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Abstract 

Background and Aim 

It has been reported that cycling-specific research relating to participants with an amputation is 

extremely limited in both volume and frequency. However, practitioners might participate in the 

development of cycling-specific prosthetic limbs. This technical note presents the development 

of a successful design of a prosthetic limb developed specifically for competitive cycling. 

Technique 

This project resulted in a hollow composite construction which was low in weight and shaped to 

reduce a rider’s aerodynamic drag.  

Discussion 

The new prosthesis reduces the overall mass of more traditional designs by a significant 

amount yet provides a more aerodynamic shape over traditional approaches. These decisions 

have yielded a measurable increase in cycling performance. Whilst further refinement is needed 

to reduce the aerodynamic drag as much as possible, this project highlights the benefits that 

can exist by optimising the design of sports-specific prosthetic limbs. 
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Clinical Relevance 

This project resulted in the creation of a cycling-specific prosthesis which was tailored to the 

needs of a high performance environment. Whilst further optimisation is possible to yield further 
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gains, this new design provides insight into the design and development of sports-specific 

prosthetic limbs.  

This project resulted in the creation of a cycling-specific prosthesis which was tailored to the 

needs of a high-performance environment. Whilst further optimisation is possible, this project 

provides insight into the development of sports-specific prostheses.  

 

Word Count of Clinical relevance: 44 

 

Background and aim 

A recent review of the literature has revealed that both research and clinical 

experience is extremely limited1 to help guide prosthetists with the creation of 

cycling specific prostheses. A traditional prosthesis used for walking can be 

used for cycling but falls short of two key performance indicators crucial to 

competitive cycling. 

 The first is to realise the importance of aerodynamics when cycling 

competitively by lowering the aerodynamic drag2. This even applies to 

components as proportionally as small as a prosthetic limb3. Kyle & Burke6 

recommended a hierarchy for addressing the reduction of aerodynamic drag as:  

 

• Reducing the frontal area 

• Streamlining the geometry 
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• Lowering the surface roughness. 

 

The second goal is to reduce the prosthetic mass as this will reduce the 

energy the rider will have to expend when accelerating or climbing. 

The aim of this technical note is to present and discuss a case study of a 

high performance cycling prosthetic limb design undertaken for the London 

2012 Paralympic Games. Both participant consent and institutional ethics were 

obtained prior to this project. 

 

Technique 

Participant 

A male, international-level cyclist (age=34, height=1.72m, weight= 73kg) acted 

as the participant for this case study. The participant had been using a walking 

prosthesis to cycle prior to this project. Due to a neurologically related disability, 

the athlete lacked full ankle control of their sound limb. 

 

Design Specification 

The athlete wished to use the limb to compete across a diverse range of cycling 

events including the track-based 1km time trial and 4km individual pursuit 
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events plus the 20km outdoor ‘individual time trial’. However, the nature of 

these events is very different. The track time trial requires maximum effort from 

a stationary standing-start position to complete the event. Conversely, both the 

individual pursuit and the individual time trial require a more evenly distributed 

steady-state power output. As a result, the prosthetic solution needed to 

accommodate this diverse range of needs.  

Prior to the design process, the key constraints of the prostheses design 

were sourced from peer reviewed literature and the prostheses manufacturer. A 

summary of these criteria is in table 1.  

 

[INSERT TABLE 1] 

 

Prosthesis Fit 

The way the prosthesis is attached to the cyclist is a critical factor in achieving 

an efficient power transfer.  This connection must be as rigid as possible whilst 

at the same time being comfortable for the duration of the competitive event.  A 

Sealin X5 liner (Ossur) with valve (Ossur A-551002) was selected as the 

suspension system.  The starting point for the length and alignment of the 

diagnostic prosthesis was produced by taking a profile of the cyclist’s sound 

side in the sagittal plane with the foot in a plantar flexed (toe down) position. A 
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measurement was taken from the patella tendon to the centre of the cycling 

cleat.  This established the initial socket to cleat position.  To help with this 

process in the clinic, the participant used a stationary trainer (a product which 

attaches a bicycle in a stationary position and allows it to be ridden). Minor 

adjustments were then made to the length and alignment using a diagnostic 

prostheses which is adjustable in six different degrees of freedom and whose 

measurements would then be transferred to a jig. This jig would place a 

mandrel inside the proposed socket and lock it in position between both this and 

the pedal cleat. This would serve as the guide for the final prostheses.  The 

cyclist subsequently undertook field trials by riding their bicycle in a velodrome 

at exercise intensities consummate with the power output experienced in their 

racing. Qualitative feedback and expert observation contributed to the designs 

refinement. Key observations during these trials are shown in table 2. 

 

 [INSERT TABLE 2] 

 

Prostheses Form Design  

An aerofoil form was selected for the pylon region. It has been shown that 

aerofoil based bicycle frames offer considerably less drag than a round tube 

traditional design2. To determine which aerofoil profile was most suitable for this 
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application, an accurate measurement of the near vertically angled seat tubes 

from contemporary wind tunnel validated bicycle frames was undertaken. 

However, it is conceded that there is some angular variation of the lower-leg 

when cycling.  

The aerofoil design was modified further through addition of a Kamm 

profile. The Kamm concept has been used extensively in both the automotive 

and aeronautical industry and its definition is that of an aerofoil that is cut when 

the rear taper reaches 50% of the aerofoils maximum width. This concept has 

recently been applied to bicycle frame member design7. The Kammback 

principle allows a cut aerofoil to obtain nearly the same aerodynamic 

performance as an uncut aerofoil. Whilst the optimisation of this profile would 

require more than a casual application of aerodynamics, it was felt that the 

design would also provide beneficial levels of lateral and torsional stiffness over 

that of a traditional aerofoil7. This would be of extra benefit to the higher forces 

of the athlete’s track time trial event. The Kamm width at its narrowest point was 

defined as the thinnest that the fabrication process was deemed to feasibly 

achieve and was 36mm in thickness with a 108mm aerofoil depth. The aerofoil 

was tapered further down the pylon area to meet the smaller shape and size of 

the cleat/foot area.  
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It is likely that an optimal aerofoil design would be different between 

indoor and outdoor use but the Kamm design was not specified for a specific 

wind yaw. Yaw is the net angle of the net air flow that strikes the cyclist and is 

dictated by riding speed and any external wind speed. In the case of this project, 

the athlete would only have one prostheses so a conservative approach to the 

aerofoil design was taken. Either way, the Kamm design has been shown to be 

beneficial in wider ranges of wind yaw7.  

 

Limb Construction  

The prostheses shank and foot region was shaped and manufactured by hand 

from high density foam. Templates were used to provide cross-sectional 

dimensional consistency of the shank and a mid-construction example of the 

composite being applied over the shaped foam core is shown in figure 1.  

 

[INSERT FIGURE 1] 

 

A composite construction was then created using three layers of multi-

directionally applied 6k carbon fibre with orthocryl laminating resin. Once this 

was complete, the foam core was removed by boring the foam out using a tool 

inserted where the cleat would be mounted and by cutting down the centre of 
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the Kamm rear face to remove the foam higher up. This cut would then be re-

joined by re-laminating it afterwards. The rotational alignment of the aerofoil 

was achieved through use of a jig that aligned it exactly perpendicular to the 

cycling pedal cleat. This stresses the importance of establishing the optimal 

position of the pedal cleat, prior to final prostheses construction. The cleat 

threaded inserts were bonded through the laminated face of the underside of 

the foot and reinforced using an aluminium metal plate that was imbedded 

between the three layers of carbon fibre. Some natural reinforcement was 

created when the cloth was neatly folded around key areas. 

 

Results 

The participant’s first generation limb possessed a mass of 1.86Kg. The mass 

of this prosthetic leg was 0.72Kg, resulting in a reduction in mass of around 1kg.  

An image of the completed limb is shown in figure 2a, 2b and 2c. 

 

[INSERT FIGURES 2A, 2B AND 2C] 

 

Discussion 
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Since this projects completion, aerodynamic drag measurement has now been 

applied to a similar design to this limb for the 2016 Paralympic Games and has 

yielded a potential 23 second time saving over a conventional round shank 

design when performing a 16.1km time trial. Within two months of this project’s 

completion, the cyclist won the 2012 World Cycling Time Trial Championships 

in their disability category. 

A 1Kg reduction in mass was a significant saving over the user’s 

previous prostheses and reduced the total mass needed to be accelerated from 

rest in a standing start by approximately 1.1%. For future designs, further 

improvements in prostheses mass and aerodynamic drag could be made 

through the use of pre-preg carbon fibre. This would potentially reduce the 

profile of the blade area and reduce the mass whilst maintaining the required 

strength and rigidity. 

It could be suggested that an optimised design could have been 

generated using computational fluid dynamics (CFD). However, it is not known 

what impact any airflow interaction and interference of the leg and bicycle would 

have on each other and CFD would have to model an exact reproduction of the 

specific rider and their equipment. This might prove to be an innovative 

approach in the future but may be cost prohibitive when in comparison to field 

testing. Field testing proved essential as the cleat and socket alignment 
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required adjustment that was only apparent when the participant performed 

trials on their own bicycle at power outputs typical of their specific events. With 

this in mind, cost-effective field testing methods for this purpose have been 

formally validated3. 

 

Key Points 

• An aerofoil is aerodynamically superior to a round tubed section. 

• Reduction of the excess mass of a prostheses is essential for cyclists to 

reduce their energy expenditure. 

• Any prosthetic fit or evaluation should be conducted using exercise 

intensities consummate of the athlete’s chosen events. 
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