: individual task-
wise constraints and composite workflow-wise constraints.

Task-wise Constraints: . Many constraints deal with the individual quality pro-385

vided by the task itself. These constraints can include measures like “level of
precision”, “margin of error”, “noise” or “false negatives”. Any task that can
isolatedly reach the level of quality stated in such constraints can be used, re-
gardless of the remainder task choices. All constraints from Guimarães et al.
[7] were task-wise constraints, given that no sequencing was made. These con-390

straints can be added to the model directly, simply by giving them a unique

12

label. To exemplify a task-wise quality constraint let’s consider the Goal G3
“Notify [p] about emergency”. This goal states that when the patient is in a quiet
environment no task can produce noises louder than 3 dB. This is a restriction
on the possible tasks but has no relationship with the tasks’ interdependencies.395

Workflow-wise Constraints:. Differently from the task-wise constraints, workflow-
wise or composite constraints are applicable to the quality level of the overall
chosen tasks sequencing that satisfy the root goal. In this sense, these con-
straints have a direct dependency on the way the tasks cooperate to fulfil a
certain goal. Classic examples of composite constraints may include time ex-400

penditure. Such constraints heavily depend on the chosen tasks’ and their un-
derlying workflow’s topology. For a time constraint, the workflow’s critical path
will be the decisive aspect for time estimates.

Provided that the composite QoS level calculation is heavily dependent on
the actual QoS type being considered, each composite metric must implement a405

CompositeMetric object (from our meta model in Figure 3) defining the compo-
sitional rules for the calculation of CompositeQCs for each goal annotation. In
this work, we have implemented CompositeMetrics for Time and Reliability.

4.4. Pragmatic Planning Algorithm - PPA
The expressiveness power added by the dynamic, context-aware, task- or410

workflow-wise quality constraints enable richer adaptation decisions which not
only consider the static achievability but also the achievability under the dy-
namic context and its effect on the fulfilment criteria of a goal. The achievability
of a goal and the space of adoptable alternatives to achieve it are essential infor-
mation to plan adaptation, seen as a selection and an enactment of a suitable415

alternative to reach a goal under a certain context.
However, the enhanced expressiveness allied with the context-dependency

also largely affects the model’s variability. Given that each OR-Decomposition,
each R1#R2, try(R)R1 : R2, R1|R2 annotation, each context add to such vari-
ability, finding a configuration within the expected behaviour considering task420

and composite quality constraints may become humanly infeasible. Thus we
have developed and implemented the PPA algorithm to engineer a plan that
abides by the interpretation of the goals within the model, if possible, or to lay
out the best effort allowed by the model under the current context.

4.4.1. Task- and Workflow-wise QoS Constrained Planning425

In this Section, we present the Pragmatic Planning Algorithm, or simply
PPA. In a nutshell, the PPA algorithm initially performs a depth-first filter,
aggregating the Task Quality Constraints on each branch of the CGM tree, so
that all task-wise constraints respect all the upper level goals’ interpretations.
Once it finds a leaf-node (task), it uses the collected task quality constraints to430

decide whether the task at hand is able to fulfil the collected constraints. Then,
it returns this task and begins agglutinating, at each goal, the possible plans

13

for its refinements, always choosing the plan that provides the best quality for
the composite requirement being considered1.

We present PPA in Algorithm 1. It implements the Requirement entity’s435

isAchievable method (Figure 3) and correlates three context-dependent aspects
from the model: (1) the applicable requirements; (2) the goals’ interpretations
and; (3) the delivered QoS level provided by the tasks.

The PPA algorithm decides whether the root goal is achievable and, if so,
lays out an execution plan, i.e. a workflow, which is most likely to achieve the440

desired QCs with a complexity of O(m ∗ n), where m is the model size and n
the amount of contexts2.

PPA considers firstly the type of refinement it is dealing with. Should
this refinement be a task (line 5) then the algorithm can decide whether this
particular task abides by all of the task-wise and workflow-wise constraints445

(canFulfil(interp)) and returns a plan consisting solely of this refinement,
already indicating whether it is a usable plan or not (lines 7 and 8).

On the more likely case that this is not a leaf-goal and, therefore that this
node has refinements, the first step in the algorithm is to define the subgoal’s
achievement interpretation criteria as the stricter between the parent’s QCs450

and the QCs passed in the interp parameter (lines 11-12). Then the algorithm
invokes itself recursively for each refinement so that the plans for each of its
subgoals are created (lines 13 - 16) and save them. Once it has knowledge of
the outputted plans for its refinements, it can begin on the workflow-wise QoS
constrained planning. At this point, the PPA algorithm interacts with the goal455

annotation to obtain all the allowed behaviours for the achievement of this
refinement (line 18), already annotated with time and reliability QoS metrics
calculated through the rules presented in Table 2. Initially, the algorithm ac-
cepts any approach to realize the goal at hand available, disregarding whether
it is achievable or not (line 22). Then, for each successive possible approach460

(line 20), the algorithm compares the candidateApproach with the previously
chosenPlan to choose the best alternative in terms of achievability (line 24-
25) or QoS (lines 26-27), always striving to return the approach with the best
possible QoS for the Composite QC being considered in the given interpretation.

The PPA algorithms validates whether the best candidate plan is still within465

the interpretation’s composite QC limits (line 31) and, if it is not, sets the plan
as unachievable.

Either way, the best candidate plan - achievable or the goal’s best effort
- is finally returned in the end. To exemplify the algorithm, we now present
the following scenario: a patient with a heart condition (C10) needs medical470

assistance and needs certainty that it will arrive. He currently has good data
coverage (C4) and mobile data enabled (C5). He is also in a dim location (C7)

1Currently, only one composite requirement can be considered at each QoS constrained
planning.

2 Demonstration at https://github.com/felps/PragmaticGoals/blob/master/
QosPlanningAlgorithmComplexity.pdf

14

https://github.com/felps/PragmaticGoals/blob/master/QosPlanningAlgorithmComplexity.pdf
https://github.com/felps/PragmaticGoals/blob/master/QosPlanningAlgorithmComplexity.pdf

Algorithm 1 Pragmatic Planning Algorithm

1: procedure qosConstrainedPlanning(Context current, Interpretation
interp)

2: if !isApplicable(current) then
3: return NULL
4: end if
5: if (isTask()) then
6: Plan pTask ← new Plan(this);
7: pTask.setAchievable(canFulfill(interp));
8: return pTask
9: end if

10: Map<Refinement, Plan> refPlans;
11: Interpretation stricter =
12: stricterQC(current, interp,this.getInterpretation());
13: for each Refinement ref in getApplicableDependencies(current) do
14: Plan pRef;
15: plan ← ref.qosConstrainedPlanning(current, stricter);
16: refPlans.put(ref, plan);
17: end for
18: List<Plan> approaches ← getRuntimeAnnotation()

.getPlans(refPlans);
19: Plan chosenPlan ← NULL
20: for each Plan candidateApproach in approaches do
21: if chosenPlan == NULL then
22: chosenPlan ← candidateApproach;
23: else
24: if (!chosenPlan.getAchievable() AND

candidateApproach.getAchievable()) then
25: chosenPlan ← candidateApproach;
26: else if (chosenPlan.getAchievable() AND

candidateApproach.getAchievable()) then
27: chosenPlan ← chooseBetterPlan(candidateApproach,

chosenApproach, interp);
28: end if
29: end if
30: end for
31: if !interp.withinLimits(chosenPlan) then
32: chosenPlan.setAchievable(false);
33: end if
34: return chosenPlan
35: end procedure

which tolerates phone ring (C6). However, the area’s GSM tower density is low
(C11).

15

Figure 5: Workflow output for context [c4, c5, c6, c7, c10, c11]

In this situation, the algorithm would analyse the Pragmatic GM prioritizing475

the reliability quality constraint. It would then suggest the plan depicted in
Figure 5. We also present, in Figure 6, the original Pragmatic GM with the
chosen tasks highlighted to depict the adherence of the chosen tasks to the
current context and goal annotations.

To comprehend the reasoning performed in choosing this approach, we must480

first identify the alternatives available at such time. To facilitate the reader’s
understanding of this example, all the tasks are considered to have the same
reliability level, let’s say 99% reliability.

So first, it considers the root goal and the fact that it is an AND-decomposition
with linear sequencing of tasks. Then it invokes the PPA algorithm recursively485

for goal G2, then a new recursive call for G6, and yet another for G11. At
G11 the recursive calls made over tasks T1 and T2 return a plan consisting of
task T2 and a null plan, since T1 is inapplicable under the considered con-
text. G11 then chooses such plan and returns this to G6. G6 now invokes the
PPA algorithm at G12, which checks and sees that G16 is unachievable it is not490

applicable at the current context. Thus it returns a plan consisting of T3.
Now that G6 has a complete plan for G11 (T2;T3), it invokes the PPA al-

gorithm on G7. G7 execution returns a plan consisting of (T7#(T5#T6)#T8).
Considering the annotations in Table 2, the observed reliability of these two
alternative plans for G2 would be 0.9801 for (T2;T3) and 0.96059601 for plan495

(T7#(T5#T6)#T8). Since the PPA algorithm is prioritizing the reliability QoS
constraint, the plan (T2;T3) is returned as the best alternative for G2 and the
algorithm proceeds in similar way for goals G3, G4 and G5, providing the plan
(T2;T3;T11; (T18#T19);D1) - depicted in Figure 5 - as a valid alternative for
this situation.500

From Figure 6, we can see that such workflow respects all the annotations’
rules in the model: it contains tasks fromG2, G3, G4 andG5, sequentially linked
between them; it contains tasks from G6 but not G7 as defined in G2 alternative
annotation; it contains T3 because G16 is unachievable given that C2 is not
active effectively deeming G16 unachievable. From the four G3 dependencies,505

the only ones applicable for the patient’s context were T10 and T11, where
the algorithm opted for T11, which provided better Composite QoS levels. G4
annotation required that G9 subtree tasks (“Access location from aGPS” and
“Access Database”) were performed before sending info over the internet. Also,
since G14 was achievable, the else branch for G9 was not executed because G14510

was achievable. Finally, the G10 delegation was performed and the root goal
achieved correctly.

16

[p] info is prepared[p] info is sent to emergency

Central receives [p] info

Situations are identified

[p] call for help is accepted

[p] is notifedabout emergency
Ambulance is dispatched to [p] location

Medical care reaches [p]
G3

G2
G5

G6
G7

G4

G8 G9

G10

G11

G12

G13
G14

G17 G18T1

T3

T5
T6

T7 T8

T9

T10 T11
T12

T13
T14

T15

T16
T17

T18

T2

Respond to Emergency
G1

Emergency is Detected Ambulance Dispatching System
Notifies [p] by mobile vibration

Notifies [p] by sound alert
Notifies [p] by light alert

Central calls [p]

setup automated [p] info

contact responsible for [p]
G15

[p] situation data is recovered[p] location is identified

Vital signs are monitored

False alarm is checked

[p] is contacted
G16

Receives emergency button call Process sensors data
Identify situation

Collects data from sensors Persist data to database

notify central by SMS notify central by Internet

Accepts emergency
Confirms emergency by call

Consider last known locationof [p]
Identify [p] location by voice call Access [p] location from triangulation

Access [p] location from aGPS

Access data from database

Get info from responsible for [p]
T20

T19

Send info by SMS Send info by Internet

Mobile Personal Emergency Response

G11;G12

G9;G8

G10

Try(T14)?skip:T13

G2;G3;G4;G5

G17#G18
T203+

T173#

T5#T6

Try(G16)?skip:T3

T43+

T1|T2

G6|G7

Try(G14)? Skip:G15

T9|T10|T11|T12

T15|T16|T17|T18

T7#G13#T9

Baseline: (falseNegatives < 30%)C3: (falseNegatives < 10%)C9: (falseNegatives < 5%)

Baseline: (time<600)C9: (time<900)C10: (time<300)

Baseline: (time<60)

Baseline: (time<900)C10: (time<600)

Base:(error<500) & (time<120)C5:(error<20) & (time<120)C9:(error<500) & (time<240)C10:(error<200) & (time< 20)

Baseline: (error<500) & (time<15)

Baseline: (error < 100) & (time<45)C11: (error < 300) & (time<45) Baseline: (error < 40) & (time<30)C11: (error < 300) & (time<30)

Baseline: (noise<10)C9: (noise<3)
C1 C8C6 C7

C2 C3 v C4

¬C2C2

T4

C2 C2
C5

C2 C3 v C4

Baseline: (error < 20) & (time<45)C11: (error < 400) & (time<30)

C1:C2:C3:C4:C5:C6:
C7:C8:C9:C10:C11:

Quiet ambientGSM coverageInternet AvailableMobile ConnectionData CoverageLocation toleratesnoise[p] is in a dim areaA staff is availableMinor discomfort[p] has arrythmiaLow GSM tower density

D1

Figure 6: MPERS model with tasks chosen by the PPA algorithm highlighted in blue

5. Pragmatic Model and Achievability Algorithm Evaluation

In this section, we experimented on the algorithm to find out its effectiveness
and to evaluate its usefulness in finding achievable plans and its scalability as515

to assert its practical application in large scenarios, both at design-time and
runtime using the Goal-Question-Metric evaluation methodology [11]. GQM
is a goal-oriented approach used throughout software engineering to evaluate
products and software processes. It assumes that any data gathering must be
based on an explicitly documented logical foundation which may be either a520

goal or an objective.

5.1. GQM Validation Plan
GQM’s first step is to define high-level evaluation goals. For each goal, a

plan consisting of a series of quantifiable questions is devised to specify the
necessary measures for duly assessing the evaluation [11]. These questions iden-525

tify the necessary information to achieve the goals while the metrics define the
operational data to be collected to answer each question.

In such a methodology, we started up by setting the three main goals of
our evaluation : (I) verifying the usability of the model for the MPERS case
study at runtime; (II) verify that algorithm’s performance allows it to also be530

used also at runtime for larger models and; (3) define whether the model can
be used at design-time to pinpoint context sets in which the model may be, per
design, unachievable. These three goals were the foundation on which the GQM
validation plan was based.

17

Goal 1: PPA’s runtime usage capability in the MPERS case study
Question Metric

1.1 How long would it take for the PPA
algorithm to come up with a plan for the
MPERS case study?

Execution time

1.2 How reliable are the plans provided by
PPA for the MPERS model?

% of correct
answers

Goal 2: PPA’s runtime usage capability for larger models
Question Metric

2.1 How does the PPA algorithm scale over
the amount of goals in the model?

Execution time

2.2 How does the PPA algorithm scale over
the amount of contexts in the model?

Execution time

Goal 3: Algorithm’s design-time usage capability
Question Metric

3.1 How long would it take to cover all
context sets for increasingly large models?

Time elapsed

Table 3: GQM devised plan

5.2. Experiment Setup535

The experiment setup consisted in evaluating the Pragmatic model and the
algorithm’s capability to support design-time and runtime usage. These parts
and their evaluations were engineered to provide the metrics demanded by the
GQM plan (Table 3).

The first evaluation goal is directed towards the MPERS case study and aims540

at a more comprehensive and detailed evaluation and it is intended as a “proof of
concept”. On this front we have evaluated the time to produce an execution plan
and the reliability of the plans provided evaluation. In this evaluations, we have
used the MPERS Pragmatic Goal Model as the input for the evaluation tool
and measured the time for producing a plan and its adherence to the model’s545

restrictions.
The second evaluation goal concerns itself with the scalability of the proposed

model and its applicability on larger models, both in terms of goals and contexts
amount. For this evaluation we have generated models with varying amounts of
goals and tasks using each one the possible annotations to evaluate the impact550

on using such annotations - when compared to one another - and to determine
the worst case scenario. This is meant to ascertain the planning overhead on
the model. This information also gives designers a baseline on which to base
their decision on the applicability of the model to perform runtime decisions.

Finally, the third evaluation front is concerned with the usability of the555

algorithm as a design-time tool to pinpoint scenarios in the Pragmatic GM
which may be unachievable by design, given the goal interpretations, tasks’

18

quality levels provided under specific contexts. For this goal, we have evaluated
the time spent to sweep all context combinations in randomized models with 10
contexts and sizes ranging from 500 to 6,000 nodes.560

The PPA algorithm from Figure 1 was implemented3 using Java Oracle JDK
1.8.0_92 and all evaluation tests were performed on a Dell Inspiron 15r SE
notebook equipped with a Intel Core i7 processor, 8GB RAM running Ubuntu
16.04, 64 bits and kernel 3.16.0-29-generic.

All experiments to evaluate the correctness and performance of the algorithm565

were implemented as automated tests under Java’s JUnit framework. This
guarantees that the evaluation is both effortless and repeatable.

5.3. Goal 1: PPA’s runtime usage capability in the MPERS case study
For this goal, we evaluated the average time to produce an answer in the

presented MPERS scenario (Figure 1) and the reliability of the engineered plans.570

Question 1.1: How long does it take for the PPA algorithm to come up with
an execution plan for the MPERS case study?. To evaluate the time for the
algorithm execution on the CGM of Figure 1, we executed 100 iterations of the
algorithm for each possible context set. The results showed that the algorithm
took, in average, less than 1 ms to be executed. This evaluation was performed575

by executing the algorithm over the MPERS model 100 times for each possible
context set, summing up to a total of 409600 repetitions. The average time for
coming up with a plan for the MPERS case study was 0.34±0.09 ms. Out of the
409600 measurements, there were however 62 outliers (0.015%) with execution
times of more than 10 ms. These outliers points are still under a second and580

are likely due to background tasks in the machine, which was not dedicated.

Question 1.2: How reliable are the plans provided by PPA for the MPERS
model?. To validate the correctness of the plans we have, for each context set
for the MPERS, identified all the inapplicable tasks, all restrictions imposed by
the goal annotations’ and the composite QoS constraints. Then, we formally585

coded these restrictions through 42 assertion statements, similar to the ones
presented in Figure 7, throughout the test so as to guarantee that none of the
restrictions were disrespected in any of the outputted plans. Finally this test
was performed for every possible context set and none of the coded restrictions
were infringed.590

Analysis of the results. With regard to the MPERS case study, the proposed
algorithm have been shown to be efficient. The planning stage for this scenario
took around 3 milliseconds to be computed and none of the 4096 executions,
effectively sweeping all the possible context sets, triggered any of the several
assertion statements introduced in the tests. It was certainly expected - given595

3Source code, evaluation mechanisms, and complete result sets are available at https:
//github.com/felps/PragmaticGoals/tree/RuntimeGoalModel. Accessed on 2016/07/30

19

https://github.com/felps/PragmaticGoals/tree/RuntimeGoalModel
https://github.com/felps/PragmaticGoals/tree/RuntimeGoalModel

Figure 7: Assertions to verify the generated plan’s adherence to the annotations’ semantics

the deterministic nature of the algorithm - that all the responses were valid.
However the level of efficiency in solving this problem was remarkable.

5.4. Goal 2: PPA’s runtime usage capability for larger models
The second goal from the GQM validation plan aims at defining if the model

and algorithm proposed are suitable for usage in larger models. To uncover600

some information regarding this objective, we have stated two questions on the
scalability of our proposal: how does it scale over the amount of goals in a model
and how does it scales over the amount of contexts in a model.

This investigation is important considering the objective of using this model
and this algorithm to engineer - at runtime - an execution plan able to achieve605

the CGM’s root goal under the current context and current QoS constraints.
To accomplish this goal - and this is a pragmatic goal itself - it is not sufficient
to engineer the plan but it needs to done in a reasonable amount of time so that
it will not seriously impact the response time.

Question 2.1 and 2.2: How does the PPA algorithm scale over the amount of610

goals and contexts in the model?. To answer questions 2.1 and 2.2, we have
performed a scalability analysis on Pragmatic GMs of different sizes, in terms
of goals and contexts amounts, for each one of the possible goal annotations.

For each of the available annotations, we engineered and performed a series
of evaluations. A pragmatic model with size ranging from 500 to 10.000 (in615

steps of 500 nodes) and contexts ranging from 1 to 20 containing goals anno-
tated with the selected annotation would be generated. Then, for each of these
models, we executed the isAchievable method 50 times and measured the to-
tal execution time. Finally, the test outputted the average execution time per
method invocation. The resulting average times are presented - one for each620

annotation - in Figure 8.
In these graphs, the x- and z-axes represent the model-size and the amount of

contexts used in each execution respectively, i.e, the independent variables. The
y-axis represent the time for engineering an execution plan, i.e, the experiment’s
dependent variable. In all six experiments, the average time for engineering the625

plan did not go over 5 seconds. Also, in the plotted graphs we are able to glimpse

20

into the expected complexity of O(m ∗ n) over the model size m (x-axis) and
over context sizes n (z-axis).

Analysis of the results. In general, Figure 8 shows a good behaviour of the
algorithm. The growth ratio for the algorithm’s execution time grows linearly630

over the amount of goals and contexts. None of the annotations had issues
in elaborating a plan on larger models, although their performance varied in
different degrees. The behaviour of the Sequential annotation was the worst of
them all with an execution time of a little under 4.5 seconds for models with
10,000 nodes and 10 contexts. Still this was considered an affordable execution635

time for the planning stage of such large scenario in terms of goals, tasks and
contexts.

5.5. Goal 3: Algorithm’s pinpointing unachievable context sets capability
Finally, the last goal of the evaluation is to show the applicability of this

algorithm to benefit software designers. More specifically, we want to know if it640

can answer the following question: “Given that the system has been modelled
as a Pragmatic GM, is it possible to use this algorithm pinpoint context sets in
which such system would inherently be unable to reach its goals?”

To deal with this we have implemented one last test which would generate
600 random models varying from 100 to 6000 nodes with a fixed set of 10645

contexts. Then, the algorithm was executed for every one of the 210 possible
context sets and the time spent to do so was measured. The results are now
presented in Figure 9, with each point representing the average time to sweep
all the context sets in 10 randomized models.

Analysis of the results. As shown in Figure 9, on smaller models - up to 300650

goals - the algorithm was able to fully analyze the 32768 context sets within the
10 seconds deadline. On larger models - up to 5000 goals - the algorithm was
able to analyse around 40% of the combinations. Even at the limit, with models
of 10000 nodes, it was able to cover more than 25% of the possible combinations.
This result suggests that even for models with up to 10000 goals and 20 contexts655

the complete analysis can be performed within a minute.

6. Related Work

Previous work have tackled similar problems in relation to the dynamic re-
quirements for adaptive systems and system planning for goal achievement but
to the best of our knowledge none has dealt with the dynamic context-dependent660

interpretation of requirements and, in particular, of goals. Relevant approaches
include the work of Sebastiani et al., who map the Goal-Model satisfiability
problem into a propositional satisfiability (SAT) problem [12]; Souza and My-
lopoulos on Awareness Requirement Goals, that define quality objectives for
other goals [10, 13]; Baresi and Pasquale on Live Goals: goals whose individual665

behavior change in order to pursue some qualitative objective and bring the
system back to a consistent state [14][15]; Dalpiaz et al. on declarative goals:

21

(a) Sequential (b) Parallel

(c) Sequential Iterative (d) Parallel iterative

(e) Alternative (f) Try

Figure 8: Algorithm’s scalability over the model size, in number of nodes, and context amount

22

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

T
im

e
(s

ec
on

ds
)

Nodes (Units)

Figure 9: Time spent to run PPA algorithm for all the possible context sets (average execution
time over 10 different models)

separate goals whose achievement depends on the effects of its refinements on
the environment [16]; and the RELAX framework which provides a more rig-
orous treatment of requirements explicitly related to self-adaptivity [17]. With670

regard to the planning stage for achievement of goals, Horkoff and Yu [18] and
Letier and Van Lamsweerde [19] have both proposed approaches to dealing
with the achievement of non-functional goals. Horkoff and Yu [18] introduced
an interactive evaluation procedure that propagates backward from high-level
target goals, allowing users to ask “Is this possible?” questions and Letier and675

Van Lamsweerde [19] presented techniques for specifying partial degrees of goal
satisfaction and for quantifying the impact of alternative system designs on the
degree of goal satisfaction.

In essence, related work focus on goal-driven adaptation as a system- or
model-wise problem. We argue that the notion of pragmatic goals, introduced680

in our approach, can enrich the rationale of adaptation proposed in those ap-
proaches by treating system adaptation in a contextual case-to-case situation.

The Pragmatic Goals’ concept differ from the presented work and from tra-
ditional softgoals - which do not have clearcut satisfaction criteria[10] - because,
unlike [16], [19], [10] and [13], we consider the pragmatic aspect, i.e., the qual-685

ity objective as an inseparable part from the goal itself: the mere completion
of one or all refinements is not enough to achieve a goal, there may be clients’
expectations/demands which must be met and which, differently from [17] and
[18], is itself context-dependent rather than static. We also deal with the iden-
tification and reasoning in a fully automated way, without the need for expert690

judgement [18] during the decision process. This is also done a priori and over
the CGM as a whole in an effort to keep the system in a consistent state instead
of identifying and correcting inconsistent states like [14] and [15]. Regarding
the algorithm itself, our approach achieves linear complexity over the amount
of goals in the tree, by the means of a simplifying assumption: that there are695

23

no contributions or denials between different goals. This enabled us to consider
the Pragmatic GM as a tree rather then a generic graph.

Thus, the novelty of our work in comparison to other approaches in requirements-
driven adaptation is twofold: (1) The definition of pragmatic goals which means
that the satisfaction criteria for goals is context-dependent. (2) The develop-700

ment and implementation of an automated reasoning that can deterministically
answer whether the goal is pragmatically achievable and, if it is, point out an
execution plan that is likely to achieve it under the current context.

7. Conclusions and Future Work

In this paper we have proposed the utilization of a Pragmatic CGM in which705

the goals’ context-dependent interpretation is an integral part of the model. We
have also shown why hard goals and softgoals are not enough to grasp some of
the real-world peculiarities and context-dependent goal interpretations. We have
also extended the model with Dalpiaz’s goal annotations in order to properly
specify the allowable system’s behaviours at runtime.710

We defined the pragmatic goals’ achievability property: whether there is any
allowable execution plan that fulfils the goal’s interpretation under a given con-
text. We also proposed, and implemented the PPA algorithm. This algorithm
is able to decide on the achievability of a goal and, if so, engineer an execution
plan in compliance with all the goal annotations to do so.715

Finally, we thoroughly evaluated the model and the algorithm. The evalua-
tion was performed in three different fronts, all of which rendered very appealing
results. On the first front, we evaluated, for the MPERS case study, the algo-
rithm’s performance (execution time of less than 4ms in average) and reliability
(no errors detected over more than 4000 executions). On the second front we720

have performed a scalability analysis on the algorithm running with every pos-
sible annotation and shown that in all the situations the PPA algorithm scales
linearly over the amount of goals and context amount. For the third front, we
have evaluated the capability of using the algorithm to pinpoint at design-time
scenarios in which the model’s root goal is unachievable by design in order to725

alert the GM designer of this potential flaw. The results for the third evaluation
front showed that for models with 6000 goals and 10 contexts, the full scope of
context sets could be swept in about 2’30” (two and a half minutes).

For future work, we plan to: (1) compare the performance offered by the PPA
algorithm to that achieved by SAT-solvers; (2) study the impact of considering730

more than one composite QoS constraint and; (3) integrate the PPA algorithm
into a service-oriented engine to perform context-aware service compositions

Acknowldegements

This work has been partially funded by CNPq, the EU FP7 Marie Curie
Programme through the SOCIAD project and also by Finatec/UnB under call735

04/2015, CEPE resolution number 171/2006 and CAPES/PROCAD-grant num-
ber 183794.

24

References

[1] E. Yu, J. Mylopoulos, Why goal-oriented requirements engineering, in:
Proceedings of the 4th International Workshop on Requirements Engineer-740

ing: Foundations of Software Quality, 1998, pp. 15–22.

[2] R. Ali, F. Dalpiaz, P. Giorgini, A goal-based framework for contextual
requirements modeling and analysis, Requirements Engineering 15 (2010)
439–458.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, Tropos:745

An agent-oriented software development methodology, Autonomous Agents
and Multi-Agent Systems 8 (2004) 203–236.

[4] J. Castro, M. Kolp, J. Mylopoulos, Towards requirements-driven infor-
mation systems engineering: the Tropos project, Information systems 27
(2002) 365–389.750

[5] E. Yu, Modelling strategic relationships for process reengineering, Social
Modeling for Requirements Engineering 11 (2011) 2011.

[6] F. Dalpiaz, A. Borgida, J. Horkoff, J. Mylopoulos, Runtime goal models:
Keynote, in: IEEE 7th International Conference on Research Challenges
in Information Science (RCIS), IEEE, 2013, pp. 1–11.755

[7] F. P. Guimarães, G. N. Rodrigues, D. M. Batista, R. Ali, Pragmatic re-
quirements for adaptive systems: A goal-driven modeling and analysis ap-
proach, in: P. Johannesson, M. Lee, S. W. Liddle, A. L. Opdahl, O. P.
López (Eds.), Conceptual Modeling - 34th International Conference, ER
2015, Stockholm, Sweden, October 19-22, 2015, Proceedings, volume 9381760

of Lecture Notes in Computer Science, Springer, 2015, pp. 50–64.

[8] A. Finkelstein, A. Savigni, A framework for requirements engineering for
context-aware services, STRAW 01 (2001).

[9] D. F. Mendonça, R. Ali, G. N. Rodrigues, Modelling and analysing con-
textual failures for dependability requirements, in: Proceedings of the 9th765

SEAMS, ACM, New York, NY, USA, 2014, pp. 55–64.

[10] V. E. Silva Souza, A. Lapouchnian, W. N. Robinson, J. Mylopoulos, Aware-
ness requirements for adaptive systems, in: Proceeding of the 6th SEAMS,
ACM Press, New York, New York, USA, 2011, p. 60.

[11] V. R. Basili, G. Caldiera, H. D. Rombach, The goal question metric ap-770

proach, in: Encyclopedia of Software Engineering, Wiley, 1994.

[12] R. Sebastiani, P. Giorgini, J. Mylopoulos, Simple and minimum-cost satis-
fiability for goal models, in: Advanced Information Systems Engineering,
Springer, 2004, pp. 20–35.

25

[13] V. E. S. Souza, J. Mylopoulos, From awareness requirements to adaptive775

systems: A control-theoretic approach, 2011 2nd International Workshop
on Requirements@Run.Time (2011) 9–15.

[14] L. Baresi, L. Pasquale, Adaptive Goals for Self-Adaptive Service Com-
positions, 2010 IEEE International Conference on Web Services (2010)
353–360.780

[15] L. Baresi, L. Pasquale, Live goals for adaptive service compositions, in:
Proceedings of the 2010 ICSE Workshop on Software Engineering for Adap-
tive and Self-Managing Systems - SEAMS ’10, 2010, pp. 114–123.

[16] F. Dalpiaz, P. Giorgini, J. Mylopoulos, Adaptive socio-technical systems:
a requirements-based approach, Requirements Engineering 18 (2011) 1–24.785

[17] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, J.-M. Bruel, Relax:
Incorporating uncertainty into the specification of self-adaptive systems,
in: 17th IEEE RE, IEEE, 2009, pp. 79–88.

[18] J. Horkoff, E. Yu, Finding solutions in goal models: an interactive backward
reasoning approach, in: International Conference on Conceptual Modeling,790

Springer, 2010, pp. 59–75.

[19] E. Letier, A. Van Lamsweerde, Reasoning about partial goal satisfaction
for requirements and design engineering, in: ACM SIGSOFT Software
Engineering Notes, volume 29, ACM, 2004, pp. 53–62.

26

	Introduction
	Goal Models
	Contextual Goal-Model
	Runtime Goal-Model

	 Pragmatism in Requirements
	Achievability of Pragmatic Goals

	Pragmatic Goal Model
	Meta-Model
	Goal Annotations
	Quality Constraints
	Pragmatic Planning Algorithm - PPA
	Task- and Workflow-wise QoS Constrained Planning

	Pragmatic Model and Achievability Algorithm Evaluation
	GQM Validation Plan
	Experiment Setup
	Goal 1: PPA's runtime usage capability in the MPERS case study
	Goal 2: PPA's runtime usage capability for larger models
	Goal 3: Algorithm's pinpointing unachievable context sets capability

	Related Work
	Conclusions and Future Work

