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Abstract 

The present study examines the effects of within-sequence repetitions for visually presented 

consonants under conditions of quiet and concurrent articulation (CA). In an immediate serial 

recall (ISR) procedure, participants wrote down the 6-consonants in the order of original 

presentation. CA reduced serial recall and abolished the phonological similarity effect. 

However, the effects of within-trial repetitions were broadly similar under quiet and CA. 

Specifically, adjacent repetitions facilitated recall of the repeated item, whereas spaced 

repetitions (separated by 3-intervening items) impaired recall accuracy for the repeated item 

(i.e. the Ranschburg effect). These data are the first to demonstrate the Ranschburg effect for 

visual-verbal stimuli under CA.  
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Introduction 

The Ranschburg effect is a sequence memory phenomenon whereby recall is inhibited 

for an item repeated at encoding (e.g. Crowder, 1968; Duncan & Lewandowsky, 2005; 

Henson, 1998a; Jahkne, 1969). The effect has been attributed to response inhibition (also 

known as response suppression) at test (e.g. Armstrong & Mewhort, 1995; Vousden & 

Brown, 1998), such that, following the first retrieval of the repeated item, this item is then 

suppressed, inhibiting recall of its second presentation. This response inhibition mechanism is 

argued to produce the low proportion of within-trial repetitions observed in sequence memory 

trials that contain no repetitions (typically 2-5% of all responses, Henson, Norris, Page & 

Baddeley, 1996; Vousden & Brown, 1998).  

Response inhibition is common within computational models of verbal serial order 

memory (e.g. Burgess & Hitch, 2006; Henson, 1998b; Page & Norris, 1998). One example is 

competitive queuing (CQ). Here, at test all list items are active in parallel, with the most 

active item outputted and then inhibited. Inhibition is important to list retrieval because 

without such a mechanism the item with the strongest activation level would be retrieved 

repeatedly. This is critical for ordinal models of serial order (e.g. the Primacy Model, Page & 

Norris, 1998) whereby activation along an exponentially declining primacy gradient is used 

uniquely to determine recall. Response inhibition is essential to both prevent perseveration 

(i.e., repeated recall of an item) and enable items with lower levels of activation to be 

recalled. For positional models where list items are associated with a dynamically changing 

context (e.g. Burgess & Hitch, 2006), response inhibition is less significant since the recall 

cue, i.e. position, changes for each item. That is, participants retrieve the item with the 

highest activation level for that position, rather than the highest overall level of activation. 



These models are, therefore, able to accommodate the Ranschburg effect epiphenomenally 

following response inhibition.  

These models are designed to account for verbal order memory but, as noted by 

Hurlstone, Hitch, and Baddeley (2014), the extent to which these models can be applied to 

other stimulus types is unknown. Indeed, with response inhibition operating as a fundamental 

process within these models, particularly with respect to ordinal models, examination of the 

Ranschburg effect is a powerful indirect test of cross-modal response inhibition. Intuitively, 

one might expect the Ranschburg effect to be present for non-verbal stimuli since cross-

modal similarities for a range of serial order memory phenomena have been reported, 

including for example: serial position curves (e.g. Guérard & Tremblay, 2008; Horton, Hay, 

& Smyth, 2008; Ward, Avons & Melling, 2005), error distributions (Guérard & Tremblay, 

2008; Johnson, Shaw & Miles, 2016), and Hebb repetition learning (e.g. Johnson et al., 2016; 

Horton et al., 2008; Page, Cumming, Norris, Hitch & McNeil, 2006). Such similarities led 

Hurlstone et al. (2014) to suggest that common order memory principles operate across 

memory modules, with a CQ mechanism employed universally. 

To date, there exists only one study examining the Ranschburg effect cross modally 

(Roe, Miles & Johnson, 2016). Here, blindfolded participants received sequences of 6-

touches to the fingers. At test, they retrieved the sequence by moving their fingers in the 

order of original presentation. Whilst Roe et al. (2016) reported evidence for response 

inhibition (i.e. the Ranschburg effect), it is possible that participants verbally recoded the 

tactile stimulations, thereby exhibiting the previously observed verbal Ranschburg effect (e.g. 

Crowder, 1968; Duncan & Lewandowsky, 2005; Henson, 1998a; Jahkne, 1969).  

The present study is designed to examine the effects of within-sequence repetition 

when verbal recoding is restricted. Serial recall of a visual-verbal sequence under conditions 



of concurrent articulation has been shown to abolish both the phonological similarity effect 

(PSE, e.g. Baddeley, Lewis, & Vallar, 1984; Saito, Logie, Morita, & Law, 2008) and the 

word length effect (WLE, e.g. Baddeley, Thomson, & Buchanan, 1975; Baddeley et al., 

1984); phenomena indicative of initial phonological representations being disrupted. In the 

classic modular Working Memory Model interpretation of this effect, it is argued that whilst 

auditory-verbal stimuli have direct access to the passive phonological store, visual-verbal 

stimuli require phonological recoding within the articulatory rehearsal loop; CA occupies the 

articulatory rehearsal loop and prevents phonological recoding (Baddeley et al., 1984). 

Residual performance under CA is supported by the episodic buffer, an amodal back-up store 

(Baddeley, 2000).  

Despite abolition of both the PSE and WLE under CA, serial order recall of visual-

verbal stimuli under CA exhibits a remarkably similar pattern of performance to that for a 

quiet condition. For example, Page et al. (2006) demonstrated that both the canonical bowed 

serial order reconstruction function and the Hebb repetition effect were observed under 

conditions of quiet and CA. Similarly, Spurgeon, Ward, and Matthews (2014) examined both 

immediate serial recall (ISR) and immediate free recall (IFR) under quiet and CA and showed 

that the serial position functions for both were comparable under quiet and CA for a range of 

list lengths. Furthermore, the order in which list items were recalled was similarly affected by 

list length. In short, patterns of ISR and IFR remained robust under conditions of both quiet 

and CA, suggesting that the ‘back-up’ episodic buffer has remarkably similar functionality to 

that of the phonological loop. Indeed, Spurgeon et al. (2014) question the parsimony of a 

model in which different mechanisms are used to explain very similar patterns of 

performance for visual-verbal stimuli under conditions of quiet and CA. 

Irrespective of one’s theoretical preference with regard to STM modularity, the 

findings of the above studies converge to propose that effects of within-sequence repetition 



should be similar for both quiet and CA. It is this proposition that is examined in the present 

study. As described earlier, although spaced repetition typically results in poorer recall for the 

repeated item, within-trial repetition is not exclusively inhibitory (e.g. Henson, 1998a; see 

also Crowder, 1968; Lee, 1976). Adjacent (massed) repetitions typically produce recall 

facilitation for the repeated item. Such facilitation has been linked to participant awareness of 

the repetition, such that repetition salience results in the participant mentally ‘tagging’ items 

for repeated retrieval at test (Henson, 1998a; Jahnke, 1969). In the present study, two 

experimental sessions, one in quiet and one with CA, are undertaken in which ISR of both 

phonologically similar and dissimilar letters is required. Abolition of the PSE under 

conditions of CA (evinced via an interaction between CA and phonological similarity) is used 

as a manipulation check to determine that phonological recoding has been prevented. To 

examine the effect of within-sequence repetitions we test three types of repetition spacing. 

When the repetitions are separated by either 1 or 3-intervening items, then impaired recall of 

the repeated item relative to matched control sequences should be observed (i.e. the 

Ranschburg effect). However, when the repeated items are adjacent/massed, then improved 

recall of the repeated item relative to the matched control sequences should be observed.  

Method  

Participants. Thirty-two Bournemouth University Psychology undergraduates (mean 

age = 19.7 years; 15 male and 17 female), participated in exchange for research participation 

credits. Ethical approval was obtained from the Bournemouth University Psychology Ethics 

Committee.  

Materials. Sequences of six stimuli (upper case, black Times New Roman, size 72) 

were presented on a 23 inch (58.4cm) Hewlett-Packard (Palo Alto, USA) Elite Display E231 

monitor using the experimental software Superlab 5.0 (Cedrus Corporation, San Pedro, 



USA). The sequences comprised phonologically similar (B, C, D, P, T, and V) or 

phonologically dissimilar (F, J, K, L, R, and Y) consonants. Small set sizes were used as the 

Ranschburg effect is maximised under such conditions (Jahnke, 1972). A response booklet 

was used, where each page was used for a trial and contained a grid where a row of 6 boxes 

were positioned vertically. 

Design. A multi-factorial (2x2x3x6) within-participants design was adopted. The first 

factor refers to the CA condition (quiet versus CA), the second factor to the phonological 

similarity of the consonants (phonologically dissimilar versus phonologically similar), the 

third factor to repetition condition (adjacent repetition, 1-item spaced repetition, and 3-item 

spaced repetition), and the fourth factor to serial position (1-6). The experiment was divided 

into two sessions of 48 trials (separated by a 5-minute interval). One session was conducted 

under conditions of quiet, whilst the other was conducted under conditions of CA. The 

presentation order of these sessions was counterbalanced. Each session comprised two blocks 

of 24 trials. One block contained trials with phonologically similar consonants, whilst the 

other contained trials with phonologically dissimilar consonants. The presentation order of 

these blocks was counterbalanced within each session. Each block comprised 12 trials 

containing a within-sequence repetition and 12 matched control trials. Of the 12 within-

sequence repetition trials, four trials comprised adjacent repetitions (one trial each for 

positions 2+3, 3+4, 4+5, and 5+6), four trials comprised repetitions separated by 1-

intervening item (two trials each for positions 2+4 and 4+6), and four trials comprised 

repetitions separated by 3-intervening items (four trials for positions 2+6). The presentation 

order of these 24 trials was randomised within each block. 

Each Ranschburg sequence was unique and had a corresponding matched control 

sequence that was identical with the exception that the repeated item was replaced by an 

unrepeated item. The control trials were not included in the above design as the repetition 



effect is analysed by subtracting recall for the critical items in the control trials from recall for 

the critical items in the repetition trials (a dependent variable termed ‘delta’, see Duncan & 

Lewandowsky, 2005; Henson, 1998a). Control trials are analysed as a manipulation check 

with respect to both abolition of the PSE and the canonical ISR serial position functions.  

Procedure. Participants were tested individually in a quiet laboratory booth and sat 

facing the computer at a distance of 60cm. Each trial was initiated by a keyboard press and 

comprised the sequential presentation of 6 consonants (750ms on-time, 250ms inter-stimulus-

interval). Following presentation of the final sequence item, a six-box vertical grid was 

displayed on the screen. This was the signal for participants to write down the 6 consonants 

from the preceding trial on the grid in the response booklet. The boxes in the grid 

corresponded, from top to bottom, to positions 1-6 in the sequence. Participants were 

instructed to recall the items in their order of presentation and to leave a box in the grid 

absent if they were unable to recall the item that was presented in that position. Once 

responses for a trial were complete, a keyboard press commenced the next trial. Participants 

received two practice trials followed by two 48 trial sessions. For the trials in the CA 

condition, participants were instructed to repeat the words “coca cola” aloud throughout each 

trial at a rate of 2-3 words per second. 

Results 

A strict scoring criterion was adopted such that a response was recorded as correct 

only if the correct item was recalled in the correct serial position. 

Phonological Similarity Effects. As a manipulation check, the effects of CA on the 

PSE were examined for the control trials. The serial position functions for the phonologically 

similar and dissimilar words under conditions of quiet and CA are displayed in Figure 1(a-b). 

A 3-factor (2x2x6) within-participants ANOVA was computed where the first factor was CA 



(quiet or CA), the second was phonological similarity (similar or dissimilar), and the third 

was serial position (1-6). The ANOVA revealed main effects of: CA, reflecting poorer recall 

under CA, F(1,31)=55.04, MSE=0.168, p<.001, ηp² = .64 (mean proportion correct and 95% 

CI for the quiet and CA conditions = .73 [.68, .77] and .51 [.45, .56], respectively); 

phonological similarity, reflecting the PSE, F(1,31)=7.89, MSE=0.052, p<.009, ηp² = .20 

(mean proportion correct and 95% CI for the similar and dissimilar conditions = .59 [.55, .63] 

and .64 [.60, .68], respectively); and serial position, F(2.10,64.99)=22.60, MSE=0.10, p<.001, 

ηp² = .42, reflecting strong primacy and recency. The predicted interaction between CA and 

phonological similarity was significant, F(1,31)=7.33, MSE=0.06, p<.011, ηp² = .191, 

reflecting a difference between phonologically similar and dissimilar words in the quiet 

condition only. Thus, CA acted to abolish the PSE, as predicted. In addition, the interaction 

between CA and serial position was also significant, F(2.30,71.27)=5.74, MSE=0.07, p=.003, 

ηp² = .16. All other interactions were non-significant.  

 

 

 

 



  
 

Figure 1(a-b).  Mean proportion correct for the phonologically similar and phonologically 

dissimilar sequences as a function of serial position (1-6) under conditions of quiet (a) and 

CA (b). Error bars denote the mean standard error. 

Repetition Analysis. The dependent variable delta (d) reflects the difference between 

the proportion of trials in which the repeated items [P(r)] and matched critical items in the 

control trials [P(c)] were recalled in the correct serial position (d = P(r) – P(c)). Scoring 

criterion was more liberal than that reported for the serial position analysis since critical items 

in the control trials were considered as correct if they exchanged positions. A positive 

difference reflected response facilitation and a negative difference reflected response 

inhibition. Figure 2(a-b) shows three repetition conditions (i.e. d scores for adjacent, 1-gap, 

and 3-gap repetitions) under conditions of quiet and CA. For both conditions of quiet and CA 

adjacent repetitions exhibit a facilitative effect and repetitions spaced with 3-intervening 

items exhibit an inhibitive effect. 
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Figure 2(a-b).  Mean delta for the three repetition spacing conditions for under conditions of 

quiet (a) and CA (b). Error bars denote the mean standard error.  

A three factor (2x2x3) ANOVA was computed where the first factor was CA (quiet or 

CA), the second factor phonological similarity (similar and dissimilar), and the third factor 

was repetition spacing (adjacent, 1-item interval, and 3-item interval). The main effect of CA 

was significant, F(1,31)=17.99, MSE=0.11, p<.001, ηp² = .37. The main effect of 

phonological similarity was non-significant, F<1. The main effect of repetition spacing was 

significant, F(2,62)=44.78, MSE=0.11, p<.001, ηp² = .59. Bonferroni post-hoc comparisons (α 

= .017) demonstrated that delta was significantly different between the adjacent (mean d = 

.24; 95% CI [.16,.31]), 1-gap (mean d = .02; 95% CI [-.05,.08]), and 3-gap (mean d = -.15; 

95% CI [-.21,-.08]) repetitions. Specifically, adjacent repetitions produced significant 

facilitation relative to the 1-gap condition and the 3-gap repetition condition; whereas the 3-

gap condition produced significant inhibition relative to the 1-gap and adjacent conditions. 

The important interaction between CA and repetition spacing was non-significant, F<1. This 
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shows that the CA manipulation did not affect the pattern of effects across the repetition 

conditions. That is, adjacent repetitions facilitated recall and 3-gap repetitions inhibited recall 

across both the quiet and CA conditions. All other interactions were non-significant (all 

Fs<1). It is, however, worth noting that for the 1-item gap condition there is some disparity in 

terms of the direction of delta (mean d = -.06 and .09, for the quiet and CA conditions, 

respectively). When each delta value for the 1-gap condition is compared to the null of 0 (i.e. 

neither facilitation nor inhibition), there is a non-significant difference for the quiet condition 

(t(31)=-1.285, p=.208, r=.225) but significant facilitation for the CA condition (t(31)=2.339, 

p=.026, r=.387).  

Discussion 

We provide the first examination of within-trial repetitions for sequences of visually 

presented consonants under conditions of quiet and CA. ISR under conditions of CA is 

argued to prevent phonological recoding (e.g. Baddeley et al., 1984). Indeed, examination of 

our control trials indicates that the consonants were represented differently under conditions 

of quiet and CA. Specifically, under CA, recall was non-catastrophically impaired and the 

PSE was abolished; this is consistent with the inhibition of phonological recoding of 

consonants. Despite support for different representations under conditions of quiet and CA, 

both conditions are consistent with previous work in exhibiting recall facilitation when 

repetitions are adjacent (e.g. Crowder, 1968; Henson, 1998a; Lee, 1976), and recall inhibition 

when the repeated items within a sequence were separated by three intervening items (i.e. the 

Ranschburg effect: e.g., Crowder, 1968; Duncan & Lewandowsky, 2005; Henson, 1998a; 

Jahnke, 1969). Importantly, this is the first study to show that these repetition effects are 

equivalent under conditions of both quiet and CA.  



Response inhibition (i.e. the Ranschburg effect) is argued to be epiphenomenal to the 

suppression of items following retrieval (e.g. Armstrong & Mewhort, 1995; Vousden & 

Brown, 1998) and this response inhibition mechanism is widely employed within 

computational models of sequence memory (see Hurlstone et al., 2014, for review). Inhibition 

functions to prevent perseveration of items with high activation levels and this is a crucial 

feature for ordinal models of memory that utilise a primacy gradient (e.g. Page & Norris, 

1998). The presence of the Ranschburg effect for visual-verbal stimuli under CA, coupled 

with preliminary findings of the effect with tactile stimuli (Roe et al., 2016), suggest that 

these models may be generalizable beyond verbal stimuli presented in conditions of quiet.  

Application of a Working Memory Model conceptualisation to the present data (e.g. 

Baddeley, 2000) suggests that repetition effects are broadly consistent when stimuli are 

represented within the phonological loop under conditions of quiet and within the episodic 

buffer under conditions of CA. We argue that this interpretation is problematic for two 

reasons. First, the Working Memory Model alone cannot explain these verbal repetition 

effects without recourse to appropriating distinct computational models into the loop (e.g. 

Burgess & Hitch, 2006). Second, our data is further evidence for analogous sequence 

memory effects when utilising the phonological loop and the episodic buffer (e.g. Page et al., 

2006; Spurgeon et al., 2014). However, as noted by Spurgeon et al. (2014), “a disadvantage 

of the working memory model is that different mechanisms are assumed to underpin the 

similar patterns of recall observed in the visual silent and visual CA conditions” (p.1131). 

Indeed, cross modal commonality in order memory is an increasingly parsimonious 

explanation (see Hurlstone et al., 2014); with the present data adding to studies showing 

cross-modal behavioural similarity in order memory (e.g. Guérard & Tremblay, 2008; Horton 

et al., 2008; Ward et al., 2005). 



 Whilst the present data do not address directly the question of modularity in order 

memory, the data do support the utilisation of a common sequencing mechanism for verbal 

stimuli under conditions of quiet and CA. Hurlstone et al. (2014) have argued that sequence 

items, irrespective of modality, exhibit differential levels of activation and are selected at test 

through a process of competitive queuing. This process necessitates an inhibition mechanism 

to prevent preservation of highly active items (e.g. see Page & Norris, 1998). We have shown 

epiphenomenal evidence for such a response inhibition mechanism under conditions of quiet 

and CA via impaired recall for the repeated item when separated by 3-intervening items (i.e. 

the Ranschburg effect). Moreover, similar facilitative effects following adjacent repetitions 

highlight further similarities for recall under conditions of quiet and CA. It is has been 

suggested previously that facilitation following massed repetition is a consequence of 

participant awareness of the repetition, with awareness leading to a process of mentally 

‘tagging’ the items for repeated retrieval at test (Crowder, 1968; Henson, 1998; Lee, 1976). 

This facilitative ‘tagging’ process appears evident both under conditions of quiet and CA. 

It should be noted, for the data reported here, that whilst the interaction between 

repetition spacing and CA was non-significant (F<1), Figure 2 indicates different directional 

effects for the 1-gap condition for CA and quiet conditions, with further analysis revealing 

that facilitation was present for CA but absent for quiet. Therefore, whilst the general effects 

of facilitation and inhibition mediated as a function of repetition spacing are found under 

conditions of CA and quiet, any future attempts to model this effect should consider this 

difference. Indeed, such nuanced differences support the findings of Saito et al. (2008) 

suggesting that phonological and visual codes affect verbal memory differently. 

A potential caveat to our interpretation of the present data was highlighted during the 

review process. CA, an encoding manipulation argued to disrupt the conversion of the list 

consonants into phonological codes (Baddeley et al., 1984), was employed here to examine a 



retrieval effect. However, one might argue that whilst the list consonants were initially 

represented each in a nonverbal code, during retrieval participants generated each consonant 

from memory and converted them into their phonological representations via a speech-based 

mechanism. Consequently, the reported Ranschburg effect might be interpreted as merely a 

demonstration of the well-established effect of response inhibition with verbal stimuli. We 

argue that such an interpretation is unlikely for two reasons. First, the PSE is strong evidence 

that CA disrupted phonological recoding of the consonants. Second, if CA disrupted the 

phonological conversion of external visual representations of sounds (i.e. the consonants 

displayed on the screen), it follows logically that CA (conducted throughout the trial) also 

disrupted the phonological conversion of internal visual representations of sounds (i.e. the 

consonants stored within memory). Therefore, CA at test arguably precludes a role for 

phonological recoding at test. This therefore suggests that these data represent a 

demonstration of the Ranschburg effect with non-phonological representations. 

In summary, the present study is the first to examine the Ranschburg effect with 

visual-verbal stimuli under CA. We have shown that the effects of within-sequence repetition 

are broadly the same for quiet and CA, exhibiting both facilitation and inhibition, and that 

each is dependent upon repetition spacing. These effects are consistent with a growing body 

of data (see Hurlstone et al., 2014, for review) suggesting commonality of order memory 

function across stimuli, with the present data supporting the existence of a cross-modal 

response inhibition mechanism. 
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