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Abstract 

Impact of human disturbance on coastal birds: population consequences derived 

from behavioural responses. 

Catherine Collop 

Disturbance of wildlife is inevitable in a world with a rapidly increasing human population. 

Whilst improving engagement with the natural world can have the benefit of encouraging 

people to help protect it, there is also the issue of increased potential for damaging effects of 

disturbance. A better understanding is needed of the circumstances under which disturbance 

would be expected to be a conservation problem, either alone or in combination with the 

impacts of other human activities. The aim of this thesis is therefore to address these 

questions: using wintering waders in estuarine habitats as the study system and taking a joint 

fieldwork and simulation modelling approach. Fieldwork was centred on Poole Harbour; an 

estuary and wetland of international importance located on the south coast of the UK. 

Disturbance experiments and observations showed that bird responses to disturbance are 

highly variable and related to factors including body mass, environmental conditions, site 

quality, and disturbance type. The energetic and lost-feeding-opportunity costs of responding 

to individual disturbance events were relatively small and therefore considered unlikely to 

cause major reductions in individual body condition or significantly limit overwintering 

population size, given observations of present-day spatial and temporal patterns of human 

activities. Simulation modelling using two types of individual-based model (IBM) supported 

this conclusion. Although high levels of disturbance can have a significant impact on wintering 

bird populations, current frequencies of human activities in Poole Harbour were not found to 

be reducing the carrying capacity of the site. Increased disturbance frequencies were 

predicted to be problematic, however, in combination with environmental change that 

reduced bird ability to meet their daily energy requirements: such as loss of foraging habitat 

through sea level rise, or reductions in prey availability due to over-exploitation. This has 

important implications for identifying the most effective conservation management methods. 

As well as site-specific management recommendations, this research contributes to 

understanding of the mechanisms by which disturbance may or may not have a significant 

impact on wintering wader populations; along with applications to other systems; and tools 

and general principles that conservation managers and decision makers can use to prioritise 

further investigation and action. 
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Chapter 1 – Introduction 

1.1 Background to the topic 

Disturbance of wildlife is inevitable in a world with a rapidly expanding human population 

and an ever-increasing demand for resources. In addition, non-material benefits – ‘cultural 

services’ – through having access to nature are now well recognised (Millennium Ecosystem 

Assessment 2005), so people are encouraged to make more use of natural open spaces for 

recreational purposes to improve health and wellbeing (ten Brink et al. 2016). Whilst 

improving engagement with the natural world can have the benefit of encouraging people to 

help protect it, there is also the issue of increased potential for damaging impacts of 

disturbance, either alone or in combination with the impacts of other human activities 

(housing development, economic activities, tourism etc.) and other forms of environmental 

change (e.g. habitat loss, climate change, pollution, spread of invasive non-native species). 

Nevertheless individuals, populations and ecosystems are to some extent resilient to 

environmental perturbations and are able to compensate for certain amounts of disturbance 

without being adversely affected (Holling 1973, Nattrass and Lusseau 2016). Disturbance is 

therefore not automatically a problem from a conservation perspective even though some 

people might consider any disturbance of wildlife to be ‘morally’ unacceptable. 

Conservation managers often attempt to prevent disturbance from occurring by limiting 

particular activities or excluding people altogether from some areas (Davidson and Rothwell 

1993, Livezey 2016). However such management measures risk high enforcement costs or 

even failure if they are not accepted by the affected users (who may give higher priority to 

other activities): to be successful, measures must be based on sound evidence along with 

effective stakeholder consultation (Holsman et al. 2010, Glover et al. 2011, Johnson 2013). 

Over-precautionary policies in one area may also foster general mistrust and reduced 

compliance for any management measures regardless of whether they are over-

precautionary or not. The purpose of this research, therefore, is to (1) improve understanding 

of the impacts of human disturbance on wildlife and the circumstances under which it is or is 

not likely to be a conservation problem, and (2) develop tools to help minimise the impacts in 

situations where action is considered to be necessary. More-detailed aims and objectives are 

listed in section 1.4. 

The rest of this chapter summarises current understanding and relevant research methods 

relating to human disturbance of wildlife (with a focus on non-breeding estuarine birds); 



22 

identifies key knowledge gaps; and introduces the study system and its suitability in this 

context. The chapter concludes with an overview of the structure of the rest of the thesis. 

1.1.1. Human-induced disturbance of wildlife 

The term ‘disturbance’ can mean any event that leads to an animal response that would not 

have taken place in the absence of that event. This might be for example due to natural 

occurrences such as attack by a predator or the rising and falling of the tides; or 

anthropogenic, where recreation or industry brings humans and wildlife into close proximity; 

or it could result from acoustic stimuli. This thesis uses the definition of human-induced 

disturbance as given by Fox and Madsen (1997) in relation to waterbirds, which can also 

easily be applied to any other animal taxon: ‘any activity that constitutes a stimulus 

(equivalent to a predation threat) sufficient to disrupt normal activities and/or distribution of 

waterbirds relative to the situation in the absence of that activity’.  

Responses – the risk-disturbance hypothesis 

Fox and Madsen’s (1997) definition recognises the fact that animals respond to the perceived 

risk from human disturbances in the same way that they respond to predation risk (Frid and 

Dill 2002) i.e. by making trade-offs between avoidance of the risk and prioritising other 

fitness-maximising activities such as feeding, mating or parental care. Following this ‘risk-

disturbance hypothesis’, animal responses to disturbance can therefore be expected to vary 

between individuals according to a variety of factors related to the perceived risk, the 

individual’s current state, availability of alternative habitat, and the costs of responding (Gill 

et al. 2001a, Beale and Monaghan 2004a). 

The process that animals go through when they detect a potential predator or disturbance 

source (stimulus), involves one or more behavioural and physiological responses according to 

the duration and intensity of the stimulus: i) heart rate and metabolic rate increase in 

preparation for fleeing; ii) animals stop what they are doing and become visibly alert; iii) they 

may flee or approach the stimulus; and then iv) take a certain amount of time to return to 

their original behaviour and physiological state (Figure 1.1).  
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Figure 1.1. Process of animal response to a potential predator or human disturbance. 

 

Impacts – the individual and population consequences 

Responses to disturbance can have fitness consequences for the individual through reduced 

time and area available for feeding (Gill et al. 1996), breeding (de Jong et al. 2013) or resting 

(Rosa et al. 2006) and increased energy expenditure through locomotion (Houston et al. 

2012) or physiological responses (Ackerman et al. 2004). One prediction of the risk-

disturbance hypothesis is that long-term and intense disturbance stimuli can cause 

population declines through reduced body condition and therefore reduced breeding success 

(Frid and Dill 2002). Understanding the cumulative impacts of many relatively small-scale 

disturbance events, interactions with other risk factors and individual compensatory ability, 

however, is not straightforward (Sutherland 2007). 

Animal responses to human disturbance and the associated impacts have long been a subject 

of interest and concern amongst behavioural ecologists, land managers and conservationists; 

for example early publications include investigations into the fleeing behaviour of  hunted 

mammals (Altmann 1958, Behrend and Lubeck 1968); studies of disturbance responses of 

breeding  birds (Stephen 1963, Mathisen 1968); proposed evidence for habituation (Walker 

1972); and reports of the impacts of human activity on animal numbers (Watson 1979). 

Despite the fact that there have been many studies and reviews in the intervening decades 

(e.g. Boyle and Samson 1985, Hockin et al. 1992, Fox and Madsen 1997, Hill et al. 1997, 

Steven et al. 2011 and the other studies already mentioned; also see Table 1.1), as Sutherland 

Disturbance 
stimulus 

• human presence 
• anthropogenic noise 
• predator presence 

Physiological 
response 

• increase heart rate and metabolic rate 
• increase stress hormone levels 

Behavioural 
response 

• alert/ extra vigilance 
• 'fight or flight' 
• latency period 

Return to 
normal 

• resume normal behaviour 
• heart rate and stress hormones stable (though may remain elevated) 
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(2007) points out there is still much to learn when it comes to understanding disturbance-

related impacts on wildlife. 

Table 1.1. Selected examples of documented impacts of human disturbance. 

Species studied Details 

Pink-footed goose 

Anser brachyrhynchus 

Madsen (1995). Geese in undisturbed areas increased their 

abdominal profiles more rapidly and reproduced more 

successfully than those from disturbed sites. 

European nightjar 

Caprimulgus europaeus 

Langston et al. (2007). Nests which failed were significantly 

closer to paths; closer to the main points of access to heaths; in 

areas with higher footpath density; and in areas of notably high 

levels of use. 

Little tern 

Sternula albrifrons 

Medeiros et al. (2007). Human disturbance and predation were 

the main factors in explaining breeding success. 

Snowy plover 

Charadrius nivosus 

Webber et al. (2013). Site occupancy and colonisation was 

negatively associated with human disturbance and site 

extinction was positively associated with disturbance. 

Yellow-eyed penguin 

Megadyptes antipodes 

McClung et al. (2004). Tourist numbers may affect fledgling 

weight and therefore probability of survival. 

Hoatzin 

Opisthocomus hoazin 

Müllner et al. (2004). Chick survival was much lower for tourist-

exposed nests than for undisturbed nests. 

Wood lark 

Lullula arborea 

Mallord et al. (2007). Probability of suitable habitat being 

colonised was lower in areas with greater disturbance, but 

density-dependent breeding success partially balanced the 

negative impacts of disturbance.  

 

From a conservation perspective, a key issue that has only relatively recently begun to 

receive recognition is that the distinction needs to be made between responses to 

disturbance and impacts of disturbance. In the past, the visible responses of animals have 

been used as a measure of relative need for protection, for example by Klein et al. (1995). 

However, Gill et al. (2001a) showed that the magnitude of animal response is not necessarily 

a good indicator of the impact of that disturbance in terms of whether or not individual or 

population survival or fecundity are altered. This will depend on individual ability to 
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compensate for the short-term fitness costs of responding – for example by feeding for 

longer or more efficiently (Stillman and Goss-Custard 2002) – and the action of density-

dependent population processes (Mallord et al. 2007). Individuals showing little or no 

response may in fact be those with most to lose from changing their behaviour. Beale and 

Monaghan (Beale and Monaghan 2004b) found that turnstones Arenaria interpres whose 

condition had been enhanced by supplementary feeding showed greater responsiveness to 

human disturbance; birds in good condition flew away at greater distances from the 

observer, scanned for predators more frequently and flew further when flushed. Future 

research therefore needs to move away from pure behavioural studies and consider the 

impacts of disturbance from a demographic and population process point of view (Gill 2007). 

As Nisbet (2000) points out in relation to colonial waterbirds, demonstrating causal 

relationships between human disturbance and fitness measures like survival is not easy as it 

is also influenced by many other factors that are difficult to control for. Whilst there are a 

number of studies that document the impacts of disturbance on reproductive success (Table 

1.1), there do not appear to be any that demonstrate impacts outside of the breeding season 

even though these might be expected to occur. Making predictions about the true impacts of 

disturbance is therefore challenging and this issue will be discussed in more detail in sections 

1.2.2 and 1.3. 

1.1.2. Legislation and policy relating to disturbance 

The UK is signatory to four main conventions that direct its biodiversity policy, along with 

several key European directives that make reference to the impacts of disturbance; the 

obligations of which have been transposed into national law (Figure 1.2). Between them they: 

provide for public access to the countryside whilst ensuring wildlife interests are not 

damaged; outline measures for the identification, management and protection of Sites of 

Special Scientific Interest (SSSIs), Special Areas of Conservation (SACs), Special Protection 

Areas (SPAs) and Marine Conservation Zones (MCZs); and list and give extra protection to 

threatened species of particular conservation concern. The Countryside and Rights of Way 

Act (2000) makes it an offence to ‘intentionally or recklessly disturb any animal’; the Birds 

Directive (EC 2009)instructs Member States ‘in respect of the protection areas…take 

appropriate steps to avoid … any disturbances affecting the birds… in so far as these would be 

significant’; and similarly, the Habitats Directive (EEC 1992) includes the obligation to ‘take 

appropriate steps to avoid, in the special areas of conservation… disturbance of the species 

for which the areas have been designated, in so far as such disturbance could be significant’.  
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The UK is also a signatory on the Agreement on the Conservation of African-Eurasian 

Migratory Waterbirds (AEWA), in which disturbance is recognised as an issue that needs to be 

addressed and researched (AEWA Secretariat 2012); and Sutherland et al.’s (2006) list of 100 

ecological questions of high policy relevance in the UK included three that relate to research 

into the impacts of human disturbance (#32: what are the impacts of recreational activities 

on biodiversity? #37: what are the consequences for biodiversity of fragmentation by 

development and infrastructure? #38: what are the ecological impacts on semi-natural 

habitats and ecosystems of adjacent large developments?). Estuarine intertidal habitats and 

the assemblages of wintering waders and wildfowl they support, along with their 

considerable importance for human recreation and economic uses, offer a useful study 

system for such research. 

Figure 1.2. Framework of international conventions, European directives and English national 

law that relate to public access to the countryside and human-induced disturbance of wildlife. 

1.1.3. Importance of intertidal flats 

Intertidal flats are areas of the sea floor that are periodically exposed and covered by the 

falling and rising of the tides, and are characterised by their relative proportions of sandy and 

muddy sediments according to differences in water flow and availability of fine sediments 

International Conventions 

•Ramsar Convention on Wetlands of International 
Importance 1975 

•Bern Convention on the Conservation of European 
Wildlife and Natural Habitats 1979 

•Bonn Convention on the Conservation of Migratory 
Species of Wild Animals 1985 

•Convention on Biological Diversity 1992 

European Directives 

•EC Birds Directive (79/409/EEC) 

•EC Habitats Directive (92/43/EEC) 

•EC Water Framework Directive (2000/60/EC) 

•EU Marine Strategy Framework Directive 
(2008/56/EC) 

English National Law 

•Wildlife and Countryside Act 1981 (as amended) 

•Countryside and Rights  of Way (CRoW) Act 2000 

•Habitats and Species Regulations 2010 

•Marine and Coastal Access Act 2010 



27 

(Davies et al. 2001). They occur at the edges of shallow seas all around the world, and in the 

UK they make up a major component of the country’s estuaries and embayments (Davies et 

al. 2001, van de Kam et al. 2004). The Millennium Ecosystem Assessment (2005) 

demonstrated that such habitats are responsible for a wide variety of ecosystem services i.e. 

the benefits that people obtain from ecosystems; including playing a vital role in the 

processing of nutrients, regulating climate and offering opportunities for many different 

recreation and economic activities (reviews by Barbier et al. 2011 and Foster et al. 2013). 

Similarly, in a review of paradigms relating to estuarine structure and functioning, Elliott and 

Whitfield (2011) suggest that estuaries are one of the most valuable aquatic ecosystems 

serving human needs. 

 

Figure 1.3. 653 (29%) Ramsar wetlands of international importance include estuarine waters; 

intertidal mud, sand or salt flats; or intertidal marshes. Produced using ArcGIS basemap 

imagery © ESRI, Inc. (2000) and data from Ramsar Sites Information Service (Ramsar 2016a). 

Mudflats in particular are of considerable biodiversity value due to the rich communities of 

invertebrates, birds and other taxa that they support; as such many are recognised as 

wetlands of international importance via the Ramsar Convention (Figure 1.3) and in the 

European Nature Directives. Many estuarine sites around the UK receive legal protection as a 

result (see section 1.1.2). Soft mudflats often support high densities of oligochaete and 

polychaete worms and bivalve molluscs, which provide vital food for millions of waterbirds 

worldwide particularly during the non-breeding season and on passage (Davies et al. 2001, 

Austin et al. 2014).  These benthic invertebrates and other associated species also represent a 

valuable commercial and recreational fisheries resource: for example UK commercial fishing 

vessels landed £7.9 million worth of cockles in 2014 (Marine Management Organisation 

2015); and many fish species and crustacea feed on marine worms and bivalve larvae. In 

addition, mudflats provide essential nursery areas for commercial fish species such as plaice 
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Pleuronectes platessa, bass Dicentrarchus labrax and dab Limanda limanda (Raffaelli and 

Hawkins 1996, Weerts and Cyrus 2002, França et al. 2008). Nursery areas are often 

associated with eelgrass Zostera spp. beds (Costa et al. 1994, Polte and Asmus 2006, Warren 

et al. 2010, Bertelli and Unsworth 2014), which also provide an important food resource for 

herbivorous waterbirds – in particular all subspecies of brent goose Branta bernicla (Wilson 

and Atkinson 1995, Ganter 2000, Desmonts et al. 2009). 

Section 1.4 gives more specific examples from two different sites of the value of estuarine 

habitats to both people and wildlife. 

1.1.4. Threats to estuarine systems 

Like most (if not all) natural habitats worldwide, estuarine systems are threatened, both 

directly and indirectly, by human activities; and they may have more human-induced 

pressures than other system (Elliott and Whitfield 2011). Given that coastal areas are a focus 

for development and economic activity, with further population growth predicted, the 

seriousness of many threats continues to increase and there is an urgent need for habitat 

creation and restoration, and the implementation of sustainable management practices 

(Thom et al. 2005). This section gives a brief description of the overarching threats and sets 

the topic of this thesis – disturbance – in the context of these additional pressures. 

Habitat loss and degradation 

Habitat removal, modification, dredging, sediment deposition and drainage due to 

developments for housing, tourism, ports, marinas, agriculture and aquaculture, often in 

combination with associated increases in pollution/nutrient enrichment have caused 

widespread losses in terms of quality and extent of habitat, and abundance and diversity of 

flora and fauna (McLusky et al. 1992, Goldberg 1995, Buchan 2000, Atkinson et al. 2001, 

Thrush et al. 2004, Ducrotoy and Elliott 2008, Holmes et al. 2012). 

A particularly extreme example is that of the Yellow Sea where 28% of tidal flats present in 

the 1980s had been lost by the 2000s, and 65% were lost between the 1950s and 2000s 

(Murray et al. 2014). This represents approximately 728,000 ha – almost as much as the 

extent of intertidal flats in the whole of the Wadden Sea, and more than twice the total area 

of intertidal flats in the UK (Davidson et al. 1991). The Yellow Sea provides vitally important 

stopover habitat for migratory birds using the East Asian-Australasian Flyway (van de Kam et 

al. 2010), and current rates of loss put the whole flyway at risk of collapse (Yang et al. 2011, 

Piersma et al. 2016). 
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Over-exploitation 

The ecological integrity of many estuarine systems is also threatened by over-exploitation, 

particularly in relation to fisheries activities (deFur and Rader 1995, Jackson et al. 2001, 

Piersma et al. 2001). Declines in bivalve stocks in the 1980s and 1990s due to suction 

dredging for cockles and harvest of mussels in the Wadden Sea, for example, have been 

implicated in the declines of oystercatcher Haematopus ostralegus and eider duck Somateria 

mollissima around the same time (Camphuysen et al. 2002, Ens 2006). Resource over-

exploitation and coastal degradation also undermine subsistence use of coastal ecosystems, 

harming local communities as well as national economies (Millennium Ecosystem Assessment 

2005). 

Invasive non-native species 

The connected nature of aquatic environments means that invasive non-native species can be 

even more of a problem in marine and freshwater systems than they are on land: once 

established they may be very difficult or prohibitively expensive to remove. Eno et al. (1997) 

reported that no non-native marine species has been successfully removed from British 

waters, and attempts to remove such species can even be unintentionally damaging (Zavaleta 

et al. 2001, Bergstrom et al. 2009, Zarnetske et al. 2010). Instead, Olenin et al. (2011) suggest 

a more appropriate post-establishment response is to focus on containment, control and 

mitigation. 

Sea level rise 

Global sea levels rose throughout the 20th century in response to climate change, and 

although the magnitude is uncertain, these rises will almost certainly accelerate further 

through the 21st century (Nicholls and Cazenave 2010). The normal response of intertidal 

habitats to sea level rise is to ‘migrate’ inland; providing  that there is sufficient sediment, sea 

level rise is not too fast, topography allows, and their landward edges have not been 

reinforced with hard structures for flood prevention or modified by humans in other ways 

(Kirwan and Megonigal 2013, Gittman et al. 2015). If intertidal habitats are not able to 

migrate inland at a fast enough rate, losses are likely to occur through erosion and inundation 

and interactions between physical and ecological processes (Akib et al. 2012, Pontee 2013, 

Passeri et al. 2015). When the high water mark is fixed by a hard defence or structure and sea 

level rise causes the low water mark to migrate inland, the resulting habitat loss is termed 

‘coastal squeeze’ (Pontee, 2013). This, like other forms of intertidal habitat loss and 



30 

modification, will have implications for associated flora and fauna (Short and Neckles 1999, 

Fujii and Raffaelli 2008, Clausen and Clausen 2014). 

Disturbance 

Coping with the costs of disturbance can be particularly problematic for some susceptible 

groups (Baillie et al. 2004), and interactions between threats can amplify the overall impacts 

so that in combination impacts are worse than would be expected based on analysis of single 

threats alone (Crain et al. 2008, Mantyka-Pringle et al. 2015). Threats to biodiversity rarely 

occur in isolation so disturbance, when occurring in combination with other threats, could 

have significant negative consequences for wildlife populations, particularly those whose 

fitness is already reduced through the impacts of those other stressors. Similarly there could 

be interactions between different types disturbance. Though conversely, there may also be 

situations where impacts are reduced through interactions with other threats.  

When identifying threats and assessing their impacts it is important to make the distinction 

between the potential in combination impacts of multiple threats and/or disturbance types 

and the cumulative impacts of repeated occurrences of a single threat type. However, the 

term ‘cumulative’ impact is sometimes used to refer to in-combination impacts as well 

(International Finance Corporation 2013; RenewableUK 2013; Natural England 2014). 

1.1.5. Human activities relevant to estuarine systems which may cause 

disturbance to non-breeding waterbirds 

Since estuaries are such important resources for a wide variety of human recreational and 

economic activities as well as large populations of wintering waterbirds, there are many 

different ways that humans might cause disturbance to those birds. The responses and 

impacts will depend on the type of activity, its frequency of occurrence, and where and when 

it takes place in relation to the daily activities and movements of birds (Figure 1.4). The rest 

of this section describes some of the most common activities that take place in estuarine 

environments and the mechanisms by which they may or may not disturb wintering birds. 

Walking 

Walking is a popular outdoor pastime in many different types of habitat and estuarine 

environments are no exception. For example studies in Cork Harbour (SW Ireland)  

(O’Mahony et al. 2009), and in UK estuaries  (Fearnley et al. 2010, 2012, Liley et al. 2011, Liley 

and Fearnley 2012) found walking to be the most frequently observed recreational activity. 

Many people keep to shoreline footpaths or beaches above the high water mark (e.g. 77% of 
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walker routes on the Exe estuary did not involve using intertidal areas (Liley et al. 2011)); 

however, others may walk on the intertidal area depending on the state of the tide and the 

muddiness of the sediment (Goss-Custard and Verboven 1993). Consequently, on estuaries 

with wide expanses of mudflats that are difficult or dangerous to walk on, birds feeding at the 

water’s edge at low tide will encounter few, if any, walkers. Whereas on narrower and 

sandier intertidal areas and at times when the tide brings feeding birds close to the upper 

shore area, there will be a greater likelihood that walkers may disturb birds. 

 

Figure 1.4. Use of estuarine habitats by birds and people during the non-breeding season 

(autumn/winter/spring). Habitat abbreviations are: GR grassland; SD sand dune; SB sandy 

beach; SH shingle beach; SM saltmarsh; MF mudflat; SF sandflat; SL shoreline; SW shallow 

water; OW open water. Adapted from Davidson and Rothwell (1993). 

The distribution of people around an estuary and associated disturbance levels will be related 

to the access opportunities (Liley and Sutherland 2007, Mallord et al. 2007, Coombes et al. 

2008, Wolf et al. 2012): more people are likely to be found near car parks and where there 

are shoreline footpaths. Conversely, intertidal areas that are backed by wide expanses of 

saltmarsh with tidal creeks and/or private land will experience less intense pedestrian visitor 

pressure. Feeding or roosting birds on fields or land with public access, such as recreation 

grounds, football pitches and golf courses (Liley and Hoskin 2011, Morrison 2015), will also be 
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at greater risk of disturbance. These relationships are likely to apply for most types of 

recreation, with the exception of some water-based activities. 

Jogging/cycling 

Some researchers have suggested that speed of approach is an important factor in 

determining bird responses to disturbance: for example Burger (1981) and Glover et al. 

(2011) both found that shorebirds were more responsive to joggers than they were to slow 

walkers; and Fitzpatrick and Bouchez (1998) observed increased vigilance in oystercatcher, 

curlew Numenius arquata and redshank Tringa totanus in the presence of faster moving 

human activities (jogging and cycling) versus slow (walking and stationary people). However 

there are other studies that have demonstrated the opposite relationship (e.g. Lafferty 2001, 

Rees et al. 2005), or no difference between fast and slow moving people (Lord et al. 2001). 

The importance of speed of approach may be confounded by or interact with other site-, 

species-, or situation-specific factors. 

Dog walking 

As well as being the most popular companion animal, domestic dogs perform valuable 

herding, guarding, hunting and disability-support roles, and the global owned dog population 

is estimated to be nearly one billion (Gompper 2014). Since dogs need daily exercise and 

people like to visit coastal and estuarine habitats, there is plenty of scope for dogs and 

wintering waders to come into conflict (in addition to the potential problems associated with 

free-roaming and feral dogs), with dogs representing a perceived – or sometimes real – risk of 

predation (Marks and Redmond 1994, Ritchie et al. 2014). The probability of dogs disturbing 

birds will be greater when they are not under close control or on a short lead since they may 

roam across the intertidal habitat and enter the water, and may also chase birds. Lafferty 

(2001b) found that dogs on a lead were no more likely to disturb birds than walkers without 

dogs, but dogs off lead were more likely to disturb birds and disturbed more birds at a time. 

Dogs that chased birds were even more likely to cause a disturbance, although the number of 

birds disturbed per event was not significantly different to dogs off lead that didn’t chase 

birds (Lafferty 2001b). 

Most research relating to the impacts of dogs on shorebirds focusses on the breeding season 

(Pienkowski et al. 1984b, Yalden and Yalden 1990, Lord et al. 2001, Weston and Elgar 2007), 

the findings of which have resulted in regulations either excluding dogs or requiring them to 

be kept on a lead in certain areas. Where regulation has been adhered to there have been 

successes (e.g. Lafferty et al. 2006); however there is evidence that regulations are often 
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ignored and further work is needed to find ways to improve levels of compliance (Dowling 

and Weston 1999, Lafferty 2001b, Williams et al. 2009, Glover et al. 2011, Stigner et al. 2016). 

Angling and bait digging 

In the UK there is a public right to collect intertidal fish, shellfish and other invertebrates 

where there is public access to the shore (not including commercial bait collection, and 

subject to regulation by local byelaws) (Fowler 1999). By virtue of remaining in one place for 

relatively long periods of time, angling, bait digging and other similar activities may be 

expected to cause fewer disturbances than activities that involve movement across or 

alongside intertidal habitats. For example Goss-Custard and Verboven (1993) noted that after 

the initial disturbance when anglers and mussel pickers arrived, oystercatchers soon resettled 

and some even fed nearby. However, in situations where there is only a small amount of 

intertidal habitat available, the presence of stationary humans evenly spread across the 

intertidal area can prevent birds from feeding or roosting (Townshend and O’Connor 1993, 

Navedo and Masero 2007). This will be especially true in the case of bait diggers, who favour 

the same areas as feeding birds i.e. those areas with high densities of specific benthic 

invertebrates and may cover large areas of intertidal habitat (albeit slowly).  

Wildlife watching/photography 

The effects of people engaged in wildlife watching and photography are likely to be similar to 

those of walkers, or perhaps lessened by the fact that they may be stationary for extended 

periods of time. They may also show a greater awareness and reluctance to disturb their 

subjects and employ field-craft accordingly (Weston et al. 2015); although conversely, direct 

approach and a desire to get as close as possible to their subject could in fact increase the 

likelihood of disturbance occurring (Boyle and Samson 1985, Sekercioglu 2002). 

Watersports and motorised vehicles 

Watersports can be divided into motorised (e.g. jet skiing, water skiing, power boating, 

yachting) and non-motorised activities (e.g. canoeing, paddle boarding, windsurfing, 

kitesurfing, sailing) and may take place in shallow water with the potential to disturb nearby 

feeding or roosting birds, as well as occurring further out on open water, where rafting 

wildfowl may be disturbed. Birds using intertidal areas may also be affected if recreationists 

set up on and cross this habitat in order to access the water. 

Noise from nearby road or rail transport links can result in disturbance of feeding or roosting 

birds, or cause them to avoid otherwise suitable habitat (Reijnen et al. 1995, Hirvonen 2001). 
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In addition to the noise disturbance, off-road vehicles can cover large areas and have the 

potential to cause substantial disturbance when present on beach and intertidal areas: larger 

vehicles have been shown to be more disruptive than smaller ones (Schlacher et al. 2013b), 

though in some cases vehicles could approach birds more closely than pedestrians (McLeod 

et al. 2013). Aside from some studies of breeding shorebirds (Buick and Paton 1989, 

Borneman et al. 2016), there has been very little research into the impacts of these activities 

on coastal and estuarine waterbirds separate from other forms of human disturbance; 

although see Méndez Roldán (2013) and an observation by Fraser (1987). Similarly, the 

increasing popularity of drones (unmanned aerial vehicles) as survey tools and for general 

recreation represents a novel potential disturbance type and highlights the need for more 

specific research into the impacts of different activities (Allport 2016; McEvoy et al. 2016; 

Rümmler et al. 2016). 

Whilst water-based activities may cause disturbance in similar ways to other activities simply 

due to the presence of people, there may be other mechanisms involved. For example, the 

noise from motorised watersports presents an additional, potentially disturbing, stimulus; 

and non-motorised watersports such as canoeing and kayaking allow people to access areas 

such as saltmarsh creeks and islands that may not otherwise be disturbed by other activities 

due to access limitations. 

Wildfowling/hunting 

Wildfowling – also known as waterfowl hunting – involves the shooting of ducks and geese 

for sport and for the plate, usually with a shotgun from the shoulder (or a large gun mounted 

on a boat known as a punt (Townshend and O’Connor 1993), though this is now rare). 

Wildfowling takes place on estuaries and coastal marshes as well as inland freshwater 

habitats, and in the UK the activity dates back to 16th and 17th centuries with the increased 

popularity and effectiveness of the shotgun around that time (Marchington 1980, Kear 1990). 

The activity is popular worldwide: in 2011 in the US 2.6 million people hunted migratory birds 

such as ducks, geese and doves – representing more than 1% of the adult population, and a 

13% increase since 2006 (US Fish and Wildlife Service 2012). The ‘voice of European hunters’, 

including wildfowlers, is the European Federation of Associations for Hunting and 

Conservation (FACE), whose members are national hunting associations from 36 countries 

including all EU Member States (FACE 2016). Wildfowlers in the UK are represented by the 

British Association for Shooting and Conservation (BASC). 
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It is in the interests of hunters to maintain large populations of their target species, and in 

America for example conservation management and maintenance of the wildfowl resource 

for harvest are almost synonymous (Owen and Black 1990). Hunters and nature-lovers alike 

can purchase the annual ‘Duck Stamp’ which allows access to wetlands for hunting and free 

access to national wildlife refuges; 98% of the proceeds are spent on wetland conservation 

work (US Fish and Wildlife Service 2015). The equivalent in the UK is coordinated by the 

Wildlife Habitat Trust (WHT); funds raised from sale of the UK Habitats Stamp help to fund 

land acquisition and site management for shooting and conservation projects (WHT 2016). 

Wader hunting is prohibited in most parts of the world, yet there are still some areas, 

particularly in the Western Hemisphere where it does occur either legally or illegally (Watts 

and Turrin 2016). For example professional hunters in Bangladesh and Myanmar rely on 

trapping waders for their family livelihood, including the critically endangered spoon-billed 

sandpiper Eurynorhynchus pygmeus (Chowdhury 2010, Zöckler et al. 2010); there is 

considerable hunting pressure on waders in the Caribbean (Andres 2011); and although 

waders are legally protected in Suriname, tens of thousands are estimated to be killed by 

hunters annually (Morrison et al. 2012). Aside from these and other exceptions (golden 

plover Pluvialis apricaria, snipe Gallinago gallinago and woodcock Scolopax rusticola in the 

UK), most species of wader that spend the winter in coastal and estuarine habitats are not 

legal quarry for wildfowlers (BASC n.d.); nevertheless they are likely to be disturbed by the 

sound of a shotgun being fired nearby and the subsequent retrieval of shot quarry by a dog; 

and the presence of a wildfowler may exclude foraging waders from certain areas of mudflat 

depending on the state of the tide. 

Whilst there have been a number of studies researching the effects of wildfowling 

disturbance on quarry species (e.g.Townshend and O’Connor 1993, Fox and Madsen 1997, 

Madsen 1998a, 1998b, Bregnballe et al. 2004, Casazza et al. 2012), the population-level 

impacts are still not well understood. Furthermore, there is a lack of research into the 

impacts of wildfowling on non-quarry species groups such as wintering waders; although the 

subject has been considered for other forms of hunting (Hofer et al. 1996, Grignolio et al. 

2011). 
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Military activities 

Many military training bases are located in estuarine and coastal habitats around the world, 

so birds may be subject to noise and physical disturbance both during the day and at night 

from aircraft and weapons training operations (Boice 1997, Ministry of Defence 2015). Whilst 

disturbance from such activities could be severe (Smit and Visser 1993), it may not be 

frequent, and birds may in fact benefit from the exclusion of other potentially disturbing 

activities. For example one of the largest UK grey seal colonies can be found at the RAF 

Donna Nook bombing range on the Lincolnshire coast, along with a rich diversity of birds, 

plants and other taxa (Bishop et al. 2015, Lincolnshire Wildlife Trust 2016). 

Commercial activities 

Given that coastal and estuarine habitats are often important centres of commercial activity  

for fishing, shell fishing and bait harvesting, cargo and passenger ports, construction and 

many other activities (see sections 1.1.3 and 1.4), the associated large numbers of people, 

boats and noise could be considerable sources of disturbance to wintering birds. However, 

with a few notable exceptions (e.g. Cutts et al. 2009, Fearnley et al. 2013), their impacts have 

not been studied separately from other human activities, or the focus has been on associated 

habitat degradation and loss as opposed to direct disturbance and the resulting fitness 

consequences through physiological and behavioural responses (Piersma et al. 2001, Ens 

2006, Atkinson et al. 2010). 

Deliberate disturbance 

One aspect of this topic that this study does not attempt to address is deliberate disturbance, 

for example to protect vulnerable agricultural crops (Nolet et al. 2016; Simonsen et al. 2016) 

or through safety concerns at airports (Swaddle et al. 2016) and management of landfill sites 

(Cook et al. 2008). Nevertheless, an improved understanding of the factors that affect bird 

responses to disturbance and the associated fitness consequences could provide insights into 

whether disturbance will be effective in these situations and to determine the most 

appropriate methods to use. 

1.1.6. Choice of focal activities 

It was beyond the scope of this study to investigate bird responses to, and the impacts of, all 

types of potentially disturbing activity so two activities were chosen for fieldwork and in-

depth analysis: walking and wildfowling. They were chosen because experimental 

disturbance by an approaching pedestrian is a commonly used and accepted method for 
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investigating bird responses to disturbance (see next section) so there are suitable data 

available for comparison with the results of this research. Walking is also the most frequent 

recreational activity that takes place on estuaries, so understanding its impacts can make a 

major contribution to understanding the impacts of recreational disturbance in general. 

Furthermore, there is scope to add to knowledge and improve the usage of such data to 

inform conservation management, which will be discussed further in Chapters 2 and 3. By 

comparison, although wildfowling has taken place in estuarine habitats for hundreds of years, 

its impacts on non-quarry species have been relatively poorly studied. The mechanisms by 

which birds are disturbed by this activity are quite different to the more commonly 

investigated pedestrian disturbance, so wildfowling provides an opportunity to take a novel 

approach to investigating bird responses to (and the impacts of) disturbance. This gap in 

knowledge will be addressed in Chapter 4. 
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1.2 Quantifying responses to and impacts of disturbance 

1.2.1. Measuring and understanding responses to disturbance 

Experimentally disturbing animals (for example by walking towards them or using a noise 

stimulus) and recording characteristics of their physiological or behavioural responses is a 

commonly used and effective method for studying disturbance, and all of the examples listed 

in Table 1.2 employed this method. Other researchers have taken an observational approach 

by recording animal responses to real-world disturbances (e.g. Yalden and Yalden 1990; 

Riddington et al. 1996; Schlacher et al. 2013a). 

The most consistently reported measure of response is flight initiation distance (FID); also 

referred to as ‘escape distance’ or ‘flush distance’, it is the distance between an animal and 

approaching predator or disturber at which it begins to flee (Bonenfant and Kramer 1996, 

Blumstein et al. 2003), and may be considered as the distance beyond which an activity 

(potential disturbance) would not be expected to result in a costly flight response. Reported 

FIDs are therefore often used to inform the size of buffer zones and set-back distances for 

species protection by separating human activities from key areas (Glover et al. 2011; Weston 

et al. 2012; Chatwin et al. 2013; Schlacher et al. 2013a; Koch and Paton 2014). However, this 

method has its drawbacks: 

i) FID is highly variable between species and within species (as predicted by the risk-

disturbance hypothesis (Frid and Dill 2002), so values recorded in one study may not be 

applicable to new sites or situations. For example, the studies listed in Table 1.2 

identified 14 different factors that could explain variation between individuals in their 

FID and other responses to disturbance; 

ii) in order to prevent disturbance of all species present, the FID of the species that has 

been found to be least ‘tolerant’ must be used, which may result in unnecessarily 

precautionary buffers especially since larger FIDs do not indicate greater vulnerability 

(see section 1.1.1); 

iii) use of FID does not account for the potential costs of disturbance related to behavioural 

and physiological changes both before and after initiation of flight – such as the 

metabolic costs of elevated heart rate or lost feeding opportunities due to increased 

vigilance (Figure 1.1); and 

iv) it is perhaps more important to determine the frequency of disturbance that will have a 

negative impact on a population i.e. the threshold above which disturbance cannot be 

compensated for.  
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Despite the potential problems with relying on measured FID values, alone, experimental 

disturbance studies continue to be valuable tools for informing evidence-based conservation 

management (Livezey et al. 2016). With a better understanding of the factors that explain 

variation in FID and other measures of response, we will be able to determine the 

applicability of reported values to new sites and situations and make more accurate 

predictions about the impacts of disturbance at the population level. 
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Table 1.2. Selected examples from the literature of animal disturbance studies with recorded measures of response and explanatory variables identified. 

Taxon 
Response(s) 

measured 
Factor(s) affecting response Details 

Mammals 

Vigilance; 

Foraging time; 

FID 

Type of disturbance; age 

Li et al. (2011). When the presence of motorised vehicles and bicycles was high, yellow-bellied 

marmots Marmota flaviventris increased the proportion of time spent vigilant and decreased the 

time spent foraging. FID decreased with increased frequency of disturbance. Juveniles tolerated 

closer bicycle approaches than did adults or yearlings. 

Birds FID Species; site 
Blumstein et al. (2003). Both species and site influenced FID, but species was a relatively more 

important factor in explaining variation between individuals. 

Birds FID 

Species; body size; starting 

distance; flock size; previous 

experience; disturbance type 

Glover et al. (2011). Species with higher body masses exhibited longer FIDs. Depending on the 

species, FID was significantly influenced by the starting distance of the human approach, flock 

size, previous exposure to humans and stimulus type (walker, jogger, or walker with dog). 

Birds 

FID; 

Vigilance; 

Distance fled 

Individual condition 

Beale and Monaghan (2004b). Birds whose condition had been enhanced showed greater 

responsiveness to standardised human disturbance, flying away at greater distances from the 

observer, scanning more frequently for predators and flying further when flushed. 

Birds 
Proportion of flock 

that is feeding 
Stage of season; temperature 

Stillman and Goss-Custard (2002). The proportion of feeding oystercatchers increased later in the 

season, and was particularly high on unusually cold days. 

Birds 
Heart rate; 

FID 
None tested 

Ackerman et al. (2004) found that flushing behaviour is a reasonable indicator of acute changes in 

physiological state (heart rate) of white-fronted geese Anser albifrons elgasi in response to 

experimental disturbance. 

Reptiles 
Number that flee; 

Distance fled 
Angle of approach Cooper (2009). During indirect approaches, fewer lizards fled, and they ran shorter distances. 

Fish FID 
Body size; distance to refuge; 

disturbance frequency 

Gotanda et al. (2009). Body size, reserve protection, and distance to a refuge, had strong support 

in explaining parrotfish FID. 

Amphibians 
Time to resume 

original behaviour 
Frequency of disturbance 

Rodriguez-Prieto and Fernández-Juricic (2005). Repeated disturbance events increased frog time 

to resume pre-disturbance activities. 



 

41 

1.2.2. Linking individual responses to population consequences 

Ability to compensate 

As described earlier, it is important to distinguish between bird responses to individual 

disturbance events (causing short-term physiological and behavioural changes), the 

cumulative impacts on individual survival (e.g. through lost feeding opportunities, higher 

energy requirements, and increased predation risk) and the corresponding population 

consequences. However, such impacts cannot be predicted using data from short-term 

experimental or observational disturbance studies alone, since measuring responses may, at 

best, give an indication of whether there might be negative consequences for individuals. For 

example, birds that spend all or most of their available time foraging are unlikely to have 

much spare capacity to compensate for the costs of responding to even infrequent 

disturbance events (if feeding efficiency cannot be increased (Goss-Custard et al. 1977)).  

Optimal foraging theory (Stephens and Krebs 1986) predicts that birds will select foraging 

strategies and locations in order to maximise intake rate whilst minimising energy 

expenditure, predation risk and disease risk (Evans 1976). Disturbance that temporarily or 

permanently excludes birds from optimal foraging areas may therefore force them to feed for 

longer in less profitable areas and/or result in density-dependent reductions in intake rate 

through interference competition (Goss-Custard 1980, Cayford 1993, Frid and Dill 2002). 

Increased levels of interference competition, however, are likely to disproportionately affect 

juveniles and sub-dominant adults, as well as less-efficient foragers (Goss-Custard et al. 2001) 

so not all individuals will be affected equally by disturbance. Furthermore by spending more 

time in sub-optimal habitats, some or all birds may experience greater rates of predation 

(Hilton et al. 1999, McGowan et al. 2002) or higher disease risk (Clark et al. 2016). 

So whilst the costs of individual disturbance events may be low, the cumulative impacts of 

frequent disturbance events could be considerable, and the overall impact can be amplified 

(or reduced) due to interaction with other factors like pollution events or declines in food 

availability – so-called ‘in-combination impacts’ (Goss-Custard et al. 2006a, Crain et al. 2008, 

Halpern et al. 2008, IEEM 2010, Leighton et al. 2010, Oro et al. 2012, Weber et al. 2012). 

Therefore in order to make robust predictions about the impacts of disturbance on 

individuals and populations, detailed knowledge is needed of bird energetics, foraging 

behaviour, food availability, patterns of disturbance, environmental conditions, responses to 

disturbance, density dependent processes, and other factors that may affect bird fitness.  
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Defining significant impact 

Before making any judgement about whether disturbance is a conservation problem, it is 

necessary to first define what we mean by ‘significant impact’. The strictest interpretation of 

the term could be that any change in behaviour or physiology as a result of human activities 

is unacceptable. Some members of society may take this view, morally, however ecologically, 

such a definition is likely to be unnecessarily precautionary given that all biological systems 

have a certain capacity to cope with natural as well as some anthropogenic disturbances – so-

called ecological resistance and resilience (Gunderson 2000, Groffman et al. 2006). In their 

review of ecological concepts and definitions Elliott et al. (2007) define resistance as the 

amount of a given pressure that can be applied to a system without a deterioration in status; 

and resilience as the degree of recovery once a pressure is removed, though recovery may 

not be complete (i.e. partial resilience). 

At the other extreme, disturbance might only be considered to be a conservation issue if it 

causes long term, sustained population decline and eventual extinction – by which point any 

intervention would be too late. In the case of wintering waders, a more reasonable threshold 

could be the amount of disturbance that would lead to a statistically significant reduction in 

the number of birds that survive the winter period or do not abandon the site in favour of 

suitable habitat elsewhere (i.e. a reduction in the carrying capacity of a site (Goss-Custard et 

al. 2002)). This recognises the fact that birds are able to compensate for minor or infrequent 

disturbances if there is sufficient intertidal exposure time and food availability and their 

thermoregulatory requirements are not high (Stillman and Goss-Custard 2002). It also allows 

for some overwinter mortality as long as mortality is compensatory rather than additive – 

individuals that die as a result of the costs of disturbance may have died anyway through 

predation or starvation during periods of cold weather (Burnham and Anderson 1984, 

Sandercock et al. 2011). From a regulatory perspective this ‘number of birds supported’ 

definition fits well with the conservation objectives for sites that have been designated due 

to their nationally and internationally important populations of wintering birds. 

In the absence of large amount of data to test for statistically significant reductions in 

carrying capacity under different disturbance scenarios, an alternative (though more 

conservative) approach could be to assess the impact of disturbance over the period of time 

that birds attempt to balance their energy budget – approximately 24 hours for waders 

(Kersten and Visser 1996a). Disturbance levels would then be considered unacceptable if they 

prevent birds from balancing their energy budget or achieving sufficient fat deposition rates 

in preparation for migration and breeding as normal, even if there is not an overall decrease 
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in numbers of birds supported over winter. Chapters 5 and 6 will explore how these different 

definitions affect predictions about ‘acceptable’ levels of disturbance. 

Having a clear definition, along with robust evidence of the impacts of disturbance is essential 

for the acceptance and effective enforcement of any associated regulation or management 

measures: though problems can arise when stakeholders disagree on the definition or its 

interpretation (Dowling and Weston 1999, Lafferty 2001b, Williams et al. 2009, Glover et al. 

2011, Stigner et al. 2016). 
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1.3 Modelling disturbance and making predictions 

The studies listed in Table 1.1 all found evidence for the negative impacts of disturbance, yet 

what is more useful to conservation managers is the ability to predict future impacts under 

different environmental or management scenarios so that measures may be introduced to 

prevent those impacts from occurring in the first place: as the adage goes, prevention is 

better than cure. 

The approaches taken by most studies that attempt to make predictions about the impacts of 

disturbance fall into one of two main categories: using numerical models (mathematical 

equations) or individual-based modelling (computer simulation). 

1.3.1. Mathematical equations. 

Many studies have taken a classical approach to modelling population dynamics and 

predicting disturbance impacts based on empirical (observed) data relating to demographic 

rates and density-dependent processes. For example, Liley and Sutherland (2007) collected 

data on the habitat selection and disturbance response behaviour of breeding ringed plovers 

Charadrius hiaticula to build a logistic regression model that could predict site occupancy and 

density-dependent breeding success, and determine equilibrium population size under 

different scenarios of human disturbance. Similarly, Taylor et al. (2007) used observations of 

the behavioural responses of stone curlews Burhinus oedicnemus to humans to build a 

logistic regression model for making predictions about occupancy of ‘stone curlew plots’ 

(specifically created as part of the species recovery programme to provide suitable breeding 

habitat (Salisbury Plain Life Project 2003)) in relation to rates of human disturbance. Whilst 

they did not make predictions about actual reproductive success, the model was intended as 

a tool to help site managers make decisions about access and habitat management for this 

vulnerable species (Taylor et al. 2007). 

A slightly different approach involves resource-use/depletion models such as those described 

by Gill et al. (1996, 2001c); for example, the proportion of remaining food not consumed at 

the end of the winter was used (through regression analyses) to estimate the number of pink-

footed geese that could be supported by a site in the absence of disturbance. 

As another example, Houston et al. (2012) go back to first principles to construct a simple 

mathematical model that is not restricted to any particular species or system. It is based on 

the principle that behavioural changes in response to disturbance have implications for 

animal time and energy budgets, and that for the duration of the disturbance they are unable 
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to feed. If disturbance is sufficiently high, animals will either run out of time or be limited by 

an energy constraint. They use the method to show that African wild dogs Lycaon pictus 

suffer considerable costs due to disturbance by lions Panthera leo and kleptoparasitism from 

hyenas Crocuta crocuta. 

One benefit of using numerical models to predict the impacts of disturbance on bird is that 

many people will be familiar with the general approach, plus they are relatively 

straightforward to explain. However they may be limited in their ability to make predictions 

outside of the range of historical environmental conditions under which key values have been 

measured, since we cannot be confident that population impacts will be the same in novel 

situations. 

1.3.2. Individual-based ecology and modelling 

Individual-based models (IBMs) – known as agent-based models (ABMs) in the fields of social 

sciences and economics – offer an alternative approach to the deterministic, equation-based 

predictive methods described above. Since Huston et al.’s (1988) review, the use of IBMs has 

increased exponentially (Grimm 1999). They have been used to address a wide variety of 

issues; including understanding fish population dynamics, forest functioning, evolutionary 

processes, impacts of habitat loss, spread of disease, human-wildlife interactions, financial 

market processes, and purchasing decisions – as reviewed by Grimm (1999), DeAngelis and 

Mooij (2005) and Heard et al. (2015). 

A form of computer simulation modelling, ecological IBMs use the individual-based ecology 

conceptual framework (Grimm and Railsback 2005) to model populations or systems 

composed of individuals, each with its own set of behavioural and physiological traits based 

on knowledge of the real-world system (DeAngelis and Mooij 2005, Grimm and Railsback 

2005, Stillman and Goss-Custard 2010). Model individuals make fitness-maximising decisions 

in the same way that real animals would (even in novel situations) and simulations track their 

fates to predict the population-level consequences that emerge from individuals’ interactions 

with their environment and with each other, allowing incorporation of stochastic events 

(Stillman et al. 2015, 2016).  

The IBM approach has been used to predict the impacts of disturbance on, for example, 

shorebirds (West et al. 2002; Goss-Custard et al. 2006a); birds feeding in parks (Blumstein et 

al. 2005, Bennett et al. 2009); bats (Bennett et al. 2009); night-herons (Bennett et al. 2011); 

and cetaceans (Lusseau et al. 2006). West et al. (2002) showed that numerous small 

disturbances could be more damaging for wintering oystercatchers than fewer, larger 
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disturbances, especially if they occurred in late winter. Bennett et al. (2011) used their IBM 

for breeding black-crowned night-herons Nycticorax nycticorax to test recreation 

management scenarios and select the most effective combination of methods. And Goss-

Custard et al. (2006a) found that the critical threshold of disturbance for oystercatchers in 

the Baie de Somme, France, was much lower when feeding conditions were poor; also with 

implications for shellfisheries management. Similarly, Lusseau et al. (2006) showed that 

whale watching can influence cetacean population dynamics and jeopardise the viability of 

populations that are already at risk.  

By representing individuals and their local interactions in a stylised way, IBMs can achieve a 

level of ‘structural realism’ that is impossible with more aggregated mathematical models 

(Grimm and Berger 2016a) such as the ‘state-variable’ models used by Łomnicki and Ombach 

(1984) and Uchmanski (1985), which group individual variation into large-scale population 

variables and potentially ignore important mechanisms and interactions (Huston et al. 1988). 

However, in order for such models to be useful they must also be understood and trusted by 

the end-users (who may be non-scientists or unfamiliar with the modelling approach). This 

requires IBMs to be developed and communicated in such a way that the outputs can be used 

appropriately and effectively (Bart 1995, Grimm et al. 2006, Cartwright et al. 2016). If 

researchers follow the standardised model description methods such as those proposed by 

Bart (1995) and Grimm et al. (2006), along with Cartwright et al.’s (2016) communication 

framework, then IBMs can be expected to play a key role in future ecological modelling, 

particularly in tackling questions of community ecology and biodiversity research and 

informing environmental decision-making (McLane et al. 2011, Grimm and Berger 2016b, 

Stillman et al. 2016).  
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1.4 Scope of this thesis 

1.4.1. Conceptual framework 

The key literature, concepts and relationships discussed in this chapter can be distilled into a 

conceptual framework for understanding the impacts of disturbance on wintering waders 

(Figure 1.5). This framework can also serve as the basis for developing models of the system 

and making predictions about the impacts of disturbance under hypothetical or anticipated 

scenarios of environmental change. Figure 1.5 shows how this research fits into one or more 

of three overarching theoretical frameworks, which were used to help formulate the research 

objectives and hypotheses to be tested: (1) the risk-disturbance hypothesis as proposed by 

Frid and Dill (2002); (2) optimal foraging theory (Stephens and Krebs 1986); and (3) individual-

based ecology (Grimm and Railsback 2005). 

1.4.2. Aims and objectives 

The major aims of this research are to understand how and when disturbance from human 

activities can be expected to significantly impact wintering wader populations (both in 

general, and specifically in Poole Harbour, UK), in order to inform effective, evidence-based 

conservation management. This will be achieved by addressing the following four objectives: 

i) Characterise the variability in bird responses to pedestrian disturbance, identify key 

explanatory factors to account for that variability and test them against the 

predictions of the risk-disturbance hypothesis; 

ii) Quantify bird responses to disturbance from wildfowling and make comparisons with 

what is known about responses to pedestrian disturbance; 

iii) Following the individual-based ecology framework and using insights from field data 

collection, develop a site-specific individual-based model (IBM) for Poole Harbour to 

determine whether current frequencies of human activities are limiting wintering 

wader population sizes; and 

iv) Build a generally-applicable IBM to investigate the extent to which different 

characteristics of estuarine sites affect the likelihood of significant disturbance from 

human activities. 
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Figure 1.5. Conceptual framework for the relationships between individual wintering wader responses to disturbance and the population consequences. Arrows 

indicate known or potential relationships between one or more elements listed in linked boxes. Numbers alongside arrows indicate the chapters in which these 

relationships are investigated. Dashed lines delineate three key contributing theoretical frameworks. 
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1.4.3. Contribution to knowledge 

In addressing the above objectives this research will contribute to knowledge of site-specific 

and general impacts of human disturbance on bird species of conservation importance in 

estuarine habitats and with applications to other human-wildlife interactions. This includes a 

repeatable method for incorporating the costs of responding to disturbance into other site-

specific IBMs based on field observations; as well as identifying a new approach to more 

rapid assessment of sites for prioritising conservation action. This is also the first study to 

investigate in detail the impacts of hunting on non-target species in comparison with other 

human activities. 

1.4.4. Thesis structure 

In addition to the introduction and conclusions chapters, this thesis is divided into three 

‘data’ chapters based on field data collection and two ‘modelling’ chapters for making 

general and site-specific predictions about the impacts of disturbance. Below is a brief 

overview of the content of the data and modelling chapters. The rest of this chapter (sections 

1.5 and 1.6) introduce the study sites and species. 

Chapter 2. Variability in the area, energy and time costs of responding to disturbance for 

wintering waders on the Wash Embayment. 

Explores the results of pedestrian disturbance experiments on the Wash: identifying key 

explanatory variables, setting bird responses in the context of their daily energy requirements 

and available feeding time. 

Chapter 3. The responses of wintering waders in Poole Harbour to experimental disturbance 

by an approaching pedestrian vary spatially, between species and with environmental 

conditions. 

Compares the responses and key explanatory variables of bird responses to disturbance in 

Poole Harbour with reported results from other sites. Provides parameter values for use in 

Chapters 5 and 6. 

Chapter 4. Factors affecting the responses of wintering waterbirds to disturbance by 

wildfowling and a comparison with the effects of pedestrian disturbance in Poole Harbour. 

Assesses bird responses to and potential impacts of disturbance from wildfowling on non-

target species through acoustic and visual stimuli; and explores the similarities and 

differences in impact mechanisms in comparison with pedestrian disturbance. 
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Chapter 5. An individual-based model of Poole Harbour – is disturbance limiting wintering 

wader populations? 

Describes a site-specific model for identifying the conditions under which disturbance would 

be expected to reduce wintering wader populations, either alone or in combination with other 

types of environmental change. 

Chapter 6. Using individual-based modelling to investigate how site characteristics influence 

impacts of disturbance on non-breeding waders. 

Demonstrates how knowledge of certain estuary characteristics may be useful for identifying 

those sites where disturbance issues could be a conservation problem; using assessment of 

birds’ ability to balance their energy budget. 
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1.5 Study sites 

1.5.1. The Wash 

The study described in Chapter 2 took place on the Wash; a large embayment in eastern 

England on the North Sea coast (Figure 1.6), with a tidal range of 6.3 m on spring tides and 

3.0 m during neaps. It is the largest estuarine system in the UK (JNCC 2016a) with 

approximately 225 km2 of intertidal sand and mudflats, which support a rich benthic 

invertebrate fauna, and its conservation importance is recognised through several national 

and international designations including: SSSI, SPA, SAC and Ramsar site status (Doody and 

Barnett 1987). Met Office climate data for Wainfleet, near Skegness, from 1981 to 2010 (Met 

Office 2016) show mean monthly maximum temperatures for September to March ranged 

from 6.6˚C (January) to 17.8˚C (September), and mean monthly minima ranged from 1.2˚C 

(February) to 10.1˚C (September). Relatively mild winter temperatures such as these help 

make UK coastal sites so attractive to wintering migratory bird species.  

 

Figure 1.6. Extent of intertidal habitat of the Wash embayment (52˚56’16”N, 00˚17’16”E). 

Reproduced from Ordnance Survey map data ©Crown Copyright and Database Right (2016) 

Ordnance Survey (Digimap Licence). 
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As well as being of European importance for breeding birds (common tern Sterna hirundo, 

little tern and marsh harrier Circus aeruginosus), ‘in terms of total numbers, the Wash is the 

key site for wintering waterbirds in the UK’ (Austin et al. 2014). It supports internationally 

important wintering populations of avocet Recurvirostra avosetta, bar-tailed godwit Limosa 

lapponica, black-tailed godwit Limosa limosa, curlew, dark-bellied brent goose, dunlin Calidris 

alpina, golden plover, grey plover Pluvialis squatarola, knot Calidris canutus, oystercatcher, 

pink-footed goose, pintail Anas acuta, redshank, shelduck Tadorna tadorna, turnstone and 

whooper swan Cygnus cygnus. It is also of considerable importance during spring and autumn 

migration for ringed plover and sanderling Calidris alba, and qualifies as a wetland of 

international importance by regularly supporting at least 20,000 wintering waterbirds – the 

five year mean peak count for 1991/92 to 1995/96 was 400,273 individual birds (JNCC 

2016a). 

The Wash supports the largest colony of common seals Phoca vitulina in the UK, which is in 

part due to the availability of extensive intertidal flats where seals can haul out and breed. 

And subtidal sandbanks provide important nursery grounds for young commercial fish 

species, including plaice, cod Gadus morhua and sole Solea solea (JNCC 2016b) which are 

fished along the open coast and in the North Sea beyond the mouth of the Wash. 

As is typical of many estuaries, the Wash is also of considerable importance for human 

activities: the port of Boston handles around 1.3 million tonnes of cargo annually (UK Ports 

2016), and there is heavy fishing pressure for cockles, mussels and shrimps (Eastern IFCA 

2016). The seaside resorts of Hunstanton and Heacham attract large numbers of visitors each 

year, as do the RSPB reserves at Frieston, Frampton and Snettisham and other sites for 

wildlife-related tourism (Anon. 2010); and a network of shoreline footpaths provides access 

for general recreation. There are four wildfowling clubs that operate around the Wash, and 

sailing clubs at Wainfleet, Skegness, Snettisham and Hunstanton. Watersports including 

windsurfing, water skiing and power boating are generally restricted to the beach areas 

around Hunstanton and Heacham, where zoning of water craft is managed by the local 

authority (JNCC 2008a). There is also a 39 km2 Air-Weapons Range at RAF Holbeach for 

military training, with eight targets for bombing practice located on the intertidal mud and 

saltmarsh and a helicopter landing pad (Defence Training Estates n.d.). 
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1.5.2. Poole Harbour 

Poole Harbour (Figure 1.7) was the study site for most of the field data collection (see 

Chapters 3 to 6). It is a shallow estuary on the south coast of the UK with approximately 36 

km2 of water at spring tide high water (Humphreys and May 2005) and nearly 20 km2 of 

intertidal mud, sandflats and marshes between mean low water and the highest astronomical 

tides (Powell 2005). The estuary has a small tidal range (1.8 m during spring tides, 0.6 m on 

neaps). A tidal phenomenon that occurs due to the shallow waters along the coast around 

Poole Harbour means that it has a non-standard tidal regime and experiences ‘double high 

tides’ (Figure 1.8): water levels are often above mean tide level for 16 out of 24 hours 

(Humphreys 2005). Intertidal exposure period is therefore approximately eight hours per day, 

rather than the more usual twelve. Met Office climate data for Bournemouth Airport weather 

station (UK Meteorological Office 2015), from 1996 to 2015 show mean monthly maximum 

temperatures for September to March ranged from 8.7˚C (January) to 19.8˚C (September), 

and mean monthly minima ranged from 1.6˚C (January) to 9.7˚C (September).  

 

Figure 1.7. Extent of intertidal habitat in Poole Harbour (50˚41’47”N, 01˚59’46”W). 

Reproduced from Ordnance Survey map data ©Crown Copyright and Database Right (2016) 

Ordnance Survey (Digimap Licence). 
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Figure 1.8. Example tidal curve in Poole Harbour showing the ‘double high tides’. 

Reproduced from UK Hydrographic Office Admiralty EasyTide © Crown copyright 2016. 

Like the Wash, the national and international biological importance of the habitats in Poole 

Harbour and the species that they support are recognised through a variety of conservation 

designations; SSSI, Ramsar wetland, SPA and Heritage Coast status. The site is of international 

importance for breeding common tern and Mediterranean gull Larus melanocephalus, and 

for aquatic warbler Acrocephalus paludicola and little egret Egretta garzetta on passage. The 

main ornithological interest, however, is during the winter; with internationally important 

numbers of avocet, little egret, black-tailed godwit and shelduck, and an overall waterbird 

assemblage of more than 20,000 birds (five year mean peak count for 1998/99-2002/03 was 

24,709 (JNCC 2008b)). Other key species include redshank, curlew, dunlin, lapwing Vanellus 

vanellus, red-breasted merganser Mergus serrator, goldeneye Bucephala clangula, pochard 

Aythya farina, shoveler Anas clypeata, dark-bellied brent goose and cormorant Phalacocorax 

carbo (JNCC 2016c). 

Much of the southern and western parts of the 100 km shoreline are natural and fringed by 

reedbeds and saltmarsh, and public access is limited. By comparison, northern and eastern 

areas are much more accessible and dominated by artificial walls, embankments, marinas 

and moorings associated with the heavily populated areas of the Poole and Bournemouth 

conurbation (Humphreys and May 2005). In addition to the large human population of local 

residents, Poole Harbour is a popular tourist destination for coastal recreation as well an 

important port for commerce and travel. 600,000 passengers, more than 5000 commercial 

shipping movements and 2.3 million tonnes of cargo are handled annually (Poole Harbour 

Commissioners 2012, UK Ports 2016); luxury yachts are built here; Poole is the national 

headquarters for the Royal National Lifeboat Institute (RNLI); and Wytch Farm is the largest 
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onshore oil field in Europe (Drake and Bennett 2011). The area is popular with bird watchers 

and for general outdoor recreation (walking, dog walking, cycling, jogging etc.) and Dorset 

Wildfowlers’ Association (DWA) oversees wildfowling on the intertidal areas in the south and 

west of the Harbour. Watersports occur all year round and management of many recreational 

activities is achieved through a zoning scheme (Figure 1.9), which was first introduced in 1994 

with the first edition of Poole Harbour Aquatic Management Plan, and serves to minimise 

disturbance of environmentally sensitive areas and safely separate powered and non-

powered motor craft (Drake and Bennett 2011). 

Poole Harbour is an important resource for commercial and recreational fishing – monitored 

and regulated by the Southern Inshore Fisheries and Conservation Authority (IFCA) – in 

particular aquaculture for oysters and mussels, hand-picked and dredged clams and cockles, 

and bait dragging and digging for ragworm and lugworm (Southern IFCA 2013, 2016). 

As demonstrated in Figure 1.9, Poole Harbour is a seemingly very ‘crowded’ estuary with 

many potentially conflicting activities and interests, so from a conservation management 

point of view there is a clear need for a good understanding of the human-wildlife 

interactions that occur, the situations where they are likely to be a problem, and effective 

methods to minimise the impacts of disturbance where necessary. 
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Figure 1.9. Activity zones in Poole Harbour. Reproduced from the Poole Harbour Guide (Poole Harbour Commissioners 2016). 
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1.6 Study species 

1.6.1. Wintering waders 

Life history 

Waders (Order: Charadriiformes), often interchangeably referred to as shorebirds, are a 

highly variable group of species with differing life history strategies, yet the 217 species from 

14 different families also share a number of characteristics that make them attractive 

subjects for scientific study (Piersma 2007). Most are migratory and outside of the breeding 

season they gather in large numbers in estuarine areas to take advantage of abundant food 

and relatively low disease-risk (van de Kam et al. 2004). Wintering waders using estuarine 

habitats therefore offer a useful study system for investigating the impacts of human 

disturbance on wildlife, with opportunities for direct application of the results to inform 

conservation management. As an example, Figure 1.10 illustrates how numbers of migratory 

waders on UK estuaries increase in autumn, remain high during the winter and then decline 

in spring as they depart for their breeding grounds. 

 

Figure 1.10. Relative monthly population estimates for four wader species using UK estuaries 

– reproduced from Wetland Bird Survey (WeBS) data 1975/76 to 2014/15 (Frost et al. 2016). 

Index (green bars); mean (blue lines); and range (orange shading). Index = 100 for the month 

in which each species peak count occurs. 
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Waders that winter in northern latitudes may experience harsh weather conditions 

(Camphuysen et al. 1996), and the energy demands of thermoregulation can be high (Kersten 

and Piersma 1987). Time and energy budgets are further restricted by the intertidal exposure 

period and shorter winter day lengths (although some species may feed inland (Milsom et al. 

1998, Masero and Pérez-Hurtado 2001, Smart and Gill 2003, Yasué and Dearden 2009) and/or 

at night (Mouritsen 1994, McNeil and Rodríguez S. 1996, Dodd 1998, Hötker 1999, Lourenço 

et al. 2008)). Additionally, intertidal-foraging waders are reliant on the availability of safe 

roost sites that are not too far from their feeding grounds on which they can spend the high 

tide period (Luís et al. 2001, Rogers 2003, Rogers et al. 2006). 

Overwinter survival is not the only challenge that migratory waders face: in order to 

successfully complete journeys of many thousands of kilometres, some of which are made in 

a single flight (Gill et al. 2009, Battley et al. 2012), waders need to store large fuel loads 

within their body tissues. This requires them, at specific times of the year, to assimilate 

energy at rates well above their daily requirement for maintaining stable body mass (Kvist 

and Lindström 2003, Piersma et al. 2005), and highlights the importance of high quality 

stopover sites for species that do not complete their journeys in one go (Baker et al. 2004, 

Atkinson et al. 2007). In addition, some species are reliant on pre-migratory fattening to 

ensure successful reproduction (or even survival) on their Arctic breeding grounds, since 

environmental conditions upon arrival can be unpredictable (Morrison and Hobson 2004, 

Meltofte et al. 2007, Morrison et al. 2007). Any factors that reduce their ability to build up fat 

reserves at key times could therefore have fitness consequences for individual birds. 

Threats and population trends 

Most of the threats to waders in the non-breeding season relate to the threats to the habitats 

upon which they rely during that time (section 1.1.4), as well as potential impacts of lost 

feeding opportunities and energetic costs associated with high frequencies of human 

disturbance (section 1.2.2), and direct mortality in parts of the world where hunting occurs 

either legally or illegally (section 1.1.5). 

Large numbers of professional and volunteer wader enthusiasts contribute to monitoring 

programmes around the world: such as the Wetland Bird Survey (WeBS) in the UK; the 

International Shorebird Survey in North, Central and South America; and the Asian 

Waterbirds Census in the Asia-Pacific region. These data are collated by Wetlands 

International to produce population status and trends (Table 1.3) for as many species of 

waterbird as possible (Wetlands International 2016). Whilst many species currently remain 



 

59 

numerous, Table 1.3 shows that 22% of populations are declining, and several species are 

listed as critically endangered, including: St Helena plover Charadrius sanctaehelenae, spoon-

billed sandpiper, slender-billed curlew Numenius tenuirostris, eskimo curlew Numenius 

borealis (possibly extinct) and sociable lapwing Vanellus gregarius. Worryingly, trends are not 

available for a further 44% of populations (Wetlands International 2016). 

Table 1.3. Current population trends for waders and wildfowl derived from Wetlands 

International’s Waterbird Population Estimates (2016). Waders: 537 populations of 224 

species. Wildfowl: 468 populations of 168 species. 

Trend 
Proportion of populations 

Waders Wildfowl 

Increasing 6.7% 20.9% 

Stable 23.3% 23.3% 

Fluctuating 2.2% 2.4% 

Declining 22.2% 29.9% 

Extinct/ possibly extinct 1.3% 2.8% 

Unknown 44.3% 20.7% 

1.6.2. Wintering wildfowl 

Whilst waders are the main focus of this research, they share some winter habitat 

requirements, threats and legal protection with wildfowl (Family: Anatidae). The Anatidae 

family consists of 168 species of ducks, geese and swans (Wetlands International 2016); and 

includes the target species (subject to various restrictions) of one of the focal activities – 

wildfowling. This section refers mainly to those wildfowl species that, like many waders, are 

migratory and gather in large numbers in coastal and estuarine habitats in winter or on 

passage. 

Life history 

Like wintering waders, wintering wildfowl are subject to the challenges of harsh weather 

(Stout and Cornwell 1976, Bergan and Smith 1993), the need to build sufficient energy stores 

for migration (Lindström and Piersma 1993), and the constraints of the tidal cycle (Owen and 

Williams 1976, Mathers and Montgomery 1996, Burton et al. 2004). Nocturnal feeding, 

however, is more prevalent in wildfowl and may be actively preferred by many species to 

avoid daytime disturbance and predation risk (McNeil et al. 1992). Additionally, intertidal 

habitats are less important as foraging habitat for some species, rather they are often used 

for resting and preening (Owen and Williams 1976, Owen et al. 1986). These differences in 
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the feeding habits of waders and wildfowl mean that the mechanisms for the impacts of 

disturbance could be slightly different: daytime disturbance of wildfowl on estuaries may 

therefore only have energetic costs, rather than the additional lost feeding opportunity costs 

experienced by many waders. 

Threats and population trends 

Threats to wintering wildfowl, like for waders, relate mostly to the threats to their roosting 

and foraging habitats, costs of disturbance, and direct mortality through hunting. Hunting 

pressure can be very high for some species, for example Hirschfeld and Heyd (2005) estimate 

that 243,885 geese and 7,443,972 ducks are shot in the EU each year; and the corresponding 

numbers for the US in 2014/15 were estimated to be 13,270,000 ducks and 3,338,400 geese 

(Raftovich et al. 2015). Though the sustainability of such harvests will depend on each 

species’ population status and the extent to which mortality is compensatory or additive – 

see review by Sutherland (2001), who points out that mortality ‘will generally tend towards 

being compensatory at high population sizes [when mortality rates are higher due to density-

dependence] and tend towards being additive once the population [and mortality rate] is at a 

low level’ e.g. Bartmann et al. (1992). 

Current population trends are shown in Table 1.3, which shows that when compared to 

waders, more wildfowl populations are increasing and there are fewer populations for which 

trends are unknown. However there are also more populations in the declining and 

extinct/possibly extinct categories.  
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Chapter 2 – Variability in the area, energy and time costs of 

responding to disturbance for wintering waders on the 

Wash Embayment. 

2.1 Abstract 

Bird responses to human disturbance are interesting due to the similarities with anti-predator 

behaviour, and understanding this behaviour has practical applications for conservation 

management by informing measures such as buffer zones to protect priority species. To 

better understand the costs of disturbance and whether it will impact population size, studies 

should quantify time-related responses as well as the more commonly reported flight 

initiation distance (FID). Using wintering waders on an estuarine area as the study system, 

birds on the Wash Embayment, UK, were experimentally disturbed by walking towards them 

and recording their responses (FID, alert time, time spent in flight, time taken to resume 

feeding, and total feeding time lost). Data are presented for 10 species of conservation 

concern: curlew Numenius arquata, oystercatcher Haematopus ostralegus, bar-tailed godwit 

Limosa lapponica, grey plover Pluvialis squatarola, redshank Tringa totanus, knot Calidris 

canutus, turnstone Arenaria interpres, ringed plover Charadrius hiaticula, sanderling Calidris 

alba and dunlin Calidris alpina. Larger species responded more strongly; response magnitude 

was greater under milder environmental conditions; and responses varied over both small 

and large spatial scales. The energetic costs of individual disturbance events, however, were 

low relative to daily requirements and unlikely to be frequent enough to seriously limit 

foraging time. The results suggest, therefore, that wintering wader populations on the Wash 

are not currently significantly negatively impacted by human disturbance during the intertidal 

foraging period. This is also likely to be the case at other estuarine sites with comparable 

access levels, visitor patterns, invertebrate food availability and environmental conditions.  
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2.2 Introduction 

The term ‘disturbance’ can mean, in its broadest sense, any event that leads to a change in 

behaviour or physiology. This might be for example due to natural events such as attack by a 

predator; or anthropogenic disturbance where recreation or industry brings humans and 

birds into close proximity; or indirect disturbance through pollution events or noise impacts. 

However, for the purposes of this chapter in relation to wintering waders, the definition 

adopted by signatories to the African-Eurasian Waterbirds Agreement (AEWA 2015) will be 

used, as given by Fox and Madsen (1997):‘Any human-induced activity that constitutes a 

stimulus (equivalent to a predation threat) sufficient to disrupt normal activities and/or 

distribution of waterbirds relative to the situation in the absence of that activity.’ 

As recognised in this definition and according to the widely accepted risk-disturbance 

hypothesis (Frid and Dill 2002, Beale and Monaghan 2004b, Blumstein et al. 2005), animals 

respond to the perceived risk from human disturbances in the same way that they respond to 

predation risk i.e. by making trade-offs between avoidance of the risk and prioritising other 

fitness-maximising activities such as feeding, mating or parental care (Frid and Dill 2002). Bird 

responses to disturbance can therefore be expected to vary between individuals according to 

a variety of factors related to the perceived risk, the individual’s current state, and the costs 

of responding (Gill et al. 2001a, Beale and Monaghan 2004b). We can test the relative 

importance of such factors using experimentally collected field data. Estuarine sites, given 

their importance for both wildlife and human activities (Ramsar Convention 1971, Millennium 

Ecosystem Assessment 2005), offer useful study systems for such research.  

Waders (Order: Charadriiformes) form a relatively long-lived group of species and many are 

migratory, so survival during the non-breeding period, is an important part of the annual 

cycle with regards to the long-term persistence and viability of populations (Recher 1966, 

Sæther et al. 1996, Piersma and Baker 2000, Piersma et al. 2016). For day-to-day survival, and 

particularly in winter, birds must optimise their daily energy intake to avoid starvation, whilst 

minimising the risk of predation and disease. Consequently, human activities can impact a 

bird’s energy budget since responding to disturbance events results in both reduced time and 

area available for feeding (Gill et al. 1996) as well as increased energy expenditure through 

locomotion (Houston et al. 2012) or physiological responses (Ackerman et al. 2004). Survival 

will be reduced as a result if the birds are unable to compensate, for example by moving to 

other sites and/or increasing feeding time or efficiency (Urfi et al. 1996, Gill  et al. 2001a, 

2001b, Stillman et al. 2001, West et al. 2002, Navedo and Masero 2007).  
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Walking towards animals and recording characteristics of their response is a frequently used 

and effective method for studying disturbance avoidance behaviour, and the most commonly 

reported measure of response to disturbance is FID – flight initiation distance. Also known as 

‘escape distance’ or ‘flush distance’, it measures the distance between the disturbance 

source and animal when it begins to flee (Bonenfant and Kramer 1996, Blumstein et al. 2003). 

The method has been used for a range of taxa: including mammals (Li et al. 2011); birds (van 

Dongen et al. 2015); reptiles (Cooper 2009); fish (Gotanda et al. 2009); and amphibians 

(Rodriguez-Prieto and Fernández-Juricic 2005). However, FID does not quantify the full time 

and potential energy costs incurred between the point that an animal detects a disturber and 

when it returns to its original behaviour and physiological state. Very few researchers have 

studied or reported these time or energy-related measures, which is a clear knowledge gap 

that will be addressed here.   

Other studies on the variable responses of waders to experimental disturbance have 

identified a number of potential explanatory factors, including: species or body size 

(Blumstein et al. 2003, 2005, Glover et al. 2011); flock size (Ikuta and Blumstein 2003, Glover 

et al. 2011); habituation (Urfi et al. 1996, Ikuta and Blumstein 2003, Lin et al. 2012); whether 

or not birds are quarry species (Laursen et al. 2005); environmental conditions (Stillman and 

Goss-Custard 2002); type of disturbance (Glover et al. 2011); starting distance (Ikuta and 

Blumstein 2003); and individual condition (Beale and Monaghan 2004b). Whilst this shows 

that FID has been relatively well studied in waders, much of the research has been carried out 

in Australia and North America (Blumstein et al. 2003, 2005, Ikuta and Blumstein 2003, Glover 

et al. 2011, Koch and Paton 2014), with multi-species studies of the birds of the East Atlantic 

Flyway being limited to the Dutch and Danish Wadden Sea (Smit and Visser 1993, Laursen et 

al. 2005). By focussing this research on the Wash Embayment in eastern England, this 

research therefore adds new understanding to the suite of information available on bird 

responses to disturbance around the world. 

Given that measuring physiological responses to disturbance was beyond the scope of this 

study and flushing behaviour is a good indicator of acute physiological changes associated 

with experimental disturbance (Ackerman et al. 2004), this study focuses on visible 

behavioural responses. Using data that were collected as part of a wider project, entitled 

‘Estuary Special Protection Areas – Establishing Baseline Targets for Shorebirds’ (Stillman et 

al. 2005) this chapter will explore both between-species and within-species differences in 

responses to disturbance to identify key explanatory variables and test four hypotheses: 



 

64 

H1 All aspects of the visible response to disturbance are positively correlated with each 

other; 

H2  FID, time spent in flight and total time lost differ between species, and increase with 

body size; 

H3  Magnitude of response (FID, time spent in flight and total time lost) decreases under 

harsher weather conditions; and 

H4  Responses (FID, time spent in flight and total time lost) vary from site to site and over 

time (number of days through the winter season). 

The results will be discussed in the context of bird daily energetic requirements to determine 

whether disturbance may be limiting wintering bird populations on the Wash. A fundamental 

issue will also be discussed relating to the applicability of data from studies such as this to 

other sites and situations, and the use of reported FIDs to inform conservation measures – 

buffer zones – for minimising human-wildlife conflicts. 
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2.3 Methods 

2.3.1. Study site 

The study took place on the Wash (52˚56’16”N, 00˚17’16”E), a large embayment in eastern 

England on the North Sea coast with extensive intertidal sand and mudflats. Its conservation 

importance is recognised through several national and international designations including: 

Site of Special Scientific Interest (SSSI), Special Area of Conservation (SAC), Special Protection 

Area (SPA), and Ramsar site status (Doody and Barnett 1987, JNCC 2014). ‘In terms of total 

numbers, the Wash is the key site for wintering waterbirds in the UK’ (Austin et al. 2014) and 

supports internationally important wintering populations of all the species that were included 

in this study: curlew, oystercatcher, bar-tailed godwit, grey plover, redshank, knot, turnstone, 

ringed plover, sanderling and dunlin.  

 

 

Figure 2.1. The intertidal areas of the Wash on which disturbance observations were made in 

winter and early spring of 2002/03, 2003/04 and 2004/05. 1-Wrangle; 2-Maretail; 3-Breast 

Sand; 4-Stubborn Sand. Reproduced from Ordnance Survey map data ©Crown Copyright and 

Database Right (2016) Ordnance Survey (Digimap Licence). 

The intertidal flats used for the disturbance experiments (Figure 2.1) were selected because 

of the wide range of wader species that were known to feed at low tide (Goss-Custard et al. 

1988, Goss-Custard and Yates 1992, Yates et al. 2004) and the relatively even distribution of 
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the birds within them. They were also selected based on the surveyors’ local knowledge of 

the differing distances from human populations, ease of access, and resulting frequencies of 

human activities (such as walkers, dog walkers, bait diggers etc.) on the intertidal area and 

sea wall. Sites one to three can be characterised as areas of low disturbance, with a visitor 

frequency in the order of around three times per week; whereas the more easily accessible 

site four, on the eastern side of the Wash, had a comparatively high frequency of disturbance 

i.e. on a daily basis (Mick Yates, pers. obs.). Together the areas encompassed all shore levels 

and both regularly disturbed and undisturbed parts of the Wash, and so can be considered to 

be representative of the whole embayment. 

2.3.2. Field experiments 

All experiments took place during mid-December to late March of winters 2002/03, 2003/04, 

and 2004/05 and within the period of minimal tidal movement two hours either side of low 

water on spring tides, which on the Wash occur around midday. The intention was to survey 

all sites in all years, though circumstances dictated that site two was not used in 2002/03 and 

site three was only used in 2003/04. Between them, Angus Garbutt, Mick Yates, Ed Rispin and 

Tina Yates completed the field data collection. Two observers worked together using 

binoculars or the naked eye to observe the birds and digital stopwatches were used to time 

the birds’ behavioural responses to the nearest second. 

The procedure was to mutually agree on a target bird, which remained unobscured from view 

for the duration of the observation, and then to walk side-by-side directly towards it at a 

comfortable pace on the soft sediment (approximately 2.5 km/h). The length of time for 

which the bird was visibly alert was noted and when the bird took flight both observers 

stopped walking. One timed the ‘flight time’ (the period from taking off to landing) and the 

‘latency time’ (length of time between landing and the first attempt at feeding). Total time 

lost was calculated by summing alert time, flight time and latency time. The second observer 

kept their eyes on the place from which the bird had taken off and waited until the other 

observations had been completed before pacing out the FID. Distances were measured by 

counting paces which were later converted to metres after calibrating against a known 

distance in similar walking conditions. Isolated individuals of species that would normally be 

expected to feed in small groups or flocks were not selected for observation as their 

behaviour was considered unrepresentative of the usual behaviour of individuals of that 

species. Disturbance experiments took place on 38 separate survey days and the number of 

disturbances during each low tide survey period varied from three to 37 (median = 17.5; 

median for same species on same day = 3), depending on the number of birds present and 
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how many experiments could be completed in the time available. Care was taken to ensure 

that the same birds were not disturbed more than once during a single survey; by searching 

for each target bird in a direction at least 90 degrees from that taken by the previous target 

bird when it flew off and landed. The surveyors also only selected birds that were at least 200 

metres further away than the anticipated FID. Daily replicates were therefore well spread out 

in time and space so as to avoid order effects in the data. 

In addition to the behavioural response parameters listed, a variety of environmental 

measurements were recorded relating to factors that may affect bird responses; air 

temperature and wind speed (using a hand-held thermometer and anemometer), and the 

part of the shore at which each disturbance took place. This was assigned by dividing each 

site equally on a three-point scale from ‘low’ (1), through ‘mid ‘ (2) and ‘upper’ (3) shore, as 

an indication of the relative proximity to the saltmarsh or sea wall (most likely source of 

human disturbance) i.e. upper shore is closest. Shore width (distance between sea wall or 

marsh and the low tide mark) was approximately 2.5 km at site four and 3-4.5 km at the 

other three sites. The date of each survey was also converrted to the continuous variable 

‘winter day’: with winter day 1 = 1st August. 

Since warm bodies lose heat to the surrounding environment at faster rates when exposed to 

greater wind speeds (Williamson 2003), measurements of air temperature and wind speed 

from each disturbance experiment were converted to a wind chill equivalent temperature 

index (𝑊𝐶𝑇𝐼)  using the following equation: 

𝑊𝐶𝑇𝐼 = 13.12 + 0.6215 × 𝑇 − 11.37 × 𝑉0.16 + 0.3965 × 𝑇 × 𝑉0.16 Equation 2.1 

where T  is the air temperature in ˚C, and V  is the wind speed in km/h (Williamson 2003, 

Osczevski and Bluestein 2005). This is considered a more appropriate independent variable, 

in relation to thermoregulation and energy budgets of birds, than records of air temperature 

alone (Wiersma and Piersma 1994). 

2.3.3. Energy and time costs of responding to disturbance 

To set birds’ time-related responses in the context of daily energy requirements energy cost 

per flight was calculated using the following equation from (Kvist et al. 2001): 

𝐶𝑜𝑠𝑡 (𝑘𝐽) =
100.39 × 𝑀0.35 − 0.95

1000
× 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑓𝑙𝑖𝑔ℎ𝑡 (𝑠) 

Equation 2.2 

and Nagy et al.’s (1999) equation was used to estimate thermoneutral requirements: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑘𝐽) = 10.5 × 𝑀0.681 Equation 2.3 

where 𝑀 = body mass in grams. 
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The results were also used to estimate the number of disturbances that would result in a 1%, 

5%, and 10% reduction in available feeding time based on the data for total time lost per 

disturbance (assuming that disturbance events do not overlap). Numbers are presented as a 

range based on the fact that birds are able to feed throughout the tidal cycle on neap tides, 

but not able to feed for two hours either side of high tide on spring tides (Goss-Custard et al. 

1977). Data from Goss-Custard et al. (1977) on how much of the available feeding time is 

used by each species, serve as an indicator of their likely capacity to compensate for the costs 

of responding to disturbance (also presented as a range according to the spring-neap tidal 

cycle). 

2.3.4. Model selection and data analysis 

General linear models were used, alongside a multi-model inference approach (Symonds and 

Moussalli 2011, Pap et al. 2013) to find variables with high explanatory power for the three 

different response variables (FID; flight time; and total time lost). Preliminary analyses (see 

Appendix 1) showed no effect of winter year, so the data from all three winters were 

combined. When deciding on the global models to be tested for each response variable, 

initially all biologically plausible two-way interactions were included in addition to the 

potential explanatory variables as main effects. Interactions that were found to be non-

significant were subsequently excluded from the candidate model set – as recommended by 

Schielzeth (2010). In situations where the Akaike weight of the best AICc-ranked model in the 

candidate set was considerably higher than that of the next best model, inferences were 

made based on that model alone (Symonds and Moussalli 2011). However, if this was not the 

case, model averaging was undertaken using all models with i < 4 to estimate the relative 

importance of the predictor variables under consideration. This involves summing the Akaike 

weights for each model in which that variable appears (Symonds and Moussalli 2011). The 

larger the sum of the Akaike weights (up to a maximum value of 1), the more important the 

variable is relative to the others in the global model (Burnham and Anderson 2002). Burnham 

and Anderson (2002) suggest ranking variables according to their relative importance; so in m 

the analyses, variables with a relative importance value greater than 0.9 were considered to 

have high explanatory power; those with values between 0.6 and 0.9 were considered 

‘moderate’; and the term ‘low explanatory power’ was used for variables with relative 

importance less than 0.6. 

The single-species models that were tested included ‘site’ as a fixed factor, with ‘shore level’, 

‘wind chill index’ and ‘winter day’ as covariates. The all-species models also included ‘species 

mass’ in grams (using Wash-specific data from Johnson (1985)) as a covariate, and two yes/no 
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variables called ‘is it an oystercatcher?’ and ‘is it a plover?’ since these species are in different 

families to the others (Haematopididae and Charadriidae, respectively versus Scolopacidae) 

and have different feeding strategies from the other species (Goss-Custard et al. 2006b). 

Before carrying out the analyses the input variables were centred and standardised (following 

Gelman (2008) and Grueber et al. (2011)) to facilitate interpretation of the relative strength 

of parameter estimates, particularly where interaction terms were involved. This involved 

subtracting the mean (centring) and then dividing by two standard deviations (standardising) 

for numeric variables with more than two values; binary variables were rescaled to have a 

mean of 0 and a difference of 1 between their two categories (Gelman and Su 2015). The 

three response variables were also natural-log-transformed, which helped to achieve a better 

distribution of the model residuals in relation to the assumptions of the statistical tests used.  

To assess the relationships between the different response variables Spearman’s rank 

correlation tests were used along with visual inspection of the bivariate scatterplots. 

Visual inspection of diagnostic plots of the residuals for the statistical tests performed, as 

recommended by Zuur et al. (2010) showed no issues with lack of normality, heterogeneity of 

variance, collinearity or undue leverage; however, as is often the case with ecological studies, 

the assumption of independence was not met. Therefore inferences beyond the sample 

space are made with care, and the possibility will be discussed that this could be an indication 

that an important covariate was not measured (Zuur et al. 2010). 

Details of preliminary data exploration and statistical tests not reported in the main text can 

be found in the Appendices. Analyses were carried out in R (R Core Team 2015) using 

functions available in ‘arm’ (Gelman and Su 2015) to standardise model predictors, and the 

multi-model inference package ‘MuMIn’ (Bartoń 2015) for model selection and averaging; 

plots were produced using ‘ggplot2’ (Wickham 2009) and ‘PerformanceAnalytics’ (Peterson 

and Carl 2014). Means are presented ± one standard error. 
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2.4 Results 

Ten different species of wader were approached a total of 677 times; and the responses to 

the experimental disturbances are summarised in Table 2.1. During the survey period, the 

wind chill index ranged from -4.74 ˚C up to a maximum of 14.27 ˚C, which is within the range 

of typical winter temperatures for the area after accounting for wind speed (Met Office 

2016). 

Following Frid and Dill (2002), all measures of response to disturbance were hypothesised to 

be correlated with each other, and Figure 2.2 shows that this was well supported by the data. 

Flight time and latency time were strongly positively correlated both with each other and 

with total time lost; although alert time was not significantly correlated with flight time or 

latency time, and was only weakly correlated with total time lost. Individuals that exhibited 

greater FIDs spent longer in flight and took longer to resume feeding (particularly at FIDs 

below 200 m), and consequently lost more time in total. However, there was no correlation 

between FID and alert time.  

Mean FID for all species was 89.7 m ± 3.1 (5570 m, N = 677), but it was significantly different 

between species (F 9,667 = 122.1, p < 0.001). There was also a significant difference between 

species in flight time (F 9,667 = 20.9, p < 0.001) and total time lost (F 9,677 = 29.5, p < 0.001). 

 

Table 2.1. Mean, maximum and minimum responses to an approaching pedestrian for each 

species. Species are presented in order of decreasing body size. FID = flight initiation distance; 

FlightTime = time spent in flight; TotalTimeLost = time taken to resume feeding after 

becoming alert, flying and landing. 

Species Mass(g) N 
FID (m)  FlightTime (s)  TotalTimeLost (s) 

mean s.e. range   mean s.e. range   mean s.e. range 

Curlew (CU) 751 39 340.33 18.23 88-570 
 
34.20 2.35 12-78 

 
75.27 4.8 28-163 

Oystercatcher (OC) 500 147 97.28 2.97 30-228 
 
21.17 0.94 6-61 

 
59.86 2.0 21-136 

Bar-tailed godwit (BA) 297 92 84.36 3.93 32-225 
 
20.07 1.20 5-53 

 
47.03 2.4 14-118 

Grey plover (GV) 215 55 132.27 6.81 35-251 
 
22.82 1.65 6-56 

 
58.22 3.4 19-154 

Redshank (RK) 143 53 79.83 5.95 28-187 
 
17.44 1.67 4-58 

 
45.16 3.4 11-120 

Knot (KN) 134 78 71.83 3.92 20-240 
 
19.58 1.26 6-59 

 
43.71 2.6 15-125 

Turnstone (TT) 105 40 31.50 3.00 5-75 
 
12.84 1.49 2-41 

 
32.79 2.8 7-85 

Ringed plover (RP) 64 30 41.07 2.55 20-74 
 
12.35 1.16 4-32 

 
36.15 2.7 11-72 

Sanderling (SS) 54 26 25.00 2.65 9-51 
 
10.08 1.27 3-34 

 
26.69 2.6 10-72 

Dunlin (DN) 48 117 43.93 2.68 9-197 
 
13.61 0.69 3-41 

 
32.05 1.4 8-85 
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Figure 2.2. Correlation matrix chart for all recorded measures of bird responses to 

experimental disturbance. Bivariate scatterplots are presented with a fitted line, and 

Spearman’s coefficients, along with stars to indicate significance level. 

Significance codes:   ‘***’ <0.001 ‘**’ <0.01 ‘*’ <0.05. 

Model selection and ranking by AICc (Table 2.2) revealed clear support for the top model, 

with all potential predictors included, when explaining both FID and time spent in flight (each 

with a model weight (i) > 0.8). Whereas in the case of total time lost, the top model only 

had a model weight of 0.727; though the cumulative model weight of the top two models 

(acc i) = 0.993, setting them well apart from the lower ranked models in the candidate set. 

Standardised and model averaged parameter estimates are shown in Table 2.3, and with all 

the coefficients being positive for ‘species mass’ and ‘wind chill’, these results support 

hypotheses 2 and 3 that FID, time spent in flight and total time lost increase with body size 

(Figure 2.3), and that response magnitude decreases under harsher environmental conditions 

(i.e. lower values of wind chill equivalent temperature, Figure 2.4). There is also support for 

Hypothesis 4 (that responses vary both between sites and over time); a mixture of positive 

and negative coefficients indicates differences in bird responses between sub-sites (Figure 

2.5); and negative coefficients for the relationships with ‘winter day’ indicate that response 

magnitude decreases as the season progresses (although the 95% confidence interval for FID 
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includes zero). In addition to the between-site differences in response, there were within-site 

differences; with the negative coefficients for ‘shore level’ indicating a trend for greater 

response magnitudes when birds were feeding closer to the low water mark. 

 

Figure 2.3. Relationship between species mass and three measures of responses to disturbance. 

Dependent variables have been natural log-transformed. RP=ringed plover; GV=grey plover; 

OC=oystercatcher. 
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Table 2.2. Model selection tables – top five AICc-ranked models in each candidate set. i = difference in AICc between model and top model. i = Aikaike 

model weight. acc i = cumulative model weight. SpMass = species mass (g); WindChill = wind chill equivalent temperature (˚C); IsItOC = is it an 

oystercatcher?; IsItPlover = is it a plover? See text for more-detailed parameter descriptions. 

a) Global model = log(FID)~SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 

 

Candidate models adjR2 AICc Δi i acc i 

1 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.66561 971.232 0 0.916 0.916 

2 SpMass+Site+ShoreLevel+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.66083 976.398 5.166 0.069 0.985 

3 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover 0.65683 980.328 9.096 0.010 0.995 

4 SpMass+Site+ShoreLevel+WinterDay+IsItOC+IsItPlover 0.65371 982.901 11.669 0.003 0.997 

5 SpMass+Site+ShoreLevel+WindChill+IsItOC+IsItPlover 0.65325 983.581 12.348 0.0019 0.999 

       b) Global model = log(FlightTime)~SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 

 

Candidate models adjR2 AICc Δi i acc i 

1 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.29671 1107.022 0 0.892 0.892 

2 SpMass+Site+ShoreLevel+WindChill+IsItOC+IsItPlover 0.28098 1112.770 5.749 0.050 0.943 

3 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover 0.28106 1114.778 7.757 0.018 0.961 

4 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItPlover+Site:WinterDay 0.28326 1115.192 8.170 0.015 0.976 

5 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+Site:WinterDay 0.28268 1115.627 8.605 0.012 0.988 

       c) Global model = log(TotalTimeLost)~SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 

 

Candidate models adjR2 AICc Δi i acc i 

1 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItPlover+Site:WinterDay 0.39716 860.499 0 0.727 0.727 

2 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.39724 862.515 2.016 0.265 0.993 

3 SpMass+Site+ShoreLevel+WindChill+IsItPlover 0.37560 871.248 10.749 0.003 0.996 

4 SpMass+Site+ShoreLevel+WindChill+IsItOC+IsItPlover 0.37590 873.077 12.578 0.001 0.998 

5 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItPlover 0.37566 873.266 12.767 0.001 0.999 
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Inclusion of the two dummy variables ‘is it an oystercatcher?’ and ‘is it a plover?’ 

demonstrated additional between-species differences over and above the species mass 

relationship described. With positive and negative coefficients respectively, plovers had 

larger magnitude responses than expected for their size; and oystercatchers were relatively 

more ‘tolerant’ i.e. exhibiting shorter FIDs and spending less time in flight, though any 

relationship was poorly supported for total time lost (Table 2.3: relative importance = 0.267, 

and the 95% confidence interval includes zero). 

Given the support for the two species-related dummy variables, the data for each species 

were also analysed separately (Table 2.4) to explore in more detail the mechanisms behind 

the inter- and intra-specific variation in bird responses to disturbance. As with the all-species 

analysis, there was strong support for the influence of ‘site’, ‘winter day’, ‘wind chill’ and 

‘shore level’ on FID for some (but not all) species, though not all relationships were in the 

same direction (see Appendix 2 for parameter estimates). The degree of support for different 

predictor variables in relation to time spent in flight and total time lost also varied widely 

between species, and in the case of curlew, there was no candidate predictor variable that 

stood out with strong or even medium support.  
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Table 2.3. Standardised parameter estimates and confidence intervals for eight potential predictors of wader responses to disturbance. Dependent variables have 

been natural log transformed. See Tables 2.1 and 2.2 for parameter abbreviations. 

 

Predictor 

logFIDa 
 

logFlightTimea 
 

logTotalTimeLostb 

 
Estimate s.e. 

95% confidence 
interval  

Estimate s.e. 

95% confidence 
interval  Relative 

importance 
Estimate s.e. 

95% confidence 
interval 

 
Lower 
limit 

Upper 
limit  

Lower 
limit 

Upper 
limit  

Lower 
limit 

Upper 
limit 

 
Intercept 4.430 0.035 4.361 4.499 

 
2.915 0.039 2.839 2.991 

  
3.796 0.032 3.732 3.859 

1 SpMass 1.263 0.050 1.165 1.361 
 

0.564 0.055 0.456 0.673 
 

1 0.512 0.039 0.435 0.589 

2 WindChill 0.109 0.041 0.029 0.189 
 

0.163 0.045 0.075 0.252 
 

1 0.163 0.038 0.089 0.237 

3 ShoreLevel -0.165 0.040 -0.244 -0.086 
 

-0.164 0.044 -0.251 -0.077 
 

1 -0.154 0.037 -0.226 -0.081 

4 Sitec 
          

1 
    

 
Site2-Maretail -0.093 0.210 -0.506 0.320 

 
-0.245 0.232 -0.702 0.211 

 
- -0.111 0.194 -0.492 0.270 

 
Site3-Breast Sand 0.098 0.126 -0.150 0.345 

 
0.208 0.140 -0.066 0.482 

 
- 0.237 0.116 0.009 0.464 

 
Site4-Stubborn Sand -0.361 0.042 -0.445 -0.278 

 
-0.257 0.047 -0.350 -0.165 

 
- -0.137 0.039 -0.214 -0.061 

5 WinterDay -0.101 0.073 -0.244 0.042 
 

-0.229 0.080 -0.386 -0.071 
 

1 -0.222 0.067 -0.354 -0.091 

6 IsItOCd -0.533 0.060 -0.651 -0.416 
 

-0.211 0.066 -0.340 -0.081 
 

0.267 0.004 0.029 -0.054 0.061 

7 IsItPloverd 0.487 0.061 0.367 0.606 
 

0.219 0.067 0.087 0.351 
 

1 0.330 0.056 0.220 0.440 

8 Site:WinterDaye 
          

1 
    

 
Site2-Maretail:WinterDay -0.228 0.333 -0.882 0.426 

 
-0.072 0.368 -0.795 0.652 

 
- -0.099 0.308 -0.703 0.504 

 
Site3-Breast Sand:WinterDay - - - - 

 
- - - - 

 
- 0 0 0 0 

 
Site4-Stubborn Sand:WinterDay 0.298 0.087 0.127 0.469 

 
0.324 0.096 0.135 0.514 

 
- 0.321 0.080 0.163 0.479 

a Based on top model only. 
b Results of model averaging top two models. 
c Reference category is 'Site1-Wrangle Flats'. 
d Reference category is 'No'. 
e Reference category is 'Site1-Wrangle Flats:WinterDay'.
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Table 2.4. Species-specific model averaging results – relative importance of potential 

predictors. Values ≥0.6 (high and medium support) highlighted in bold. See Table 2.1 for 

species codes. 

a) logFID 

Predictor 
Species 

CU OC BA GV RK KN TT RP SS DN 

Site 1 1 0.817 1 1 0.406 0.538 - 0.218 - 

WinterDay 0.694 0.313 0.591 0.743 0.189 1 0.379 0.186 0.262 0.822 

WindChill 0.498 1 1 0.410 0.630 0.243 0.917 0.829 0.172 0.464 

ShoreLevel 0.163 0.971 1 1 0.238 0.977 1 0.153 0.188 0.334 

Site:WinterDay - - - 0.706 - - - - - - 

b) logFlightTime 

Predictor 
Species 

CU OC BA GV RK KN TT RP SS DN 

Site 0.044 0.397 0.328 1 1 0.582 0.864 - 0.466 0.920 

WinterDay 0.230 0.262 0.236 0.319 0.388 0.713 0.242 0.205 0.422 0.232 

WindChill 0.236 1 0.971 0.282 0.210 0.202 0.466 0.616 0.688 0.542 

ShoreLevel 0.308 0.618 0.845 0.326 0.271 0.205 0.595 0.173 0.409 0.381 

Site:WinterDay - - - - - 0.420 - - - - 

c) logTotalTimeLost 

Predictor 
Species 

CU OC BA GV RK KN TT RP SS DN 

Site 0.052 0.213 0.291 0.945 0.587 0.690 0.738 - 0.573 0.699 

WinterDay 0.246 0.204 0.273 0.393 0.311 0.803 0.297 0.367 0.345 0.229 

WindChill 0.234 1 0.939 0.266 0.340 0.215 0.197 0.934 0.253 0.486 

ShoreLevel 0.323 0.682 0.704 0.254 0.206 0.225 0.732 0.254 0.968 0.764 

Site:WinterDay - 0.040 - - - 0.593 - - - - 
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Figure 2.4.  Relationships between wind chill equivalent temperature and measures of 

response to disturbance, adjusted relative to the mean response of each species. Regression 

lines with 95% confidence intervals. 
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Figure 2.5.  Variation between sub-sites in bird responses to disturbance, adjusted relative to 

the mean response of each species. Sub-site codes: 1 = Wrangle; 2 = Maretail; 3 = Breast 

Sand; 4 = Stubborn Sand. 
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Table 2.5. An assessment of the time and energy costs incurred by waders per disturbance response, and the number of disturbances that would be expected to 

reduce available feeding time by 1%, 5% and 10%. See text for a description of the calculations involved. Data reproduced from Goss-Custard et al. (1977) give 

an indication of birds’ likely capacity to compensate by extending their feeding time. 

Species 
Cost per flight 

response (kJ)a 

Thermoneutral daily 

energy requirement 

(kJ)b 

Cost per flight as 

% of daily intake 

requirement 

Number of disturbances that would 

reduce available feeding time (day and 

night) by: 
% available daylight time 

spent feedingc 

1% 5% 10% 

Curlew 0.820 953.89 0.086 8-11 38-57 77-115 50-80 

Oystercatcher 0.437 723.08 0.060 10-14 48-72 96-144 50-70 

Bar-tailed godwit 0.342 507.15 0.068 12-18 61-92 122-184 70-85 

Grey plover 0.345 406.99 0.085 10-15 49-74 99-148 70-80 

Redshank 0.227 308.30 0.074 13-19 64-96 128-191 90-100 

Knot 0.248 294.95 0.084 13-20 66-99 132-198 97-100 

Turnstone 0.148 249.82 0.059 18-26 88-132 176-263 not recorded 

Ringed plover 0.118 178.32 0.066 16-24 80-120 159-239 not recorded 

Sanderling 0.090 158.84 0.057 22-32 108-162 216-324 not recorded 

Dunlin 0.117 146.59 0.080 18-27 90-135 180-270 95-100 

a using cost per second of flight from Kvist et al. (2001) 
     

b using Nagy et al.'s (1999) allometric equation 
     

c as observed by Goss-Custard et al. (1977) 
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The data on mean flight time and mean total time lost were used to look in more detail at the 

energetic consequences and the lost feeding opportunity costs of responding to disturbance 

for each species (Table 2.5). A 5% reduction in daily available feeding time would be expected 

to result from responding to between 38 and 162 separate disturbance events (depending on 

species and tidal stage). The mean cost per individual flight response represented less than a 

tenth of a percent of each species’ daily energy requirements: Figure 2.6 shows there was no 

significant relationship between body mass and energetic cost of responding to a single 

disturbance when expressed in this way (F1,675 = 0.565, P = 0.45). 

 

Figure 2.6. Relationship between species body mass and energetic costs of flight in response 

to disturbance. y-axis presented on a natural log scale. 
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2.5 Discussion 

This study provides data for 10 species of wader on FID, flight time and total time lost, along 

with associated energy costs, when birds flee an approaching pedestrian during the non-

breeding season. In line with the findings of other studies worldwide (Urfi et al. 1996, 

Stillman and Goss-Custard 2002, Blumstein et al. 2003, 2005, Ikuta and Blumstein 2003, 

Glover et al. 2011, Lin et al. 2012), all four hypotheses about how bird responses to 

disturbance vary were supported by the results. Waders showed a great deal of variation in 

their responses, and much of that variation can be explained by species, body mass, 

environmental conditions, and site differences on both small and larger spatial scales.  

Below, potential reasons and alternative explanations for this variability are discussed. The 

results are interesting for behavioural ecology as well as having applied relevance: so the 

chapter concludes with a discussion of their use by conservation managers wanting to 

minimise the impacts of disturbance on wintering waders, bearing in mind the context-

specific nature of responses. 

2.5.1. Relationships between response measures 

With the exception of alert time, all of the time- and distance-related measures of response 

that were recorded were correlated with each other. This supports the hypothesis that 

disturbance avoidance behaviour depends on the relative costs of fleeing and remaining (Frid 

and Dill 2002): when starvation risk is lower, birds fly from further away (FID), flee further 

(longer flight time) and spend more time being vigilant (alert and latency time). The lack of a 

strong relationship between alert time and the other variables could be due to the fact that 

this was more difficult to record accurately, especially at greater distances. Or perhaps alert 

time is simply not a useful measure of response to disturbance in this case, since it is likely to 

be related to speed of approach, which was approximately constant in these experiments. 

2.5.2. Between-species differences 

Larger species had greater FIDs, spent more time in flight, and lost more feeding time overall 

than did smaller species. Møller et al. (2013) suggest that longer FIDs in larger species are due 

to the aerodynamic cost of large body size: this explanation may work for FID, but does not 

explain the additional body mass relationships with flight time and total time lost. Another 

explanation could be that since smaller birds generally spend a greater proportion of the 

available time feeding (Goss-Custard et al. 1977) and have proportionally lower body fat 

reserves upon which they can rely if they are unable to meet their daily intake requirements 
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(Piersma and Van Brederode 1990), they have less capacity to compensate for the costs of 

responding to disturbance. Indeed, the trade-off becomes apparent when the energetic cost 

per flight response is expressed as a percentage of the daily requirements of that species, and 

the body mass relationship disappears (Figure 2.6). 

2.5.3. Effect of environmental conditions 

One prediction of the risk-disturbance hypothesis is that ‘fleeing probability and FID increase 

when… environmental conditions are mild’ (Frid and Dill 2002) because when birds are able to 

meet their daily energetic requirements easily, the balance in the trade-off between 

avoidance of starvation and predation shifts towards greater FIDs. This was also found to be 

the case on the Wash: birds also spent significantly longer in flight and lost more time overall 

when conditions were milder (i.e. higher wind chill equivalent temperatures).  

2.5.4. Within- and between-site differences  

The magnitude of all three measures of response  varied on both small and larger spatial 

scales; birds responded less strongly to disturbance when feeding further from the low water 

mark and at site four (negative parameter estimates in Table 2.3 and the confidence intervals 

do not include zero). Site four was the site with easiest access, closest proximity to residential 

areas, and highest frequency of potential disturbers, so this result could be attributed to 

habituation. However, it is not possible to rule out alternative explanations without detailed 

knowledge of the differences between sites and individual birds, which unfortunately are not 

available. For example, if birds feeding on high disturbance sites are in poorer condition they 

will prioritise feeding more than higher quality birds feeding on low disturbance sites. Or with 

differences between sites in food availability and competitive ability of birds, birds feeding at 

lower quality sites would be expected to be more tolerant of disturbance because of a lack of 

alternatives (Frid and Dill 2002). Similar arguments and explanations relating to habitat 

quality and individual differences could also apply to the observed relationship with shore 

level.  

Whilst it was also beyond the scope of the study to collect detailed information on types and 

frequencies of human activities, future studies should consider using an objective measure of 

disturbance (such as number of visitors per day) which lends itself better to comparisons 

between sites and shore levels. 
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2.5.5. Within-species differences 

Separate analysis of the data for each species showed that the important explanatory 

variables relating to responses to disturbance may not be the same for all species. For 

example, there was strong support for variation between sites in the FIDs of curlew, 

oystercatcher, bar-tailed godwit, grey plover, and redshank, but not for knot, turnstone, 

ringed plover, sanderling or dunlin. Similarly, there was variation between species in the level 

of support for winter day, wind chill and shore level when explaining FID and in relation to 

flight time and total time lost. Though this could be attributed to low statistical power for the 

species with fewer observations, it also highlights the fact that these analyses did not include 

any measure of variation between individuals (c.f. species mass in the all-species analyses), 

such as individual body condition, age, sex, territoriality or experience. This is a limitation of 

the field observations approach and highlights the usefulness of a combined approach 

including studies on marked populations or with captive birds; such as Urfi et al. (1996), Beale 

and Monaghan (2004b), and Liley and Sutherland (2007). 

2.5.6. Costs of responding to disturbance 

In addition to the energetic costs of flight, responding to disturbance reduces available 

feeding time. Feeding intensity data (Goss-Custard et al. 1977) show that most birds on the 

Wash are likely to be able to cope with at least a 5% reduction, which were estimated in this 

study to be caused by between 38 and 162 separate disturbance events per day, depending 

on species and tidal stage. Curlew, oystercatcher, bar-tailed godwit and grey plover may even 

be able to cope with a more serious reduction of 10% (caused by between 77 and 184 daily 

disturbance events). While objective data on visitor frequencies and distribution across the 

intertidal habitat in this study area are lacking, current levels on most parts of the 

embayment are likely to be well below these values (Mick Yates, pers. obs.), especially at 

lower shore levels (in the order of around three visitors per week); though perhaps with the 

exception of the more easily accessible eastern area around site four on busier weekend 

days. As an example, the popular RSPB Titchwell Marsh Nature Reserve (7 km east of site 

four) receives on average 217 visitors per day (Visit England 2015), and as few as 10% of 

visitors might cause disturbance events (Liley and Fearnley 2012). This suggests, therefore, 

that wintering wader populations on the Wash are not currently significantly negatively 

impacted by human disturbance during the intertidal foraging period. 

Further work to quantify disturbance of high tide roosts would complement this study and 

allow a more confident assessment of the overall impacts of disturbance (or lack thereof) on 
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wintering waders on the Wash. As well as requiring high tide refuges upon which to rest and 

preen, some species are known to rely on supratidal habitats for foraging when they are not 

able to meet their energy requirements during the intertidal exposure period; for example 

due to increased requirements during extreme cold weather or reduced intertidal exposure 

during storm events (Goss-Custard 1969, Milsom et al. 1998, Smart and Gill 2003). In such 

situations, the time and energy costs associated with responding to disturbance could be 

particularly problematic, especially if birds are forced to fly long distances to an alternative 

roost site (Rehfisch et al. 1996). 

Of course, the data presented here do not take account of the potential additional energetic 

costs of physiological responses (increased heart rate, stress hormones etc.) that may be 

incurred even when birds do not flee, and which can last longer than visible response 

behaviours (Ackerman et al. 2004, Elliott et al. 2015). More research is needed in this area; 

however Ackerman et al. (2004) found that the largest increase in heart rate occurs during a 

the period immediately before and after initiation of flight, so the contribution made by 

physiological changes not associated with flight is expected to be small compared to that due 

to the costs of flight and lost feeding time. 

2.5.7. Applications and conclusions 

An obvious application of an improved understanding of animal responses to disturbance is 

to inform measures such as buffer zones or set-back distances for minimising the impacts of 

disturbance on sites of conservation importance (Blumstein et al. 2003, Holmes et al. 2005, 

Burger et al. 2010, Glover et al. 2011, Malo et al. 2011, Andersen et al. 2012, Weston et al. 

2012, Koch and Paton 2014). The size of such buffer zones has tended to be based on the 

largest FID value recorded for the species of interest, or even larger to incorporate alert 

distances (Livezey et al. 2016). However, use of FID in this way does not distinguish between 

‘response’ and ‘population impact’ (Gill et al. 2001a), and effectively ignores the fact that 

birds exhibiting the largest FID could actually be at least risk of reduced fitness. Nor does this 

approach take account of visitor frequencies, the likelihood of visitors and birds interacting, 

or whether any redistribution of birds will cause reductions in bird intake rates (Goss-Custard 

et al. 2001, Duijns and Piersma 2014). On expansive sites like the Wash (~300 km2), which are 

relatively inaccessible (for humans), where the width of the shore tends to be much greater 

than the largest observed FID (though less-so at site four), and where potentially disturbing 

activities are largely restricted to the upper shore, buffer zones are unlikely to be necessary. 

In effect the site is already implementing its own buffer zone. 
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Nevertheless, setting buffer zones on the basis of observed response distances could be 

appropriate when birds are constrained to a particular location: at breeding sites (Burger and 

Gochfeld 1983, Holmes et al. 2005), on established territories (Immitzer et al. 2014), or where 

feeding (Kirsch et al. 2008, Velando and Munilla 2011) or roosting (Rogers et al. 2006) 

opportunities are limited. In such situations birds will be much less able to compensate for 

the consequences of fleeing the disturbance (Ydenberg and Dill 1986, Gill et al. 2001a, Frid 

and Dill 2002) and buffer zones based on observed responses in these cases are unlikely to be 

over-precautionary. 

The few published studies with comparable data to this study show that there can be 

considerable between-estuary variation in responses (Smit and Visser 1993, Urfi et al. 1996, 

Fitzpatrick and Bouchez 1998, Laursen et al. 2005), as well as the within-estuary variation 

observed on the Wash. This makes it difficult to make inferences about behaviour at other 

sites. Similarly, given the influence of environmental conditions, it is important to note the 

temperature range over which experiments take place – for example, during an abnormally 

cold winter FIDs would be lower than those exhibited under more commonly experienced 

conditions. This study on the Wash adds to the suite of available data from a range of sites, 

providing more options for informed comparisons with new sites. 

Finally, greater emphasis is needed on recording time-related measures of responses to 

disturbance – to better understand the constraints on bird time and energy budgets – rather 

than simply reporting FID. Doing so would also add value by providing the information 

necessary for parameterising simulation models for understanding population-level impacts 

of different levels of disturbance and to predict the effectiveness of proposed management 

options (e.g. Blumstein et al. 2005, Stillman et al. 2007). 

  



 

86 

  



 

87 

Chapter 3 – The responses of wintering waders in Poole 

Harbour to experimental disturbance by an approaching 

pedestrian vary spatially, between species and with 

environmental conditions. 

3.1 Abstract 

Understanding bird responses to human disturbance has applications for assessing and 

managing population impacts on estuarine sites that are designated for their national and 

international importance for wintering waders. In this study wintering waders in Poole 

Harbour were experimentally disturbed so that aspects of their behavioural responses to 

pedestrian disturbance could be recorded. Data were analysed using an information-

theoretic approach (multi-model inference) to identify key explanatory variables and test 

predictions of the risk-disturbance hypothesis. The results provide new information for 

eleven species of wader: adding to the relatively small number of sites for which comparable 

data are available. Responses were highly variable across both large and small spatial scales, 

as well as between species and according to environmental conditions. When expressed as a 

proportion of total energy requirements or spare time available for feeding, the costs of 

individual disturbance events were small. Consequently present day patterns of human 

activities in Poole Harbour are unlikely to have a significant impact on wintering bird 

populations. However, more detailed simulation modelling is required to test this statement.  
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3.2 Introduction 

Interactions between threats to biodiversity can amplify their impacts (Mantyka-Pringle et al. 

2015). Disturbance from human activities could therefore be ‘the straw that breaks the 

camel’s back’ when combined with the considerable threats of habitat loss and 

fragmentation (Ford et al. 2009, Sodhi et al. 2010), agricultural intensification (Donald et al. 

2001), over-exploitation of resources (Mullon et al. 2005, Darimont et al. 2015), spread of 

invasive non-native species (Simberloff 2005, Nogales and Marrero 2006), and climate change 

(Maclean and Wilson 2011). Disturbance can also be a significant driver of population change 

on its own (Rodriguez-Prieto and Fernández-Juricic 2005, Liley and Sutherland 2007, Mallord 

et al. 2007). In a global assessment of the IUCN Red List of Threatened Species, Baillie et al. 

(2004) noted that while human disturbance has had less impact than other threats in terms 

of total number of species affected, it can be particularly serious for some susceptible groups. 

At the international level, the EU Nature Directives (EEC 1992, EC 2009) highlight disturbance 

as something that Member States should take appropriate steps to avoid (in relation to key 

species and in special protection areas), and in the Agreement on the Conservation of 

African-Eurasian Migratory Waterbirds it is recognised as an issue that needs to be addressed 

and researched (AEWA Secretariat 2012). Similarly, a list of 100 ecological questions of 

relevance to UK policy (Sutherland et al. 2006) included three references to disturbance from 

recreational activities and urban development (Sutherland 2007). So despite a large body of 

past work relating to disturbance, there is still a clear need from a conservation and a 

regulatory perspective for an improved understanding of the mechanisms behind animal 

responses to disturbance and, importantly, the resulting population consequences. Estuaries 

and the assemblages of waders that they support during the non-breeding season offer a 

useful study system for such research. 

In estuarine habitats, the tidal cycle limits the time available to waders for foraging and they 

must optimise their intake rate in order to ensure that they meet their daily energy 

requirements to avoid starvation and achieve suitable body condition for migration and 

reproduction. One way to assess the ease/difficulty with which birds are able to meet their 

daily energy intake requirements is to measure the proportion of their total daily time budget 

devoted to feeding (Urfi et al. 1996, Hötker 1999). The proportion of birds feeding at any one 

time has been shown to be relatively constant throughout the intertidal exposure period 

(Goss-Custard 1969, Baker 1981, Burton et al. 2004), whereas the proportion of exposure 
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time that birds spend away from their roost varies seasonally and according to changing 

energetic demands (Goss-Custard 1969, Hutchinson and O’Halloran 1994, Burton et al. 2004). 

Given that animal responses to disturbance are similar to anti-predator behaviour (with 

increased vigilance and avoidance according to perceived risk (Frid and Dill 2002)), 

anthropogenic disturbance can affect bird energy intake in three main ways: 

i) Site avoidance and fleeing from disturbers results in a reduction in the extent of 

available foraging habitat – which may force birds into less favourable areas and/or 

increase competition between individuals; 

ii) Increased vigilance and time lost while fleeing reduces the time available for foraging; 

iii) Extra energy expenditure through locomotion and due to stress-related physiological 

responses increases individual daily energy requirements. 

If birds are unable to compensate for these costs, fitness will be reduced and the number of 

birds that can be supported by a particular site (carrying capacity) may be lower than would 

otherwise be possible in the absence of disturbance – one way of measuring whether 

disturbance is having a ‘significant’ impact. Though as Gill et al. (2001b) demonstrate, the 

presence of humans does not always result in significant changes in habitat use or the 

numbers of birds supported. It is therefore important to understand the circumstances under 

which disturbance may or may not cause a conservation problem; this requires an 

understanding of the factors that determine how birds respond to disturbance events, as well 

as a clear definition of what is considered ‘significant impact’ (see section 1.2.2). 

As described in the previous chapter, a commonly used method to measure and understand 

animal responses to disturbance is to experimentally disturb them and record their behaviour 

(Blumstein et al. 2005, Laursen et al. 2005, Cooper 2009, Li et al. 2011, van Dongen et al. 

2015). Flight initiation distance (FID), also known as ‘escape distance’ (Laursen et al. 2005, 

Bregnballe et al. 2009) or ‘flush(ing) distance’ (Holmes et al. 1993, Burger et al. 1995, Meillère 

et al. 2015), is the most frequently and consistently reported measure since it has 

applications for the setting of conservation buffer zones or set-back distances to prevent 

disturbance from occurring on protected sites (Blumstein et al. 2003, Burger et al. 2010, 

Glover et al. 2011, Koch and Paton 2014, Livezey et al. 2016). However, in the context of 

foraging waders, caution is needed when using FID values for this purpose without 

knowledge of the conditions under which the data were collected or of relevant site 

characteristics that may affect the applicability of the data to new locations. It is also 

important to remember that magnitude of response does not necessarily reflect the 
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population consequences of disturbance as birds exhibiting larger FIDs could in fact be at 

lower risk of suffering negative consequences than those that allow humans to approach 

more closely i.e. birds that are in poorer condition are likely to give higher priority to avoiding 

starvation compared to anti-predator/disturbance avoidance behaviour (Gill et al. 2001a, Frid 

and Dill 2002). Nevertheless, disturbance response data together with accompanying site- 

and survey-specific information, offer a useful starting point for understanding the 

significance of disturbance to populations of conservation concern and for determining 

appropriate management methods (Thomas et al. 2002, Stillman et al. 2012). 

The risk-disturbance hypothesis (Frid and Dill 2002) predicts that bird responses to 

disturbance will be stronger when perceived risk is greater. It follows, therefore, that all 

measures of response by a bird during a single disturbance event would be expected to be 

positively correlated. For example, larger FIDs should be accompanied by longer flight times, 

more time spent latent, and therefore also larger values for total feeding time lost. Also 

following Frid and Dill (2002) and in line with the findings described in the previous chapter 

and other studies (e.g. Blumstein et al. 2003, 2005, Glover et al. 2011 and see Table 1.2), 

species body size and wind chill equivalent temperature are expected to be important 

predictors of bird responses to disturbance. Larger birds are predicted to exhibit greater FIDs, 

spend more time in flight and lose more feeding time overall; whereas responses are 

expected to be lower for lower wind chill equivalent temperatures. Several authors have 

pointed out that responses measured in one place may not apply to other areas (e.g. Laursen 

et al. 2005, Weston et al. 2012, and see Chapter 2); bird responses would be expected to vary 

spatially if there are differences between and/or within sites that affect perceived risk. 

Blumstein et al. (2003) and Glover et al. (2011) show that important factors might include 

visitor frequency (i.e. habituation to benign disturbances could lead to reduced responses), or 

estuary size (which could influence disturber starting distance and the availability of 

alternative feeding areas).  

In this chapter field data from disturbance experiments in Poole Harbour (UK), the results 

presented in the previous chapter, and reported responses from other European estuaries 

will be analysed and compared to test the following three hypotheses: 
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H1 All measures of individual bird responses to disturbance are positively correlated with 

each other; 

H2 Species body size and wind chill equivalent temperature are important predictors of 

responses to disturbance – showing positive and negative relationships, respectively, 

with FID, time spent in flight, and total feeding time lost; and 

H3 Bird responses to disturbance vary on both small- (between sub-sites of the same 

estuary) and large- (between estuaries) spatial scales due to differences in visitor 

frequency and estuary size. Responses are expected to be greater on larger estuaries 

and when visitor frequency is lower. 
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3.3 Methods 

3.3.1. Study area 

 

Figure 3.1. Poole Harbour, UK (50˚41’47”N, 01˚59’46”W) – extent of intertidal habitats and 

pedestrian disturbance experiment locations. Reproduced from Ordnance Survey map data 

©Crown Copyright and Database Right (2016) Ordnance Survey (Digimap Licence). 

Poole Harbour is a shallow estuary on the south coast of the UK with approximately 36 km2 of 

water at high water spring tide (Humphreys and May 2005) and nearly 20 km2 of intertidal 

mud, sandflats and marshes between mean low water and highest astronomical tides (Powell 

2005). The national and international biological importance of these habitats and the species 

that they support are recognised through a variety of conservation designations; including 

Heritage Coast status, Site of Special Scientific Interest (SSSI), Ramsar wetland and Special 

Protection Area (SPA). SPA features of particular relevance to this study are the 

internationally important numbers of wintering black-tailed godwit Limosa limosa and an 

overall wintering waterbird assemblage of over 20,000 birds; including dunlin Calidris alpina, 

curlew Numenius arquata and redshank Tringa totanus in nationally important numbers 

(English Nature 1999). 

Much of the southern and western parts of Poole Harbour’s 100 km shoreline are natural; 

fringed by reedbeds and saltmarsh, but the northern and eastern areas are dominated by 
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artificial walls, embankments and marinas associated with the heavily populated areas of the 

Poole and Bournemouth conurbation (Humphreys and May 2005). In addition to the large 

human population of local residents, Poole Harbour is a popular tourist destination for 

coastal recreation as well an important port for commerce and travel, with more than 5000 

commercial shipping movements annually (Poole Harbour Commissioners 2012). There are 

therefore many potential opportunities for human activities to conflict with the conservation 

importance of Poole Harbour, across a gradient of intensity of use, making it an ideal study 

site for investigating the mechanisms behind the varying responses of birds to such activities. 

Figure 3.1 shows the locations of the four sub-sites selected for field data collection. The 

intertidal habitat at Sandbanks, as its name suggests, is dominated by sandy sediments; at the 

top of the shore there are remnants of saltmarsh and a narrow beach. The sea wall separates 

it from the adjacent footpath and road. The area is popular for watersports including kite 

surfing and wind surfing, as well as being used by walkers, dog walkers and bait diggers, and 

for general beach recreation. Intertidal areas at Parkstone Bay are muddier than at 

Sandbanks so fewer people leave the shoreline footpath; though bait diggers and dog walkers 

may be found here, as well as activities associated with the adjacent marina. Large numbers 

of people make use of the recreation ground and cycle/footpath that run along the perimeter 

of the site and continue west towards Poole Quay. Holes Bay also has a cycle path along 

much of the shoreline as well as the busy A350 dual carriageway; however, the muddy 

sediment here means that very few people walk onto the intertidal area, and most visitors 

remain on the path. In contrast to the other three sites, Brand’s Bay is further from human 

habitation and therefore experiences relatively few visitors, many of whom only use the bird 

hide that overlooks the site. It is also very muddy so few visitors leave the narrow beach at 

the top of the shore and the likelihood of them interacting with birds feeding at the low 

water mark is low. Bait digging is not permitted at Brands Bay (November to March inclusive) 

or Holes Bay (all year round) – see Figure 1.8. 

These sub-sites were selected because they are known to support a wide variety of wading 

birds (Pickess 2008), which would allow for between-species comparisons in the analyses. 

They were also chosen based on the expected differences in visitor frequencies due to the 

varying levels of access described above. These differences were later confirmed by field 

observations: instantaneous scan sampling (Altmann 1974) was used to determine the 

frequency of recreational activities at each sub-site; based on surveys conducted on 82 

separate occasions (Table 3.1). See Chapter 5 for a more detailed description of the fieldwork 

methods and results relating to visitor patterns in Poole Harbour.
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Table 3.1. Observed frequency of recreational activities and estimated number of disturbance events at each sub-site. Site rank is shown in brackets. 

Poole Harbour 

sub-site 

Extent of intertidal 

habitat (km2) 

Length of 

shoreline (km) 

Frequency of potential 

disturbers on intertidal 

(N/km2/scan) 

Frequency of potential 

disturbers on the shoreline 

(N/km/scan) 

Estimated number of 

disturbances per day 

(Equation 3.1) 

Brand’s Bay 0.1939 0.6430 3.15 (3) 1.44 (4) 2 (4) 

Holes Bay 0.2698 1.1363 0.41 (4) 2.03 (3) 3 (3) 

Parkstone Bay 0.0963 0.5577 10.48 (1) 46.09 (1) 28 (1) 

Sandbanks 0.3055 1.6416 7.70 (2) 3.59 (2) 9 (2) 
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Each hour-long survey took place within an hour of low tide and consisted of scans every ten 

minutes, during which the number and type were noted of all activities occurring on the 

intertidal area, and adjacent shallow water, beach and shoreline footpaths. With the 

exception of some western areas of the estuary with little or no public access, the four sub-

sites are representative of the range of visitor access levels across the whole estuary. The 

final column in Table 3.1 gives a value for the estimated number of potential disturbance 

events that result in birds flying away (using Equation 3.1, though not necessarily all 

experienced by the same individual birds). This value is based on the frequencies of activities 

that were observed during daylight hours; an average of ten hours daylight per day between 

September and March; information from Stillman et al. (2012) who noted that 6% of coastal 

visits in autumn/winter occur during darkness; and Liley et al.’s (2012) observation that 10% 

of potential disturbers result in one or more birds flying away. 

𝐷𝑎𝑦 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠 (𝑉𝑑𝑎𝑦) = ((𝑉𝑖𝑛𝑡𝑒𝑟 × 𝐴𝑖𝑛𝑡𝑒𝑟) + (𝑉𝑠ℎ𝑜𝑟𝑒 × 𝐿𝑠ℎ𝑜𝑟𝑒)) × 10 Equation 3.1a 

𝑁𝑖𝑔ℎ𝑡 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠 (𝑉𝑛𝑖𝑔ℎ𝑡) =  
𝑉𝑑𝑎𝑦

0.94
× 0.06 3.1b 

𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 =  (𝑉𝑑𝑎𝑦 + 𝑉𝑛𝑖𝑔ℎ𝑡) × 0.1 3.1c 

3.3.2. Field data collection – pedestrian experiments 

Disturbance experiments took place over the course of three wading bird non-breeding 

seasons:  January to March 2013; September 2013 to March 2014; and October 2014 to 

March 2015. In order to allow comparison with other studies, data collection followed a 

similar method to that as described in the previous chapter to record bird behavioural 

responses to an approaching pedestrian. The procedure was to identify a target bird (either 

feeding alone or as part of a flock), note how far away it was, and then to walk directly 

towards it at a comfortable constant pace on the soft sediment (approximately 2.5 km/h). In 

some cases it was necessary to approach on a tangent if the muddy sediment was not solid 

enough to walk directly towards the bird safely alone. The type of approach was noted in 

case it affected how the birds responded. All aspects of the target bird’s response were 

recorded into a dictaphone (Sony ICD-PX312M digital voice recorder) – noting when the bird 

became alert, fled, landed and resumed feeding. A laser range finder (Longridge Pin Point 

GADFL1 6x magnification) was used to measure the distances in metres at which the bird 

became alert, fled and landed. By playing back the recordings, it was then also possible to 

determine the length of time (to the nearest second) that birds spent in each stage of 
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response, and the total time disturbed. In addition, a variety of variables that were 

considered to be potential predictors or confounding factors of the birds’ responses to 

experimental disturbance were recorded or looked up at a later date: including flock size, 

whether the first response was to walk or fly away, and environmental conditions. Air 

temperature (˚C) and wind speed (km/h) records were taken from the nearest weather 

station at Bournemouth Airport, 11 km away (UK Meteorological Office 2015). Since warm 

bodies lose heat to the surrounding environment at faster rates when exposed to greater 

wind speeds (Williamson 2003), the measurements of air temperature and wind speed for 

each disturbance experiment were converted to a wind chill equivalent temperature (𝑇𝑤) 

using the following equation: 

𝑇𝑤 = 13.12 + 0.6215 × 𝑇 − 11.37 × 𝑉0.16 + 0.3965 × 𝑇 × 𝑉0.16 Equation 3.2 

where T is the air temperature in ˚C and V  is the wind speed in km/h (Williamson 2003, 

Osczevski and Bluestein 2005). This is considered to be a more appropriate independent 

variable than records of air temperature alone in relation to thermoregulation and energy 

budgets of birds (Wiersma and Piersma 1994). 

Data were collected from the four sub-sites  on 91 separate occasions, and the number of 

disturbances during each survey varied from 1 to 17 (median = 6; median for same species = 

2) depending on the number of birds present and how many experiments could be 

completed in the time available. When selecting a target bird for each experiment, care was 

taken not to disturb the same bird or group of birds more than once per survey, and the 

experiments were spread out in time and space in order to avoid pseudoreplication and non-

independence in the data (as far as was possible). All species of wader that were encountered 

on survey visits were included in the experiments. 

In the same way as described in the previous chapter, mean observed flight time and mean 

total time lost were used to determine the energetic consequences and lost feeding time 

opportunity costs of responding to disturbance using the following equations (Nagy et al. 

1999, Kvist et al. 2001), where 𝑀 = body mass in grams:  

𝐶𝑜𝑠𝑡 (𝑘𝐽) =
100.39 × 𝑀0.35 − 0.95

1000
× 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑓𝑙𝑖𝑔ℎ𝑡 (𝑠) 

Equation 3.3  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑘𝐽) = 10.5 × 𝑀0.681 Equation 3.4 
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3.3.3. Field data collection – proportion of time that birds spent feeding 

The overall proportion of available time spent feeding can be derived from the product of the 

proportion of birds feeding at any one time and the proportion of exposure time that birds 

spend away from the roost (Goss-Custard et al. 1977). This was achieved using scan sampling 

(Altmann 1974) with multiple one-hour surveys throughout the winter (n = 60). During each 

one hour survey, every ten minutes, counts were made of the number of birds of each 

species that were feeding and the total number present to find the proportion of birds 

feeding. The mean proportion of birds feeding was taken for each survey and the results 

were averaged across all surveys and sites to derive a single value per species for the whole 

of Poole Harbour. These could then be combined with information from surveys that were 

carried out over the full intertidal exposure period. During the full tidal exposure surveys 

counts were made of the number of birds present and the proportion feeding. A scan was 

completed every twenty minutes, beginning shortly before the time that the intertidal area 

was expected to be exposed by the falling tide. Each survey ended when the tide covered the 

area again and/or all birds had departed the study area. The length of time for which at least 

50% of the total number of each species was present on the intertidal area was taken as the 

length of time that an average bird of that species spent away from the roost. Time 

constraints dictated, however, that these full exposure surveys could only take place during 

the early stages of the non-breeding season; so they may not reflect bird arrival and 

departure times at all stages of the season. 

3.3.4. Model selection and data analysis 

As in the previous chapter, data analysis followed Burnham and Anderson’s (2002) 

information theoretic approach to model selection, which balances model complexity against 

goodness of fit (Garamszegi 2011). Multi-model inference and model averaging (Johnson and 

Omland 2004, Symonds and Moussalli 2011) were used to understand the strength and 

direction of the relationships between the measured response behaviours and potential 

predictor variables. Preliminary data exploration showed no difference in responses whether 

a bird’s first response was to walk or to fly (except perhaps for black-tailed godwit – see 

Appendix 3) so the data were combined, and the FID values presented here refer to the 

distance between the bird and disturber when the bird first started to move away. 

Preliminary results also suggested that it was appropriate to combine data from all three 

winter years without needing to include this as a potential predictor variable (Appendix 4). 
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Although eight separate measures of response were recorded (alert distance, FID, landing 

distance, alert time, walking time, flight time, latency time and total time lost – see Figure 

3.2), just three were chosen for in-depth investigation: FID (because this is the most 

commonly reported variable in other studies); flight time (which relates to the majority of the 

additional energy costs of responding to disturbance); and total disturbance time (which 

relates to the full lost-feeding-time cost of each disturbance event). As described in the 

previous chapter, it is important to record and report time-related measures of response as 

well as FID in order to achieve a better understanding of the full impacts of disturbance. 

When deciding on the global models to be tested for each response variable, initially all of 

the independent variables listed in Table 3.2 (except ‘response 1’ and ‘winter year’) were 

included along with all biologically plausible two-way interactions. Some interactions were 

found to be non-significant, however, so these were subsequently excluded from the 

candidate model set – as recommended by Schielzeth (2010). Two dummy variables called ‘is 

it an oystercatcher?’ and ‘is it a plover?’ were also included since oystercatcher Haematopus 

ostralegus, ringed plover Charadrius hiaticula and grey plover Pluvialis squatarola are in 

different families to the other eight species (Haematopididae and Charadriidae versus 

Scolopacidae) and have different feeding behaviours from the rest (Goss-Custard et al. 

2006b), which might affect how they perceive and avoid disturbance risk.  Model averaging 

was performed on the 95% confidence model set after centring (subtracting the mean) and 

standardising (dividing by two standard deviations) the input variables – to facilitate 

interpretation of the relative strength of parameter estimates (following Gelman 2008 and 

Grueber et al. 2011). The three response variables were also natural-log-transformed before 

carrying out the analyses, which helped to achieve a better distribution of the model 

residuals in relation to the assumptions of the statistical tests used, which were checked by 

visual inspection of diagnostic plots as recommended by Zuur et al. (2010). 
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Table 3.2. Measured response variables and potential predictor variables. 

Name Details Units 

Response variables 

FID 
Flight initiation distance – the distance between bird and 

disturber when the bird first starts to move away. 
metres 

FlightTime 
The length of time a bird spends in flight in response to 

disturbance. 
seconds 

TotalLost 
The total feeding time lost in response to a disturbance – 

from becoming alert to resuming feeding. 
seconds 

Potential predictor variables 

Approach 
Whether the disturber approached a bird directly or on a 

tangent. (0=Direct, 1=Tangent). 
- 

FlockSize Number of conspecifics feeding with the target bird. - 

Response1* Whether a birds’ initial response was to walk or fly away.  walk/flight 

IsItOC Dummy variable – “is it an oystercatcher?” (0=No, 1=Yes). yes/No 

IsItPlover Dummy variable – “is it a plover?” (0=No, 1=Yes). yes/No 

SpMass 
Mean mass of target species (using values reported by 

BTO, British Trust for Ornithology (2015)). 
grams 

StartDist 
Distance between the bird and observer before starting to 

approach. 
metres 

VisitFreq 
Mean frequency of potential disturbers on the intertidal 

area at each sub-site. See Table 3.1. 

number per 

km2 per scan 

WindChill 

Wind chill equivalent temperature using data from the 

nearest weather station (Bournemouth Airport, UK 

Meteorological Office (2015)). See Equation 3.2. 

˚C 

WinterDay 
A measure of the number of days through the non-

breeding season. Winter day 1 = 1 August. 
- 

WinterYear* 
Factor indicating in which season the observation took 

place. 
- 

* [Preliminary data exploration indicated that the variable could be excluded from final analyses]. 

 

R was used for all analyses (R Core Team 2015), with functions available in ‘arm’ (Gelman and 

Su 2015) to standardise model predictors, and the multi-model inference package ‘MuMIn’ 

(Bartoń 2015) for model selection and averaging: plots were produced using ‘ggplot2’ 

(Wickham 2009) and ‘PerformanceAnalytics’ (Peterson and Carl 2014). Means are presented 

± one standard error. 
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3.3.5. Literature search 

Response distances measured in one place may not apply to other areas (e.g. Laursen et al. 

(2005), Weston et al. (2012) and see Chapter 2). This statement was tested by searching the 

available literature for suitable studies for comparison with the data presented here for Poole 

Harbour i.e. those that report responses to disturbance for multiple species of wader that 

spend the non-breeding season on the estuaries of Western Europe. The search revealed six 

studies that reported wader FID values in response to experimental disturbance at different 

European sites. FID was the only measure of response that was consistently reported by all 

six studies; other measures such as alert distance or total time disturbed were only reported 

by some of the studies, and were therefore not included. The results are not intended to be 

an exhaustive list, although there appear to be no other published, multi-species studies of 

this kind for this group of species – such studies seem to mainly be restricted to Australian 

and American species. 
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3.4 Results 

Waders from 11 species were experimentally disturbed on a total of 597 occasions across the 

three non-breeding seasons between January 2013 and March 2015, during which the wind 

chill equivalent temperature of each survey ranged from a minimum of -7.2˚C up to 17.9˚C 

(mean = 5.24 ± 0.20). Bird responses are summarised in Table 3.3 and Figure 3.3. Note that 

ringed plover and greenshank Tringa nebularia have been excluded from some tests and 

graphical representations in this section due to the low numbers of observations. 

3.4.1. Relationship between measures of response 

Most pairs of measured response variable were significantly positively correlated with each 

other (Figure 3.2), with particularly strong positive associations between alert distance and 

FID, and between landing distance and flight time. However, there were also some pairs of 

response measures that were significantly negatively correlated with each other; for 

example, birds that spent longer walking away had shorter flight times and latency times. 

 

Figure 3.2. Correlation matrix chart for all measured responses to disturbance, with Spearman 

rank correlation coefficients (font size relates to effect size) and stars to indicate significance 

level (‘***’ <0.001; ‘**’ <0.01; ‘*’ <0.05). 
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Table 3.3. Summary of responses to disturbance by an approaching pedestrian during the non-breeding season for eleven species of wader. Flight initiation 

distance (FID); time spent in flight (FlightTime); and total time for which birds are prevented from feeding (TotalLost). Species are presented in order of 

decreasing body size. 

Species 
Body 

mass (g) 

 FID (m)  FlightTime (s)  TotalLost (s) 

 N Median Mean s.e. Range  N Median Mean s.e. Range  N Median Mean s.e. Range 

Curlew (CU) 782  93 84 88.25 3.45 33-186  66 23 25.61 1.9 3-84  66 51 63.02 5.41 10-241 

Oystercatcher (OC) 546  281 56 58.19 1.06 24-170  169 13 16.64 0.9 1-59  169 44 52.78 2.94 8-254 

Bar-tailed godwit (BA) 306  66 43 44.97 1.66 25-83  44 15 17.05 1.7 3-58  44 33.5 36.57 2.45 6-71 

Black-tailed godwit (BW) 299  22 50 53.5 4.93 26-105  11 18 18.36 3.3 4-36  11 30 49.55 12.7 6-143 

Grey plover (GV) 243  16 64.5 63.75 4.61 31-85  9 15 14.44 1.9 7-23  9 56 69.78 14.1 28-172 

Greenshank (GK) 199  2 70.5 70.5 13.5 57-84  2 8 8 1 7-9  2 48 48 24 24-72 

Redshank (RK) 153  56 52 59.09 3.4 21-115  28 12 13.89 1.8 4-43  28 36 39.89 4.79 8-120 

Turnstone (TT) 108  13 24 25.46 6.3 3-87  11 12 12.55 1.7 4-22  11 34 33.45 4.52 13-58 

Ringed plover (RP) 68  1 46 46 - 46-46  0 - - - -  0 - - - - 

Sanderling (SS) 58  27 22 22.33 1.86 6-52  15 7 9.73 2.1 1-30  15 20 24.67 3.96 2-49 

Dunlin (DN) 50  20 27.5 33.4 4.05 15-96  11 10 11.73 1.9 4-24  11 19 22.55 5.44 4-57 
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Figure 3.3. Variation in flight initiation distance (FID) between species and sub-sites. Sites are 

ordered from left to right by increasing frequency of activities observed on the intertidal. 

CU=curlew; OC=oystercatcher; BA=bar-tailed godwit; BW=black-tailed godwit; GV=grey 

plover; RK=redshank; TT=turnstone; SS=sanderling; DN=dunlin. 

3.4.2. Factors affecting responses to disturbance 

There was a significant difference between species in all three measures of disturbance: 

log(FID) (F10,586 = 51.85, p<0.001); log(FlightTime) (F9,356 = 6.108, p<0.001); log(TotalLost) (F9,356 

= 7.31, p<0.001). In support of Hypothesis 2, linear regressions showed that this difference 

between species is significantly positively related to body size (Figure 3.4); with larger species 

exhibiting longer FIDs, spending more time fleeing, and losing more feeding time overall as a 

result of responding to disturbance. However, within-species responses were highly variable 

– for example across the range of wind chill equivalent temperatures – and the respective 

adjusted R2 values were low, indicating that only a small proportion of the variability in 

behavioural responses to disturbance can be explained by species body mass. Other factors 

must also play a role; for example site-related differences in FID can be seen for several 

species in Figure 3.3. 



 

104 

 

Figure 3.4. Relationship between species mass and responses to disturbance, with influence of 

wind chill equivalent temperature. 
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When candidate models were ranked by AICc no single model stood out with much higher 

support than the others, and model weights were generally low (Appendix 5) so model 

averaging was used on the 95% confidence set to find parameter estimates and measures of 

relative importance for each predictor variable (Table 3.4). This revealed both similarities and 

differences in the most important predictors of bird responses to disturbance between the 

three measures of response. In all three cases, species mass had a relative importance of 1 – 

indicating that it was present in all models in each of the three 95% confidence sets. Similarly, 

start distance and visit frequency were well supported (relative importance > 0.75) for the 

three response measures. Wind chill equivalent temperature was well supported for FID, but 

less-so for the time-related measures of response; and conversely, flock size was poorly 

supported in relation to FID, yet well supported for flight time and total time lost. The dummy 

variable ‘is it a plover’ was well supported for FID, and ‘is it an oystercatcher’ in relation to 

flight time. ‘Approach type’, however, was consistently poorly supported in relation to all 

three measures of response to disturbance; i.e. there was no difference in response whether 

the disturber approached directly or on a tangent. 

The directions of the coefficients indicate that magnitude of response was greater in larger 

birds, at sites with lower visit frequencies, and on occasions when the disturber began to 

approach from further away. Plovers had greater FIDs and lost more feeding time overall 

than predicted by their size, and oystercatchers spent more time in flight for their size. Birds 

in larger flocks spent more time in flight and lost more feeding time overall than birds feeding 

singly or in small groups. However, there is uncertainty in the precision of the estimates for 

the less well supported predictor variables since the 95% confidence intervals include zero 

(Table 3.4). 
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Table 3.4. Relative importance and model averaged centred and standardised coefficients 

(across the 95% confidence set) of predictors for bird responses to disturbance; based on linear 

models with natural-log-transformed dependent variables. Predictors were centred and 

standardised following Gelman (2008) and Grueber et al. (2011) to allow direct comparison of 

their magnitudes. Estimates whose 95% confidence interval does not include zero have been 

highlighted in bold. See Table 3.2 for parameter abbreviations. 

a) logFID 
 

     

Predictor 
N containing 

models 

Relative 

importance 
Estimate s.e. 

95% CI 

Lower 

limit 

Upper 

limit 

Intercept - - 3.958 0.015 3.929 3.987 

SpMass 42 1 0.447 0.037 0.376 0.519 

StartDist 42 1 0.372 0.034 0.306 0.438 

VisitFreq 42 1 -0.111 0.035 -0.180 -0.041 

SpMass:VisitFreq 42 1 0.220 0.061 0.099 0.340 

IsItPlover 28 0.87 0.185 0.113 -0.036 0.406 

WindChill 29 0.83 0.065 0.047 -0.026 0.156 

WinterDay 18 0.48 0.026 0.039 -0.050 0.103 

IsItOC 21 0.43 -0.018 0.031 -0.080 0.043 

Approach 19 0.42 0.027 0.046 -0.063 0.117 

FlockSize 17 0.26 -0.004 0.017 -0.037 0.030 

b) logFlightTime  
     

Predictor 
N containing 

models 

Relative 

importance 
Estimate s.e. 

95% CI 

Lower 

limit 

Upper 

limit 

Intercept - - 2.650 0.056 2.541 2.759 

SpMass 395 1 0.470 0.099 0.276 0.664 

VisitFreq 262 0.81 -0.145 0.102 -0.345 0.056 

StartDist 251 0.76 0.130 0.103 -0.071 0.332 

IsItOC 262 0.74 -0.122 0.101 -0.319 0.076 

FlockSize 243 0.71 0.210 0.213 -0.208 0.627 

FlockSize:SpMass 165 0.62 0.562 0.532 -0.481 1.605 

WinterDay 219 0.55 0.073 0.103 -0.129 0.274 

WindChill 217 0.52 -0.003 0.072 -0.143 0.137 

Approach 262 0.49 0.054 0.112 -0.166 0.273 

WindChill:WinterDay 93 0.31 -0.108 0.182 -0.466 0.249 

IsItPlover 147 0.24 -0.001 0.120 -0.235 0.234 

Approach:SpMass 123 0.21 0.051 0.132 -0.207 0.309 
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c) logTotalLost 
 

     

Predictor 
N containing 

models 

Relative 

importance 
Estimate s.e. 

95% CI 

Lower 

limit 

Upper 

limit 

Intercept - - 3.726 0.048 3.632 3.820 

SpMass 121 1 0.433 0.091 0.256 0.611 

VisitFreq 114 0.99 -0.195 0.082 -0.356 -0.034 

StartDist 95 0.95 0.195 0.090 0.019 0.372 

FlockSize 91 0.88 0.310 0.199 -0.079 0.700 

IsItPlover 92 0.87 0.473 0.281 -0.078 1.024 

FlockSize:SpMass 76 0.84 0.848 0.495 -0.122 1.818 

WinterDay 85 0.83 -0.082 0.083 -0.245 0.080 

VisitFreq:WinterDay 48 0.66 -0.207 0.188 -0.574 0.161 

IsItOC 59 0.48 0.052 0.077 -0.098 0.202 

WindChill 58 0.41 0.039 0.072 -0.103 0.181 

Approach 47 0.36 -0.045 0.095 -0.231 0.142 

Separate single-species analyses (Table 3.5) showed support for some predictor variables in 

relation to the FIDs of some species, though with the exception of ‘start distance’ there are 

no clear patterns. For all species except turnstone Arenaria interpres, FID was greater when 

starting distance was greater. Most predictor variables had poor explanatory power in 

relation to fleeing time and total time lost, and most of the 95% confidence intervals for the 

parameter estimates include zero (Table 3.6), so there is a great deal of uncertainty and noise 

in these results and it is likely that there is at least one important explanatory variable that 

was not measured (as was also the case on the Wash as described in the previous chapter). 
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Table 3.5. Species-specific model averaging results – relative importance of potential 

predictors. Values ≥0.6 (high and medium support) highlighted in bold. See Table 3.2 for 

parameter abbreviations. 

a) logFID 

Predictor 
Species 

CU OC BA BW GV RK TT SS DN 

StartDist 1 1 1 0.887 0.819 1 0.361 0.831 0.990 

WinterDay 0.798 0.274 0.320 0.973 0.115 0.312 0.128 0.182 0.834 

FlockSize 0.685 0.368 0.229 0.157 0.103 0.212 0.087 0.537 0.087 

WindChill 0.289 0.630 0.344 1 0.163 0.677 0.142 0.304 0.394 

VisitFreq 0.247 0.975 0.365 0.109 - 0.922 0.255 - 0.469 

Approach 0.233 0.905 0.655 0.265 0.146 0.859 0.171 - 0.654 

Approach:VisitFreq - 0.780 - - - 0.814 - - - 

VisitFreq:WinterDay - - 0.097 - - - - - - 

b) logFlightTime 

Predictor 
Species 

CU OC BA BW GV RK TT SS DN 

StartDist 1 0.245 0.200 0.117 0.113 0.166 0.132 0.130 0.095 

FlockSize 0.462 0.239 0.194 0.076 - 0.609 0.085 0.380 0.153 

WinterDay 0.285 0.485 0.852 0.099 0.064 0.156 0.089 0.121 0.433 

WindChill 0.246 0.470 0.879 0.079 0.097 0.223 0.074 0.086 0.065 

VisitFreq 0.226 0.926 0.436 0.083 - 0.848 0.123 - 0.084 

Approach 0.220 0.447 - 0.097 0.077 0.827 0.089 - 0.073 

WindChill:WinterDay - 0.299 0.833 - - - - - - 

VisitFreq:WinterDay - - - - - - 0.012 - - 

Approach:VisitFreq - - - - - 0.765 - - - 

c) logTotalLost 

Predictor 
Species 

CU OC BA BW GV RK TT SS DN 

StartDist 0.965 0.612 0.504 0.152 0.051 0.212 0.067 0.117 0.296 

VisitFreq 0.924 0.471 0.213 0.077 - 0.207 0.037 - 0.053 

Approach 0.772 0.674 - 0.084 0.215 0.403 0.097 - 0.039 

WindChill 0.261 0.589 0.237 0.079 0.049 0.206 0.429 0.140 0.047 

WinterDay 0.228 0.367 0.304 0.076 0.094 0.316 0.060 0.129 1 

FlockSize 0.221 0.388 0.310 0.106 0.086 0.360 0.970 0.245 0.047 

Approach:FlockSize - 0.222 - - - - - - - 

CU=curlew; OC=oystercatcher; BA=bar-tailed godwit; BW=black-tailed godwit; GV=grey plover; 

RK=redshank; TT=turnstone; SS=sanderling; DN=dunlin.  
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Table 3.6. Standardised parameter estimates and confidence intervals for six potential 

predictors of wader responses to disturbance (with interactions). Dependent variables have 

been natural-log-transformed. Estimates whose 95% confidence interval does not include zero 

have been highlighted in bold. See Table 3.2 for parameter abbreviations. 

 

a) logFID

Lower Upper Lower Upper Lower Upper 

Intercept 4.411 4.35 4.47 4.067 4.00 4.14 3.767 3.70 3.84

1 FlockSize -0.087 -0.25 0.07 -0.012 -0.06 0.04 -0.005 -0.07 0.06

2 StartDist 0.450 0.32 0.58 0.180 0.11 0.25 0.214 0.07 0.35

3 WinterDay 0.119 -0.05 0.29 -0.002 -0.05 0.04 -0.004 -0.10 0.09

4 WindChill 0.015 -0.09 0.12 0.038 -0.04 0.12 -0.026 -0.14 0.09

5 VisitFreq 0.008 -0.07 0.09 -0.022 -0.13 0.08 -0.006 -0.06 0.05

6 Approach 0.008 -0.08 0.10 0.540 -0.12 1.20 0.350 -0.55 1.25

7 Approach:VisitFreq - - - 0.595 -0.23 1.42 - - -

8 VisitFreq:WinterDay - - - - - - -0.028 -0.22 0.17

9 WindChill:WinterDay - - - - - - - - -

10 Approach:FlockSize - - - - - - - - -

Lower Upper Lower Upper Lower Upper 

Intercept 3.895 3.79 3.99 4.111 3.96 4.26 4.135 3.93 4.34

1 FlockSize -0.016 -0.14 0.11 -0.002 -0.13 0.13 -0.008 -0.12 0.10

2 StartDist 0.277 -0.02 0.58 0.298 -0.09 0.69 0.441 0.22 0.66

3 WinterDay 0.310 0.07 0.55 -0.002 -0.12 0.11 0.037 -0.15 0.22

4 WindChill 0.537 0.26 0.81 0.018 -0.14 0.18 0.134 -0.12 0.39

5 VisitFreq 0.001 -0.08 0.08 - - - 0.117 -0.29 0.52

6 Approach -0.067 -0.37 0.24 0.015 -0.14 0.17 0.280 -0.24 0.80

7 Approach:VisitFreq - - - - - - 1.088 -0.25 2.43

8 VisitFreq:WinterDay - - - - - - - - -

9 WindChill:WinterDay - - - - - - - - -

10 Approach:FlockSize - - - - - - - - -

Lower Upper Lower Upper Lower Upper 

Intercept 2.874 2.31 3.43 3.009 2.84 3.18 3.408 3.27 3.55

1 FlockSize -0.010 -0.44 0.42 0.157 -0.23 0.54 0.001 -0.11 0.11

2 StartDist 0.328 -0.78 1.44 0.324 -0.11 0.76 0.680 0.24 1.12

3 WinterDay -0.055 -0.59 0.48 0.018 -0.19 0.23 0.349 -0.09 0.78

4 WindChill -0.078 -0.72 0.56 0.065 -0.23 0.36 0.118 -0.25 0.48

5 VisitFreq -0.048 -0.27 0.17 - - - -0.169 -0.62 0.28

6 Approach 0.210 -1.16 1.58 - - - -0.395 -1.13 0.33

7 Approach:VisitFreq - - - - - - - - -

8 VisitFreq:WinterDay - - - - - - - - -

9 WindChill:WinterDay - - - - - - - - -

10 Approach:FlockSize - - - - - - - - -

95% CI

Predictor

Species

Black-tailed godwit Grey plover Redshank

Estimate

Predictor

Species

Curlew Oystercatcher Bar-tailed godwit

Estimate
95% CI

Estimate

95% CI
Estimate

95% CI
Estimate

95% CI
Estimate

Predictor

Species

Turnstone Sanderling Dunlin

Estimate
95% CI

Estimate
95% CI

Estimate
95% CI

95% CI
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b) logFlightTime

Lower Upper Lower Upper Lower Upper 

Intercept 3.064 2.92 3.21 2.574 2.44 2.71 2.422 2.13 2.71

1 FlockSize 0.098 -0.19 0.39 0.003 -0.10 0.11 0.0005 -0.18 0.18

2 StartDist 0.553 0.25 0.86 -0.007 -0.12 0.11 -0.012 -0.19 0.17

3 WinterDay 0.038 -0.17 0.24 0.085 -0.20 0.37 0.448 -0.19 1.09

4 WindChill -0.024 -0.20 0.15 0.064 -0.18 0.31 0.220 -0.35 0.78

5 VisitFreq 0.010 -0.15 0.17 -0.285 -0.56 -0.01 0.105 -0.23 0.44

6 Approach 0.012 -0.19 0.21 0.125 -0.27 0.52 - - -

7 Approach:VisitFreq - - - - - - - - -

8 VisitFreq:WinterDay - - - - - - - - -

9 WindChill:WinterDay - - - -0.153 -0.67 0.37 -1.371 -2.87 0.13

10 Approach:FlockSize - - - - - - - - -

Lower Upper Lower Upper Lower Upper 

Intercept 2.690 2.16 3.22 2.599 2.28 2.92 2.789 2.28 3.29

1 FlockSize -0.007 -0.35 0.33 - - - 0.325 -0.35 1.00

2 StartDist -0.038 -0.48 0.41 0.034 -0.26 0.33 0.003 -0.25 0.26

3 WinterDay -0.028 -0.43 0.37 0.007 -0.18 0.20 -0.018 -0.22 0.19

4 WindChill 0.011 -0.32 0.35 -0.026 -0.29 0.24 0.046 -0.23 0.32

5 VisitFreq 0.016 -0.33 0.36 - - - 0.275 -0.59 1.14

6 Approach 0.036 -0.62 0.70 -0.014 -0.22 0.20 0.483 -0.71 1.68

7 Approach:VisitFreq - - - - - - 2.482 -0.88 5.84

8 VisitFreq:WinterDay - - - - - - - - -

9 WindChill:WinterDay - - - - - - - - -

10 Approach:FlockSize - - - - - - - - -

Lower Upper Lower Upper Lower Upper 

Intercept 2.425 2.07 2.78 1.827 1.21 2.44 2.321 1.94 2.70

1 FlockSize -0.009 -0.24 0.23 -0.342 -1.49 0.80 -0.063 -0.50 0.37

2 StartDist -0.034 -0.37 0.30 -0.030 -0.53 0.47 -0.013 -0.39 0.36

3 WinterDay -0.011 -0.41 0.39 0.013 -0.45 0.48 -0.294 -1.15 0.56

4 WindChill 0.004 -0.21 0.22 -0.025 -0.45 0.40 -0.009 -0.23 0.22

5 VisitFreq -0.004 -0.10 0.09 - - - -0.020 -0.31 0.27

6 Approach -0.022 -0.43 0.39 - - - 0.019 -0.29 0.33

7 Approach:VisitFreq - - - - - - - - -

8 VisitFreq:WinterDay -0.023 -0.46 0.41 - - - - - -

9 WindChill:WinterDay - - - - - - - - -

10 Approach:FlockSize - - - - - - - - -

95% CI

Predictor

Species

Black-tailed godwit Grey plover Redshank

Estimate

Predictor

Species

Curlew Oystercatcher Bar-tailed godwit

Estimate
95% CI

Estimate

95% CI
Estimate

95% CI
Estimate

95% CI
Estimate

Predictor

Species

Turnstone Sanderling Dunlin

Estimate
95% CI

Estimate
95% CI

Estimate
95% CI

95% CI
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c) logTotalTime

Lower Upper Lower Upper Lower Upper 

Intercept 3.933 3.78 4.08 3.769 3.67 3.87 3.488 3.33 3.64

1 FlockSize 0.007 -0.16 0.17 0.024 -0.13 0.18 0.049 -0.18 0.28

2 StartDist 0.511 0.08 0.94 0.115 -0.13 0.36 0.121 -0.21 0.45

3 WinterDay 0.013 -0.16 0.19 -0.041 -0.22 0.14 -0.051 -0.30 0.20

4 WindChill 0.029 -0.18 0.23 0.107 -0.13 0.35 -0.022 -0.22 0.18

5 VisitFreq -0.456 -0.91 0.00 -0.074 -0.29 0.14 -0.014 -0.13 0.11

6 Approach -0.426 -1.06 0.20 0.271 -0.26 0.81 - - -

7 Approach:VisitFreq - - - - - - - - -

8 VisitFreq:WinterDay - - - - - - - - -

9 WindChill:WinterDay - - - - - - - - -

10 Approach:FlockSize - - - 0.312 -1.04 1.66 - - -

Lower Upper Lower Upper Lower Upper 

Intercept 3.532 2.86 4.20 4.120 3.73 4.51 3.506 3.27 3.75

1 FlockSize -0.047 -0.60 0.51 -0.036 -0.40 0.33 -0.123 -0.59 0.34

2 StartDist -0.087 -0.78 0.61 0.008 -0.20 0.22 -0.036 -0.33 0.25

3 WinterDay -0.004 -0.41 0.41 0.037 -0.30 0.38 -0.095 -0.51 0.32

4 WindChill -0.015 -0.44 0.41 0.006 -0.20 0.21 -0.026 -0.33 0.27

5 VisitFreq -0.010 -0.42 0.40 - - - -0.033 -0.35 0.28

6 Approach -0.009 -0.76 0.75 0.112 -0.43 0.65 -0.165 -0.72 0.39

7 Approach:VisitFreq - - - - - - - - -

8 VisitFreq:WinterDay - - - - - - - - -

9 WindChill:WinterDay - - - - - - - - -

10 Approach:FlockSize - - - - - - - - -

Lower Upper Lower Upper Lower Upper 

Intercept 3.415 3.20 3.63 2.914 2.39 3.44 2.804 2.481 3.127

1 FlockSize -0.793 -1.40 -0.19 -0.125 -0.82 0.57 -0.009 -0.193 0.175

2 StartDist -0.012 -0.17 0.14 0.002 -0.38 0.38 -0.216 -1.026 0.594

3 WinterDay -0.005 -0.17 0.16 -0.027 -0.45 0.39 -1.621 -2.514 -0.729

4 WindChill -0.199 -0.76 0.36 0.040 -0.42 0.50 0.009 -0.169 0.186

5 VisitFreq 0.000 -0.03 0.03 - - - 0.013 -0.202 0.228

6 Approach 0.053 -0.47 0.58 - - - -0.003 -0.185 0.180

7 Approach:VisitFreq - - - - - - - - -

8 VisitFreq:WinterDay - - - - - - - - -

9 WindChill:WinterDay - - - - - - - - -

10 Approach:FlockSize - - - - - - - - -

95% CI

Predictor

Species

Black-tailed godwit Grey plover Redshank

Estimate

Predictor

Species

Curlew Oystercatcher Bar-tailed godwit

Estimate
95% CI

Estimate

95% CI
Estimate

95% CI
Estimate

95% CI
Estimate

Predictor

Species

Turnstone Sanderling Dunlin

Estimate
95% CI

Estimate
95% CI

Estimate
95% CI

95% CI
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Table 3.7. An assessment of the time and energy costs incurred by waders in Poole Harbour per disturbance response, the number of disturbances that would be 

expected to reduce available feeding time by 1%, 5% and 10%, and observations of proportion of time spent feeding. 

Species 

Cost per 

flight 

response 

(kJ)a 

Thermoneutral 

daily energy 

requirement 

(kJ)b 

Energy cost per 

flight as % of 

daily intake 

requirement 

Time cost per flight 

as a % of available 

feeding time (8hrs of 

exposure per 24hrs) 

Number of disturbances to 

reduce available feeding time 

(based on 8hrs of exposure per 

24hrs) by: 

Proportion of 

available time 

spent feedingc 

1% 5% 10% 

Curlew 0.623 980.53 0.064 0.219 5 23 46 0.61 

Oystercatcher 0.355 767.75 0.046 0.183 5 27 55 0.59 

Bar-tailed godwit 0.294 517.57 0.057 0.127 8 39 79 0.53 

Black-tailed godwit 0.314 509.47 0.062 0.172 6 29 58 0.47 

Grey plover 0.229 442.37 0.052 0.242 4 21 41 0.29 

Greenshank 0.118 386.11 0.030 0.167 6 30 60 - 

Redshank 0.185 322.82 0.057 0.139 7 36 72 0.49 

Turnstone 0.147 254.65 0.058 0.116 9 43 86 0.30 

Ringed plover 0.095 185.84 0.051 0.086 12 58 117 - 

Sanderling 0.090 166.76 0.054 0.086 12 58 117 0.31 

Dunlin 0.102 150.73 0.068 0.078 13 64 128 0.41 
a using cost per second of flight from Kvist et al. (2001) 
b using Nagy et al.'s (1999) allometric equation 
c observations made in this study



 

113 

3.4.3. Costs of responding to disturbance 

For all species the energetic cost of flight in response to a single disturbance event was less 

than 0.1% of daily energy requirement (Table 3.7). The time cost per individual response 

was similarly low (less than 0.3%) so a large number of disturbance events that would have 

to occur to cause even a moderate reduction in available feeding time; for example a 5% 

reduction in available feeding time was predicted to result from between 21 and 64 

response flights. Estimates of the proportion of available intertidal feeding time used by 

each species ranged from 29% (grey plover) to 61% (curlew). 

Differences in flight time between species meant that there was no significant relationship 

between species mass and the energetic cost of flight per disturbance response when 

expressed as a percentage of daily requirement (Figure 3.5; F1,364 = 0.00046, p = 0.98). 

 

Figure 3.5. Relationship between species body mass and energetic costs of flight in response 

to disturbance. y-axis presented on a natural log scale. 
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3.4.4. Comparisons with other sites 

The literature search for comparable response data from other sites (Figure 3.6) showed 

considerable variation both within and between sites – more so than the within site 

variation observed in this study in Poole Harbour. It is apparent that both the mean and 

range of FIDs exhibited by birds in Poole Harbour were lower than those reported from the 

other sites (except Belfast Lough), and the difference was particularly marked for the larger 

species (curlew, oystercatcher, bar-tailed godwit Limosa lapponica and grey plover). 

 

Figure 3.6. A comparison of published FID values (dots = mean; bars = range): Poole 

Harbour (this study); Belfast Lough (Fitzpatrick and Bouchez 1998); Dutch Delta 

(summarised by Smit and Visser (1993)); The Wash (Chapter 2); Dutch Wadden Sea 

(summarised by Smit and Visser (1993)); Danish Wadden Sea (Laursen et al. 2005). N.B. 

Laursen et al. (2005) collected data during the autumn and spring staging periods as opposed 

to throughout the winter season. 
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3.5 Discussion 

This pedestrian disturbance study in Poole Harbour provides new data on the disturbance 

responses of wintering waders, adding to the relatively small number of sites for which 

comparable data are available. The results offer insights into the mechanisms behind the 

observed variability in bird responses, as well as allowing further comparisons between 

sites to judge the applicability of individual studies to new sites and situations. Hypothesis 1 

that all measures of response would be positively correlated was well supported; this was 

the case for most pairs of the eight measures of response that were recorded. This shows 

that the major stages of the anti-predator/disturbance-avoidance response are related to 

the relative costs of fleeing or remaining (as predicted by Frid and Dill’s (2002) risk-

disturbance hypothesis). However, within that process there appear to be trade-offs; for 

example, birds that walked away for longer tended not to fly as far or for as long. The broad 

patterns observed in data the results of disturbance experiments on the Wash (Chapter 2), 

which were the basis for Hypothesis 2, were also apparent in this study: larger species 

exhibited greater responses (longer FIDs; more time in flight; greater total time lost) and 

FID was lower at lower temperatures. But although there are similarities in the broad 

patterns between sites, there are also clear differences in responses at both large- 

(between sites) and smaller- (within site) spatial scales (supporting Hypothesis 3). This was 

demonstrated in Figure 3.6 with differences in mean and range of FID values reported by 

different studies; and by the fact that the visitor frequency (VisitFreq) was a well-supported 

candidate predictor for FID, flight time and total time lost in Poole Harbour. 

3.5.1. Understanding factors affecting response 

Aside from the importance of between-species differences and the effect of temperature 

(adjusted for wind chill), two main variables were well supported in relation to all three 

measures of response: distance between the disturber and the target bird when starting to 

approach (StartDist) and visitor frequency at each sub-site (VisitFreq). Each will be 

discussed in turn. 

Blumstein (2003), too, found a significant positive relationship between starting distance 

and FID, as well as a significant interaction with species (i.e. the relationship between 

starting distance and FID was different for different species). He also points out that species 

living in open habitats, like estuarine systems, have greater opportunities to detect and 

respond to disturbances at greater distances, resulting in larger and more variable FIDs. 

Both these points could help to explain the between-estuary differences shown in Figure 
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3.6, and the fact that the differences are more pronounced for some species. The Wash and 

the Wadden Sea, for example, are expansive sites, and Poole Harbour by comparison has 

fewer areas where greater starting distances can occur.  

The negative relationship between visitor frequency and magnitude of response offers 

some evidence for habituation occurring at more frequently disturbed sites. However, as is 

often the case in such studies (as it was in the previous chapter), it is impossible to rule out 

alternative explanations without precise knowledge of the body condition and past 

experiences of individual birds, and without detailed analysis of invertebrate food 

availability in relation to the different diets consumed by each species (Higham and Shelton 

2011). As Bejder et al. (2009) point out, confirmation of habituation occurring requires 

long-term sequential measurements of responses by known individuals to controlled 

stimuli. Habituation may be occurring to some extent in Poole Harbour, but these results 

suggest that other factors are more important (Table 3.4) and therefore mask the effects or 

limit the extent to which birds can modify their responses through habituation. Indeed, if 

habituation were a key factor in explaining variation in bird responses, winter day might be 

also expected to be important as birds ‘get used to’ the presence of humans throughout 

the winter, yet this was not found to be the case in the all-species analyses. The only 

significant relationships that were found in relation to winter day were a decrease in total 

time lost for dunlin, and an increase in FID for black-tailed godwit.  

In fact the single-species analyses were relatively inconclusive in general: some variables 

were well supported for some species, though almost all of the 95% confidence intervals for 

the parameter estimates included zero. Like with the single-species analyses of the Wash 

data in the previous chapter, it appears that the important predictor variables may be 

different for different species, and it is likely that other mechanisms are involved that were 

beyond the scope of this study to measure – such as variations in individual body condition 

(Beale and Monaghan 2004b), age and sex (Durell and Atkinson 2004), territoriality (Turpie 

1995, Colwell and Mathis 2001) or experience (Laursen et al. 2005, Lin et al. 2012).   

It was surprising that the all-species analyses did not show much support for the effect of 

type of approach (relative importance <0.5 for all three measures of response), given that 

anecdotally it is easier to approach waders when walking on a tangent, and has been shown 

in for example American robins (Eason et al. 2006) and iguanas (Burger et al. 1992). In the 

few single-species analyses for which approach type was well supported (oystercatcher and 

redshank) FID was actually higher when birds were approached on a tangent – though 

again, the 95% confidence intervals for the parameter estimates include zero. Since this 
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research was not specifically designed to test for the effects of approach type (the majority 

of approaches were direct) and it was not evenly spread across sub-sites (no tangential 

approaches at Sandbanks or Parkstone Bay), if there is an effect of approach type it could 

have been confounded by site and/or other factors. 

Laursen et al. (2005) found that flock size is an important predictor of FID, with larger flocks 

responding at greater distances, however, this was not found to be the case in Poole 

Harbour. Flock size was the least well supported candidate predictor variable in relation to 

FID (Table 3.4a), though there was some support for birds spending more time in flight and 

losing more time overall when they were feeding as part of larger flocks (Table 3.4b&c). The 

analyses could have been limited by the small range of flock sizes that were encountered 

during the disturbance experiments (range = 1-200; median = 2) and it could be the case 

that a relationship only exists at larger flock sizes (Glover et al. 2011). 

3.5.2. Applications 

Information on bird responses to disturbance, particularly FID, can and has been used to 

inform conservation management measures such as buffer zones or to determine likely 

disturbance levels from new or existing activities (Blumstein et al. 2003, Glover et al. 2011, 

Weston et al. 2012, Koch and Paton 2014, Livezey et al. 2016). However, in order for data 

from one study to be usefully applied elsewhere, knowledge is needed of the conditions 

under which the data were collected – particularly the variables described above: 

temperature, food availability, visitor frequency and starting distance. Even so, the 

variability and relative unpredictability relating to individual responses to disturbance force 

FID-related conservation measures to be very precautionary, and therefore risk being 

challenged or ignored. A key element of Sutinen and Kuperan’s (1999) framework for 

explaining regulatory compliance is ‘perceived legitimacy’, whereby compliance is more 

likely when regulations are considered to be efficient, effective and fair. For example, 

Holsman et al. (2010) describe how deer hunters rejected a regional disease-management 

plan in part due to uncertainties in the plan’s efficacy and perceived lack of credibility in the 

agency. Further examples are given by Sant (1996), Viteri and Chávez (2007) and Thomassin 

et al. (2010). It would be useful and effective, therefore, to have an alternative approach to 

determining where and when conservation measures are needed by identifying 

‘acceptable’ levels of disturbance rather than attempting to prevent disturbance from 

occurring at all. 
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One option is to use data on time-related measures of response, together with knowledge 

of the ease/difficulty with which birds are achieving their daily energy requirements. This 

study has shown how they can be used to estimate the number of responses that is likely to 

cause a problem and compare that with known visitor frequencies and the resulting 

number of disturbances per day. For all eleven species the energetic cost per flight 

response was smaller than the relative reduction in feeding time so the time cost of 

responding to disturbance is likely to be the more important factor in terms of whether 

birds are able to compensate (though this may not be the case at sites where the exposure 

period is not so limited as in Poole Harbour). Observations of the proportion of available 

time spent feeding suggest that birds in Poole Harbour have enough spare time to 

compensate for considerable amounts of disturbance (at least a 39% time reduction). 

However, since data could only be collected during the early winter period, these values 

may underestimate the proportion of time allocated to feeding during prolonged periods of 

cold weather or harsher-than-average winters. Nevertheless estimates for a  With the % 

reduction in available feeding time (c.f. Chapter 2) equated to between 41 and 128 

disturbances, which is well above the estimated number of daily disturbance at all four 

study sites (see Table 3.1). Even using the more conservative 5% threshold, Parkstone Bay is 

still the only one of the study sites where disturbance might be expected to cause a 

problem  for some species (28 disturbances per day is greater than the estimated threshold 

value for curlew, oystercatcher and grey plover – Table 3.7). This could explain why 

relatively low numbers of birds use this area (Caldow et al. 2005, Herbert et al. 2010, Liley 

and Fearnley 2012). Parkstone Bay, however, is an extreme case and less than 3% of the 

intertidal habitat in Poole Harbour is likely to experience visitor frequencies as high as that 

seen at Parkstone Bay. Using this simple method, it would appear that disturbance is not a 

major issue in Poole Harbour, at least not for an average bird at current population 

numbers and current visitor frequencies. However, Bejder et al. (2006) caution against 

assuming that short-term behavioural responses are sufficient indicators of the impacts of 

human disturbance, and this assertion needs to be investigated using other methods. 

3.5.3. Further work 

There is a clear need for a better understanding of the degree to which individual-specific 

factors (such as body condition, age and past experience) influence responses to 

disturbance, which is only possible through studies of captive birds or tagged individuals 

with known life histories. Tagging studies could also be used to more accurately determine 

the proportion of time that birds spend feeding, by recording roost departure and arrival 
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times, which allows calculation of the time spent on the intertidal area relative to the 

exposure period. Similarly, a better understanding is needed of visitor patterns; what 

factors affect the likelihood of potential disturbances actually resulting in a disturbance 

response, and the numbers/species of birds affected. These questions will be addressed in 

Chapter 6. 

In order for the rapid assessment method (using flight costs or total feeding time lost to 

identify threshold disturbance frequencies) to be useful, confidence is needed in the 

assumptions upon which it is based. These could be tested using simulation modelling using 

the response data collected as part of this study to parameterise an individual-based model 

(Stillman 2008) to track the progress of model birds throughout a winter season and make 

predictions about survival, site use and final energy stores under different scenarios of 

environmental change and visitor pressure. Chapter 5 will explore this approach further. 

Lastly, most experimental studies of bird responses to disturbance tend to focus on the 

effect of an approaching pedestrian, yet there are many other activities that also take place 

on and adjacent to intertidal areas. It is important to understand how responses vary 

according to type of disturbance. The next chapter investigates bird responses to 

wildfowling in Poole Harbour and makes comparisons with what we have learnt about 

pedestrian disturbance here.  
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Chapter 4 – Factors affecting the responses of wintering 

waterbirds to disturbance by wildfowling and a 

comparison with the effects of pedestrian disturbance in 

Poole Harbour. 

4.1 Abstract 

Most studies of bird responses to disturbance involve an approaching pedestrian as the 

disturbance stimulus. However, there is also a need for better understanding of responses 

in relation to other activities. Wildfowling – hunting ducks and geese – in estuarine 

environments offers a useful activity for investigating the mechanisms behind bird 

responses to impulsive noise as well as for comparing the relative costs of responding to 

different forms of human recreation. In this study experimental disturbance of birds in 

Poole Harbour by mimicking wildfowling activities showed that the magnitude of response 

(time and area disturbed) is greater per individual wildfowler than for a single pedestrian. 

The two activities, however, occur at very different frequencies, such that the cumulative 

effect of pedestrians across the whole of the winter season is likely to be considerably 

higher than for the currently consented number of wildfowling visits per season. This is the 

first study to investigate the responses of non-quarry species (i.e. waders) to disturbance 

from wildfowling. Larger birds were less likely to respond to the sound of the shotgun at 

any given distance, which is the opposite of the species mass relationship with pedestrian 

disturbance observed in other studies, where larger species exhibited larger flight initiation 

distances (FID). The data collected here also provide values for parameterisation of models 

to test the conclusion that neither wildfowling nor pedestrian disturbance is currently 

significantly reducing the carrying capacity of Poole Harbour for wintering waders.   
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4.2 Introduction 

Given that estuaries like Poole Harbour provide vital foraging and roosting habitats for 

internationally important numbers of wintering migratory waders and wildfowl, whilst also 

being of considerable importance for a wide variety of human activities, management 

measures often need to be put in place to minimise conflict between competing interests 

(Ferreira et al. 2007; European Commission 2014). As well as interventions to maintain the 

quality and extent of habitat, management to ensure that the site continues to support the 

numbers of birds for which it was designated may involve restrictions to limit the amount of 

disturbance and direct mortality from hunting and other human activities (e.g. Drake et al. 

2011). Such management should be based on an understanding of the ways in which 

different types of activity may disturb birds and the circumstances under which they would 

be expected to become a conservation problem. 

Most researchers that have taken an experimental approach to investigating animal 

responses to disturbance have used an approaching pedestrian as the disturbance stimulus 

(Laursen et al. 2005, Rodriguez-Prieto and Fernández-Juricic 2005, Bregnballe et al. 2009, 

Cooper 2009, Gotanda et al. 2009, Glover et al. 2011, Li et al. 2011, Weston et al. 2012, van 

Dongen et al. 2015). Some authors do report bird responses to other types of stimulus; for 

example shooting (Dooley et al. 2010), motor vehicles (McLeod et al. 2013; Schlacher et al. 

2013b) and bicycles (McLeod et al. 2013), however such studies are far less numerous 

(Livezey et al. 2016). Whilst studying pedestrian disturbance can offer important insights 

into the behavioural ecology of disturbance response, humans on foot are certainly not the 

only type of disturbance that birds are likely to experience, given the variety of recreational 

and economic activities that take place on estuaries around the world. This chapter 

therefore will investigate bird responses to a second focal activity (see section 1.1.6) – 

wildfowling – which presents an acoustic disturbance stimulus as well as visual. 

4.2.1. Noise disturbance 

In addition to the visual disturbance stimulus of the presence of a person, sudden and/or 

loud, as well as chronic, noise can also alter birds’ actual or perceived risk and lead to 

changes in behaviour. For example, traffic noise has been found to reduce densities of birds 

using otherwise suitable habitat (Reijnen et al. 1995, Hirvonen 2001) and increase FID in 

house sparrows Passer domesticus (Meillère et al. 2015); Quinn et al. (2006) showed that 

chaffinches Fringilla coelebs increased vigilance and decreased foraging rates in the 

presence of increased background noise; and Randler (2006) found that coots Fulica atra 
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significantly increased their vigilance in response to the sound of a dog barking. There is 

also potential for considerable time and energetic costs of flight in response to novel 

sounds, for example from fireworks displays or military activities (Riddington et al. 1996, 

Shamoun-Baranes et al. 2011). 

Noise disturbance can come from a wide range of sources in addition to those mentioned 

above; including motorised watersports, wildfowling, construction, and port or industrial 

activities – some of which may be subject to regulations or restrictions, particularly on sites 

of nature conservation importance. With the exception of research into bird responses to 

military training activities (Conomy et al. 1998, Küsters and Raden 1998, Goudie 2006, 

Delaney et al. 2011), the effects of sudden or impulsive noise disturbance have not been 

well studied (except see Wright et al. 2010). To date regulation has therefore generally 

relied on a precautionary approach based on unpublished observations (Cutts et al. 2013). 

A better understanding of bird responses to noise stimuli is therefore needed for a more 

complete picture of potential disturbance impacts of human activities on estuarine birds to 

inform management and planning decisions.  

4.2.2. Wildfowling 

Background 

The practice of wildfowling in Poole Harbour provides a good opportunity to study bird 

responses to impulsive noise (i.e. that of the wildfowler’s shotgun) as well as offering a 

useful comparison activity with the more commonly studied pedestrian disturbance. 

Wildfowling, also known as waterfowl hunting, involves shooting wild ducks and geese for 

food and recreation on estuaries and coastal marshes or inland wetland habitats. The 

pastime is popular worldwide, involving for example more than 1% of the adult population 

in the USA (US Fish and Wildlife Service 2012); and membership of the European Federation 

of Associations for Hunting and Conservation (FACE) includes national hunting 

organisations from 36 countries (FACE 2016). In the UK it has a long history, which dates 

back to the 16th and 17th centuries with the increased popularity and effectiveness of the 

shotgun around that time (Marchington 1980, Kear 1990). Quarry species and open seasons 

vary from country to country and state to state, along with restrictions on capture 

methods, bag limits, harvest quotas and points systems to control the numbers and types 

of birds that are shot. Restrictions in some countries may be set in law, whilst others take 

an adaptive management approach to regulating wildfowling, using an iterative process of 

monitoring, assessments and decision-making based on annual population estimates, 
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habitat assessments and past modelling accuracy (Kanstrup 2006, Schmidt 2006, Nichols et 

al. 2007). 

This study will focus on coastal wildfowling practices in the UK, where individuals generally 

need to be a member of a wildfowling club in order to have access to land where 

wildfowling is permitted. In 2012 there were 8,237 people registered with one or more 

wildfowling clubs around the UK (Ellis 2014a). The coastal wildfowling season is limited to 

the period between 1st September and 20th February (31st January in Northern Ireland), 

designed to avoid the late winter/early spring period when many birds are preparing for 

migration. There are also provisions through the Wildlife and Countryside Act (1981, as 

amended) for temporary suspension of wildfowling during periods of prolonged cold 

weather (Stroud et al. 2006, Ellis 2012). 

Table 4.1. Summary of wildfowling returns for Poole Harbour 2001/02 to 2012/13 (adapted 

from Dorset Wildfowlers’ Association (2013)). Wetland Birds Survey (WeBS) mean peak 

counts over the same period (Frost et al. 2016) given for comparison. 

Species 
Mean (± s.e.) number 

of birds shot per year 

WeBS mean winter 

peak count 

Teal Anas crecca 298.0 ± 42.19 2008 

Wigeon A. penelope 221.3 ± 25.68 2003 

Mallard A. platyrhynchos 79.6 ± 10.25 346 

Pintail A. acuta 41.9 ± 6.72 200 

Canada goose Branta canadensis 33.7 ± 5.84 400 

Gadwall A. strepera 14.3 ± 5.74 86 

Shoveler A. clypeata 7.0 ± 2.06 120 

Snipe Gallinago gallinago 0.8 ± 0.3 43 

Tufted duck Aythya fuligula 0.6 ± 0.29 86 

Greylag goose Anser anser 0.5 ± 0.42 23 

Pochard Aythya ferina 0.4 ± 0.34 240 

Goldeneye Bucephala clangula 0.1 ± 0.08 117 

Total visits (mean ± s.e.)  131.3 ± 10.34 
 

Individual wildfowlers (mean ± s.e.) 20.0 ± 2.23 
 

Birds per visit (mean ± s.e.) 5.3 ± 0.54 
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Coastal wildfowling is generally a solitary pursuit, with wildfowlers concealing themselves 

on the intertidal habitat; sometimes using decoys or duck and goose calls to attract birds 

closer to their hide (Ellis 2014b). Visits are timed to coincide with the natural movements of 

ducks and geese as they move between feeding and roosting sites at dawn and dusk and 

with the changing tides. Table 4.1 gives a summary of wildfowling activities in Poole 

Harbour between 2001/02 and 2012/13; showing that the majority of birds shot are teal 

and wigeon, and the mean number of visits was well below the maximum consented value 

of 183 per season (Dorset Wildfowlers’ Association 2013). 

Although the wader species studied here are not quarry species, they are still likely to be 

disturbed by the sound of a shotgun being fired nearby, and the presence of a wildfowler 

may exclude waders from certain areas of foraging habitat or roost sites depending on how 

well concealed they are and the state of the tide.  

Shooting noise 

When investigating the impacts of noise disturbance on wildlife it is important to be aware 

of the factors that affect how sound travels from source to receiver. In theory, a sound-

wave front travels outwards from a point source in a spherical manner, resulting in a 

reduction in intensity of 6 dB per doubling of distance (Forrest 1994). At short distances, 

therefore, a small difference in the distance from source can result in a considerable 

difference in the sound level experienced (Pater et al. 2009). However, source direction, 

atmospheric conditions (including air pressure), terrain and wind speed and direction all 

influence sound attenuation and propagation (Forrest 1994, Sutherland and Daigle 1998, 

Pater et al. 2009).  

Source direction and wind speed/direction are perhaps most important in relation to 

wildfowling (Figure 4.1). A study by Bentley (2010) found that sound dispersal from a 

shotgun has an ‘egg shaped’ pattern: most sound dispersed to the front up to an angle of 

45 degrees; and at 90 degrees the dispersion was considerably less. In the absence of wind 

effects, noise to the rear of the gun was estimated to be 12-15 dB lower than for the same 

distance in front of the gun. The shape of the contours in Figure 4.1 also shows the 

influence of the wind.  
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Figure 4.1. Noise contour plot for the sound of a shotgun fired from the black dot in the 

direction of the white dashed line. Reproduced from Bentley (2010). 

If sound intensity or noise above a threshold dB level is associated with greater perceived 

risk (Frid and Dill 2002), and since dB level decreases with distance from the source, birds at 

greater distances from a wildfowler are expected to be less likely to respond when the 

shotgun is fired. Similarly, magnitude of response (e.g. flight response versus only becoming 

alert) is expected to decrease with distance. Wright et al. (2010) found both to be the case 

for roosting waders that they experimentally disturbed with an air horn. They also found 

interspecific differences in bird responses. Following the risk-disturbance hypothesis (Frid 

and Dill 2002) and based on the results from Chapters 2 and 3, responses are also likely to 

vary according to environmental conditions; with lower response magnitudes expected at 

lower wind chill equivalent temperatures. 

4.2.3. Addressing a knowledge gap 

Recreationists may underestimate their effects on wildlife and often hold members of other 

user groups responsible for negative impacts on wildlife rather than themselves (Taylor and 

Knight 2003). Indeed, Fearnley et al. (2012) noted that some user groups wanted to see 

evidence that their activity caused disturbance, with particular recommendation for further 

study relating to angling and wildfowling. 

The fact that the sound of a shotgun being fired results in a visible behavioural response 

from nearby birds demonstrates that wildfowling constitutes a disturbance greater than the 

physical presence of a human. Additionally, wildfowling visits can last several hours with 
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repeated shotgun discharges so the effect of a single wildfowling visit is likely to be greater 

than that of a single pedestrian visitor. However, unlike for wildfowling, pedestrians are not 

restricted in terms of numbers or the times of year when they can visit. The cumulative 

effect of all pedestrian visitors during the course of the non-breeding season may therefore 

be much greater than the effects of relatively infrequent activities such as wildfowling. 

None of these assumptions have previously been formally tested and reported, and despite 

the strict consenting processes for wildfowling on protected sites (Wildlife and Countryside 

Act 1981 (as amended); Countryside and Rights of Way Act 2000), the impacts on wildlife 

(particularly non-quarry species) are relatively poorly understood. The aim of this chapter is 

to address these gaps by testing the following hypotheses. 

H1 Responses to the sound of the shotgun are negatively correlated with distance 

from the wildfowler, and vary between species and according to environmental 

conditions; 

H2 The effect (area disturbed and total feeding time lost) of disturbance from a single 

wildfowler is greater than that of a single pedestrian; and  

H3 The cumulative effect of wildfowling is less than that of pedestrian disturbance 

due to the differences in frequency of activities.  
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4.3 Methods 

4.3.1. Study area – wildfowling in Poole Harbour 

Figure 4.2 shows the areas of Poole Harbour where wildfowling can take place, and the 

locations of the experiments. Dorset Wildfowlers’ Association (DWA) has exclusive rights to 

shooting here; they lease the sporting rights for the intertidal foreshore from the Crown 

Estate, although not all areas are shot over (i.e. wildfowling does not take place in refuge 

areas). Shooting levels are controlled via a permit scheme. Areas where shooting can occur 

cover 7.4 km2, which is approximately half of the total intertidal area in Poole Harbour. 

Access to these areas for wildfowling is only permitted by boat so wildfowlers cannot walk 

on the saltmarsh with their gun (Dorset Wildfowlers’ Association 2013) – this is a restriction 

that is specific to Poole as most other wildfowling clubs around the country have access on 

foot (Matt Ellis – BASC, pers. comm.). 

 

Figure 4.2. Poole Harbour, UK (50˚41’47”N, 01˚59’46”W) – extent of intertidal habitats, 

wildfowling areas, refuge areas and disturbance experiment locations. Reproduced from 

Ordnance Survey map data ©Crown Copyright and Database Right (2016) Ordnance Survey 

(Digimap Licence). 

A tidal phenomenon that occurs due to the shallow waters along the coast around Poole 

Harbour means that it has a non-standard tidal regime and experiences ‘double high tides’. 

This means that the main low water is followed by a main flood tide, a subsidiary low water 
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and then a second high water which precedes the next main low water (Humphreys 2005). 

The optimal time for wildfowling is often during the 3-4 hours between these double high 

tides (Dorset Wildfowlers’ Association 2013 and see Figure 1.8). 

4.3.2. Field data collection – wildfowling experiments 

The experiments to measure feeding wader responses to wildfowling activities took place 

with assistance from BASC (British Association for Shooting and Conservation) and Dorset 

Wildfowlers’ Association over the course of three wildfowling seasons (i.e. between 1 

September and 20 February) during the winters of 2011/12, 2012/13 and 2013/14. On each 

survey day a location was selected within Poole Harbour and accessed by boat on a falling 

tide, usually in the period between the double high tides. As the water level dropped the 

boat was positioned (without using the engine) as inconspicuously as possible whilst 

maintaining a clear view of the area where waders and wildfowl were expected to 

subsequently settle and feed:  camouflage netting was then set up (Figure 4.3).  

 

 

Figure 4.3. Preparing to undertake some wildfowling disturbance experiments. 

As the intertidal area became exposed and birds began to feed on the mud and in the 

shallow water, a number of focal birds within 1000m of the boat were selected to be 

monitored. The cut-off of 1000m was chosen because more distant birds were not 

expected to respond, and would be harder to confidently identify and observe through the 
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course of each experiment. The species, flock size and distance from the boat were noted 

before firing a shotgun in the direction of the focal birds (but to miss). Details of the 

responses were then recorded as follows: 

1. Response type in one of four categories – none (0); alert but no flight (1); flight and 

landing nearby (2); and flight with abandonment of the visible area (3). 

2. Time taken to resume feeding (if still visible). 

Distances were measured in metres using a laser range finder (Longridge Pin Point GADFL1 

6x magnification), and times were recorded in seconds as accurately as possible whilst 

monitoring several birds at once. Environmental variables were looked up later – air 

temperature (˚C) and wind speed (km/h) data from the weather station at Bournemouth 

Airport (UK Meteorological Office 2015) – and converted to a wind chill equivalent 

temperature, (see Equation 3.2). Body mass values were taken from BTO Ringing Scheme 

data (British Trust for Ornithology 2015). Table 4.2 gives an overview of all measured 

response variables and potential predictor variables. 

Once the birds had re-settled and resumed feeding, and if tidal conditions allowed, the 

process was repeated (without repositioning the boat) with a new set of focal birds. In 

order to minimise pseudo-replication in the data, if the only birds feeding within 1000m of 

the boat were thought to be birds for which responses had already been recorded, then no 

further experiments were undertaken during that survey visit unless new birds arrived. The 

survey ended when the tide rose sufficiently to re-float the boat. Data were collected on 27 

separate occasions, with the number of shots per visit ranging between one and six 

(median = 1). 

In reality, wildfowlers would not wait until a large amount of mud is exposed with large 

numbers of feeding and roosting waterbirds, however, this experimental protocol was 

adopted as a trade-off between mimicking wildfowling activities in Poole Harbour as closely 

as possible, whilst maximising the amount of data that could be collected per visit. The gun 

used was a 12 bore shotgun with 32g steel cartridges (shot size 4), and the boat was a 12 ft 

Dell Quay Dory; typical of the type of boat used by wildfowlers in Poole Harbour.  
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Table 4.2. Measured response variables and potential predictor variables. 

Name Details Units 

Response variables 

Response 

How the focal bird responded to the sound of the shotgun – 

selected from four categories: none (0); alert but no flight (1); 

flight and landing nearby (2); and flight with abandonment of 

the visible area (3) 

- 

TotalLost 

The length of time between when the shotgun was fired and 

the focal bird resumed feeding. See text for treatment of birds 

that flew out of sight.   

seconds 

Potential predictor variables 

Distance 
Distance between focal bird and the boat before the shotgun 

was fired. 
metres 

IsItOC Dummy variable – “is it an oystercatcher?” (0=No, 1=Yes). Yes/No 

IsItPlover Dummy variable – “is it a plover?” (0=No, 1=Yes). Yes/No 

SpMass 
Mean mass of each focal species (using values reported by 

British Trust for Ornithology (2015)). 
grams 

WindChill 

Wind chill equivalent temperature (Osczevski and Bluestein 

2005) using data from the nearest weather station 

(Bournemouth Airport, UK Meteorological Office (2015)). 

˚C 

FlockSize Number of conspecifics feeding with the focal bird. - 

WinterDay 
A measure of the number of days through the non-breeding 

season. Winter day 1 = 1 August. 
- 

 

4.3.3. Data analysis 

Flight response 

Given that bird responses to the sound of the shotgun were measured on an ordinal scale, 

the intention was to use ordinal logistic regression to determine the most important factors 

that affect the magnitude of response. However, graphical checking of the data, by plotting 

the means of all potential predictors against each ordinal class of the response (Figure 4.4), 

showed that in all cases the key assumptions of ordinality (consistent relationship between 

predictor variable and response levels) and proportional odds (constant change in log odds 

between response levels) were not met. In such situations Harrell et al. (1998) and Guisan 

and Harrell (2000) suggest combining some of the response categories, however, this did 

not improve the situation. Instead, separate binary logistic regression models (Hosmer and 

Lemeshow 2000) were used for three selected response categories (any 

response/flight/flight with abandonment). 



 

132 

 

Figure 4.4. Diagnostic plots for the waders data set showed that the assumptions of logistic 

regression models were not met – inconsistent slope of solid line (≠ ordinality); dotted line 

does not match solid line (≠ proportional odds). 

Taking an information theoretic approach (Burnham and Anderson 2002), the relative 

importance was tested of potential predictors for the probability of three (non-mutually 

exclusive) response categories (any response, flight response, and flight with abandonment 

of the immediate area), and model averaging (Symonds and Moussalli 2011) was used to 

derive parameter estimates for each predictor variable, along with confidence intervals for 

those estimates. Before performing the analyses the input variables were centred and 

standardised (following Gelman 2008, Grueber et al. 2011) to facilitate interpretation of the 

relative strength of parameter estimates. This involved subtracting the mean (centring) and 

then dividing by two standard deviations (standardising) for numeric variables with more 

than two values; binary variables were rescaled to have a mean of 0 and a difference of 1 

between their two categories (Gelman and Su 2015). 

Data for waders and wildfowl were analysed separately in case there are differences 

between the two groups in the mechanisms that govern their responses to a sudden noise. 

Since sample sizes were relatively low (192 responses recorded for waders and 107 for 

wildfowl) and for ease of interpretation, potential predictors were included as main effects 

only without any interaction parameters in the models. The goodness of fit of the fitted 

models was assessed by testing their predictive ability against the original data (Rana et al. 

2010). 
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In addition to testing the responses of all species combined in one dataset, the same 

analyses were performed, with appropriate potential predictor variables, on the three most 

commonly observed wader species (curlew Numenius arquata, oystercatcher Haematopus 

ostralegus and redshank Tringa totanus) to identify interspecific similarities or differences 

in the response patterns.  

Total time lost 

The total time lost data collected here are directly comparable to the data that were 

collected in the pedestrian experiments described in Chapter 3. However there were many 

occasions when birds flew out of sight (Table 4.3), and it was therefore not possible to 

record a value for the total time lost for these individuals. Excluding these birds from the 

analyses could mean ignoring an important component of bird responses to impulsive 

noise. Since it is likely that these birds took longer to resume feeding than the birds that 

remained in the vicinity of the boat, excluding the birds that flew out of sight would 

underestimate lost feeding time when responding to the sound of the shotgun. A slightly 

different approach was therefore needed compared to that used in Chapter 3. The data for 

waders and wildfowl were still analysed separately using AIC model selection and model 

averaging on the 95% confidence set (Johnson and Omland 2004, Symonds and Moussalli 

2011) to understand the strength and direction of the relationships. However, instead of 

general linear models, survival analysis was used (proportional hazards regression (Cox 

1972)) to explore potential predictor variables for the time that birds took to resume 

feeding after being disturbed by the sound of the shotgun. This approach allows for the fact 

that some of the data are ‘right censored’ i.e. the birds had not yet resumed feeding after 

an observed amount of time (Kaplan and Meier 1958, Klein and Moeschberger 1997). For 

all the right-censored birds (i.e. those that flew out of sight), the time value used was equal 

to the maximum observed for that species during the same survey, or if no such data were 

available, the maximum observed for the same species group was used (waders or 

wildfowl). A probability curve could then be produced, using all of the available data, for 

the proportion of birds that would be expected to have resumed feeding at a given time 

after the shotgun was fired. In this way, total time lost would not be underestimated.  

Following Grambsch and Therneau (1994) graphical diagnostics were used: visual inspection 

of the Schoenfeld residuals for each predictor variable plotted against time showed no clear 

relationship and therefore no reason to doubt assumption of proportional hazards. i.e. the 

difference in probability of resuming feeding for two different levels of each covariate was 

proportional for all values of time since disturbance. 
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Table 4.3. Observed numbers of flights (with percentage in brackets) that resulted in birds 

remaining or abandoning the visible area. 

Disturbance and species group Response = fly&stay Response = fly&leave 

Pedestrian – waders 452 (92.8%) 35 (7.2%) 

Wildfowling – waders 56 (50.5%) 55 (49.5%) 

Wildfowling – wildfowl 27 (45%) 33 (55%) 

Comparison with responses to pedestrian disturbance 

The results of the binary logistic regression analysis described above were used to estimate 

an effective disturbance distance (EDD) for each species (Stillman et al. 2012) to derive FID-

like values for each species response to the sound of the shotgun. This involves calculating 

the probability of response for each species for each one metre interval up to the maximum 

recorded distance, and then summing the predicted probabilities across all intervals to find 

the EDD (see Appendix 6 for a worked example). EDD is therefore the distance from the 

wildfowler within which all birds of that species are expected to respond to the noise 

disturbance – so it can be considered as an equivalent measure to bird FIDs as recorded 

during the pedestrian disturbance experiments, thus enabling comparison between the two 

activities. An FID-like value was also estimated for the exclusion effect of a wildfowler’s 

boat by taking the minimum recorded distance between the boat and an individual of each 

species for each survey, and calculating the mean value across all surveys. 

Following van der Meer (1985) as presented by Smit and Visser (1993) it is possible to 

calculate the theoretical area of intertidal habitat from which birds are excluded by a 

pedestrian walking across it (Figure 4.5a) – by using information on their alert distances and 

FIDs, recovery times for each zone and walking speed of the average pedestrian. Similarly, 

an equivalent conceptual diagram for the exclusion effect of a wildfowler is shown in Figure 

4.5b, though this is precautionary since in reality the disturbed area will be smaller and 

more ‘egg-shaped’ due to the way that sound travels (see section 4.1.3). By adding a 

duration element for each activity, the ‘space-time’ that is disturbed by a single pedestrian 

and a single wildfowler could be calculated (Equations 4.1 & 4.2) and compared for each 

species across a range of activity frequencies. Values used included: the disturbance 

responses described in this chapter (wildfowling experiments) and in Chapter 3 (pedestrian 

experiments), along with a pedestrian walking speed of 2.5 km/h; a pedestrian visit length 

of one hour; a wildfowling visit length of three hours; and an average of four shots fired per 

hour (Mark Greenhough – BASC, pers. comm.).  
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Figure 4.5. Conceptual diagram of the area influenced by a) pedestrian* and b) wildfowling 

disturbance. r1=FID; r2=alert distance; h1=recovery time after flight due to pedestrian; 

h2=recovery time after alert due to pedestrian; s=pedestrian walking speed; r3=boat 

disturbance distance; r4=EDD (gunshot); h3=recovery time after shot; n=number of shots per 

wildfowling visit; t=duration of stay by disturber. 

* reproduced from van der Meer (1985) in Smit and Visser (1993).  

𝑆𝑝𝑎𝑐𝑒-𝑡𝑖𝑚𝑒 (𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛) = (
𝜋𝑟2

2

2
+ 2𝑟1 ∙ ℎ1 ∙ 𝑠 + 2(𝑟2 − 𝑟1) ∙ ℎ2 ∙ 𝑠) ∙ 𝑡 Equation 4.1 

𝑆𝑝𝑎𝑐𝑒-𝑡𝑖𝑚𝑒 (𝑤𝑖𝑙𝑑𝑓𝑜𝑤𝑙𝑒𝑟) =  𝜋𝑟3
2 ∙ 𝑡 + 𝜋(𝑟4

2 − 𝑟3
2) ∙ ℎ3 ∙ 𝑛 Equation 4.2 

 

All statistical analyses were carried out in R (R Core Team 2015) using functions available in 

‘arm’ (Gelman and Su 2015) to standardise model predictors; ‘survival’ (Therneau 2015) for 

the time-related analyses; and the multi-model inference package ‘MuMIn’ (Bartoń 2015) 

for model selection and averaging: plots were produced using ‘ggplot2’ (Wickham 2009). 
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4.4 Results 

Ten species of wader and eight species of wildfowl were experimentally disturbed on 27 

occasions across the three wildfowling seasons, and response data were recorded for 299 

individual birds (Table 4.4 and Figure 4.6). Species with low numbers of data points have 

been excluded from some of the figures to improve ease of interpretation, however all data 

were included in the analyses. Visual inspection of diagnostic plots for the statistical tests 

performed (see methods) did not give cause for concern about the violation of test 

assumptions.  

4.4.1. Factors affecting probability of response 

Wader flight responses 

Figure 4.6 shows birds’ distance from the boat when each shot was fired, divided according 

to species and response type. There is considerable variation in the distance at which birds 

responded, with a lot of overlap between the different categories of response, but visual 

inspection suggests that birds with a response category of 0 (no response) tended to be 

further away from the boat compared to when they did exhibit a response (this is 

particularly clear for dunlin, redshank and curlew). This relationship was confirmed for 

waders by the binary logistic regression and model averaging results (Table 4.5a and 

Appendix 7); with strong support for ‘distance’ (relative importance = 1) as well as showing 

high relative importance for the variables ‘is it an oystercatcher?’ and ‘species mass’. More 

distant and larger birds were less likely to respond to the sound of the shotgun, particularly 

if they were an oystercatcher. Aside from this, there was limited support for the other 

potential predictor variables that were tested and the 95% confidence intervals for their 

estimated odds ratios include 1 so there is some uncertainty in the accuracy of these 

parameter estimates (Hosmer and Lemeshow 2000). Yet the predictive ability of the fitted 

model (after model averaging) was reasonably good, with a prediction error of 23.4%. 

‘Species mass’ and ‘distance’ were also well supported in relation to probability of flight, in 

addition to high relative importance for both ‘wind chill’ and ‘winter day’. Larger and more 

distant birds were less likely to fly, but probability of flight was higher in warmer conditions 

and later in the season. However the goodness of fit for this model was relatively poor – 

prediction error = 30.7% – as demonstrated by the wide confidence interval for probability 

of flight in Figure 4.7. 
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The model goodness of fit was also relatively poor for predicting whether a wader will 

abandon the immediate area (prediction error = 28.6%); none of the potential predictor 

variables that were tested were well supported, and all of the 95% confidence intervals for 

the odds ratios include 1 (Table 4.5a). In fact, the best supported model in the candidate set 

was the intercept-only model (Appendix 7). 
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Table 4.4. Summary of bird responses to the sound of the shotgun. 

a) Waders: 

Species 
Body 

mass (g) 

Frequency of response types   Response distance (m) [responses 2&3]   Total time lost (s) [responses 1&2] 

0-None 1-Alert 2-Flight 3-Abandon   Median Mean s.e. Range   Median Mean s.e. Range 

Curlew (CU) 782 15 12 7 11 
 

180 203.00 34.70 25-500 
 

30 44.21 10.72 10-180 

Oystercatcher (OC) 546 24 8 9 15 
 

160.5 215.13 27.10 12-473 
 

20 31.44 6.71 3-100 

Black-tailed godwit (BW) 299 3 3 6 5 
 

171 251.18 45.99 100-510 
 

40 41.25 12.56 5-105 

Avocet (AV) 280 3 0 1 5 
 

400 374.67 44.44 248-500 
 

30 30 - 30-30 

Lapwing (L.) 250 0 1 1 1 
 

175 175.00 125.00 50-300 
 

10 10 0 10-10 

Grey plover (GV) 243 1 0 1 2 
 

103 127.33 31.06 90-189 
 

15 15 - 15-15 

Greenshank (GK) 199 1 1 0 0 
 

- - - - 
 

120 120 - 120-120 

Redshank (RK) 153 3 1 17 12 
 

180 196.52 21.87 16-487 
 

30 43.06 13.30 5-250 

Knot (KN) 138 1 0 1 0 
 

20 20.00 - 20-20 
 

10 10 - 10-10 

Dunlin (DN) 50 2 2 13 4 
 

139 153.82 25.57 30-450 
 

30 44.87 15.76 5-240 

b) Wildfowl: 

Species 
Body 

mass (g) 

Frequency of response types   Response distance (m) [responses 2&3]   Total time lost (s) [responses 1&2] 

0-None 1-Alert 2-Flight 3-Abandon 
 

Median Mean s.e. Range 

 

Median Mean s.e. Range 

Canada goose (CG) 3960 0 1 2 0   130 130.00 50.00 80-180   150 170 36.06 120-240 

Greylag goose (GJ) 3340 1 0 0 0 
 

- - - - 

 

- - - - 

Brent goose (BG) 1250 4 2 4 6 
 

312.5 316.50 52.57 90-641 

 

135 261.67 108.21 40-600 

Shelduck (SU) 1250 13 6 8 13 
 

248 259.57 30.97 40-470 

 

60 82.14 19.83 5-200 

Mallard (MA) 1210 4 0 1 0 
 

700 700.00 - 700-700 

 

10 10.00 - 10-10 

Pintail (PT) 936 0 2 0 3 
 

410 370.00 61.10 250-450 

 

302.5 302.50 297.5 5-600 

Wigeon (WN) 749 5 0 5 7 
 

240 247.00 48.05 65-540 

 

80 115.00 48.43 15-240 

Teal (T.) 323 7 2 7 4   261 284.91 53.19 25-600   30 73.11 23.35 8-200 
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a) Waders: 

 

b) Wildfowl: 

 

Figure 4.6. Response distances of waders and wildfowl to the sound of the shotgun (only 

species with at least 5 data points are presented). DN=dunlin; RK=redshank; AV=avocet; 

BW=black-tailed godwit; OC=oystercatcher; CU=curlew; T.=teal; WN=wigeon; PT=pintail; 

MA=mallard; SU=shelduck; BG=brent goose.  
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Table 4.5. Model averaging results: binary logistic regression odds ratios and relative 

importance of seven potential predictor variables for probability of three categories of 

response. Odds ratios for which the 95% confidence interval (CI) does not include 1 are 

highlighted in bold. Predictor variables were initially centred and standardised. 

a) Waders: 

Response 
Predictor 

variable 

Relative 

importance 

Odds 

ratio 

95% CI Prediction error 

after model 

averaging 
Lower Upper 

P(AnyResponse) 

Intercept - 10.875 1.027 115.098 

0.234 

Distance 1.00 0.995 0.992 0.997 

IsItOC 0.96 0.358 0.166 0.773 

SpMass 0.72 0.998 0.997 1.000 

WindChill 0.59 1.080 0.974 1.198 

WinterDay 0.48 1.010 0.995 1.025 

FlockSize 0.34 1.005 0.994 1.016 

IsItPlover 0.25 1.518 0.044 51.861 

P(Flight) 

Intercept - 0.597 0.060 5.924 

0.307 

SpMass 1.00 0.997 0.996 0.999 

WinterDay 0.98 1.018 1.005 1.032 

WindChill 0.93 1.119 1.027 1.218 

Distance 0.88 0.997 0.995 1.000 

IsItOC 0.46 0.619 0.305 1.258 

IsItPlover 0.29 2.588 0.155 43.331 

FlockSize 0.26 1.001 0.991 1.011 

P(Abandon) 

Intercept - 0.294 0.062 1.395 

0.286 

WindChill 0.41 1.044 0.964 1.130 

WinterDay 0.39 1.006 0.994 1.018 

IsItPlover 0.34 2.672 0.351 20.314 

SpMass 0.28 1.000 0.998 1.001 

Distance 0.26 1.000 0.998 1.002 

IsItOC 0.24 0.905 0.441 1.858 

FlockSize 0.23 1.000 0.992 1.009 
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b) Wildfowl: 

Response 
Predictor 

variable 

Relative 

importance 

Odds 

ratio 

95% CI Prediction error 

after model 

averaging 
Lower Upper 

P(AnyResponse) 

Intercept - 1.109 0.076 16.085 

0.318 

WinterDay 0.63 1.011 0.997 1.025 

Distance 0.57 0.998 0.995 1.001 

WindChill 0.41 1.073 0.945 1.218 

FlockSize 0.28 1.004 0.991 1.017 

SpMass 0.24 1.000 0.999 1.001 

QuarryUK 0.24 0.835 0.351 1.987 

P(Flight) 

Intercept - 1.155 0.130 10.270 

0.383 

Distance 0.68 0.998 0.995 1.000 

WinterDay 0.54 1.008 0.997 1.019 

FlockSize 0.30 1.004 0.993 1.015 

WindChill 0.30 1.035 0.927 1.156 

SpMass 0.25 1.000 0.999 1.000 

QuarryUK 0.23 1.003 0.443 2.267 

P(Abandon) 

Intercept - 0.015 0.001 0.430 

0.234 

WinterDay 1.00 1.024 1.005 1.043 

FlockSize 0.90 0.979 0.955 1.004 

WindChill 0.71 1.124 0.991 1.275 

QuarryUK 0.28 0.733 0.260 2.065 

Distance 0.26 1.001 0.998 1.004 

SpMass 0.24 1.000 0.999 1.001 

 

Figure 4.7. Model averaged predictions with 95% confidence intervals: probability of three 

categories of response for a wader of average mass [426g] that is not an oystercatcher or 

plover, average flock size[19], with a wind chill equivalent temperature of 5.1˚C and mid-way 

through the wildfowling season [winter day 117 = 25 November]. 
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Wildfowl flight responses 

Analysis of the wildfowl response data showed poor predictive ability of the models and 

variables tested (Table 4.5b). There was strong support for winter day in relation to the 

probability that wildfowl would abandon the visible area (more likely later in the season), 

however for all other variables and response categories tested the 95% confidence intervals 

for the odds ratios included 1. This is exemplified in the wide confidence intervals in Figure 

4.8. 

 

Figure 4.8. Model averaged predictions with 95% confidence intervals: probability of three 

categories of response for a quarry species of wildfowl of average mass [1076g], with average 

flock size [20], a wind chill equivalent temperature of 5.8˚C and at 400m from the boat. NOTE 

that the x axis is different from Figure 4.7. 

Flight responses – single-species analyses 

Single-species analyses (Table 4.6 and Appendix 8) for the three most frequently observed 

wader species also showed generally low support for the potential predictors tested, 

particularly in relation to the probability of birds abandoning the area: and in most cases the 

95% confidence intervals for the odds ratios include 1. Nevertheless the prediction error for 

some models was relatively low, and there was strong support for ‘distance’ and ‘winter day’ 

in relation to curlew probability of response and probability of flight respectively. 
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Table 4.6. Model averaged species-specific results for curlew, oystercatcher and redshank 

(relative importance and odds ratios for four candidate predictor variables). Odds ratios for 

which the 95% confidence interval (CI) does not include 1 are highlighted in bold. 

a) P(AnyResponse): 

Species 
Predictor 
variable 

Relative 
importance 

Odds ratio 
95% CI Prediction error 

after model 
averaging Lower Upper 

Curlew 

Intercept - 17.067 0.572 509.495 

0.222 

Distance 1.00 0.990 0.984 0.997 

FlockSize 0.41 1.026 0.987 1.066 

WinterDay 0.34 1.015 0.987 1.044 

WindChill 0.29 1.089 0.881 1.346 

Oystercatcher 

Intercept - 0.252 0.002 32.641 

0.222 

WindChill 0.64 1.165 0.949 1.429 

WinterDay 0.48 1.022 0.992 1.053 

Distance 0.32 0.998 0.994 1.002 

FlockSize 0.22 0.996 0.963 1.030 

Redshank 

Intercept - 9.946 0.0002 473315 

0.061 

Distance 0.62 0.991 0.978 1.004 

WinterDay 0.45 1.052 0.973 1.136 

WindChill 0.38 0.752 0.406 1.395 

FlockSize 0.28 1.038 0.838 1.287 

b) P(Flight) 

Species 
Predictor 
variable 

Relative 
importance 

Odds ratio 
95% CI Prediction error 

after model 
averaging Lower Upper 

Curlew 

Intercept - 0.005 0.00002 1.070 

0.339 

WinterDay 1.00 1.038 1.005 1.073 

WindChill 0.73 1.209 0.983 1.488 

Distance 0.50 0.996 0.990 1.002 

FlockSize 0.22 1.006 0.956 1.058 

Oystercatcher 

Intercept - 0.215 0.002 19.964 

0.411 

WindChill 0.67 1.151 0.948 1.397 

Distance 0.41 0.998 0.993 1.002 

WinterDay 0.40 1.020 0.989 1.052 

FlockSize 0.26 0.991 0.954 1.029 

Redshank 

Intercept - 16.809 0.334 845.131 

0.121 

Distance 0.52 0.994 0.986 1.002 

WindChill 0.24 0.938 0.741 1.187 

FlockSize 0.24 0.976 0.882 1.080 

WinterDay 0.22 1.005 0.963 1.050 
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c) P(Abandon) 

Species 
Predictor 
variable 

Relative 
importance 

Odds 
ratio 

95% CI Prediction error after 
model averaging Lower Upper 

Curlew 

Intercept - 0.074 0.002 2.484 

0.200 

Distance 0.29 0.998 0.992 1.003 

FlockSize 0.27 1.012 0.974 1.053 

WinterDay 0.71 1.018 0.998 1.039 

WindChill 0.22 1.031 0.864 1.231 

Oystercatcher 

Intercept - 0.080 0.0002 29.619 

0.268 

WindChill 0.66 1.205 0.943 1.540 

WinterDay 0.44 1.025 0.982 1.069 

Distance 0.27 1.002 0.997 1.006 

FlockSize 0.97 0.905 0.814 1.006 

Redshank 

Intercept - 2.849 0.024 344.260 

0.364 

Distance 0.26 0.998 0.990 1.006 

WinterDay 0.46 0.976 0.946 1.008 

WindChill 0.43 1.144 0.947 1.383 

FlockSize 0.68 0.909 0.799 1.035 

4.4.2. Effective disturbance distance (EDD) 

Table 4.7 shows EDDs for all of the species observed in this study, following Stillman et al.’s 

(2012) method and using the model averaging results in relation to the probability of 

observing any type of response when a shotgun is fired. Each value is calculated for the mid-

point in the wildfowling season (winter day = 117), based on the mean flock size observed for 

that species, and using the mean wind chill equivalent temperature for the study period 

(5.3˚C). The final two columns in Table 4.7 show the estimated mean and standard error of 

the minimum distance from the boat at which each species was observed feeding. The values 

from this table will be used later when calculating and comparing the effects of wildfowling 

versus pedestrian disturbance (Table 4.9). 
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Table 4.7. Disturbance distances for waders and wildfowl; gunshot and boat. Effective 

Disturbance Distances (EDD) based on probability of any type of response, using the model 

averaged parameter estimates from Table 4.5. See Appendix 6 for a worked example of the 

EDD calculation). 

Species 

EDD [gunshot] (m)   Boat disturbance distance (m) 

Estimate 
95% Confidence interval 

 
Mean s.e. 

Lower limit Upper limit   

WADERS       

Curlew 431.36 354.44 513.70   209.85 33.69 

Oystercatcher 324.43 266.97 391.42 
 

167.63 29.94 

Black-tailed godwit 525.43 464.63 589.15 
 

265.89 62.87 

Avocet 539.33 472.55 606.53 
 

332 70.17 

Lapwing 531.85 467.51 598.80 
 

143.33 78.81 

Grey plover 542.50 395.18 674.64 
 

376.33 238.55 

Greenshank 535.19 463.85 608.87 
 

35 15 

Redshank 544.38 469.70 620.31 
 

170.31 42.52 

Knot 571.05 488.53 648.97 
 

101.5 81.5 

Dunlin 567.61 485.23 647.74   139.73 43.98 

WILDFOWL 
   

Canada goose 563.62 412.69 685.96   185.33 62.41 

Greylag goose 541.50 412.89 653.18 
 

210 0 

Brent goose 538.77 448.74 620.88 
 

266.5 82.49 

Shelduck 537.44 447.14 619.91 
 

178.6 28.38 

Mallard 530.77 439.73 614.50 
 

420 100.75 

Pintail 526.88 435.36 611.37 
 

300 110 

Wigeon 537.31 440.32 625.04 
 

272.64 55.77 

Teal 524.57 429.44 612.16   296.92 46.75 
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4.4.3. Total time lost 

Figure 4.9 shows that, for the waders that remained in the visible area, total feeding time lost 

was relatively low and did not vary much either within or between species. By contrast 

wildfowl were more variable in the length of time that individuals took to resume feeding 

after a flight response. However this presents only half of the story as it does not account for 

the birds that abandoned the immediate area and flew out of sight (Table 4.3).  

The model averaging results for all birds – including those that flew out of sight – (Table 4.8) 

showed good support for the predictive power of ‘distance’, with waders that were disturbed 

at greater distances taking longer to resume feeding. However, there was little support for 

any of the other potential predictor variables tested in relation to waders and all of the 

remaining 95% confidence intervals included 1. Conversely, in the case of wildfowl (mirroring 

the results of the analyses of probability of response, above), there was little support for 

‘distance’ but some support for ‘winter day’. Wildfowl took longer to resume feeding later in 

the season, though again the 95% confidence interval for this, and all other variables tested, 

included 1. 

 

Figure 4.9. Total time lost comparison between species for birds that did not fly out of sight 

(percentages shown in brackets).   
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Table 4.8. Model averaging results: relative importance for each potential predictor variable 

with respect to total time lost, with hazard ratio estimates and 95% confidence intervals. 

Hazard ratios for which the 95% confidence interval does not include 1 are highlighted in bold. 

a) Waders 

Predictor variable 
Relative 

importance 

Hazard 

ratio 

95% confidence interval 

Lower limit Upper limit 

Distance 0.80 0.998 0.996 1.000 

FlockSize 0.35 1.003 0.997 1.010 

WinterDay 0.30 1.002 0.996 1.008 

WindChill 0.29 0.985 0.938 1.035 

IsItOC 0.25 0.968 0.544 1.722 

IsItPlover 0.24 0.905 0.124 6.594 

SpMass 0.24 1.000 0.999 1.001 

b) Wildfowl 

Predictor variable 
Relative 

importance 

Hazard 

ratio 

95% confidence interval 

Lower limit Upper limit 

WinterDay 0.64 0.991 0.982 1.001 

WindChill 0.54 1.066 0.981 1.158 

FlockSize 0.33 1.003 0.997 1.009 

Distance 0.30 1.000 0.999 1.000 

SpMass 0.26 0.999 0.997 1.001 

QuarryUK 0.24 1.130 0.588 2.171 

4.4.4. Comparison of wader responses to wildfowling noise and pedestrian 

disturbance 

Although the distance data recorded for waders in the pedestrian and wildfowling 

experiments do not measure precisely the same thing, we can compare the effects of the two 

disturbance types by considering EDD for the sound of a shotgun versus alert distance when 

approached by a pedestrian. Figure 4.10 shows a clear difference between the two activities 

in the distance at which birds were disturbed; with all species responding to the sound of a 

shotgun at a much greater distance than when approached by a pedestrian. The Cox 

proportional hazards model (Figure 4.11) showed that there is also a significant effect of 

disturbance type on total time lost (after controlling for the two best supported variables, 

species mass and distance); birds lost more time when responding to the sound of the 



 

148 

shotgun compared to when disturbed by an approaching pedestrian (hazard ratio = 0.715, p = 

0.044). However as Figure 4.12 shows, the relationship might not be the same for all species; 

for example, the relationship appears to be reversed in the case of curlew. 

 

Figure 4.10. Alert distances (pedestrian disturbance), EDDs (gunshot) and the exclusion effect 

of the boat (minimum recorded distance) for each species.  Mean (hollow circle) with 95% 

confidence interval (bars), and original data (crosses, displaced horizontally for clarity). 
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Figure 4.11. Cox proportional hazards model probability plot: the effect of disturbance type on 

total time lost (after for controlling for species mass and distance) – fitted model for a wader of 

average mass [430g] at an average distance [93m]. 

 

Figure 4.12. Kaplan-Meier plots showing the effect of disturbance type on total time lost for 

four species of wader.  
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Using the conceptual diagram shown in Figure 4.5 and the accompanying equations the effect 

of a single wildfowler and a single pedestrian can be directly compared (Table 4.9). For all 

species the effect of a single pedestrian was lower than that of a single wildfowler. However, 

Figure 4.13 shows that when the frequency of each activity was taken into account, the 

potential cumulative effect of all pedestrians using the intertidal habitat throughout the 

winter period was considerably higher than the currently consented frequency of wildfowling 

(183 visits per season). 

Table 4.9. Space-time (km
2
-hrs) disturbed by a single pedestrian compared with that disturbed 

by a single wildfowler. 

Species 
Space-time disturbed (km2-hrs) 

Per wildfowler Per pedestrian 

Curlew 0.683 0.023 

Oystercatcher 0.346 0.011 

Black-tailed godwit 0.795 0.009 

Grey plover 1.383 0.015 

Redshank 0.441 0.010 

Knot 0.130 0.012 

Dunlin 0.279 0.003 

 

Figure 4.13. Space-time influence comparison between wildfowlers and pedestrians on the 

intertidal over the course of a wildfowling season (173 days). See text for details of 

calculations. 
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4.5 Discussion 

The aim of this study was to investigate the effects of an understudied potential source of 

disturbance in estuarine habitats – wildfowling – with respect to both the visual and acoustic 

disturbance stimuli. Comparisons can therefore be made with pedestrian disturbance, which 

is more commonly studied and occurs more frequently. New data are provided for ten 

species of wader and eight species of wildfowl on their responses to the presence of a 

wildfowler in a boat and the sound of the shotgun. Fox and Madsen (1997) give an overview 

of research into the responses to wildfowling of ducks and geese, however this is the first 

study to investigate the responses of non-quarry species (i.e. waders); although see Wright et 

al. (2010), who experimentally disturbed roosting curlew, golden plover Pluvialis apricaria 

and lapwing Vanellus vanellus with an air horn. 

4.5.1. Probability of response 

Waders and wildfowl both showed a great deal of variability in probability of response within- 

and, to a lesser extent, between- species. Some of this variation was explained for waders by 

species mass, distance from the boat when the shot was fired and environmental conditions 

(support for Hypothesis 1). Larger and more distant waders were less likely to respond in 

some way (becoming alert or fleeing). The importance of distance is not surprising, given that 

sound pressure level (in decibels, dB) decreases with distance from the source. Wright et al. 

(2010) estimated for roosting birds that a behavioural response of some kind (e.g. cease 

feeding, become alert, take flight) is more likely than no response at sound levels above 65.5 

dB, which is broadly consistent with the patterns of shotgun sound propagation as measured 

by Bentley (2010, Figure 4.1) and the range of EDDs that were estimated here. However, 

several other factors can influence received sound levels – including source direction, 

atmospheric attenuation, terrain, wind speed and direction, and air pressure (Pater et al. 

2009). This may account for some of the remaining unexplained variation in bird responses, 

since distance will not always be a precise measure of the sound levels that birds experience. 

The observed negative correlation between species mass and probability of response seems 

contrary to the fact that larger birds exhibit greater FIDs when approached by a pedestrian, 

but Wright et al. (2010) also found this result for roosting waterbirds so perhaps waders 

perceive risk differently when the disturbance stimulus is acoustic rather than visual. A 

difference in risk perception may also explain the fact that when waders responded to the 

sound of the shotgun by taking flight, they abandoned the visible area on 49.5% of occasions 

compared to just 7.2% for pedestrian disturbance. When faced with the visual stimulus of an 
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approaching pedestrian, birds have time to assess the risk and respond accordingly; whereas 

response to the sudden stimulus of the sound of the shotgun may be more of an automatic 

reflex – allowing no time to accurately assess risk. Nevertheless none of the measured 

potential predictor variables could explain variation in this behaviour within the wildfowling 

experiments dataset, which could instead be related to availability of alternative habitat 

and/or differences between individual birds in body condition or experience. Further 

investigation is needed to understand this aspect of bird behaviour in response to sudden 

noise. 

In contrast to the results for waders, there was no species mass relationship for wildfowl 

responses (even though the species involved represent a wide range of body masses), which 

may also suggest that waders and wildfowl assess risk from acoustic stimuli differently from 

each other. However, with the exceptions of winter day and flock size in relation to 

probability of abandoning the visible area, all of the predictor variables for each wildfowl 

response category were poorly supported. This could be because the sample size was too 

small and/or there is at least one important variable that has not been tested, for example 

relating to differences in individual body condition (Beale and Monaghan 2004b) or past 

experience (Higham and Shelton 2011). 

It was somewhat surprising that whether or not a bird was a quarry species was so poorly 

supported, since quarry species might be expected to be more likely to respond to the sound 

of a shotgun because of the potentially lethal consequences of lesser responses. Laursen et 

al. (2005), for example, found that quarry species had greater FIDs than non-quarry species in 

response to pedestrian disturbance. The hunting pressure experienced by birds in Poole 

Harbour (Table 4.1) may not be great enough to significantly alter responses in this way. Or 

perhaps a significant difference would have been apparent if this study had a larger or more 

balanced dataset, with equal numbers of quarry and non-quarry species represented in the 

experiments. 

4.5.2. Total time lost 

The only potential predictor variable that was well supported in the wildfowling experiments 

dataset with respect to wader total time lost was ‘distance’ (relative importance = 1); and 

there was some support (relative importance = 0.64) for ‘winter day’ for wildfowl. There was 

very little support however for ‘species mass’ even for waders, which is surprising given its 

importance in relation to probability of response and in the pedestrian disturbance 

experiments (Chapter 3). It appears that much of the variation in total time lost is explained 



 

153 

by one or more factors that have not been tested here (and likely related to factors 

determining whether birds remain or abandon the immediate area, as discussed above). 

Since the sound of a shotgun is such a short stimulus, perhaps birds resume normal 

behaviour as soon as the stimulus is removed simply according to individual differences in 

body condition, energetic requirements or knowledge of alternative foraging areas. Given the 

assumption that total time lost is greater for birds that abandon the visible area, a better 

understanding is needed of the mechanisms that determine whether birds leave or remain. 

4.5.3. Effect of disturbance type 

Hypothesis 2 was supported in relation to both area disturbed (Figure 4.10) and total time 

lost (Figure 4.11); and the total space-time disturbed by a single pedestrian was more than an 

order of magnitude lower than that of a single wildfowler (Table 4.9). However, due to the 

large differences in the frequency of the two activities, Hypothesis 3 was supported: the 

potential cumulative effect of all pedestrians using the intertidal habitat throughout the 

winter period was considerably higher than the currently consented frequency of wildfowling 

(183 visits per season). This was particularly apparent in relation to knot, curlew, 

oystercatcher and redshank. In this way the potential effects of different activities can be 

objectively compared. 

4.5.4. Recommendations for further study 

Noise 

Distance from source appears to be an important, but imperfect, predictor of bird responses 

to acoustic disturbance – specifically impulsive noise. However, for a fuller understanding and 

in order to more confidently predict when birds will take flight, a larger data set will be 

needed, which involves the use of sound meters to accurately measure received sound 

pressure levels at known distances from the source and/or accurate measurements of 

temperature, pressure, and wind speed and direction in relation to the direction of shooting, 

which would allow accurate estimates to be made of the received sound pressure levels 

(similar to the methods employed by Wright et al. (2010)). Also, given the between-site 

variability in responses to pedestrian disturbance, further wildfowling (or other impulsive 

noise) studies are needed at a variety of sites to test the degree to which there is between-

site variability in response to acoustic stimuli.  
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Activity patterns 

Estimating the amount of space-time that different activities are likely to disturb offers one 

way to make comparisons between disturbance types, however, the actual number of birds 

affected will depend on how many are (or would be) feeding in the vicinity of each type of 

potential disturber. This is related to the spatial and temporal patterns of occurrence of each 

activity and of bird distributions: for example, due to the soft, muddy nature of most of the 

intertidal habitat in Poole Harbour, most pedestrians are likely to remain close to top of the 

shore, which reduces the likelihood of birds being disturbed if preferred feeding areas are at 

or close to the low tide mark (Granadeiro et al. 2006). Similarly, since the most profitable 

time for wildfowling is often between one hour before and one hour after high tide, when 

relatively little intertidal habitat is exposed, again the chances of human disturbers and 

feeding birds overlapping in time and space is low. However, by the same logic, birds that are 

feeding during times of minimal intertidal exposure are likely to be those individuals that are 

most hard pressed and struggling to meet their energy requirements (Goss-Custard et al. 

1977). So disturbance to these birds in these circumstances is more likely to have negative 

consequences. The timing of wildfowling visits with respect to the tide could also result in 

disturbance to roosting birds, if roosts and favoured wildfowling locations are in close 

proximity with each other. A more general recognition, therefore, of the importance of the 

subtleties of patterns of occurrence of potentially disturbing activities will lead to a better 

understanding of the scenarios under which disturbance may be considered a conservation 

problem. 

In addition to understanding the patterns of occurrence of different activities, good 

knowledge is needed of the mechanisms by which each activity causes disturbance. For 

example, in the case of wildfowling, disturbance may occur when: (1) wildfowlers 

access/depart their chosen location; (2) wildfowlers are in position on the intertidal habitat; 

(3) the shotgun is fired; and (4) a dog is sent to retrieve shot quarry. So far this study has only 

investigated and discussed aspects 2 and 3. With regards to wildfowlers accessing and 

departing their chosen location, this is unlikely to result in considerable additional 

disturbance, at least in Poole Harbour. Here access only takes place by boat, which 

necessarily requires a certain depth of water and, for the most-part, precludes disturbance of 

birds on the intertidal habitat. However, any further research at other sites will need to take 

this into consideration, especially if access routes take wildfowlers in the vicinity of high tide 

roosts, or when boats travelling along channels at low water bring them in close proximity to 

feeding or roosting birds. 
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For a more complete picture of the effects of wildfowling, further work should also 

incorporate the disturbance element of using a dog to retrieve shot quarry. Retrieval has the 

potential to cause an additional disturbance if birds remain in the area after the gun is fired. 

However, quarry tend to be shot at close range, so if the dog is sent to retrieve immediately, 

any additional disturbance caused by the presence of the dog is likely to be minimal since 

birds will have already vacated the immediate area due to the gunshot (Mark Greenhough – 

BASC, pers. comm.). In addition, not all shots will be successful so it is not necessary to send 

the dog out on every occasion. The extra (albeit short) stimulus of the presence of a dog 

could lengthen recovery time before birds land and resume feeding, or result in more birds 

abandoning the visible area rather than resettling nearby. Nevertheless, this would not 

considerably increase estimates for the space-time disturbed per wildfowler since the major 

contributor to this value is the presence of the wildfowler on the intertidal and the exclusion 

area around the boat (cf. relatively infrequent gunshots and retrievals). 

Individual variation 

Much of the unexplained variability in bird responses that were observed in relation to 

impulsive noise is likely to be due to between-individual differences in experience and body 

condition, so any research that can measure this alongside controlled experimental 

disturbance would make an important contribution to knowledge. Such field studies can 

however be logistically difficult and financially expensive, and the results may not easily be 

applied to other sites and situations. An alternative approach is to use simulation modelling 

(Stillman 2008, Bennett et al. 2009, McLane et al. 2011) to try to answer the question “at 

what level of disturbance is there likely to be a population impact?” This approach will be 

investigated in the next chapter using insights from the fieldwork in Poole Harbour. 
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Chapter 5 – An individual-based model of Poole Harbour – is 

disturbance limiting wintering wader populations? 

5.1 Abstract 

Individual-based models (IBMs) are increasingly being used to answer different types of 

question in ecology and animal behaviour since they are able to make predictions outside of 

the range of environmental conditions under which key parameters were measured. They use 

knowledge of how individuals interact with each other and their environments to predict 

population-level responses to novel scenarios. This chapter describes how results and insights 

from the preceding chapters were incorporated into a site-specific IBM for Poole Harbour 

using the established Morph IBM framework. The aim was to use the model to determine 

whether current patterns of human activities are limiting the carrying capacity of the site for 

wintering waders. It was also used to investigate the impacts of increased levels of 

disturbance in combination with other forms of environmental change (habitat loss and 

invertebrate prey availability). This is the first study that has combined detailed field 

observations (patterns of both human activities and bird behaviour) with simulation 

modelling to quantify and compare the impacts of different types of anthropogenic 

disturbance in terms of the number of birds that can be supported by a site and the end-of-

season body condition of surviving birds. Most birds in Poole Harbour do not appear to be 

negatively impacted by disturbance from current patterns of human activities, and they are 

likely to be able to cope with relatively large increases in visitor numbers if all other factors 

remain constant. However, extra disturbance from increased visitor numbers would be 

expected to reduce the number of birds that can be supported if this occurs in combination 

with other changes that reduce the quality of the site; such as reduced extent of intertidal 

habitat due to sea level rise or reduced availability of invertebrate prey. Results suggest that 

it may be more important to focus on maintaining and improving the extent and quality of 

key habitats rather than direct action to reduce the amount of disturbance to below current 

levels.  
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5.2 Introduction 

5.2.1. Disturbance in estuarine habitats 

The conservation importance of many estuarine sites is recognised through designation as 

Special Areas of Conservation (SACs), Special Protection Areas (SPAs) and Ramsar wetlands of 

international importance, which afford legal protection to the key habitats and species that 

they support. This also includes a specific responsibility to take appropriate steps to avoid the 

negative impacts of disturbance on waterbird assemblages (EEC 1992, EC 2009), with a clear 

need to be able to predict where and under what circumstances disturbance is likely to be a 

problem and identify the most effective methods to prevent or minimise the level of impact 

on priority species. 

Estuaries are also important and popular areas for human recreation, tourism, and economic 

activities, which can affect wildlife populations in many ways; such as through habitat loss 

and modification, over-exploitation and pollution, as well as direct disturbance (Millennium 

Ecosystem Assessment 2005). So the potential for disturbance to cause a problem, either in 

isolation or in combination with other factors, can be high. However, Chapters 2 to 4 have 

shown that bird responses to disturbance are highly spatially and temporally variable, and 

short-term studies of individual behavioural responses cannot quantify impacts at the 

population level during the course of a winter or over longer timescales (Bejder et al. 2006). 

Site-specific simulation modelling, for example using Individual-based models (IBMs), 

therefore is an essential tool for conservation managers and policy makers to investigate 

novel scenarios that would be impossible or undesirable to test in the real world (Stillman et 

al. 2016). 

5.2.2. The individual-based modelling approach 

IBMs are increasingly being used to answer many different types of question in ecology and 

animal behaviour, as well as in genetics, the social sciences, business and finance (see reviews 

by Grimm 1999, DeAngelis and Mooij 2005). In ecology they are used to model populations or 

systems composed of individuals, each with its own set of behavioural and physiological traits 

based on knowledge of the real-world system (DeAngelis and Mooij 2005, Grimm and 

Railsback 2005, Stillman and Goss-Custard 2010). Following the individual-based ecology 

theoretical framework (Grimm and Railsback 2005), model individuals make fitness-

maximising decisions in the same way that real animals would. Simulations track their fates to 

predict the population-level consequences that emerge from individual interactions with 
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their environment and with each other (Stillman et al. 2015, 2016). The IBM approach has the 

advantage over other forms of predictive methods (such as using mathematical equations 

based on measured demographic rates) that they are able to make predictions outside of the 

range of historical environmental conditions under which key values have been measured 

since the underlying mechanisms behind individual decisions are expected to be the same 

even in novel situations (Norris and Stillman 2002). 

IBMs have successfully been used to predict the impacts of disturbance and compare 

management options in, for example, waders and wildfowl (reviewed by Stillman et al. 

(2007)); birds feeding in park situations (Blumstein et al. 2005, Bennett et al. 2009); bats 

(Bennett et al. 2009); night-herons (Bennett et al. 2011); and cetaceans (Lusseau et al. 2006). 

Morph 

Morph is an IBM platform designed to predict the effects of environmental change on 

foraging animal populations (Stillman 2008). It has been developed and tested over a period 

of more than 15 years, and while the focus has been on coastal waterbirds (see examples 

given by Wood et al. (2015)), its flexible design means it can be applied to a wide range of 

species and situations (Stillman 2008). Durell et al. (2006) parameterised a version of Morph 

for Poole Harbour to assess the site’s quality for overwintering waders and make predictions 

about the effects of habitat loss and sea level rise, and changes in food supply and mean daily 

temperature. The model follows a number of key principles (described in more detail in 

Stillman (2008)): 

 Time progresses in discrete, fixed duration time steps; 

 Space is divided into patches with fixed location and area; 

 Patches contain resources that can be consumed by foragers; 

 Foragers remain on the same patch for the duration of a time step, and can move to 

a new patch at the start of each time step; and 

 Foragers choose patches according to where they can maximise their perceived 

fitness based on full knowledge of the patches (e.g. density of competitors, 

invertebrate prey abundance, whether exposed or covered by the tide etc.). 

The model platform has since been considerably updated by K. M. Bowgen (BU, unpublished 

data) with more accurate patch bathymetry and tidal regime, more realistic bird population 

sizes and foraging rules, standardised energetics, and to reflect improved knowledge of the 

distribution and abundance of intertidal invertebrates throughout the site (Herbert et al. 

2010). However the model has not been used to investigate the impacts of disturbance in 
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Poole Harbour so this research involved adding in new parameters relating to the types, 

distribution and frequencies of occurrence of human activities throughout Poole Harbour, as 

well as adding time, area and energetic costs for birds as a result of responding to 

disturbance. Stillman et al. (2012) developed a similar model for the Solent to predict the 

impacts of planned future housing developments and the associated increases in visitor 

numbers: the similarities and differences in the model predictions for the two sites will be 

discussed later (Section 5.5). 

5.2.3. Predicting the impacts of disturbance in Poole Harbour 

The worldwide human population is growing and people are increasingly being encouraged to 

make use of natural open spaces to improve their health and wellbeing (Maller et al. 2006, 

Pretty et al. 2007, Yerrell 2008, Depledge and Bird 2009). The number of daily visitors in 

Poole Harbour is therefore likely to increase in future. The aim of this chapter is to determine 

whether disturbance from current patterns of human activities in Poole Harbour is reducing 

the carrying capacity of the site in terms of the internationally important assemblage of 

wintering waders that it supports; and to make predictions about the potential impacts of 

increased numbers of visitors. Site managers need to know whether/when action is or will be 

necessary to mitigate the impacts of disturbance to maintain favourable conservation status. 

Given the findings described in Chapters 2 to 4 – that the time and energetic costs of 

responding to disturbance events are low and unlikely to be incurred frequently enough to 

significantly reduce birds’ ability to meet their daily energy requirements – model predictions 

are not expected to show a reduction in carrying capacity under current conditions cf. in the 

absence of disturbance. However, birds might be expected to show an increase in the 

proportion of time spent feeding or be in poorer body condition at the end of the winter 

period. Large amounts of disturbance of either foraging (Madsen 1988, Gill et al. 1996) or 

roosting (Rehfisch et al. 1996, Rogers et al. 2006) birds could, however, be expected to 

reduce the carrying capacity of the site if birds are excluded from favoured areas or are 

disturbed frequently enough. This would be especially likely under circumstances where bird 

intake rates are also limited by low food availability (intertidal or supratidal) and/or short 

intertidal exposure times (Evans 1976, Lindström 1991); and when intake requirements for 

thermoregulation increase during periods of extreme cold weather (Kelly et al. 2002).  

The expected relationships described above will be tested in this Chapter using field data 

collection to determine the distribution and frequency of different human activities, and by 

parameterising the Morph model to incorporate the resulting time, area and energetic costs 
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experienced by birds. The model will also be used to compare the impacts of the two focal 

activities of this research – walking and wildfowling. Results in Chapter 4 suggested that 

although the cost of disturbance from a single wildfowling visit is likely to be greater than 

that for a single pedestrian visitor, cumulative impact over the course of a winter is expected 

to be lower due to considerable differences between the two activities in frequency of 

occurrence. The model will be used to test this. 

The outputs of model simulations with different parameter combinations will be used to 

address the following questions and test the assumptions/expectations described above: 

i) What are the predicted impacts on survival, proportion of time spent feeding and 

bird body condition of varying frequencies and distributions of human activities 

during the intertidal period? 

ii) How do predictions about the impacts of disturbance vary in combination with 

different frequencies of disturbance to roosting birds? 

iii) How do predictions about the impacts of disturbance vary in combination with other 

forms of environmental change (sea level rise and invertebrate prey availability)? 

iv) How does the impact of wildfowling compare with other forms of disturbance in 

Poole Harbour?  
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5.3 Methods 

5.3.1. Study site and field data collection 

Instantaneous scan sampling (Altmann 1974) was used to determine the frequency and 

distribution of activities at each of five intertidal sub-sites in Poole Harbour (Fig. 5.1): 

collecting data on a total of 95 separate occasions across the three survey seasons 2012/13, 

2013/14 and 2014/15. Each hour-long survey took place within an hour either side of low tide 

and consisted of one scan every ten minutes, during which the number and type of all 

activities were recorded if occurring on the intertidal area, adjacent shallow water, beach or 

shoreline footpaths. Aircraft and trains were not consistently recorded so they were not 

included in the final analyses. Free-running dogs were counted separately from their owners, 

but dogs on leads and their accompanying human were counted as a single threat since a 

human with a dog on the lead has been shown to be no more likely to disturb birds than a 

lone pedestrian (Lafferty 2001b). 

 

Figure 5.1. Survey sites in Poole Harbour used for observations of frequency and distribution 

of human activities. They are the same sites as those used for the pedestrian experiments, with 

the addition of Arne (saltmarsh and intertidal mud) and Baiter Park (flooded grassland), and 

reduction in the extent of the Brand’s Bay sub-site. Reproduced from Ordnance Survey map 

data ©Crown Copyright and Database Right (2016) Ordnance Survey (Digimap Licence). 

For each sub-site the counts were converted into mean number of visitors present per km2 of 

intertidal habitat and mean number per km of shoreline, depending on where they occurred. 

Activities were categorised as being on the shoreline if they were not using the intertidal 
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habitat but were still sufficiently close to potentially disturb feeding birds i.e. those activities 

that were on the beach, sea wall, footpath or saltmarsh. Activities occurring in the shallow 

water were combined with the intertidal counts since birds feeding at the water’s edge or in 

the water could be disturbed by these activities. 

The five intertidal sub-sites are considered to be representative of the range of visitor access 

levels across the whole estuary so the remaining areas of Poole Harbour were divided and 

each was assigned an estimate of visitor frequencies according to the most appropriate sub-

site (Figure 5.2). 

 

Figure 5.2. Assignment of intertidal sub-sites to the areas of Poole Harbour that they best 

represent. Reproduced from Ordnance Survey map data ©Crown Copyright and Database 

Right (2016) Ordnance Survey (Digimap Licence). 

Baiter Park is a public open space on the eastern edge of Poole, separated from the intertidal 

habitat of Poole Harbour by the sea wall and a footpath/cycle path. The grassland floods with 

rainwater in winter and it is used as a high tide roost and supplementary feeding habitat 

mainly by brent geese Branta bernicla and oystercatchers Haematopus ostralegus (Morrison 

2015). The site experiences high frequencies of human activities and birds are relatively 

tolerant of disturbance, either due to habituation or because they have no choice (Stillman et 

al. 2005). Here data collection involved six, hour-long, high tide surveys spread across the 

2014/15 winter season to complement the observations of intertidal and shoreline activities. 

During each visit continuous recording (Martin and Bateson 1993) was used to count the 

number of activities per hour that occurred either on the grass or on the path around the 
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perimeter of the site. The number of times that a potential disturber resulted in a response 

from the birds was also noted, and whether the response was to walk or fly away. The other 

roost sites used by waders around Poole Harbour are unlikely to experience such high levels 

of human activity as at Baiter Park (Morrison 2015) so these results give an estimate of the 

maximum level of disturbance likely to be experienced by roosting birds in Poole Harbour.  

5.3.2. An IBM of Poole Harbour 

Working from the updated model for Poole Harbour (K. M. Bowgen, BU, unpublished data), 

extra parameters were added to allow the effects of disturbance to be incorporated into the 

model predictions. The results of the field observations described above, along with the 

results of the pedestrian experiments (Table 3.3) and wildfowling experiments (Table 4.7) 

were used to inform the parameter values. A screen shot of the model interface is shown in 

Figure 5.3. 

 

Figure 5.3. Screen shot of the Poole Harbour Morph IBM model interface. 

5.3.3. Global parameters 

Model time steps 

Simulations were run for 212 days from 00:00 on 1 September to 23:59 on 31 March, and 

each day was split into 24 discrete, hour-long time steps during which environmental 

conditions and the presence/absence of potential disturbers remains the same. Time was 

included so that different human activities could be limited to different times of the day or 

night. 
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Environmental conditions 

Equation 5.1 was used to estimate mean daily temperature T , where Day is the number of 

days since the start of the simulation, and based on records for 2011/12 from the nearest 

weather station at Bournemouth Airport, 11 km away (UK Meteorological Office 2015). Tide 

heights for each time step were taken from the 2011/12 records for the Pottery Pier and 

RoRo Terminal hydrographic stations using Tide Wizard software (Smartcom Software 2006). 

Whether or not it was daylight during each time step was calculated from times of sunrise 

and sunset obtained from the US Naval Observatory (2015). 

𝑇 (˚𝐶) = 0.000579 × 𝐷𝑎𝑦2 − 0.1687 × 𝐷𝑎𝑦 + 17.65 Equation 5.1 

Global disturbance parameters 

Given that data collection was focussed on disturbance in intertidal areas, in the base model 

human disturbance only occurs on the intertidal patches and not on the roost or while birds 

are feeding in fields (see patch parameters, below). However a global variable called ‘roost 

disturbance frequency’ was also included to allow testing of the sensitivity of model 

predictions to additional disturbance in fields and at the roost.  

5.3.4. Patch parameters 

Spatial extent and patch availability 

The intertidal areas of Poole Harbour were split into 31 foraging patches, including a single 

inland foraging patch called ‘fields’, plus a ‘roost’ patch where birds could rest at high tide but 

not feed. Each intertidal patch was given a shore height using tidal modelling software 

developed by HR Wallingford (Benson 2016), which when compared with the tide height 

during the time step determined whether or not it was exposed and therefore available to 

the birds for foraging. Fields were available at all states of the tide, but only during daylight; 

and the roost was always available. 

Prey type, abundance, size and energy content 

The distribution and abundance (density) of benthic invertebrates across the 30 intertidal 

patches was based on the sampling carried out by Herbert et al. (2010), and earthworm 

densities for the fields patch were obtained from data on surrounding wet grassland (Durell 

et al., 1998). Species were grouped together into eight resource types: cockles, mussels, 

winkles, other molluscs, crustaceans, peringia, marine worms and earthworms, which were 

each further sub-divided into size classes relevant to the sizes consumed by different bird 

species (Goss-Custard et al. 2006b). Each species size class was then given a value for energy 
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content based on species-specific relationships identified by Thomas et al. (2004) between 

body size (total length, L) and mg of ash-free dry mass (AFDM) (Equation 5.2), and using an 

energy density of 22 kJ/gAFDM (Zwarts and Wanink 1993). 

ln(𝐴𝐹𝐷𝑀) = 𝐶𝑜𝑒𝑓1 × (ln(𝐿) − 𝐶𝑜𝑒𝑓2) Equation 5.2 

Wildfowler presence 

Wildfowling in Poole Harbour can take place between 1 September and 20 February, 

inclusive, on Crown Foreshore that is not designated as a refuge area (see previous chapter 

for more details), and it generally takes place between dawn and dusk so it was limited to 

between 6am and 6pm in model simulations. Patches were given a probability of a wildfowler 

being present based on the following equation:  

𝑃(𝑤𝑖𝑙𝑑𝑓𝑜𝑤𝑙𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) = 𝑉 ÷ 𝐷 ÷ 𝐴 ÷ 𝐻 × 𝑀 × 𝑃𝑎𝑡𝑐ℎ𝑎𝑟𝑒𝑎 × 𝑃𝑎𝑡𝑐ℎ𝑠ℎ𝑜𝑡 Equation 5.3 

where 𝑉 is the number of visits in a season, 𝐷 is the number of days in a season, 𝐴 is the total 

area where wildfowling can occur, 𝐻 is the hours of occurrence per day, 𝑀 is the mean 

duration per visit, 𝑃𝑎𝑡𝑐ℎ𝑎𝑟𝑒𝑎 is the size of the patch, and 𝑃𝑎𝑡𝑐ℎ𝑠ℎ𝑜𝑡 is the proportion of the 

patch over which shooting can occur. This probability value was used to determine for each 

patch and time step whether a wildfowler was present (by comparing it with a randomly 

selected number between zero and one). In this way, patches could not have more than one 

wildfowler present at a time, which is usually the case in reality (Matt Ellis – BASC, pers. 

comm.). 

Other potential disturbers 

The number of potential disturbers on the path and on the intertidal habitat was determined 

for each patch using the results of the field observations and according to the patch area and 

length of shoreline. Potential disturbers could be present in the model between 6am and 

10pm, though with lower visitor frequencies between 6pm and 10pm according to the 

findings by Stillman et al. (2012) that 6% of coastal visits occur during darkness and by Liley et 

al. (2008) that most visits after dark in Poole Harbour occur before 10pm.
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Table 5.1. Forager constants used in the model – see text for explanation of how the values were obtained and used. LCT = Lower critical temperature. BMR = 

basal metabolic rate. 

Species 

Initial 

population size 

(nearest 50) 

Target energy 

store (kJ) 

Daily metabolic 

rate 2.1 x BMR 

(kJ) 

LCT (˚C) 
Thermostatic 

costs (kJ/day/˚C) 

Forager 

coefficient 

Night foraging 

efficiency 

Interference 

threshold density 

(birds/m2) 

Curlew 850 10115.07 768.4530 5.0 52 -1.034 0.82 0.01 

Oystercatcher 850 6729.660 590.5137 10.1 31.7 -1.123* 0.81 0.01 

Bar-tailed godwit 100 4079.985 385.6419 15.3 14.2 -1.266 0.87 0.01 

Black-tailed godwit 1300 4716.250 380.1336 15.4 13.8 -1.271 0.87 0.01 

Grey plover 100 3992.520 327.5874 16.6 10.4 -1.321 1 0.01 

Redshank 750 2154.040 233.8623 18.6 5.5 -1.434 0.95 0.01 

Dunlin 1400 377.643 103.3515 20.8 1.2 -1.708 0.82 0.01 

* forager coefficient = -1.350 for oystercatchers when feeding on mussels.
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5.3.5. Forager parameters 

Species and population sizes 

Model simulations included the seven most abundant wader species in Poole Harbour – 

curlew Numenius arquata, oystercatcher, bar-tailed godwit Limosa lapponica, black-tailed 

godwit Limosa limosa, grey plover Pluvialis squatarola, redshank Tringa totanus and dunlin 

Calidris alpina – all of which have average winter monthly Wetland Bird Survey (WeBS) 

counts of 100 or more individuals and contribute to the wintering waterbird assemblage that 

qualifies the site as a wetland of international importance (Holt et al. 2015, JNCC 2016c). 

Black-tailed godwit numbers are also of international importance in their own right (JNCC 

2016c). Initial population sizes at the start of each simulation were based on the WeBS five 

year average for September to March 2009/10 – 2013/14 (Holt et al. 2015) and rounded to 

the nearest 50. All of the species-specific forager constants used in the model are shown in 

Table 5.1 and an overview of the new disturbance-related parameters is given in Table 5.2. 

Body mass and energy stores 

Arrival body mass values (g) for each species were set at target body mass values, obtained 

from the BTO Bird Facts database (British Trust for Ornithology 2015), and multiplied by the 

energy density of fat 34.3kJ/g (Kersten and Piersma 1987) after subtracting starvation mass 

to determine each species’ arrival energy store (K. M. Bowgen, BU, unpublished literature 

review). Model birds therefore attempted to maintain that energy store throughout the 

winter, and they starved if their energy store dropped to zero. 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒 (𝑘𝐽) = (𝑀𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑀𝑠𝑡𝑎𝑟𝑣𝑒)  × 34.3  Equation 5.4 

Metabolic rate and thermoregulation 

Field metabolic rate (FMR) i.e. daily thermoneutral energy requirement was set at 2.1 times 

the basal metabolic rate (BMR) following Kersten and Piersma (1987): 

𝐹𝑀𝑅 (𝑘𝐽 𝑝𝑒𝑟 𝑑𝑎𝑦) = 2.1 × 437 × 𝑀𝑎𝑠𝑠(𝑘𝑔)0.729 Equation 5.5 

And thermoregulatory costs below a lower critical temperature (LCT) were calculated using 

the following equations:  

𝐿𝐶𝑇 (˚𝐶) =  0.0216 × 𝑀𝑎𝑠𝑠(𝑔) + 21.896 Equation 5.6 

𝐶𝑜𝑠𝑡 (𝑘𝐽 𝑝𝑒𝑟 𝑑𝑎𝑦 𝑝𝑒𝑟 ˚𝐶 𝑏𝑒𝑙𝑜𝑤 𝐿𝐶𝑇) =  0.0055 × 𝑀𝑎𝑠𝑠(𝑔)1.3737 Equation 5.7 
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The coefficients for these two equations were estimated by plotting the relationship between 

actual body mass and measured thermoregulatory costs for several wader species presented 

in the literature (K. M. Bowgen, BU, unpublished data). Hourly metabolic costs (combined 

FMR and thermoregulatory costs) were deducted from the birds’ energy stores at the end of 

each time step. 

Foraging decisions and intake rates 

The foraging rate of birds in the model was determined by the abundance and ease of 

assimilation of the energy content of invertebrate prey, the strength of interference through 

competition with other individuals, and whether it was day or night. Interference-free intake 

rate (IFIR) i.e. in the absence of density-dependent competition, was calculated using 

Equations 5.8 and 5.9: 

𝐼𝐹𝐼𝑅 (𝑚𝑔 𝑝𝑒𝑟 𝑠) = 𝑓
𝐼𝐹𝐼𝑅𝑚𝑎𝑥 𝐵

𝐵50 + 𝐵
 Equation 5.8 

𝑙𝑜𝑔𝑒(𝐼𝐹𝐼𝑅𝑚𝑎𝑥) = 𝐶𝑓𝑜𝑟𝑎𝑔𝑒𝑟 + 0.365𝑙𝑜𝑔𝑒(1.05 × 𝑀𝑝𝑟𝑒𝑦) Equation 5.9 

where 𝑓 is foraging efficiency, 𝐵 is patch biomass density of prey within the size range 

consumed (mg/m2), 𝐼𝐹𝐼𝑅𝑚𝑎𝑥 is the maximum intake rate when prey are superabundant, and 

𝐵50 is the prey biomass density at which intake rate is 50% of its maximum. 𝐶𝑓𝑜𝑟𝑎𝑔𝑒𝑟 is a 

species-specific forager coefficient related to body mass, and 𝑀𝑝𝑟𝑒𝑦 is the mean AFDM (mg) 

of prey within the size range consumed. Values for 𝐶𝑓𝑜𝑟𝑎𝑔𝑒𝑟 and 𝐵50 were obtained from 

Goss-Custard et al. (2006b), who undertook a literature review and multiple regression 

analyis of the correlates of loge intake rates in waders. 𝑀𝑝𝑟𝑒𝑦 values for each species and size 

class were those measured by from Thomas et al. (2004) in a benthic core sampling survey of 

Poole Harbour. The foraging efficiency (𝑓) of each individual within a population was selected 

from a normal distribution with mean = 1 and standard deviation = 0.125 (Goss-Custard et al. 

1995), which introduced an element of stochasticity between model runs. This was adjusted 

by a given proportion for each species when foraging at night (Sitters (2000) and Lourenço et 

al. (2008) as interpreted by Stillman et al. (2012)). Assimilation efficiency was assumed to be 

0.75 for most birds consuming most diets, and 0.85 for birds consuming crustaceans and 

oystercatchers consuming molluscs (Goss-Custard et al. 2006b). Interference effects through 

prey stealing by conspecifics and/or escape by mobile prey were incorporated for each 

species when the density of competitors on a patch exceeded the threshold density of 0.01 

birds/m2 (Goss-Custard and Stillman 2008, K. M. Bowgen [BU] unpublished data).  
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At the start of each time step birds chose a patch and diet with which they could achieve the 

greatest final energy store by the end of that time step, up to a maximum of their target 

energy store. When birds reached their target they rested for the remainder of the time step. 

If there was more than one patch on which they could achieve their target, a patch was 

selected at random. 

Free area 

The model calculated the area of each patch available to foragers after accounting for the 

presence of human activities based on the species-specific responses to disturbance  

described in Chapters 3 and 4. Shoreline activities only disturbed the upshore area (see patch 

parameters) but intertidal activities could be present throughout the full extent of intertidal 

patches. Activities occurred randomly in space and time with the exception of wildfowling, 

which was assumed to take place separately from other activities. The proportion of patch 

disturbed was calculated with the formula given by Stillman et al. (2012) following binomial 

probability theory and based on the assumption that birds and potential disturbers are 

independently distributed in time and space: 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 = 1 − (1 − 𝑝1)𝑛1 Equation 5.10 

where 𝑝1 is the proportion disturbed by a single activity and assumed to be the weighted 

mean of the proportion of a patch disturbed by stationary and moving activities respectively 

(based on areas calculated in Equations 5.11a-d; Figure 5.4) and 𝑛1 is the total number of 

potential disturbers present. 

𝐴𝑟𝑒𝑎 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 =  
𝜋𝑟2

2

2
+ 2𝑟1 ∙ ℎ1 ∙ 𝑠 + 2(𝑟2 − 𝑟1) ∙ ℎ2 ∙ 𝑠 Equation 5.11a 

𝐴𝑟𝑒𝑎 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 =  𝜋 ∙ 𝑟2
2  5.11b 

𝐴𝑟𝑒𝑎 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 =  

𝜋𝑟2
2

2 + 2𝑟1 ∙ ℎ1 ∙ 𝑠 + 2(𝑟2 − 𝑟1) ∙ ℎ2 ∙ 𝑠

2
 

5.11c 

𝐴𝑟𝑒𝑎 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 =  
𝜋 ∙ 𝑟2

2

2
 5.11d 
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Figure 5.4. Conceptual diagram of the area disturbed by stationary and moving activities. 

r1=FID; r2=alert distance; h1=recovery time after flight; h2=recovery time after alert; s=speed. 

Adapted from van der Meer (1985) in Smit and Visser (1993). 

A value of 2.5 km/h was used for 𝑠, and 𝑟1, 𝑟2 and ℎ2 were set according to the results of the 

field experiments already described (Tables 3.3 and 4.7). Recovery time after flight (ℎ1) is 

likely to vary between disturbance types and depending on whether or not the redistribution 

of birds after a disturbance causes density dependent reductions in bird intake rates through 

interference competition. In the absence of site-specific field data for this, a value of 30 

minutes was used for non-wildfowling disturbances – the mean recovery time for 

oystercatchers as reported by Stillman and Goss-Custard (2002). When a wildfowler was 

present in a patch, birds in the model were excluded from the area disturbed by the sound of 

a shotgun for the whole duration of that time step, which is consistent with observations 

during the wildfowling experiments (Chapter 4) whereby birds rarely fully returned to their 

original distribution before the end of a wildfowling visit. 

The proportion of upshore area and remaining intertidal area disturbed by non-wildfowlers 

were calculated separately and then combined with the proportion disturbed by wildfowling 

to give a single value of free area for each species on each patch. 

Number of flight responses 

Given that the size of each patch is large relative to the area disturbed by a single activity, not 

all birds on a patch will be disturbed by every activity present so the mean number of 

disturbances per bird was estimated for each patch. Following binomial probability theory, 

the mean number of flight responses is expected to be equal to the number of potential 
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disturbers multiplied by the probability of a single activity disturbing all of the birds present 

i.e. the proportion of the patch disturbed per activity. All birds on a patch therefore 

experienced the same number of disturbances. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑝𝑒𝑟 𝑏𝑖𝑟𝑑 = 𝑛2 × 𝑝2 Equation 5.12 

Stationary activities (such as bait digging and angling) were assumed not to result in bird 

flight responses so 𝑛2 is the number of moving activities only and 𝑝2 is the probability of a 

single moving activity resulting in a flight response from all birds. The probability of birds 

being disturbed by the sound of the shotgun was calculated using equation 5.13.  

𝑃(𝐹𝑙𝑖𝑔ℎ𝑡) =
𝐴𝑟𝑒𝑎𝑠ℎ𝑜𝑡 − 𝐴𝑟𝑒𝑎𝑏𝑜𝑎𝑡

𝐴𝑟𝑒𝑎𝑝𝑎𝑡𝑐ℎ − 𝐴𝑟𝑒𝑎𝑏𝑜𝑎𝑡
 

Equation 5.13 

𝐴𝑟𝑒𝑎𝑠ℎ𝑜𝑡 is the area disturbed by a shot, 𝐴𝑟𝑒𝑎𝑏𝑜𝑎𝑡 is the area from which birds are excluded 

due to the presence of the boat, and 𝐴𝑟𝑒𝑎𝑝𝑎𝑡𝑐ℎ is the total area of the patch. Since birds 

were assumed not to return to the disturbed area before the end of that time step, they 

could only be disturbed by the first shot fired as it was assumed that no birds would be close 

enough to be disturbed by any subsequent shots. 

Free time 

Free time available to birds for foraging during each time step was calculated from the 

recorded species- and activity-specific values for total feeding time lost per disturbance 

response and the total number of disturbances experienced by each bird due to each activity 

type.  

Energy costs of disturbance 

The energetic costs of flight per disturbance were calculated from the observations of time 

spent in flight for each type of activity and using Equation 5.14 (Kvist et al. 2001). The 

cumulative energetic costs of all disturbance responses were added to the birds’ hourly 

metabolic rate and deducted from their energy stores at the end of each time step. 

𝐶𝑜𝑠𝑡 (𝑘𝐽 𝑝𝑒𝑟 𝑠) =
100.39 × 𝑀𝑎𝑠𝑠(𝑔)0.35 − 0.95

1000
 Equation 5.14 

Individual variation 

In addition to the variation in foraging efficiency described above, birds varied in their 

relative dominance (selected from a uniform distribution between 0 and 1), which influenced 

their susceptibility to interference from competitors and added another element of 

stochasticity between model runs. 
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Table 5.2. An overview of the disturbance-related parameters added to the model. Detailed 

descriptions can be found in the main text. 

a) Global parameters 

Parameter Base value Units Details* 

Recovery time [pedestrian] 0.5 hours 

Time taken for birds to return to 

their original distribution after being 

disturbed by an approaching 

pedestrian. 

Recovery time [wildfowling] 1 hours 

Time taken for birds to return to 

their original distribution after being 

disturbed by the sound of the 

shotgun. 

Roost disturbance frequency 0 per hour 

Maximum value tested was based on 

results of observations at Baiter 

Park. 

b) Patch parameters 

Parameter Base value Units Details* 

Shore length 0-7 km 

Length of shoreline for patches, 

calculated using the mean high water 

mark in ArcGIS 10.3. 

Number of visitors on path 
Calculated in 

model 
per km 

Results of the people-watching 

fieldwork. 

Number of visitors on 

intertidal area 

Calculated in 

model 
per km2 Results of the people-watching 

fieldwork. 

Wildfowler present 0/1 - See text. 

Proportion of intertidal 

activities that are stationary 
0-100 % 

Results of the people-watching 

fieldwork. 

Proportion of path activities 

that are stationary 
0-100 % 

Results of the people-watching 

fieldwork. 
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c) Forager parameters 

Parameter Base value Units Details* 

Maximum upshore area 
Calculated 

in model 
m2 

The species-specific maximum area 

that can be disturbed by visitors at 

the top of the shore. 

Proportion of patch disturbed 

by non-wildfowling activities 
0-100 % 

Used to calculate free area available 

for feeding. 

Proportion of patch disturbed 

by wildfowler’s boat 
0-100 % 

Used to calculate free area available 

for feeding. 

Proportion of patch disturbed 

by sound of shotgun 
0-100 % 

Used to calculate free area available 

for feeding. 

Time cost 
Calculated 

in model 
% 

Proportion of time step lost due to 

responding to disturbance. 

Energy cost 
Calculated 

in model 
kJ 

Additional costs of flight due to 

responding to disturbance. 

* See text for calculations. 

5.3.6. Model outputs and validation 

At the end of each simulation the model reports the mean proportion of time spent feeding, 

final energy stores and ultimately survival of foragers, which was used to compare the effects 

and impacts of different disturbance regimes. Given that the model is a closed system (i.e. 

foragers only leave the simulation if they starve), the term ‘predicted survival’ should be 

considered as a measure of the number of birds that Poole Harbour is predicted to be able to 

support (site carrying capacity), since in real life birds that are having difficulty meeting their 

energy requirements may move elsewhere before their energy stores reach zero (Davidson 

and Evans 1982, Camphuysen et al. 1996). 

The predictions of the base model were validated by comparing them with observed data on 

the distribution of birds around the estuary (Holt et al. 2015) and on the proportion of time 

that birds spent feeding (Goss-Custard and Stillman 2008 and this study; see Chapter 3). 

Observed and predicted values corresponded well (K. M. Bowgen, BU, unpublished data) so 

we can have confidence in the model predictions for different frequencies of disturbance and 

under different scenarios of environmental change. 

5.3.7. Sensitivity analysis 

Model predictions of bird overwinter survival were tested for sensitivity to variations in three 

disturbance-related parameters (Table 5.3) that were not included in the disturbance 

scenarios described in the next section. For each of the analyses the other disturbance 

related parameters were fixed at the levels used in the base model. 
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Chapters 3 and 4 demonstrated that as well as varying between species, bird responses to 

disturbance differ depending on environmental conditions, disturbance type and individual 

characteristics; however in the interests of model parsimony this level of complexity was not 

included in the base model and responses were fixed for each species using the mean of 

wildfowling-specific responses and the mean results of the pedestrian disturbance 

experiments (Chapter 3) for all other potential disturbance types. The effect of this 

simplification on model predictions was therefore tested by varying the fixed values for the 

magnitude of bird responses to determine the importance of detailed field experiments to 

inform these parameter values. 

Sensitivity of model predictions was also tested in relation to variations in bird recovery time 

(time taken for birds to return to their original distribution after a disturbance) separately 

from the other response parameters since the factors that affect recovery time are likely to 

be different from those affecting FID, flight time, boat exclusion area etc. Most of the 

variation in bird FID, flight time and total time lost can be explained by species, body mass, 

environmental conditions and site differences, whereas recovery time is more likely to be 

governed by the density of birds. If the resulting density of birds after a disturbance is such 

that intake rate is reduced due to increased interference or kleptoparasitism, then birds 

would be expected to redistribute across the patch more quickly than if intake rates were 

unaffected at the new density of birds. 

The assumption in the base model that birds disturbed by the sound of the shotgun do not 

return to the area until after the wildfowler has left means that birds would only be disturbed 

once per hour regardless of the number of shots fired. If birds returned sooner they could be 

disturbed by subsequent shots so sensitivity of model predictions was also tested in relation 

to the number of shots per hour that result in a flight response. 

Table 5.3. Parameters and values included in the sensitivity analysis. 

Parameter Units Range of values tested 

Recovery time (pedestrian disturbance) minutes 10 to 60 (base model = 30) 

Magnitude of response*  % change -50% to +50% (base model = 0) 

Number of shots that disturb birds Number per hour 1 to 6 (base model = 1) 

* alert distance, FID, alert time, flight time, latency time, total time lost, boat exclusion 

distance, and effective disturbance distance (EDD); all adjusted by the same proportion at the 

same time. 
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5.3.8. Disturbance scenarios 

The main reason for developing this model of Poole Harbour was to investigate the impacts 

of disturbance on wintering waders; to determine whether over-winter populations are 

limited by current frequencies of human activities; and to explore the contribution of 

wildfowling to the combined impacts of disturbance from all activities. Once calibration, 

validation and sensitivity analysis were complete, the model was used to test the impacts of 

different disturbance scenarios on the survival, body condition (final energy store as a 

proportion of target energy store) and proportion of time spent feeding for each species at 

the end of each simulation. Each tick in Table 5.5 represents one scenario with the 

combination of parameters indicated; and the mean outputs were calculated from ten model 

runs of each scenario. 

Disturbance scenarios included different values for each of four parameters: disturbance 

index, distribution of activities, number of roost disturbance, and number of wildfowling 

visits. Each is described below. 

The ‘disturbance index’ value is the relative number of potential disturbers (both wildfowling 

and other activities) i.e. disturbance index = 1 for the current frequency of human activities. 

Activities are currently concentrated in specific areas of Poole Harbour, so increased 

disturbance frequency scenarios were tested both with observed distributions of activities 

and with an even spread across all patches. In this way the potential impact could be 

assessed of increased frequencies of human activities in areas of the Harbour that are 

currently relatively undisturbed. 

The impacts of increased intensities of wildfowling were also tested in combination with 

different frequencies of other human activities. 

Aside from the observations at Baiter Park, it was beyond the scope of this study to 

undertake detailed observations of disturbance to roosting birds; however this could be an 

important source of additional daily energetic costs (e.g. Lilleyman et al. 2016) so the model 

was used to test the impacts of different numbers of disturbances per hour when birds are 

feeding in fields or resting on the roost. This was tested in combination with different 

scenarios of increasing frequencies of activities on the intertidal patches.  
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5.3.9. Environmental change scenarios 

In addition to the disturbance scenarios listed above, the predicted impacts of disturbance 

were also tested in combination with sea level rise and changes in the availability of 

invertebrate prey at the start of the model. Sea level scenarios were based on the range of 

estimates for 2020-2060 (Table 5.4) using UK Climate Projections data (Jenkins et al. 2009). 

All disturbance and environmental change scenario parameter combinations are shown in 

Table 5.5. Again, the model was run ten times for each scenario and mean predicted survival, 

body condition and proportion of time spent feeding were calculated for each species. 

Table 5.4. Central estimates for each decade of relative sea level rise (London) with respect to 

2010 levels (tide heights used in the model were for 2011/12). Adapted from UK Climate 

Projections data (Jenkins et al. 2009). 

Year 
Relative sea level rise (cm) 

High emissions Medium emissions Low emissions 

2020 4.2 3.5 2.9 

2030 8.7 7.3 6.1 

2040 13.5 11.3 9.5 

2050 18.5 15.6 13.1 

2060 24.1 20.1 16.9 
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Table 5.5. Parameter combinations and values used for the disturbance- and environmental change scenarios that were selected to be tested for Poole Harbour. 

Index* 

Distribution of 

activities 

Distribution of activities = observed 

Roost disturbances per hr  Wildfowling visits per season  Sea level rise (cm)  Relative prey density  

Observed Even 0 2 4 6 8 10  0 100 200 300 400 500  0 5 10 20  1.1 1 0.9 0.8 0.7  

0                        

1                   

5                        

10                   

15                        

20                        

25                   

* Index = relative number of potential disturbers (both wildfowling and other activities). 

Current frequency of human activities: disturbance index = 1.
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5.4 Results 

5.4.1. Field observations 

Activities affecting the intertidal area 

562 scans across the five intertidal sub-sites resulted in a total of 4501 observations of 

potential disturbance events, 66% of which were walkers (with or without a dog). Activities 

were not evenly distributed across sites (Figure 5.5) or shore levels (Figure 5.6) and the 

resulting values used to parameterise the model (after accounting for differences in area and 

length of shoreline between sub-sites) are shown in Table 5.6. 

 

Figure 5.5. Activity types observed at each sub-site. ‘Walker’ includes dog walkers. ‘Other 

stationary activities’ includes people sitting on benches, birdwatchers, photographers and 

anglers. Total number of scans: Arne = 77; Brand’s Bay = 126; Holes Bay = 108; Parkstone 

Bay = 112; Sandbanks = 139. 

Two types of activity that were not observed during the survey visits, but which are known to 

occur in Poole Harbour, are bait dragging and pump scoop dredging (Liley and Fearnley 2012, 

Southern IFCA 2016). Discussion of model predictions will include the potential of these 

activities to disturb feeding and roosting birds and alter the invertebrate prey availability. 

Despite two of the sub-sites being permitted wildfowling areas (Brand’s Bay and Arne), no 

instances of wildfowling were recorded throughout the course of these surveys, so the model 

used values published by Dorset Wildfowlers’ Association, as described below.   
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Table 5.6. Observed values used to parameterise the model to calculate area disturbed by 

human activities (excluding wildfowling). The total number of scans at each site is shown in 

brackets. 

Sub-site 

Number of potential disturbers 

present at the same time 

Proportion of activities that 

are stationary 

On intertidal 

(per km2) 

Along shoreline 

(per km) 
Intertidal Shoreline 

Arne (77) 0.374 0.052 0.3 0 

Brand's Bay (126) 3.152 1.444 0.71 0.83 

Holes Bay (108) 0.412 2.029 0 0.12 

Parkstone Bay (112) 10.477 46.092 0.06 0.07 

Sandbanks (139) 7.701 3.589 0.52 0.08 

The contribution that wildfowling makes to the total daily occurrences of human activities 

was estimated based on the numbers of visits reported by Dorset Wildfowlers’ Association 

(2013). The mean number of visits per season for the period 2001/02 to 2012/13 was 131, 

which equals 0.76 visits per day of the wildfowling season (Dorset Wildfowlers’ Association 

2013). By scaling up the results for the whole of Poole Harbour according to the proportions 

shown in Figure 5.2, the daily number of occurrences of human activities is estimated to be 

2023, or 142 per km2; 0.038% of which is represented by wildfowling. 

 

Figure 5.6. Observed distribution of activities across shore levels at each sub-site. 
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Roost disturbance 

A total of 1194 potential disturbers were observed during the six hours of surveys at the 

Baiter Park high tide roost (Figure 5.7), 4% of which resulted in a disturbance response (walk 

or flight) from one or more birds. 88% of flight responses were caused by dogs; 10% by 

walkers; and 1% by stationary activities (a photographer). The mean number of disturbance 

responses per hour was 8.17 ± s.e. 3.3. 

 

Figure 5.7. Total number of activities and disturbances observed during six hour-long surveys 

at the Baiter Park high tide roost. 

5.4.2. Model predictions – disturbance scenarios 

Visitor numbers and distribution of activities 

Model outputs showed that increased frequencies of human activities in Poole Harbour 

(current situation: disturbance index = 1) can reduce both the predicted survival (Figure 5.8a) 

and body condition of surviving birds (Figure 5.8c). This was apparent for all species except 

oystercatcher and curlew, whose survival remained close to or at 100% across the range of 

visitor frequencies tested. The impact was more pronounced, particularly for bar-tailed- and 

black-tailed godwits, when human activities were evenly spread around the site rather than 

occurring more frequently in specific areas according to the distribution that were observed 

in the field. With the exception of bar-tailed godwit, disturbance at current visitor 

frequencies and distributions does not appear to be reducing the number of birds that can be 

supported overwinter or bird final body condition. Species that are not godwits were also 
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predicted to be able to cope with at least a ten-fold increase in visitor numbers before body 

condition was affected; and a fifteen-fold increase before showing a decline in survival. Birds 

were able to compensate for the costs associated with increased frequencies of disturbance 

by increasing their proportion of time spent feeding (Figure 5.8b). 

Effect of wildfowling 

Figure 5.9 shows that the model predicted no relationship between the number of 

wildfowling visits in a season and a) bird survival or c) final body condition. This was also the 

case when tested in combination with 10 and 25 times the current frequency of other human 

activities. In addition, increased wildfowling intensities were not predicted to affect the 

proportion of time that birds spent feeding (Figure 5.9b), though time spent feeding was 

predicted to increase at higher frequencies of other types of disturbance. 

Roost and field disturbances per hour 

At current levels of intertidal disturbance the model outputs showed no relationship between 

frequency of roost/field disturbance and bird survival (Figure 5.10a) or body condition (Figure 

5.10c). Birds were predicted to increase the proportion of time spent feeding (Figure 5.10b) 

and could therefore cope with the range of roost disturbance frequencies tested. This was 

also the case with a disturbance index of ten; however, with a disturbance index of 25, 

increased roost and field disturbance was predicted to reduce the survival and body 

condition of grey plover, black-tailed godwit and bar-tailed godwit even though they 

increased their proportion of time spent feeding. 
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Figure 5.8. The predicted impacts of increased numbers of human visitors and the distribution 

of activities around Poole Harbour on a) survival; b) proportion of time spent feeding; and c) 

body condition of birds. The vertical dotted line marks the current situation at disturbance 

index = 1. ‘Blackwit’ = black-tailed godwit and ‘Barwit’ = bar-tailed godwit. Shading 

indicates the 95% confidence interval around the mean, derived by bootstrapping.  
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Figure 5.9. The predicted impacts of increased intensities of wildfowling in combination with 

other human activities in Poole Harbour on a) survival; b) proportion of time spent feeding; 

and c) body condition of birds. The vertical dotted line marks the maximum number of visits 

currently permitted (183). ‘Blackwit’ = black-tailed godwit and ‘Barwit’ = bar-tailed godwit. 

Shading indicates the 95% confidence interval around the mean, derived by bootstrapping.  



 

185 

 

Figure 5.10. The predicted impacts of roost disturbance in combination with disturbance of 

foraging birds during the intertidal exposure period on a) survival; b) proportion of time spent 

feeding; and c) body condition of birds. The vertical dotted lines mark the roost disturbance 

frequency used in the base model (zero disturbances per hour) and the frequency observed at 

Baiter Park (8.17/hr). ‘Blackwit’ = black-tailed godwit and ‘Barwit’ = bar-tailed godwit. 

Shading indicates the 95% confidence interval around the mean, derived by bootstrapping. 
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5.4.3. Model predictions – impacts of disturbance in combination with 

environmental change 

Sea level rise 

With the exception of oystercatcher, one or more of the sea level rise scenarios that were 

tested with the model were predicted to result in reduced survival (Figure 5.11a) and body 

condition (Figure 5.11c) of birds despite increasing the proportion of time spent feeding 

(Figure 5.11b). This impact was greater in combination with increased numbers of human 

visitors; particularly with visitor numbers more than ten times current numbers. However, 

the interaction between disturbance index and sea level rise was less strong in relation to 

predicted final energy stores (Figure 5.11b; dunlin and redshank). 

At current disturbance frequencies dunlin, redshank, grey plover oystercatcher and curlew 

are likely to be able to cope with a 5 cm increase in sea level without their survival or body 

condition at the end of the winter being affected. However, even under a low emissions 

scenario, sea level is predicted to rise beyond this by 2030 – see Table 5.4 (Jenkins et al. 

2009). Additionally increases in disturbance frequencies between now and 2060 would be 

expected to exacerbate the impacts of sea level rise on all species except oystercatcher. 

Relative prey density 

Figure 5.12 shows that dunlin, redshank, oystercatcher and curlew survival and body 

condition were predicted to remain at or close to 100% for all scenarios of varying 

invertebrate prey abundance. Predicted survival and body condition of the two godwit 

species (and to a lesser extent grey plover), however, declined and improved respectively 

with decreased and increased prey availability. These species did not show an obvious 

increase in proportion of time spent feeding (Figure 5.12b) and the impact of reduced prey 

availability was amplified by increasing disturbance frequencies. 
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Figure 5.11. The predicted impacts of increased numbers of human visitors in combination 

with three sea level rise scenarios (5 cm; 10 cm; and 20 cm) on a) survival; b) proportion of 

time spent feeding; and c) body condition of birds. The vertical dotted line marks current 

visitor frequencies at disturbance index = 1. ‘Blackwit’ = black-tailed godwit and ‘Barwit’ = 

bar-tailed godwit. Shading indicates the 95% confidence interval around the mean, derived by 

bootstrapping. 
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Figure 5.12. The predicted impacts of increased numbers of human visitors in combination 

with different scenarios of relative prey density at the start of the winter on a) survival; b) 

proportion of time spent feeing; and c) body condition of birds. The vertical dotted line marks 

current visitor frequencies at disturbance index = 1. ‘Blackwit’ = black-tailed godwit and 

‘Barwit’ = bar-tailed godwit. Shading indicates the 95% confidence interval around the mean, 

derived by bootstrapping.  
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5.4.4. Model sensitivity analysis 

Relative change in magnitude of response 

Figure 5.13 shows that with all other parameters fixed at base model values, model 

predictions were robust to even a 40% increase or decrease in bird magnitude of response. 

 

Figure 5.13. Sensitivity of model predictions of mean survival to variations in the magnitude 

of bird responses to disturbance (alert distance, FID, alert time, flight time, latency time, total 

time lost, boat exclusion distance, and effective disturbance distance). Pale grey bar indicates 

the parameter value used in the base model. Error bars show ± s.e. ‘Blackwit’ = black-tailed 

godwit and ‘Barwit’ = bar-tailed godwit. 
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Recovery time (pedestrian and wildfowling disturbance) 

With perhaps the exception of bar-tailed godwit, when all other parameters were fixed at 

base model values, model predictions were robust to variations in bird recovery time 

following a pedestrian disturbance (Figure 5.14). This was also the case for the number of 

shots fired by a wildfowler per hour that cause birds to take flight (Figure 5.15).  

 

Figure 5.14. Sensitivity of model predictions of mean survival to variations in bird recovery 

time (time to return to original distribution after disturbance). Pale grey bar indicates the 

parameter value used in the base model. Error bars show ± s.e.  ‘Blackwit’ = black-tailed 

godwit and ‘Barwit’ = bar-tailed godwit. 

Figure 5.15. Sensitivity of model predictions of mean survival to variations in the number of 

wildfowler shots per hour that cause birds to take flight. Pale grey bar indicates the parameter 

value used in the base model. Error bars show ± s.e.  ‘Blackwit’ = black-tailed godwit and 

‘Barwit’ = bar-tailed godwit.  
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5.5 Discussion 

When assessing the condition of designated sites of international conservation importance, 

one key indicator is whether or not species for which the site is designated are significantly 

impacted by disturbance from human activities (either alone or in combination with other 

threats). With this knowledge conservation managers and regulators can determine where 

and when intervention may be necessary to maintain or restore favourable condition. This 

study has therefore combined detailed field observations (patterns of both human activities 

and bird behaviour) with simulation modelling to quantify and compare the impacts of 

different types of anthropogenic disturbance in Poole Harbour. Parameters relating to 

disturbance were incorporated into a ‘Morph’ IBM (Stillman 2008) for the site, which was 

then used to test the impacts of present-day patterns of human activities and to make 

predictions about different scenarios of increased visitor numbers and environmental change. 

The potential impacts of disturbance were quantified in three ways: estimates of the number 

of birds that can be supported by the site (carrying capacity); time budget measurements 

(proportion of time spent feeding); and the end-of-season body condition of surviving birds. 

Using a similar model for the Solent, UK, Stillman et al. (2012) found that disturbance at 

current levels may be reducing the survival of four of the eight species tested; and increases 

in visitor numbers due to future housing scenarios were predicted to further reduce survival 

for two species. By contrast, results of this study for Poole Harbour suggest that current 

visitor levels are not reducing the site carrying capacity (with the exception of bar-tailed 

godwit). Estimates of mean daily visitor densities for the Solent (estimated using household 

responses to a questionnaire), however, were considerably higher than observed in Poole 

Harbour (49.99 people per hectare compared to 1.42 in Poole). Whilst this may be due to 

differences in the methods used to estimate visitor numbers, it highlights the fact that the 

impacts of disturbance may vary considerably between sites; in the same way that bird 

responses to disturbance vary, as demonstrated in previous chapters. 

5.5.1. Impacts of disturbance alone and in combination with two types of 

environmental change 

As was expected based on the results of previous chapters, most birds in Poole Harbour do 

not appear to be negatively impacted by disturbance from current patterns of human 

activities, and they are likely to be able to cope with relatively large increases in visitor 

numbers if all other factors remain constant. However, model predictions showed that extra 

disturbance from increased visitor numbers would be expected to reduce the carrying 
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capacity of Poole Harbour if this occurs in combination with other changes that reduce the 

quality of the site. This was found to be the case for reduced extent of intertidal habitat due 

to sea level rise over 5 cm or (to a lesser extent) reduced availability of invertebrate prey due, 

for example, to over-exploitation from clam dredging or baitworm dragging, or pollution 

events. Using an earlier version of the Morph modelling framework, Goss-Custard et al. 

(2006a) found that the threshold frequency of disturbance above which oystercatcher fitness 

was reduced was predicted to be lower in the baie de Somme, France, when feeding 

conditions were poor. Percival et al. (1998) used a different type of model (spatial depletion 

model) and reached a similar conclusion in relation to wigeon Anas penelope and brent 

geese: they found that the reduction in the number of birds that could be supported at 

Lindisfarne National Nature Reserve in north-eastern England was predicted to be greatest 

when habitat loss occurred at the top of the shore where the impacts of disturbance were 

expected to be greatest.  

As well as the energetic and lost feeding opportunity costs of disturbance during the 

intertidal exposure period, disturbance to roosting birds can increase daily energetic 

requirements further (Lilleyman et al. 2016). The additional energy costs can be considerable 

if the number of suitable roost sites is low or if disturbed birds are forced to fly long distances 

to find alternative sites (Rehfisch et al. 1996). Morrison (2015) visited 91 occupied and 

previously occupied roost sites around Poole Harbour, 40 of which were identified as 

potentially threatened by human disturbance (though frequencies were not quantified). 

Nevertheless roost disturbance in Poole Harbour across the range of frequencies that were 

tested with the model was not predicted to reduce bird survival or body condition; except in 

combination with an extreme increase in the number of visitors (disturbance index = 25). 

Even if the frequency of disturbance that was observed at Baiter Park (8.17 responses per 

hour) were to occur at all other roost and inland feeding sites, which is unlikely, birds were 

predicted to be able to compensate for this with a small increase in the proportion of time 

spent feeding. 

5.5.2. Comparison between activity types 

Model outputs predicted no impact of wildfowling across the range of frequencies tested. 

Bird survival, body condition and even proportion of time spent feeding were unrelated to 

number of wildfowling visits. This was apparent even with the precautionary assumption that 

birds were excluded from the disturbed intertidal area by the sound of the shotgun for the 

entire duration  of the wildfowling visit, and in combination with both large and extreme 

increases in the frequency of other activities (disturbance index = 10 and 25 respectively). 



 

193 

Chapter 4 showed that the effect of a single wildfowler (measured in space-time disturbed) is 

more than an order of magnitude greater than for a single pedestrian due to the differences 

in duration of each activity and the magnitude of bird responses. However, given that 

wildfowling represents less than 0.04% of the daily number of potentially disturbing activities 

in Poole Harbour, it is not surprising that the model predicted no reduction in most birds’ 

survival, body condition or proportion of time spent feeding in response to increased 

wildfowling intensities, when set in the context of disturbance from all other human 

activities. 

5.5.3. Management implications 

Bar-tailed godwit showed the greatest vulnerability to the impacts of disturbance in all of the 

scenarios tested; however, over-winter survival for this species was predicted to be below 

100% even in the absence of disturbance. It is also important to note that the limited 

availability in Poole Harbour of the sandy habitats (Herbert et al. 2010) that bar-tailed 

godwits prefer (Summers et al. 2002, Hopper 2008) means that the site does not support 

large numbers of the species. Only 100 individuals were included in the model so starvation 

of just one bird represented a one percentage point drop in predicted survival, whereas for 

example in dunlin, a 1% drop in survival was represented by starvation of 14 birds. 

As other researchers have noted, it is likely that the impacts of disturbance are more 

apparent when birds are already experiencing difficulties in meeting their energetic 

requirements (Durell et al. 2005, Goss-Custard et al. 2006a). In such situations (e.g. extreme 

cold weather) birds will have no extra capacity to compensate for the costs of responding to 

disturbance, except by reducing the magnitude of their responses. 

As well as reductions in site quality (relating to availability of foraging and roosting habitat 

and invertebrate prey), the main reason why birds may experience difficulties in meeting 

their energetic requirements is due to the weather. Thermoregulatory costs are high during 

periods of extreme cold (Kersten and Piersma 1987, Piersma and Morrison 1994, Wiersma 

and Piersma 1994, Kelly et al. 2002) and invertebrate prey become less accessible (Evans 

1976, Zwarts and Wanink 1993). High waves and low air pressure during winter storms also 

make the exposure of intertidal foraging habitats unpredictable (Swennen et al. 1989) as well 

as further increasing thermoregulatory costs due to the wind chill effect. Management 

measures to reduce the likelihood of disturbance occurring during prolonged periods of cold 

weather have been developed over the last three decades with standardised criteria for 

suspending waterbird shooting in the UK (Stroud et al. 2006, Ellis 2012). When such a ban 
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comes into force all coastal bird ringing activities must also cease with the exception of 

exempted weather-related research (Redfern and Clark 2001). Extension of this principle to 

reduce disturbance from other, more frequent, activities – such as walking and dog walking – 

would clearly be beneficial, though difficult to implement in practice. 

Whilst the model outputs showed that disturbance from high frequencies of human activities 

(20 or more times current levels) can reduce the predicted survival and body condition of 

birds, environmental changes through for example sea level rise, habitat loss or reductions in 

prey availability had a greater impact. Therefore to maintain the numbers of birds that can be 

supported over winter in Poole Harbour, it would be logical to continue to concentrate 

management efforts on maintaining or improving these aspects of site quality: 

i) Create or extend refuge areas where activities may be restricted and to minimise 

habitat loss due to development or through coastal squeeze (see Figures 1.9 & 4.2); 

ii) Ensure that clam dredging and bait harvesting do not reduce prey availability below 

a threshold required by the birds (part of the remit of Southern IFCA); and  

iii) Take steps to reduce pollution, nutrient enrichment and algal mat formation which 

may alter prey community structure and abundance (an obligation of the EU Water 

Framework Directive – Ferreira et al. 2007). 

5.5.4. Model limitations and improvements 

The most useful predictive models are those that capture the key system properties and 

processes without being overly complicated and they should be designed in such a way that 

they can be tested for the appropriate degree of complexity (Grimm and Railsback 2005). It 

was therefore decided not to incorporate all of the complexities of bird responses to 

disturbance that were discussed in Chapters 2 to 4, but that the consequences of that 

decision should be tested. Sensitivity analysis showed that estimates of the number of birds 

that could be supported in Poole Harbour were robust to variations in magnitude of response 

when values were fixed across the duration of a simulation i.e. the simplification was 

appropriate. Nevertheless it would be valuable in future to also test how model predictions 

might vary if these other real world relationships were incorporated e.g. inclusion of variation 

in FID, flight time and total time lost according to individual body condition and sub-site or 

under different environmental conditions. Even if model predictions are unchanged, 

incorporation of such complexities could help to improve the believability of the results for 

non-modellers. 
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Sensitivity analysis for the influence of the chosen value for amount of time taken to return 

to the original distribution of birds after disturbance by a pedestrian (recovery time) and the 

hourly number of wildfowler shots that result in birds taking flight suggested that model 

predictions were robust to variations in these parameters for all species except bar-tailed 

godwit. This would not necessarily be the case at other sites, however, so further research 

into the recovery times in relation to different disturbance types, species and bird densities 

would be beneficial 

It is likely that the timing of the field observations around low tide and during daylight 

resulted in an under-estimation of the frequency of some activities. Bait digging and angling 

often take place at night (Liley et al. 2008, Liley and Fearnley 2012); and pump scoop 

dredging for clams (Fearnley et al. 2013) and watersports occur when the intertidal area is 

covered with at least some water. Despite this, the addition of these extra occurrences of 

potential disturbance would be unlikely to alter the overall conclusions since birds were 

predicted to be able to cope with relatively large increases in the frequency of human 

activities (ten or more times current levels).  

Lastly, whilst the focus of this research was disturbance to birds during the intertidal foraging 

period, a logical extension of the work is to gain a better understanding of the frequency of 

disturbance of roosting and inland-feeding birds and how this varies around Poole Harbour. 

Roost and field disturbance from wildfowling and other activities at high tide could be 

modelled in a more spatially-explicit way. The relative importance of different roosts could be 

captured, along with the costs of moving between roost sites, and recognising that some sites 

are less likely to experience disturbance than others – for example, Brownsea Island lagoon 

compared to Baiter Park (Hopper 2008, Morrison 2015). 
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Chapter 6 – Using individual-based modelling to investigate 

how site characteristics influence impacts of disturbance on 

non-breeding waders. 

6.1 Abstract 

While site-specific individual-based models (IBMs) may offer the most reliable predictions 

about the impacts of disturbance, their development may not always be feasible. They rely 

on detailed knowledge of the distribution and abundance of benthic invertebrates and 

patterns of human activities around the site, and the expertise to develop the models and 

interpret their outputs. Simpler options would therefore be useful; so that conservation 

managers can make an initial assessment about whether disturbance is likely to be causing a 

problem and to judge whether further investigation or management measures may be 

necessary. An alternative to using percentage survival as a way of determining whether the 

impact of disturbance is significant is to assess birds ability to balance the energy budget. This 

was used as the basis for development of a new, generic IBM – using NetLogo modelling 

software – of a hypothetical estuary. This was then used to investigate whether site 

characteristics can be used to predict the impacts of disturbance, and to develop rules of 

thumb for initial site assessment. One important difference between this model and the 

Morph IBM is that disturbance could be simulated in a more spatially-explicit way so the 

costs of disturbance were assigned to individual birds rather than being spread across all 

birds on a patch. In addition to the total number of visitors per day, site characteristics that 

determined the distribution of those visitors were important explanatory factors in relation 

to bird predicted ability to balance the energy budget. The number of disturbances that birds 

experienced and the proportion of visitors that caused a disturbance were predicted to be 

greater on sites with a large number of access points (so visitors could access all areas equally 

easily). Birds were also predicted to experience greater number of disturbances on sites 

where a large proportion of visitors leave the upper shore area (firm, sandy rather than soft, 

muddy sediments), and on relatively ‘thin’ sites (where the distance between the high and 

low water marks is short).  
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6.2 Introduction 

6.2.1. Decision making on designated sites 

Managers of sites of conservation importance, particularly sites with statutory designations 

recognising their national or international significance, have a duty to ensure favourable 

conservation status by preventing, minimising or mitigating the occurrence of damaging 

activities. This is particularly relevant to estuaries both in the UK and around the world, many 

of which are recognised because of the large assemblages of migratory waterbirds that they 

support during the non-breeding season (Ramsar 2016b). Managers of such sites and policy 

makers often need to make decisions about appropriate courses of action quickly; for 

example when setting fishing and shellfishing quotas, agreeing wildfowling consents, and 

assessing planning applications for housing or port developments, whilst ensuring no 

reduction in site carrying capacity for designated species and no net loss of key habitats. 

Although the importance of evidence-based decision making is well recognised, there 

continues to be a reliance on experience-based decision-making or following the status quo 

(Pullin et al. 2004, Sutherland et al. 2004, Ferraro and Pattanayak 2006, Likens 2010, Cook et 

al. 2016). There may therefore be a trade-off between undertaking detailed long-term 

research and employing other effective methods that do not require large commitments of 

time, money or specific expertise. So whilst developing site-specific IBMs may be the most 

reliable way of determining the impacts of disturbance, this may not always be feasible since 

the approach requires detailed knowledge of the distribution and abundance of benthic 

invertebrates and patterns of human activities around the site, and the expertise to develop 

the models and interpret their outputs. 

This chapter explores a more general method for assessing the predicted impacts of 

disturbance on wintering birds, based on the physical characteristics of a site and patterns of 

use by humans. The new approach will be tested by comparing the results with the 

predictions/patterns that emerged from scenario testing with the Morph model in the 

previous chapter. This method could be used as a preliminary assessment tool to determine 

whether or not further investigation using the more detailed modelling approach (Chapter 5) 

may be warranted on a case-by-case basis.  
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Table 6.1. Site-specific characteristics that could affect the number of human visitors and the 

proportion that result in disturbance response flights by birds. 

Factor Rationale 

Proximity to 

residential areas 

The closer a site is to residential areas, the greater the number of 

visitors it is likely to experience (Ode and Fry 2006, Fearnley et al. 

2010). 

Number of access 

points  

The number and location of car parks and other access points along 

the shoreline of an estuary is likely to influence where visitors occur 

and their frequency (Goss-Custard and Verboven 1993). More remote 

areas with few access points are likely to receive fewer casual visitors 

such as walkers and dog walkers, though other users such as 

birdwatchers may specifically seek out the more remote areas. 

Site dimensions 

Expansive sites with large areas of intertidal habitat and with long 

distances between the water’s edge and upper shore may experience 

fewer disturbance events than small, narrow sites where people are 

more likely to be able to approach foraging birds closely enough to 

cause them to take flight (Coombes et al. 2008). 

Sediment type 

The proportion of visitors that use the intertidal habitat rather than 

remaining at the top of the shore will be strongly influenced by 

sediment type. Soft, muddy sediments that are dangerous to walk on 

or wide expanses of saltmarsh with tidal creeks are likely to have few 

visitors compared to more solid, sandy intertidal areas and beaches 

(Goss-Custard and Verboven 1993). Some activities such as bait 

digging, however, involve specific use of the intertidal area; and 

watersports may disturb the intertidal area from both the landward 

side (when setting up) and the seaward side. 

Duration of visit 

Average visit duration is likely to vary from site to site, and in reality 

not all human visitors will remain for the same amount of time. Those 

that are present for longer may have a greater chance of causing a 

disturbance or excluding birds for longer (Goss-Custard et al. 2006a). If 

the routes of longer-staying visitors cover a greater area of intertidal 

habitat or they are present for long enough to walk all the way to the 

low tide mark on larger sites, they may disturb birds that would not 

otherwise have been disturbed by visitors that only stayed for a short 

period of time. 
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6.2.2. Visitor patterns and potential for disturbance  

In addition to knowledge of bird behavioural responses to predict the impacts of disturbance 

from human activities on wintering waders, we also need an understanding of the spatial and 

temporal patterns of occurrence of those activities in relation to the patterns of use by the 

birds. Chapter 5 showed that human activities are not evenly spread across Poole Harbour or 

across shore levels so individual visitors do not have equal probability of causing a 

disturbance. Not all activities, therefore, will result in flight responses by birds: only those 

that overlap in both time and space with the birds have the potential to cause problems 

through loss of time and area for feeding or other activities, and the additional energy costs 

of fleeing a disturber. For example, Liley et al. (2012) found that in Poole Harbour only 

around 10% of potential disturbance events resulted in a visible flight response by birds. This 

value, however, is likely to vary from site to site based on a number of key factors (Table 6.1) 

as well as the species-specific and environmental factors identified in previous chapters. 

6.2.3. Energy budgets 

As a minimum, birds need to balance their energy intake against energy expenditure over the 

same time period; otherwise they must rely on stored energy reserves to avoid starvation. 

Wintering waders maintain fat reserves for this very reason; depositing fat in preparation or 

response to unpredictable or deteriorating  environmental conditions (Pienkowski et al. 1979, 

Dugan et al. 1981), which can then be mobilised in periods of extreme cold or when poor 

weather prevents birds from feeding (Davidson and Evans 1982, Summers et al. 1998, Kelly et 

al. 2002). Small waders at temperate latitudes generally store between 1.5 and 4 days of 

energy reserves (Castro et al. 1992 and Poot and Piersma 1994 in Kelly et al. 2002). As 

Pienkowski et al. (1984a) point out, most waders manage to forage at least a little even 

during severe weather so only some of their energy requirement will need to come from 

stored fat. Survival is therefore only likely to be affected if a negative energy budget is 

sustained over a period of several days or weeks. 

A negative energy budget could be problematic, however, towards the end of the winter 

when migratory waders must build up fat reserves to sustain them on long-distance flights 

and ensure subsequent breeding success (Kvist and Lindström 2003, Atkinson et al. 2007, 

Morrison et al. 2007). Energy demands can consequently be high throughout the non-

breeding season and even when environmental conditions begin to improve (Kersten and 

Piersma 1987) and anything that prevents birds from achieving their target energy intake has 

the potential to reduce survival, delay migration and/or limit reproductive success  (Baker et 



 

201 

al. 2004, Morrison and Hobson 2004, Morrison et al. 2007). Some researchers, therefore, 

have taken an energy budget approach to investigating the impacts of disturbance on birds 

(Riddington et al. 1996, Houston et al. 2012, Lilleyman et al. 2016, Nolet et al. 2016). 

Waders feeding in intertidal environments are constrained by the tidal cycle as it periodically 

exposes and covers their favoured feeding areas (Granadeiro et al. 2006), and the time 

available to them for feeding is therefore limited. Nevertheless birds do not feed at a 

constant rate throughout the exposure period (Kersten and Visser 1996b, van Gils et al. 

2005). Kersten and Visser (1996a) found that the amount of food consumed by 

oystercatchers Haematopus ostralegus varies greatly between tidal cycles, but that intake 

and expenditure were balanced over a 24 hour period. This value will also be used in this 

chapter as the basis for the energy budget calculations.  

6.2.4. Using the individual-based modelling (IBM) approach 

The IBM modelling framework, Morph, that was used to develop the site-specific model of 

foraging birds in Poole Harbour (Chapter 5) has the drawback of not being easy to transfer to 

new sites without detailed knowledge of invertebrate food availability, bird behaviour and 

patterns of use for human recreation and other activities. Nevertheless, many of the same 

modelling concepts can still be applied to gain a more general understanding of how the 

impacts of disturbance may vary from site to site. By using knowledge of wader foraging and 

disturbance response behaviour, and incorporating real-life variation between individual 

birds and individual human visitors, the mechanisms by which disturbance may impact 

wintering waders can be modelled in a relatively simple way. Furthermore, by limiting the 

model simulations to the 24 hour period over which birds attempt to balance  their energy 

budget, we can explore the finer-scale, spatially explicit responses of birds to disturbance 

under varying circumstances in a way that was not possible with the Morph model. 

A programme called NetLogo (Wilenski 1999) was chosen for development of the IBM of 

‘hypothetical estuaries’ with different physical characteristics. Netlogo is a freely available, 

programmable, grid-based modelling environment for simulating natural and social 

phenomena, which is well-suited for modelling complex systems of multiple individuals 

operating independently (Wilenski 2016).  
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6.3 Methods 

6.3.1. Model development 

The model was built using Netlogo (Wilenski 1999) and the results of field observations and 

experiments described in the previous chapters: it was based on a hypothetical estuary with 

intertidal patches that are periodically exposed in the tidal cycle, and which have invertebrate 

resources available to foraging birds. Potential disturbers can be present in the model estuary 

by walking along a shoreline path or on the intertidal patches when they are exposed. Figure 

6.1 shows the interactive model interface with which parameters can be varied to explore the 

predicted effects on bird energy budgets. Model birds behave in a fitness-maximising way by 

choosing patches based on perceived fitness (net energy intake after accounting for the costs 

of flying between patches) and responding to human disturbers that get too close (van Gils et 

al. 2006). 

Many of the concepts, foraging decisions and equations used here are the same as those 

used in the Morph model described in the previous chapter, which will allow comparisons to 

be made between the outputs of the two types of model. However, there are four key 

differences: (1) in this model the intertidal area is divided into many more, smaller patches to 

incorporate finer-scale movements of foraging birds and their responses to disturbance; (2) 

movements of potential disturbers are modelled in a more spatially explicit way so the costs 

of disturbance are incurred by individual birds rather than being averaged across all birds on 

a patch; (3) for simplicity, only one species of bird is represented and it feeds on just one 

uniformly distributed size class of worm; and (4) model simulations were only run over the 

course of a 24 hour period rather than the whole winter season.
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Figure 6.1. The hypothetical estuary NetLogo model interface.
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6.3.2. Global parameters 

Model time steps 

Simulations were split into one-minute time steps and run between 00:00 and 23:59 since 24 

hours is the length of time over which birds have been found to attempt to balance their 

energy budget (Kersten and Visser 1996a). Winter day was included so that air temperature 

and day length (hours of daylight) could be adjusted for different model runs according to the 

stage of the season of interest. Winter day 1 = 1 September. 

Environmental conditions 

Air temperature was set using the same equation for daily temperature as in the Morph 

model; this temperature was fixed throughout the whole of each 24 hour simulation.  

𝑇 (˚𝐶) = 0.000579 × 𝐷𝑎𝑦2 − 0.1687 × 𝐷𝑎𝑦 + 17.65 Equation 6.1 

Whether or not it was daylight during each time step was based on the following equation for 

day length, where 𝐷 is winter day and which assumes that the number of hours of daylight 

per day oscillates between 16.5 hours on the longest day (21 June) and 8 hours on the 

shortest day (21 December) (US Naval Observatory 2015): 

𝐷𝑎𝑦 𝑙𝑒𝑛𝑔𝑡ℎ = 12.25 + 4.25 × cos (2𝜋 ×
(𝐷 + 70)

365
)   Equation 6.2 

Daylight hours were split equally either side of midday. Tide height was also set using a 𝑐𝑜𝑠 

curve to give two high tides per day and one neap-spring cycle every 14 days; using the mean 

tide height (1.35m), spring range (1.8m) and neap range (0.6) values for Poole Harbour 

reported by Humphreys (2005). The tidal stage for each simulation was set by selecting either 

“spring” or “neap” on the model interface, and each simulation began at high tide. A variable 

called ‘distance to roost’ was also included so the contribution of travel costs to bird daily 

energetic requirements when moving between intertidal patches and high tide roosts could 

be tested. This was set to 2 km in the base model since all intertidal areas in Poole Harbour 

are within this distance of one or more known roost sites (Morrison 2015). The base model 

did not include any disturbance to birds whilst roosting, although this would be 

straightforward to add for sites where this is known to be a particular problem. 
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Disturbance-related global variables 

The number of visitors per hour, and the proportion of visitors that walk on the intertidal 

area rather than remaining on the path were fixed throughout each simulation but could be 

varied between simulations. The base model used values according to the observations 

described in the previous chapter: a mean of 177 visitors per hour (assuming that each stays 

for 60 minutes), 12.9% of whom were observed on the intertidal habitat. The number of 

visitors per hour during evening darkness was calculated from daytime visitor numbers, 

based on the finding by Stillman et al. (2012) that 6% of coastal visits occur during darkness 

and Liley et al.’s (2008) finding that most visits after dark in Poole Harbour occur before 

10pm. 

6.3.3. Patch parameters 

Spatial extent and patch availability 

The model ‘world’ was split into a grid of patches each representing an area 25 metres by 25 

metres. The exact dimensions of the world depended on the estuary type scenario being 

modelled (Figure 6.2 and Table 6.2), though the number of intertidal patches was kept 

constant in all scenarios. Patches were categorised as ‘water’, ‘mud’, ‘path’ or ‘roost’, and 

mud patches were only available to birds when their assigned ‘exposure height’ was equal to 

or less than the tide height of the current time step.  

Birds could not use patches labelled as water or path, but roost patches were always 

available. The exposure height was assigned to each patch so that the maximum extent of 

intertidal habitat at low water was equal to 14 km2 and all intertidal habitat was covered by 

water for two hours either side of high water on spring tides. 

 

Figure 6.2. Relative dimensions of estuaries ‘A’, ‘B’, ‘C’ and ‘D’ – all with the same total 

area of intertidal habitat. See Table 6.2 for details. 
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Table 6.2. Dimensions and details of each hypothetical estuary scenario tested. 

Scenario 
Dimensions 

(number of patches) 
Patch size 

Area of intertidal 

habitat (km2) 

Length of 

shoreline footpath 

A 560 x 60 25m x 25m 14 14 

B 280 x 100 25m x 25m 14 7 

C 140 x 180 25m x 25m 14 3.5 

D 1120 x 40 25m x 25m 14 28 

Invertebrate prey availability 

The model was parameterised for redshank Tringa totanus feeding on worms of a single size 

class; 45-60mm, which is the largest available size class of worms within the range eaten by 

redshank in Poole Harbour (Durell et al. 2006, Goss-Custard et al. 2006b). At the start of each 

simulation the intertidal patches were all assigned the same density. This density was 

decreased on selected patches throughout each time step as each bird fed one by one. The 

base model used a value of 56 worms/m2, which is the mean density of worms of this size 

class in Poole Harbour, based on sampling by Herbert et al. (2010). 

Access for humans 

At the start of each simulation the patches representing the shoreline footpath were 

categorised as either containing an access point or not – humans could only enter and leave 

the model via patches with an access point. The number of access points per kilometre of 

shoreline could be varied to explore how this may affect the distribution of humans across a 

site and the resulting disturbance of birds.  

6.3.4. Forager parameters 

Energy expenditure 

Simulations were run with 750 redshank (the same as in the Morph model), based on 

Wetland Bird Survey (WeBS) data for this species in Poole Harbour (Holt et al. 2015). At the 

start of each simulation, birds calculated their target energy intake for the next 24 hour 

period, according to field metabolic rate, FMR (set at 2.1 times the basal metabolic rate, 

BMR), and any additional costs of thermoregulation if the air temperature was below the 

birds’ lower critical temperature (LCT). As well as the energetic costs of fleeing disturbers, 

birds incurred costs of travelling to and from the roost, which were deducted from net intake. 

Energetic costs of flight were set at 12 times BMR (Castro and Myers 1988) and bird’s flight 
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speed was set at 12.46 m/s using the allometric equation given by Alerstam et al. (2007) with 

a mean body mass for redshank of 153.3g (British Trust for Ornithology 2015): 

𝐹𝑙𝑖𝑔ℎ𝑡 𝑠𝑝𝑒𝑒𝑑 (𝑚/𝑠) = 5.9 × (𝑀𝑎𝑠𝑠𝑘𝑔)0.13 Equation 6.3 

Choice of patch 

At the start of each time step birds chose the patch where they could maximise their net 

energy intake (using the same equations as in the previous chapter) by assessing their own 

foraging efficiency and dominance, the density of worms, density of competitors (and 

therefore susceptibility to interference), and the time and energy costs of travelling to the 

patch.  

Costs of disturbance 

Birds did not know, however, whether they would be disturbed until they arrived on a patch. 

If when a bird selected a patch there was one or more humans present within its flight 

initiation distance (FID) then the bird fled to a ‘safe’ patch that could be reached within its 

‘flight time’. If there were no such patches available, but there were safe patches that could 

be reached before the end of the time step, the bird moved to the closest of these patches. 

And if there were none like this available, the bird continued to fly for the remainder of the 

time step. The energetic costs of responding to disturbance were deducted from net intake 

according to the length of time spent in flight, and the time costs were deducted from the 

bird’s free time available for feeding. At the start of each time step the free time was reset to 

60 seconds. 

Energy assimilation 

After checking for disturbers and responding if necessary, birds with free time greater than 

zero foraged for the remainder of the time step and the resulting energy assimilated was 

added to their net intake for the simulation. At the end of each simulation, each bird’s net 

intake was compared with its target to determine whether it had been able to balance its 

energy budget over the course of that 24 hour period and whether it had any surplus 

available for deposition of fat stores. Fat deposition rate (FDR) as a percentage of body mass 

was calculated following Lindström (1991), where 𝐼𝑛𝑒𝑡 is net intake (kJ) at the end of the 

simulation, 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 is target intake (kJ) based on daily energy expenditure, 𝑀𝑙𝑒𝑎𝑛 is lean body 

mass in grams, and 34.3 kJ/g is the energy density of fat.  

𝐹𝐷𝑅 = (
𝐼𝑛𝑒𝑡 −  𝐼𝑡𝑎𝑟𝑔𝑒𝑡

34.3 × 𝑀𝑙𝑒𝑎𝑛
) × 100 

Equation 6.4 
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When food is abundant, bird food intake may be constrained by the maximum rate at which 

the gut can process ingested prey, and birds may be forced to take digestive pauses (Zwarts 

and Dirksen 1990, Zwarts and Blomert 1992, Kersten and Visser 1996b, van Gils et al. 2005). A 

maximum daily energy assimilation rate was therefore included so model birds only fed when 

their net intake was below this limit; this was set according to the following equation given by 

Kirkwood (1983): 

𝐴𝑠𝑠𝑖𝑚𝑚𝑎𝑥 (𝑘𝐽 𝑝𝑒𝑟 𝑑𝑎𝑦) = 0.75 × 1713 × 𝑀0.72 Equation 6.5 

where 𝑀 is body mass in kilograms and 0.75 is the assimilation efficiency of converting 

ingested energy into metabolisable energy (Goss-Custard et al. 2006).  

Individual variation 

At the start of each simulation the daytime foraging efficiency of each bird was selected from 

a normal distribution with mean = 1 and standard deviation = 0.125 (Goss-Custard et al. 

1995): night time foraging efficiency was set at 0.95 x day time efficiency (the same as used 

for redshank in the Morph model). Birds varied in their relative dominance (selected from a 

uniform distribution between 0 and 1), which influenced their susceptibility to interference 

from competitors. Birds also varied in the shore levels at which they preferred to feed: each 

was randomly allocated a shore level between the high- and low-water marks at or below 

which it attempted to feed unless covered by water. This resulted in a more realistic 

distribution of birds across shore levels rather than birds continually foraging on patches at 

the top of the shore simply because those were the first to be exposed by the falling tide. 

6.3.5. Disturber parameters 

Arrival of humans 

At the start of each time step new humans entered the model depending on the time of day 

and the global parameter for frequency of visitors per hour. They could only arrive on a path 

patch with an access point, and that was set as the human’s ‘home patch’ to which it had to 

return before departing the system.  

Movement of humans 

When humans arrived they were assigned a ‘route’ based on the value of the associated 

global variable, which determined what proportion of visitors walked along the path or 

walked on the intertidal habitat. Those that walked on the intertidal set a random heading 

away from the path and walked towards the water (but not in it); returning to the path and 
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their home patch as the tide rose or so that they did not stay for longer than one hour (Figure 

6.3). Humans on the path also returned to their home patch and departed after an hour. 

Walking speed was set according to substratum: 4 km/hr on the path and 2.5 km/h on the 

intertidal patches. 

 

Figure 6.3. Screen shot of part of the model interface showing humans arriving at access 

points and spreading out across the hypothetical estuary along the footpath or walking towards 

and alongside the water, with birds feeding on the intertidal area. 

6.3.6. Scenario testing 

At the end of each simulation the model reported the total number of disturbance responses, 

bird net intake relative to target intake for the 24 hour period, and the proportion of human 

visitors that caused disturbance responses by one or more birds. Unless specified, parameter 

values were fixed at their base values (Table 6.3). The model was used to investigate the 

predicted outcomes under scenarios of differing site characteristics and environmental 

factors (Table 6.4); each scenario was run twice. 
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Table 6.3. Parameter values used in the base model. 

a) Estuary 

Parameter Base mode value Details/info source 

Site dimensions Scenario A Similar to Poole Harbour 

Number of visitors per hour during 

daylight 
177 

Based on observations in 

this study 

Proportion of visitors on the intertidal 0.129 
Based on observations in 

this study 

Number of access points per km 0.5 Estimate for Poole Harbour 

Distance to roost (km) 2 Morrison (2015) 

Winter day 146 Coldest winter day 

Initial worm density (number per m2) 56 Herbert et al. (2010) 

Worm mass (gAFDM/worm) 0.0154 Herbert et al. (2010) 

Number of birds 750 Holt et al. (2015) 

Tidal stage spring - 

b) Foragers 

Parameter Base mode value Details/info source 

Field metabolic rate (FMR, kJ/day) 233.86 
2.1 x BMR (Kersten and 

Piersma 1987) 

Lower critical temperature (LCT, ˚C)  18.6 Equation 5.6 

Thermostatic costs below LCT (kJ/˚C/day) 5.5 Equation 5.7 

Cost of flight (kJ/s) 0.015 
12 x BMR (Castro and 

Myers 1988) 

Flight speed (m/s) 12.46 Equation 6.3 

Flight initiation distance (m) 59.09 Table 3.3 

Time spent in flight per response (s) 13.89 Table 3.3 

Latency time per response (s) 12.96 
Poole pedestrian 

disturbance experiments 

Lean mass (g) 90.5 
Goss-Custard (unpublished 

data) 

Max energy assimilation rate (kJ/day) 332.97 Equation 6.5 

c) Disturbers 

Parameter Base mode value Details/info source 

Visit duration (minutes) 60 Fearnley et al. (2010) 

Walking speed – intertidal (km/hr) 2.5 Chapter 2 

Walking speed – path (km/hr) 4 Chapter 2 
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Table 6.4. Parameters and ranges of values tested. 

Parameter Values 

Site dimensions See Table 6.2 

Number of visitors per hour 0; 100; 177; 250; 400 

Proportion of visitors on the intertidal 0.05; 0.129; 0.5 

Number of access points per km of shoreline 0.5; 5; 40 (fully accessible) 

Winter day (1 Sep; 24 Jan; 1 Mar) 1; 146; 182 

Initial worm density of patches (number/m2) 25; 56; 100 

Tidal stage spring; neap 
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6.4 Results 

6.4.1. Prey availability 

Birds were predicted to achieve a higher net intake and balance their energy budget when 

there were greater numbers of worms per m2, and during neap tides (Figure 6.4) when at 

least some intertidal habitat was available for the whole 24 hour period (c.f. 16 hours on 

spring tides). However, the difference in achievable fat deposition rate (FDR) between spring 

and neap tides was more pronounced when prey density was lower. 

 

Figure 6.4. Predicted effect of prey availability on daily achievable fat deposition rate (FDR) 

under two different tidal regimes (spring/neap). All other parameters set at base model values. 

Horizontal dotted line at FDR = 0 indicates the threshold below which birds were unable to 

balance their energy budget. Shading indicates the 95% confidence interval around the mean. 

6.4.2. Number of visitors and stage of season 

Figure 6.5 shows that increased number of visitors across the range tested was only predicted 

to reduce bird FDR when feeding time was limited (i.e. on spring tides). Although there was a 

noticeable difference in predicted achievable FDR between autumn (1st September) and 

winter or spring (24th January/ 1st March). With only an intermediate density of prey available 

(56/m2) birds were only predicted to be able to balance their energy budget on neap tides in 

winter and spring. 
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Figure 6.5. Predicted effect of number of visitors on daily achievable fat deposition rate 

(FDR) at three stages of the non-breeding season and for neap and spring tides. All other 

parameters set at base model values. Horizontal dotted line at FDR = 0 indicates the threshold 

below which birds were unable to balance their energy budget. 

6.4.3. Number of disturbances 

In scenarios where prey availability was high (100/m2) the FDR that birds were predicted to 

achieve was not reduced by the number of disturbances that they experienced during the 24 

hour period (Figure 6.6). This was also the case with an intermediate density of worms 

(56/m2) on neap tides when available feeding time was not limited. However if prey 

availability was low, birds were unable to balance their energy budget (except on neap tides 

in autumn) and FDR was predicted to be lower in birds that experienced a greater number of 

disturbances.  

The total number of disturbances that birds experienced was not solely determined by the 

number of visitors in the model (Figure 6.6). Number of disturbances was also related to the 

dimensions of the site, the number of shoreline access points and the proportion of visitors 

that left the path at the top of the shore. Total number of disturbances was greater on 

narrower sites with a relatively short distance between the path and low water mark (A and D 

– see Figure 6.2). Birds also experienced fewer disturbances when there were fewer shoreline 

access points and the proportion of visitors that left the path was low (top left panel of Figure 

6.7 vs. bottom right panel). 
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The model predicted similar relationships between site characteristics and the proportion of 

visitors that actually resulted in bird disturbance flights (Figure 6.8). Humans were more likely 

to disturb bird on narrower sites with more access points and when more people walked on 

the intertidal area rather than staying on the path. 

 

Figure 6.6. Predicted relationships between the number of times a bird is disturbed and its 

achievable fat deposition rate (FDR) under different scenarios of prey availability and stage of 

the season. All other parameters set at base model values. Horizontal dotted line at FDR = 0 

indicates the threshold below which birds were unable to balance their energy budget. 
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Figure 6.7. Predicted relationships between the number of visitors and the daily number of 

times a bird is disturbed for different scenarios of visitor access (proportion on the intertidal 

area and availability of shoreline access points) and site dimensions (see Figure 6.2). 
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Figure 6.8.  Predicted relationships between site characteristics (dimensions; number of access 

points; and proportion of visitors on intertidal areas) on the proportion of visits that result in 

disturbance of birds.  
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6.5 Discussion 

This chapter has shown how a new, simple individual-based model (IBM) of wintering waders 

foraging in an intertidal system can be used to identify patterns of important factors that 

influence the number of times birds are disturbed and the resulting impact on their daily 

energy budgets. The predictions relating to key site characteristics and environmental factors 

will be discussed in this section, and they will be compared with the outputs from the site-

specific Morph model for Poole Harbour (Chapter 5). The practical applications of this 

approach will then be highlighted whilst acknowledging the limitations and potential 

improvements/extensions. 

6.5.1. Balancing the budget 

In order to balance the energy budget, bird energy intake must equal or exceed energy 

expenditure. It is therefore unsurprising that model predictions for achievable fat deposition 

rate (FDR) were related to: (1) food availability (different intertidal exposure patterns on 

spring and neap tides, and density of prey); (2) thermoregulatory requirements on top of 

daily BMR (lower FDR with temperatures in mid-winter and spring compared to autumn); and 

(3) the number of disturbances that each bird experienced (greater time/area/energy costs 

associated with an increased numbers of responses). The predictions were supported by the 

results from the previous chapter, which also found positive relationships between 

survival/body condition and prey or habitat availability, and negative relationships with 

frequency of disturbance. Between them, the two models predicted that birds would be 

better able to partially or completely compensate for the impacts of disturbance over the 

short- (24 hours) and longer-term (whole non-breeding season) when foraging and 

environmental conditions were more favourable. 

6.5.2. Number of disturbances 

One of the benefits of this model over the Morph model used in Chapter 5 is that the 

movements of people and responses by individual birds could be modelled in a more 

spatially-explicit way. This demonstrated the importance of understanding how the 

behaviour of potential disturbers influences the likelihood of birds and people interacting. 

Whilst bird FDR was predicted to be inversely related to the daily number of disturbance 

responses, the number of visitors per day was not the only factor that influenced the total 

number of bird responses. Site characteristics that determined the distribution of visitors 

were also important explanatory factors. The number of disturbances that birds experienced 
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and the proportion of visitors that caused a disturbance were predicted to be greater on sites 

with a large number of access points (so visitors could access all areas equally easily); this is 

supported by the prediction of the Morph model that increases in visitor numbers would 

have a greater impact on survival/body condition if visitors were evenly spread around the 

site rather than concentrated in certain areas as is currently the case. This simpler NetLogo 

model also predicted that birds would experience a greater number of disturbances on sites 

where a large proportion of visitors leave the upper shore area (firm, sandy rather than soft, 

muddy sediments), and on relatively ‘thin’ sites (where the distance between the high and 

low water marks is short). Field observations by Goss-Custard and Verboven (1993) showed a 

similar relationship between disturbance levels and access and habitat type for 

oystercatchers foraging on the Exe estuary. 

6.5.3. Model limitations 

This general model is not intended to be a detailed model that captures all of the 

complexities of the real world system. So although it does not include disturbance at the 

roost; different types of disturbance; more than one bird species; or more prey types, these 

should not be considered limitations. The simplifications do not detract from the usefulness 

of the predictions and general patterns that have emerged.  

One simplification, however, may be important to the predictions about how birds and 

people overlap in time and space and therefore the number of disturbances that birds 

experience per day. All intertidal patches in the model had an equal density of invertebrate 

prey at the start of each simulation. In reality this would not be the case (Thrush 1991, Yates 

et al. 1993, Legendre et al. 1997). Patchy distribution in terms of both the abundance and 

availability of prey also influences the distribution of birds (Piersma et al. 1993, Yates et al. 

1993, Meire 1996, Gawlik 2002, Coleman 2008) and could therefore affect the probability of 

those birds being disturbed. Additionally, high levels of disturbance in certain areas could 

exclude birds from more profitable feeding areas (Pfister et al. 1992, Fox and Madsen 1997), 

and consequently mean that they are less able to compensate for the energetic costs of 

responding. 

These additional real-world differences could be incorporated into an updated version of the 

model, though for detailed, site-specific modelling exercises it may be more appropriate to 

use the well-established Morph framework (Stillman 2008). 
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6.5.4. Applications and further development of the energy budget approach 

There are two main ways in which this energy budget/individual-based modelling approach 

could be applied to decision-making relating to the disturbance of protected species on sites 

of conservation importance. Firstly, the general patterns identified here could be used to 

rank sites in order of relative susceptibility to significant disturbance impacts. This method 

would not necessarily identify sites where disturbance definitely is or is not significantly 

impacting birds, but would be able to identify priorities for further detailed field study and 

site-specific modelling to answer that question. The site-specific modelling could then also be 

used to test and compare proposed management options and make predictions about the 

most effective course of action. Higher priority sites would be those with: 

 high ratio of shoreline length to intertidal area (‘long, thin’ sites); 

 high number of access points relative to the length of shoreline; 

 high number of daily visitors; 

 high proportion of visitors that leave the shoreline path and walk on the intertidal 

area; and 

 low invertebrate food availability. 

Alternatively, the general model could be reparameterised to reflect the anthropogenic, 

physical and environmental characteristics of other sites of interest, and used to make 

predictions about the consequences of disturbance for different species using the site. 

However, in order to derive reliable predictions for the absolute values of FDR, the model 

outputs would need to be tested with site-specific field data – for example observations 

relating to the distribution of potential disturbers across the intertidal area and the 

proportion of visits that result in flight responses. The model would also need to be calibrated 

to achieve a predicted daily FDR in the absence of disturbance that is close to the median 

value of 1.3% as reported for waders by Alerstam and Lindström (1990). This could arguably 

defeat the object of taking this simpler modelling approach; instead, a potential extension of 

the logic of the energy budget approach to develop a simple, site-specific rapid assessment 

tool will be discussed in Chapter 7. 
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Chapter 7 – Discussion 

7.1 Human disturbance of wintering waterbirds in an estuarine 

environment 

Human activities are putting ever-increasing pressure on the natural world; threatening the 

health and functioning of ecosystems and damaging their ability to provide the valuable 

services upon which we all rely (Millennium Ecosystem Assessment 2005). There is a pressing 

need, therefore, to better understand the mechanisms behind the impacts of human 

activities and take action to reverse or mitigate further damage. 

This study has focussed on estuarine environments, which provide vital habitat for migratory 

waders and wildfowl on passage and during the non-breeding season (Davies et al. 2001, 

Austin et al. 2014). Such habitats are also important for a wide variety of human recreation 

and economic activities (Barbier et al. 2011) so there are many opportunities for conflict 

between people and birds – including through disturbance. Conservation managers and 

policy makers therefore have a duty to prevent or minimise the impacts of disturbance on 

designated sites and species. In the absence of clear evidence of site-specific or generally 

applicable thresholds of disturbance that would be expected to cause a conservation 

problem, managers may take a precautionary approach to the regulation of potentially 

damaging activities (Rio Declaration Principle 15, United Nations 1992). However, regulations 

that are perceived as unnecessary and/or unfair risk non-compliance and mistrust of 

conservation measures in general, regardless of the justification (Glover et al. 2011). With 

this in mind, the overarching aim of the research was to understand how and when 

disturbance from human activities would be expected to significantly impact wintering bird 

populations, so that conservation measures can be put in place where needed. 

To this end, fieldwork was undertaken to characterise patterns of occurrence of human 

activities (Chapter 5), and quantify the responses of birds to two types of disturbance; 

walking (Chapters 2 and 3) and wildfowling (Chapter 4). The results were then used to inform 

development and parameterisation of two individual-based models (IBMs). First, a site-

specific model of Poole Harbour, to determine whether current or future levels of 

disturbance are limiting overwintering wader populations (Chapter 5). This was followed with 

a more generally applicable model to assess estuary characteristics that affect whether 

disturbance may be a conservation problem; the results of which allowed identification of 

criteria for prioritisation of sites for conservation action (Chapter 6). 
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The rest of this chapter summarises key findings; discusses them in the context of existing 

research and the practical applications; identifies limitations of the study; and makes 

recommendations for further research. 

7.2 Key findings from field observations and experiments 

7.2.1. Patterns of human activities 

As Fearnley et al. (2012) point out, determining spatial and temporal patterns of site use by 

humans in relation to use of the site by birds is fundamental to understanding the impacts of 

disturbance. Only when birds and people try to use the same areas at the same time and 

when no suitable alternative areas are available is disturbance likely to cause a conservation 

problem. Observations in Poole Harbour showed that a wide variety of activities occur 

around the site; the most frequent is walking either with or without a dog (66% of 

observations). By comparison, the other focal activity of this study – wildfowling – represents 

less than 0.04% of daily activities (based on data provided by Dorset Wildfowlers’ 

Association).  

Human recreation activities are not evenly spread around Poole Harbour or across shore 

levels. There are obvious concentrations on the north and east side, which have a greater 

number of access points and are closer to the densely populated conurbation of 

Bournemouth and Poole. However, most (75% or more) visitors to these busier areas remain 

on the shoreline footpath or beach areas, where they are unlikely to disturb birds for most of 

the intertidal exposure period. Furthermore, most of the ‘Bird Sensitive Areas’ identified in 

the Poole Harbour Aquatic Management Plan (Drake and Bennett 2011, Figure 1.8) are 

located in the quieter southern and western parts of the site. 

Further surveys are needed to determine whether the patterns that were observed in Poole 

Harbour are typical of all estuarine sites, though Fearnley et al. (2010) did report similar 

patterns for a variety of sites on the Solent, Humber and in Kent. They also found that visitor 

pressure was not consistent between sub-sites; the most frequently reported activities were 

walking and dog walking; and most people (75-82%) remained on the path at the top of the 

shore or on the beach. The importance of site-specific, spatially explicit observations of this 

kind (rather than simply recording total numbers of people) will be discussed in more detail in 

section 7.3. 
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7.2.2. Testing predictions of the risk-disturbance hypothesis – behavioural 

responses to disturbance 

The risk-disturbance hypothesis proposed by Frid and Dill (2002) offers a clear theoretical 

framework for making and testing predictions about animal responses to disturbance due to 

the similarities with anti-predator behaviour. In the context of wintering waders feeding 

during the intertidal period, behavioural responses to disturbance can therefore be expected 

to vary between individuals according to differences in perceived risk and the relative costs 

and benefits of fleeing or remaining. For example, birds are more likely to respond when 

environmental conditions are mild and suitable alternative feeding areas are available nearby 

(i.e. because starvation risk is low). These predictions were supported by the results of 

pedestrian disturbance experiments on twelve species of waders using the Wash embayment 

and Poole Harbour. Birds exhibited a great deal of variability in their responses to disturbance 

(Chapters 2 and 3), which was apparent between and within species; across small and large 

spatial scales; and according to environmental conditions. The observed relationships also 

broadly fit the patterns reported for other sites and species around the world. Most other 

published disturbance studies, however, relate to Australian and North American species so 

the data presented here make an important contribution to the suite of information available 

on responses to disturbance for birds of the East Atlantic flyway. 

As well as flight initiation distance (FID; the most commonly reported measure of response to 

disturbance in the literature), in this study, time spent in flight and total feeding time lost 

were also recorded. These time-related responses have rarely been reported in other studies, 

yet they make up an important component of the mechanism by which responding to 

disturbance can be costly for birds. Flight incurs additional energetic costs and total response 

time reduces the time available to birds for extra feeding to compensate.  

When the energetic cost per flight response was expressed as a proportion of daily 

requirement, it was tiny (less than 0.1%) and the estimated number of disturbances per bird 

that would result in a 5% reduction in available feeding time was much lower than would be 

expected to occur based on current patterns of use by humans both in Poole Harbour and on 

the Wash. Under normal circumstances most birds do not use 100% of their available feeding 

time (Goss-Custard et al. 1977, Table 3.7) so unless disturbance forces birds to forage in less 

profitable or more dangerous areas, they are likely to be able to compensate. Such 

calculations based on experimental data and field observations can give an indication of 

whether site carrying capacity may be reduced as a result of disturbance, though the 
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magnitude of impact cannot be determined in this way. Nor can predictions be made about 

the impacts in combination any future environmental changes that may affect site quality. 

Simulation modelling, however, can offer more reliable predictions and identify specific 

circumstances under which disturbance would be considered a conservation problem 

(Section 7.3). 

Despite the worldwide popularity of wildfowling and its close associations with key species 

and habitats of conservation importance, the impacts – particularly on non-quarry species – 

are poorly understood. In addition, few disturbance studies have investigated or compared 

the responses of birds to disturbing activities besides walking or to non-visual stimuli: 

Chapter 4 therefore helps to address these gaps in knowledge. Factors governing bird 

responses to disturbance from wildfowling followed similar patterns to those observed in this 

study in relation to pedestrian disturbance (with differences between species and according 

to environmental conditions). However in this case, the relationship with species body mass 

was reversed, with larger birds being less likely to respond to the sound of the shotgun at any 

given distance. This suggests that the mechanisms governing responses to disturbance may 

be different for acoustic versus visual stimuli. 

Given that wildfowling occurs considerably less frequently than other activities, even though 

the magnitude of response per disturbance was greater for wildfowling, the cumulative costs 

over the course of a winter are low compared to the overall costs of disturbance from all 

other activities. On sites where conservation management objectives include achieving 

reductions in overall disturbance levels, measures to address currently frequent, yet 

unregulated, activities could therefore be more meaningful than further restrictions on 

already infrequent activities such as wildfowling. 
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7.3 Predicting the impacts of disturbance – modelling insights 

Individual-based ecology (Grimm and Railsback 2005) offers a key theoretical framework for 

understanding the impacts of disturbance. Consequences at the population level (the scale by 

which most species conservation efforts are measured) cannot be determined based simply 

on the short-term behavioural and physiological responses of individuals (Gill et al. 2001a, 

Beale and Monaghan 2004b): individual-based models (IBMs) offer a solution. By simulating 

individual variation and fitness-maximising behaviour, using knowledge of the real-world 

system, we can make predictions about the population-level consequences that emerge from 

individuals’ interactions with their environment and with each other (Stillman et al. 2015, 

2016).  

IBMs have successfully been used to predict the impacts of disturbance and/or 

environmental change on a variety of birds and mammals (West et al. 2002, Blumstein et al. 

2005b, Goss-Custard et al. 2006a, Lusseau et al. 2006, Bennett et al. 2009) and to test 

alternative management strategies (Bennett et al. 2011). This research adds further support 

for the IBM approach in both a site-specific and general context (Chapters 5 and 6). 

To be confident in the predictions of IBMs, they must be built and parameterised according 

to a good understanding of the important processes relating to the system being modelled. 

Chapter 5 therefore used field observations from the preceding chapters to add detailed 

disturbance-related parameters to an existing site-specific IBM (Stillman 2008, K. M. Bowgen 

[BU] unpublished data) for Poole Harbour with its internationally important assemblage of 

wintering waders. 

The combined results of multiple simulations of the full non-breeding season (September to 

March) suggested that current disturbance levels around Poole Harbour are not limiting the 

numbers supported (carrying capacity) or bird body condition at the end of the season 

(perhaps with the exception of bar-tailed godwit Limosa lapponica). Birds were predicted to 

be able to increase their time spent feeding and therefore compensate for the additional 

energy requirements despite reductions in total available feeding time. 

In addition, birds were predicted to be able to cope with large increases in the number of 

visitors to Poole Harbour (ten or more times current values), especially if the relative 

distribution of activities around the site and across shore levels remained the same. Model 

outputs also supported the conclusion from Chapter 4 that birds are likely to be able to cope 

with the relatively minor costs of wildfowling disturbance due to the infrequency of this 
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activity and their ability to cope with disturbance in general. Results showed no impact on the 

numbers of birds supported or their body condition with the currently consented number of 

wildfowling visits (183 per year) nor across the range of increased wildfowling intensities that 

were tested. 

Human-induced environmental changes such as habitat loss or sea level rise and declines in 

prey availability through over-exploitation were predicted to have a much greater impact 

than changes in visitor numbers, though the impacts were predicted to be amplified when 

occurring in combination with each other. This has implications for identifying priorities for 

conservation management, which will be discussed in the next section. 

The new, generally applicable estuary IBM (Chapter 6) supported all of the comparable site 

specific predictions from Chapter 5. Ability to balance the energy budget and the maximum 

fat deposition rate (FDR) that could be achieved were predicted to be greater when birds 

experience fewer disturbances, when more prey was available, and when environmental 

conditions were more favourable. Model outputs also showed that the probability of birds 

being disturbed by human activities is not solely dependent on the number of people 

present. Birds are more likely to experience significant impacts from disturbance when 

feeding in estuaries with a short distance between the high and low water mark, or where 

the types of activity or sediment characteristics mean that many visitors access intertidal 

areas, as well as on sites that have many access points relative the length of the shoreline. 

These insights can be distilled into the conceptual model shown in Figure 7.1 and are key 

points to bear in mind when assessing the likelihood of disturbance being a conservation 

problem at different sites. 
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Figure 7.1. Conceptual model showing situations where disturbance may (red) and may not (green) be expected to have a significant impact on wintering wader 

populations. Insights into key factors (blue) – i.e. site characteristics/energetics/compensation opportunities – derived from simulation modelling.
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7.4 Management implications for Poole Harbour and wider 

applications 

Whilst this study has shown that disturbance from very high frequencies of human activities 

can have a significant impact on survival and body condition, it would be appropriate to focus 

management efforts in Poole Harbour on non-disturbance-related aspects of site quality in 

order to improve wading bird resilience and maintain overwintering populations in the face 

of environmental change. Specifically, model outputs showed that when there is enough 

suitable intertidal or supratidal habitat available, with sufficient densities of invertebrate 

food, most birds are able to compensate for the (relatively minor) additional costs of 

disturbance from human activities. 

Given that the degree of impact of disturbance is partly dependent on spatial and temporal 

patterns of use for different human activities and that present day distributions do not limit 

bird numbers, this is an argument for continued implementation and communication of the 

benefits of the current zoning of activities (see Figure 1.9) rather than introducing new 

measures. This could be combined with monitoring for any changes in patterns of use, 

particularly any increases in the number of visitors to ‘quieter’ areas or an increase in the 

proportion of visitors that access the intertidal area rather than remaining near the top of the 

shore. Hocking et al. (1992) summarise other potential options for mitigation, including 

concealment of observers by constructing banks or screens, and careful location of public 

access points. However, this study found no evidence that additional proactive management 

such as this is currently necessary in Poole Harbour. 

Crucially, birds are most likely to suffer negative consequences due to disturbance in 

circumstances when they are already experiencing difficulties achieving their energy intake 

requirements – as demonstrated by the model predictions for bar-tailed godwit. For example 

Figure 5.8 shows that even in the absence of disturbance over-winter survival was predicted 

to be below 100% for bar-tailed godwit; and this species showed the steepest decline in 

predicted final body condition and overall survival in response to increased frequencies of 

human activities. Similarly, disturbance during prolonged periods of extreme winter weather 

could be problematic for all species (Davidson and Evans 1982, Camphuysen et al. 1996). 

When thermoregulatory requirements are particularly high and feeding opportunities are 

limited, measures to restrict access and reduce disturbance in areas with large numbers of 

birds would therefore be beneficial. Country-wide cold weather bans like those that already 

exist for wildfowling and bird ringing (Stroud et al. 2006, Ellis 2012) would admittedly be 
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difficult to enforce in expansive, publicly accessible areas; though this could be more 

achievable on smaller nature reserves and areas that already have wardening and 

communication schemes in place. Koch and Paton (2014) also comment that activity 

restrictions could be challenging to implement since birds do not consistently forage in a 

fixed location; instead the authors emphasise the importance of outreach and education to 

foster appreciation and understanding of the importance of key sites. 

Broad management recommendations are shown in Table 7.1. They are based on the results 

of the site-specific simulation modelling for Poole Harbour, and are supported by the 

predictions of the more generally applicable IBM. Further work is needed, however, to 

determine the extent to which they apply to other sites since the ability to cope with current 

or future frequencies of disturbance depend on between-site variation in many different 

factors, as already discussed (environmental conditions; patterns of use; estuary size and 

dimensions; ease of access; sediment type; prey availability etc. – see Figure 7.1). 

Data from studies such as this that record bird behavioural responses to disturbance have 

frequently been used to inform protective measures such as ‘buffer zones’ or ‘set-back 

distances’ (Glover et al. 2011; Weston et al. 2012; Chatwin et al. 2013; Schlacher et al. 2013a; 

Koch and Paton 2014). The size of such buffers is usually based on the largest FID value 

recorded for the group of species of interest – in fact a database was recently published by 

Livezey et al. (2016) precisely for this purpose. However, such measures are arguably overly 

precautionary on most expansive estuarine sites; where large areas of intertidal mud already 

act as a buffer zone for most of the exposure period, and birds are not usually confined to a 

particular foraging location. Using FID in this way ignores the biotic and abiotic factors that 

influence bird responses and the fact that FID is not a good measure of vulnerability to 

suffering negative impacts from disturbance. Efforts to prevent or reduce the impacts of 

disturbance in estuarine areas would be better placed using the management measures 

already outlined (and see Table 7.1). 
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Table 7.1. Key management measures to prevent significant impacts of disturbance in Poole Harbour and maintain the number of birds that the site can support. 

The principles are the same for other sites, though the threshold level for significant impact of disturbance will vary from site to site. 

Action Details Rationale 

Maintain existing habitat, along 

with creation or extension of 

refuge areas/ nature reserves 

Restore/protect habitats from loss due to 

development or coastal squeeze. 

Figure 5.11: even small reductions in the availability of intertidal habitat (due to 

simulated sea level rise) were predicted to reduce site carrying capacity and the 

ability of birds to cope with increased frequencies of human activities. 

Harvest management 

Identify how much of the invertebrate resource 

is required to sustain birds throughout the non-

breeding season, and put limits on shellfish and 

baitworm extraction in order to achieve this. 

Figures 5.12 and 6.4: achievable fat deposition rate, body condition and survival were 

all predicted to be greater under scenarios of higher invertebrate prey availability i.e. 

birds were better able to meet their energy requirements and compensate for the 

costs of disturbance. 

Pollution control 

Minimise nutrient inputs and associated algal 

mat formations which can alter prey 

communities and bird foraging behaviour. 

Also linked to ensuring sufficient invertebrate prey availability to enable birds to meet 

daily energy intake requirements or compensate for additional costs of disturbance 

responses (see above). 

Cold weather restrictions/ 

communication of potential 

impacts of disturbance 

Encourage visitors to alter their behaviour at 

times when birds are likely to be particularly 

vulnerable. 

Figure 6.5: achievable fat deposition rates were predicted to be lower in winter and 

spring compared to autumn, in part due to the additional thermoregulatory costs 

associated with lower temperatures and when feeding time was limited by the tidal 

stage. Severe weather would be expected to negatively impact energy budgets, which 

would be further exacerbated by disturbance costs. 

Zonation 

Identify sensitive/priority areas where greater 

emphasis should be put on implementing the 

above actions, and other areas where restrictions 

can be relaxed. 

Figures 5.8, 6.7 and 6.8: model simulations demonstrated how the spatial patterns of 

occurrence of potential disturbers influence predicted fat deposition rate, body 

condition and overwinter survival. 
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7.5 Study limitations and recommendations for further work 

7.5.1. General applicability and unexplained variability 

Whilst most of the field data and detailed modelling exercises from this study were for a 

single site, Poole Harbour, the results were also supported by data from a second study site 

(the Wash) and the general model simulations. Further work to add detailed disturbance-

related parameters to existing IBMs for other estuarine sites would therefore help to 

demonstrate the extent to which the findings are more widely applicable. Additional field 

work with an IBM in mind could also benefit from more detailed consideration of the 

patterns of visitor use: specifically time of day; weekends versus weekdays; and variability in 

visitor numbers though the season between September and March. 

As was shown here for pedestrian and wildfowling disturbance and elsewhere in the 

literature (e.g. Burger 1981, Glover et al. 2011, Lafferty 2001b), there may be important 

differences in the way that birds respond to different types of human activity. So whilst a 

focus on responses to pedestrians is logical (since walking is the most frequently occurring 

activity), there is a need to understand the relative impacts of other activities. This could for 

example inform appropriate management of shellfish and bait harvesting or address, if 

necessary, the increasing popularity of other activities like kite surfing (Davenport and 

Davenport, 2006) and flying drones (Allport 2016; McEvoy et al. 2016; Rümmler et al. 2016). 

Much of the unexplained variability in bird responses that were observed in relation to 

experimental disturbance is likely to be due to between-individual differences in experience 

and body condition, so any research that can measure this alongside controlled experimental 

disturbance would make an important contribution to knowledge. This could also help to 

address the crucial point that the results of experimental studies such as those described in 

Chapters 2-4 still cannot tell us at what level of disturbance there will be a population impact. 

Full time budget surveys, for example, that determine the proportion of available time that 

key species spend feeding would give an indication of the difficulty with which they are 

achieving their daily energy requirements (Goss-Custard et al. 1977), and thus their capacity 

to cope with the costs of responding to disturbance at different stages of the winter period. 

For example Bell et al. (1991) used radio tracking to show that wigeon on the Ouse Washes 

(UK) spent over 16 hours per day feeding, and would therefore be particularly vulnerable to 

experiencing negative consequences of disturbance disrupting their feeding patterns and 

increasing their energy requirements since they would have little available time with which to 

compensate. 
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Abundance and accessibility of intertidal invertebrates are inherently patchy in both time and 

space so not all foraging areas that are available to birds are equally attractive. Disturbance 

that excludes birds from the most profitable areas could therefore be relatively more 

problematic than the same amount of disturbance in more uniform or poorer quality habitat. 

This needs to be acknowledged or accounted for when making predictions about impact. The 

distinction was incorporated into the Morph model using data from detailed surveys of the 

invertebrate communities in Poole Harbour; however in the interest of general applicability 

and model parsimony, such variability was not included in the simple IBM. There is scope to 

address this alongside further development of the model for additional scenario testing and 

investigating further patterns in site- and bird-related predictors of the impacts of 

disturbance. 

7.5.2. Tools for conservation decision making 

Chapter 5 demonstrated how site-specific modelling can offer detailed insights into the 

impacts of disturbance (or lack of) and suitable management. However, there is also a need 

for an effective rapid assessment method for determining whether such detailed 

investigation should be a priority given limited resources. The general IBM (Chapter 6) to test 

bird ability to balance energy expenditure against intake showed that the energy budget 

approach can be a useful way to judge whether survival is likely to be significantly impacted 

as a result of disturbance. The next step following on from this research, therefore, would be 

to develop, test and ultimately communicate the effectiveness of an energy budget rapid 

assessment tool (Figure 7.2).  

 

Figure 7.2. The key elements of an energy budget calculation that incorporates the energetic 

costs of responding to disturbance. 

The maximum daily intake that birds could achieve can be estimated using knowledge of 

intertidal exposure time for a site; details of invertebrate prey availability (mean ash-free dry 

mass per individual within the size range consumed by each bird species); and the functional 

response equations given by (Goss-Custard et al. 2006b). Daily energetic requirements would 

be calculated in the same way as described in Chapters 5 and 6, according to BMR and the 
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additional energetic costs of thermoregulation. And as shown in this study, the expected cost 

of disturbance is related to the number of potentially disturbing activities, the probability of 

them over lapping in time and space with foraging birds, and the behavioural responses of 

birds (time spent in flight and lost feeding time). 

If the results of this rapid assessment can be shown to be consistently accurate when tested 

against the predictions of site-specific IBMs for a range of sites, it could be a very useful tool 

for quickly identifying management priorities in relation to mitigation of disturbance impacts. 

Users should bear in mind, however, that this is likely to be a more precautionary 

assessment, since survival will only be affected when birds suffer a negative energy budget 

for a prolonged period of time i.e. days or weeks (Pienkowski et al. 1984a).  
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7.6 Final remarks 

Human disturbance of birds (and wildlife in general) can be an emotive topic and the subject 

of heated debate as to whether it is ‘morally acceptable’. However from a biological point of 

view, the issue may not be as problematic as many people think. Sites that support large 

numbers of birds during the non-breeding season are likely to be of sufficiently high quality to 

allow birds to cope with the relatively minor costs of responding to disturbance. Since bird 

ability to compensate for those costs is related to habitat quality (availability of feeding areas 

where birds can achieve high intake rates) and available feeding time, it follows that 

disturbance during the non-breeding season is only likely to have a significant population 

impact under circumstances where birds are already having difficulty in meeting their energy 

requirements (such as during prolonged periods of extreme cold weather or after 

considerable loss of suitable habitat). 

By investigating wildfowling as well as pedestrian disturbance, this research has added to our 

understanding of bird responses to noise stimuli and the potential impacts of hunting on non-

target species. It provides evidence to allow less-precautionary approaches to be taken 

regarding management of disturbance in the context of other threats to key species and 

habitats. 

This study has also shown how field data and simulation modelling can be combined to give 

site-specific and general recommendations for conservation management, with applications 

not just for birds and estuarine environments. The patterns, predictions and assessment tools 

that have been discussed are also applicable to a wide variety of systems where management 

of human-wildlife interactions might be necessary. 
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Appendices 

Appendix 1. Preliminary analysis revealed no effect of winter year on a) FID, b) flight time 

or c) latency time, and that only one interaction term (Site:WinterDay) should be included in 

the global models for multi-model inference testing. 

a) 

Call: 
lm(formula = log(FID) ~ z.SpMass * z.WindChill + z.SpMass * z.ShoreLevel +  
    Site + z.SpMass * z.WinterDay + Site:z.WinterDay + z.WinterYear +  
    c.IsItOC + c.IsItPlover, data = data) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.94155 -0.28532  0.02335  0.28781  1.61603  
 
Coefficients: (1 not defined because of singularities) 
                                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)                      4.428505   0.035069 126.280  < 2e-16 *** 
z.SpMass                         1.242445   0.052448  23.689  < 2e-16 *** 
z.WindChill                      0.098183   0.044116   2.226 0.026380 *   
z.ShoreLevel                    -0.166977   0.042068  -3.969 8.00e-05 *** 
Site2-Maretail                 -0.110784   0.219572  -0.505 0.614046     
Site3-Breast Sand                0.110221   0.127162   0.867 0.386379     
Site4-Stubborn Sand             -0.361535   0.042938  -8.420 2.34e-16 *** 
z.WinterDay                     -0.129668   0.075554  -1.716 0.086589 .   
z.WinterYear                    -0.036778   0.046494  -0.791 0.429215     
c.IsItOC                        -0.512430   0.061200  -8.373 3.35e-16 *** 
c.IsItPlover                     0.488813   0.061513   7.947 8.29e-15 *** 
z.SpMass:z.WindChill             0.119596   0.086022   1.390 0.164910     
z.SpMass:z.ShoreLevel            0.015544   0.084897   0.183 0.854780     
z.SpMass:z.WinterDay             0.005905   0.087933   0.067 0.946483     
Site2-Maretail:z.WinterDay     -0.236508   0.348730  -0.678 0.497884     
Site3-Breast Sand:z.WinterDay          NA         NA      NA       NA     
Site4-Stubborn Sand:z.WinterDay  0.313813   0.088296   3.554 0.000406 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4907 on 661 degrees of freedom 
Multiple R-squared:  0.6017, Adjusted R-squared:  0.5926  
F-statistic: 66.57 on 15 and 661 DF,  p-value: < 2.2e-16 
 

 

b) 

Call: 
lm(formula = log(FlightTime) ~ z.SpMass * z.WindChill + z.SpMass *  
    z.ShoreLevel + Site + z.SpMass * z.WinterDay + Site:z.WinterDay +  
    z.WinterYear + c.IsItOC + c.IsItPlover, data = data) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.60092 -0.38003  0.00709  0.39324  1.47614  
 
Coefficients: (1 not defined because of singularities) 
                                  Estimate Std. Error t value Pr(>|t|)     
(Intercept)                      2.9162885  0.0388360  75.092  < 2e-16 *** 
z.SpMass                         0.5552171  0.0580814   9.559  < 2e-16 *** 
z.WindChill                      0.1579749  0.0488549   3.234 0.001283 **  
z.ShoreLevel                    -0.1635865  0.0465865  -3.511 0.000476 *** 
Site2-Maretail                 -0.2696744  0.2431579  -1.109 0.267812     
Site3-Breast Sand                0.2033731  0.1408216   1.444 0.149160     
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Site4-Stubborn Sand             -0.2638803  0.0475507  -5.549 4.15e-08 *** 
z.WinterDay                     -0.2423223  0.0836701  -2.896 0.003902 **  
z.WinterYear                    -0.0324933  0.0514888  -0.631 0.528210     
c.IsItOC                        -0.2057459  0.0677738  -3.036 0.002493 **  
c.IsItPlover                     0.2120478  0.0681202   3.113 0.001933 **  
z.SpMass:z.WindChill             0.0438667  0.0952628   0.460 0.645322     
z.SpMass:z.ShoreLevel           -0.0709289  0.0940166  -0.754 0.450860     
z.SpMass:z.WinterDay             0.0002832  0.0973781   0.003 0.997680     
Site2-Maretail:z.WinterDay     -0.0940819  0.3861896  -0.244 0.807604     
Site3-Breast Sand:z.WinterDay           NA         NA      NA       NA     
Site4-Stubborn Sand:z.WinterDay  0.3205609  0.0977810   3.278 0.001099 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.5434 on 661 degrees of freedom 
Multiple R-squared:  0.253, Adjusted R-squared:  0.2361  
F-statistic: 14.93 on 15 and 661 DF,  p-value: < 2.2e-16 
 

 

c) 

Call: 
lm(formula = log(TotalTime) ~ z.SpMass * z.WindChill + z.SpMass *  
    z.ShoreLevel + Site + z.SpMass * z.WinterDay + Site:z.WinterDay +  
    z.WinterYear + c.IsItOC + c.IsItPlover, data = data) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.31732 -0.30585  0.00614  0.29032  1.29050  
 
Coefficients: (1 not defined because of singularities) 
                                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)                      3.798442   0.032125 118.238  < 2e-16 *** 
z.SpMass                         0.505669   0.048045  10.525  < 2e-16 *** 
z.WindChill                      0.117532   0.040413   2.908 0.003757 **  
z.ShoreLevel                    -0.129354   0.038537  -3.357 0.000834 *** 
Site2-Maretail                 -0.036983   0.201142  -0.184 0.854178     
Site3-Breast Sand                0.245100   0.116489   2.104 0.035750 *   
Site4-Stubborn Sand             -0.144054   0.039334  -3.662 0.000270 *** 
z.WinterDay                     -0.284009   0.069213  -4.103 4.58e-05 *** 
z.WinterYear                    -0.148172   0.042592  -3.479 0.000537 *** 
c.IsItOC                         0.020871   0.056063   0.372 0.709803     
c.IsItPlover                     0.318822   0.056350   5.658 2.28e-08 *** 
z.SpMass:z.WindChill             0.072659   0.078802   0.922 0.356844     
z.SpMass:z.ShoreLevel           -0.002636   0.077771  -0.034 0.972972     
z.SpMass:z.WinterDay            -0.038420   0.080552  -0.477 0.633545     
Site2-Maretail:z.WinterDay      0.055688   0.319459   0.174 0.861668     
Site3-Breast Sand:z.WinterDay          NA         NA      NA       NA     
Site4-Stubborn Sand:z.WinterDay  0.323716   0.080885   4.002 6.99e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4495 on 661 degrees of freedom 
Multiple R-squared:  0.332, Adjusted R-squared:  0.3168  
F-statistic:  21.9 on 15 and 661 DF,  p-value: < 2.2e-16 
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Appendix 2. Standardised, model averaged, species-specific parameter estimates for predictors of wader responses to experimental disturbance by an 

approaching pedestrian. 

a) logFID

Estimate s.e Estimate s.e Estimate s.e Estimate s.e Estimate s.e

Intercept 5.913 0.061 4.705 0.051 4.344 0.039 5.046 0.073 4.245 0.046

1 WindChill 0.118 0.153 0.160 0.056 0.231 0.079 -0.053 0.091 0.112 0.116

2 ShoreLevel 0.004 0.049 -0.160 0.064 -0.317 0.082 -0.363 0.116 -0.017 0.056

3 Site
a

Site2-Maretail 0.213 0.227 -0.053 0.124 - - -1.721 4.475 - -

Site3-Breast Sand - - 0.147 0.148 - - - - - -

Site4-Stubborn Sand -0.484 0.104 -0.336 0.064 -0.162 0.119 -0.470 0.099 -0.811 0.109

4 WinterDay 0.191 0.162 0.016 0.041 0.069 0.084 -0.226 0.200 -0.007 0.043

5 Site:WinterDayb

 Site2-Maretail:WinterDay - - - - - - -1.105 4.922 - -

 Site3-Breast Sand:WinterDay - - - - - - - - - -

 Site4-Stubborn Sand:WinterDay - - - - - - 0.459 0.349 - -

Estimate s.e Estimate s.e Estimate s.e Estimate s.e Estimate s.e

Intercept 4.153 0.068 3.296 0.175 3.658 0.063 3.081 0.112 3.609 0.054

1 WindChill -0.009 0.055 0.395 0.209 0.233 0.157 -0.014 0.109 -0.077 0.116

2 ShoreLevel -0.264 0.107 -0.694 0.184 0.010 0.072 -0.023 0.114 0.034 0.080

3 Sitea

Site2-Maretail 0.064 0.139 0.575 0.667 - - - - - -

Site3-Breast Sand 0.198 0.283 - - - - - - - -

Site4-Stubborn Sand 0.001 0.068 -0.056 0.184 -0.042 0.186

4 WinterDay -0.313 0.106 0.088 0.166 0.004 0.061 0.051 0.151 0.208 0.144

5 Site:WinterDayb

 Site2-Maretail:WinterDay - - - - - - - - - -

 Site3-Breast Sand:WinterDay - - - - - - - - - -

 Site4-Stubborn Sand:WinterDay - - - - - - - - - -

Predictor

Species

Species

Turnstone Ringed plover Sanderling Dunlin

Predictor Curlew Oystercatcher Bar-tailed godwit Grey plover Redshank

Knot
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b)logFlightTime

Estimate s.e Estimate s.e Estimate s.e Estimate s.e Estimate s.e

Intercept 3.439 0.075 2.983 0.094 2.841 0.057 3.232 0.110 2.637 0.088

1 WindChill 0.016 0.092 0.232 0.085 0.303 0.125 -0.036 0.099 -0.008 0.090

2 ShoreLevel -0.044 0.110 -0.099 0.108 -0.224 0.144 -0.052 0.115 0.037 0.118

3 Site
a

Site2-Maretail <0.001 0.073 -0.121 0.192 - - 0.065 0.413 - -

Site3-Breast Sand - - -0.127 0.212 - - - -

Site4-Stubborn Sand 0.005 0.041 -0.080 0.116 -0.047 0.110 -0.487 0.151 -0.600 0.195

4 WinterDay -0.012 0.090 0.007 0.047 0.011 0.060 0.053 0.119 -0.085 0.157

5 Site:WinterDayb

 Site2-Maretail:WinterDay - - - - - - - - - -

 Site3-Breast Sand:WinterDay - - - - - - - - - -

 Site4-Stubborn Sand - - - - - - - - - -

Estimate s.e Estimate s.e Estimate s.e Estimate s.e Estimate s.e

Intercept 2.853 0.089 2.680 0.307 2.401 0.090 2.156 0.100 2.502 0.084

1 WindChill 0.003 0.055 0.149 0.218 0.199 0.213 0.310 0.280 0.086 0.110

2 ShoreLevel -0.005 0.056 -0.221 0.251 0.008 0.107 -0.122 0.202 -0.044 0.085

3 Sitea

Site2-Maretail 2.063 3.548 0.884 0.750 - - - - 0.55881 0.41408

Site3-Breast Sand 0.371 0.403 - - - - - - 0.32452 0.21671

Site4-Stubborn Sand -0.022 0.101 -0.444 0.339 - - -0.231 0.336 -0.1248 0.11029

4 WinterDay -0.340 0.334 0.030 0.132 -0.020 0.097 0.148 0.237 -0.002 0.055

5 Site:WinterDayb

 Site2-Maretail:WinterDay 3.78731 5.90756 - - - - - - - -

 Site3-Breast Sand:WinterDay 0 0 - - - - - - - -

 Site4-Stubborn Sand 0.24417 0.33877 - - - - - - - -

Predictor

Species

Redshank

Knot Turnstone Ringed plover Sanderling Dunlin

Species

Predictor Curlew Oystercatcher Bar-tailed godwit Grey plover
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c) logTotalTimeLost

Estimate s.e Estimate s.e Estimate s.e Estimate s.e Estimate s.e
Intercept 4.239 0.070 4.022 0.046 3.736 0.049 4.132 0.092 3.673 0.074

1 WindChill 0.014 0.088 0.281 0.070 0.232 0.113 -0.023 0.071 0.054 0.121

2 ShoreLevel -0.046 0.107 -0.085 0.080 -0.134 0.121 -0.015 0.067 0.006 0.074

3 Sitea

Site2-Maretail 0.000 0.072 0.024 0.086 - - 0.160 0.315 - -

Site3-Breast Sand - - -0.015 0.141 - - - - - -

Site4-Stubborn Sand 0.007 0.046 -0.019 0.052 -0.028 0.083 -0.307 0.135 -0.159 0.184

4 WinterDay -0.020 0.092 -0.0025 0.031 0.014 0.057 0.061 0.108 -0.046 0.110

5 Site:WinterDayb

 Site2-Maretail:WinterDay - - -0.015067 0.0841063 - - - - - -

 Site3-Breast Sand: WinterDay - - -0.057848 0.4003784 - - - - - -

 Site4-Stubborn Sand:WinterDay - - 0.0010851 0.0304808 - - - - - -

Estimate s.e Estimate s.e Estimate s.e Estimate s.e Estimate s.e
Intercept 3.676 0.084 3.544 0.224 3.502 0.075 3.180 0.078 3.353 0.069

1 WindChill 0.007 0.053 0.014 0.082 0.357 0.179 0.045 0.116 0.060 0.090

2 ShoreLevel -0.010 0.056 -0.240 0.204 0.043 0.131 -0.449 0.187 -0.136 0.110

3 Sitea

Site2-Maretail 2.633 3.478 0.588 0.578 - - - - 0.345 0.374

Site3-Breast Sand 0.440 0.382 - - - - 0.237 0.217

Site4-Stubborn Sand -0.020 0.099 -0.231 0.248 - - -0.250 0.287 -0.044 0.087

4 WinterDay -0.426 0.327 0.053 0.124 0.069 0.136 0.078 0.150 0.002 0.050

5 Site:WinterDayb

 Site2-Maretail:WinterDay 4.803 5.767 - - - - - - - -

 Site3-Breast Sand: WinterDay 0 0 - - - - - - - -

 Site4-Stubborn Sand:WinterDay 0.359 0.355 - - - - - - - -

Species

Species

Turnstone Ringed plover Sanderling DunlinPredictor

Predictor Curlew Oystercatcher Bar-tailed godwit Grey plover Redshank

Knot
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Appendix 3. No effect of initial response (walk or fly) on FID, flight time or total time lost 

so data can be combined. 
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Appendix 4. No effect of winter year on responses to disturbance so all data can be 

combined. 
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Appendix 5. Model selection tables – top five AICc-ranked models in each candidate set. 

a) Global model = log(FID)~Approach+IsItOC+IsItPlover+FlockSize+SpMass+StartDist+VisitFreq+WindChill+WinterDay+SpMass:VisitFreq 

Variables in top five candidate models 
adjR2 AICc Δi i

Approach IsItOC IsItPlover FlockSize SpMass StartDist VisitFreq WindChill WinterDay SpMass:VisitFreq 

          0.6398 476.743 0 0.088 

          0.6370 477.204 0.461 0.070 

          0.6415 477.322 0.579 0.066 

          0.6412 477.553 0.810 0.059 

          0.6386 477.794 1.051 0.052 

b) Global model = 

log(FlightTime)~Approach+IsItOC+IsItPlover+FlockSize+SpMass+StartDist+VisitFreq+WindChill+WinterDay+Approach:SpMass+FlockSize:SpMass+ 

WindChill:WinterDay 

Variables in top five candidate models 

adjR2 AICc Δi i  
Approach IsItOC IsItPlover FlockSize SpMass StartDist VisitFreq WindChill WinterDay 

Approach: 

SpMass 

FlockSize: 

SpMass 

WindChill: 

WinterDay  

            0.1895 753.474 0 0.039 
 

            0.1718 753.995 0.520 0.030 
 

            0.1751 754.811 1.337 0.020 
 

            0.1740 755.248 1.774 0.016 
 

            0.1794 755.282 1.808 0.016 
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c) Global model = 
log(TotalLost)~Approach+IsItOC+IsItPlover+FlockSize+SpMass+StartDist+VisitFreq+WindChill+WinterDay+FlockSize:SpMass+VisitFreq:WinterDay 

Variables in top five candidate models 

adjR2 AICc Δi i
Approach IsItOC IsItPlover FlockSize SpMass StartDist VisitFreq WindChill WinterDay 

FlockSize: 

SpMass 

VisitFreq: 

WinterDay 

           0.2222 717.226 0 0.089 

           0.2269 717.479 0.253 0.079 

           0.2251 718.182 0.956 0.055 

           0.2302 718.282 1.056 0.053 

           0.2248 718.300 1.074 0.052 
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Appendix 6. Estimating Effective Disturbance Distance (EDD) – a worked example. 

Effective disturbance distance (EDD) is an FID-like measure of the distance over which birds 

are disturbed by an activity. It is calculated using modelled probabilities of a disturbance 

response occurring at a given distance from the disturbance stimulus. Following Stillman et 

al. (2012), this method was used to calculate EDDs for each species of wader and wildfowl in 

response to the sound of a wildfowler’s shotgun (Chapter 4). 

This worked example for curlew shows how the calculations used the results of the binary 

logistic regression analyses and model averaging.  The probability of any response occurring 

was estimated for each 1 metre interval up to the maximum recorded response distance (850 

m). These predicted probabilities could then be summed to give the EDD value for each 

species as shown in Table 4.7. Each probability value was calculated for the mid-point in the 

wildfowling season (winter day = 117), based on the mean flock size observed for that 

species, and using the mean wind chill equivalent temperature for the study period (5.3˚C). 

𝐸𝐷𝐷 = 𝑃𝐴𝑛𝑦(1) + 𝑃𝐴𝑛𝑦(2) + 𝑃𝐴𝑛𝑦(3) … … + 𝑃𝐴𝑛𝑦(849) + 𝑃𝐴𝑛𝑦(850) 

𝐸𝐷𝐷 (𝑐𝑢𝑟𝑙𝑒𝑤) = 431.36𝑚 

Distance SpMass FlockSize IsItOC IsItPlover WinterDay WindChill PAny

1 782 10.467 No No 117 5.333 0.90524

2 782 10.467 No No 117 5.333 0.90480

3 782 10.467 No No 117 5.333 0.90435

4 782 10.467 No No 117 5.333 0.90389

5 782 10.467 No No 117 5.333 0.90344

6 782 10.467 No No 117 5.333 0.90298

7 782 10.467 No No 117 5.333 0.90252

8 782 10.467 No No 117 5.333 0.90206

9 782 10.467 No No 117 5.333 0.90160

10 782 10.467 No No 117 5.333 0.90114
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

845 782 10.467 No No 117 5.333 0.10449

846 782 10.467 No No 117 5.333 0.10401

847 782 10.467 No No 117 5.333 0.10352

848 782 10.467 No No 117 5.333 0.10304

849 782 10.467 No No 117 5.333 0.10256

850 782 10.467 No No 117 5.333 0.10208

SUM= 431.35616

CURLEW EDD calculation
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Appendix 7. Model selection tables – top five AICc-ranked models in each candidate set for waders: a) probability of any response, b) probability of flight, 

c) probability of flight with abandonment; and wildfowl: d) probability of any response, e) probability of flight, f) probability of flight with abandonment.  

a) Global model = glm(AnyResponse~SpMass+Distance+FlockSize+WindChill+WinterDay+IsItOC+IsItPlover, family=binomial, data=waders) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize IsItOC IsItPlover SpMass WindChill WinterDay 

       0.2843 196.614 0 0.131 

       0.2538 197.367 0.753 0.090 

       0.2638 197.848 1.234 0.071 

       0.2879 198.182 1.568 0.060 

       0.2847 198.707 2.093 0.046 

b) Global model = glm(FlightResponse~SpMass+Distance+FlockSize+WindChill+WinterDay+IsItOC+IsItPlover, family=binomial, data=waders) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize IsItOC IsItPlover SpMass WindChill WinterDay 

       0.2649 229.647 0 0.206 

       0.2754 229.913 0.267 0.180 

       0.2682 231.197 1.551 0.095 

       0.2779 231.617 1.971 0.077 

       0.2657 231.636 1.990 0.076 
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c) Global model = glm(Abandon~SpMass+Distance+FlockSize+WindChill+WinterDay+IsItOC+IsItPlover,family=binomial,data=waders) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize IsItOC IsItPlover SpMass WindChill WinterDay 

       0.0000 232.018 0 0.071 

       0.0061 233.236 1.218 0.039 

       0.0208 233.320 1.303 0.037 

       0.0028 233.679 1.661 0.031 

       0.0028 233.681 1.663 0.031 
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d) Global model = 

glm(AnyResponse~SpMass+Distance+FlockSize+WindChill+WinterDay+QuarryUK, 

family=binomial, data=wildfowl) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize QuarryUK SpMass WindChill WinterDay 

      0.0957 134.608 0 0.073 

      0.0395 134.845 0.238 0.065 

      0.0361 135.106 0.499 0.057 

      0.0596 135.369 0.761 0.050 

      0.0591 135.411 0.803 0.049 

e) Global model = 

glm(FlightResponse~SpMass+Distance+FlockSize+WindChill+WinterDay+QuarryUK, 

family=binomial, data=wildfowl) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize QuarryUK SpMass WindChill WinterDay 

      0.0504 146.764 0 0.087 

      0.0710 147.155 0.391 0.072 

      0.0399 147.634 0.870 0.056 

      0.0883 147.852 1.088 0.051 

      0.0602 148.066 1.302 0.045 

f) Global model = 

glm(Abandon~SpMass+Distance+FlockSize+WindChill+WinterDay+QuarryUK,family=binomial, 

data=wildfowl) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize QuarryUK SpMass WindChill WinterDay 

      0.0267 122.299 0 0.239 

      0.0154 124.140 1.841 0.095 

      0.0279 124.175 1.876 0.093 

      0.0271 124.253 1.954 0.090 

      0.0266 124.486 2.187 0.080 
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Appendix 8. Model selection tables – top five AICc-ranked models in each single-species 

candidate set for curlew, oystercatcher and redshank. 

Curlew: 

a) Global model = glm(AnyResponse~Distance+WindChill+WinterDay+FlockSize, 

family=binomial) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize WindChill WinterDay 

    0.4393 44.461 0 0.232 

    0.4839 44.595 0.134 0.217 

    0.4680 45.380 0.919 0.147 

    0.5010 46.152 1.690 0.100 

    0.4962 46.393 1.932 0.088 

b) Global model = glm(FlightResponse~Distance+WindChill+WinterDay+FlockSize, 

family=binomial) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize WindChill WinterDay 

    0.4331 52.192 0 0.294 

    0.3723 52.660 0.468 0.232 

    0.2950 53.781 1.589 0.133 

    0.4391 54.434 2.242 0.096 

    0.3242 54.818 2.626 0.079 

c) Global model = glm(Abandon~Distance+WindChill+WinterDay+FlockSize, 

family=binomial) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize WindChill WinterDay 

    0.1424 49.817 0 0.271 

    0.1531 51.760 1.943 0.103 

    0.1475 51.947 2.130 0.093 

    0.1467 51.973 2.155 0.092 

    0.0000 52.146 2.329 0.085 
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Oystercatcher: 

      
d) Global model = glm(AnyResponse~Distance+WindChill+WinterDay+FlockSize, 

family=binomial) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize WindChill WinterDay 

    0.1223 77.601 0 0.209 

    0.0000 78.560 0.959 0.129 

    0.0362 79.176 1.576 0.095 

    0.1376 79.216 1.615 0.093 

    0.0284 79.514 1.913 0.080 

e) Global model = glm(FlightResponse~Distance+WindChill+WinterDay+FlockSize, 

family=binomial) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize WindChill WinterDay 

    0.1173 77.827 0 0.156 

    0.0511 78.538 0.711 0.110 

    0.0000 78.560 0.733 0.108 

    0.1007 78.580 0.753 0.107 

    0.1459 78.829 1.002 0.095 

f) Global model = glm(Abandon~Distance+WindChill+WinterDay+FlockSize, 

family=binomial) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize WindChill WinterDay 

    0.2884 61.499 0 0.236 

    0.2298 61.919 0.420 0.191 

    0.1741 62.176 0.677 0.168 

    0.3013 63.294 1.796 0.096 

    0.1842 63.967 2.469 0.069 
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Redshank: 

      g) Global model = glm(AnyResponse~Distance+WindChill+WinterDay+FlockSize, 

family=binomial) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize WindChill WinterDay 

    0.3679 18.443 0 0.166 

    0.3357 19.021 0.578 0.125 

    0.4580 19.197 0.754 0.114 

    0.4448 19.449 1.006 0.101 

    0.2894 19.833 1.391 0.083 

h) Global model = glm(FlightResponse~Distance+WindChill+WinterDay+FlockSize, 

family=binomial) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize WindChill WinterDay 

    0.2678 42.907 0 0.191 

    0.2560 43.258 0.351 0.160 

    0.2970 44.620 1.713 0.081 

    0.1200 44.634 1.727 0.081 

    0.1042 45.048 2.141 0.066 

i) Global model = glm(Abandon~Distance+WindChill+WinterDay+FlockSize, family=binomial) 

Variables in top five candidate models 
adjR2 AICc Δi i

Distance FlockSize WindChill WinterDay 

    0.1424 49.817 0 0.271 

    0.1531 51.760 1.943 0.103 

    0.1475 51.947 2.130 0.093 

    0.1467 51.973 2.155 0.092 

    0.0000 52.146 2.329 0.085 
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Appendix 9. NetLogo model code © C Collop 

;; Model settings 
; location of origin Corner, bottom left 
; world wrapping OFF 
; patch size 2 
; font size 10 
; world dimensions: 
  ; A: max-pxcor=559, max-pycor=60 
  ; B: 279, 100 
  ; C: 139, 180 
  ; D: 1119, 40 
 
globals [ time daylength daylight? visitors-night tideheight temp tide-state speed-mud speed-path worm-mass max-assim 
roost-distance last-x last-y fid fltime flight-speed latency propSpring total-visitors disturbers] 
; other globals on interface [ air-temp size-of-patch mean-tide-height spring-range neap-range spring-neap-cycle  
winter-day initial-birds access-per-km distance-to-roost 
;  visitors-per-hr propInter visit-duration initial-worm-density ] 
 
; time = hour of the day (time hh:mm also reported on interface) 
; daylength = hours of daylight (see set-daylight) 
; daylight? = yes/no (see set-daylight) 
; visitors-night = number of humans per hour during evening darkness (between sunset and 10pm) 
; tideheight (m) 
; temp = temperature fixed for whole simulation (based on same equation as used in Morph) 
; tide-state = rising or falling 
; speed-mud = walking speed of humans on intertidal habitat (km/hr) 
; speed-path = walking speed of humans on path (km/hr) 
; worm-mass = gAFDM per worm (I've chosen to use worms 45-60mm => 0.01538895 gAFDM per worm as used in Morph) 
; max-assim = daily maximum energy assimilation (based on gut constraints) 0.75*1713*Mass(kg)^0.72 kJ/day (Kirkwood 
1983 in Lindstrom 1991) 0.75 = assimilation efficiency when feeding on worms 
; roost-distance =  distance (km) birds must fly to get from roost to intertidal habitat 
; last-x = previous x co-ordinate of a bird (used in some distance calculations) 
; last-y = previous x co-ordinate of a bird (used in some distance calculations) 
; FID = species-specific flight initiation distance 
; fltime = species-specific mean time spent in flight in response to approaching pedestrian 
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; latency = species-specific mean time spent latent after flight in response to approaching pedestrian 
; flight-speed = flight speed of a bird (using allometric relationship in Alerstam et al 2007 => 12.46 m/s for 
redshank) 
; propSpring = used to calculate tide height based on position in relation to the spring-neap cycle (see set-
tideheight) 
; total-visitors = total number of humans that arrived on site 
; disturbers = number of humans that have resulted in a disturbance of one or more birds 
; size-of-patch = scale of world e.g. one patch is 25m wide 
; mean-tide-height = what it says! 
; spring-range/neap-range = difference in tideheight between high and low tide on spring and neap tides 
; spring-neap-cycle = chooser to determine the tidal curve for the simulation 
; winter-day = chooser to determine winter-day (winter day 1 = 1st September) - this determines air-temp and daylength 
; initial-birds = number of birds included in simulation 
; access-per-km = number of access points per km of shoreline from which humans can arrive 
; visitors-per-hour =  number of humans that arrive per hour between 6am and sunset (based on my daylight 
observations) 
; propInter = proportion of visitors that leave the path and walk on the intertidal habitat 
; visit-duration = length of time (in minutes) that each visitor stays 
; initial-worm-density = number of worms per m2 that all intertidal patches have at the start of the simulation 
 
breed [ birds bird ] 
 
breed [ humans human ] 
 
birds-own [ Species Target ProgressNet MetRate LCT ThermoCosts ShoreLevelPref ForagingEff NightEff Eff Dom Intake 
FreeTime CostOfFlight 
  LastPatch DisturbCost TotalResponses MaxDist] 
; Species = bird species being simulated (I have chosen to use redshank feeding on worms of 45-60mm) 
; Target = intake (kJ assimilated) that birds need to achieve in order to balance their energy budget (i.e. based on 
metabolic rate and theremoregulation costs) 
; ProgressNet = total energy assimilated minus travel costs and costs of disturbance (kJ) 
; MetRate =  metabolic rate of a bird (2.1 * BMR) same as used in Morph (kJ/day) 
; LCT = lower critical temperature of a bird (same as used in Morph) 
; ThermoCosts =  cost of thermoregulation kJ per day per degree below LCT (same as in Morph) 
; ShoreLevelPref = randomly selected y coordinate of the shore level at which a bird "wants" to forage 
; ForagingEff = daytime foraging efficiency of birds follows random normal distribution like in Morph 
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; NightEff = species-specific relative efficiency when feeding at night (same as used in Morph) 
; Eff = bird's efficency in the current time step depending on whether day or night 
; Dom = relative dominance of bird follows uniform distribution (used to calculate susceptibility to interference like 
in Morph) 
; FreeTime = seconds of time available for travel between patches/responding to disturbance/foraging 
; CostOfFight = energetic cost of flight kJ/s 
; LastPatch = the previous location of a bird (used to calculate distance moved) 
; DisturbCost = the additional energetic costs (kJ) due to responding to disturbance in a time step 
; TotalResponses = total number of disturbance response flights made by a bird in the course of a simulation 
; MaxDist = maximum distance (proportion of a patch) a bird can fly in one timestep 
 
 
patches-own [ area habitat patch-type exposure-height available? access? worm-density IFIR attract ] 
; area = m2 (size-of-patch ^ 2) 
; habitat = roost, path, intertidal, or water 
; patch-type = intertidal or not 
; exposure-height = when tideheight is equal to or below exposure height, the patch becomes exposed 
; available? = yes/no i.e. whether birds can use a patch (roost patches are always available; intertidal only when 
exposed) 
; access? = yes/no whether a path patch can "create" humans 
; worm-density = number of worms per m2 
; IFIR = interference-free intake rate that a bird could achieve if it used the patch 
; attract = measure of attractiveness to birds based on IFIR and density of birds 
 
humans-own [ route speed dist remaining home-patch disturber] 
 
; route = whether the human stays on the path or goes onto the intertidal habitat 
; speed = walking speed according to route chosen (converted to metres per minute) 
; dist =  distance (proportion of a patch) that a human can cover in a time step => based on walking speed 
; remaining = number of time steps remaining until human leaves (based on visit-duration) 
; home-patch = location of path patch where human started - they return back to this patch before leaving 
 
to setup 
  file-close-all 
  clear-all 
  reset-ticks 
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  set-daylight 
  set air-temp precision (17.65 + (-0.1687 * winter-day) + (0.000579 * winter-day * winter-day)) 2 
  set temp air-temp 
  set-tideheight 
 
  set FID 59.09 ; metres 
  set fltime 13.89 ; seconds of flight per disturbance 
  set latency 12.96 ; latent seconds after flight before feeding 
  set flight-speed 12.46 ; m/s (Alerstam et al 2007) 
 
  set speed-mud 2.5 ; km/hr 
  set speed-path 4 ; km/hr 
  set roost-distance distance-to-roost ; km 
 
  set worm-mass 0.01538895 ;gAFDM per worm 
  create-patches 
  ask patches [ set-available-patches ] 
 
  create-foragers 
 
  let evening-dark (22 - (12 + (daylength / 2))) ; hrs of darkness between sunset and 10pm 
  set visitors-night (((visitors-per-hr * daylength) / 0.94) * 0.06) / evening-dark ; number of humans per hour during 
evening darkness 
 
  set max-assim 0.75 * 1713 * ((153.3 / 1000) ^ 0.72) ; kJ/day (using body mass 153.3g) 
 
end 
 
 
to set-daylight 
  set daylength (16.5 + 8) / 2 + ((16.5 - 8) / 2) * cos(2 * pi * (winter-day + 70) / 365 * 57.2957795) ; day length 
oscillates between 16.5hrs on the longest day (21 June) 
 ; and 8hrs on the shortest day (21 Dec). 1 Sep is 71 days after 21 June. 
  ifelse (time >= (12 - (daylength / 2))) and (time <= (12 + (daylength / 2))) ; daylight hours are split equally 
either side of midday. 
  [ set daylight? "yes" ] 
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  [ set daylight? "no" ] 
 
end 
 
 
to set-tideheight 
 
  let propHigh 0.5 * (cos(2 * pi * 2 * (ticks) / 60 / 24 * 57.2957795) + 1)  ; the second "2" makes two high-low 
cycles per day. Multiply by 57.2... for radians to degrees 
 ; conversion. (ticks) / 60 / 24 = time step (in minutes) as a proportion of the daily cycle 
 
  if spring-neap-cycle = "spring" [ set propSpring 0.5 * (cos (2 * pi * (ticks) / 60 / 24 / 14 * 57.2957795) + 1) ] ; 
(ticks) / 60 / 24 / 14 = time step (in minutes) as a proportion of the 14-day spring-neap cycle. Multiply by 57.2... 
for radians to degrees conversion. 
  if spring-neap-cycle = "neap" [ set propSpring 0.5 * (cos (2 * pi * (ticks + 10080) / 60 / 24 / 14 * 57.2957795) + 
1) ] 
 
  if spring-neap-cycle = "intermediate" [ set propSpring 0.5 * (cos (2 * pi * (ticks + 4320) / 60 / 24 / 14 * 
57.2957795) + 1) ] 
 
  let dayRange neap-range + propSpring * (spring-range - neap-range) 
  set tideheight mean-tide-height + (propHigh - 0.5) * dayRange 
 
  ifelse ticks < 360 ;or (ticks > 720 and ticks <= 1080) 
  [ set tide-state "falling" ] 
  [ ifelse ticks >= 1080 
    [ set tide-state "rising" ] 
    [ ifelse ticks < 720 
      [ set tide-state "rising" ] 
      [ set tide-state "falling" ] 
    ] 
  ] 
 
 
end 
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to create-patches ; patches set their exposure height according to their perpendicular distance from the shore. 
 ; Set exposure height at top of shore so that everything is covered for two hours either side of high tide on spring 
tides 
 ; use different AreaScenarios according to dimension of the world 
  ask patches 
  [ if AreaScenario = "A" [ set exposure-height precision (0.45 + 0.0349 * (pycor - 10)) 2 ] ; 0.45 = low water 
springs. tide height 2hrs after high tide = 1.81. (1.81-0.45)/39 = 0.0349 
    if AreaScenario = "B" [ set exposure-height precision (0.45 + 0.017 * (pycor - 10)) 2 ] ; (1.81-0.45)/79 = 0.017 
    if AreaScenario = "C" [ set exposure-height precision (0.45 + 0.00855 * (pycor - 10)) 2 ] ; (1.81-0.45)/159 = 
0.00855 
    if AreaScenario = "D" [ set exposure-height precision (0.45 + 0.0716 * (pycor - 10)) 2 ] ; (1.81-0.45)/19 = 0.0716 
    set area size-of-patch ^ 2 ; sq metres 
  ] 
 
  if AreaScenario = "A" 
  [ ask patches with [pycor = 50] [set pcolor 5 set habitat "path"] ; path at the top of the shore 
    ask patches with [pycor > 50] [set pcolor green set habitat "roost"] ; roost is effectively "far away" from the 
path and shore 
    ask patches with [pycor < 50 and pycor > 9] [ set worm-density initial-worm-density set patch-type "intertidal" ] 
; number of worms per m2 
  ] 
 
  if AreaScenario = "B" 
  [ ask patches with [pycor = 90] [set pcolor 5 set habitat "path"] ; path at the top of the shore 
    ask patches with [pycor > 90] [set pcolor green set habitat "roost"] ; roost is effectively "far away" from the 
path and shore 
    ask patches with [pycor < 90 and pycor > 9] [ set worm-density initial-worm-density set patch-type "intertidal" ] 
; number of worms per m2 
  ] 
 
  if AreaScenario = "C" 
  [ ask patches with [pycor = 170] [set pcolor 5 set habitat "path"] ; path at the top of the shore 
    ask patches with [pycor > 170] [set pcolor green set habitat "roost"] ; roost is effectively "far away" from the 
path and shore 
    ask patches with [pycor < 170 and pycor > 9] [ set worm-density initial-worm-density set patch-type "intertidal" ] 
; number of worms per m2 
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  ] 
 
  if AreaScenario = "D" 
  [ ask patches with [pycor = 30] [set pcolor 5 set habitat "path"] ; path at the top of the shore 
    ask patches with [pycor > 30] [set pcolor green set habitat "roost"] ; roost is effectively "far away" from the 
path and shore 
    ask patches with [pycor < 30 and pycor > 9] [ set worm-density initial-worm-density set patch-type "intertidal" ] 
; number of worms per m2 
  ] 
 
  ifelse ((((max [pxcor] of patches + 1) * size-of-patch) / 1000) * access-per-km) >= count patches with [habitat = 
"path"] 
  [ ask patches with [habitat = "path"] [ set access? "yes" set pcolor 15 ] 
  ] 
  [ ask n-of ((((max [pxcor] of patches + 1) * size-of-patch) / 1000) * access-per-km) patches with [habitat = "path"] 
    [ set access? "yes" set pcolor 15 ] 
  ] 
 
  ask patches with [patch-type = "intertidal"] [ set-IFIR ] 
 
end 
 
 
to set-available-patches ; Mud patches are available when exposed by the tide. Roost patches are always available. 
Birds don't land on the path. 
  ; Patches are coloured according to whether it is daylight and whether they are water, mud, path, path with an 
access point, or roost. 
 
   ifelse tideheight <= exposure-height 
    [ set available? "yes" ] 
    [ set available? "no" ] 
    if habitat = "roost" [set available? "yes" ifelse daylight? = "yes" [set pcolor green] [set pcolor 52]] 
    if habitat = "path" [set available? "no"] 
    if available? = "no" and habitat != "path" [ifelse daylight? = "yes" [set pcolor blue] [set pcolor 101] set 
habitat "water" ] 
    if available? = "yes" and habitat != "roost" [set pcolor scale-color brown exposure-height 0 10 set habitat "mud"] 
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end 
 
 
to create-foragers 
  create-birds initial-birds 
[ 
  set shape "bird side" 
  set color white 
  set size 5 
  move-to one-of patches with [habitat = "roost"] ; at the start of the simulation (midnight) all birds are on the 
roost, randomly distributed across the roost patches. 
  set-foraging-eff ; birds vary in their feeding effiency 
  set Species "Redshank" 
  set MetRate 233.8623 ; kJ per day 
  set NightEff 0.95 
  set LCT 18.6 
  set ThermoCosts 5.5 ; kJ per degree per day 
  set CostOfFlight 1336.356 / 24 / 60 / 60 ; kJ per second (12 times BMR) 
  ifelse temp < LCT 
  [ set Target MetRate + (ThermoCosts * (LCT - temp)) ] 
  [ set Target MetRate ] ; target intake for the 24hr simulation 
  set Dom random-float 1 ; randomly assigned relative dominance 
  if AreaScenario = "A" [ set ShoreLevelPref 10 + random 40 ] 
  if AreaScenario = "B" [ set ShoreLevelPref 10 + random 80 ] 
  if AreaScenario = "C" [ set ShoreLevelPref 10 + random 160 ] 
  if AreaScenario = "D" [ set ShoreLevelPref 10 + random 20 ] 
  set MaxDist (flight-speed * 60) / size-of-patch 
  ;pd 
 
 ] 
 
end 
 
to set-time ; the hour of the day 
  set time ((ticks + 1) mod 1440) / 60 
end 
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to go 
  if ticks = 0 [ output-type "simulation start time: " output-type substring date-and-time 0 5 output-print substring 
date-and-time 13 15 ] ; report simulation start time on interface 
  if ticks >= 1440 or count birds = 0 ; at end of simulation report end time, total number of bird responses, mean 
number of repsonses per bird, and % of birds that did not meet their target 
  [ output-type "simulation end time: " output-type substring date-and-time 0 5 output-print substring date-and-time 
13 15 
    output-type "total number of bird responses = " output-print sum [TotalResponses] of birds 
    output-type "mean number of responses per bird = " output-print precision (mean [TotalResponses] of birds) 1 
    output-type precision (((count birds with [ProgressNet < target]) / initial-birds) * 100) 2 output-print "% of 
birds unable to balance energy budget " 
    if total-visitors > 0 [ output-type precision (disturbers / total-visitors * 100  ) 1 output-print "% of visitors 
caused a disturbance" ] 
    ask patches with [patch-type = "intertidal" and worm-density < initial-worm-density] [set pcolor yellow ] 
    draw-plots ; show birds' net intake 
;    file-open "Results.csv" 
;    ask birds [file-write ProgressNet] 
;    file-close 
    export-world (word "D:/NetLogo/Run2/Graph2D/" behaviorspace-experiment-name "ResultsTest" (behaviorspace-run-
number + 0) ".csv") 
    stop ] 
  set-time 
  set-daylight 
  set-tideheight 
  ask patches with [patch-type = "intertidal"] [ set-available-patches ] 
 
  if count patches with [access? = "yes"] > 0 [ enter-humans ] ; humans enter and move before birds make foraging 
decisions 
  move-humans 
 
  ask birds [choose-patch-and-forage] ; scheduling: each bird moves, checks for humans, reponds and then feeds if it 
has time, and then the next does the same etc. 
 
  tick 
 
end 
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to-report hh:mm  ; displays time using 24hr clock 
 
  let mm ticks mod 60 
  let hh (floor (ticks / 60)) mod 24 
  ifelse hh < 10 
  [ifelse mm < 10 
    [report (word 0 (hh) ":0" (mm))] 
    [report (word 0 (hh) ":" (mm))]] 
  [ifelse mm < 10 
    [report (word (hh) ":0" (mm))] 
    [report (word (hh) ":" (mm))]] 
end 
 
 
to set-foraging-eff ; birds vary in their feeding effiency compared to eachother, following a normal distribution with 
mean = 1 and s.d. = 0.125 
  set ForagingEff random-normal 1 0.125 
  while [ ForagingEff < 0 or ForagingEff > 20 ] ; ensures no negative numbers or excessively high foraging 
efficiencies 
  [ set ForagingEff random-normal 1 0.125 ] 
 
end 
 
 
to enter-humans 
  let new-visitors 0 ; humans only arrive between 6am and 10pm; and at a lower frequency (6% of total daily visits) 
during evening darkness compared to during the day (same as in Morph) 
  ifelse (time >= 6 and time < 12)  or daylight? = "yes" 
  [ set new-visitors visitors-per-hr ] 
  [ if time > 12 and time < 22 [ set new-visitors visitors-night ] 
  ] 
 
   ifelse (new-visitors / 60) < 1 
   [ if random-float 1 < (new-visitors / 60) ; if number of visitors per minute is less than one, use a random number 
to determine whether a visitor arrives in the current time step 
     [ ask one-of patches with [access? = "yes"] 
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       [ sprout-humans 1 
         [ set total-visitors total-visitors + 1 
           set remaining visit-duration 
           set shape "person" 
           set size 5 
           set home-patch patch-here 
           ifelse random-float 1 < propInter 
           [ set route "intertidal" 
             set heading 91 + random 179 ; humans that are going to walk on the intertidal select a random heading 
away from the path 
           ] 
           [ set route "path" 
             set heading one-of (list 90 270) ; humans on the path set their heading either "E" or "W" 
           ] 
           set-speed 
           if [pxcor] of patch-here = 0 [set heading 90] 
           if [pxcor] of patch-here = (max [pxcor] of patches with [habitat = "path"]) [set heading 270] 
         ] 
       ] 
     ] 
   ] 
   [ repeat (new-visitors / 60) 
     [ ask one-of patches with [access? = "yes"] 
       [ sprout-humans 1 
         [ set total-visitors total-visitors + 1 
           set remaining visit-duration 
           set shape "person" 
           set size 5 
           set home-patch patch-here 
           ifelse random-float 1 < propInter 
           [ set route "intertidal" 
             set heading 135 + random 91 
           ] 
           [ set route "path" 
             set heading one-of (list 90 270) 
           ] 
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           set-speed 
           if [pxcor] of patch-here = 0 [set heading 90] 
           if [pxcor] of patch-here = (max [pxcor] of patches with [habitat = "path"]) [set heading 270] 
         ] 
       ] 
     ] 
     if random-float 1 < ((new-visitors / 60) mod 1) ; accounts for the fact that the above code does not allow for 
fractions of visitors per time step 
     [ ask one-of patches with [access? = "yes"] 
       [ sprout-humans 1 
         [ set total-visitors total-visitors + 1 
           set remaining visit-duration 
           set shape "person" 
           set size 5 
           set home-patch patch-here 
           ifelse random-float 1 < propInter 
           [ set route "intertidal" 
             set heading 135 + random 91 
           ] 
           [ set route "path" 
             set heading one-of (list 90 270) 
           ] 
           set-speed 
           if [pxcor] of patch-here = 0 [set heading 90] 
           if [pxcor] of patch-here = (max [pxcor] of patches with [habitat = "path"]) [set heading 270] 
         ] 
       ] 
     ] 
   ] 
 
end 
 
 
to move-humans 
  ask humans 
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  [ if remaining < 1 and patch-here = home-patch ; when humans have been present for the total visit duration and they 
get back to their starting point, they leave 
    [ if disturber = "yes" [ set disturbers disturbers + 1 ] 
      die 
    ] 
    ifelse route = "path" 
    [ ifelse (dist * (remaining - 1)) > distance home-patch ; if humans still have time to get back 'home' the keep 
wlking away from home 
      [ ifelse can-move? dist 
        [ fd dist ] 
        [ set heading (heading + 180) ; when humans get to the end of the path, they turn around and go back 
          fd dist 
        ] 
      ] 
      [ ifelse distance home-patch <= dist ; humans walk towards home so that they do not stay longer than visit-
duration 
        [ move-to home-patch ] 
        [ face home-patch fd dist ] 
      ] 
    ] 
    [ if [habitat] of patch-here = "water" [ face home-patch fd dist ] ; humans that have reached the water's edge 
head for home when the tide starts to rise 
      ifelse can-move? dist and [habitat] of patch-ahead dist != "water" and (dist * (remaining - 1)) > distance home-
patch 
      [ fd dist ] 
      [ if (dist * (remaining - 1)) <= distance home-patch 
        [ ifelse distance home-patch <= dist 
          [ move-to home-patch ] 
          [ face home-patch fd dist ] 
        ] 
        if patch-ahead dist = nobody 
        [ ifelse xcor > (((max [pxcor] of patches + 1) / 2) - 1) 
          [ set heading 180 + random 91 ] ; when humans reach the water, they walk parallel with it 
          [ set heading 180 - random 91 ] 
        ] 
        if [habitat] of patch-ahead dist = "water" 
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        [ ifelse tide-state = "rising" 
          [ face home-patch fd dist ] 
          [ set heading one-of (list 90 270) ] 
        ] 
 
      ] 
    ] 
    set remaining remaining - 1 
    if [habitat] of patch-here = "roost" [setxy xcor ([pycor] of one-of patches with [habitat = "path"]) face home-
patch] ; if humans overshoot the path and end up on the roost 
                                                                                                                          
; they reposition on path. 
  ] 
 
end 
 
 
to set-speed ; walking speed (metres per minute) depends on whether walking on the path or on mud 
  if route = "path" [ set speed speed-path * 1000 / 60] 
  if route = "intertidal" [ set speed speed-mud * 1000 / 60] 
  set dist speed / size-of-patch ; distance (proportion of patch) that a human can travel in one time step 
end 
 
 
to set-IFIR ; kJ per timestep - same calculation as in Morph 
  ifelse patch-type = "intertidal" 
  [ set IFIR precision (22 * worm-mass * (0.06 * (e ^ (-1.434063 + 0.36542 * ln (1.05 * 1000 * worm-mass))) / (worm-
mass + (0.761 / worm-density)))) 5 ] ; (based on 22 kJ/gAFDM) 
  [ set IFIR 0 ] 
 
end 
 
 
to choose-patch-and-forage 
  ;if ProgressNet >= max-assim [ show "full" ] 
  set color white 
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  set FreeTime 60 
  set Intake 0 
  ifelse daylight? = "no" 
  [ set Eff ForagingEff * NightEff ] 
  [ set Eff ForagingEff ] 
  set LastPatch patch-here 
  set last-x xcor 
  set last-y ycor 
  let max-dist MaxDist 
 
  ifelse [habitat] of patch-here = "roost" ; if birds are on the roost and the tide is rising, they stay on the roost 
  [ ifelse tide-state = "falling" 
    [ let available-patches patches with [ habitat = "mud" ] 
      ifelse count available-patches > 0 and ProgressNet < max-assim 
      [ move-to patch xcor ([pycor] of one-of patches with [habitat = "path"]) 
        let best-patch max-one-of available-patches [attractiveness-for myself] ; birds on the roost leave when the 
first mud patches become available 
  ; and move to the patch where they can maximise intake. 
        move-to best-patch 
 
        roost-travel ; account for the flight costs of travelling between the roost and intertidal habitat 
 ; (assumes birds have at least enough time to travel between roost and intertidal twice during high tide) 
 
        check-humans 
 
        eat-worms 
 
        account-for-costs 
 
      ] 
      [ account-for-costs ] 
    ] 
    [ account-for-costs ] 
 
  ] 
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  [ let available-patches patches with [ habitat = "mud" and distancexy last-x last-y <= max-dist ] ; if already on 
the mud, birds only move if covered by water or there is a better patch than the current one (based on predicted 
intake rate and travel costs) 
    ifelse count available-patches > 0 
    [ let preferred-y ShoreLevelPref 
      let favourites patches with [pycor <= preferred-y] 
      ifelse count favourites with [habitat = "mud" and distancexy last-x last-y <= max-dist] > 0 
      [ set favourites favourites with [habitat = "mud" and distancexy last-x last-y <= max-dist] 
        let best-patch max-one-of favourites [attractiveness-for myself] 
        ifelse member? patch-here favourites 
        [ set-current-patch-attract ; assess whether the current patch is the best place to be 
          ifelse [attract] of patch-here >= [attractiveness-for myself] of best-patch 
          [ check-humans 
 
            eat-worms 
 
            account-for-costs 
          ] 
          [ move-to best-patch 
 
            set-travel-costs 
 
            check-humans 
 
            eat-worms 
 
            account-for-costs 
          ] 
        ] 
        [ move-to best-patch 
 
          set-travel-costs 
 
          check-humans 
 
          eat-worms 
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          account-for-costs 
        ] 
      ] 
      [ ifelse count favourites with [habitat = "mud"] > 0 
        [ face min-one-of favourites [distancexy last-x last-y] 
          fd  MaxDist 
 
          set-travel-costs 
        ] 
        [ ifelse tide-state = "falling" 
          [ face patch last-x ShoreLevelPref 
            ;face min-one-of favourites [distancexy last-x last-y] 
            ifelse can-move? MaxDist and [habitat] of (patch-ahead MaxDist) != "water" 
            [ fd  MaxDist 
 
              set-travel-costs 
            ] 
            [ let favourite patch last-x ShoreLevelPref 
              ;let favourite min-one-of favourites [distancexy last-x last-y] 
              let chosen-patch min-one-of patches with [habitat = "mud"] [distance favourite] 
              ifelse chosen-patch = patch-here 
              [ check-humans 
 
                eat-worms 
 
                account-for-costs 
              ] 
              [ move-to chosen-patch 
 
                set-travel-costs 
 
                check-humans 
 
                eat-worms 
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                account-for-costs 
              ] 
            ] 
          ] 
          [  set-current-patch-attract ; assess whether the current patch is the best place to be 
             let best-patch max-one-of available-patches [attractiveness-for myself] 
             ifelse [attract] of patch-here < [attractiveness-for myself] of best-patch 
             [ move-to best-patch 
               set-travel-costs 
 
               check-humans 
 
               eat-worms 
 
               account-for-costs 
             ] 
             [ check-humans 
 
               eat-worms 
 
               account-for-costs 
             ] 
          ] 
        ] 
      ] 
    ] 
    [ move-to one-of patches with [habitat = "roost" and pxcor = last-x] ; birds return to roost when there are no 
intertidal patches available 
      roost-travel 
      account-for-costs 
    ] 
  ] 
 
end 
 
 



  

 
 

3
0

1
 

to set-current-patch-attract ; use same calculation as in Morph to determine susceptibility to interference based on 
number of competitors present redshank feeding on worms only have to consider weak-klepSTI 
  let birds-efficiency Eff 
  let compareDom dom 
  let rankDom count (birds-here with [dom < compareDom]) + 1 
  let STI 1 
  ifelse (count birds-here / area) > 0.0319 
    [ set STI (((count birds-here) / area) / 0.01) ^ (-0.08 + 0.08 * (rankDom / count birds-here)) ] 
    [ set STI ((0.0319 / 0.01) ^ (-0.08 + 0.08 * (rankDom / count birds-here)))] 
 
  ifelse [habitat] of patch-here = "mud" 
  [ ask patch-here [ set attract (birds-efficiency * STI * IFIR) ] ] 
  [ ask patch-here [ set attract 0 ] ] 
 
end 
 
 
to account-for-costs ; adjust net progress by subtracting energetic costs of flight in response to disturbance 
 
  set ProgressNet (ProgressNet - DisturbCost) 
  set DisturbCost 0 
 
end 
 
 
to-report attractiveness-for [a-bird] ; attractiveness depends on quality (density of worms), the number of other 
birds already there, and the travel costs (time and energy) of getting there 
  let birds-efficiency [Eff] of a-bird 
  let flight-cost [CostOfFlight] of a-bird ; mgAFDM intake required per second of flight 
  let distnce distancexy ([xcor] of a-bird) ([ycor] of a-bird) 
  let compareDom [dom] of a-bird 
  let rankDom count (birds-here with [dom < compareDom]) + 1 
  let competitors (count birds-here) 
  let STI 1 
 
  ifelse ((competitors + 1) / area) > 0.0319 
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    [ set STI ((((competitors + 1) / area) / 0.01) ^ (-0.08 + 0.08 * (rankDom / (competitors + 1)))) ] 
    [ set STI ((0.0319 / 0.01) ^ (-0.08 + 0.08 * (rankDom / (competitors + 1))))] 
 
  let attractiveness birds-efficiency * STI * IFIR * (1 - ((distnce / flight-speed) / 60)) - ((distnce / flight-speed) 
* flight-cost) ; adjust IFIR by foraging efficiency, interference, time lost flying to patch and energy costs of 
flying to patch 
 
  report attractiveness 
 
end 
 
 
to roost-travel ; energetic cost (kJ) of flying between roost and intertidal area 
 
  let TravelTime ((distance-to-roost * 1000) / flight-speed) 
  ifelse [habitat] of patch-here = "mud" 
  [ set TravelTime TravelTime + (distance patch ([pxcor] of patch-here) ([pycor] of one-of patches with [habitat = 
"path"])) / flight-speed ] 
  [ set last-x [pxcor] of LastPatch 
    set last-y [pycor] of LastPatch 
    set TravelTime TravelTime + ([ distance patch last-x ([pycor] of one-of patches with [habitat = "path"]) ] of 
patch last-x last-y) / flight-speed 
  ] 
 
  set ProgressNet ProgressNet - (TravelTime * CostOfFlight) 
 
end 
 
 
to set-travel-costs ; energetic cost (kJ) of travelling between patches when foraging 
  if patch-here != LastPatch 
  [ let TravelTime (distancexy last-x last-y) / flight-speed 
    let TravelCost TravelTime * CostOfFlight 
    set ProgressNet ProgressNet - TravelCost 
 
    set FreeTime FreeTime - TravelTime 
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  ] 
 
end 
 
 
to check-humans ; check for disturbance before foraging 
  if FreeTime > 0 
  [ if [habitat] of patch-here != "roost" and count humans in-radius (FID / size-of-patch) > 0  [ flee ]] ; birds 
check for human disturbers that are closer than their FID. 
 
end 
 
 
to flee 
  set last-x xcor 
  set last-y ycor 
  let free FreeTime 
  set color red ; change colour to show that birds have moved to a non-preferred patch due to disturbance. 
  ;pen-down ; show where birds have fled from 
  let the-disturber min-one-of humans [distance myself] ; if there are one or more humans present within the bird's 
FID, it flees from the closest human and moves as far as it can from the disturber within the usual flight time for 
that species, to a 'safe' patch. 
  ask the-disturber [set disturber "yes"] 
  let available-patches patches with [habitat = "mud" and distancexy last-x last-y <= fltime * flight-speed / size-of-
patch and count humans in-radius (fid / size-of-patch) = 0] 
  ifelse count available-patches > 0 
  [ move-to max-one-of available-patches [distance the-disturber] 
    set FreeTime FreeTime - fltime - latency 
    set DisturbCost fltime * CostOfFlight 
    set TotalResponses TotalResponses + 1 
    set color yellow 
  ] 
  [ set available-patches patches with [habitat = "mud" and distance myself <= ((free - latency) * flight-speed / 
size-of-patch) and count humans in-radius (fid / size-of-patch) = 0] 
    ifelse count available-patches > 0 ; if there's nowhere 'safe' available that can be reached within FlightTime, 
the bird flies to the closes 'safe' patch that can be reached within the time step. 
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    [ move-to min-one-of available-patches [distance myself] 
      let flight-time (distancexy last-x last-y) * size-of-patch / flight-speed 
      set FreeTime FreeTime - flight-time - latency 
      set DisturbCost flight-time * CostOfFlight 
      set TotalResponses TotalResponses + 1 
      set color yellow 
    ] 
    [ ifelse tide-state = "rising" ; if there's nowhere 'safe' that can be reached within the time step and the tide 
is rising, the bird returns to the roost 
      [ move-to one-of patches with [habitat = "roost" and pxcor = last-x] 
        ;show "fled to roost" 
        set TotalResponses TotalResponses + 1 
        roost-travel ; if nowhere is 'safe', it goes to the roost 
        set color yellow 
      ] 
      [ ;show "out of time" ; if there's nowhere 'safe' that can be reached within the time step and the tide is 
falling, the bird flies for the rest of the time step waiting for humans to move away or more mud to become exposed 
        set heading one-of (list 90 270) 
        ifelse can-move? (free * flight-speed / size-of-patch) 
        [ fd (free * flight-speed / size-of-patch) 
          set DisturbCost FreeTime * CostOfFlight 
          set TotalResponses TotalResponses + 1 
          set FreeTime 0 
        ] 
        [ set heading heading + 180 
          fd (free * flight-speed / size-of-patch) 
          set DisturbCost FreeTime * CostOfFlight 
          set TotalResponses TotalResponses + 1 
          set FreeTime 0 
        ] 
      ] 
 
    ] 
  ] 
 
  ;pen-up 
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end 
 
 
to eat-worms ; one birds have finished responding to disturbance they use the rest of the time step to feed i.e. 
calculate their intake and then the patch updates its worm availability and predicted IFIR. 
 
  if FreeTime > 0 and ProgressNet < max-assim 
  [ set-current-patch-attract 
    set Intake ((FreeTime / 60) * [attract] of patch-here) 
    let total-biomass ([worm-density] of patch-here) * ([area] of patch-here) * worm-mass 
    let new-worm-density (total-biomass - (Intake / 22)) / worm-mass / [area] of patch-here 
    ask patch-here [ set worm-density new-worm-density ] ; updates worms on patch based in bird's intake 
    set Intake Intake * 0.75 ; (0.75 = assimilation efficiency when feeding on worms) 
  ] 
  if Intake > 0 
  [ set ProgressNet ProgressNet + Intake 
    ask patch-here [set-IFIR] 
  ] 
 
end 
 
 
to draw-plots ; to show how much energy birds have assimilated 
  set-current-plot "Histogram - birds' net intake (kJ)" 
  clear-plot 
  let min-x floor min [ProgressNet] of birds 
  let max-x ceiling max [ProgressNet] of birds 
  set-plot-x-range floor min-x max-x 
  set-histogram-num-bars 10 
  histogram [ProgressNet] of birds 
 
  set-current-plot "Birds' net intake (kJ)" 
  clear-plot 
  foreach sort-on [ProgressNet] birds 
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  [ ask ? 
    [ set-current-plot-pen "Target" 
      set-plot-x-range 0 count birds 
      plot mean [Target] of birds 
      set-current-plot-pen "95% of target" 
      plot 0.95 * mean [Target] of birds 
      set-current-plot-pen "50% of target" 
      plot 0.5 * mean [Target] of birds 
      set-current-plot-pen "Progress" 
      plot ProgressNet 
    ] 
  ] 
 
 
end 
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Variability in the area, energy and time costs of
wintering waders responding to disturbance

CATHERINE COLLOP,1* RICHARD A. STILLMAN,1 ANGUS GARBUTT,2 MICHAEL G. YATES,2 ED RISPIN2 &
TINA YATES2

1Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University,
Talbot Campus, Poole, Dorset BH12 5BB, UK

2NERC Centre for Ecology and Hydrology, Environment Centre Wales, Deniol Road, Bangor,
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Birds’ responses to human disturbance are interesting due to their similarities to anti-
predator behaviour, and understanding this behaviour has practical applications for con-
servation management by informing measures such as buffer zones to protect priority
species. To understand better the costs of disturbance and whether it will impact on
population size, studies should quantify time-related responses as well as the more com-
monly reported flight initiation distance (FID). Using waders wintering on an estuarine
area, we experimentally disturbed foraging birds on the Wash Embayment, UK, by walk-
ing towards them and recording their responses (FID, alert time, time spent in flight,
time taken to resume feeding, and total feeding time lost). We present data for 10 spe-
cies of conservation concern: Curlew Numenius arquata, Oystercatcher Haematopus
ostralegus, Bar-tailed Godwit Limosa lapponica, Grey Plover Pluvialis squatarola, Red-
shank Tringa totanus, Knot Calidris canutus, Turnstone Arenaria interpres, Ringed Plover
Charadrius hiaticula, Sanderling Calidris alba and Dunlin Calidris alpina. Larger species
responded more strongly, response magnitude was greater under milder environmental
conditions, and responses varied over both small and large spatial scales. The energetic
costs of individual responses, however, were low relative to daily requirements and dis-
turbance events were unlikely to be frequent enough to seriously limit foraging time. We
suggest, therefore, that wintering wader populations on the Wash are not currently sig-
nificantly negatively impacted by human disturbance during the intertidal foraging per-
iod. This is also likely to be the case at other estuarine sites with comparable access
levels, visitor patterns, invertebrate food availability and environmental conditions.

Keywords: anti-predator behaviour, flight initiation distance, non-breeding season, shorebirds.

Disturbance can mean, in its broadest sense, any
event that leads to a change in behaviour or physi-
ology. This might be for example due to natural
events, such as attack by a predator, or anthro-
pogenic disturbance whereby recreation or indus-
try brings humans and birds into close proximity,
or indirect disturbance through pollution events or
noise impacts. For the purposes of this paper in
relation to wintering waders, we use the definition
adopted by signatories to the African-Eurasian

Waterbirds Agreement (AEWA 2015), as given by
Fox and Madsen (1997): ‘Any human-induced
activity that constitutes a stimulus (equivalent to a
predation threat) sufficient to disrupt normal activ-
ities and/or distribution of waterbirds relative to
the situation in the absence of that activity’.

As recognized in this definition and according
to the widely accepted risk-disturbance hypothesis
(Frid & Dill 2002, Beale & Monaghan 2004, Blum-
stein et al. 2005), animals respond to the per-
ceived risk from human disturbances in the same
way that they respond to predation risk, i.e. by
making trade-offs between avoidance of the risk
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and prioritizing other fitness-maximizing activities
such as feeding, mating or parental care (Frid &
Dill 2002). Birds’ responses to disturbance can
therefore be expected to vary between individuals
according to a variety of factors related to the per-
ceived risk, the individual’s current state and the
costs of responding (Gill et al. 2001a, Beale &
Monaghan 2004).

For day-to-day survival, particularly in winter,
birds must optimize their daily energy intake to
avoid starvation, while minimizing the risk of
predation and disease. Consequently, human
activities can impact a bird’s energy budget, as
responding to disturbance events results in both
reduced time and area available for feeding (Gill
et al. 1996) as well as increased energy expendi-
ture through locomotion (Houston et al. 2012) or
physiological responses (Ackerman et al. 2004).
Survival will be reduced as a result if the birds
are unable to compensate, for example by moving
to other sites and/or increasing feeding time or
efficiency (Urfi et al. 1996, Gill et al. 2001a,b,
Stillman et al. 2001, West et al. 2002, Navedo &
Masero 2007).

We can investigate birds’ responses to distur-
bance and test the relative importance of potential
explanatory factors using experimentally collected
field data. Walking towards animals and recording
characteristics of their response is a frequently used
and effective method for studying disturbance
avoidance behaviour, and the most commonly
reported measure of response to disturbance is FID
– flight initiation distance. Also known as ‘escape
distance’ or ‘flush distance’, FID measures the dis-
tance between the disturbance source and animal
when it begins to flee (Bonenfant & Kramer 1996,
Blumstein et al. 2003). The method has been used
for a range of taxa including mammals (Li et al.
2011), birds (Van Dongen et al. 2015), reptiles
(Cooper 2009), fish (Gotanda et al. 2009) and
amphibians (Rodriguez-Prieto & Fernandez-Juricic
2005). However, FID does not quantify the full
time and potential energy costs incurred between
the point that an animal detects a disturber and
when it returns to its original behaviour and physi-
ological state. Very few researchers have studied or
reported these time- or energy-related measures,
which is a clear knowledge gap that we seek to
address here.

Other studies have identified a variety of poten-
tial explanatory factors, including species or body
size (Blumstein et al. 2003, 2005, Glover et al.

2011), flock size (Ikuta & Blumstein 2003, Glover
et al. 2011), habituation (Urfi et al. 1996, Ikuta &
Blumstein 2003, Lin et al. 2012), whether birds
are quarry species (Laursen et al. 2005), environ-
mental conditions (Stillman & Goss-Custard
2002), type of disturbance (Glover et al. 2011),
starting distance (Ikuta & Blumstein 2003) and
individual condition (Beale & Monaghan 2004).
Although this shows that FID has been relatively
well studied in waders, much of the research has
been carried out in Australia and North America
(Blumstein et al. 2003, 2005, Ikuta & Blumstein
2003, Glover et al. 2011, Koch & Paton 2014),
with multi-species studies of the birds of the East
Atlantic Flyway being limited to the Dutch and
Danish Wadden Sea (Smit & Visser 1993, Laursen
et al. 2005). By focusing our research on the Wash
Embayment in eastern England, we are therefore
adding new understanding to the suite of informa-
tion available on birds’ responses to disturbance
around the world. Estuarine sites, given their
importance for both wildlife and human activities
(Ramsar Convention 1971, Millennium Ecosystem
Assessment 2005), offer useful study systems for
such research. We focus on waders (Charadri-
iformes) as they comprise a relatively long-lived
group of species and many are migratory, so sur-
vival during the non-breeding period is an impor-
tant part of the annual cycle with regards to the
long-term persistence and viability of populations
(Recher 1966, Saether et al. 1996, Piersma &
Baker 2000, Piersma et al. 2016).

Measuring physiological responses to distur-
bance was beyond the scope of this study and
flushing behaviour is a good indicator of acute
physiological changes associated with experimen-
tal disturbance (Ackerman et al. 2004), so we
chose to focus on visible behavioural responses.
We use our field data to explore the differences
in those responses between species, identify key
explanatory variables and test four expectations:
(1) all aspects of the visible response to distur-
bance are positively correlated with each other;
(2) FID, time spent in flight and total time lost
to disturbance differ between species and
increase with body size; (3) the magnitude of
response (FID, time spent in flight and total time
lost) decreases under harsher weather conditions;
and (4) responses (FID, time spent in flight and
total time lost) vary from site to site and over
time (number of days through the winter
season).
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METHODS

Study site

The study took place on the Wash (52°56016″N,
00°17016″E), a large embayment in eastern
England on the North Sea coast with extensive
intertidal sand and mudflats. Its conservation
importance is recognized through several national
and international designations including Site of
Special Scientific Interest, Special Area for Conser-
vation, Special Protection Area and Ramsar site
status (Doody & Barnet 1987, JNCC 2014). ‘In
terms of total numbers, the Wash is the key site
for wintering waterbirds in the UK’ (Austin et al.
2014) and supports internationally important win-
tering populations of all the species that we
included in this study: Curlew Numenius arquata,
Oystercatcher Haematopus ostralegus, Bar-tailed
Godwit Limosa lapponica, Grey Plover Pluvialis
squatarola, Redshank Tringa totanus, Knot Calidris
canutus, Turnstone Arenaria interpres, Ringed Plo-
ver Charadrius hiaticula, Sanderling Calidris alba
and Dunlin Calidris alpina.

The intertidal flats used for the disturbance
experiments (Fig. 1) were selected because of the
wide range of wader species that were known to
feed at low tide (Goss-Custard et al. 1988, Goss-
Custard & Yates 1992, Yates et al. 2004) and the
relatively even distribution of the birds within
them. We also selected these areas on the basis of
local knowledge of their differing distances from

human populations, ease of access and resulting
frequencies of human activities (walkers, dog-walk-
ers, wildfowlers, bait diggers, etc.) on the intertidal
area and sea wall. Sites 1–3 can be characterized
as areas of low disturbance, with a visitor fre-
quency in the order of around three times per
week; whereas the more easily accessible Site 4,
on the eastern side of the Wash, had a compara-
tively high frequency of disturbance on a daily
basis (M.G. Yates pers. obs.). Together the areas
encompassed all shore levels and both regularly
disturbed and undisturbed parts of the Wash and
so can be considered to be representative of the
whole embayment.

Field experiments

All experiments took place during mid-December
to late March of winters 2002/2003, 2003/2004
and 2004/2005 and within the period of minimal
tidal movement 2 h either side of low water on
spring tides, which on the Wash occur around
midday. The intention was to survey all sites in all
years, although circumstances dictated that Site 2
was not used in 2002/2003 and Site 3 was used
only in 2003/2004. Two observers worked
together using binoculars to observe the birds and
digital stopwatches were used to time the birds’
behavioural responses to the nearest second.

The procedure was to agree mutually on a tar-
get bird, which remained unobscured from view
for the duration of the observation, and then to

3

1

2 4

Intertidal mud and sand

Areas used for disturbance experiments

THE WASH

0 10 205

Kilometres

Figure 1. The intertidal areas of the Wash on which disturbance observations were made in winter and early spring of 2002/2003,
2003/2004 and 2004/2005. Site 1 – Wrangle; Site 2 – Maretail; Site 3 – Breast Sand; Site 4 – Stubborn Sand. Reproduced using
Ordnance Survey map data © Crown Copyright/database right 2016. An Ordnance Survey/EDINA supplied service.
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walk side-by-side directly towards it at a comfort-
able pace on the soft substrate (approximately
2.5 km/h). The length of time for which the bird
was visibly alert was noted and when the bird took
flight both observers stopped walking. One obser-
ver timed the ‘flight time’ (the period from taking
off to landing) and the ‘latency time’ (length of
time between landing and the first attempt at
feeding). Total time lost was calculated by sum-
ming alert time, flight time and latency time. The
second observer kept their eyes on the place from
which the bird had taken off and waited until the
other observations had been completed before
pacing out the FID. Distances were measured by
counting paces which were later converted to
metres after calibrating against a known distance in
similar walking conditions. Isolated individuals of
species that would normally be expected to feed
in small groups or flocks were not selected for
observation, as their behaviour was considered
unrepresentative of the usual behaviour of individ-
uals of that species. Disturbance experiments took
place on 38 separate survey days and the number
of disturbances during each low tide survey period
varied from three to 37 (median = 17.5; median
for same species on same day = 3), depending on
the number of birds present and how many exper-
iments could be completed in the time available.
Care was taken to ensure that the same birds were
not disturbed more than once during a single sur-
vey, by searching for each target bird in a direction
at least 90° from that taken by the previous target
bird when it flew off and landed. We also only
selected birds that were at least 200 m further
away than the anticipated FID. Daily replicates
were therefore well spread out in time and space
so as to avoid order effects in the data.

In addition to the behavioural response parame-
ters listed, a variety of environmental measure-
ments were recorded relating to factors that may
affect birds’ responses: air temperature and wind
speed (using a hand-held thermometer and
anemometer) and the shore level (the part of the
shore at which each disturbance took place). This
was assigned by dividing each site equally on a
three-point scale from ‘low’ (1), through ‘mid’ (2)
and ‘upper’ (3) shore, as an indication of the rela-
tive proximity to the saltmarsh or sea wall (the
most likely source of human disturbance), i.e.
upper shore is closest. Shore width (distance
between sea wall or marsh and the low tide mark)
was approximately 2.5 km at Site 4 and 3–4.5 km

at the other three sites. We also converted the
date of each survey to the continuous variable
‘winter day’: with winter day 1 = 1 August.

As warm bodies lose heat to the surrounding
environment at faster rates when exposed to
greater wind speeds (Williamson 2003), measure-
ments of air temperature and wind speed from
each disturbance experiment were converted to a
wind chill equivalent temperature index (WCTI)
using the following equation:

WCTI = 13.12 + 0.6215T – 11.37V0.16 +
0.3965T9V0.16

where T is the air temperature in °C, and V is the
wind speed in km/h (Williamson 2003, Osczevski
& Bluestein 2005). We consider this to be a more
appropriate independent variable, in relation to
thermoregulation and energy budgets of birds,
than records of air temperature alone (Wiersma &
Piersma 1994).

Energy and time costs of responding to
disturbance

To set birds’ time-related responses in the context
of daily energy requirements, we calculated energy
cost per flight using the following equation from
Kvist et al. (2001):

Cost (kJ) ¼ 100:39 �M0:35 � 0:95
1000

�S

and used Nagy et al.’s (1999) equation for the
birds’ thermoneutral requirements:

Energy requirement (kJ) = 10.5 9 M0.681

S = time spent in flight in seconds, and M = body
mass in grams.

We also estimated the number of disturbances
that would result in a 1, 5 and 10% reduction in
available feeding time based on our data for total
time lost per disturbance (assuming that disturbance
events do not overlap). Numbers are presented as a
range based on the fact that birds are able to feed
throughout the tidal cycle on neap tides but not for
2 h either side of high tide on spring tides (Goss-
Custard et al. 1977). We used data from Goss-Cus-
tard et al. (1977) on how much of the available
feeding time is used by each species during the win-
ter as an indicator of their likely capacity to com-
pensate for the costs of responding to disturbance.
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This is also presented as a range according to the
spring–neap tidal cycle and reflecting the reduced
number of daylight hours and increased thermoreg-
ulatory requirements of smaller species in mid-win-
ter (Dawson & O’Connor 1996).

Model selection and data analysis

We used general linear models in a multi-model
inference approach (Symonds & Moussalli 2011,
Pap et al. 2013) to find variables with high explana-
tory power for our three different response variables
(FID, flight time and total time lost). Preliminary
analyses showed no effect of winter year, so the data
from all three winters were combined (Table S1).
When deciding on the global models to be tested for
each response variable, we initially included all bio-
logically plausible two-way interactions in addition
to the potential explanatory variables as main
effects. Interactions that were found to be non-sig-
nificant were subsequently excluded from the can-
didate model set, as recommended by Schielzeth
(2010). In situations where the Akaike weight of
the best-ranked model (using corrected Akaike
information criterion, AICc) in the candidate set
was considerably higher than that of the next best
model, inferences were made based on that model
alone (Symonds & Moussalli 2011). However, if this
was not the case, model averaging was undertaken
using all models with Δi < 4 to estimate the relative
importance of the predictor variables under consid-
eration. This involves summing the Akaike weights
for each model in which that variable appears
(Symonds & Moussalli 2011). The larger the sum of
the Akaike weights (up to a maximum value of 1),
the more important the variable is relative to the
others in the global model (Burnham & Anderson
2002). Burnham and Anderson (2002) suggest
ranking variables according to their relative impor-
tance, so in our analyses, variables with a relative
importance value greater than 0.9 were considered
to have high explanatory power, those with values
between 0.6 and 0.9 were considered moderate,
and variables with relative importance less than 0.6
were considered to have low explanatory power.

The candidate models that we tested included
‘site’ as a fixed factor, with ‘shore level’, ‘wind
chill index’, ‘winter day’ and ‘species mass’ in
grams (using Wash-specific data from Johnson
1985) as covariates. We also included two binary
variables indicating whether the species was an
Oystercatcher or whether it was a plover, as these

species are in different families to the others
(Haematopididae and Charadriidae, respectively,
as opposed to Scolopacidae) and have different
feeding ecologies (Goss-Custard et al. 2006).
Before carrying out the analyses we centred and
standardized the input variables (following Gel-
man 2008 and Grueber et al. 2011) to facilitate
interpretation of the relative strength of parameter
estimates, particularly where interaction terms
were involved. The three response variables were
loge-transformed, which helped to achieve a better
distribution of the model residuals in relation to
the assumptions of the statistical tests used.

To assess the relationships between our differ-
ent response variables we used Spearman’s rank
correlation tests along with visual inspection of the
bivariate scatterplots. We visually inspected diag-
nostic plots of the residuals for the statistical tests
performed, as recommended by Zuur et al.
(2010). This showed no issues with lack of nor-
mality, heterogeneity of variance, collinearity or
undue leverage; however, as is often the case with
ecological studies, the assumption of independence
was not met. Therefore inferences beyond the
sample space are made with care, and we will dis-
cuss the possibility that this could be an indication
that an important covariate was not measured
(Zuur et al. 2010). Details of preliminary data
exploration and statistical tests not reported in the
main text can be found in Table S1. Analyses were
carried out in R (R Core Team 2015) using func-
tions available in ‘arm’ (Gelman & Su 2015) to
standardize model predictors, and the multi-model
inference package ‘MuMIn’ (Barton 2015) for
model selection and averaging; plots were pro-
duced using ‘ggplot2’ (Wickham 2009) and ‘Per-
formanceAnalytics’ (Peterson & Carl 2014). Means
are presented � 1 se.

RESULTS

We approached waders a total of 677 times and
the birds’ responses to the experimental distur-
bances are summarized in Table 1. During the sur-
vey period, the wind chill index ranged from
�4.74 °C up to a maximum of 14.27 °C, which is
within the range of typical winter temperatures for
the area after accounting for wind speed (Met
Office 2016).

Following Frid and Dill (2002), we predicted
that all measures of response to disturbance would
be correlated with each other; Figure 2 shows that
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this was well supported by our data. Flight time
and latency time were strongly positively corre-
lated both with each other and with total time

lost, although alert time was not significantly cor-
related with flight time or latency time and was
only weakly correlated with total time lost.

Table 1. Mean, maximum and minimum responses to an approaching pedestrian for each species. Species are presented in order
of decreasing body size.

Species Mass (g) n

FID (m) Flight time (s) Total time lost (s)

Mean se Min Max Mean se Min Max Mean se Min Max

Curlew (CU) 751 39 340.33 18.23 88 570 34.20 2.35 12 78 75.27 4.8 28 163
Oystercatcher (OC) 500 147 97.28 2.97 30 228 21.17 0.94 6 61 59.86 2.0 21 136
Bar-tailed Godwit (BA) 297 92 84.36 3.93 32 225 20.07 1.20 5 53 47.03 2.4 14 118
Grey Plover (GV) 215 55 132.27 6.81 35 251 22.82 1.65 6 56 58.22 3.4 19 154
Redshank (RK) 143 53 79.83 5.95 28 187 17.44 1.67 4 58 45.16 3.4 11 120
Knot (KN) 134 78 71.83 3.92 20 240 19.58 1.26 6 59 43.71 2.6 15 125
Turnstone (TT) 105 40 31.50 3.00 5 75 12.84 1.49 2 41 32.79 2.8 7 85
Ringed Plover (RP) 64 30 41.07 2.55 20 74 12.35 1.16 4 32 36.15 2.7 11 72
Sanderling (SS) 54 26 25.00 2.65 9 51 10.08 1.27 3 34 26.69 2.6 10 72
Dunlin (DN) 48 117 43.93 2.68 9 194 13.61 0.69 3 41 32.05 1.4 8 85

FID, flight initiation distance; Flight time, time spent in flight; Total time lost, time taken to resume feeding after becoming alert, flying
and landing.
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Figure 2. Correlation matrix for all recorded measures of birds’ responses to experimental disturbance. Bivariate scatterplots are pre-
sented with a fitted line, and Spearman’s rank correlation coefficients, along with stars to indicate significance level. Significance
codes: ***0.001, **0.01, *0.05.
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Individuals that exhibited greater FIDs spent
longer in flight and took longer to resume feeding
(particularly at FIDs below 200 m) and conse-
quently lost more time in total. However, there
was no correlation between FID and alert time.

Mean FID for all species was 89.7 m � 3.1 (5–
570 m, n = 677) but was significantly different
between species (F9,667 = 122.1, P < 0.001).
There was also a significant difference between
species in flight time (F9,667 = 20.9, P < 0.001)
and total time lost (F9,677 = 29.5, P < 0.001).
Model selection and ranking by AICc (Table 2)
revealed clear support for the top model, with all
potential predictors included, when explaining
both FID and time spent in flight (each with a
model weight (xi) > 0.8). In the case of total time
lost, the top model only had a model weight of
0.727, although the cumulative model weight of
the top two models (acc xi) was 0.993, setting
them well apart from the lower ranked models in
the candidate set. Standardized and model aver-
aged parameter estimates are shown in Table 3,
and with all the coefficients being positive for ‘spe-
cies mass’ and ‘wind chill’, these results support
expectations that FID, time spent in flight and
total time lost increase with body size (Fig. 3), and
that response magnitude decreases under harsher
environmental conditions (i.e. lower values of

wind chill equivalent temperature; Fig. 4). There
is also support for the expectation that responses
vary both between sites and over time; a mixture
of positive and negative coefficients indicates dif-
ferences in birds’ responses between sub-sites
(Fig. 5) and negative coefficients for the relation-
ships with ‘winter day’ indicate that response mag-
nitude decreases as the season progresses, although
the 95% confidence interval for FID includes zero.
In addition to the between-site differences in
response we also found within-site differences,
with the negative coefficients for ‘shore level’ indi-
cating a trend for greater response magnitudes
when birds were feeding closer to the low water
mark.

Inclusion of the two binary variables indicating
whether the species was an Oystercatcher or a plo-
ver demonstrated additional between-species dif-
ferences over and above the species mass
relationship described. With positive and negative
coefficients, respectively, plovers had larger magni-
tude responses than expected for their size, and
Oystercatchers were relatively more tolerant,
exhibiting shorter FIDs and spending less time in
flight, although any relationship was poorly sup-
ported for total time lost (Table 3: relative impor-
tance = 0.267, and the 95% confidence interval
includes zero).

Table 2. Model selection tables – top five AICc-ranked models in each candidate set for (a) FID, (b) flight time and (c) total time lost.

Candidate models adjR2 AICc Di xi acc xi

(a) Global model = log(FID)~SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay
1 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.6656 971.23 0 0.916 0.916
2 SpMass+Site+ShoreLevel+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.6608 976.40 5.166 0.069 0.985
3 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover 0.6568 980.33 9.096 0.010 0.995
4 SpMass+Site+ShoreLevel+WinterDay+IsItOC+IsItPlover 0.6537 982.90 11.669 0.003 0.997
5 SpMass+Site+ShoreLevel+WindChill+IsItOC+IsItPlover 0.6533 983.58 12.348 0.002 0.999

(b) Global model = log(FlightTime)~SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay
1 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.2967 1107.02 0 0.892 0.892
2 SpMass+Site+ShoreLevel+WindChill+IsItOC+IsItPlover 0.2810 1112.77 5.749 0.050 0.943
3 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover 0.2811 1114.78 7.757 0.018 0.961
4 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItPlover+Site:WinterDay 0.2833 1115.19 8.170 0.015 0.976
5 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+Site:WinterDay 0.2827 1115.63 8.605 0.012 0.988

(c) Global model = log(Total time lost)~SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay
1 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItPlover+Site:WinterDay 0.3972 860.50 0 0.727 0.727
2 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItOC+IsItPlover+Site:WinterDay 0.3972 862.52 2.016 0.265 0.993
3 SpMass+Site+ShoreLevel+WindChill+IsItPlover 0.3756 871.25 10.749 0.003 0.996
4 SpMass+Site+ShoreLevel+WindChill+IsItOC+IsItPlover 0.3759 873.08 12.578 0.001 0.998
5 SpMass+Site+ShoreLevel+WindChill+WinterDay+IsItPlover 0.3757 873.27 12.767 0.001 0.999

Δi, difference in AICc between model and top model; xi, Aikaike model weight; acc xi, cumulative model weight; SpMass, species
mass (g); WindChill, wind chill equivalent temperature (°C); IsItOC, Oystercatcher vs. other species; IsItPlover, plover vs. other spe-
cies.
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Using our data on mean flight time and mean
total time lost, we looked in more detail at the
energetic consequences and the lost feeding oppor-
tunity costs of responding to disturbance for each
species (Table 4). A 5% reduction in birds’ daily

available feeding time would be expected to result
from responding to between 38 and 162 separate
disturbance events (depending on species and tidal
stage). The mean cost per individual flight
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Figure 3. Relationships between species mass and three
measures of responses to disturbance: (a) FID, (b) flight time
and (c) total time lost. Dependent variables have been loge-
transformed.
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Figure 4. Relationships between wind chill equivalent temper-
ature and three measures of response to disturbance, adjusted
relative to the mean response of each species: (a) FID, (b)
flight time and (c) total time lost. Regression lines with 95%
confidence intervals.
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response represented less than a tenth of a per
cent of each species’ daily energy requirements:
Figure 6 shows there was no significant relation-
ship between body mass and energetic cost of
responding to a single disturbance when expressed
in this way (F1,675 = 0.565, P = 0.45).

DISCUSSION

Our study provides data for 10 species of wader
on FID, flight time and total time lost, along with
associated energy costs, when birds flee an
approaching pedestrian during the non-breeding
season. Based on the findings of other studies from
around the world (Urfi et al. 1996, Stillman &

Goss-Custard 2002, Blumstein et al. 2003, 2005,
Ikuta & Blumstein 2003, Glover et al. 2011, Lin
et al. 2012), we identified four expectations about
how birds’ responses to disturbance vary: all four
were supported by our results. Waders show a
great deal of variation in their responses and much
of that variation can be explained by species, body
mass, environmental conditions and site differences
on both small and larger spatial scales.

Relationships between response
measures

With the exception of alert time, all of the time-
and distance-related measures of response that we
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Figure 5. Variation between sub-sites in birds’ responses to disturbance, adjusted relative to the mean response of each species:
(a) FID, (b) flight time and (c) total time lost. Site codes: 1 = Wrangle; 2 = Maretail; 3 = Breast Sand; 4 = Stubborn Sand.

Table 4. An assessment of the time and energy costs incurred by waders per disturbance response, and the number of disturbances
that would be expected to reduce available feeding time by 1, 5 and 10%. See text for a description of the calculations involved. Data
reproduced from Goss-Custard et al. (1977) give an indication of birds’ likely capacity to compensate by extending their feeding time.

Species

Cost per
flight

response
(kJ)a

Thermoneutral
daily energy
requirement

(kJ)b

Cost per flight as %
of daily intake
requirement

Number of disturbances
that would reduce available

feeding time (day and
night) by:

% available
daylight

time spent
feeding in
winterc1% 5% 10%

Curlew 0.820 953.89 0.086 8–11 38–57 77–115 50–80
Oystercatcher 0.437 723.08 0.060 10–14 48–72 96–144 50–70
Bar-tailed Godwit 0.342 507.15 0.068 12–18 61–92 122–184 70–85
Grey Plover 0.345 406.99 0.085 10–15 49–74 99–148 70–80
Redshank 0.227 308.30 0.074 13–19 64–96 128–191 90–100
Knot 0.248 294.95 0.084 13–20 66–99 132–198 97–100
Turnstone 0.148 249.82 0.059 18–26 88–132 176–263 not recorded
Ringed Plover 0.118 178.32 0.066 16–24 80–120 159–239 not recorded
Sanderling 0.090 158.84 0.057 22–32 108–162 216–324 not recorded
Dunlin 0.117 146.59 0.080 18–27 90–135 180–270 95–100

aUsing cost per second of flight from Kvist et al. (2001). bUsing Nagy et al.’s (1999) allometric equation. cAs observed by Goss-
Custard et al. (1977).
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recorded were inter-correlated. This supports the
expectation that disturbance avoidance behaviour
depends on the relative costs of fleeing and
remaining (Frid & Dill 2002): when starvation risk
is lower, birds fly from further away (FID), flee
further (longer flight time) and spend more time
being vigilant (alert and latency time). The lack of
a strong relationship between alert time and the
other variables could be due to the fact that this
was more difficult to record accurately, especially
at greater distances. Alternatively, it may be that
alert time is simply not a useful measure of
response to disturbance in this case, as it is likely
to be related to speed of approach, which was
approximately constant in our experiments.

Between-species differences

Larger species had greater FIDs, spent more time
in flight and lost more feeding time overall
than did smaller species. Møller et al. (2013) sug-
gest that longer FIDs in larger species are due to
the aerodynamic cost of large body size: this expla-
nation may work for FID but does not explain the
additional body mass relationships with flight time
and total time lost. Another explanation could be
that because smaller birds generally spend a
greater proportion of the available time feeding
(Goss-Custard et al. 1977) and have proportionally
lower body fat reserves upon which they can rely
if they are unable to meet their daily intake
requirements (Piersma & Vanbrederode 1990),
they have a smaller capacity to compensate for the
costs of responding to disturbance. Indeed, the

trade-off becomes apparent when the energetic
cost per flight response is expressed as a percent-
age of the species’ daily requirements, and the
body mass relationship disappears.

Effect of environmental conditions

One prediction of the risk-disturbance hypothesis
is that ‘fleeing probability and FID increase when
. . . environmental conditions are mild’ (Frid & Dill
2002), because when birds are able to meet their
daily energetic requirements easily, the balance in
the trade-off between avoidance of starvation and
predation shifts towards greater FIDs. We found
this to be the case: birds also spent significantly
longer in flight and lost more time overall when
conditions were milder (i.e. higher wind chill
equivalent temperatures).

Within- and between-site differences

The magnitude of all three measures of response
varied on both small and larger spatial scales;
birds responded less strongly to disturbance when
feeding further from the low water mark and at
the site with easiest access, closest proximity to
residential areas and highest frequency of poten-
tial disturbers. The site effect may thus be attri-
butable to habituation. However, it is not
possible to rule out alternative explanations with-
out detailed knowledge of the differences
between sites and individual birds, which we
unfortunately do not have. For example, if birds
feeding on high disturbance sites are in poorer
condition, they will prioritize feeding more than
higher quality birds feeding on low disturbance
sites. Or with any differences between sites in
food availability and competitive ability of birds,
birds feeding at lower quality sites would be
expected to be more tolerant of disturbance
because of a lack of alternatives (Frid & Dill
2002). Similar arguments and explanations relat-
ing to habitat quality and individual differences
could also apply to the observed relationship
with shore level. While it was also beyond the
scope of this study to collect detailed informa-
tion on types and frequencies of human activi-
ties, we suggest that future studies consider
using an objective measure of disturbance (such
as number of visitors per day), which lends itself
better to comparisons between sites and shore
levels.
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Figure 6. Relationship between species body mass and ener-
getic costs of flight in response to disturbance.
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Costs of responding to disturbance

In addition to the energetic costs of flight, respond-
ing to disturbance reduces birds’ available feeding
time. Feeding intensity data (Goss-Custard et al.
1977) show that most birds on the Wash are likely
to be able to cope with at least a 5% reduction,
which we calculate would be caused by between
38 and 162 separate disturbance events per day
depending on species and tidal stage. Curlew, Oys-
tercatcher, Bar-tailed Godwit and Grey Plover may
even be able to cope with a more serious reduction
of 10% (caused by between 77 and 184 daily dis-
turbance events). Although objective data on visi-
tor frequencies and distribution across the
intertidal habitat in our study area are lacking, we
believe from experience that current levels on most
parts of the embayment are well below these val-
ues, especially at lower shore levels (in the order of
around three visitors per week; M.G. Yates pers.
obs.), perhaps with the exception of the more
easily accessible eastern area around Site 4 on bus-
ier weekend days. As an example, the popular
RSPB Titchwell Marsh Nature Reserve (7 km east
of Site 4) receives on average 217 visitors per day
(Visit England 2015), and as few as 10% of visitors
might cause disturbance events (Liley & Fearnley
2012). We suggest, therefore, that wintering wader
populations on the Wash are not currently signifi-
cantly negatively impacted by human disturbance
during the intertidal foraging period.

Further work to quantify disturbance of high
tide roosts would complement this study and allow
a more confident assessment of the overall impacts
of disturbance (or lack thereof) on wintering
waders on the Wash. As well as requiring suitable
high tide refuges upon which to rest and preen
(Rogers et al. 2006), some species are known to
rely on supratidal habitats for foraging when they
are not able to meet their energy requirements
during the intertidal exposure period, for example
due to increased requirements for thermoregula-
tion during extreme cold weather or reduced inter-
tidal exposure during storm events (Goss-Custard
1969, Milsom et al. 1998, Smart & Gill 2003). In
such situations, the time and energy costs associ-
ated with responding to disturbance could be par-
ticularly problematic, especially if birds are forced
to fly long distances to alternative roost or foraging
sites (Rehfisch et al. 1996).

The data that we present here do not take
account of the potential additional energetic costs

of physiological responses (increased heart rate,
stress hormones, etc.) that may be incurred even
when birds do not flee, and which can last longer
than visible response behaviours (Ackerman et al.
2004, Elliott et al. 2016). More research is needed
in this area; however, Ackerman et al. (2004)
found that the largest increase in heart rate occurs
during the period immediately before and after ini-
tiation of flight, so we expect that the contribution
made by physiological changes not associated with
flight is small compared with that due to the costs
of flight and lost feeding time.

CONCLUSIONS

The few published studies with comparable data to
ours show that there can be considerable between-
estuary variation in responses (Smit & Visser 1993,
Urfi et al. 1996, Fitzpatrick & Bouchez 1998, Laur-
sen et al. 2005), as well as the within-estuary varia-
tion that we observed. We would therefore caution
against making direct inferences from our data
about the magnitude of birds’ responses to distur-
bance at other sites if those sites do not also have
large areas of intertidal habitat that are relatively
inaccessible (for humans), where the width of the
shore tends to be much greater than our largest
observed FID, and where potentially disturbing
activities are largely restricted to the upper shore.
Similarly, given the influence of environmental
conditions, it is important to note the temperature
range over which experiments take place – for
example, during an abnormally cold winter, FIDs
would be lower than those exhibited under more
commonly experienced conditions. Our study on
the Wash adds to the suite of available data from a
range of sites, providing more options for informed
comparisons with new sites.

Finally, greater emphasis needs to be placed on
recording time-related measures of responses to
disturbance – to understand better the constraints
on birds’ time and energy budgets – rather than
simply reporting FID. Doing so would also add
value by providing the information necessary for
parameterizing simulation models for understand-
ing population-level impacts of different levels of
disturbance and to predict the effectiveness of pro-
posed management options (e.g. Blumstein et al.
2005, Stillman et al. 2007).
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SUPPORTING INFORMATION

Additional Supporting Information may be found
in the online version of this article:

Table S1. Preliminary analysis revealed no effect
of winter year on FID, flight time or latency time,
and that only one interaction term (Site: Win-
terDay) should be included in the global models
for multimodel inference testing.
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