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The effect of calf neuromuscular electrical stimulation and intermittent pneumatic 

compression on thigh microcirculation 

 

Abstract 

 

Objective: 

This study compares the effectiveness of a neuromuscular electrical stimulation (NMES) 

device and an intermittent pneumatic compression (IPC) device on enhancing 

microcirculatory blood flow in the thigh of healthy individuals, when stimulation is carried out 

peripherally at the calf.  

Materials and Methods:  

Blood microcirculation of ten healthy individuals was recorded using laser speckle contrast 

imaging (LSCI) technique.  A region of interest (ROI) was marked on each participant thigh.  

The mean flux within the ROI was calculated at four states: rest, NMES device with visible 

muscle actuation (VMA), NMES device with no visible muscle actuation (NVMA) and IPC 

device.  

Results: 

Both NMES and IPC devices increased blood flow in the thigh when stimulation was carried 

out peripherally at the calf. The NMES device increased mean blood perfusion from baseline 

by 399.8% at the VMA state and 150.6% at the NVMA state, IPC device increased the mean 

blood perfusion by 117.3% from baseline.  

Conclusion:  

The NMES device at VMA state increased microcirculation by more than a factor of 3 in 

contrast to the IPC device. Even at the NVMA state, the NMES device increased blood flow 
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by 23% more than the IPC device. Given the association between increased microcirculation 

and reduced oedema, NMES may be a more effective modality than IPC at reducing 

oedema, therefore further research is needed to explore this.   
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Highlights 

The NMES device with VMA increased mean blood flow from baseline by 400%. 

The NMES device with NVMA increased mean blood flow from baseline by 151%. 

IPC device increased the mean blood flow from baseline by 117%. 
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Introduction 

Neuromuscular electrical stimulation (NMES) devices and intermittent pneumatic 

compression (IPC) devices have been shown to be effective in improving blood flow (Tucker 

et al., 2010, Currier et al., 1996, Kaplan et al., 2002). They are often used post-surgery to 

prevent deep vein thrombosis (DVT) (Goldhaber & Morrison, 2002), in procedures such as 

total hip replacement (Doran & White,1976); and have been found to reduce oedema in the 

thigh of total hip replacement patients post-surgery (Faghri et al., 1997).  

 

1Abbreviations 

                                                           
1  

ARTm  Artefact movement  

AOS Adhesive opaque surfaces  

BMI Body mass index 

CBF Cutaneous blood flow 

DVT Deep vein thrombosis 

IFU Indication for use 

IPC Intermittent pneumatic compression 

LMWH Low-molecular-weight heparin   

LSCI Laser Speckle Contrast Imaging 

LS(SK) Laser Speckle Skin Signal  

LSPU Laser Speckle Perfusion Unit 

NMES Neuromuscular electrical stimulation 

NVMA No visible muscle activation 

ROI Region of interest 

VMA Visible muscle activation 
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The gekoTM is an NMES device (Firstkind Ltd, High Wycombe, UK. 

http://www.gekodevices.com/en-uk/) and the VenaPro an IPC system (DJO Global, 

Centerville, US. http://www.djoglobal.com/products/venaflow/venapro). Both are used to 

increase blood flow circulation. The gekoTM is a small, self-adhesive, disposable device, 

which is battery-powered and applied posterior to the fibula head over the common peroneal 

nerve. It has seven stimulation modes and a frequency rate of 1 Hz, with a maximum charge 

of 20 µC per pulse. The VenaPro consists of a calf cuff that holds an electronically controlled 

pump. This pump delivers air to the calf cuff, applying 50 mmHg once per minute, so that the 

calf experiences graduated and asymmetric compression. It is rechargeable and designed 

for single patient use (Summers et al., 2015). 

A previous study on the geko™ device found that it performed better in increasing both 

venous and arterial blood flow by around 30%, when compared to two IPC devices (Jawad 

et al., 2014), without the discomfort which can be associated with traditional NMES 

technology. 

Laser Speckle Contrast Imaging (LSCI) (moorFLPI Full-Field, Devon, United Kingdom) has 

become an increasingly popular equipment for measuring microcirculatory blood flow 

(Draiger et al., 2009; Wu et al., 2016) as it offers a high spatial and temporal resolution 

(Roustit et al., 2013). Using LSCI, this study compares the effectiveness of an NMES device 

and an IPC device on enhancing microcirculatory blood flow in the thigh of healthy 

individuals, when stimulation is carried out peripherally at the calf.  

 

Materials and Methods 

Study population 

Ten healthy participants consented to take part in the study.  Participants were excluded 

from taking part if they had taken low-molecular-weight heparin (LMWH), Heparin or 
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Warfarin; had a neuromuscular, haematological and/or cardiovascular disorder; had a 

pulmonary embolism; or previous history of DVT. Participants were all asked to complete a 

pre-test health questionnaire to ensure they met the inclusion criteria, and were requested to 

not smoke or consume any caffeine two hours prior to testing.  

Study design 

The study received ethical approval from the Bournemouth University Research Ethics 

Committee on 9th February 2016 (Reference 10571). 

The study was designed to compare the effects of NMES and IPC devices on 

microcirculation by assessing cutaneous blood flow at depth of around 300 µm on an area of 

the anterior thigh (approx. 77cm2) using moorFLPI Full-Field Laser Speckle Contrast Imager 

(LSCI). LSCI is a non-invasive instrument designed for the measurement of blood flow within 

the microvasculature. The 780 nm infra-red laser beam is expanded over an area, 

illuminating the biological tissue and diverged to create so called ‘speckles’.  These speckles 

are imaged with a CCD camera and processed on the PC to generate a colour coded map of 

tissue perfusion. Rapid variation of red blood cells cause the speckles pattern to appear 

blurred resulting in a low contrast image, conversely, high contrast indicates low flow and the 

contrast image generated is quantified as a low blood perfusion image within specific region 

of interest. (Senarathna et al., 2013; O’Doherty et al., 2009).  

All assessments were performed in a temperature controlled room (22 ± 1ºC), and 

participants were seated for ten minutes prior to testing in order to adapt to the room 

temperature. Participants were sitting throughout the assessments, with their feet flat on the 

ground. The experimental setup is outlined in Figure 1. 
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Figure 1: Set up of LSCI for analysis of effects of NMES and IPC devices on an area of 
the anterior thigh. 1.1) NMES device placed just below the level of the knee simulating 
the common peroneal nerve behind the knee, which in turn, activates the calf and foot 
muscle pumps of the lower leg.1.2) IPC cuff wrapped around the calf and secured 
using the Velcro. Wrap was secure, but not restrictively tight. 1.3) LSCI image 
recorded with graphical representation of the ROI 1, ROI 2 and AOS on an area of the 
thigh. 

C 
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To measure the blood flow perfusion, the moorFLPI Full-Field LSCI device was set with the 

following settings: An exposure time of 20 ms to allow for low flux measure with higher 

sensitivity to small changes. A display rate of 25 Hz, and a time constant of 0.3 s was used 

to account for rapid blood flow changes and achieve optimum contrast through reducing the 

image noise.  The camera was placed 25-30 cm from the skin as advised by the 

manufacturer’s instructional manual, with the camera resolution set at 152×113 pixels/cm2 

for spatial processing and directed perpendicular to the thigh (Bezemer et al., 2010; Kazmi 

et al., 2014). Resulting images were digitized and analysed off-line using the moorFLPI 

software (Full Field Laser Perfusion Imager Review v4.0, Moor Instruments, Devon, United 

Kingdom).  

The mean flux within the ROI was calculated as the mean blood flow amplitude in skin area 

perfusion for the ten participants. Given the high sensitivity of LSCI to artefact movement 

(ARTm), we used adhesive opaque patch (AOS) medical tape (Leukotape®, BDF Germany) 

to mask the cutaneous blood flow (CBF) (Mahé et al., 2011). A proportion of the 

backscattered signal AOS can be subtracted from the laser speckle skin signal (LS(SK)) to 

allow for a satisfactory recording of the cutaneous blood flow (CBF). “Leukotape®” was used 

as it was found to be effective in reducing physiological signal and accounting for skin and 

signal proportionality, acting as an AOS (Mahé et al., 2012, 2013).  

A 6 cm2 of AOS tape was placed to measure the ARTm and an area of 1.5 cm2 overlaid the 

AOS as a marked ROI and named ROI 1(Omarjee et al., 2015; Humeau-Heurtier et al., 

2014). An area of thigh was marked as a second ROI, with the same area size as ROI 1 (1.5 

cm2) and named ROI 2 which measured the LS(SK) (Figure 1). 
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Care was taken so that ROI 1 and ROI 2 did not interchange, but kept close within 2-4 cm to 

reduce the need for re-centring if any mechanical movement resulted in the ROI 1 no longer 

being in the AOS area. Thus Equation 1 was used for measurement of CBF (Mahé et al., 

2011). 

LS(SK) = (CBF + ARTm) 

If ROI 2 account for LS(SK) and ROI 1 account for ARTm, Then: 

ROI 2 – ROI 1 = CBF                         Equation 1 

 

Measurements were made of microvascular blood flow in the following states: 

 At rest 

 Using the NMES device as per the manufacturing indication for use (IFU), so that 

there was a Visible Muscle Actuation (VMA). 

 Using the NMES device as per IFU, so that there was No Visible Muscle Actuation 

(NVMA).  

 Using the IPC device in accordance with the device IFU. 

Image recordings of each assessment were carried out for three minutes, whilst the 

participant and investigator were immobile and remained silent throughout. A five minute 

washout period was allocated between assessments. Participants were randomised as per 

the groups in Figure 2, using Sealed Envelope randomisation database 

(https://www.sealedenvelope.com/) to allocate participants to the sequence in which the 

devices were used. 
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Figure 2: Sequences of Assessment using Sealed Envelope Randomization method 
with 5 minutes washout in between each test. 

 

 

Data analysis 

SPSS statistics for Windows was used in the analysis (IBM, 2010). Skin blood flow was 

expressed in Laser Speckle perfusion units (LSPU). Data are expressed as the mean and 

standard deviation in parenthesis.  Non-parametric analysis was used as the sample size 

was small, and therefore not normally distributed. A repeated-measured ANOVA (Friedman 

2-way by rank) was used to compare the data between the four groups (baseline, NMES in 

NVMA state, NMES with VMA, IPC) and then post hoc tests (related samples Wilcoxon 

Signed Rank test) were performed to compare differences between the groups. 
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Results 

Data were analysed from all ten of the participants. All participants were male, aged between 

25 – 46 years, and their BMI ranged from 23 – 30 kg/m2.  

n=10 Baseline Mean Flux 
NMES with 

NVMA Mean Flux 
NMES with VMA 

Mean Flux 
IPC Mean Flux 

Mean (SD) 165.2 (86.7) 232.0 (104.0) 605.7 (321.4) 187.7 (91.6) 

Table 1: Mean flux mean (SD) at baseline and by device 

 

The mean flux for ROI 1 and ROI 2, and the resulting mean flux was calculated for each 

participant using equation 1, whilst the participant was at rest (baseline), when the NMES 

(VMA and NVMA) and IPC devices were being used. The baseline mean flux was 165.2 (SD 

86.7), the mean flux for NMES with NVMA was 232.0 (SD 104.0), the mean flux for NMES 

with VMA was 605.7 (SD 321.4), and the median mean flux for the IPC device was 187.7 

(SD91.6) (Table 1).   

n=10 
NMES with NVMA % 

increase from 
baseline 

NMES with VMA % 
increase from 

baseline 

IPC device % 
increase from 

baseline 

Mean (SD) 150.6 (48.8) 399.8 (210.1) 117.3 (17.0) 

Table 2: Mean (SD) of percentage increase in mean flux from baseline by device 

 

The percentage increase in mean flux from the baseline by participant when the NMES 

(VMA and NVMA) and IPC were used was calculated, and Table 2 compares the data. The 

mean percentage increase from baseline for the NMES with NVMA was 150.6% (SD 48.8), 

for the NMES with VMA was 399.8% (SD 210.1), and for the IPC device was 117.3% (SD 

17.0) (Figure 4). 
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Figure 3: Example of ROI 1 and ROI 2 positioning on the thigh in one subject. The 
different colour in the picture indicate different levels of perfusion; blue indicates low 
levels of skin perfusion, green and yellow indicates intermediate levels of skin 
perfusion and red indicates high levels of skin perfusion. Skin blood perfusion at 3.1) 
Rest state, 3.2) IPC, 3.3) NMES NVMA and 3.4) NMES VMA. The taped region (AOS) is 
used as a marker to determine which images are affected by tissue movement, and 
the scale of that movement 
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Figure 4:  Mean percentage increase in blood flow from baseline for NMES with 
NVMA, NMES with VMA and IPC device. 

The related samples Friedman’s two-way ANOVA showed a statistical significant difference 

(p ≤ 0.001), and post-hoc tests (related-samples Wilcoxon signed rank test) found a 

statistically significant difference (p = 0.005) when comparing baseline with NMES at NVMA 

state, baseline with NMES at VMA state, baseline with IPC, NMES at NVMA with NMES at 

VMA, NMES at NVMA with IPC and NMES at VMA with IPC device.  

Discussion 

The findings of this study suggest that the NMES device is superior to the IPC device in 

increasing the blood microcirculation in the thigh. 

The NMES with visible muscle actuation increased the blood microcirculation by 399.8% 

from baseline flux perfusion which is a substantial increase when compared to IPC device 

with 117.3% from baseline flux perfusion. The effect of NMES with no visible muscle 

actuation also recorded a 150.6% increase in flux from baseline which again suggests 

superiority of the NMES over IPC.  
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 An obvious limitation in relation to applying the results of this study to relevant clinical 

populations (for example, hip replacement patients) is the small number of participants who 

were all male, and aged 25 to 46 years. Major surgery, such as hip replacement is likely to 

affect blood flow in the rehabilitation period, and it is likely that as age plays a major role in 

the deterioration of micro vessels, results may differ between age groups (Khalil et al., 

2016). This may also be true for gender (Richter et al., 2014), although studies on the effect 

of the phase of the menstrual cycle on microvascular function have had conflicting results 

(Millet et al., 2011). The wide range of standard deviations observed in the study can be 

explained by the heterogeneous nature of microcirculatory blood (Pries & Secomb, 2009).  

A bespoke setting was used to account for the low flux measure encountered during the 

recording of the IPC and baseline states, in line with manufacturer’s recommendations. This 

setting therefore increased the visual contrast of the taped region of NMES VMA as seen in 

Figure 3. Nevertheless AOS was an accurate mark to determine the artefact movement 

effect given both ROI 1 and ROI 2 were reviewed in real-time and recorded images were 

analysed offline.  

This pilot study is valid, as its intention was to not only test a hypothesis that the devices 

would increase microcirculation, but also to develop a methodology that could in future 

studies be used for testing clinical populations. 

Oedema in the thigh is a common post-operative problem in hip replacement surgeries that 

can effect rehabilitation. Therefore, modalities that increase microcirculation in the thigh may 

be helpful in reducing oedema and therefore accelerate recovery. Future work is planned 

that will examine this relationship and this is why microcirculation was measured specifically 

in the thigh. Enhanced recovery after surgery (ERAS) protocols now enable patients 

following hip replacement to walk on the day of surgery and go home 1-3 days post-

operatively (Husted, 2012; Wainwright & Middleton, 2010 ). Therefore, the sitting testing 

position has relevance in clinical populations, as patients no longer convalesce in bed.  The 
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sitting position also helped to standardise and increase accuracy of the LSCI, this is because 

movement of the lower leg was prevented due to the foot being in contact with the floor. This 

ensured minimal movement of the region of interest and therefore accurate readings. 

A larger ROI and longer test period could also have reduced any variability of CBF 

measured both at the baseline and also during the use of the NMES and IPC devices 

(Rousseau, et al., 2011). The method of subtracting the LSCI signal from the Leukotape as 

the adhesive opaque patch (ROI 1) from the signal of cutaneous blood movement flux (ROI 

2) allowed a simple method to account for artefact (Mahé et al., 2011). However, (Omarjee 

et al., 2015), further enhanced the accuracy of the Equation 1 coefficient factors by creating 

a bespoke bilayer adhesive to optimize the removal of artefact movement.  

Conclusions 

In comparison to the IPC device, the NMES device significantly increases cutaneous blood 

flow in the thigh with healthy individuals. Given the dynamics of venous flow and its direct 

effect on microcirculation, NMES may be a more efficient solution to reduce oedema, 

improve healing and the prevention of wound complications in comparison to the IPC device 

in clinical populations such as total hip replacement patients. LSCI is a convenient, non-

invasive and accurate method for measuring microcirculation and comparative effect of 

mechanical devices designed to increase blood flow. 
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