
rr7l

i ne Automated Analysis of

Object- Oriented Designs

Colin Kirsopp

A thesis submitted in partialfulfilment of the

requirements of the degree ofDoctor ofPhilosophy

1-4

September 2001

Bournemouth University

r7-71

-i ne Automated Analysis of

Object- Oriented Designs

Colin Kirsopp

A thesis submitted in partialjuýfzlment of the

requirements of the degree ofDoctor ofPhilosophy

September 2001

Bournemouth University

Abstract

This thesis concerns the use of software measures to assess the quality of object-oriented
designs. It examines the ways in which design assessment can be assisted by measurement

and the areas in which it can't. Other work in software measurement looks at defining and

validating measures, or building prediction systems. This work is distinctive in that it

examines the use of measures to help improve design quality during design time.

To evaluate a design based on measurement results requires a means of relating measurement

values to particular design problems or quality levels. Design heuristics were used to make
this connection between measurement and quality. A survey was carried out to find

suggestions for guidelines, rules and heuristics from the 00 design literature. This survey

resulted in a catalogue of 288 suggestions for 00 design heuristics. The catalogue was

structured around the 00 constructs to which the heuristics relate, and includes information

on various heuristic attributes. This scheme is intended to allow suitable heuristics to be

quickly located and correctly applied.

Automation requires tool support. A tool was built which augmented the functionality

available in existing measurement tools by allowing user definable measures and measure

sets, and taking input from multiple sources of design information (e. g., CASE tools and

source code).

The work described so far presents a potential method for automated design assessment and

provides the means of automation. An empirical study was then required to consider the

efficacy of the method and evaluate the novel features of the tool.

A case study was used to explore the approach taken by, and evaluate the effectiveness of, 15

subjects using measures and heuristics to assess the design of a small 00 system (IS classes).

This study showed that semantic heuristics tended to highlight significant problems, but

where attempts were made to automate these it often led to false problems being identified.

This result, along with a previous finding that around half of quality criteria are not

automatically assessable at design time, strongly suggests that people are still a necessary

part of design assessment. The main result of the case study was that the subjects correctly

identified 90% of the major design problems and were very positive about their experience of

using measurement to support design assessment.

III

Content Overview

CONTENT OVERVIEW
.. III

TABLE OF CONTENTS
... v

LIST OF FIGURES
.. xi

LIST OF TABLES
... xiii

ACKNOWLEDGEMENT
... xv

AunioR'S DECLARATION
.. xvil

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 ASSESSING OBJECT-ORIENTED DESIGNS .. 9

CHAPTER 3 SOFTWARE MEASUREMENT .. 53

CHAPTER 4 THE DESIGN MEASUREMENT TOOL .. 98

CHAPTER 5 THE EMPIRICAL STUDY ... 127

CHAPTER 6 DISCUSSION ... 169
APPENDICES .. 189

APPENDIX A OOD HEURISTICS CATALOGUE ... 191

APPENDIX B MEASUREMENT THEORY .. 237

APPENDIX C META-MODELLING OBJECT-ORIENTED DESIGNS 241

APPENDIX D DESIGN DESCRIPTION LANGUAGE (DDL) ... 257

APPENDIX E DATA-MODEL DESCRIPTION .. 265

APPENDIX F SOURCE MAPPINGS .. 273

APPENDIX G QUESTIONNAIRE .. 281

APPENDIX H DESIGN DOCUMENTS .. 289

APPENDIX I SOURCE CODE FOR THE'SECOND LANGUAGE VOCABULARY TUTOR'

... 297

APPENDIX J CASE STUDY TASK .. 331

APPENDIX K EXAMPLE HEURISTIC ANALYSIS .. 335

APPENDIX L DATA MODEL FOR THE CASE STUDY DATABASE 339

APPENDIX M DESCRIPTION OF METRICS USED .. 339

REFERENCES ... 343

Blank

In

Original

V

Table of Contents

CONTENT OVERVIEW
..

III
TABLE OF CONTENTS

...
v

LIST OF FIGURES
..

xi
LIST OF TABLES

...
xill

ACKNOWLEDGEMENT
...

xv
AUTHOR'S DECLARATION

..
xvil

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION FOR THE WORK ..
1

1.2 STATEMENT OF THE PROBLEM ...
2

1.2.1 Aims ofthe work ...
2

LZ2 Scope and limitations
...

2
1.3 POSITION OF THE RESEARCH ..

3
1.4 METHOD

... 4
1.5 THESIS STRUCTURE ...

6

CHAPTER 2 ASSESSING OBJECT-ORIENTED DESIGNS .. 9

2.1 WHAT is SOFTWARE QUALITY ... 9
2.1.1 Validation ... 9
2.1.2 Verification ... 10
2.1.3 Evaluation .. I]

2.2 SoFrwARE QUALITY MODELLING .. 16
2.2.1 McCalls qualityJactors .. 16
2. Z2 COQUAMO .. 18
2.2.3 Gilb's quality specification .. 22
2. Z4 QualityJactor deployment (QFD) .. 24
ZZ5 Goal question metricparadigm (GQAf) ... 25

2.3 QUALITY ASSESSMENT FOR 00 DESIGN .. 27
Z 3.1 What is quality in design? .. 27
Z3.2 Object-oriented design ... 27

2.3.2.1 Elements of a design method .. 27
2.3.2.2 The 00 design process ... 28

2.3.3 What is quality in object-oriented design? ... 30
2.3.4 00 design heuristics .. 31

2.3.4.1 What are design heuristics? .. 31
2.3.4.2 The heuristics survey .. 31
2.3.4.3 Where do design heuristics come from? ... 32
2.3.4.4 Heuristic assessment types .. 33
2.3.4.5 Relationship between heuristic and metrics .. 34
2.3.4.6 Relationship between heuristic and patterns ... 36
2.3.4.7 Contradictions and trade-offs .. 37
2.3.4.8 Validity ... 38
2.3.4.9 Application of heuristics ... 39
2.3.4.10 The heuristics catalogue .. 41

2.4 AUTOMATION IN 00 DESIGN ASSESSMENT .. 42
2.5 SUMMARY ...

48

CHAPTER 3 SOFTWARE MEASUREMENT .. 53

3.1 A BRIEF HISTORY OF 00 MEASURES ... 53
3.2 INTRODUCTION TO MEASUREMENT ... 56

3.2 1 What is measurement? .. 56
3.2.2 Why measure? ... 58
3.2.3 Terminology in software measurement .. 59

3.2.3.1 Direct/ Indirect 59
3.2.3.2 internal / External ... 59
3.2.3.3 Objective / Subjective ... 59

vi

3.2.3.4 Product / Resource / Project
... 60

3.2.3.5 Design / Code
...

61
3.2.3.6 Theoretical / Empirical

...
61

3.2.3.7 Measure or metric? ... 62
3.2.4 Measurement and modelling ...

62
3.2.5 Measuring ohject-oriented systems ...

67
3.3 MEASUREMENT VALIDATION ..

68
3.3.1 Axiomatic IProperty-hased measurement validation ..

68
3.3.2 Algebraic validation .. 69
3.3.3 Dimensional analysis ... 69
3.3.4 Measurement theory ..

70
3.3.5 On the application ofmeasurement theory to software ...

71
3.3.5.1 Empirical relations and intuition .. 71
3.3.5.2 The prescription/proscription of analysis techniques based on scale type

71
3.3.5.3 The requirement for complexity measures to be additive ...

74
3.3.6 Empirical validation ..

76
3.3.6.1 Techniques for empirical validation ... 76
3.3.6.2 Combining empirical studies .. 77
3.3.6.3 Current state of empirical research ... 78

3.3.7 Measurement types and appropriate validation techniques .. 79
3.4 MEASUREMENT PROCESSES ..

80
3.4.1 The measure developmentprocess ..

80
3.4.1.1 Direct measures .. 81
3.4.1.2 Indirect measures .. 88

3.4.2 The measure use process ...
89

3.4.2.1 Establish measurement goals .. 90
3.4.2.2 Selecting measures ... 92
3.4.2.3 Collecting measurement results .. 93
3.4.2.4 Analysing measurement results .. 94
3.4.2.5 Applying measurement results .. 94
3.4.2.6 Assessing goal achievement ... 94
3.4.2.7 Changing process goals .. 95

3.4.3 Comparing measurement processes and metrics programmes ..
95

3.5 SUMMARY ..
96

CHAPTER 4 THE DESIGN MEASUREMENT TOOL ... 98

4.1 RAnONALE FOR DEVELOPING THE TOOL ...
98

4.2 PRELIMINARY TOOL REQUIREMENTS ..
99

4.3 INVESTIGATIVE PROGRAMMING ..
101

4.4 DOMAIN ANALYSIS ...
102

4.5 ARCIRTECTURAL, DESIGN ..
102

4.5.1 High-level design ...
102

4.5.2 Object-oriented design representation ..
104

4.6 TOOL IMPLEMENTATION ...
105

4.7 TOOL DESCRIPTION ...
108

4.8 EVALUATION OF THE TOOL ... 113
4.8.1 Verification ofineasurement results .. 114

4.8.1.1 Possible types of verification .. 114
4.8.1.2 Comparison against hand calculation ... 115
4.8.1.3 Comparison against other tools .. 115

4.8.2 Assessing thefunctionality ofthe tool ... 119
4.8.3 Lessons learnedfrom the tool development .. 122

4.9 FUTURE DEVELOPMENTS .. 123
4.10 SUMMARY .. 124

CHAPTER 5 THE EMPIRICAL STUDY .. 127

5.1 RELATED EMPIRICAL WORK .. 127
5.2 DESIGNING THE STUDY ... 129

5.2.1 Choosing a research technique ... 129
5.2.2 The study's questions ... 133
5.2.3 Unit of analysis .. 133

Vil

5.2.4 Data collection techniques ... 134
5.2.5 Design of debriefing questionnaires ... 135

5.2.5.1 Infomation to be elicited .. 135
5.2.5.2 Question design .. 135

5.2.6 Validity
...

136
5.3 CONDUCTING THE STUDY .. 137

5.3.1 The subjects ..
137

5.3.2 Preparation ..
139

5.3.3 The task ..
140

5.3.4 Data collection ...
141

5.4 RESULTS ...
144

5.4.1 Metric selection ..
145

5.4.2 Metric usage (by metric) ..
147

5.4.3 Metric usage (by subject) ...
150

5.4.4 Issues ..
151

5.4.5 Heuristics ...
155

5.4.5.1 Analysis of heuristics used .. 155
5.4.5.2 Stand-alone heuristic use .. 157

5.4.6 Differences between students and industrialists ... 159
5.4.7 Subjects'views on measurement .. 160

5.5 DISCUSSION 162
5.5.1 Summary ofresults ... 162
5.5.2 Threats to validity .. 164
5.5.3 Future work .. 165
5.5.4 Conclusions ..

166

CHAPTER 6 DISCUSSION ... 169

6.1 SUMMARY OF WORK DONE ..
169

6.2 SUMMARY OF FINDINGS ..
171

6 2.1 Assessing 00 designs
...

171
6 2.2 Software measurement ... 173
6. Z3 Measurement tool ... 174
6.2.4 Case study .. 176

6.3 EvALuATioN OF THE RESEARCH WORK ...
179

6.3.1 Assessing object-oriented design
..

179
63.2 Software measurement ...

180
6.3.3 The design measurement tool ...

180
6.3.4 The empirical study ..

182

6.4 FURTHER WORK ..
185

6.5 CONCLUSIONS ...
187

APPENDICES ..
189

APPENDIX A OOD HEURISTICS CATALOGUE ... 191

A. I HEURISTIC CLASSIFICATION ..
191

A. 2 INHERITANCE ...
193

A. ZI Depth ofhierarchy ...
193

A. Z2 When to use inheritance ...
195

A. Z3 "at inheritance should model ...
198

A24 Multiple inheritance ...
199

A. 2.5 Miscellaneous inheritance ...
201

A. 3 AGGREGATION ...
203

A. 4 ASSOCIATION ...
205

A. 5 CLUSTER ..
205

A. 6 CLASS ..
206

A. 7 ABSTRACT CLASSES ... 209
A. 8 COUPLING ..

210
A. 9 COHESION .. 212
A. 10 INFORMATION HIDING ... 213

Vill

A. II MESSAGE PASSING ... 215
A. 12 SERVICE .. 216
A. 13 ATn; uBuTE .. 217
A. 14 PROTOCOL ... 218
A. 15 POLYMORPHISM

.. 219
A. 16 DYNAMIC MODELING ... 219
A. 17 MISCELLANEOUS ... 220
A. 18 SUMMARISED HEURISTICS ... 221

A. 18.1 Introduction
... 221

A. 18.2 Inheritance
.. 221

A. 18.2.1 Depth of inheritance .. 221
A.] 8.2.2 When to use inheritance ... 222
A. 18.2.3 What inheritance should model ... 223
A. 18.2.4 Multiple inheritance ... 224
A. 18.2.5 Miscellaneous inheritance ... 225

A. 18.3 Aggregation ... 225
A. 18.4 Associations .. 226
A. 18.5 Clusters ... 227
A. 18.6 Classes .. 227
A. 18.7 Abstract classes ... 229
A. 18.8 Coupling .. 229
A. 18.9 Cohesion ... 230
A. 18.10 Information hiding .. 231
A. 18.11 Message passing ... 231
A. 18.12 Services ... 232
A. 18.13 Attributes ... 233
A. 18.14 Protocol. .. 233
A. 18.15 Polymorphism ... 233
A. 18.16 Dynamic modelling ... 234
A. 18.17 Miscellaneous .. 234

APPENDIX B MEASUREMENT THEORY .. 237

B. I REPRESENTATIONAL THEORY .. 237
B. LI Relational systems ... 237
B. 1.2 Empirical relational system .. 237
B. 1.3 Formal relational system .. 238
B. 1.4 Representational Theorem .. 238
B. 1.5 Uniqueness Condition ... 238
B. 1.6 Scales .. 238

B. 2 SCALE TYPES ... 239

APPENDIX C META-MODELLING OBJECT-ORIENTED DESIGNS 241

C. I INPUTS TO THE MODEL ... 241
C. 2 THE UML META-MODEL ... 242
C. 3 METRICS CONSIDERATIONS .. 244
CA DATAMASE CONSIDERATIONS ... 247
C. 5 ANALYSIS TOOL CONSIDERATIONS ... 247
C. 6 MODELLING CONSIDERATIONS ... 248

C. 6.1 Paring the UML meta-model .. 248
C. 6.2 Converting UML to an RDBMS schema ... 248

C. 6.2.1 Classes ... 249
C. 6.2.2 Template classes .. 249
C. 6.2.3 Attributes ... 249
C. 6.2.4 Operations

.. 250
C. 6.2.5 Associations

... 250
C. 6.2.6 Composition

... 251
C. 6.2.7 Link classes .. 251
C. 6.2.8 Inheritance

... 251
C. 6.2.9 Standard Elements

... 252
C. 7 MAPPING TI IE ComposrrE META-MODEL ONTO THE RELATIONAL MODEL

253

Ix

C 7.1 Simplifying the UML structural packages ... 253
C 7.2 Mapping the simplified UML structuralpackages into ERDs ... 254

C. 7.2.1 Mapping associations and aggregations ...
254

C. 7.2.2 Collapsing the inheritance hierarchy ..
255

APPENDIX D DESIGN DESCRIPTION LANGUAGE (DDL) ...
257

APPENDIX E DATA-MODEL DESCRIPTION ..
265

E. I TABLE DEFINITIONS ..
265

E. 2 PERNnssIBLE vALuEs ...
269

APPENDIX F SOURCE MAPPINGS ..
273

F. I JAVA SOURCE-CODE MAPPING ...
273

F. 1.1 Packages ..
273

F. 1.2 Compilation units ...
273

F. 1.3 Classes
...

274
F. 1.4 Interfaces

...
275

F. 1.5 Extends
...

275
F. I. 61mplements

...
276

F. 1.7 Fields
...

277
F. 1.8 Methods

...
277

F. 1.9 Constructors
...

278
F. 1.10 Parameters ...

278
F. LI I Code Blocks ...

279
F. 2 JAVA BYTE-CODE MAPPING ...

280

F. 3 RATIONAL ROSE MAPPING ...
280

APPENDIX G QUESTIONNAIRE
..

281

APPENDIX H DESIGN DOCUMENTS ..
289

H. I CLASS DIAGRAM ...
293

H. 2 BEHAVIOURAL DIAGRAMS ..
294

APPENDIX I SOURCE CODE FOR THE'SECOND LANGUAGE VOCABULARY TUTOR'

...
297

APPENDIX J CASE STUDY TASK ..
331

APPENDIX K EXAMPLE HEURISTIC ANALYSIS ..
335

K. I MEASUREMENT RESULTS ...
335

K. 2 REAL PROBLEMS FOUND ...
336

K. 3 FALSE PROBLEMS FOUND ...
338

APPENDIX L DATA MODEL FOR THE CASE STUDY DATABASE 339

APPENDIX M DESCRIPTION OF METRICS USED ..
339

REFERENCES ...
343

Blank.

In

Origi al

xi

List of Figures

FIGURE 2-1 MCCALL'S SOFTWARE QUALITY FACTORS 16

FIGURE 2-2 HOW MCCALL'S QUALITY CRITERIA INFLUENCE HIS QUALITY FACTORS 17

FIGURE 2-3 KITCHENHAM'S MODEL OF QUALITY FACTORS, CRITERIA, METRICS AND

THEIR RELATIONSHIP (KITCHENHAM 1987) 20

FIGURE 2-4 A QUALITY DEFINITION FRAMEWORK (SHEPPERD 1995) 22

FIGURE 2-5 QUALITY FACTOR TRADE-OFF MATRIX (SHEPPERD 1995) 23

FIGURE 2-6 AN EXAMPLE OF A QFD MATRIX (SHEPPERD 1995) 24

FIGURE 2-7 A GQM HIERARCHY 26
FIGURE 2-8 MANAGEMENT AND DESIGN PROCESS (COOK AND DANIELS 1994) 29
FIGURE 3-1 THE RELATIONSHIP BETWEEN A MODEL AND 'REALITY' (SHEPPERD AND

INCE 1993) 63

FIGURE 3-2 EXTENDED VIEW OF MODEL RELATIONSHIPS 64
FIGURE 3-3 MEASURE DEVELOPMENT PROCESS FOR DIRECT MEASURES 81
FIGURE 3-4 MEASURE DEVELOPMENT PROCESS FOR INDIRECT MEASURES 88

FIGURE 3-5 MEASURE USE PROCESS 90
FIGURE 4-1 SCHEMATIC OF DESIGN DATA INPUT 102
FIGURE 4-2 MEASUREMENT TOOL ARCHITECTURE 104
FIGURE 4-3 SCREEN SHOT OF METRIC DEFINITION 109
FIGURE 44 SCREEN SHOT OF METRIC-SET DEFINITION 110
FIGURE 4-5 SCREEN SHOT OF PROJECT SET-UP III

FIGURE 4-6 SCREEN SHOT OF RESULTS WINDOW 112

FIGURE 4-7 SCREEN SHOT OF HELP SYSTEM 113

FIGURE 5-1 SUBJECT'S PRIOR EXPERIENCE IN OBJECT-ORIENTATION 138

FIGURE 5-2 SUBJECT'S PRIOR EXPERIENCE OF NON-00 DEVELOPMENT 138

FIGURE 5-3 STUDENTS PRIOR EXPERIENCE OF JAVA AND UML 139

FIGURE 5-4 AN ASPECT OF THE CASE STUDY DATABASE MODEL 143

FIGURE 5-5 RESULTS FROM THE METRIC SELECTION SECTION OF THE QUESTIONNAIRE
145

FIGURE 5-6 METRIC-SETS USED BY SUBJECTS TO SUPPORT THEIR ANALYSIS 147

FIGURE 5-7 METRIC USAGE, BY METRIC AND USAGE TYPE 148

FIGURE 5-8 NUMBER OF METRIC USES AND METRICS USED BY SUBJECT 151

FIGURE 5-9 REAL-ISSUES AND NON-ISSUES BY ENTITY TYPE 154

FIGURE 5-10 ISSUES FOUND AND NOT FOUND BY ENTITY TYPE 155

FIGURE 5-11 HISTOGRAM OF NUMBER OF ISSUES FOUND PER SUBJECT 156

FIGURE 5-12 SUBJECT OVERLAP ON ISSUES 156

FIGURE 5-13 HEURISTICS AND HEURISTIC-USES SHOWN BY ENTITY TYPE 157

xii

FIGURE 5-14 USE-TYPE IN HEURISTICS AND HEURISTIC-USES

FIGURE 5-15 SUBJECTSWIEWS ON MEASUREMENT

FIGURE C- I UML TOP-LEVEL PACKAGES

FIGURE C-2 UML FOUNDATIONS PACKAGE

FIGURE C-3 UML BEHAVIOURAL PACKAGE

FIGURE L- I DATA MODEL FOR CASE STUDY DATABASE

xiii

List of Tables

TABLE 3-1 VALIDATION TECHNIQUES FOR DIFFERENT CLASSES OF MEASUREMENT 79

TABLE 3-2 GOAL DEFINITION FRAMEWORK 92

TABLE 5-1 SUMMARY OF TIME SPEND ON THE TASK (IN HOURS) 141

TABLE 5-2 SUBJECTS'OPINIONS ON THE METRICS THEY SELECTED 150

TABLE 5-3 DISTINCT ISSUES BY ISSUE QUADRANT 151
TABLE 54 IMPORTANCE LEVEL FOR ISSUES FOUND AND NOT FOUND 152
TABLE 5-5 HEURISTIC-TYPE BY ISSUE QUADRANT 153
TABLE 5-6 HEURISTIC-TYPE BY ISSUE SIGNIFICANCE 153
TABLE 5-7 SUBJECT PERFORMANCE BY HEURISTIC USAGE-TYPE 159
TABLE 5-8 SUMMARY OF ISSUES FOUND BY SUBJECT TYPE 160
TABLE 5-9 SIGNIFICANCE OF ISSUES FOUND BY SUBJECT TYPE 160
TABLE A-1 DEPTH OF INHERITANCE HIERARCHY HEURISTICS 194
TABLE A-2 WHEN TO USE INHERITANCE 196
TABLE A-3 WHAT INHERITANCE SHOULD MODEL 198
TABLE A4 MULTIPLE INHERITANCE HEURISTICS 199
TABLE A-5 MISCELLANEOUS INHERITANCE HEURISTICS 202
TABLE A-6 AGGREGATION HEURISTICS 204
TABLE A-7 ASSOCIATION HEURISTICS 205
TABLE A-8 CLUSTER HEURISTICS 206
TABLE A-9 CLASS HEURISTICS 208
TABLE A-10 ABSTRACT CLASS HEURISTICS 209

TABLE A- II COUPLING HEURISTICS 211

TABLE A-12 COHESION HEURISTICS 213

TABLE A-13 INFORMATION HIDING HEURISTICS 214

TABLE A-14 MESSAGE PASSING HEURISTICS 216

TABLE A-15 SERVICE HEURISTICS 217

TABLE A-16 ATTRIBUTE HEURISTICS 218

TABLE A-17 PROTOCOL HEURISTICS 218

TABLE A-1 8 POLYMORPHISM HEURISTICS 219

TABLE A-19 DYNAMIC MODELLING HEURISTICS 219

TABLE A-20 MISCELLANEOUS HEURISTICS 220

TABLE A-21 DEPTH OF INHERITANCE (SUMMARY) 222

TABLE A-22 WHEN TO USE INHERITANCE (SUMMARY) 223

TABLE A-23 WHAT INHERITANCE SHOULD MODEL (SUMMARY) 223

TABLE A-24 MULTIPLE INHERITANCE HEURISTICS (SUMMARY) 224

TABLE A-25 MISCELLANEOUS INHERITANCE HEURISTICS (SUMMARY) 225

xiv

TABLE A-26 AGGREGATION HEURISTICS (SUMMARY)

TABLE A-27 ASSOCIATION HEURISTICS (SUMMARY)
TABLE A-28 CLUSTER HEURISTICS (SUMMARY)

TABLE A-29 CLASS HEURISTICS (SUMMARY)

TABLE A-30 ABSTRACT CLASS HEURISTICS (SUMMARY)
TABLE A-31 COUPLING HEURISTICS (SUMMARY)

TABLE A-32 COHESION HEURISTICS (SUMMARY)

TABLE A-33 INFORMATION HIDING HEURISTICS (SUMMARY)
TABLE A-34 MESSAGE PASSING HEURISTICS (SUMMARY)
TABLE A-35 SERVICE HEURISTICS (SUMMARY)

TABLE A-36 ATTRIBUTE HEURISTICS (SUMMARY)

TABLE A-37 PROTOCOL HEURISTICS (SUMMARY)

TABLE A-38 POLYMORPHISM HEURISTICS (SUMMARY)
TABLE A-39 DYNAMIC MODELLING HEURISTICS (SUMMARY)

TABLE A40 MISCELLANEOUS HEURISTICS (SUMMARY)

TABLE B-1 SCALE TYPES AND ADMISSIBLE TRANFORMATIONS

TABLE B-2 SCALE TYPE AND APPROPRIATE STATISTICS

TABLE C-1 META-MODEL ELEMENT USAGE BY MEASURES

TABLE K- I CHIDAMBER AND KEMERER METRICS RESULTS

TABLE K-2 SELECTED LORENZ & KIDD CLASS-LEVEL METRICS RESULTS

TABLE K-3 LORENZ & KIDD METHOD SIZE METRICS RESULTS (TOP-END SUBSET)

226

226

227

229

229

230

231

231

232

232

233

233

234

234

235

239

239

246

335

336

336

xv

Acknowledgement

Firstly, I would like to thank my supervision team Martin Shepperd and Steve

Webster for many lively discussions, but mostly for their support and forbearance.

Thanks are also due to those students from the 1997-1998 cohort of the Software

Engineering Management degree who attended the Object-Oriented Software

Engineering (OOSE) unit. Their earnest efforts made the case study section of this

thesis possible.

I would like to thank the School of Design Engineering and Computing for its

continued financial support. The OOPS specialist group of the British Computer

Society also contributed financial support through their award of the 1996 scholarship
for advancement of object technology in the UK.

Blank.

I In

Original

xvii

Author's Declaration

The following publications are based on the work presented in this thesis:

[1] Kirsopp, C., A Shepperd, and S. Webster. 'An empirical study into the use of

measurement to support 00 design evaluation', in Proc. Sixth international software

metrics symposium. Boca Raton, Florida: IEEE Computer Society, 1999.

[2] Kirsopp, C. 'Measurement and the software development process', in Proc.

12th European Software Control and Metrics Conference. London, UK: 2001.

[3] Kirsopp, C. and M. Shepperd. 'Using heuristics to assess object-oriented
design quality', in Proc. 5th International Conference on Empirical Assessment &

Evaluation in Software Engineering. Keele University, Staffordshire, UK: 2001.

[4] Kirsopp, C., 'A survey and review of object-oriented design heuristics'.

Technical report, ESERG TR-01-04, Bournemouth University, 2001.

I

Chapter I Introduction

1.1 Motivation for the work
Many people have provided convincing arguments of why measurement is important,

e. g., (Fenton and Pfleeger 1996; Shepperd 1995). Measurement offers control and

sharpens analysis in an objective and repeatable manner. To be able to use

measurement with confidence the validation of measures is not sufficient. Users of

measurement need to know how they should use measures to achieve their particular

goals. To help measurement users with this task, workers in software measurement

need to know how people can, and do, use measurements in practice. This will help to

identify the information and support required for the successfill application of

software measures. This thesis seeks to investigate how people use metrics within a

particular measurement application domain - object-oriented design assessment.

This work is essentially an investigation into the use of object-oriented design

measures for design assessment. There is a great deal of work suggesting new

measures or discussing techniques for validation, but less on the practical use of

measurement. The existing work on measurement utility focuses mainly upon

prediction systems (Zhao, Wohlin et al. 1998; Li and Henry 1993b; Basili, Briand et

al. 1996). There is little published work investigating other types of measurement use.

This work is intended to start redressing the balance and to encourage other

researchers to follow suit.

Many existing measures are described as being an indicator of some or other 'ility'.

This is an indication that product assessment might be a fruitful measurement use to

investigate. The intention is to investigate the extent to which measurement can be

used in assessment and where its limitations lie.

2

Object-oriented design products were chosen as the focus of the assessment for

several reasons. There are a large number of object-oriented design measures in the
literature. Assessing earlier lifecycle products allows for cheaper and easier corrective

action based on the assessment. This suggests that design products, rather than code,

could be most usefully assessed. Object-orientation is also the current vogue for

designing systems with UML becoming heavily used in industry.

1.2 Statement of the problem

1.2.1 Aims of the work
The goal is to examine the theoretical limitations and practical considerations of

people using measurement to assess design quality in practical situations. This general

goal may be broken-down into four more specific aims.

1. To determine the degree to which quality can be assessed at design time and the

degree to which this assessment can be automated.
2. To consider mechanisms for achieving design assessment and its automation.
3. To explore the necessary and desirable functionality of tools to support design

assessment.
4. To examine empirically how people use measures for design assessment in a

practical situation.

1.2.2 Scope and limitations

Some authors have published work attempting to show correlations between particular

measures and external quality indicators. They attempt to predict future values for

measures such as defect density. That is not the aim of this work. This thesis is

primarily concerned with the assessment of the quality of the designs themselves,

rather than the prediction of future code quality. The purpose of this assessment is to

help improve the quality of 00 designs at design time.

The investigation of measurement utility looks at the extent to which measurement

can be used to assess quality and the degree to which this assessment can be

automated. Essentially, it is an examination of the scope and limitations of software

3

measurement within the quality assessment of software products. As an illustration of

product assessment, the thesis looks at the assessment of design products for object-

oriented systems. Although a very particular application of measurement is being

examined, and there will certainly be some results specific to object-oriented design, it

is hoped that much of the work on how measurement should be utilised will generalise
beyond the particular illustrative example.

When the term quality is used within the thesis it has a specific meaning. The thesis

deals with what will be termed the 'evaluation' of products, as distinct from validation

and verification (V&V). Evaluation is not concerned with ensuring that the design

meets the user's real requirements or checking that the design produced matches the

specification. It is the assessment of how good the design is relative to the multitude

of other possible designs for the same problem (assuming V&V have already been

completed). This distinction is discussed more fully in chapter 2.

In examining measurement utility, many of the other aspects often associated with

measurement research are also discussed, e. g., metric definition and measurement

validation. However, this thesis will not suggest any new measures or perform any

measurement validation.

Although it is an aim to empirically examine how people use measures for design

assessment in a practical situation, several potentially useful approaches to such an

empirical study could be taken. This work will not seek to build cognitive models
(Nehaniv 1999) of measurement users or investigate measurement use in the very fine

detail provided by methods such as think aloud protocols (Rosson and Gold 1989; von

Mayrhauser and Vans 1995). Detailed work of this type may well prove to be useful

research, but given the current lack of work in this area it was decided to concentrate

on higher-level questions of the subjects' efficacy and general approach.

1.3 Position of the research

The most straightforward way to position the work done for this thesis is within

Whitmire's software measurement framework (Whitmire 1997). This framework

4

identifies three views onto four objects of measurement. The strategic view considers
the long-term view of the organisation, the tactical view considers the current project,

and the technical view considers specialist design issues. The objects to measure are:

processes, the things we do; projects, instances of processes; products, the

deliverables created; and resources, such as people or time. The framework has a
further dimension that considers the role of measurement. Whitmire identifies the
following roles for measurement: estimation, prediction, assessment, comparison and
investigation. Assessment is the evaluation of a single software entity without

reference to measurement values from any other entity. Comparison is also used for

evaluation, but compares the measured values of two or more similar entities.
Whitmire makes a distinction between estimation and prediction mainly on the basis

that estimation is used to determine likely resource levels and that prediction is used

to determine likely future values of product measures. Investigation is the use of

measurement data in research to support or refute hypotheses.

This work concerns the measurement of the products of object-oriented design. The

measurement of processes, projects and resources will not be discussed. Although a

limited amount of discussion will be made at the tactical and strategic levels, this

work will focus on the technical view. In examining the possible applications of

object-oriented design measures consideration will be given to all of the roles of

measurement suggested by Whitmire, but with particular emphasis on assessment and

comparison.

To recap, this work takes a technical view of the measurement of the products of

object-oriented design to perform assessment or comparison on those products.

1.4 Method

The aims outlined in section 1.2.1 are not independent. There is a clear flow of work
through the list from beginning to end, with later aims depending on the earlier ones.
The method of addressing these aims will now be considered aim by aim.

5

Aim 1: To determine the degree to which quality can be assessed at design time and

the degree to which this assessment can be automated.

The first aim is addressed by using the standard McCall quality factors (McCall,

Richards et al. 1977) to illustrate the degree to which they can be assessed with the

information available in a design model and the extent to which this assessment is

objective (and hence, in theory, automatable).

Aim 2: To consider mechanisms for achieving design assessment and its automation.

The second aim is tackled in two ways. Firstly, by looking at existing quality

modelling techniques and design heuristics as mechanisms for design assessment.
Secondly, by looking at the software measurement literature to assess measurement as

a mechanism for automation.

Aim 3: To explore the necessary and desirable functionality of tools to support design

assessment.

Automation implies tool support. The third aim is approached by looking at existing

suggestions regarding measurement automation and the facilities available in existing

measurement tools. Some suggested tool facilities not available in existing tools are

shown to be feasible through the production of a new measurement tool.

Aim 4: To examine empirically how people use measures for design assessment in a

practical situation.

The fourth aim involves studying the actual use of measures in the design assessment

activity. It requires an investigation into how people would actually employ

measurement to aid them in design assessment and whether measurement really aided

their assessments. This clearly cannot be done theoretically and requires an empirical

study. There is a more detailed discussion of the methodology of this study as part of

chapter 5.

6

1.5 Thesis structure
Chapter 1- Introduction

The introduction is intended to help the reader by providing a context within which to

read the main body of the thesis. It positions the work within the wider context,

makes a clear statement of the problem being solved. The method that will be

followed to tackle the problem is discussed and the structure of the thesis outlined.

Chapter 2- 00 design assessment
This chapter reviews the literature associated with defining and assessing the quality

of software products in general and object-oriented design products in particular. The

first stated aim of the research is 'to determine the degree to which quality can be

assessed at design time and the degree to which this assessment can be autornated. ' In

order to investigate the assessability and automatability of design quality, it is

necessary to first consider what is meant by quality. Without a clear picture of the

attribute under study the analysis is likely to be meaningless.

The investigation of software quality begins with a consideration of the traditional

approach involving validation, verification and evaluation. Previously published

methods of modelling or quantifying quality are evaluated. The discussion is then

focused more closely on the meaning of quality, and its assessment, when applied to

object-oriented designs. This includes forays into the process of object-oriented
design and a review of object-oriented design heuristics. The final section of this

chapter considers the extent to which quality can be assessed from the information

available at design-time and the degree to which this assessment can be automated.

The particular view taken of automation in design assessment is a measurement-
centric view. To consider automation of design assessment it is necessary to consider
not only the extent to which automation is theoretically possible but also the

mechanisms by which automation may be achieved. Consequently, the mechanisms
Of Software measurement also have to be considered.

7

Chapter 3- Software measurement

A brief history of 00 software measures is presented first. This provides background

to the remainder of this chapter and context for the measures used in the case study in

chapter 5. An introduction to software measurement is then given. This includes a
discussion of what software measurement is and why measurements are taken, as well

as an analysis of software measurement terminology. The introduction also discusses

the important relationship between measurement and modelling and examines some
00 specific issues in measurement.

If measures are being used to assess quality, it is important that they correctly

represent the attributes they purport to measure and are useful in the task to which

they are being applied. This is the job of measurement validation. The third section

of chapter 3 reviews the literature on measurement validation, critically reviewing
both theoretical and empirical techniques. A discussion of the processes by which

software measures are developed and used is presented in the fourth section.

Chapter 4- The 00 design tool
One point emerging from the discussion of software measurement is the need for

automation. After studying existing software measurement tools it becomes apparent

that they lack some features helpful for both industrial and academic users, e. g., user
definable metrics and cross-source measurement collection. A tool was proposed and

built to provide proof of concept that some of these features could be included in a

measurement tool and that they would be useful to end-users. This tool is the subject

of chapter 4. A description is given of the main development activities including the

conception, design, building and testing of the tool. The completed tool is evaluated

against the criteria for which it was built and compared with a range of other

measurement tools.

Chapter 5- The empirical study

One of the main aims of the PhD programme is 'to examine empirically how people

use measures for design assessment in a practical situation. ' Chapter 5 describes this

empirical study, which used the tool described in chapter 4. In the study, 15 subjects

8

(full-time students and industrialists) are asked to assess the architecture of a small

system (15 Java classes) using design heuristics and measurement results.

The first section of chapter 5 presents a review of related empirical work on software

measurement. This review shows the distinct aims of this study and so highlights the

need for a new study rather than the replication of a previous one. The second section

deals with the choice of the research technique (a case study was chosen) and gives a

description of the design of the study. The design looks at the study's questions, its

unit of analysis, and the data collection techniques. The actual conduct of the study is

considered in the third section., This deals with a description of the subjects, their

preparation for the case study, the task itself and the data collection.

The case study results are based on assessment reports produced by the subjects and a

follow-up questionnaire. The case study database has a complex data model

populated by a large amount of data. The results section presents analyses of various

views into this data. Most of the analysis is focused toward examining the approach

the subjects took to the task and how effective they were at using automation to assist

in the assessment.

Chapter 6- Discussion

The discussion begins with a summary of the work done. The findings presented in

the thesis are summarised and discussed in the second section. Following this is an

evaluation of the work done towards the thesis, which highlights its strengths and

weaknesses. Suggestions for further work are then made. These contain possible

extensions to the work presented, work to address weaknesses identified by the

literature surveys and new work suggested by the work presented in this thesis. A

final short section of conclusions completes the thesis. This section sets out what the

author believes to be the main achievements of the work.

9

Chapter 2 Assessing object-oriented designs

The purpose of this chapter is to examine what is meant by quality for software

products in general, and object-oriented design products in particular. It is also
intended to show the extent to which quality can be assessed from the information

contained in a design and the extent to which this assessment can be automated.

The chapter starts with a section discussing the standard elements usually associated

with software quality (validation, verification, and evaluation). In the second section,

some previous work on attempts to formalise software quality evaluation is examined.
The third section deals with aspects of software quality specific to object-oriented
design.

2.1 What is software quality

When asking the question 'what is a good object-oriented designT an attempt is being

made to understand how to assess the quality of a design. This section is concerned

mainly with the philosophical aspects of the meaning of quality, rather than the

detailed process of assessing quality. The starting point for the discussion is a

consideration of the traditional approach to software quality involving validation,

verification and evaluation.

2.1.1 Validation

Validation is considering whether the system being built is the system the user really

wants. The system being builtC'ould be the system the producers mistakenly think the

user wants, or even the system the user mistakenly thinks he wants. Different

individuals in the client body may have different perceptions of their needs from a

piece of software. There will also be problems of imprecision in communicating these

perceived needs, both within customer groups and to the developers. These types of

problem cannot be inferred from the software products themselves and must be

handled between the client and developer. An example of validation is the use of

10

prototyping to aid the discussion of system specifications. Validation is inherently

informal and is not automatable.

2.1.2 Verification

I un Verification is the extent to which the system meets its exp icitly stated f ctional

requirements. A system that fully implements the stated requirements would

generally be taken to be better than one that only partially covers the requirements.
Verification of systems is usually done in an informal manner. Developers examine

the software products during reviews and decide whether the system operations

provided match-up with the functionality described in the specification.

It should be possible (in principle) to perform a thorough formal verification of a

system. Given a formal description of the specification and a formal description of

the product, it should be possible to mathematically prove their equivalence. Since

this seems such a complete and precise way of checking a system's 'correctness', why

aren't all systems produced in this way? Sommerville (2001) states that 'verifying a

non-trivial software system takes a great deal of time and requires specialised tools

such as theorem provers and mathematical expertise'. Pressman and Ince (2000) list a

number of issues such as high start-up costs, avoiding over-formalisation and need for

expert training and consultancy that should considered before adopting formal

methods. They also state that traditional development methods should not be

abandoned, i. e., formal methods are an addition to standard development techniques

rather than a replacement for them, and. as such, represent an additional cost. The

second problem is one of validation. Even if you produce a correct formal description

of what you think the user wants, you still can't be sure that it is the system the user

really wants. This is particularly true of the formal approach where the domain

experts are unlikely to have the expertise to spot errors in a formal specification. Other

possible problems include factors such as: requirements creep; and trade-offs between

requirements, and cost or delivery time. This means that your precise formal

specification may soon no longer describe the system you are trying to build. Formal

notations are good at capturing functional requirements but less useful for specifying

other types of requirement such as performance or usability. In short, formal

11

verification is a very time consuming, expensive and difficult task, after which you

still can't be sure you have the desired system.

2.1.3 Evaluation

In addition to the above argument for validation, it must be pointed out that there will

be many possible solutions, for any given problem, which fulfil the specified

requirements. How should the decision be made as to which of these solutions to use?

This is the question evaluation attempts to answer.

Evaluation is done by assessing how the system measures up to the implicit

requirements of standard quality factors such as maintainability, reusability,

understandability etc. Such factors are not always independent of each other and may

indeed require trade-off one against the other. In considering the desired qualities for

a particular system, the relative importance of the various types of quality need to be

considered to help resolve such trade-off questions. This set of 'ilities' and their

relative importance levels can be thought of as the system's desired 'quality profile'.
The major question in software evaluation is how to assess the various software

qualities that comprise this profile.

The creative nature of software design has led to a craft approach to design evaluation,

which is generally done in an intuitive way. Those evaluating a solution know it is

good because it 'feels right'. Riel (1994) suggests that what they are actually doing is

using a set of subconscious heuristics which have been learned through experience (a

more formalised approach to heuristic based evaluation will be discussed later). The

problem with this type of assessment is that the evaluation of a particular alternative

, will vary from practitioner to practitioner depending upon their experience.

If the quality of software products is to be usefully assessed, a clear definition is

needed of what is meant by quality. Ideally, the assessment of quality should be both

objective and repeatable. This would allow quantitative, or at least comparative,

judgements to be made consistently by different assessors.

12

It is intuitively attractive to try to produce a single quality value for a product. This

would facilitate the answering of questions such as 'if I were to make such-and-such a

change, would the product be improvedT However, because of the complex nature of

quality it is difficult to calculate that a product A has a level of quality X, or say that

product B is of higher quality than product C. To be able to do this requires a

quantifiable definition of quality. Budgen (1994) states that the ultimate goal of

quality must be that of fitness for purpose'. This is an often-quoted definition of

quality, but it is not quantifiable. So how can a number be put to such a multifaceted

concept as quality?

A software product can be evaluated from several viewpoints, such as academic,

producer, or customer. There are any number of abstract properties which may be

considered to have a bearing on quality, such as portability, maintainability,

reusability, readability and so on. These properties were chosen to help produce good

commercial systems. However, from an academic point of view they are largely

considered in isolation from any higher level commercial goals. In academia a

product can be considered as 'good' in itself without considering how it might benefit

the company producing or using the product.

From this academic perspective, the quality of a product can be assessed by

individually assessing each of the software engineering principles. This means

producing a separate set of values representing the portability, reusability,

maintainability and so on, rather than a single value for quality. These individual

measures can be derived from metrics applied to the product.

The quality of a system can also be considered from a producer's viewpoint. At the

most fundamental commercial level, the best design may be considered the one that

does most to help the Company achieve its long-term goals. Yourdon (1994) de ined a fi

good design as '... one that balances a series of trade-offs to minimise the total cost Of

the system over its entire productive life span'. It may be argued, however, that

Yourdon's view of minimum cost is too limited a view and may not be the highest

priority for a company. The definition seeks only to minimise costs but neglects

13

maximising returns or minimising risk. These considerations are also important to

businesses.

A company about to produce a system will want to know not only, how much will this

piece of software cost, but also, how great will the return on the investment be?

Moreover, what are the chances of the project failing? Will coding a particular

product give a greater or lesser return than this alternative product? Another

consideration is that returns on the investment may occur outside of the project itself,

and a wider company view of the value of a product may have to be taken. Designing

or coding for reuse, for instance, incurs costs during the project that have their pay
back outside of the project. As well as the consideration of these direct financial

benefits, there are indirect benefits to consider. Choosing a project that moves the

company into new market areas, introduces them to new customers, or improves

company image, may be considered as more important than immediate financial

return.

To enable assessment of this kind of commercially based quality, requires the ability
to estimate to the likely costs, returns, and risks of a project based on the abstract

values calculated for adherence to the academic principles. This would only be

possible by creating models in terms of the measurable properties used in assessing

the academic principles. Empirical data could be used to statistically derive the

relationships and coefficients between these metrics and the likely costs, returns and

risks of a project. These relationships and coefficients may well prove to be company

specific and so require calibration on a company by company basis.

The other main perspective from which the quality of a piece of software can be

viewed is that of the customer. From this perspective, the view taken is largely that of

the observable behaviour of the system. To this extent the customer's view of quality

is, at a high level, a subset of the producer's view. This must be so because one of the

main goals of the producer is to satisfy the customer needs from the software as laid

down in the specification.

14

The customer is also concerned with interactions between themselves and the

producer that are affected by the quality of software. An example of this is

maintainability. From the point of view of producers, maintainability might be

defined by the likely cost of making a change to the system. From the customer's

viewpoint, maintainability might be defined as the time taken for a requested change

to be made. While the time taken doesn't depend solely on the quality of the product,

the structure of the system architecture will effect the ease with which a change might
be made and so, indirectly, the time it will take.

Some researchers have suggested (e. g., (Kitchenham 1987)) that many aspects of

quality are only measurable during the active life of a product. An alternative view

might be that these attribute levels are intrinsic to the product and independent of what

happens during the product lifetime. To take the first view means that assessing these

attributes whilst the product is under development is attempting to predict what will

happen in the future. To take the second means that when the product is being

assessed the measurement/estimate is either a direct or an indirect assessment of an

attribute that already exists in the product. Which is the better definition to choose

will depend on the goal of the measurement. These ideas can be further examined by

using maintainability as an example quality factor.

If the definition of maintainability allows it to be measured before release en i is

being defined as an intrinsic property of the system. An operationalised version of a

definition such as 'the propensity of the system to be easily maintained' could be used-

This is an internal measure and not a prediction of any externally observable or

verifiable behaviour (although the result may be used for prediction or its exact

definition selected on the basis of predictive power for some other external attribute).

Measuring the maintainability of a system by a metric such as 'maintenance effort per

change request' would require us to take the view that this attribute could only be

measured during the active lifetime of the product. This definition requires a view that

maintainability is dependent not only on the system itself but also on its usage

environment. If this definition is used then any attempt to assess maintainability

15

before release is prediction rather than measurement. The definitions relate to
different goals. The first definition relates to the quality of the product itself (useful if

the maintenance environment is unknown). The second relates to the ability to be able
to allocate funds or estimate costs for maintenance.

What, in an ideal world, would it be most desirable to know about the future

maintenance of a product? This question might lead to defining maintainability as
'the total maintenance cost over the system lifetime'. However, some systems could
be so unmaintainable that they rapidly cease to be supported. This type of system
degradation is described in Leyman's 'law' of increasing complexity (Lehman and
Belady 1985). It describes the tendency of system structure to degrade over time

unless effort is actively applied to reverse this trend. Even though the cost per change

would be high for such unmaintainable systems, they could have a lower total

maintenance cost due to the shorter supported lifetime.

A better alternative definition for maintainability would therefore be 'the average cost

per change request over the system lifetime'. It is, however, impossible to look into

the future to see which changes will be made and what their cost will be. An

assessable alternative definition would be 'the estimated average cost of predictable

changes'. The costs of the various predicted changes could be weighted by their

likelihood of occurrence. With this type of pre-release definition of maintainability,

metrics such as 'maintenance effort per change request', measured after release, could

then be used to give an indication of how well maintenance is being done.

Alternatively, it could be used to decide the accuracy of the original maintainability

estimate.

Similar arguments and definitions could be derived for other quality factors;

maintainability is used here only as an example. This shows that although words like

maintainability are used as if everyone shares and agrees a common definition, this is

not case. Workers in software quality may talk with a common vocabulary, but they

often intend different meanings. However, it questionable whether a single definition

would be desirable, the precise definitions will depend upon the viewpoint from

16

which the assessment is being made; the environnicnt in %Nhich it is bcin" 111adc. and L-
the goal ofthe assessment. Since many valid vie%Apoints and goals exist. 111,111\ valid

definitions for quality factors \vIII also exist.

2.2 Software quality modelling

In an attempt to moNe to\ýards a wider understanding and a more precise definition of

quality, several researchers have produced so called *quality models. ' Farly work on

software quality modelling was done by Boclim. Bro"n ct al. (1978) \\Ilo mapped

primitive characteristics (such as device efI-jcicnc\. or structuredness) to intermediate

characteristics (such as reliability. or modifiability). McCall, Richards et al. (1977)

presented their own extended set of quality criteria (primitive characteristics) and

quality factors (intermediate characteristics) and standardiscd' the terminology. This

is the so-called factor criteria metric (FCM) method.

2.2.1 McCalls quality factors

McCall organised his quality factors into three main areas as shown bclo\ý .

Maintainabilit\ (Can I fix it?)
i/

flortabditý (\\ ill I be able to use it
Flexibility (Can I change ý) on another machine'.)
Testabilitv (Can I test it?) (Will I be able to reuse Rcusabilitý

some ofthe software?)

lnteroperabilitý (Will I bc abic to
intat"ice it %Nith
anoth, r sý 4cill")

Correctness
Reliability
FIficiency
Integrity
UsabilitN

(Does it do %Nhat I %kant")
(Does it do it accurately all of the timc?)
(Will it run on rný hardN%are as mvell a-., it can'. ')
(Is it secure?)
(Can I run it")

Fig, ure 2-1 McCall's soft-vvare quality factors

McCall also showed the influences between this set of quality factors and a lar, -, cr set

of quality criteria. These influences are shown in figure 2-2. For a discussion of the

meaning ofthese criteria see section 2.4.

' McCal I's work forms part of the IEEE Quality Metrics Standard Committee report ll-,. I-, I.,, I)-1061-D2

17

Quality Criteria II Quality Factors

Traceability

I Completeness

Consistency

Machine
Independence

Communications
commonality

Data commonality

Correctness

Testability

Figure 2-2 How McCall's quality criteria influence his quality factors

18

Each of the criteria is in turn evaluated on a scale of 1-10 using a set of pre-

determined subjective measures. Each quality factor is evaluated using the following

equation:

F. ýcj * MI+C2* M2+C3* M3+---+Cn* Mn

where, Fq is a specific quality factor, cl ... c,, are the predetermined regression

coefficients and m, ... m,, are the values given to the criteria associated with this quality
factor.

Although McCall's work was useful in drawing researchers' interest into the

quantification of software quality, there are a number of criticisms that may be

levelled against the FCM method. The first problem is that the fixed sets of factors,

criteria, and the relationships between the factors and criteria, makes the method

extremely inflexible. For some products or environments not all of the given criteria

may be needed, in others additional criteria may be needed to address special issues,

in yet other situations the pre-defined relationships between factors and relationships

may no longer hold. Even within a set environment, the exact set of factors and

criteria are open to argument, as are the relationships that exist among them. This will

depend on the goals and perspective of the assessor.

FCM is also a customer-centred approach, but as mentioned earlier quality can also be

assessed from other perspectives and these are not covered. Another problem that

may be highlighted is that McCall focuses on assessing the final product and ignores

the intermediate products.

2.2.2 COQUAMO

The work of McCall was also re-asscsscd by Kitchenharn (1987) in work done for the

REQUEST project. She describes a number of problems with the approach taken by

McCall and Boehm:

" There are overlaps between the various quality factors.

" The simple model of factor-criteria-metric obscures the fact that the nature of the

19

factors, criteria and metrics are very different for different qualities.

There is no clear indication of the trade-off relationships between factors.

There is no explicit relationship between criteria, metrics and the life-cycle.

There is no objective rationale for including, or excluding, a particular quality
factor.

The quality factors are not defined in measurable terms so validation of the

postulated relationships between quality factors and quality metrics is difficult.

To help solve these problems she proposed the constructive quality model
(COQUAMO). The different natures of the quality factors are dealt with by

classifying the factors into one of four categories.
I. Those factors that only apply to certain specialist types of system, i. e., integrity,

and generality. Since this type of factor corresponds to the features of a particular

system, they are best supported by facility checklists rather than quality metrics.
2. Those factors that are general to most types of system but which must be defined

with respect to a particular application, i. e., efficiency and usability (in terms of

ease of use). The search for general quality criteria would be inappropriate if the

factors are redefined for each application. This type of factor should then be

approached using the technique of quality specification (Gilb 1986).

3. Those factors that are. general to most types of systems and may be defined in an

application-independent manner, i. e., reliability, maintainability, re-usability,

extendibility and usability (in terms of acceptance). These general qualities are all

capable of direct measurement, but only during the active life of the product. Thus

to ensure that these qualities are built into systems, techniques should be

developed which assist quality achievement. Software qualities should be cross-

referenced with software engineering techniques so that the right techniques are

used to achieve the desired quality factors.

4. Those factors that relate to software production, i. e., testability, understandability

and correctness.

20

Kitchenham *-- alternative breakdown of' quality factors. This

model includes an explicit relationship between quality factors and the life-cycle. The

diagram shows that each quality factor has a separate checklist for each stage of the

life-cycle. These checklists are made up of standards that must be met, metrics to be

calculated. and procedures that should be used at that stage to help build-in quality.

Although Kitchenham highlights a number of problems with FCM and suggests an

alternative model that alleviates these problems, COQUAMO itself may be criticised

on several points.

specification
factor

[ecql 3 Ede,
ign

ch(c , heck 1 ists

metrics metrics j

Lst an -dard s

procedures]
-I

acceptaDce test/trial

coding "
checklists ;j -11

\1

metrics mctrlcs

sta i&dardsics

Edards

[
s tandards]

nrocedurcj

Figure 2-3 Kitchenham's model of qualiq, factors, criteria, metrics and their

relationship (Kitcheiiham 1987)

The first point to consider are the criticisms Kitchenharn makes of McCall. The first

criticism is that there are overlaps between the various quality factors. Althout-I

Kitchenharn tries to minimise these overlaps, they cannot be eliminated. One reason

l'or this is that, since several factors share criteria, the factors cannot be considered

independent. A second reason is that most of the factors are related to human

understanding of, and problem solving with, software artefacts. This means that most

factors are dependent upon human understanding and so again cannot be considered

truly independent.

21

Although Kitchenham points out that McCall gives no clear indication of the trade-off

relationships between factors, COQUAMO also lacks this indication of trade-offs.

Kitchenham adds separate checklists for each lifecycle activity to correct for McCall's

failure to give an explicit relationship between criteria. metrics and the lifecycle.

However, there is no indication of the relationship between the successive checklists

and no clear process 11or the evolution of the checklists as the lifecycle moves toward

coding and more detailed information is available. McCall was also criticised for

having no objective rationale for including, or excluding, particular quality factors. Z!, t: 1
However, other than trying to eliminate unnecessary overlap, Kitchenham also has this
failing (but she does acknowledge this).

Two of the other criticisms are that the nature of the factors are very different for

different qualities, and that the quality factors are not defined in measurable terms.

Although both of these criticisms would appear to be valid, KItchenhain's solution to

these problems seems inconsistent. She groups the quality factors into four

categories: application specific qualities, general qualities requiring application-

specific definition; general qualities Nvith application-independent definitions-,

qualities related to the software production process. There seems no reason to

separate process-related measures from the other measures as the difference is in how

they are used and not how they are measured.

The first grouping is *application-specific qualities". Kitchenham suggests that these

factors be best supported by checklists rather than quality metrics. Why shouldn't

these qualities simply be either included or left out for a particular proJect? If they are

included. there is no reason why they shouldn't be assesscd using quality nictrics as

for the other qualities. The other groupings are distinouishcd by the generality of the

qualities being measured. The boundaries between these oroups are rather arbitrary

and artificial. Although it may appear when discussing quality factors at a high level

that the), may be application-independent. as Kitchenharn herself points out, they must

be defined in measurable terms. Once an attempt is made to produce this operational

definition of f-actors it is found that the detail of what must be measured depends on

22

the design methods, programming languages, or document standards used. This means

that, even for factors that seem generally applicable, any operationally useful
definition is highly dependent on the specific environment in which the software is

being developed. The result of this is the conclusion that all qualities to be measured

should be defined on an environment by environment basis. This operational
definition could be done for all qualities using Gilb's technique of quality

specification..

2.2.3 Gilb's quality specification
The idea behind Gilb's quality specifications is that all quality attributes of interest are

clearly and explicitly defined at the beginning of the project. These definitions must

allow direct and repeatable measurement. They must have an explicitly stated object

on which they are measured and a viewpoint from which the assessment is to be

made. An example of a definition for 'consistency' taken from (Shepperd 1995) is

shown in figure 2-4.

Consistency definition:

Quality Attribute = consistency
Object = information system
Perspective = customer
Scale = probability of a data element being consistent with all other
elements in the system.
Test = 1000 random record samples checked by the database
consistency testing program
Now = 85-90% (estimated)
Minimum = 90%
Target (11: 94) = 99.9%

Figure 2-4 A quality definition framework (Shepperd 1995)

From this example, a number of other aspects of the framework can be seen. The

framework is also used to give an indication of the current position, minimum

standard and target for the quality attribute being defined. As can be seen from the

'Now' data, values should be given with an indication of their accuracy and degree of

confidence. Estimates must be explicitly stated as estimates.

23

This method does allow for the precise definition of quality attributes in measurable
form but it does have a number of weaknesses. The first problem is that in trying to

define an attribute in a directly measurable form, the definition of the attribute may no
longer completely and accurately reflect our implicit idea of the meaning of the

attribute. Since targets and standards are defined in terms of the measurable definition

of the attribute, there is a tendency for the definition to 'become' the attribute, rather
than describing the attribute. Consequently, measurement processes often optimise

the numbers rather than the product.

Another problem is that defining attributes in this way leads to an overly simplistic

view of quality (Shepperd 1995). The attributes that a manager may need to assess are

rarely independent and these trade-offs need to be taken into consideration. This

examination of the interdependencies between a set of attributes can be shown by

either a quality factor trade-off matrix or the quality factor deployment (QFD) matrix.

A simple example of a quality factor trade-off matrix is shown in Figure 2-5 (taken

from (Shepperd 1995)). This figure shows four quality factors, their priorities and

their inter-relationships. A '0' in the matrix indicates no direct relation between

factors, e. g., usability and security. Where two factors supported each other a '+ve'

would be shown. Usability and timeliness are shown as having a '-ve' relationship.

T'his means that the two factors trade-off against each other. Since timeliness is

prioritised as essential and usability only desirable, it is likely that in this case

usability would be sacrificed in favour of timeliness.

Quality factor
Timeliness
Security
Usability
Maintainability

Priority

Essential
Essential
Desirable
V. Desirable

Timeliness Security Usability

-ve
-ve
-ve

0
0

Figure 2-5 Quality factor trade-off matrix (Shepperd 1995)

24

2.2.4 Quality factor deployment (QFD)

QFD (Kogure and Akao 1983) extends the idea ofa quality factor tradc-offinatrix. It

,n requirements that "vill iniple ent relates the customer requirements with the desig III
them and gives the strength of the relation.

RELIABILITY

never loses data 9 5

available when needed 9 3

prevents inconsistent data 1 9

PERFORMANCE

handle all finance dept data 1 9 9 9 2

fast response time 9

I IOW MUCH

M _0

0
0

(D
LIJ

>-
U-)
CO

-E -- C)
0
LO

C:) C)
(N

0
F)

(L) Ch

(0
Technical importance rating 1 48 t42 1 29 1 19 Fig

Figure 2-6 An example of a QFD matrix (Shepperd 1995)

25

The strength of the relation is shown in the matrix by the numeric weight associated

with one of the following categories: strong (9); medium (3)); weak (1), none (0).

Each of the customer requirements is also given a weighting value to show its rank in

increasing order of importance to the custorner. The values in the relationship matrix

are multiplied by the customer weight and surnmed for each design requirement. This

value represents the technical importance rating of each design requirement. The

dependencies within the set of design requirements are shown by the correlation

matrix in the 'roor of the diagram (figure 2-6). Again the numeric weight associated

with the dependency is one of the following categ , ories: strong (9): medium (3); weak

(1): none (0). Since dependencies between two design requirements may be either

supportive or a hindrance. positive and negative values are allowed for the correlation

matrix. As with Gilb. the desired values of the design requirements are explicitly

shown and their units given. This is shown in the 'how much* section.

There are for QFD. as for the other metric methods, some weaknesses. Firstly, by

taking a customer viewpoint the method focuses on the quality of the delivered

software and ignores intermediate products. As Shepperd (1995) notes 'this provides

little scope for remedial action'. This customer centred view also ignores any quality

issues that are not apparent in the operation of the final product, such as reuse. In

theoretical terms, the association of numeric values with the ordinal scale attributes

(used to represent the various relationships within the matrix) and the way they are

used in the calculation of the technical importance ratings is somewhat questionable.

In QFD"s favour. it is more flexible than FCM. in that it allows the definition of

relationships and factors on a per application basis.

2.2.5 Goal question metric paradiagrn (GQM)
I-

Although the COQLJAMO and FCM methods are largely concerned with planning,

they are generally weak at deciding which quality factors to assess in the first place.

QFD takes its quality requirements from the customer (who must also have sonic

means of deciding what they want measured) but this neglects producer quality

concerns other than those that directlIv affect the customer. A method often used to

define the measurements which should be taken is the goal question metric (GQM)

26

paradigm (Basili and Rombach 1988; Rombach and Basili 1990; Basili, Caldiera et al.

1994). This method starts with the high level goals which the measurement prograrn
is seeking to fulfil. From these high-level goals a set of questions are developed

whose answers will help show whether the goals are being fulfilled. Finally, a set of

metrics is produced whose values provide the answers to these questions. Figure 2-7

shows the structure of a GQM hierarchy.

I Ouesti On

Goal 1 Goal 2

I [Ouestion 31 [Ouestion 4

Metric I Metric 2 Metric 3 Metric 4

Ouestion 5

Metric 61 Metric 5

Figure 2-7 A GQM hierarchy

GQM has the strength that all metrics it generates must directly support a high level

goal of the software production. It also has the flexibility to be able to measure

intermediate products. Although an influential method, GQM still has a number of

problems. There is little guidance given in incorporating GQM into the development

process. It has been argued that the top-down nature of GQM can lead to a substantial

amount of backtracking and re-work if the analysis of data leads to a redefinition of

the goals of measurement (Shepperd 1995).

Shepperd also suggests that GQM can lead to a proliferation of metrics. He cites a

case at Hewlett Packard (Grady 1987) in which the use of GQM led to the definition

of 35 distinct metrics and states that this is 'clearly too many'. This seems a bit of a

sweeping statement without any reasons being given as to why this is too many, or

what problems having this number of metrics might cause. In a situation where

manual collection and processing of data was necessary then the cost of this level of

measurement may be unjustifiable. In a situation where metrics were collected and

processed automatically this would not be the case. So long as the metrics which are

being collected are related to project goals, there seems no reason why 35 metrics or

even more might not be usefully and effectively collected. Having said this, there

does seem to be a tendency for GQM to produce large numbers of questions and

27

metrics. Strategies for dealing with this include pruning the GQM tree and a staged
introduction of measures on a goal-by-goal basis.

2.3 Quality assessment for 00 design

2.3.1 What is quality in design?

Quality for software is usually discussed in terms of the final product. The purpose of

the design is to lay the foundations for the final system. This makes it difficult to

consider the quality of the design in isolation from the system produced from that

design. Although a good design is necessary for a quality final system, a good design

needn't always result in a quality final system. If the code is not implemented well, a

poor quality system could still result from a good design.

A good design is one that can easily lead to the production of a quality final product.
However, this does raise a number of questions. What attributes of a design lead to a

quality final product? Can the quality of the final product be estimated based on the

information available in the design? How does the assessment of designs fit into the

overall development process? The answers to these questions are largely dependent

on the information available in the particular notation and on the design process being

followed. As this thesis focuses on object-oriented design, a closer look at 00 design

and the OOD process is worthwhile.

2.3.2 Object-oriented design

2.3.2.1 Elements ofa design method

Budgen (1994) lists the three main components of a design method as representation,

process and heuristics. The representation can be further split between the concepts

being represented and the notation used for the representation (Webster 1996). The

notation is the syntax in which the design products are expressed. The concepts are

those ideas that it is possible to express using the method. The process describes the

sequence of activities performed to produce a design. Pragmatic guidelines to aid in

the construction and evaluation of a design are captured by the set of heuristics.

28

Concepts are largely the same across modem 00 methods (as evidenced by the recent

successful unification efforts on UML (Booch 1996b) and OPEN (11criderson-Sellers;

and Graham 1996; Henderson-Sellers, Graham et al. 1997)). The notation in which
they are expressed should have little impact on design assessment. The heuristics that

accompany a method have a clear bearing on design assessment and this will be

discussed later in the chapter. The design process effects design assessment, in an
indirect manner, through the assessment activities included in that process.

2.3.2.2 The 00 design process
Although the products of design may be diagrammatic, producing diagrams is not
designing. As Booch (1994) points out "designing is not the act of drawing a
diagram: a diagram simply captures a design". He continues "if you follow the work

of any engineer ... you will soon realise that the one and only place that a design is

conceived is in the mind of the designer. " What are the mental processes undertaken
during design? Curtis, Kellner et al. (1992) describes software design as "a collection

of interleaved, iterative, loosely-ordered processes under opportunistic control... " and

states that "good designers work at multiple levels of abstraction and detail

simultaneously". The OPEN method describes the design activity as 46perhaps the

most loosely defined of the object-oriented lifecycle activities... and is essentially a

creative, not a mechanistic process" (Henderson-Sellers 1996b). In their book

describing the Syntropy method, Cook and Daniels (1994) describe the design process

as "informal and organic". This gives a picture of a somewhat chaotic and

unpredictable design process. How is control possible within such an unstructured

process?

Cook and Daniels state that "it is necessary to separate clearly the software

management process from the software design process, so that designers are not

constrained by the formality needed by managers. " They give the model of design

shown in figure 2-8. In this model, the formal management process establishes

"milestones that correspond to the delivery of functioning code and achieve them in a

series of evolutionary cycles. " This type of management control based on functioning

code makes the separation of design and coding processes almost impossible.

29

Lr
Z"ý', ý

Informal, organic.
design process

>

Formal, cyclic.
evolutionary.

management process

Figure 2-8 Management and design process (Cook and Daniels 1994)

The 'desi-n a little, code a little' incremental approach to obj ject system construction

means that designs are often not completed in one go. Instead a high-level

architectural design is done and then the more detailed design is done for the classes

and subsystems involved in the various increments before they are coded. Those

classes and subsystems required for the next increment, but not yet built. are then

designed.

Within the informal organic design process performed by individual designers, there is

scope for the comparative assessment of designs. The process of'design at this level is

about considering alternatives. Would one way of structuring a system be better than

this other way? If a particular change were made, would the 'new' design be better

than the old one?

Assessment within the formal management process is much more of a stand-alone

assessment. The questions are, whether there are any problems with this design, or

whether this design is good enough. At this higher level process assessment is likely

to take the forni ot'design reviews.

Another issue with object-oriented design is the possible lack ofcornplctcncss of tile

30

designs. According to Cook and Daniels (1994), the "completeness of design models

is not always a reasonable or useful goal". They argue that there is a trade-off

between the total effort spent on a system and the percentage of that time spent on

design. If too little time is spent on design, effort will be higher because of

backtracking and reworking. On the other hand, there are diminishing returns from

spending a higher and higher percentage of project time on design. At some point, the

extra effort spent on design will have insufficient pay back in savings on coding

effort. This tends to mean that systems are not as completely specified at design-time

as the notation would allow (Martin 1995). This means that any assessment of designs

may have to be made on incomplete data and measurements made from design

information may not match equivalent coding measurements.

2.3.3 What is quality in object-oriented design?

When discussing object-oriented designs, consideration needs to be given to whether

the quality factors and criteria given for systems in general still apply under the object-

oriented paradigm. Another question is whether 00 requires any factors or criteria

that are not applied to structured designs.

Fenton and Pfleeger (1996) describe quality factors as 'high-level external attributes'.
Being external attributes, quality factors should remain unchanged whatever the

paradigm, method or tool set used to produce internal design of the software. This

implies that object-orientation should strive to achieve the same quality factors as any

other paradigm. Some quality criteria are more tightly bound than quality factors with

the internal structure of software, and so are more likely to be affected by a paradigm

shift. Such criteria as modularity and data commonality do not have quite the same

meaning in 00 design as for structured design. However, many of the criteria would

appear to have the same, or very similar, meaning for both 00 and structured systems.

Significant differences between 00 and non-00 systems appear when the level of

metrics is reached. The differences in metrics are reflected in the need felt by

researchers to design new metrics specifically for 00 systems, rather than simply re-

using those which already existed for structured systems.

31

Much of the discussion presented so far on quality deals with the top-down

decomposition of quality. The methods described have started from high-level

aspects of quality (factors) that are then hierarchically decomposed until a set of

directly assessable items are reached. There is an alternative approach. Experience

can be used to identify individual rules or guidelines that indicate quality. These

quality guidelines can then be use to assess quality in a constructive, bottom-up

manner. These quality guidelines are alternatively known as heuristics.

2.3.4 00 design heuristics

This section introduces the subject of design heuristics. Firstly, it looks briefly at the

general idea of design heuristics. A description of a survey and review of the object-

oriented design heuristics literature is presented. The work done in producing this

survey forms the basis for much of the following discussion and is documented in a

technical report by the author (Kirsopp 200 1 b).

2.3.4.1 What are design heuristics?

Experts in any field appear to act as if there were a collection of unwritten rules that

they were following. 00 design heuristics have emerged as an attempt to codify 00

design expertise. The heuristics take the form of rules of thumb that can guide

designers as they choose between various alternatives. They are separately gleaned

pieces of distilled design experience that can be shared. Heuristics are pieces of

advice, on detailed aspects of design, which are held to be true in most cases (at least

by their originators). These partial definitions begin to capture what design heuristics

are about, but the topic is broad and lacks a precise definition.

2.3.4.2 The heuristics survey

The survey began as an attempt to gain an idea from the 00 literature of how to

assess 00 designs. It finished as a large-scale cataloguing and analysis operation of

00 design heuristics. Not all design advice falls into the heuristics category. Design

patterns are pieces of advice based on design experience. They are recommended

forms for the solution of known recurring design problems. Patterns are not intended

32

as a means of design assessment and therefore were not included in the survey (a more
in-depth discussion of the relationship between heuristics and patterns will be

presented in section 2.3.4.6).

The survey started by looking at the guidelines provided with particular 00 methods.
General bibliographic sources for the subject area (e. g., ISI scientific citation index,

INSPEC) were then searched for both general sets of guidelines and heuristics on

particular aspects of 00 design (inheritance, aggregation etc.). The survey looked at

71 different sources of heuristic information and found 288 suggestions for heuristics.

Although this was by no means a small survey, it is almost certainly incomplete.

There are a very large number of publications on 00 design, many of which make

suggestions on desirable structures or properties for designs. It is hoped that the

survey was large enough to be representative of the ideas on the topic of design

heuristics from the literature as a whole, as well as capture the majority of distinct

heuristic ideas (if not all of their various incarnations).

Many authors present heuristics that appear to be describing the same underlying idea,

although the exact definition of terms or choice of thresholds may vary slightly.
Clearly, there is some degree of subjective judgement involved in deciding whether

two heuristics are sufficiently similar that they can be treated as the same. However,

the author found that the 288 heuristics from the survey could be replaced by a list of
less than half that number with the minimum loss of meaning. If a 'capture-recapture'

view is taken of this overlap, it suggests that a good coverage of the available heuristic

ideas was indeed attained.

2.3-4.3 nere do design heuristics comefrom?
Object oriented design heuristics have arisen in a number of ways, although they have

not always been labelled as heuristics. Sets of general recommendations have

accompanied design methods, e. g., (Coad and Yourdon 1991b; Booch 1990-
Guidelines on specific topics have come out of narrowly focused pieces of research,
e-g-, an experimentally derived heuristic for inheritance depth (Daly, Brooks et al.
1996), or a heuristic for abstract classes based on theoretical arguments (Hursch

33

1994). Experience-based sets of heuristics have been proposed independently of any

particular design method, e. g., (Coplien 1992; Riel 1996). There has also been the

emergence of empirically based heuristics, in which measurement values falling

outside of a statistically derived 'normal' range are deemed to be violations (Abreu,

Goulao et al. 1995).

2.3.4.4 Heuristic assessment types

There appear to be two distinct ways in which heuristics can be used in assessment.
These are stand-alone assessment and comparative assessment.

2 3.4.4. LI Stand-alone assessment

In stand-alone assessment, a single version of a single entity is evaluated in isolation.

Firesmith (1995) provides an example of a heuristic for stand-alone assessment,

tavoid inheritance structures that are too shallow (3) or too deep (7)'. Here the

heuristic contains its own threshold values so that no other entity is required for

comparison. As well as these 'threshold' heuristics, there are heuristics that embody

rules. For instance, 'subclasses should not delete features of their superclasses'

(Firesmith 1995). This type of 'rule' heuristic can be considered as a separate type of

heuristic, or as a subtype of threshold heuristics (those in which the threshold is

breached by a single occurrence of the situation described).

In stand-alone assessment, heuristics operate as tests that are either passed or failed.

For example, an inheritance depth of 2 or 8 would fail the above threshold heuristic,

but a depth of 5 would pass. Any classes that deleted any features of their

superclasses would fail the rule-based heuristic given above.

Design comparison is distinct from design assessment because it deals with choosing

between a set of possible designs rather than evaluating a single design. For heuristics

that have clearly defined thresholds a design is assigned to one of two categories,

either the heuristic is broken, or it is not. This means that if one design complies with

the heuristic and another design does not, the designs can be ordered based on the

heuristic. Clearly, this type of heuristic has a poor discriminatory ability in

34

comparison, as it is effectively a restricted ordinal scale with only two categories.

2.3.4.4.1.2 Comparative assessment

Comparative assessment uses another entity (or another version of the same entity) as

the reference point for the assessment. Some heuristics are more directly suited to

comparison because they codify a tendency rather than a threshold, e. g., 'minimise the

number of classes with which another class collaborates' (Riel 1996). This type of

heuristic is more likely to be useful in discriminating between designs. In this

example heuristic, a version of a class that collaborates with 3 other classes is

considered better that a version that collaborates with 5. However, nothing is said

about absolute quality. There is no implication that 3 is good or that 5 is bad, just that

3 is better than 5. There is also no implication of the degree of difference (either by

interval or by ratio).

Of course, a potential weakness of comparative heuristics is that they require at least

two versions of the entity under consideration. This means that some activities, such

as QA or design reviews, that tend to work with a single design cannot easily utilise

comparative heuristics. However, there are a couple of workarounds for this problem

(as demonstrated by the subjects in the case study presented in chapter 5). Within-

design comparisons can be made by partitioning the design into a number of elements,

which can then be compared. It is also possible to covert a comparative heuristic into

a stand-alone heuristic by adding an arbitrary threshold.

2.3.4.5 Relationship between heuristic and metrics
The review of heuristics for the catalogue has shown that heuristics may have

different styles of assessment. On one extreme, are heuristics whose application

requires a value judgement on the part of the designer. These heuristics will be

termed semantic heuristics as their application depends upon the meaning of the entity

to which they are applied. The example heuristic given below is a semantic heuristic.

An object removedfrom the context of the immediate application, should, in isolation,

still represent a coherent and complete object-oriented concept. (Berard 1993)

35

On the other extreme of assessment styles, are those heuristics where conformance

may be checked purely based on the structure of the design/code. These will be termed

syntactic heuristics. The next example is a syntactic heuristic.

Avoid having too many services per class. Each class typically has no more than six

or seven public services. (Coad 199 1 c)

Some heuristics fall between these two classifications. Although they are to some

extent measurable, some semantic interpretation is also required. The third example

heuristic falls into this hybrid category. The size of a class and its level of coupling

can be measured, but whether it has too much control and responsibility still has to be

assessed semantically.

Do not create god classeslobjects in your system. (Riel 1996)

Metrics are related most naturally to syntactic heuristics. Measurement values may be

used to automatically check the conformance of a design to a syntactic heuristic.

Heuristics may be created as threshold values on particular metrics (Abreu, Goulao et

al. 1995). it is also possible to define metrics specifically to automate the detection of

violations of particular heuristics. Where the heuristic is created independently of any

particular metric, questions arise as to whether it can be assessed using a metric and if

so, which metric would be most suitable. A general heuristic is likely to be phrased in

terms of some product attribute and this attribute may be measured using a number of

distinct metrics. For example, the heuristic "classes should have the minimum of

coupling with other classes" (Love 1991) could be assessed using Chidamber and

Kemerer's CBO (Chidamber and Kemerer 1994) or Lorenz and Kidd's 'class

coupling' (Lorenz and Kidd 1994).

Heuristics may apply to some syntactic element of the design or to a semantic aspect

of design. Although syntactic heuristics may be assessed using objective metrics,

semantic heuristics are only likely to be amenable to subjective measurements (e. g.,
Likert scales)

36

2.3.4.6 Relationship between heuristic andpatterns
Patterns and heuristics are similar in that they are both a means of capturing design

experience. The type of experience they capture is however different. Patterns are
reusable pieces of micro-architecture that may be applied in particular semantic
situations (Gamma, Helm et al. 1994). A pattern specifies the shape a section of the
design should take. Heuristics only specify a guideline that particular design entities
should conform to, and do not specify any particular design structure to achieve this.

As well as normal 'positive' patterns, so called 'anti-patterns' have been suggested
(Brown, Malveau et al. 1998). The idea is that rather than proposing how a standard
design task should be achieved, an anti-pattem captures common ways in which the

task is done badly.

Riel (1996) has suggested that heuristics might be used to trigger standard

transformations between 'a bad design pattern' and 'a good design pattern'. Although

the transformation between an anti-pattem and its positive counterpart appears to be a

sound method of design improvement, it seems unlikely that design heuristics can be

used as a means of triggering such changes. Identification of the anti-pattem is what is

required to trigger the transformation, not the violation of a heuristic. The violation of

a heuristic cannot be linked to a particular anti-pattem because it is independent of the

semantic situation necessary to identify a pattern. This means that a heuristic

violation could indicate the presence of any one of a number of anti-patterns, or a

problem without any associated pattern.

Riel has suggested that these standard transformations might be used to automate the

design optimisation process'. A range of possible transformations could be suggested
to a designer upon the discovery of a heuristic violation. It should also be possible to

automatically transform anti-patterns, into good patterns, once the designer has

identified the anti-patterns. Neither of these possibilities could be fully automated.
TbeY both depend on the semantics of the design and so would require intervention
from the designer.

37

2.3.4.7 Contradictions and trade-offs

It is reasonable to think of heuristics as similar to those other distillations of useful

experience - proverbs. Proverbs can appear to be in conflict with one another. For

instance, consider the following apparently contradictory examples, 'too many cooks

spoil the broth' and 'many hands make light work'. On the surface, each of these

proverbs seems to be saying the opposite from the other, one appears to argue that

fewer people are better and the other appears to argue that more people are better.

However, we know that the key to correctly applying these proverbs is the context.

The context for the 'too many cooks' proverb is that of decision-making whereas the

context for the 'many hands' proverb is that of performing a large well-understood

task. The same problem occurs with design heuristics. As soon as we simplify the

advice to make the heuristics short and memorable we lose the connection to the

context and risk applying them inappropriately.

When a number of heuristics are applied to a design, occasional contradictions appear.

These contradictions require explanation. In their abbreviated 'snappy' form,

heuristics are presented without any explicit context and this can lead to

contradictions. Where an apparent contradiction appears, consideration of the

rationale for each heuristic, and its associated context, will usually show that the two

heuristics should not be applied in the same situation.

On some occasions, two opposing heuristics can be applied within the same context

and this implies a trade-off. In these cases, each heuristic seeks to improve a different

quality factor of the system to the detriment of the other. An explicit design decision

must be made about which heuristic will be followed and which ignored. The

decision will be based on the strength of the heuristics and on the 'quality profile'

desired for the system. "The strength of a heuristic comes from the ramifications of

violating it" (Riel 1996). The results of violating some heuristics will clearly be

worse than the results of violating others. Where a decision cannot be made on the

basis of strength, consideration must given to which 'ilities' the heuristics support and

which of these 'ilities' is more desirable for the system under consideration.

38

2.3.4.8 Validity

Since heuristics are simply rules of thumb and typically without supporting empirical
evidence, how do we know that they constitute good advice? A high degree of
agreement between the heuristics from different authors might increase confidence in

the validity of their heuristics. The heuristics survey highlighted little contradiction
between different authors within the heuristics literature. Differences do exist in the

choice of particular threshold values, but on the general trends, there appears to be

consensus on most issues. However, although for some guidelines there appears to be

overwhelming support, it is hard to tell if different authors proposing the same
heuristic are doing so independently or are feeding off each other's work. if common
guidelines were arrived at independently, it would give a much stronger indication of
their validity than if the authors merely agreed with heuristics previously proposed by

another writer.

In theory, heuristics may be formally validated using external measurement results.

For instance, if heuristic A is supposed to support maintainability then we can

compare the maintenance costs of systems in which it is used to systems in which it is

not. It would be difficult in practice to design an experiment to allow for all of the

possible confounding factors. Many aspects of design not covered by a particular

design heuristic can affect maintenance costs. They may also be affected by the

coding practices used to implement the design. The processes and personnel used

during maintenance can also clearly affect the costs. How can we tell if low

maintenance costs are due to conformance with the heuristic or one (or more) of the

multitude of other possibilities? In practice, the formal validation of individual

heuristics is rarely done. However, Briand, Bunse et al. (2001) have published results
from an experiment looking at the application of a set of design guidelines proposed
by Coad and Yourdon (1991b). They conclude that following these guidelines makes

maintenance tasks significantly easier. This result may not show the validitY of
individual heuristics, but it does support the idea that following a set of design

heuristics should lead to a better design.

39

2.3.4.9 Application ofheuristics

Heuristics application may be divided into two main sections, education and practice.

In education, heuristics are used to help inexperienced designers to learn and apply the

skills and insights of highly skilled and experienced designers (without having to

spend 10 years acquiring them). A study of the use of heuristics in teaching 00

design has been performed (Gibbon and Higgins 1996). In this study, heuristics were

used as a means to transfer object-oriented design expertise to inexperienced

designers. They found this to be a 'resourceful teaching aid'. However, since we are

concerned with the use of heuristics during the design process, we will not consider

their educational use any ftirther here.

In examining the possible uses of heuristics in industrial practice, one approach would

be to consider the use of heuristics within the various development process activities.

In general, design heuristics may be applied during any activity in which the design

(or subsections thereof) is created, modified or assessed. Sommerville (2001) lists

four fundamental activities common to all software processes: specification, design

and implementation, validation, and evolution. The specification is performed before

the design is created and so design heuristics cannot aid specification. Validation is

concerned with the externally observable behaviour of a system, rather than its

internal design, and so design heuristics are not helpful for this activity either.

Heuristics can however be applied during the other activities.

2.3.4.9.1 Design and implementation

The first question to consider here is, could heuristics be used in the initial formation

of a design? Heuristics check the conformance of the design to some rule. If we do

not yet have a design how can we check its conformance? This suggests that

heuristics can only be applied after we have an initial design. During the initial

formation, the design may still be wholly within the mind of the designer. The

designer may be applying heuristics subconsciously during design formation, but the

explicit inclusion of heuristics in any element of the design process must wait until the

design exists in some concrete external form. Once there is an external representation

of a design, it can be assessed with the aid of heuristics. Assessment involves

40

checking the compliance of a single existing design against a set of rules. This

involves the application of heuristics in a stand-alone manner as described previously.

After the initial design formation, 00 designs are usually developed in an iterative

manner. A new iteration of the design may be assessed in a stand-alone manner or in

a comparative manner. We may want to know if a change is likely to cause problem

with the design, in which case we are assessing the new design. Otherwise, we want

to know if the changes improve the design, in which case we are comparing designs.

The only heuristics that would apply directly to system refinement would be those

used to control the refinement process. Heuristics could be used to decide when to

stop the iteration in a refinement process.

People other than the actual designer may use design heuristics. An assessment team

may use them during a design review. They may also be included in design standards

to be applied as QA. In both of these cases, heuristics will usually be used on a single

design through stand-alone assessment.

2.3.4.9.2 Software evolution

There are three different strategies of software evolution: maintenance, architectural

transformation, and re-engineering (Sommerville 2001).

Maintenance is further subdivided into corrective, perfective, adaptive and

preventative. Corrective maintenance involves changes made to repair software
faults. These faults may be in the detail of the code and require no changes to the

software's design. Alternatively, the fault may be at a higher-level and require design

changes. In this case design heuristics could be applied to assess the changed design.

This assessment may be done in either a stand-alone or a comparative manner.

Perfective maintenance involves changes made in response to changed requirements.
This will usually require changes to the design and so can employ design heuristics.

Since there is a change to the requirements, the functionality of the old system is

different from that required from the new. This means that it may not be sensible to

41

make direct comparisons between the designs and a stand-alone assessment of the

new design is more likelY.

Adaptive maintenance involves changes to adapt software to a different operating

environment. Changes to the operating environment impose a different set of design

constraints and so, as with perfective maintenance, direct comparisons are probably
inappropriate and stand-alone assessment is likely to be used.

Preventative maintenance involves changes intended to make future maintenance

easier, but do not change the system's functionality. In this case an attempt is being

made to improve the design whilst keeping the functionality the same. This is a clear

case for application of comparative heuristics.

Architectural transformation is moving from one architectural style to another, e. g.,

centralised to client-server. This is a really an extreme case of adaptive maintenance

and so the same arguments apply.

Re-engineering is restructuring without adding functionality. This is an extreme case

of preventative maintenance and so those arguments apply.

2.3.4.10 The heuristics catalogue

Having a large number of heuristics describing how designs should be structured, or

how the design process should be performed, is only useful if you can select a suitable

subset of heuristics for your particular purpose. To use the entire set of heuristics

would mean including those irrelevant to the goal or inappropriate to the context. To

select a subset of heuristics for a given purpose requires a catalogue of the available

heuristics and means of searching the catalogue based on the intended use of the

heuristics.

The survey data was used as the basis for a catalogue of object-oriented design

heuristics (presented in appendix A). Producing the catalogue was not simply a case

of finding heuristics. The heuristics were grouped into 20 categories each related to a

42

particular 00 concept or construct. For example, categories include heuristics for

multiple inheritance, polymorphism, and message passing. The catalogue also includes

additional information about each heuristic, such as their trade-offs, lifecYcle

applicability and objectivity. This information is intended to improve usefulness of

the catalogue to those trying to apply 00 design heuristics.

As has been mentioned, there is considerable duplication of heuristics ideas from

different authors. One of the tasks involved in producing the final catalogue was to

try to remove much of the duplication. Appendix A shows both the initial catalogue,

containing all of the heuristic suggestions found in the survey, and summarised set of

guidelines. It also includes the rationale for the inclusionlexclusion of particular
heuristics and. the rationale for 'collapsing' several heuristics into one prototypical

version.

2.4 Automation in 00 design assessment

This section considers the degree to which software quality can be assessed solely

from the design documentation and the extent which this assessment can be

automated. As has already been discussed, there is no single quality model applicable
in all situations. Therefore, little can be said in general about the assessabilitY and

automatability of design assessment. One potential way to further this discussion is to

analyse an exemplar quality model. A static model would be the most suitable as it

does not vary from system to system. McCall's FCM model is the most widely cited

of these models and so it will be used as this exemplar.

The approach will be to examine the degree to which each of the criteria can be

assessed from the information available at design time. A further consideration is the

manner in which these criteria could be assessed. This assessment may be done

through objective automateable measures or through subjective assessment. The

definition of the criteria or the metrics used to measure them may also be dependent

on the design method used. In addition, a given criterion may only be partially

assessable from the information available.

43

In the following paragraphs, arguments are given for the assessability and

autornatability of each of the criteria. This information is then surnmarised in table

2-1.

Traceability is the extent to which a design component can be traced back to the

relevant section of the requirements. This is dependent on the design method. In some

methods it is explicitly given as part of the method and in others is unavailable or

must be inferred.

Completeness is the extent to which the full functional requirements have been

achieved. If a methodology is used which includes traceability, or if formal methods

are used then this may be done objectively. Otherwise, it can only be done

subjectively.

Consistency is the degree to which uniform design and documentation techniques are

used throughout the project. This requires a consideration of what may be assessed

from a design, obviously consistency across a project cannot be assessed from the

design alone.

Accuracy is the correctness and precision of computations and control. This is

unlikely be assessable until detailed design or coding. It will not be available at the

architectural design stage.

Error tolerance is the degree of damage limitation when the program encounters an

error. Again, this is dependent upon the detailed design and coding of the system.

Such things as exception handling would not usually be shown on an architectural

design.

Execution efficiency is the runtime performance of the program. Again, this cannot be

assessed until the code is written. A similar argument can be made for storage

efficiency.

44

Access control is the degree to which the software provides control of the access of

software and data. Access control is part of the functionality of the system and should
be specified in the requirements. It should therefore be available at design time.
However, the degree of access control can only discerned by a person reading the

specification/design and so must be only subjectively assessable.

Access audit is the degree to which access of the software and data can be audited. A

similar argument can be made for access audit as for access control, i. e., access audit

will also be subjectively assessable.

Operability is the ease of operation of a program. Ease of operation depends upon the

logical structure of the interface, which should be assessable at an architectural design

level. It also depends upon the 'look and feel' of the interface, and the systems

response times, which would not be available from the architectural design.

Training is the extent to which the software helps new users to learn to use the

system. The inclusion of training in the system should be visible at the architectural
design stage, but its extent will only be subjectively assessable.

Communicativeness is the degree to which the software provides useful inputs and

outputs. As with operability Communicativeness is a facet of the user-interface
design. User-interface evaluation is largely a subjective task although some objective

measures can also be taken.

Simplicity is the ease with which a design may be understood without explanation

over and above the standard design documents. This is related to cognitive

complexity. Some aspects of simplicity may be measured objectively and other must

be assessed subjectively.

Conciseness is usually defined as the use of minimum amounts of code to produce a

system of given functionality. Assessing the amount of code that will be produced

45

from a design is possible, but depends upon subjective assessment of the level of

abstraction of classes shown in the design.

Instrumentation is the extent to which a program monitors itself and detects errors

where they do occur. This is largely a matter for detailed design and coding, and is

unlikely to be visible at the architectural design stage.

Self-descriptiveness is the extent to which a design documents itself. It is a largely

subjective attribute and will be dependent on the design method.

Expandability is the ease with which (or extent to which) a design can be extended.

This is both dependent upon the structure of the system, which is objectively

assessable, and on the semantics of the system which must be subjectively assessed.

Generality is the range of possible uses of design components. Again, this is

dependent on both the structure of components and on their semantics.

Modularity is a measure of the independence of design components. The

independence of design components should be objectively assessable from the

structure of the design.

software systems independence is the degree to which the design is independent from

its software environment, such as operating system or non-standard programming

language features. Generally the use of non-standard language features will be

determined at the detailed design or coding stages and will not be visible at the

architectural design stage. Operating systems may however impose a structure on the

architecture of a design that will limit the design's portability. This will depend upon

the particular operating system.

Machine independence is the degree to which a design is independent from its

hardware environment. There are some aspects of design, such as information hiding

or layering that can reduce machine dependence. There may also be clues in the

46

design that indicate machine dependence. such as the prcsoicc of device drivers.

Other machine dependencies will only be v1sibic in the dct. ulCd dCSI'Pl and coding.

Communications commol7alii. v is the extent to ýOich standard protocols and interfaces

are used. The protocols and interfaces ol'a system and its components are visible at

the architectural design stage and so should be assessable From the design.

Dala commonality, is the extent to which standard types and data structures have been

II, appropriately used throughout the design. 'A"Ith the use ofdata li'dino. tile allocation

I tn' of particular data structures to components is gencralk ICI't until the detailed desit"n

stage.

Quality Criteria Ob jectiveh
Assessable

SLIhIlcctl\ ely
Assessahle

-

Not
Assessable

Traceability X(M) x(Ki)
Completeness X(M) X(M)
Consistency x

Accuracy x
Error Tolerance x
Execution Efficiency x
Storage Efficiency x
Access Control x
Access Audit x
Operability X(P)
Training X(p)
Communicativeness X(P) X(P)
Simplicity x x
Conciseness x x
Instrumentation x
Self-Descriptiveness X(M)
Expandability x x
Generality x x
Modularity x
Software System
Independence

X(MP) X(MP)

Machine Independence X(P)
Communications
Con-imonafity

x

Data Commonality x

Table 2-1 Assessability of quality criteria from design documentation

47

Table 2-1 summarises the discussion of the individual criteria. Many of tile criteria
have some aspects that can be measured (or estimated) by objective means, and other

aspects that require subjective assessment. This type of criterion contains marks in

both the objective and the subjective columns of the table. Entries followed by '(M)'

denote method dependence, (P) denotes criteria that are only partially assessable.

The next table investigates the effect of the assessability of McCall's criteria on the

assessability of his quality factors. Figures given in this table are in percentages. For

example. 2 of the 33 criteria associated with correctness are assessable and I is not.

This gives a value of 67% in the assessability column and 33 in the not assessable

column. Both of these criteria are considered to be dependent upon the method and so

67% is shown in the method dependent column (rneth). Of these two criteria one is

considered objective and one subjective hence the 33% figures shown in the objective

and sulýjective columns.

Quality - 1, actor Level of Assessment Obicctivitý of' .1 Assessment
Assess Partial

Assess.
Not

Assess.
meth

Depend
Ohlect S Lib. Iccti ve

Correctness 67 0 II
-) -3 67 II II

Reliability 25 0 75 25 12.5 12.5
. EfficiencN, 0 100 0
Integrity 100 0 0 0 50 50

Usability 66 0 50 50
Maintainability 60 0 40 40 20
j, estability 75 0 25 25 37.5 37.5
Flexibility 100 0 0 25 50 50
Portability 50 50

-
[0 50 25 50

Re-usability 60 40 0 20 30 50
Interoperability 67 0 13 67 0

Table 2-2 Quality, factor assessabilitv from architectural design

From table 2-2. it can be seen that none of the factors can be fully assessed at design

time in an objective marincr. Although flexibility and integrity arc 100(Y(o assessable,

they are also to sonic extent subjective. This means that they may not he fully

assessed using an automated system and sonic expert judgement must be applied.

Lfficicricy being dependent upon the intcrnals of' the classes is not considered

48

assessable at the architectural design stage. The other factors are all to some extent

objectively assessable at design time.

Although other authors suggest slightly different sets of 'ilities' and a particular

system may not include all of these factors in its quality profile, McCall's factors can

be considered a typical decomposition of software quality. Therefore, the above

analysis can be considered as demonstrative of the general level of assessability of

software quality at design time. It is interesting to note that 68% of inputs to these

quality factors are considered to be assessable from the information contained in the

design. This shows the importance of good design and backs the idea that a poor

design is not redeemable through good coding. Over half (52.8%) of the aspects of

quality assessable at design time are assessable objectively. If you're a pessimist, this

means that almost half of design assessment has to be done by expert judgement. On

the other hand, if you're optimist, it means that over half of the effort and expense of

manual assessment can potentially be saved using suitable tools.

2.5 Summary

Assessment in software systems is generally split into validation, verification and

evaluation. Validation is inherently informal and though there are techniques to aid

system validation it cannot be included in any automated design assessment.
Verification can be done using formal methods but again is generally done in an
informal manner. To a large extent, verification is to do with the behaviour of the

system, what it does rather than its structure. At the level of detail available within
designs, it is rarely possible to do much useful verification. It may occasionally be

possible to prove that a design is incorrect but not that it is fully correct. Evaluation
deals with the quality of the design, without concern for whether the right system is

being built, and assuming that it meets its specification. This chapter has largely dealt

with evaluation of ob ect-oriented designs. j

A summary of the work on quality appears largely as a succession of problems with
trying to define quality when it can be considered at different depths and from

multiple viewpoints. When trying to look inside the notion of quality and consider its

49

constituent parts there is the problem of deciding which factors or criteria to include in

any model of quality. Even after a decision is made as to which factors to include

they still need to be defined in a directly assessable form. However, these operational
definitions may not completely capture our intuitive idea of the criteria in question.

When the quality of designs is considered, the high level of abstraction leads to a

number of difficulties. A considerable portion of the criteria that may be used to

measure a design can not be fully assessed. Even those aspects of the criteria that may
be assessed are not all objectively measurable. This means that at the design stage the

quality of a design may only be assessed in a partial, approximate, and not fully

autornatable manner. The lack of information in earlier lifecycle activities, such as
design, means that only approximate assessments and estimates can be made at these

stages. However, as the lifecycle progresses more complete information is available.
This suggests the adoption of a process in which progressively improving assessments

and estimates are taken as the product advances through the lifecycle.

The main conclusion that can be drawn from a general consideration of quality is the

difficulty in defining a single definitive quality model that covers all view points,

goals and environments. This is clearly shown by the number of shortcomings
demonstrated in the attempts to produce such a model. However, having said this,

these modelling attempts are not entirely in vain. In trying to consider how to model

quality, a better understanding of the nature of quality is gained and this can only help

in improving the production of quality software.

An examination of the ob ect-oriented design process shows additional problems j

caused by the incremental and iterative nature of the 00 development process, as well

as the possibly incomplete nature of the designs themselves. Consideration must also
be given to the potential differences in defining quality models for 00 systems.

Assessing the quality of a design is largely done by comparing design elements and

structures against the accepted best practice. Both quantitative and qualitative aspects

of best practice can be formalised and communicated as design heuristics. They are a

50

means of packaging design experience for reuse. However, heuristics are not the o14
form of packaged experience and the distinctions between heuristics and patterns were
discussed.

A survey and review of heuristics from the 00 literature was described. This surve-jr
looked for examples of heuristics from the 00 design literature. The heuristics found

came from a varied set of sources. Some heuristics came packaged wit: 11

methodologies, others were presented as expcricnce-bascd guidelines, and some eveli

came from focused pieces of empirical work.

The application of design heuristics was also discussed. A distinction was made

between heuristics that operate on a single entity (stand-alone) and those that compare

at least two entities (comparative). A discussion was also presented of the

development activities within which 00 design heuristics may be used. In general,

this is any activity where the design is created, altered or reviewed. Several specific

activities were identified, these were: iterative design improvement; formal/informal

design review; quality assurance; and most system maintenance activities (but

possibly not corrective maintenance).

The relationship between heuristics and metrics was discussed. Metrics provide a

means of collecting the information needed to assess a particular design entity (or

entities) with respect to a particular heuristic. Where the heuristics are objective, there

is the possibility of automating heuristic application using metrics. The relatively

small number of trade-offs between the heuristics shown in the survey, and the lack of

methodology dependent or language dependent heuristics, also show that objective
heuristics are likely to be suitable for automatic application. With little need to

balance trade-offs or consider applicability, it should be possible to apply the

heuristics largely by rote.

The final section of this chapter looked at the degree to which design evaluation Might
be automated. To do this an example set of quality criteria was examined to see

whether they were collectable from design information, and whether this collection

51

was automatable. The effects that these findings would have on the higher-level

quality factors were also discussed. The findings were that around 2/3 of the quality

criteria were assessable at design time. Of these, over 1/2 were potentially

automatable, but some of these could only be defined in a method specific way.

The overall conclusion from this chapter must be that: quality should be defined on a

system-by-system basis, most quality criteria can be assessed at design time, and most

of this assessment can be automated. Heuristics provide a means to perform design

assessment and those heuristics that are syntactic in nature may be used for automated

assessment.

Blank.

In

Origi"nal

53

Chapter 3 Software measurement

This thesis takes a measurement-based approach to object-oriented design assessment.

In the previous chapter the background literature to design assessment was examined.

This chapter looks at the existing literature on software measurement. The chapter
begins with a brief history of 00 measures. Section two presents a general

introduction to measurement, which discusses how measurement is applied to

software systems. The third section looks at the techniques available for measurement

validation. The process of measure development and the process of measure use are

discussed in section four.

3.1 A brief history of 00 measures

This section provides a chronological overview of the development of measures for

object-oriented systems. This is intended to provide background to the following

measurement discussions by showing the evolution of the ideas in the development of

00 measures. It also introduces the metric suites used in the case study (Chidamber

and Kemerer, Lorenz and Kidd, and MOOD) and places them in their historical

context.

The first attempts to measure 00 systems reused existing measures intended for

procedural systems. Some researchers (Lee, Liang et al. 1993; Tegarden, Sheetz et al.

1992; Coppick and Cheatham 1992) proposed the use of Halstead's software science

measures (Halstead 1977) with 00 systems. Cyclornatic complexity (McCabe 1976)

was similarly applied to 00 systems (Tegarden, Sheetz et al. 1992; Coppick and

Cheatham 1992), as was Henry and Kafura's (Henry and Kafura 1981b; Henry and

Kafura 198 1 a) information flow metric (Lee, Liang et al. 1993). These pieces of work

have been criticised (Cartwright 1998) for failing to take account of problems

identified with these measures when they were applied to structural systems and also

for failing to consider whether the models on which the measures were based were

still applicable to 00 systems.

54

With the recognition that existing software measures couldn't capture the novel

aspects of object-orientation (Keyes 1992; Hopkins 1991) researchers began U:),
construct new measures specifically aimed at capturing features of object-orientatiori-
A large number of such measures have now been proposed. Rather than trying to give

an exhaustive discussion of each individual measure, an overview of some of the more
influential sets of measures will be given.

A notable early piece of work in Us area is the metric suite proposed by Chidamber

and Kernerer (1991). They suggest six class-level measures focused on inheritance,

inter-class coupling, cohesion and size. These measures are probably still the most

heavily cited and thoroughly validated metrics in the 00 metric literature, e. g. -,

(Harrison and Nithi 1996; Li and Henry 1993a; Sharble and Cohen 1993; Wei 1992).

It should be noted though that this validation has not always produced supportive

results, e. g., (Hitz and Montazeri 1996; Churcher and Shepperd 1995a).

Li and Henry make use of the Chidamber and Kemerer metrics and suggest five

further measures (Li 1992; Li and Henry 1993a; Li and Henry 1993b; Li, Henry et al-

1995; Li and Henry 1995). Their main purpose is to find predictors of maintenance

effort. This was done by building regression models using data from two commercial

systems that were written in Classic-Ada.

Rajaraman and Lyu (1992a; 1992b) introduce a set of four coupling measures based

on a directed multigraph representation. The measures make a potentially useful
distinction between inheritance-related and non-inheritance coupling.

Tegarden, Sheetz et al. (1993) present 32 measures of complexity for 00 systems

related to coupling and cohesion. The measures are grouped into four different

measurement levels, variable level, method level, object level, and system level.

Lorenz and Kidd propose a collection of 27 measures that are presented with quality

threshold values (Lorenz 1993; Lorenz and Kidd 1993; Lorenz and Kidd 1994).

55

These measures cover a variety of measurement levels, from method to system, and a

wide range of 00 concepts. Data is presented from several commercial projects
(mostly Smalltalk) but the thresholds do not appear to be directly derived from this

data.

The MOOD metrics are a set of six system level indicators covering information

hiding, inheritance, polymorphism and coupling (Abreu, Goulao et al. 1995; Abreu

and Melo 1996; Abreu and Carapuca 1994; Abreu 1993). These measures have been

presented with both theoretical and empirical validation. They are quite complex in

their calculation and have seen some adjustment to their definitions between

publications. The complexity of these measures is due mainly to the desire, on the

part of the metrics' originators, that they reflect in detail the structures/concepts they

seek to represent. This is achieved at some expense in terms of simplicity and

understandability.

Hopkins (1994) proposes a set of four interface complexity measures. The measures

cover both class interface complexity and method interface complexity. Interface

complexity is cited as having a major impact on reuse and maintenance, but no

validation relating these interface measures to any external measures of reuse or

maintainability is presented.

Graham's SOMA metrics are a collection of measures presented for use within the

SOMA development method (Graham 1996; Graham 1995a; Graham 1995b). Many

of the measures are taken, or adapted, from previous metric sets including Chidamber

and Kemerer, and Lorenz and Kidd.

Whitmire (1997)Whitmire proposes a set of measures grouped into nine categories

corresponding to 00 design 'ilities'. They cover size, complexity, coupling,

sufficiency, completeness, cohesion, primitiveness, similarity, and volatility. These

measures are derived from Whitmire's own formal theory of objects (Whitmire 1996)

and are presented with measurement theoretic validations. This work is very formal

in nature and it is hard to see how anyone without an extensive mathematical

56

background could follow-on from this work (or cvcn be able to collect, these

mcasures).

With the increasing number of measures available in the literature authors like

Graham (1996), and flitz (Hitz and Montazcri 1995a; Ilitz 1995; Ilitz and Montazeri

1995b) started to appreciate that they no longer had to -start from scratch' whq--Il

defining measures. They could borrow and adapt from the work of other authors and

so hope to improve on previous measures (or make them suitable for new areas C)f

application). The increasing number of measures has also prompted the analysis 4:)f

whole sets of existing measures from the literature. Briand et al. have reviewed, and

presented frameworks for, measures of coupling (Briand, Daly et al. 1999) and

cohesion (Briand, Daly et al. 1998b).

This brief historical view has provided some background and context to following

software measurement discussions and introduced the metrics suites to be used in the-

case study. It shows that there is already a profusion of measures in the literature and

this thesis will therefore avoid adding any more. After this historical introduction t0o

the influential metric sets, the focus will now change to the fundamental issues and

mechanics of measurement.

3.2 Introduction to measurement

3.2.1 What is measurement?

Shepperd (1995) provides the following definition of measurement 'the process of

assigning symbols, usually numbers, to represent an attribute of the entity of interest,
_ by rule'.

There are several points in this definition that merit discussion. Firstly there must be a

clearly specified entity that is being measured. This entity may be either an object (fo'r

instance a keyboard) or a process (say, typing). Secondly, measures do not operate or'

the entity as a whole. Entities can only be measured with respect to distinct attributes

of the entity. It would be senseless to say that the keyboard is 45.5, or the typing is

57

60. Likewise, attributes cannot be measured without reference to an entity. To say

the length is 45.5, or the speed is 60 would be nonsense. Measurement only makes

sense when both the entity being measured and the attribute with respect to which the

entity is measured are known. It is also necessary to state the units in which the

results are being given. Measurements should take form 'the keyboard is 45.5cm. in

length' or 'the typing speed was 60 words per minute'.

A second point of note is the use of the term 'symbols'. Most measurement results in

the assignment of numbers (as in the above examples). However, this is not always

the case. Clothes may be sized as 'small', 'medium' and 'large' rather than being

measured in inches or centimetres. The quality of fruit or vegetables may be

described by assigning a particular class to them, i. e., class I or class2.

The process of assignment must also be done 'by rule'. This means a well-defined

process of assigning symbols to attributes must be used. Following a defined process

allows repeatability of measurement. If the same attribute of the same entity is

measured repeatedly, the same value should result (within the limits of measurement

accuracy). Assignment by rule also allows consistent measurement. By following the

defined process, different people should be able to produce the same result (again

allowing for accuracy).

As previously stated, measurement is the process of assigning symbols to represent a

particular attribute of an entity. The need to define the process has already been

considered, but problems may also result from poor definition of the entity or the

attribute. Firstly, an individual entity may be poorly bounded. For instance, projects

often have fuzzy start or end points, and may involve cross-project activities. If we

wished to assess the cost of a project we would need to give careful consideration to

which activities were considered part of the project. Secondly, the set of entities for

which a particular measure is applicable may be poorly bounded. Many measures

have been suggested for class complexity. Are these measures also applicable to a

structure in C++ or an interface in Java? Attributes may also suffer from being ill

defined, e. g., complexity. When there is no consensus on the meaning of an attribute

58

there is little chance of defining a measure for that attribute which will be generally

accepted.

Even if we have a completely unambiguous measure, there is sometimes variation in

the results of repeated measurements. The causes of this variation may be inherent in

the measurement process, or the measurement instrument. For instance, measuring a

small object with a rule will only be accurate to around Imm. Error can be reduced

through the redefinition of processes or by using a more accurate instrument. Refining

our measurement process by ensuring our eye is directly above the edges of the object

when taking the measurement (to reduce parallax) should reduce error. We might also

change from using a rule to a set of vernier callipers. Any remaining (non-systematic)

errors may be handled by statistical techniques based on the distribution of errors. It

is important that potential presence of measurement error is recognised and that those

involved in measurement are aware of its possible sources. This will facilitate

improved measurement and lead to the correct handling of uncertainty during

measurement analysis.

3.2.2 Why measure?
Measurement is done primarily to find (or help to find) the answers to questions. It

also helps to remove, or at least reduce, the level of subjectivity in the assessment of

attributes. Measurement has the capacity to move software production away from a

'black art' and toward a fully-fledged engineering discipline. For software production

to be an engineering discipline the various activities involved must be understood and

controlled in a quantitative way. Measurement is necessary for the formation of

descriptive models to aid the understanding of software production. In addition, as

DeMarco (1982) famously observed, 'you can't control what you can't measure'.

This means that measurement is essential in providing feedback on the status of

projects to facilitate control. Along with this use of measurement for understanding

and control, is their use as the basis for process improvement and quality standards,

such as CMM (Paulk, Curtis et al. 1993) and IS09000 (IS09001 1987).

59

3.2.3 Terminology in software measurement

There are many terms used to classify measures and measurement-related concepts.

This section is an attempt to clarify the meaning of these terms.

3.2.3.1 Direct /Indirect

This is a classification of the measures themselves. A measure is direct if the

measurement can be made without reference to any other attributes or entities (Fenton

and Pfleeger 1996). There are no models directly involved in direct measurement, but

direct measurement must serve a purpose and so the measure must be part of at least

one theory/model (Kyburg 1984). For indirect measures, the value of the desired

attribute is computed, based on a model, from the values of other measures (either

direct or indirect).

3.2.3.2 Internal /External

This is a classification of the attribute being measured. Internal attributes of an entity

are those that can be measured purely in terms of the entity itself (Fenton and Pfleeger

1996). External attributes can only be measured with respect to how the entity relates

to its environment. Here the behaviour of the entity is important rather than the entity

itself (Fenton and Pfleeger 1996).

3.2.3.3 Objective/ Subjective

This is a classification of the measurement process. Subjective measures require

personal judgements from those performing the measurement. Objective measures

have defined processes that do not require personal judgement. In theory, any

objective measure should be able to be automated and so should not require any

human intervention for its calculation.

It might be argued that the subject/objective split is more of a continuum than a

dichotomisation. In this interpretation an individual measure may be neither wholly

subject nor wholly objective, but may be positioned somewhere between these

extremes. This view is attractive because some measures seem to be to some extent

both subjective and objective. The author's view is that subjective/objective split

60

should be considered as a dichotomisation. In this view the assessment of any 'atomic

concept' will result in either a wholly subjective or wholly objective measurement.
However, some measures actually conflate two or more atomic concepts and this is

how they can develop a character that is seemingly midway between the extremes.

Some authors suggest that any metrics that require subjective assessment are open to

question (Henderson-Sellers 1996a). The belief seems to be that the only good

measure is an objective measure. However, some software attributes that need to be

assessed are inherently semantic. That is, they depend on the meaning of constructs in

the software products/processes. For example, the cohesion of the elements of a class
depends upon the entity or concept that the class represents. This assessment of

meaning clearly requires human intervention and results in a subjective measure.

The main purpose of the distinction between objective and subjective seems to be one

of automation. In theory an objective measure should be suitable for automatic

collection. Subjective measures require human intervention and so cannot be fully

automated.

3.2.3.4 Product I Resource I Project

This is a classification of the entity type. Fenton and Pfleeger (1996) list three entity
types, product, process and resource. Any activity, or collection of activities,
performed during software development is a process entity, e. g., maintenance, code
inspection. Any artifact that results from a software development activity is classified
as a product, e. g., specification document, test harnesses, final code. Entities that are
required/used by a process activity are classified as resource entities, e. g., printer
paper, programmers.

Whitmire adds a fourth entity type to this list, project. Here a project is considered a

Particular instantiation of a generalised process. Companies may have a defined

process to follow for all software developments, but each individual development is a
project. This separation of process and project doesn't seem particularly useful. To

allow projects to be a separate type of entity process needs to be downgraded to an

61

abstraction and might therefore almost be considered a product. Furthermore,

Whitmire (1997) states that... a project is an instance of process, among other things.
The reverse isn't always true: An instance of a process does not always coincide with

a project'. This leaves the question how do we classify non-project instances of

processes? They are clearly not resources or products, yet they are an instance of a

process rather than the process itself.

3.2.3.5 Design / Code

Measures are often described as a 'design metric' or a 'code metric'. Here the

classification is based on the point in the software development lifecycle appropriate

to the entity being measured. The terms are almost exclusively used for product

measures. So a design metric is a measure of an artifact produced during the design

phase of a development.

The situation is slightly more complicated than the above definition might suggest.

The information available in different design notations differs. This means that in

some notations there will be sufficient information for a metric to be used on the

design. Using a different notation may mean that the same metric cannot be collected

until after coding.

3.2.3.6 Theoretical/ Empirical

Tbeoretical and empirical validation may be mistakenly considered as if they were

measurement activities. This can lead to difficulties when considering where they fit

into measurement processes. Actually, they are techniques that may be applied during

several measurement activities.

Theoretical validation is any attempt to test or refute the correctness or

representativeness of a measure without recourse to observation. Empirical validation

is the process of testing whether the theoretical properties of our measures and models

match with reality.

62

There are problems with this often-used distinction. Measurement theory is the
technique most commonly cited as theoretical validation. However, measurement
theoretic validation requires an 'empirical relational system'. In other words, a model
of the empirical behaviour of an attribute is required prior to a measurement-theoretic
validation of a measure for that attribute. It is also the case that empirical studies are
dependent on theory for their design and that empirical observation is dependent on
theory for its interpretation (Chalmers 1982). These points show that in reality there
is no clear-cut distinction between theoretical and empirical validation. Validation

techniques will be discussed in more detail in section 3-3.

3.2.3.7 Measure or metric?
Another point of terminology that should be addressed is the use of the words
'measure' and 'metric' within software measurement. Strictly speaking, a 'metric' is a

generic distance measure. However, the term has been widely used in the computing
literature to denote individual software measures. This means that to most readers the

terms metric and measure are interchangeable and so there seems little point in

holding to the above distinction. The term 'metrics' is also used to describe the

subject area of software measurement.

3.2.4 Measurement and modelling

It has been proposed that it is only within the context of a model or a theory that a

measurement has a meaning (Kyburg 1984). Shepperd and Ince (1993) support this

view and use the following example to illustrate the point.

Consider the measurement observation that a piece of code has a
luminosity of x. This cannot be interpreted because there is no theory
or model to link the measurement with any other software engineering
property of code... We cannot say whether a luminosity of x is good or
bad. Nor can it be stated whether it will lead to problems of reliability,
and so on and so forth.

If we require models to provide context for our measures, what are these models and
what form do they take? Shepperd. and Ince present their view of a model in the
diagram below (figure 3-1).

63

Models are abstractions from reality (or at least our perceptions of reality). As with

all abstractions they selectively include only certain elements from reality. Models are

created for a specific purpose and it is this purpose that guides the abstraction process.
It helps to decide which elements of the system being modelled are included and

which are not.

Parameters

1. Inputs 10 Model 10 Outputs

Compare
IT

REAL WORLD

Figure 3-1 The relationship between a model and 'reality' (Shepperd and Ince

1993)

Other important features of a model are the mappings to and from the real world.

Inputs to the model must come from the real world, typically though measurement.

The outputs from the model are of little use unless they can be interpreted in real

world terms. This necessitates that the inputs and outputs of the model have

operational definitions. Failure to create mappings to and from the real world creates

a 'metaphysical model' (Shepperd and Ince 1993).

The act of abstraction produces a simplified model of reality and as such the model

will not behave as the real system would in all situations. Where possible such

limitations in the scope and generality of the model should be documented.

Modelling enables the meaningful application of measurement. The explicit use of

models enables measures to be properly validated and evaluated. Since modelling

should always be done for a defined purpose it helps maintain a focus on the problem

at hand. It also gives a clear goal against which measures and models may be

64

evaluated. One way ofthinking about a model is by repardino the rckit, 01ships , vithin

a model as a theory. Expressing these relationships as equations l'orces rigour into the

development of the theory and facilitates validation of the theory and theret-orc the

model.

Shepperd's diagram of modelling sllo\Ns 0111v those cleniclits in the l'orinal world and

not their correspondence to real world entities. It is also 1.111CIcar \\llcrc the parameters

come from and how they differ from the other Inputs. The OUIPLIt ofthe model is also

shown as being compared with something (presumably an external measure) and

although this would be correct for validation, other types ofiritcrpretation of the result

are possible. The diagram shown in Figure'l-2 is a rc,, k'orking, of'Sllcppcrd's diagram of

model relationships attempting to address these issues.

rmt?
-*] Inputl

i, j

Measurement

MODEL
Output

I[I Formal
Abstraction Interpretation World

Empirical
World

i : lit itý I

Attribute I
Attrihutc2

f'ntity2

Attribute I
Attribute2

Efit itý 33

Attribute I
Attribute2
Artribute3

APPLICATION

(Validation.
Decision support,
etc.)

Figure 3-2 Extended view of model relationships

In figure3-2, the inputs to the model are clearly sIjo\vjj as IllezIsL11-ciliclits)I- particular

attributes of particular entities in the system being studied. The model itself is shown

to be an abstraction of the system. The interpretation of the output has been widened

to Include activities other than validation.

Although modelling is regarded as essential in measurement, it does not address all of

the problems of measurement. Modelling does little to address errors in measurement.

65

Indeed the simplifications performed during the abstraction process call introduce

error into indirect measures and prediction systerns. It is not always easy to separate

measurement error from modelling error. This means that it becomes more difficult to

eradicate (or at least reduce) errors because the cause is not always clear. Another

problem that surfaces during modelling is the need for operationalism, Having

operational definitions of the attributes being measured is necessary but can lead to

problems when the operational definitions are too far from the intuitive idea of those

attributes. This type of misplaced operational i sill means that, although we now have

something quantifiable, it is not the attribute we set out to measure! Chidamber and

Kemerer's LCOM metric (Chidamber and Kemerer 1994) may be considered as all

example of this problem. Cohesion is a semantic attribute, but by trying to produce an Z__
autornatable measure of cohesion a structural measure with little relation to our

intuitive idea of cohesion was produced.

Kitchenham, Pfleeger et al. (1995) suggest the following types of models that can be

built in software measurement:

" Attribute relationship models

" Dcfinition models

" Indirect measurement models

" Prediction systems

" Unit definition models

" Instrumentation models

Representational model

Theory-based model

" Entity population models

Attribute relationship models embody a system for quantifying one attribute from tile

values of one or more other measurements. They can be subdivided into definition

models, indirect measurement models and prediction systems. The output attribute of

a definition model has no external definition. the model is the definition. The main

distinction between tile other two models is that indirect measurement models must be

66

based on a causal link between the inputs and the output. In prediction systems a

statistical link is sufficient. This distinction can also be seen from their use of units.
In an indirect measurement model the result of the equation embodied by the model

will produce a result in the correct units for the attribute being indirectly measured

without unit correcting constants having to be applied. Where the units of the result
do not correspond with the unit of the attribute being quantified, the model embodies

a prediction system and not an indirect measure.

Unit definition models define the measurement units for ratio and interval scale

measures. Units may be defined with respect to a standard or a theory. It is also

possible to define one unit with respect to another unit. This type of model is not

generally useful in software measurement because software measures tend to be (or

tend to be based-on) simple counts. There may be a case for defining the scale points

of categorical measures, though this would not be considered a unit definition in

classical measurement.

Instrumentation models describe how the act of measurement takes place, i. e., they

describe the measurement instrument. They relate the actual observations made with

the result. Simple instruments (e. g., a rule) directly represent the unit used for the

measurement. More complex theory-based instruments (e. g., a thermometer) often

describe how the attribute of interest manifests itself in a particular entity. In software

terms, an instrument model shows the workings of a collection tool or describes the

counting rules for manual collection.

Entity population models are used in data analysis or data interpretation. They define

the statistical population of the set of entities concerned in our analysis, rather than the

actual sample of entities that we are analysing. This allows standard distributions and
descriptive statistics to defined for the population. The actual sample of entities that

are measured can then be assessed by comparison with this standard. If the population

of interest cannot be defined or the entities being studied cannot be shown to be a

representative sample of this population, the results from the analysis cannot be

generalised beyond the sample.

67

Kitchenhams's list seems to have been derived by analysis of measurement within the

physical sciences. Most of the models described above do not fit the description of a

model given earlier in this chapter. Although termed models, most would not be

presented in any format suitable for validation (at least for software measures). How

would you validate a list of categories, or a set of counting rules? The only models in

the set proposed by Kitchenham et al. that would fit the earlier definition of a model,

and would be capable of validation, are the attribute relationship models. Software

engineering is at best a soft science and approaches to measurement within software

engineering should reflect this rather than getting bogged down in 'physics envy'.

3.2.5 Measuring object-oriented systems

This thesis deals with the measurement of object-oriented systems. It would be

reasonable to ask, 'what's different about 00 systems that they should be considered

separately from other systemsT

The argument for 00 specific measures is based on the differences between 00 and

structured software. 00 software contains constructs that simply do not exist in

structured software, such as, objects, classes, inheritance, polymorphism, and

aggregation. Concepts such as coupling and cohesion, while still applied to object-

oriented systems, have interpretations that are far more complex. The difference

between 00 and structured systems are not restricted to the systems built, but also

extend to the processes that produced those systems. 00 systems are often produced

in a more iterative and incremental fashion. Different processes require differences in

process control and hence may require different measures to assess progress and aid

decision-making.

if only measures designed for use on structured systems are applied to 00 system then

they will fail to describe many of the important aspects of 00 systems. They may also

fail to adequately describe some concepts such as coupling whose definition differs

between 00 and structured systems. The only reasonable solution to these problems

is to derive new measures specifically designed to quantify aspects of 00 systems.

68

However, it is also important not to 'throw the baby out with the bath water'. Many

measures that were originally designed for procedural systems are equally applicable
to 00 systems. For example, measures such as function points (IFPUG 1992) that

measure requirements should be independent of the implementation technology.
Cyclomatic complexity (McCabe 1976) will be as good a measure of method
complexity in 00 systems as it was of function complexity in procedural systems
(although how good that was, is open to question (Fenton and Pfleeger 1996)).

3.3 Measurement validation

Validation is the process of showing measures to be sound and justifiable. As

discussed in section 3.2.1, a measure must be of a particular attribute, measured on a

particular type of entity, in a given unit and measured using a defined process. These

points are necessary for a valid measure but they are not sufficient. The measurement
literature contains a number of techniques to help ensure valid measurement.

There are various techniques generally described as theoretical validation. They

include, axiomatic / property-based schemes, algebraic validation, dimensional

analysis, and the most widely used (or at least cited) of these approaches,

measurement theory. Empirical techniques can also be applied to validate measures

and measurement related models. A discussion of each technique follows.

3.3.1 Axiomatic / Property-based measurement validation
Many authors have suggested properties of software measures that they consider
desirable or essential. Zuse (1997) lists sets of properties from twelve different

authors. The wide variation in the sets of properties suggested by these authors shows
the variety of intuitive views of measurement still in evidence between the various
workers in the field. An example of this disagreement can be seen when examining
the literature regarding one of the most commonly cited sets of properties, those
proposed by Weyuker (1988) for complexity measures. In their review of
measurement validation Kitchenharn, Pfleeger et al. (1995) only unreservedly accept
one of the nine properties. The remaining eight they either directly refute, or consider
Simply unnecessary.

69

These on-going disagreements between researchers, about desirable and undesirable

properties of measures, make it difficult to have any confidence in any particular set of

properties for measure validation. It also seems unrealistic to expect a single set of

universally applicable axioms.

3.3.2 Algebraic validation

In algebraic validation, a formal model of the measure is produced. An axiom set is

then defined that describes the desired behaviour for the model. A distinction

between this approach and much of the property based schemes, is that the axiom set
is produced on a measure by measure basis rather than producing a single axiom set
for all measures. The validation itself is done by proving that the axioms are invariant

over the model.

Algebraic validation forces an unambiguous definition of a measure's counting rules.

it may also be seen as producing a higher degree of confidence than empirical studies.

This is because the validity is proven for all valid instances of the model and not

merely shown correct for a limited sample. Along with other formal techniques,

algebraic validation may find a different set of problems with a measure than those

identified by empirical validation (because of the different approach they take).

Algebraic validation is not good for checking modelling assumptions or evaluating the

scope of models. It also requires a priori knowledge of the model behaviour

(Shepperd and Ince 1991), so in this respect it suffers similar problems to

axiomatic/property-based validation.

3.3.3 Dimensional analysis

Another potential means of validation, and one that is used extensively in the physical

sciences, is dimensional analysis. A measure is invalid if its results have a different

dimensional make-up from the attribute being measured. This method of validation

has seen few mentions in the software literature because of the difficulty in deciding

the fundamental dimensions of software (Henderson-Sellers 1996a). In the physical

sciences the fundamental dimensions are well known, and generally agreed. This

70

makes dimensional analysis a relatively simple check on the validity of models and

measures. Until the dimensions of software are understood, dimensional analysis will

have little application in software measurement.

3.3.4 Measurement theory

As stated earlier, classical measurement theory is probably the most widely cited form

of validation for measures. It is a branch of mathematics/philosophy that is based on

the model theory of logic. It outlines how valid measures can be defined and

underpins the types of data analysis that are meaningful for particular measures. In

the early days of software measurement, measures tended to be proposed based on

nothing more than rational argument. This lack of rigour was superseded by the

4strict' application of classical measurement theory to validate new measures. This

approach was popularised by Fenton and Zuse (Fenton 1991; Zuse 1994). More

recently, there have been moves toward a more pragmatic use of measurement theory,

as suggested by Briand, El Emarn et al. (1996).

The three main components necessary in defining a measure are an empirical

relational system, a representational condition, and a uniqueness condition. The

empirical relational system is the set of entities of interest, the empirical relations that

hold between them and the set of operations defined on them. The representation

theorem states that, a measurement must map an entity's attribute onto a formal

representation in such a way that the relations between the empirical world entities

must hold between their formal world equivalents. The uniqueness condition is the

set of all transformations after which the representation condition still holds.

Classical measurement theory uses the uniqueness condition to define the scale of a

measure and to classify a measure as belonging to a particular scale type. This scale

type is often used to proscribe and prescribe types of analysis for the results of the

measure.

The fundamentals of measurement theory are expressed at length in a number of

publications. The definitive work on measurement theory is the three-volume set

written by Krantz, Luce et al. (1971; 1989; 1990). Other good general works are the

71

book by Roberts (1979) and an overview paper by Finkelstein and Leaning (1984).

There is also a substantial body of work considering the application of measurement
theory to software measurement, e. g., (Fenton and Pfleeger 1996; Whitmire 1997;

Zuse 1994). For readers unfamiliar with this work there is brief summary in appendix
B.

3.3.5 On the application of measurement theory to software

There are some points that may usefully be made concerning the way measurement
theory is commonly applied to the area of software measurement.

3.3.5.1 Empirical relations and intuition

The empirical relational system in measurement theory is a representation of our

understanding of a particular attribute of a real world entity. The empirical relations
describe our intuition of the behaviour of this attribute. As Fenton states 'our intuition

is the starting point for all measurement. ' In areas such as software measurement

where there is considerable uncertainty over the meaning and behaviour of the basic

attributes being measured this is a serious problem. If we cannot agree the empirical

relational system for an attribute such as complexity, then we have no way of

validating any measures of complexity.

3.3.5.2 The prescription1proscription of analysis techniques based on

scale type

There has been a tendency in software metrics research toward the strict application of

measurement theory as led by Zuse and Fenton, e. g., (Zuse and Bollmann 1989; Zuse

1991; Fenton, Lawrence Pfleeger et al. 1994; Fenton and Pfleeger 1996). Briand, El

Emam et al. (1996) have published a critique of this approach suggesting a more

pragmatic use of measurement theory in software engineering. The argument is not

that measurement theory is of no benefit to software measurement, rather that a less

rigid application of the theory might bring greater benefits.

One of the central results of measurement theory is that the allocation of a measure to

a scale type allows the prescription/proscription of certain statistical techniques for

72

analysis of the results of that measure. This is not a view shared by most statisticians

and data analysts (Velleman and Wilkinson 1993) for three main reasons.
1. Permissible statistics should be decided by meaningfulness (rather than the

representation or uniqueness conditions)
2. The allocation of measures to scale types is often unclear
3. The prescription and proscription of statistics need not be followed as strict rules

3.3.5.2.1 Permissible statistics should be decided by meaningfulness

Velleman and Wilkinson (1993) state that the scale type is not actually an attribute of

the data itself. It depends on the use to which the data is put and whatever additional
information is available that relates the question being asked of the data. He quotes

several examples from different authors supporting this case. Measurement theorists

take a different approach in which the scale type is based solely on the data itself

(based on the permissible transformations). Neither camp is either right or wrong,

they simply approach the problem from different perspectives. Measurement theorists

take a mathematical viewpoint in which the ultimate test of validity is internal logical

consistency. Statisticians tend to take a scientific viewpoint where validity is tested

against experience. Which approach should be taken in software engineering?
Software engineering must ultimately be a pragmatic discipline (that's what

engineering is about). Therefore, the author believes the approach taken by the data

analysts would be the most suitable for software engineering research.

The above argument for meaningfulness clashes with some uses of scale types in

software engineering. As an example, Zuse (1997) describes the 'number of methods'
(NOM) metric as ordinal without any reference to how it is to be used, based on a

strict measurement theoretic approach. Considering several possible uses for NOM

shows that it can take on a number of scale types. If we wished to use NOM to find

the number of classes in a system which have 5 methods we would be using it as a

nominal measure. Using NOM as a surrogate for another size measure will lead to an

ordinal use". When trying to find out how much larger classes were after a

9 Zuse's argument using for ordinal scale is based on composition, this suggests that he is implicitly
assuming the use of NOM as a surrogate size measure. Saying that it is not a ratio scale surrogate
further suggests that NOM is being used as a surrogate for a 'correct' (but unspecified) size measure.

73

maintenance change, we would be using it in an interval manner. Finding the mean

number of methods per class would treat NOM in a ratio manner. The NOM metric
illustrates the fact that a strict adherence to measurement theory would unnecessarily

disallow sensible and useful applications of software measures.

3.3.5.2.2 The allocation of measures to scale types is often unclear

As we have already seen the choice of empirical relations is dictated by intuition. The

scale type is dependent on the uniqueness condition, which is in turn dependent on the

empirical relations. This chain of reasoning means that the selection of scale type is

ultimately the direct result of mere intuition and so in many cases we cannot be certain

of the scale type of a particular measure.

Another problem in the allocation of a measure to a scale type is demonstrated by the

NOM example above. There is clearly an argument that the scale type may not belong

to the measure at all, but to the use to which it is put. If this argument is true, any

attempt to assign any measure to a scale type may be flawed.

3.3.5.2.3 The prescription and proscription of statistics need not be followed as

strict rules

Even given the 'correct' classification of a measure as belonging to a particular scale

type, the standard prescription and proscription of particular statistical techniques

need not, or should not, be followed as strict rules. This idea may be supported by

several points.

Non-parametric statistics require fewer or less stringent assumptions about the nature

of the distributions of data. More specifically non-parametric statistics do not require

normally distributed data with equal variance. They are held to be suitable for ordinal

data (but not categorical data with large numbers of tied values). The Wilcoxon signed

rank test for paired differences is classified as a non-parametric statistic. However,

since it uses the difference between paired observations in its calculation it will clearly

be sensitive to variations in interval (Briand, El Emam. et al. 1996). This means that

some statistics, which are considered as non-parametric, are, strictly speaking, not

74

suitable for ordinal data. Such interval dependent non-parametric statistics are

commonly used for ordinal data and their results readily accepted. Given this

acceptance, what is so unacceptable in using other interval dependent statistics for

ordinal data simply because they have been classified as parametric?

Those non-parametric statistics that are interval dependent are classified as non-ý

parametric because they are robust to high levels of non-linearity. This means that

although not strictly in accordance with the allowable transformations for ordinal

measures we still have a high level of confidence that the results they produce are

meaningful and acceptably accurate. It is this level of confidence that is significant. If

we can be confident about the results of very robust statistics on highly non-linear data

might we not have the same level of confidence of less robust statistics on slightly

non-linear data? The fundamental point in the selection of statistical techniques

should be their robustness to the level of non-linearity in the data with which we

intend to use them.

This type of careful and considered use of parametric statistics to analyse non-interval

data benefits from the increased power of parametric over non-parametric statistics.

The result of this increased power is an increased likelihood of finding significant

results (for a given data set). Viewed from another perspective the use of parametric

statistics can reduce the amount of data required (and so the data

effort/cost) to achieve a significant result.

collection

3.3.5.3 The requirementfor complexity measures to be additive
The argument that software complexity measures should be additive has been made,

initially by Zuse (1991). This argument has gained in force through its use by other

researchers (Bieman and Ott 1994; Chidamber and Kemerer 1994). However, the

reasons behind such a standpoint (and its validity) are questionable.

The idea seems to have been introduced because of the desire to be able to use the

ratio scale. Additive measures were suggested because they are always on a ratio

scale. However measures may be ratio but not additive. This means that even if we

75

accepted that we require complexity measures to be ratio scale, stating that they must
be additive is an unnecessary restriction.

The assertion that complexity measures must be additive, and the fact that additive

measures must also be ratio scale, implies that no useful ordinal or categorical data on

software complexity can be gathered. This seems clearly flawed. A measure that

would allow us to choose the least complex of two implementations of the same code

would be a useful measure of complexity, and need only be on an ordinal scale.

The above points try to show that the assertion that complexity measures be additive

is not a prerequisite of a valid or useful measure. We might go further and consider if

additivity is even a desirable property of complexity measures. An additive measure

is based on an extensive structure and there are a number of axioms that must be

satisfied by extensive structures. Amongst these properties are weak commutativity

and weak monotonicity.

If we consider a measure of code complexity the commutativity axiom would require

that the result of measurement be dependent only on the program elements contained

in a piece of code and not their order. This is clearly counter to the intuitive idea of

code complexity. The monotonicity axiom also runs counter to the intuitive idea of

code complexity. It would mean that a measure couldn't allow for additional

complexity being created by the interaction of two program segments being

composed.

Extensibility does not therefore appear to be a property that necessarily fits the

intuitive notion of at least some aspects of complexity. It would therefore break the

representation condition to force extensibility onto a property where it does not

naturally belong simply to be sure of ratio scale measurement.

76

3.3.6 Empirical validation

Empirical validation is the process of checking whether the intuitive properties of our
measures, and the theories embodied in our models, are consistent with observed
results. Measure validation may be compared to software testing. In testing, even if

the actual behaviour matches the expected behaviour, the system is not proved to be

correct. Similarly, in validation, a study showing that a measure behaves according to

our intuition or that a model corresponds the behaviour of the system does not once-

and-for-all 'validate' that measure or model. Empirical validation is an ongoing
process of collecting observation data, which may corroborate or challenge a measure
or model.

3.3.6 1 Techniquesfor empirical validation

There are three main types of empirical investigation used within software engineering
research. These are experiment, case study and survey (Pfleeger 1994). An

experiment is a rigorous investigation into a phenomenon done under carefully
controlled conditions. Case studies are investigations done on real situations with
little or no control over variables (but control over data collection). Surveys are

generally retrospective studies, and as such, there is no control over the situation being
investigated. An in-depth description of empirical research is beyond the scope of this

thesis. Further information on the use of empirical methods within software
engineering can be found in the following sources (Wohlin, Runeson et al. 2000;
Fenton and Pfleeger 1996; Shepperd 1995).

Empirical validation within measurement is most often carried-out using formal

experiments. The structure of such an experiment and the nature of the hypothesis

under investigation will depend on the nature of the measure or model being

validated.

If a subjective measure is being evaluated then it is important to ensure a high inter-

rater agreement. An example of this type of validation has been published by El

Emam (2001; 1999). This study used the Kappa coefficient (Siegel and Castellan

1988) to gauge the levels of inter-rater agreement in subjective scores given during

77

software process assessments.

Indirect measures may be validated by comparing the output from the model with a
direct measure of the same attribute. If a direct measure is not available an attempt

could be made to validate the model itself. As has already been stated, the model can
be thought of as representing a theory and this theory can be tested by experiment.

For a direct measure it may be possible to experimentally verify the empirical

relational system for the attribute being measured. Many of the potential problems

with measurement theoretic validation originate from the intuitive basis for the

empirical relations. Kitchenham, Pfleeger et al. (1995) recommend using measures of

inter-rater agreement to corroborate that the intuitive basis for a measure is at least a

shared intuition.

Models capturing the use of measures can also be empirically validated. The wide

range of possible measurement uses means that little can be said in general about how

empirical validation should be done on such models. The validation technique will be

dependent on the type of measurement use.

3.3.62 Combining empirical studies

As has already been mentioned, empirical validation is an ongoing activity. Each new

piece of corroborating evidence helps to increase confidence in the measure or model.

A new piece of evidence usually takes the form of a separate empirical study. This

may either be a direct replication of a previous study, or separately designed study

with similar goals. If the evidence of the validity of a particular measure or model is

contained in a number of separate studies, it is essential to be able to combine these

results. This is achieved through meta-analysis.

Recently, consideration has been given to the application of meta-analysis in empirical

software engineering (Pickard, Kitchenhara et al. 1998; Miller 1999). Initial results in

using meta-analysis in software engineering have been poor (Miller 1999). It has

been suggested that results may be improved to some extent by making changes to

78

current experimental and reporting practices. Miller (1999) makes several suggestions
for such changes, including the following points:

" The inclusion of effect size estimates in experimental results as well as

significance levels.

" Making the raw data from the experiment available to other researchers where

possible. Alternatively, failing this, descriptive statistics or histograms of the

distribution of the data should be given.

" The number of subjects included in a study is important for meta-analysis and

should always be explicitly stated.

" The independence of studies is important for meta-analysis. This means that the

exact replication of an experiment can be potentially dangerous. The reuse of

experimental materials and procedures can lead to correlations related to the

materials and not the phenomena under investigation.

" It is important that authors report non-significant results as well as significant

ones. When combined with other experiments they can add important data to the

meta-analysis. The meta-analysis can give misleading results if this data is not

included. This is particularly important in software engineering research where

data sets are typically small and even discernible trends are often not statistically

significant.

3.3.6.3 Current state Ofempirical research

There is still little occurrence of third-party empirical validation of software measures.
The reason for this may be the current attitude toward research in this area. With
funding dependent on publications and the high profile initial work in an area, the
'hard-graft' follow-up work has less appeal (and less reward). Validation of someone
else's work is not held in the same esteem as it is in other disciplines. it is common
to see a race between rival labs in physics or biology to see if they can replicate the
latest published findings. Although it is rare to see third-party validation of software
measures there are some examples (Harrison, Councell et al. 1998; Basili, Briand et
al. 1995).

79

The situation is slightly better in software engineering research in general. The

ISERN network has been prominent recently in pushing for increased replication of

empirical work. They are currently organising an experiment on software inspections,

which will be replicated across several institutions (Wohlin 2001). ISERN have also

published many technical reports including some describing replication studies (Land,

Jeffery et al. 1997; Visaggio 1997; Briand, Langley et al. 1999). In a recent technical

report published by ISERN, Briand, Arisholm et al. (1999) suggest that a 'replication

package' should be made available to the wider community containing details of any

experiment.

3.3.7 Measurement types and appropriate validation techniques

In section 3.2.3 a number of attributes of measures were classified. These attributes

are measure type (direct/indirect), attribute type (internal/external), entity type

(product/process/resource) and collection type (objective/subjective). To consider

what validation technique(s) are applicable, all possible combinations of these

attribute types were considered. However, after examining these combinations it was

felt that the attribute type and entity type had no effect on the outcome.

Measure type Theoretical validation Empirical validation
direct objective Measurement theoretic Validate the empirical

validation of the measure relational system.
itself.

direct subjective Axiomatic confirmation of Assess inter-rater
the subjective scale. agreement.

indirect objective -Confirm the theory on - If possible, validate
which the attribute model against external direct
is based. measure

- Empirically validate
attribute relationship
model.

indirect subjective -Axiomatic confirmation of -Assess inter-rater
the subjective scale. agreement.
-Confirm the theory on -Empirically validate
which the attribute model attribute relationship
is based. 1 model.

Table 3-1 Validation techniques for different classes of measurement

80

Table 3-1 attempts to summarise the relationships between validation techniques,

measure type and collection type. The combination of attributes is shown in the left-

hand column of the table. The next two columns show the suggested theoretical and

empirical validation techniques for a measure with that combination of attributes.

It should be understood that these are only suggestions for appropriate validation

techniques. There is no implication that following the above prescriptions will

necessarily lead to valid measurement, i. e., there is no implication that these

suggestions form a complete validation system. Neither is it suggested that other

forms of validation might not be successfully employed.

3.4 Measurement processes
A useful means of structuring a discussion of software measurement is to look at the

processes of measurement. When looking at the stages which measures pass through

it becomes apparent that the process of measure development is different from the

process of measure use. These two processes are therefore reported separately

(although there is some overlap).

The measure development process describes the conception, definition and initial

validation of a measure. This process considers development across the entire

community (mostly the research community). The measure use process begins with a

perceived measurement need within a particular development setting. It then proceeds

through measurement selection, collection and analysis. The end of this process for a

measure is when the measure ceases to be collected within that particular setting (for

whatever reason).

3.4.1 The measure development process

This section deals with the measure development process. The stages of developrnent

of a new measure will differ for direct and indirect measures. The first subsection will
describe these stages for a direct measure. In the following subsection a description is

given of the stages in the indirect measure process that differ from those in the direct

measure process.

81

3.4.1.1 Direct measures
The process stages for a direct measure are summarised in the schematic shown in

figure 3-3.

3.4.1.1.1 Identifying a measurement need

New measures are (or should be) proposed by researchers when they perceive a

measurement need which is not met by existing measures, or believe that a better

measure can be devised to replace a problematic existing measure. New measures are

often proposed for attributes already covered by other measures without any

discussion of problems of the existing measures or the additional benefits of adopting

the new measure. For example, Lorenz and Kidd (1994) define measures similar to (or

identical to) existing measures without any reference to these previous measures.

Identify need

ýt

Additional
measures?

Define measure

Validation of
the direct
measure

Build use
models Historical

data?
==: >

sv
Validate use

models

Refine measure
definition

Create additional uses

Figure 3-3 Measure deveIopment process for direct measures

3.4.1.1.2 Derining the measure

Once an author has identified a measurement need, they must formulate a definition

for their new measure. Here we meet a problem in software measurement; there is no

generally agreed way of defining measures. Authors vary in the way they describe

their measures and the information they provide about measures. For example,

82

Lorenz and Kidd (1994) define their measures in what might be termed a pragmatic

manner. They concentrate on the utility of the measures, examing how the

measurement results should be used, looking at factors that may impact the results and

giving advice on how to remedy problems highlighted by the measures. They give

only simple textual descriptions of the collection rules and no theoretical validation.
Chidamber and Kemerer (1991) define their measures in a more mathematical manner

(mainly based on set theory). They used Bunge's ontology (Bunge 1979; Bunge 1977)

and Weyuker's axioms (Weyuker 1988) for theoretical validation.

Measures have occasionally been suggested without any clear statement of basic

issues such as the entity and attribute being measured. For instance, with function

points (Albrecht 1979; IFPUG 1992), it is unclear what attribute of what entity is

being to measured (Shepperd 1995). Some practitioners seem to use function points

to measure the functionality in a specification and others to measure effort in

implementation. How is the community to consider the validity or utility of a measure

without even being told what is being measured?

Measurements should only be taken to help in achieving or monitoring predefined

goals (this will be discussed in section 3.4.2.1). This suggests that the author should

state the use(s) they envisage for their measures when they are first suggested. The

measures may be put to other uses later, but it seems senseless to propose a measure

without any idea of how it could be used.

There is a problem with the lack of definition of counting-rules for measures

(Churcher and Shepperd 1995a; Churcher and Shepperd 1995b). Measures are often

described at a conceptual level without detailed rules for how they are to be applied in

practice. It is not until we come to use them in the context of a particular design

notation or programming language that we find there may be a number of

interpretations of the conceptual description. These differing interpretations can

produce wildly differing measurement results (Churcher and Shepperd 1995a). This

problem is accentuated by the variations in the constructs and syntax between the

various programming languages and design notations.

83

Two main approaches have been suggested in order to deal with the counting-rule

problem. Churcher and Shepperd (1995b) suggest a single standardised notation for

describing common features of object-oriented programming languages. This has the

advantage that a single description can be made when the measure is first proposed.
However, for this type of description to be complete requires a notation that covers a

superset of the constructs in all of the notations and languages to which the measure

may be applied. This would require a large, complex notation. If new constructs were

created, in new or updated languages, then the measure description notation would

need to be expanded to incorporate these changes. The descriptions of existing

measures may also need to be changed to allow for these changes to the measure

notation. A second approach is to describe how each measure is mapped into the

syntax of each language of interest. This is the approach taken by the MOOD project

team (e. g., (Abreu, Goulao et al. 1995; Abreu and Melo 1996)). One possible
disadvantage of this scheme is that anyone wishing to apply the measures to a
language for which the original author did not supply a mapping is essentially back to

square one. They would have to interpret as best they could the conceptual level

description of the measure and produce a mapping for the new language that they feel

best captures the underlying ideas.

3.4.1.1.3 Validation of the direct measure

A direct measure will need to be validated to ensure that its results correctly represent

the attribute being measured. A number of techniques for measurement validation

were discussed in section 3.3. Although any of these techniques can be applied at this

stage, the author would consider a validation using classical measurement theory to be

the most compelling.

If a measurement theoretic validation is performed on a measure, it is necessary to

show that intuitive properties of the attribute being measured are reflected in the

measure. This is the representation condition. If those initial intuitions are 'incorrect,

or they are incorrectly characterised in the empirical relational system, then however

mathematical and systematic the validation after that point, the measure will be

84

invalid.

For direct measures, we may corroborate our intuition about the empirical relational

system through experiments assessing inter-rater agreement. Statistical techniques

can be used to assess the how well rankings produced by a set of human judges

compare to that produced by the measure, i. e., Kendall's rank-order correlation
between several judges and a criterion ranking TC (Siegel and Castellan 1988). If the

inter-rater agreement is high then there is grounds for confidence that there is general

agreement on the behaviour of our attribute. If there is also a high correlation with the

measurement results then we also have evidence for the validity of the measure.

3.4.1.1.4 Building use models

Once the measure itself has been validated, consideration can then be given to the

potential ways of applying the measure. Kitchenham's list of models discussed earlier

includes only one that would be regarded as an end use of measurement, prediction

(indirect measurement models use other measures but are only created for some other

end purpose). To model other types of measurement use requires a more complete set

of the types of uses to which measures are put. Whitmire (1997) suggests a list of five'

different types of measurement use:
1. assessment,
2. comparison,
3. estimation,
4. prediction,
5. investigation.

Assessment is the evaluation of a single software entity without reference to

measurement values from any other entity. This means that the predetermined values

or thresholds for the measurement values are used. This type of use would fit the

description of a model given earlier. One or more measures as inputs with a simple

pass/fail output.

Comparison is also used for evaluation, but rather than using a predefined threshol it

85

compares the measured values of two or more similar entities. The purpose here is to

decide which is the best rather than whether any one entity is of a sufficient standard.

Again this can be modelled as described above, with measurements of two or more

entities as input and a ranking of these entities as the output.

Whitmire makes a distinction between estimation and prediction mainly on the basis

that estimation is used to determine likely resource levels and prediction is used to

determine likely future values of product measures. This distinction is not significant

for the form of the model used to represent them. Both of these uses fall under the

prediction system model type, as described by (Kitchenham, Pfleeger et al. 1995).

, investigation is the use of measurement data from a product or process to support or

refute an hypothesis' (Whitmire 1997). An hypothesis is a theory concerning how

various entities, or their attributes are interrelated. This theory can be represented as a

model.

Rather than describe a classification of measurement uses, as Whitmire does, Fenton

and Pfleeger (1996) give a list of particular uses . This list consists of the following

uses:
I. Cost and effort estimation

This use fits under the heading of prediction systems as described earlier.

2. Productivity measures and models

This appears to be a subset of management by metrics (see point 9).

3. Data collection

Although Fenton lists data collection as a use, it is not really an end in itself. It is

really only a precursor to the actual measurement use.

4. Quality models and measures

Quality modelling and measurement concerns the evaluation of entities. Uses of

this type will be included in the assessment or comparison categories discussed

earlier.

5. Reliability models

Reliability is just one aspect of quality. A reliability model is simply a quality

86

model focusing on the reliability aspect of quality.
6. Performance evaluation and models

Again, this appears to be a subset of management by metrics (see point 9).

7. Structural and complexity metrics
Producing complexity measures is not really an end in itself These measures are
likely to be used for some form of quality evaluation (assessment or comparison)

or for building prediction systems.
8. Capability-maturity assessment

This seems a strange inclusion for a measurement application. Capability-

maturity concerns the processes used by an organisation for software development.

As such, it would be expected that CMM assessment would be based on a

qualitative examination of a company's processes and not based on measurements.
It is true that the way in which measures are used would be part of the assessment,
but it is hard to see how measurement would be used in the CMM assessment
itself.

9. Management by metrics
Whitmire describes three different views on software measurement technical,

tactical and strategic. Project management equates to Whitmire's tactical view_

and upper management to the strategic view. According to Whitmire's model,

management is not a distinct use but a higher-level view of measurement. The
,

difference is in the type of decisions taken based on the results rather than on the

actual use to which the measures are put.
10. Evaluation of methods and tools

This use fits under the investigation heading presented earlier.

3.4.1.1.5 Validate use models
A measure is developed or collected because of a perceived need. This need is

developed as a model describing one way in which the measure will be used. It is not

sufficient that the measures used as inputs to a model are valid, it is also necessary to

validate the model. Validation of the model for each type of measurement use will be

discussed separately in the following sections. The validation of indirect

measurement models will be discussed in section 3.4.1.2.

87

3.4.1.1.5.1 Prediction

In a prediction system, the link between the model inputs and the attribute of interest

need only be statistical. Here, the validation of the model addresses only the accuracy

of the prediction and doesn't seek to prove any causal links.

3.4.1.1.5.2 Assessment and comparison

Assessment and comparison are both types of evaluation. They are concerned with

ascertaining the quality of an entity, either on a fixed or a relative scale. To validate

these types of use it has to be shown that the indicated quality level or ranking is

correct. Quality has a multifaceted nature that is difficult to reduce to a single

dimension for this assessment. Even if a single facet of quality is selected on which to

base the comparison, there is a further problem. The comparison will require a

quantifiable definition of quality that is independent of the measurement use model.

If these conditions are in place, it is possible in theory to empirically validate an

assessment or comparison model.

In practice these types of model are rarely (if ever) validated. They are mostly

presented as guidelines or heuristics based on experience or intuition rather than any

rigorous proofs.

3.4.1.1.5.3 Investigation

There is a distinction between investigative models and the others described in this

section. The other models need to be validated before they can be used. In

investigation, the sole purpose of taking measurements is to validate the model. The

model is created to represent a theory and testing the theory is done by validating the

model.

3.4.1.1.6 Measurement use

Measurement use can be the initial academic use of the measure, usually for empirical

validation purposes, or the full industrial use of the measure. Empirical validation

techniques have already been discussed. The industrial use of measurement is

covered in section 3.4.2.

88

3.4.1.1.7 Feedback and measurement improvement

The measure definition process shown in figure 3-3 shows feedback paths for the

rework of measures. However, most authors seem content to merely define their

measures and perhaps do some initial validation. There is little effort to develop and

improve measures. Some refinements to measurement definitions have been done by

Chidamber and Kemerer (Chidamber and Kemerer 1994; Chidamber, Darcy et al.

1998) and by Abreu, Goulao et al. (1995)". Refinements for measures are also

suggested by third parties, usually to correct what they perceive to be problems with

the measure's original formulation, e. g., a reformulation of LCOM by Henderson-

Sellers (1996a).

3.4.1.2 Indirect measures

The development of indirect measures differs from that of direct measures in several

ways. Firstly, since an indirect measure is derived via a model rather than being

measured directly there is no direct measurement validation. The development of this

attribute relationship model is the second stage in indirect measurement development.

Identify need

input
measures

Define attribute
relationship

model

No validation
for definition
models

Additional
measures?
Historical

data?

Build use
models

Validate use
models

Validate
relationship

model

Refine measurement
definition

Create additional uses

Figure 3-4 Measure development process for indirect measures

9 Strangely, neither set of authors mention these changes explicitly in their papers. Their later papers
simply show different definitions for their measures than those first published.

89

As mentioned earlier, attribute relationship models may be separated into indirect

measures and prediction systems. Indirect measures are based around either definition

models or causal models. The attribute being measured may be defined in terms of

other measures or merely assessed using them. In causal models the attribute has an

external definition, but there is a causal theory linking the model inputs and the

attribute to be measured. In the case of definition models there is no external

definition for the attribute, the model itself forms the only definition. A definition

model does not require any validation, as it must be correct 'by definition' (although

its input measurements must be shown to be valid). Causal models embody a theory

and this theory may be empirically corroborated (though never proven). This

corroboration usually takes the form of correlating the output from the model with a

direct measurement the attribute. This causal model validation introduces an

additional feedback path (shown in figure 3-4) to enable the refinement of the attribute

relationship model if problems are found when validating this model.

As with direct measures, indirect measures are only developed if there is at least one

specific use for the measure. These uses are themselves represented as models and

just as with direct measures these use models also need to be validated.

3.4.2 The measure use process

This section deals with the measure use process. A schematic of this process is shown

in, figure 3-5. This process shows how measures are used in practice as opposed to

how measures are initially developed. This process shows how measures are adopted

for use in a measurement programme, how the results for the measure are collected

and used, and why the measures may subsequently be dropped from the programme.

90

Change
measurement
goals

Fstablish goals

Select/defitle
measures

Assess goal
achievement

Chanoe in
process goals

Chatwc
in cas tire men I
goals

Change
measures
coliccled

Problem
identificd

Figure 3-5 Measure use process

3.4.2.1 Establish measurement goals

3.4.2.1.1 Identify a list of possible measurement goals

Measurement sets are often derived from high level business or prQlcct goals. These

goals may come from a number of different individuals or interest groups, which may

be considered as roles in the software development process. The first step in

identifying the set of measurement goals to be used is to identify the different roles

within the project and their separate sets of goals. These goal sub-sets are then

collected to form a single set of possible project goals.

)L- One method for establishing these roles and their associated goals has been suc,,, czested

as part of the Parallax MOOD project (Miller, Woof et al. 1996b). This is done within

the context of a generic business structure (Miller. Woof et al. 1996a) to identify tile

roles as well as their responsibilities and relationships.

The GQM approach (Basili, Caldiera et al. 1994) develops goals based on three main

sources of data. The first is the policy and the strategy of the organisation. The

91

second is a set of descriptions Ior the processes and products of the organisation. The

third is a model of the organisation. which gives the possible viewpoints of any goal.

3.4.2.1.2 Determine the actual list of measurement goals

The collected set of possible goals may contain mutually exclusive goals, or at least

goals that trade-off against each other. To help resolve these problems the importance

of any goals involved in a clash must be considered by any group (role) in whose goal

subset they occur. Using this information either, all but one of a set of clashing goals

must be removed from the final goal set, or, an approach to arbitrating any trade-offs zn

should be agreed.

Goals may also be removed from the list at this stage if it can be seen that the goals t:, z: 1
may not be defined in measurable terms, or if the only conceivable measurable

definitions would be impractical to collect or verify.

3.4.2.1.3 Define and quantify each goal

In the GQM approach (Basili, Caldiera et al. 1994), goals are described In terms of

three 'co-ordinates' and a purpose. These co-ordinates are the viewpoint, ob ect and

issue. Viewpoint is the same the role discussed above. Object is the process, product

or resource being considered. Issue is the aspect of the ob ect that is of' interest, C. o

its quality or timeliness. The purpose of the goal describes tile desired change to tile

current situation. e. g., imj)rove tile quality or increase timeliness.

There is little point in setting a goal unless it is possible, at some stage of the

development, to verify that the goal has been attained. This requires that any oal be L- 19

defined in measurable terms. A method similar to Gilb"s quality specifications (Gilh

1988) may be employed to produce these definitions. Table 3-2 outlines the items that

should be included in the definition of each goal.

92

Item Description

Goal Description oftlic _, oýd
Object Fhe entity on w1lich the goal is defined

Attribute Tlie aspect ofthe object to \Oicli the goal applies
Perspective The role(s) From \vIiicli the goal is derived

Test flow the achievement of the goal will be assessed
Scale The scale-type and unit used in tlic test

Trade-offs

II

An indication of trade-offs witli otlier goals. Indicating which

()oals. the nature of the tradc-olT. and its relative nia-ulnitUde- t.,

__J

Table 3-2 Goal definition framework

3.4.2.2 Selecting measures

3.4.2.2.1 Deciding what to measure

Measurement should always be done with a c1car purpose. ThIS I)Lirpo-se should guide

the decision of what to measure. The software quality methods discussed in tile

previous chapter provide a means of moving from the goals of the measurement to the

decision of what is to be measured. Sometimes these goals are explicit (as in GQM

(Basili, Caldiera et al. 1994; Rombach and Basili 1990)) and sometimes they are

implied (FCM (McCall. Richards et al. 1977) has an Implicit goal of assessing

quality). Whatever method is used, particular measures must be selected to help

assess (or help to bring about) the achievement of the goals.

Deciding what to measure is not necessarily the same as decidin, (i., what particular

metrics to use. Deciding to measure class coupling could lead to the use of any one (or

more) of a number of available coupling metrics. Deciding what to measure is about

selecting which attributes of which entities we want to quantitýv (or classily).

3.4.2.2.2 Selecting particular measures
When looking to measure a particular attribute, the first question to address is Whether

there is a suitable existing metric. It may be that no suggestions of nietrics for this

attribute have been made. Alternatively, there may be several nictrics to Choose

between. If there are no existing measures (or perhaps if existing ones are too difficult

to collect in a particular environment), a new measure must be defined.

If a number of metrics exist that purport to measure the attribute of interest, how

should the metric(s) to collect be chosen? The first point to consider is the degree to

which a metric's definition suits the purpose of the measurement. Generally, in

software, there are no agreed definitions of attributes. Different measures tend to

imply subtly different interpretations of a shared 'fuzzy' definition. This means that

some metrics will capture a representation of the attribute that is more suitable Cor the

given measurement goal.

Another consideration in selecting a measure is the type and degree of validation the

measure has received. Measures are often suggested NAith more than one use.

Extensive validation as a size measure is of little relevance if the measure is to be used

to predict faults. As has been previously discussed, validation can take man,,, forms.

The mostly widely accepted form of theoretical internal validation is measurement

theoretic. The exclusive use of other forms of theoretical validation might be

regarded as reducing the confidence in a measures internal validity. When asscssinp

the extent and quality of' empirical validation, there are a number of' factors to

consider. These include the hypothesis under investigation. the artificiality oftlie data

used; and the validity of the statistical analysis. Only empirical validation in relation

to the measures intended use should be considered.

There is a trade-off between the reuse of existing measures and the definition of new

measures. Existing measures may not exactly fit \, \1th the measurement goal. On the

other hand, a new measure. even if defined with the specific goal in mind. is untricd

and requires validation.

3.4.2.3 Collecting measurement results

Data collection should be simple and unobtrusive. It should also ensure that the data

collected is accurate and rcplicatble. This means that NNhcrc possible 1-neasureincrit

should be autornated. Manual collection should have defined procedures Jor collection

94

along with centralised validation to ensure consistency. Those asked to collect data

should be given proper training to ensure they understand the procedures to be

followed and the rationale for data collection. Care should be taken to ensure that no

unnecessary data is collected. This %krill include ensuring data is collected at the correct
level of granularity. Where applicable, the data collected should be recorded with
time-stamps and/or version numbers of the entities being measured. To enable data to
be stored and retrieved simply, it should be entered into a structured database as it is

collected. This enables subsets of data to be retrieved easily for analysis.

3.4.2.4 Analysing measurement results

Measurement analysis is the process of turning the raw measurement data into useful
information. This includes the calculation of indirect measures or looking for patterns

and trends. Considering what analysis to perform on the raw data should not be left

until after the data has been collected. The analysis that will be perfon-ned on the data

should already have been decided when planning the measurement programme.

3.4.2.5 Applying measurement results

Once the data has been analysed, actions need to be taken based on the results of the

analysis. If future activities will remain unchanged whatever the results of.

measurementý then the measurement will have been a wasteful and pointless effort.
Measurement results may be used for a number of purposes. Many uses of

measurement directly affect process control, such as quality and productivity

assessment or effort estimation. Measurement may also be used in the conduct of
investigation and experimentation without any direct connection to any sOftwarc

process.

3.4.2.6 Assessing goal achievement
The selection of measures to collect is often based on project goals. it is an essential

part of a measurement programme to assess whether these goals have been achieved.
This assessment may suggest improvements to the measurement programme or sho W
the requirement for changes to the goals themselves.

95

3.4.2.7 Changing process goals

As mentioned, an assessment of whether process goals have been achieved may show
the need for a change in these goals. Changes to process goals may also come from

many other sources, such as changes in priorities within a project or between projects.
Any change in process goals, coming from whatever source, will necessitate re-
planning any existing measurement programme. This in turn may result in a particular
measure no longer being collected. Measures may also be dropped if new evidence
shows the measures not to be valid, or if more suitable new measures become

available.

3.4.3 Comparing measurement processes and metrics programmes

The standard way of considering measurement use in organisations is through metrics

programmes. A metrics programme is the introduction and systematic use of software

measures by a group or organisation. This includes the use of measures for project

control and quality management. The programme encompasses the full range of

measurement related activity from goal setting and metric selection to the collection,

analysis and feedback of measurement results. Metrics programmes are often

associated with quality frameworks such as CMM (Henderson-Sellers 1995; Pfleeger

1995).

Some of the standard measurement texts cover the anatomy of a metrics programme

(Fenton and Pfleeger 1996; Henderson-Sellers 1996a). There are also papers covering

general advice for metrics programmes (Henderson-Sellers 1995; Grady 1994; Grady

1992) and papers outlining empirical studies into metrics programme introduction

(Pfleeger 1993); (Hall and Fenton 1994; Hall 1996; Hall and Fenton 1997). There has

even been a framework suggested for evaluating metrics programmes (Jeffery and

Berry 1993).

The measure definition process is a plan for the ideal development of a measure prior

to use within a metrics programme. It is intended to further the debate on how

measures should be defined, development and documented. The measure definition

process is likely to be mainly of interest to academic audiences, although industrial

96

metrics programmes may also include the definition of new measures.

A measurement programme involves the entire set of measures being considered,

collected and utilised in a project or organisation. This wide viewpoint is necessary
for the success of the programme. The processes presented above are in no way an

attempt to replace a metrics programme. In essence the measure use process is
-
an

aspect of a metrics programme. It is a representation of the wider system from t he

viewpoint of the individual measure. This change in focus allows the path of the

individual measure through the process to be more clearly seen.

3.5 Summary

This chapter presented a critical review of the literature on software measurement. A

brief review of 00 measures from the literature was presented and the basic concepts
behind measurement were discussed. This was done to provide background and

context for the following discussions. Commonly used measurement terms were also
discussed and defined to clarify their use in the main sections of the chapter.

The next topic discussed was the relationship between measurement and modelling. It

was noted that it is only within the context of a model or theory that a measurement
has a meaning. An adapted structure for modelling was introduced (based on that of

Shepperd and Ince (1993)). This structure made more explicit the relationship
between the formal world elements of the model and their empirical work

counterparts. The various types of models suggested for use within software

measurement by Kitchenham, Pfleeger et al. (1995) were also discussed. It was fýlt

that some models in this list were more appropriate for the physical sciences than a

pragmatic discipline like software engineering.

Measurement validation was the next topic tackled. Although often treated as

activities within measure development, the various forms of validation are techniques
that can be applied to validate different entities during different activities. These

validation techniques are each described and discussed. The most commonly cited

validation technique, measurement theory, is discussed at length and the value of its

97

rigid application questioned. There was also found to be widespread disagreement on

what is needed to validate a measure. Different authors use different validation
techniques to validate the same types of entities.

Techniques and issues in empirical validation were discussed and the lack of third

party empirical validation for measures noted. The third party validations that have

been done are mostly empirical results for the Chidamber and Kemerer metrics
(Basili, Briand et al. 1996; Harrison and Nithi 1996; Wilkie and Hylands 1998) with

some results for other metric sets, e. g., the MOOD metrics (Harrison, Councell et al.
1998). A summary of suggested validation techniques for different types of measures

and models was also presented.

Software measurement, as it applies to object-oriented systems and 00 design in

particular, was also briefly discussed. it is concluded that new measures are required

to describe the novel aspects of object-orientation but that some existing measures

designed for structured system may still be usefully applied to 00 systems and should

not be ignored.

It was proposed that the activities involved in software measurement should be

divided between two different (but overlapping) processes. These are the measure

development process and the measure use process. The measure development process

deals with the initial definition and validation of a measure, as well as any subsequent

refinement and revalidation. The measure use process deals with the adoption and use

of an existing measure within an organisation's metrics programme. This separation

helps to remove any confusion that may occur from the conflation of these distinct

sections of measurement. It provides different focuses for the academics developing

measures and the practitioners using them.

98

Chapter 4 The design measurement tool

This chapter discusses the development and evaluation of the 00 design measurement

tool (a. k. a. MOT). The structure of this chapter follows the development stages of the

tool. Section I deals with the rationale behind developing the tool. The requirements

for a design measurement tool are discussed in section 2. A description of the

investigative programming done to assess the feasibility of certain design options is

given in section 3. A domain analysis for the tool, the tool's design, and its

implementation are covered in sections 4,5 and 6 respectively. A brief description of

the operation of the tool is given in section 7. An assessment of the tool is given in

section 8. This involves both the testing of the tool and an evaluation of the tool. The

testing principally deals with the verification of the tool's results, to provide

confidence in the measurements used in the case study chapter. Evaluating the tool is

done both in respect of how well it achieved its original aims and by comparison with

other tools. The chapter closes by describing planned future development of the tool

(section 9) and providing a summary of the major points of the chapter (section 10).

4.1 Rationale for developing the tool

The rationale for building the tool, and the approach taken to building the tool,, carl

only be discussed in the light of what was known when the tool development started.

This includes the features available in other measurement tools at that time. A nevv

tool had to be developed because there were no tools with the desired features wherl

the consideration of measurement needs was first carried-out (during 1997). It was

also an opportunity to develop a tool for measuring systems built using Java, since

none were available when the development commenced. Although many of the tool's

features were novel when first conceived, some of them have since been incorporated

into other measurement tools. For instance, some CASE tools now offer the ability
for users to define their own measures by traversing the data model via a published
API (e. g., Rational Rose'98 and TogetherJ). The intention was to show that a'

measurement tool could be developed which would allow user definable measures and

99

user selectable measurement sets.

4.2 Preliminary tool requirements
The preliminary requirements represent the ideas that were produced at the start of the

tool's development. There was no formally produced requirement specification
because the tool represented an investigative development. Part of the output from

this investigation would be a clearer idea of what the requirements for a software

measurement tool should be. Lessons learned from developing and using the tool, and
from associated theoretical work, could be used to suggest a more accurate and

complete specification for future measurement tools. The remainder of this section

outlines the initial ideas on measurement tool requirements. It is presented to provide
background for the discussion of the design and development of the tool.

in considering the requirements for a software measurement tool, one device that may
be employed is to consider what such tool would do in an ideal world. If we remove

those requirements that are not theoretically possible, or which are not practically

feasible, we should then have viable set of requirements.

The list below is a set of ideal measurement tool requirements taken from a

presentation by the author to the OOPS special group of the British Computer Society

in 1997 (Kirsopp 1997). The list was compiled taking suggesting from other literature

and ideas from the author's analysis of the software measurement process (Kirsopp

2001a). Areas 4 and 5 extend somewhat beyond a simple measurement tool and into

quantitative process control, but after all this is an ideal list. These potential

requirements were used in deciding the initial functional requirements of the tool.

Measurement collection requirements
1.1 Automate the collection of objective metrics
1.2 Automate the calculation of predefined prediction systems

1.3 Allow analysis of incomplete/ in-progress designs

1.4 Take input directly from multiple sources, e. g., CASE tools, source

100

code
1.5 Must be able to output results in a form suitable for further analysis

2 Project Data Storage Requirements

2.1 Should enable new metrics to be applied retrospectively to old projects
2.2 Should enable data retrieval for the production and tuning of prediction

systems (although external response variables need not be stored in the

tool, it should be capable supplying data for potential dependent

variables)
3 Selection/Derivation of Metrics

3.1 Should support multiple view points, i. e., designer, manager, customer
3.2 Should support per-project metric selection, by considering project

goals and characteristics
3.3 Should allow the definition / modification of metrics and metric-sets as

indicated by measurement assessment
4 Project Planning Requirements

4.1 The ability to model the project's process including quantitative

process control
4.2 Support the inclusion of measurement activities as process activities
4.3 Should include the use of measurement results as triggers/guards for

development activities
5 Project Enactment Requirements

5.1 Should automatically follow the project plan prompting for progress
data and project artifacts for measurement

5.2 Should automatically check triggers and guards and make indicated

activity transitions
5.3 Should allow in-project re-planning

6 Measurement Research Requirement
6.1 To be able to collect data from many sources, and use that data in an

integrated manner (rather than many individual studies).

This is a wish list for a measurement tool. Many of these requirements have never
been built into a measurement tool. Some of the requirements may not even be

101

feasible. For a single researcher to attempt to produce a tool that meets all of these

requirements is entirely unrealistic. What must be decided is which of these possible

requirements to concentrate on. It must also be realised that the requirements are
dependent on each other. Some requirements are built on the platform laid by others

so that one cannot be considered unless another is first included.

The idea is to investigate requirements, not previously covered by other measurement

tools, that have no dependencies outside of the proposed tool, and that can be built

within the time and resources available. The dependencies tend to limit possible

requirements to the 'early stages' of the measurement process. Pro ect enactment

cannot be added unless project planning is already present and neither is of any use

unless measurement collection is already in place. It was decided that the tool

development should concentrate on investigating multiple source-type input (OOPL

and CASE), user definable measures and user selectable measurement sets.

4.3 Investigative programming

Initially, some of the ideas for the functionality of the tool were somewhat speculative.

An initial period of investigative programming was done to decide the plausibility of

these ideas. Taking measures from several types of sources could be achieved by

converting each to a common intermediate format first and then calculating the

measures on the common format. This would allow the measures to be defined only

once, and not redefined for each source type. Storing the design information and

generating measures from the stored information seemed a more tractable approach

than creating a parser into which user defined measures could be added. Several

possible storage schemes were considered including, a relational database, an object-

oriented database, and a custom made persistent object store. Of these the relational
database was thought the most desirable (if it could be made to work). This was
because the technology is well established and widely understood. Users of such a

system could store design data on their existing database and use a language that they

already knew (SQL) to describe the measures.

102

Investigative programming was carried-out using a simplified data model and a few

well-known measures. It was found that measures could indeed be coded in SQL and

used to calculate results on designs stored in a relational database. This work was

sufficiently encouraging to attempt this scheme for design storage and measurement
description in the full prototype.

4.4 Domain analysis

The domain analysis for an 00 design measurement tool is an investigation into the

area of application of the tool. This would include investigation of oýject-oriented Z-1
design and of design measurement and its uses. The end result of this investigation is

a Fuller understanding of the problem domain for the developers and models of the

dornam that may be used as the starting point for the design of the system. This type

of' investigation and modelling has already been presented in the preceding chapters

and there seems little point in reiterating it here. This discussion will therefore move
directly to the architectural design of the too].

4.5 Architectural design

The section on architectural desion is split into two main sections, the first of these r-I
deals with the design of the tool itself. The second section deals with the design CN
description language (DDL) used in the tool.

II ligh-level design

Common
intermediate-
representation Sýtýollrýle

Metrics

ueries

Figu 4-1 Schematic of* design data input

Measurement
results

A hasic sclicnia showing dic arrangement for data input into the tool is shown in

figure 4-1. The tool can take input from multiple sources of design inflormatio"

10-1

including program source code and CASE tool design diagrams. Each type of input
has an associated mappino that converts the design information into a common

inten-nediate representation suitable for input into the tool"s datastore.

Figure 4-2 is a UML class diagram showing the central architecture of the MOT too]

(classes for peripheral functionality, support and the user interface have been omitted

for clarity). The architecture can be considered in two central sections. There is a set

of classes forming the core of the too]. These classes allow the definition of 'Project'

objects each containing a number of * Software Products'. The core classes also dcl-Ine

interfaces for metric selection component classes and datastore component classes. A

'MetricUse' object encapsulates a metric and the particular set of parameters which

will be used for that metric within a given metric set. This allows a parameterised

metric to be defined once but used in different metric sets with different parameter

values.
JavaSourceMapping

I-

ýDDLMapping

: COMPOIICTILS I "I I

------------------------------------- ------------------
------------------------ --

Core too]

I

I--I

Concrete product
mapping
components

II; Source ProductMapplng

mappino
interface Wn. ipf ileso

*vý V) tj put Di rectoryo

metdcuse [$m-etnc

par paramete aluesl

N

Project
lt$name

,
*ve rs on

SoftwareProduct
F ileType

ilename

aselineO

--------------------------------------- -------------------------- ------------ I

Metnc DataStore o7d ýIZ'>measurementMe --ý I - C. -;.: --ý
Mn - H, ,MhAnnn, nn

WenveMetricSeto *metncuseData
L CdYname

%parameters ellrojecto F: =oveProjecto
*datastore

llditMetdcSeto
ýý'ýnewMetdco , Okqetme tncResuito

ditMetnco

.,? newMetdc() Data', Iorc Metric selection method
interface interface

----------------------- ---- ----------- -------- ---------- -------------

ý_ýeeUV ýnMeýtnet
DesignDatabase ýýet FreeSelectionMethod Re Seled DatabaseMetdc

J
Free Selection Method component DatabaseStore component

--- --------------------------------------

104

Figure 4-2 Measurement tool architecture

The second major section of the architecture is the set of pluggable components that

provide concrete implementations of the component interfaces defined in the core

tool. Implementing the components via these interfaces provides a 'dependency

reversal' enabling new components to be added without any changes being required in

the core tool.

Any 'metric selection method' component must export classes that provide concrete

implementations of the MeasurementMethod class and the MetricSet class.

Components may also include any necessary support and user interface classes. A

MeasurementMethod realisation implements the functionality for a particular method

of selecting metrics. Its associated MetricSet realisation allows the metric sets

produced by any measurement method to be used in the same way by the core tool

whilst also providing storage for any data required for deriving or editing a metric set

using that specific measurement method. For example, in a GQM (Basili, Caldiera et

al. 1994) component a metric set would need to store the goal-question hierarchy that

led to the selected set of metrics.

As mentioned above, different types of software product contain different types of

information, which may best be stored and analysed in different ways. The data store

components provide the flexibility to implement these various stores and means of_

analysis within a single tool. A ProductDataStore realisation provides the actual

storage for the product data whilst a Metric realisation provides a means of describing

how to calculate a particular metric on that type of data store.

4.5.2 Object-oriented design representation
As part of the design process, a source-independent means of representing design

information had to be designed. Ideally, this representation should be able to store all

pertinent information from any source of object-oriented design information.

I lowever, there is a wide variation in the information available from differing types of
information source. Design sources tend not to have such detailed method or attribute

usage information as source code. Different design notations contain different

105

information from different types of diagrams. Different languages contain different

constructs, e. g., Eiffel's constraints, C++'s friend functions and friend classes, and
Java's interfaces and inner classes.

In storing information from such a potentially wide variety of sources, the

representation format must either contain a superset of all the constructs from all of
the sources, or some level of information loss must be considered acceptable. Since

the tool is intended to collect design measurement data, the storage format was based

on design rather than implementation constructs. The emerging domination of UML

(Rational 2000) made this notation the obvious basis for a design description format.

The UML meta-model describes the constructs and relationships available within a

UML model, and this was used as the basis of the design description language (DDL).

The UML notation also allows for the expansion of the meta-model via stereotypes,

tagged-values and constraints. These elements allow some of the notation or language

specific features to be reintroduced into the DDL. Indeed the UML 'standard

elements' creates a standard set of commonly used extensions covering the language

specific features of common 00 languages. An extensive description of the

determination of the required data model structure is given in appendix C.

Once the decision had been taken on what information to store, consideration was

given to the format in which the data was to be stored. Different data sources would

be most easily represented and stored in different formats. As a compromise solution

must be made, it was decided compromise on simplicity, a flat-file data format was

selected. The format used was a simple text-based and human readable tag-value

format. The syntax for the DDL is described in appendix D.

4.6 Tool impliemcntation

The MOT tool was originally constructed using Java 1.1. It has a graphical user

interface built completely in Swing components (part of the Java Foundation Classes).

With the release of Java 1.2 the Swing components became part of the core Java

libranes. The tool was therefore altered to work with Java 1.2. The tool contains over

106

100 classes and is around 20 KLOC. To discuss the implementation down to the

class-level would be unnecessarily detailed and overly long. This section is intended

to give the reader a feel for the general structure of the tool and the technologies used
in its construction. It is not intended to provide information at the level that would be

required to maintain the system.

As described in the architectural design, the tool consists of a central core and sets of

peripheral components that plug into interfaces defined in the core. The components
that are to be used are specified in an initialisation file and dynamic class loading is

used with these components, as and when they are needed. As well as providing the
interfaces and loading-mechanisms for components, the core provides functionality

that is independent of these components, i. e., functionality that is common to any

combination of plug-in components.

The core handles the top-level interaction with the user. It handles events from the

main tool frame and calls methods on the necessary components to perform the

requested functions. The core also displays status information and error feedback to

the user, as well as maintaining an activity log. Thread handling is managed from the

core, as is the output of results. Results may be displayed in GUI tables, HTML

reports, or output in tab-delimited format for further analysis in statistical packages or

spread sheets.

There is currently only one datastore component. This component uses a relational
database to store information about system designs on a schema based on the UML'

meta-model. The database is connected to the component using JBDC (Java

DataBase Connectivity) technology. This allows any database with either a JDBC

driver, or an ODBC driver (via the JDBC-ODBC bridge) to be used with the tool. The

database is populated from design description language (DDL) files created by the

product mapping components. The information is input into the database via a parser
built using Sun's JavaCC (Java compiler compiler). Once the design data is in the

database, metric results can be calculated using measures defined as parameterised
SQL queries. Ad hoc investigation of the design database using SQL is also possible.

107

A description of the database tables and valid data values is given in appendix E.

Three product mappings are currently available. These mappings deal with, Java

source code, Java byte-code and Rose design models. As has been mentioned earlier,

one of the initial reasons for the development of the tool was that there was, at that

time, no tool support for measuring Java systems. This is the reason why Java was

chosen as the first of the source mappings. Rational Rose was chosen as the next

mapping to provide proof of concept for the idea of a single tool being able to take

measurements from both code and designs.

The byte-code mapping uses dynamic class loading and reflection techniques to

collect design information from pre-compiled Java. It is particularly useful for third

party component libraries (where the source code is unlikely to be available). This

mapping could be used to perform quality assessments of such component when

considering them for reuse.

A C++ mapping is desirable because of the large amount of C++ used in 00

development. Initial investigations into producing a C++ mapping met with problems

because of the variety of dialects available. What was a keyword in one variant could

be an identifier in another and so any parser had be specific to an individual C++

compiler.

All of the mappings output design information as DDL files. The Java source code

mapping is built using JavaCC and JTree to construct the parser and parse-tree.

Dynamic class-loading and introspection are used in the Java byte-code mapping. The

byte-code mapping produces a less complete design description than the source code

mapping because there is less information available from introspection than from the

source code parsing. The Rose mapping is written in Rose's own scripting language

and can be installed as a tool within Rose itself. When this tool is activated, it

produces a DDL output file that describes the currently open design model. Details of
how the Various source constructs are mapped onto the data model are given in

108

appendix F.

The measurement method interface allows dificrent methods of measurement

selection and derivation to becorne part ofthe tool. Currently, time has not been

available to build any complex selection/derivat ion components. A basic measurement

rnethod has been created called the 'free selection method'. This is a -place-holderý

component, which allows the undirected selection of measures by the user.

4.7 Tool description

After discussing the analysis, dcsiý, n and implementation pl-()ccsse. s that have gone
L-

into producing the tool, it is probably vvorth spending a little time describing the

finished tool itself. This section covers the main elements ofthc tool's functionality

with the aid of screen shots showing window layout and example data.
I

The first screen shot (figure 4-3) shows some of' the windows used in defining and

editing new measures. Example data is shown for tile CBO metric. The top (internal)

window is the main metric window. It allows the user to specify the number of input

parameters to the metric and the number of' columns in its result set. An editor for

writing and editing the SQL script for the measure can also be launched from this

window. The right-hand lower window shows the dialogue I-or setting or editing the

report format for the results of the measure. Actual measurement values replace the

. *place-holder*' elements when the report is generated.

109

File Project Results Metric Data-Stores

17, F

(:) Cot#*M Between Objects

I Name C ourding Derqcer Obiects

Sol File Name

Entity

AMiNge

17 -e 12r

ýE Wy Docu me ntsU a ýaSourceýmoRMerFi I psýSSGLýAcceWChid a rrber&kerrererkCB(, ,qI -I

, class

N'triber ofparartletefs
I 27; _1

Cancel

Ff Fj 4p
lip

Nninbet of Columns in result set

Edit SQL Script

NFrIlT ý- 11 -r] VXI
I Eoý EJA ý--h

IL91A

-I I n-,

gýný-rajjZabje' ý-IeMerjt r-Mespace
INTO temp
from dependency. general izable-element

4 where

CBQ so

dependencv proDect like '? G iNF,
generalizable_element pro)ect like
AND
dependenc,, ýerýion = "l AND

ý -22- ' 1C

HeA! -.;

:1

Tempidle

AN[

r aw pf

2 9

.. ýj
ý h4ýC ci up Itricl Betwecn Object 1,4 -
ý-tible border--2 cell-ri v no=

hoýder' -ILJ :

p2a'lee ho de, - Q, j -

:
1"d

,. , td place-holde, * - q, ýi
I-Ar-

fla bI

r------ Do-__ Cancel

Figure 4-3 Screen shot of metric definition

110

Once individual measures have been defined they can be collectcd together into user-
defined rnetric-sets. Figure 4-4 shows a screen shot of creating a rnetric-set. Example

data for the Chidamber and Kenierer metric set is shown. The top inner window is the

main metric-set window. From this window measures may be added to (or removed
from) the metric set. This screen also allows the custonilsation ofparanieter values of

the individual measures for the current metric-set. The left-hand lower window sho'A's

the setting of a parameter for the DIT metric to allow the inclusion of system classes

in the depth of inheritance tree calculation. The report format or tile entire metric-set

can also be customised from this screen (right-hand lower windo"). Formatted metric

results replace the '*placeholder*' elements when the report is generated.

File Piolert Re-. ijit-. mptrtc Cj3ta Stores Help

Cludambpr & Kemeim inetrics SO

Metric Sat Naill" [ý tod t"'t

,ýý, ýI 'i iI It. ý K, 1 41, ,II Depth of Inheritance Tree (DIT) fy

i j(ý ui C oriesion of Methods (LCOM)
14umbef (if Chi I dren (I J01')fI

aý Fc)

WV, old J, I-l , ceflk ýý:

ucý=
r. ". ýT 1,14. , ".

1,., býd. (I., I" "I "I

eritoe--weu

Ln Chidambiý-,

Ll Lorentzbý wi
I 'I Iiý,

-r,, ýi, i,

II rM =-. I or"77TIE ý7

fiIý. ll it 'T"ll

Done I e- Metric Set Report - Chidamber & Kemerer metric SlAttle

0 Roject Data

u
F IF HHI FI1 : FFF

fil (hldamber & Kerrierer metrics«/hl
pface-holderl

Iliý ý3.1 'pl ac e- ho1 de r*

I Done calice,

11

I

Figure 4-4 Screen shot of metric-set definition

III

In order to make any measurements a 'project' must be created to define the files that

are to be measured and the mapping that should be used to convert the files into the

interrial design storage lori-nat. The screen shot below (figure 4-5) shows the project

data window with example data from the 'Vocab Tutor" program used in the case t: l

study.

ý, to -, ýi-. I. --7 70 ErM 111 lr-137t=

File Prrijec*, Pr% ýu! :� Metric C, tt ri te

ý,, ý- 7-4 ýý "-A -.
* dm- py F,

-
FF'= Fýi 1 "ý3 [_ Lär Ll ý ýÄ-W, ý1 7ib r', 1rý, F Fl'. F:

OutiniPMndow

ProWd Data

Project Ndme Vocab Tutor (OOSE)

file SWern

I

aw er

I

-_I nf xl

rlý VII,

--I
oulpLo Difeclow Do

Look in: (: IvocabtLqoroose 00 1ý
DO 0-

ContainedHintjava Add
iE) ContainsHint. java I

HeIpScreen. java Add All

Hint java

File name:

Remove

Ppen

files of type: : Jakra (large projects) ('Javd) Cancel

Prmed rues
Directory Mapping Store

r, cntainedHin! iava E IMy DocumentsUava JavaMapping DýsignDatab,.

rintainsH nt java E My DocumentsWva JavaMapping liesignEiatabase

ýý'Ip,; Creen Java E IMy DocurnenlsUava JavaMRriping I-esictnDa! abaýc,
; iv E 41ý F urriprit, Uava)"i'm'llpilicl E-iqn[,, ýti,

-. "Ny- - 11ý1 r-ýý-. -1 -M-,. - -.. ý .II

Save

Cancel

Figure 4-5 Screen shot of project set-up

112

When generating measurement results the user may chose to apply individual metrics

or rnetric-sets to a particular project. Figure 4-6 shows the Output window created by

running the Chidamber and Kemerer metric-set on the *Vocab Tutor' project. A

tabbed set of panels is created, one tab showing the results from each metric. From

this screen the user may chose to export data for further analysis in a custornisable

delimited text format. They may also choose to generate an I I'I-Mlý formatted report

of the results.

""1 TI(jITT1TII]
File Pro I ec t Pp, Ljjtý t. Aett j, .,:,

n-ItL, re3 HOP

-L- -1 ý-,, ýý ;. Ll x
--0

mu

'D Chilldmber &I(emerer m0ms: Vocah 1111OF (OOSE)

F Xpult ddl a Getief Ate i eliml

ol 0z

Niftiib(if ()(Chndren (NOC) i
Rffllet)jii: (1 F ot a Clos; ß (M C) Wt)itildod Melhods iVkYr ClaSS (MC)

1-diýK 01 (9 m(Ihalis (I. c(M

2 Hint VOC abtuto roe se
2 RemindHint vocablutorionse

Rhyme H int vocablutoloose
2

-SentenceHint
voc

-
abluloroose

voC21blutotocise
voc ablutoronsp HinfVector

i5 LanguageTutorFrarrie vocabiuloroose
17 HelpScteen vocabtutoroos e

1 'VoCabEiement vocabtutorooSe
1

'Vocdbulary
vocabtutoroos

-e welcorneScreen vocabtutoroose
Te-tScreen
I vowatitutm-i-

,
V--,

_ýOiilpuWndow :1
CD Project [mid I

Figure 4-6 Screen shot of results window

113

The too] comes with extensive help facilities build using the Javallelp API. The help

system has the standard contents, index and search facilities. It contains help

information for the various screens and menu items. A-low to... 's for standard tasks

and tutorials covering on background measurement material are also covered. For any

users wishing to extend the too] with custom components, the help system also covers
details of the tool's extension API.

File Project Results Metric Data-Storecý HOi,

I -_,

or-roe,
F) Pead me Ir!

n Ho « to .
E) me: surre a system 11
D me su e variation over 0- Cn Define a now measur

0- En Create a custom mea
11 Check what projects a
11 D Do adhoc investigatio

Tool functions
D Menu function-,

0- FI Functions by screen

Tool Bdenslon API

D All classeS
D index-all
D Serialised-form

Fn classes

Tutorials

19- Cl seiecting a set of metr
10- (1 Chidamber and Kerne

C! j Lorenz and ýjdcl meas
C: n MOOD measures
ReferenCe
D DDL grammar
E) Data store logic al struC

0

AW-Set

.... 1': ý, Jdbtd. f1. t.. ý
1 ldhp. d-tM. PP. ýg,

1:
2ZC

I
ted, tMek, cSeto
*#t, ewmetneo

Figure 4-7 Screen shot of help system

4.8 Evaluation of the tool

*Q'Im. t-R ... 110

The too] can be evaluated from several perspectives. Normally we would consider

validation, verification and evaluation. A difficulty in trying to validate this piece of

software is its exploratory nature. It is intended as a prototype too] and one of' the

purposes in producing it is to help decide what functionality such a tool should

= cop
1ý It

Fl-
r

FF,
i:

FFý "�'F ii- 4, -,

I_EI*I

The tool is desipiýd so that functionality can he added by building riew claýseF aid sprr ifý,, mC Llmy, u, thu

properues file(s) The I-figh-levtl structure of the tool is as follows

--
! Gmaele prodýt I J.. S-,. M. pp,. q II DDLM. pp, ýq

Core tool

M. t-u-

*>-wý
kp. -. t., V. I..,

SPod

I'>
Q>f, ITvp.
kt, I--

------- ----- -- ---

----------------------- I ----------- -----------------------------:

*4deriw Me McS eto

lk?

Sýce

mapping
mtedace

Pýd,. Mbpo, gp

4b-pFd., ()
*#s, tO, wtD, * dor, 4)

------------ ------ -

114

provide. This means that there is no a priori specification against which to validate it.

It is possible to verify the correctness of its results and to assess to tool's functionality.

Evaluating the current tool can lead to suggestions for improvements in the

functionality and design of future measurement tools.

4.8.1 Verification of measurement results

4.8.1.1 Possible types ofverification
In principle, there are a number of different ways in which the measurement results

produced by the tool could be verified. These include comparing the results against

those produced by other tools, comparing against published results and comparing

against results calculated by hand.

For a third party tool to be useful for results verification it must be capable of

collecting measures from the same type of source (e. g. Java source code). The tool

must also be able to collect at least some of the measures currently defined for the

MOT tool. Although this may not seem to place too great a restriction on other

measurement tools, it has proved difficult to find suitable tools to perform this type of

validation. Those tools that are available free collect few of the same measures or

don't collect from Java or Rose. There are tools available commercially which could

do this, e. g., Metamata metrics, but these are prohibitively expensive" (Metarnata

metrics costs $995). A limited verification of the results will be shown using Metric

(Java source code) and MetricsOne (Rose models).

A comparison against published results requires that measurement results be

published for freely available code or designs in either Java or Rose. No such

published results have been found. The limited nature of the other verification means

that the bulk of the verification must rely on comparison against hand calculated

measurement results.

9 At the time of this tool evaluation (1999) aI icence for MetaMata metrics was $995.

115

4.8-1.2 Comparison against hand calculation

The comparison against hand calculated resulted was performed for over twenty
individual measures from the sets proposed Chidamber and Kemerer (1991; 1994),
Abreu et al. (Abreu and Carapuca 1994; Abreu, Goulao et al. 1995) and Lorenz and
Kidd (1994; 1993). The system used for the comparison was the same system used
for the case study described in chapter 5. This system consists of a single package
containing 15 classes and totalling around 1500 LOC. The rationale for this choice is

simple, if we verify that the results for the case study are correct, then even if bugs are
found in the future, the outcomes of the case study will still be valid.

During the comparison a number of discrepancies between the two sets of results were
found. The most common causes of discrepancies were mistakes in the hand

calculation. Where the error was with the tool, the problems were tracked to errors in

the product mapping or in the metric definition scripts. Once found these errors were

corrected so that at the end of the comparison the hand calculations and the tool

results corresponded perfectly. Although these tests were reasonably thorough they

cannot of course be exhaustive. It is still perfectly possible that if this procedure were

repeated with a different set of classes that other errors would be found.

A point worth noting in support of using measurement tools is that although it took

only ,a couple of minutes to make the calculations using the tool, to do the same work
by hand took two full working days.

4.8.1.3 Comparison against other tools

4.8.1.3.1 JMetric

The Metric Java metrics analyser is a freely distributed measurement tool produced
by Andrew Cain and Rajesh Vasa at the Swinburne University of Technology in

Melbourne (Cain 1999). JMetric includes some of the Chidamber and Kernerer

metrics, which are also collected by the MOT tool. Tablel shows a comparison of

results produced by both tools when run on the 'second language vocabulary tutor'

116

program (used in the case studý). I lie shaded cells differences ,I the results

produced by the t\, N, o tools.

The amount of shading on the table clearly sll()\\s substantial disagreements between

the tools (27 of 60 results diffcred). Fach metric Nvill no, \ be taken in turn and the

differences in results considered.

The WMC results are largely in agreenicrit. with onk a single discrepancy. This is

caused ba difference in the counting ruics used b\ the M'o t001s. if' java a class with yI

no explicitly defined constructor methods has a constructor pro\idcd for it by the

compiler. As this method exists, 'Inasmuch as it can be expic, tl\' called. the MOT tool

includes such implicit constructors in the WMC count. The lMctric tool counts only

the explicitly defined methods.

wMc ('110 NOC DI T

Class Jm MOT '1" F 0' JM MOT JM MOT

Containedflint 4 4 2 1 2

Containsl-lint 4 4 2 2 F-o 0 -- 1 -
2

HelpScreen 8 8 I 3 7 - --1 0 0 0 1 5

I lint 7 7 2 45 5 0 1

IfintVector 5 5 4 5 0 0 1 2

f, anguageTutorFrame 10 10 3 5 15 1 5

LearnScreen - 4 4 9 20 0 0 1 6

Remindllind 4 4 2 0 0 1 2

Rhymel lint 4 4 2 1 0 0 1
Sentencellint
'restScreen
Tutor

4
4
1

4
4
2

3
10-
4

2
1-5
4

0
0
0

0
0
0 o

2
6
I

VocabElement 24 24 13- 1-1 0 0 0 1

Vocabulary 7 7 9 11 0 0 0 1

WelcomeScreen 4 4 7 11 () 0 1 6

Table 4-1: Comparison of results from MOT and -INIctric
In the ('130 results the differences are far more marked. An examination of the

collaborators listed by the JMetric too] showed substantial differences in counting

rules. lMetric takes a far more restrictive view ofcollaboration than the N40 ,I, tool. It

does not seem to include superclass constructor calls or c\p1icit constructor

invocations made via the *new' construct. Wetric also includes rcferences to basic

117

data types (such as int, float) in its counts. This seems strange as basic types are not

classes in Java and so variables of basic types are not obJects. If they are not oh. jects.,

why include thern in an object coupling measure"

The NOC results are somewhat odd. Both tools aoree on the classes that do not have

any children but differ on the number of children for the classes that do have

subclasses. The MOT results are easily verified as correct from a brief examination of

the source code. The Jkletric results cannot be explained by any differences in

counting rules or interpretation of the rneanino of the measure. flo\v can a class have

more children than exist in the system? It can only be concluded that tile ven, high

values for NOC are due to an error in the Metric prooram.

There is a complete absence of agreement for the DIT results. There are a number of

reasons that may, to some extent, explain these differences. The MOT too] (or at least

this version of the DIT metric) includes library classes in the DIT results. This is why

the GUI classes, which extend existing GUI hierarchies, have high DIT values.

Another counting rule consideration with Java systems is whether to include the link

to the 'Object' base class in the count. In Java. any class that does not explicitly

extend another class implicitly extends Object. MOT includes this link to Ob. 1cct in its

count. Not including Obýject can lead to inconsistencies. since it is possible to extend Z--
Ob. ject explicitly. as well as implicitly, and as these situations are equivalent, they

should produce the same result. I lowever. the aboý, e variations in counting, rules are

not sufficient to explain the differences in the results between the two tools. Even if

JMetric were not counting library classes, their results are not consistent. LearnScreen

extends LanguageTutorFrame but both classes are given the same value I'M DIT.

4.8.1.3.2 MetriesOne

MetricsOne (Number-Six-Software 1999) is a commercial measurement sYsicin that

operates as a plug-in tool NNIthin Rose. The demonstration version of this tool has a

number of measures that can be compared with results acquired using MOT's Rose

mapping. The systern compared here is again the vocabulary tutor program used in the

Hs

case study. Rose"s reverse engineering Eacility was used to produce a LIMI, model of

the system and then both tools were run on this model. There appear to have been

problems with the reverse engineering in the Rose CASF tool. Mally ot'the methods.

attributes and relationships are missing 1'rom the re\, crse engineered uMl, model.

This means that many of these measures are not comparable with those taken from the

code. However, both sets of measurements were taken ol' the same Rose model

(accurate or not) and so these results should at least be comparable with each other.

-6ass

-

Inheritance
I)cpth

Children Class -

Dependencies
Operation
Su m mat ion

Attribute
Summatio

-n . MO m

0

T

MO m

0

T

MO m

0

T

MO M

0

T

MO m

0

T
ContainedHint 1 1 0 0 1 1 4 4 0 0

`
Hint 0 0 5 5 0 0 0 0 0 0 1
Vocabulary 0 0 0 0 0 0 0 0 1
VocabElement 0 0 0 0 0 0 0 0 0
Tutor 0 0 0 0 0 3 1 1 3
WelcomeScreen 1 1 0 0 2 1 0 0 0
LearnScreen 1 1 0 0 2 1 0 0 0 0
TestScreen i 1 0 0 2 1 0 0 0 0
LanguageTutorF
rame

0 0 3 3 0 0 0 0 0 0

SentenceHint 1 0 0 1 1 4 4 0 U
RhymeHint 1 0 0 1 4 4 0 0
RemindHint 11 1 0 0 1 1 4 4

-0
01

HinNector 0 0 0 0 0 0 0 0 0
4

HelpScreen 0 0 0 0 0 0 0 0 , 0

ContainsHint i 1 0 0 1 1 4 4 0 1

'Fable 4-2: Comparison of results between MOT and MetricsOne

The results in this comparison have I'ar fewer discrepancies than the previous set.

There is full agreenicrit between the tools except for two of the measures, i. e.. *class

dependencies' and 'Attribute summation". The difference in the attribute summation

is due to a difference in counting rules. The MetricsOne toot includes associations in

its count ofattributes but mo, r does not.

DIff`ercnccs in results on the 'class dependencies' measure are not so casily explained.

The author does not have access to the internal workings of the Mctrics0ne tool and

so does not know which dependencies it is counting. FIxarnination of MOT's Set Of

dependencies does provide one possible explanation. The *Tutor" class contains 3

static variables that are oftypes. WelcorncScreen, LcarnScrccn and TestScreen. In the

119

MetricsOne results, Tutor is shown as having no dependencies and the three classes
WelcomeScreen, LearnScreen and TcstScreen each has 2 dependencies. It seerns

possible that the dependencies due to Tutor*s static variables have been interpreted as
being in the opposite directions. The 31 dependencies attributed to Tutor by MOT

would then be split between the other three classes and the results would agree.

However, without knowing which dependencies MetricOne believed to exist, this is

only coqjecture.

It was argued by Churcher and Shepperd (1995a: 1995b) that counting rules flor

measures should be more precisely defined. They gave examples of the possible

variations in results that could result from different interpretations of the counting

rules for the Chidamber and Kernerer (1991; 1994) rnetrics. In a reply to this criticism

Chidamber and Kernerer (1995) implied that these problems were lar(, el, synthetic

and the 'correct" rules could be implied by the application of simple comnion-sense.

An unexpected outcome of the comparison between the results produced by different

measurement tools is the degree to which changes in the interpretation of' counting

rules can effect measurements. The producers of these tools have no axe to grind in

this argument and would seek only to produce accurate measurement and yet they

manage to take different interpretations of quite simple measures. This result supports

Churcher and Shepperd's position that counting rules should be precisely and

explicitly described.

4.8.2 Assessing the functionality of the too]

In the requirements section. some preliminary ideas for an ideal measurement tool

were discussed. It has already been mentioned that, within the constraints of the

project (and possibly reality). attempting to develop such a too] in I'Ull was not
feasible. The aini of the tool development was to investigate the feasibility ofa subset

of these ideal requirements. The development and testing, of the tool has shown that

user measurement definition, cross-source measurement. and per project metric

selection arc all feasible. To this extent the tool development can clearly be regarded

as a success. However, progress in autornating software measurement has not stood

120

still during the course ofthis pro
. ject. I low does the j, Ljjctjojjljty oj'MOT compare to

other current measurement tools?

A summary of the results of a comparison of' MOT against some of commonly used
L-

current measurement tools is given in table 4-3- ()I'tlie other four tools used three are

commercial tools and the other (Wetric) Is a free%A-arc tool produced at Swinbume

University. The tools are compared against a superset oftheir ma jor tcatures. Using

this set of features the MOT tool compares very well against the other tools. However,

in selecting the set of 'major' features it is difflicult to avoid subjective ideas of what

tile important features of a measurement tool are. Since the author's ideas are

themselves the drive behind the design of mo 1'. tile comparison may be

unintentionally biased. This is difficult to avoid vvitliout an externally imposed

comparison framework. As the author is not aware of any existing frarnework in the

literature. the feature set below has been used, but keeping the caveat of possible bias

in mind.

The MOTtool has two major omissions from the list of features. It does not allow the

users to specify threshold values for measures. This means that it does not give the

user any assistance in identifying 4significant' values in the results. The omission is

due to time limitations rather any thoughts that this Is not a desirable feature. Helpinp

the user interpret the results is an important part of' a measurement tool. Indeed,

assistance beyond simple threshold detection is desirable and ideas for further

assistance will be presented in the 'future developments' section ofthis chapter.

Another notable ornission from MOT would appear to be a hierarchical structure for

presenting measurement results. The other tools use this device as a mechanism for

adding structure to the results and breaking-up the results into manageable -chunks'.

MOT uses a different device for chunking results. It allows separate sets of measures

to be defined for specific tasks. This allows smaller groups of related measures to be

collected at one time, rather than collecting the tool's entire catalogue of' measures.
I laving said this, using an entity hierarchy to give metric sets additional structure maý.,

also be licipful.

121

Feature MOT Metamata RSM JMetric Metrics

-One Input source-types Java source
Java class
Rose

Java source
Java class

C
C--ý-
Java

Java source Rose

Can define and save sets of source
documents as projects

YES NO YES YES N/A

Mixed source-type prqjects? YES NO Y ES N/A N/A
User definable measures YES NO - NO NO NO
Parameterised measures YES YES YES YES NO
Can maintain multiple metric suites YES NO NO NO NO
Change over time measurement
possible?

YES NO YES NO NO

Ad hoc investigation possible? YES NO NO NO NO
Hierarchical measurement structure
(package, class, method, etc.)

NO YES YES YES It' I .'S

Has user definable result thresholds NO YES NO YES YES
Result output formats Table

Delim. Text
I-ITMIL

Table
Excel
I ITM L

Text
I ITM I,

CSV
Table
Graphs

TS -V

Excel

Num)er of metrics available 76'ý 11
Mýý

51 46 37
Number of 00 specific inetrics 74 i

30 1)s

Table 4-3: Measurement tool feature summary

A conscious ornission from the tool was the ability to produce graphical

representations of the measurement results. Although graphs of the results are helpful

in interpreting results. the ability to produce graphs from data is already widely

available and well developed in statistical packages and spreadsheets. As long as the

results can be imported into a spreadsheet package there seems little point in

duplicating functionality spreadsheets already provide.

There are also some notable features in the other tools. RSM has a very low fraction

of 00 specific metrics. This stems from its applicability to C as well as 00

languages. The usefulness of trying to collect a common set of measure', froni such

widely differing sources might be questioned (especially when considcrIng the earlier

discussion on the need for 00 specific measures). Although the Metricsolle tool has

'rhis is the number of metrics currently coded in MOT (although there is no theoretical limit).

122

threshold setting, it only allows the setting of upper bounds. This means that the tool

cannot highlight problems shown by metrics with a high-pass or band-pass nature
(Abreu, Goulao et al. 1995; Abreu and Melo 1996).

4.9.3 Lessons learned from the tool development

A number of questions were raised and potential problems identified during the

development, testing, and use of the tool. The first of these concern the content and

structure of the design data that is stored by the tool. It has become apparent that

additional information may be useful in the data model. This would allow additional

measures to be defined. One interesting possible addition would be additional
information on the kind of classes being analysed. This could be considered in

multiple dimensions, e. g., class source (project-specific / reused / library), or class
function (GUI / problem domain / utility). Classes from these categories are likely to

have different metric profiles and the ability to separate them when analysing results

could lead to a richer source of design information.

The next set of considerations concern the definition of measures. The datastore

currently used by the tool is based on relational technology, which has a number of

advantages that have already been outlined. However, there are some associated
difficulties. Standard SQL queries cannot deal with recursively defined measures
(Oracle's 'connect by' statement can achieve this to some extent, but is not standard
SQL). The calculation of the DIT metric would normally require the use of recursion
in traversing the inheritance tree. This problem was sidestepped by adding entries to

the generalisation table relating each class with each of its ancestors. In effect, this

moves the recursion into the mapping and out of the measurement calculation. This is

possible with inheritance because the inheritance graph forms a DAG. A measure that

was recursively defined on the call graph could not be handled this way because of the

possibility of cycles in that graph.

The provision of different source-type mappings introduces a potential problem for

the interpretation of the measurement results. This occurs because the different

123

source-types contain different levels of detail in various aspects of their design

information. A consequence of this is that different mappings leave different elements

of the data model unpopulated. This means that some measures may not be calculated

correctly. Presently, it is not easy for the user to know whether the results are affected

by a lack of data, or are a true reflection of the design. It may prove possible to block

the use of measures on projects that use mappings that do not populate the entities

required by the measure.

One further general comment that has been made by users of the system is the need

for'different interfaces for different types of users. If the user is interested only in

applying existing metrics or metric sets, they may wish other functionality to be

hidden from them. This would allow the interface to be optimised solely for their

tasks. This request is understandable, as the domain analysis for the system did

identify a number of distinct potential user groups, but this change will add greatly to

the complexity of the GUI design for the system.

4.9 Future developments

As has been stated earlier, the tool was intended to implement only a subset of the

desirable features of a measurement tool. Future developments will be aimed at

extending the range of applicability of the tool and its feature set. Increasing the

tool's range of applicability means developing addition source mappings. The

obvious extension to the system would be a mapping to allow C++ systems to be

measured. Additional CASE tool mappings could also be developed.

Currently, the tool only has a simple 'place-holder' measurement method. The

development of fully functional components to cover measurement methods, such as

GQM, IS09126 and Whitmire's measurement framework (Whitmire 1997), Will be

central to the further development of the tool. This should further extend the range of

facilities offered by measurement tools, as there are currently no measurement tools

that integrate this type of facility.

124

One of the omissions from the MOT tool that was highlighted in the comparison with
the other tools was the absence of threshold setting. Providing guidance for the
interpretation of measurement results is certainly important, but simple threshold

setting may not be sufficiently flexible. The author proposes extending and

generalising this basic guidance for interpretation. Hard, pre-set thresholds are not

always applicable. For example, interest may be in relative values, entity ordering or

result clustering. A range of potential methods for aiding the interpretation of results

should be provided. Another consideration is that with the introduction of

measurement methods the interpretation of the results must be done within the context

of the measurement method. For example, if we produce a metric set using a GQM

method, we would interpret the results by seeing which goals had been achieved.

In order to use measurement successfully the nature and usage of the measures needs

to be understood. It might be a beneficial facility to allow the application to connect

to an online metrics catalogue to facilitate up-to-date information on available

measures. Work has already begun on the development of this catalogue and the tool

is already capable of adding new measures downloaded from the web.

4.10 Summary

This section has provided an overview of the MOT software measurement tool

produced as part of the author's Ph. D. project. It was shown that it was necessary to

build this tool to provide proof of concept for some novel measurement tool features.

A preliminary set of requirements for an ideal tool was presented and a subset of these

features selected for the initial development on the tool. These features included user
definable measures and measure sets, and the ability to measure different sources of
design information. A high level description of the architecture of the tool was given

along with a description of some of the techniques and tools used in the
implementation. An evaluation then showed that the tool produces accurate

measurement results and has a favourable set of features in comparison with both

research based and commercial measurement tools. This comparison also provided

supporting evidence for the view that, when measures are defined or presented,

precise and explicit counting rules should be given.

k

125

Despite the favourable comparison with other tools there is clearly more work that can
be done on the MOT tool and a description was given of some of the major
improvements and additions which are planned for the tool in the future. These

improvements would include taking input from C++ source code, adding components
for measurement methods such as GQM, and providing users assistance in

interpreting measurement results.

..
Blank

In

Original

127

Chapter 5 The empirical study

This chapter describes work from an empirical study involving the use of

measurement to aid the evaluation of a small 00 application. The chapter is

structured as follows. The first section describes the previous empirical work in the

area of design evaluation. Section two gives the rationale for the choice of research

technique and outlines the design of the study. Details of the actual conduct of the

study are presented in section three. Then results from the study are discussed in

section four. Finally, section five summarises these results, attempts to draw some

conclusions from this work and points toward possible future work.

5.1 Related empirical work

This section describes other empirical work in 00 metrics and examines its

relationship to the work presented in this chapter. There are many pieces of empirical

work in the area of 00 metrics. These studies mainly fall into three types:

measurement validation; building prediction systems; and measuring or evaluating

particular 00 structures or attributes.

As previously discussed, empirical validation in software metrics is not usually the

validation of the direct measures themselves. It is the validation of models using

these measures. Theoretical validation should show that a measure correctly captures

the attribute it is intended represent. Empirical validation shows that this

representation can be put to some practical use. This often means using correlation

techniques to show that the measure is an indicator of some external measure (e. g.

size, fault proneness). Examples of this type of empirical work are often presented

along side the definitions of the measures by their original authors, e. g., (Chidamber

and Kemerer 1994; Liu, Liang et al. 1994). Occasionally, this type of validation is

also performed by third parties, e. g., (Basili, Briand et al. 1995; Harrison and Nithi

1996).

128

A common type of empirical work in software measurement is the building of

prediction systems from measurement values. Typically, size or cost is the attribute
being predicted, but quality factors (or their directly measurable proxies) can also be

the goal of such prediction system. Quality factors for such prediction systems that

have been developed include reusability (Reyes and Carver 1998), maintainability
(Cartwright and Shepperd 1997; Li and Henry 1993b) and fault-proneness (Briand,

Daly et al. 1998a).

Another example of empirical investigation is the use of experimentation to evaluate

particular constructs or issues in object-orientation. Banker, Kauffman ct al. (1993)

and Melo, Briand et al. (1995) has investigated reuse. The benefits (or otherwise) of

using inheritance in 00 systems has been assessed in studies by Bieman and Zhao

(1995), Daly Daly, Brooks ct al. (1995; 1996) and Cartwright (1998). Li and Henry

(1995) and Rajaraman and Lyu (1992a) have published empirical studies of

maintainability.

In the software measurement chapter the various types of use for metrics were listed.

This discussion included the classification scheme for measurement uses proposed by

Whitmire (1997). In this scheme there were two types of measurement use that

related directly to product evaluation, namely assessment and comparison. Although

Whitmire proposes this framework, he provides no empirical corroboration for it. The

general literature in the metrics area is also lacking in empirical studies demonstrating

the utility of proposed measures in actually aiding the design process.

Lorenz and Kidd (1994) propose thresholds for their measures that could be used to

aid design, but they give no empirical support for this utility. Abreu et al. also

propose thresholds for the MOOD metrics (Abreu, Goulao et al. 1995), but no

empirical support is presented to show whether these actually aid design. Help for

designers usually comes in the form of model checkers which search for syntactic

errors (Belkhouche and Chavarro 1995) (limited verification), but do not aid the

evaluation of design quality.

129

As far as the author is aware the only existing empirical work in the area of using

measurement to aid the design process is the work done at Nottingham University by

Gibbon (Gibbon 1997; Gibbon and Higgins 1996). In this study the effects using

measures and heuristic thresholds within a CASE tool were studied with reference to

the subjects uptake of OOD concepts. This study focused on the education effects of

adding measures and heuristics to the design process rather than the effects on the

quality of the finished design.

The distinct aims of the proposed study make it a novel piece of empirical work. If no

other researchers have attempted a study with these aims it cannot be a replication

study. Therefore, a new study design must be designed from scratch.

5.2 Designing the study

5.2.1 Choosing a research technique

There are many forms of empirical research covering both quantitative and qualitative

investigation. The most commonly used forms in software engineering are survey,

experiment and case study (Wohlin, Runeson et al. 2000; Pfleeger 1994) (action

research (Greenwood and Morten 1998) and ethnography (Creswell 1998) are also

occasionally used). The question to answer is which type of empirical work will best

support the study's objectives?

A survey is research 'in the large', that is it tries to assess a topic across a broad range

of companies or individuals. There is no attempt to control variables in surveys,

largely because surveys are typically retrospective. A survey requires that there is a

population of subjects to poll who are already familiar with the area of investigation.

For a survey to be a suitable research technique there would need to be an existing

base of subjects who have experience of using measurement for 00 design

assessment. No such base of measurement users is available. Consequently, a survey

would not be a viable research technique for this study.

130

Experiments are formal, rigorously controlled investigations. The level of control

required means that an experiment typically involves a 'toy' system and a small

number of people. Experiments can, therefore, been regarded as 'research in the

small'. In experiments, one or more variables are manipulated and the outcome on

some other variable, or variables, of interest is observed. The intention is to separate
the effects of the individual inputs (Fenton and Pfleeger 1996). Experimentation

would be a viable technique for this study.

Case studies have been described as research in the typical. They look at a small

number of cases (often only one). Case studies are planned investigations into a

particular entity within its environment. They involve the carefully planned collection

and analysis of data but do not use the systematic variable manipulation found in

experiments (Yin 1994). A case study would also be a viable technique for this study.

Ethnography involves a longitudinal study based primarily on direct observations and
interviews. The focus of such studies is interpreting the behaviour within a cultural or

social group. This type of research may be used within software engineering for

analysing group dynamics within collaborative work. Since the focus of the proposed

study does not involve group work, this method is not a suitable technique.

Action research is an approach where the researcher participates in the system under

study. It also actively encourages members of the organisation being studied to

participate in defining the problems to be examined and in collecting and generatin- 9

data pertinent to these problems. An action research approach aimed at the goals of

the proposed study would require an organisation in which there was a perceived

problem in design assessment. The action researcher would then enter the

organisation and, aided by interested individuals in the organisation, would seek to

find a solution to this problem. One possible difficulty with this approach is that the

direction the research takes is not entirely within the control of the researcher - the

organisation may decide to seek a solution in different direction to that the researcher

originally envisaged. It is also the case that no suitable organisation was available with

131

which to perfonn such a study.

Of the original five research techniques, all but two have been considered unsuitable
for this study. The remaining choice is whether to use an experimental or case study

approach. A point that has a major bearing on this choice is the amount of preparation

the subjects will require before being able to make an informed use of measurement in

either of these tasks. It would seem unrealistic to expect volunteers to undergo this

amount of training (except under levels of bribery outside the resources of this

project!). A solution to this problem would be to use students as subjects and to make

the preparation part of the course.

There is also a similar problem with the amount of time necessary to perform an

assessment or comparison with even 'toy' systems. If bribery were again abandoned

as a means of persuasion, the obvious solution would be to set an assessment and/or a

comparison as course work.

If this rationale is followed, further considerations come into play. An experiment

would require multiple treatments. There are two obvious ways of approaching this

problem. The subjects could be divided into two groups, each of which would

effectively be doing a different assignment. Alternatively, a within subject design

could be used, in which two groups of subjects each tackle two tasks. Each of these

options has serious drawbacks, either from a pedagogical or ethical perspective.

Having different subjects tackle different problems makes comparative marking

between the groups very difficult. A within subject design introduces ordering effects

into the perfonnance of the tasks. This makes both assignment marking and data

analysis more difficult. It was also felt that having the subjects tackle one larger task

would have more pedagogical value than tackling two smaller tasks. This meant the
I

decision was to set a single task for all subjects. Perforce, this means a single

treatment and therefore rules out a formal experiment.

Another factor against the use of a formal experiment is the immaturity of the topic

132

under investigation. There has been very little work concerning how measurement is

used to support design assessment. When there is little knowledge available on the

topic it is difficult to design a formal experiment. Without a good knowledge of the

influencing factors or their relationships, formulating a hypothesis is difficult. In

addition, designing the experiment to control the effects of confounding factors

becomes almost impossible.

Case studies usually involve investigating a phenomenon in its 'natural setting'-

Normally, a case study would involve investigating a design review in a real industrial

setting on a real project. The task being studied here is performed in what is

approaching laboratory conditions. The study is being carried out in an academic

rather than an industrial setting and the project being studied has been selected

specifically for the study. Yin (1993) describes a methodological approach midway

between an experiment and a case study that he refers to as a quasi-experiment.

Quasi-experiments are possible where there is insufficient control over variables of

interest for a formal experiment. Unlike case studies, quasi-experiments require a

sufficient number of subjects to produce multiple data points and a limited number of

variables of interest.

As mentioned previously, the topic under consideration is fairly immature. This tends

to lead to exploratory studies with potentially large number of variables under

consideration. However, this study does have a sufficient number of subjects for a

quasi-experiment. There are some factors in the topic and organisation of this study

that would indicate that it is case study and others that it is a quasi-experiment. The

name used to label the type of study seems of little importance as long as the nature

and limitations of the study are clearly understood. For the remainder of the chapter,

this empirical work will be referred to as a case study.

To recap, the decision was to perform a case study with a group of students who

would receive tutoring in design measurement and its application during their course

and would perform the case study as an assignment.

133

5.2.2 The study's questions

Practical constraints have led to the decision that the research technique used was to
be a case study. The next point to consider is what questions this study will attempt to

answer. The immature nature of this field suggests the use of an exploratory style case
study. According to Yin (1994), one of the strengths of case studies is in answering
exploratory style 'what' questions or descriptive 'how' and 'why' style questions. It

seems sensible to phrase the study's questions to take advantage of these strengths.

Possible questions:
1. What support is necessary to enable the practical application of design

measurement?
What additional support is desirable to improve the application of design

measurement?

2. In practice, how would engineers use measurement results during design

evaluation?

" Which elements of the analysis can be aided by the use of measurement?

" Which elements can't?

3. Given the necessary training and experience would engineers choose to apply

measurement to help design systems?

5.2.3 Unit of analysis

The next consideration is the unit of analysis. Here we have to decide, what is the case

we're studying? The overall goal of the study was to see how designers would use

measurement results in practice and what type of support they would require.

Different design activities might well require different kinds/levels of support and

may find the use of measurement be more or less beneficial. This would suggest

treating design assessment and design comparison separately, enabling separate and

distinct findings for each type of activity. However, as previously mentioned it was

necessary for all subjects to perform the same assignment. If the study was to cover

both assessment and comparison, each subject must undertake each of these tasks.

There are therefore, two sets of cases, a set of assessment cases and a set of

134

comparison cases. One assessment is also paired with one comparison because they

are done by the same subject. This pair of cases is best analysed together when

considering propositions that deal with the approach and attitude of the designer.

The design for the case study will therefore have a unit of analysis that is the

individual assignment. Each assignment will be considered as consisting of two

embedded units, an assessment unit and a comparison unit.

5.2.4 Data collection techniques

Yin lists six possible sources of evidence for case studies. These are documentationg

archival records, interviews/surveys, direct observations, participant observations and

physical artifacts.

1. Documentation

One of the data collection techniques to be used is to require the subjects to

produce a report documenting their work on the task.
2. Interviews / surveys

A questionnaire will also be used to elicit background and attitudinal information

from the subjects. It will also be used to provide corroborative data to backup the

report data.

3. Participant observation
After the performing the task the subjects will be invited to give their opinions of

measurement-based assessment. This will be done as part of the questionnaire.

4. Direct observation
Direct observation of the actual assessment task is not really practical. The length

of time spent on the task (nominally 25 hours) would make this unrealistic-

However, it will be possible to monitor the subjects' data collection by adding

automatic action logging to the design measurement tool they will be using.

5. Archival reports
There are no archival reports available to use.

6. Physical artifacts
There are no physical artifacts involved in the field of study.

135

5.2.5 Design of debriefing questionnaires

The purpose of the questionnaire was to gather attitudinal data not available from the

other data collection techniques and also to gather information to triangulate with data

gathered from the other sources. Additionally, questions were included to check

whether any elements of the design of the task had adversely affected the results from

the case study.

5.2.5.1 Information to be elicited

The information required from the questionnaire can be split into three sections,
before, during and after performing the task. The 'pre-assignment' questions are to

collect information on the subject's background and experience. More specifically,
they are to determine the amount of experience the subjects have in programming and
in software design. The 'doing-assignment' questions are to gather information

relating to the conduct of the task itself. Information required from this section
included:

" time and effort spend performing the task;

" how the subjects went about selecting metrics to apply;

" how the subjects used the data sources describing the system under study;

the subjects' views on the individual metrics they used;

the subjects' use of the measurement tool.

The 'post-assignment' section was used to check for any changes in attitude towards

using measurement following the subjects experience whilst performing the task.

5.2.5.2 Question design

There are many texts giving guidance on the design of the questions themselves, e. g.,

(Fowler 1995; Payne 195 1). Other questionnaire and survey texts also give guidance

on the layout and presentation of questionnaires, e. g., (Berdie, Anderson et al. 1996;

Fink and Kosecoff 1985). In designing the exact wording and layout of questions,

these texts describe a large number of considerations and relevant advice. The

questionnaire was designed with these recommendations in mind and was improved

through review and redesign. The final version of the questionnaire can be see in

136

appendix G.

5.2.6 Validity

In judging the quality of a research design Yin (1994) lists four tests. Thesetestsare

construct validity, internal validity, external validity and reliability.

Construct validity involves establishing that correct operational measures have been

used for the concepts being studied. One suggested way of establishing construct

validity is the use of multiple sources of evidence (as was done with this case study).

Internal validity involves establishing a causal relationship, whereby certain

conditions are shown to lead to other conditions, as distinguished from spurious

relationships. This case study is largely exploratory and descriptive in nature. Yin

(1994) describes internal validity as being appropriate only for explanatory or causal

studies.

External validity involves establishing the domain to which the study's findings can

be generalised. The use of multiple case designs is one way to show external validity.

A consistency of results between different cases suggests that the findings can be

generalised beyond a particular case. However, multiple case designs are intended for

replication, rather than sampling. This means that no inferences should be drawn

about the population to which the results will generalise. When dealing with

exploratory case studies the only generalisation that can be done is to theory. It then

requires an experiment to confirm the theories and assess their range of generality.

Reliability involves demonstrating that the operations of a study - such as the data

collection procedures - can be repeated, with the same results. In this study defined

protocols were used for extracting the data from the subject reports. Where subjective
judgements about design assessment were required multiple 'experts' were used. The

use of a case study database should also help ensure consistent data collection and

storage.

137

5.3 Conducting the study

This section describes the actual running of the case study. One section notable by its

absence is the preliminary study. The original intention was to run a preliminary

study. However, as the case study was being run as an assignment, it was fixed in time

by the teaching calendar. The preparation of the study's materials took longer than

expected and there was insufficient time available to organise a preliminary study.

This section commences with a description of the subjects chosen for the study and

analyses their previous levels of experience. The preparation the subjects received is

then discussed, followed by a description of the case study task. Finally, the

procedures for data collection and extraction are covered.

5.3.1 The subjects

The subjects selected for this case study were those taking a unit at Bournemouth

University entitled 'Ob ect-oriented software engineering' (OOSE). The unit was j

selected because it is an advanced unit (presuming some prior knowledge of 00),

also, the necessary preparation and task itself fitted well into the remit of this course.

Originally there were 16 subjects, 9 were full-time final year B. Sc. students and 7

were part-time students working full-time in IT. One of the students has been

excluded from the analysis, since the subject failed to complete the task in the manner

requested, leaving 8 students and 7 industrialists.

Figure 5-1 gives some idea of the subjects' 00 experience prior to the OOSE course.

it shows the maximum levels of experience of the subjects in any 00 language and in

any 00 design method. Almost half of the subjects had used an 00 language

professionally and all but two had prior experience of at least the level of a formal

taught course. There is generally less experience of 00 design methods. Only two of

the subjects had used any of these professionally and three had not received any prior

formal training in 00 design.

I 19

Number of
students

12

10

8

6

4

2

0

none c as tj aI course professional

Figure Subject's prior experience in object-orientation

Figure 5-2 helps to goc a more ha I anced \ ic,, % h\ III, -, the SUI-11 CC CS c\perience of

non-00 development. Bý, comparing Figures 5-1 and 5-2'. It call be seen that the

than structured desion subjects generally have more experience ot' ()() des]-un

methods. I lowever. more of' the subjects have used procedural langual-les than 00-

languages in industry.

12 -

10 --10 procedural language

8 -4111111structured method
Numberof

6
students

4

2

T

none casual course professional

Figure 5-2 Subject's prior experience of non-00 de,. clopme"(

, 111(l ý;
". that ob It may also be worth noting. %%hen comparing Ject- figure,., 5-1 ,

orientation is usually considered to have a steeper leaming curNe than traditioilal

techniques (Fichman and Kcmerer 1997: Vessey is may mean and Conger 1994). Th

that, after equivalent levels of exposure to 00 and procedural lllcth()ýis. "Uh-lects may

have a lesser grasp of 00.

Figure 5-3 shows the subject's prior experience in Java and VMI. - Thcse are

139

particularly relcvant as the design t'or the case stud-% \\as presented ill I JN4L, and the

systern coded in Java. In can he seen that there \\as little knowledge of UMIL. in the

group prior to taking the ()()Sl-' unit. althouoh all but 2 sublects had some prior

experience with Java.

10

8

Number of
6

students 4

2

0

i 1
none casual course

Figure 5-3 Student's prior experience of Java and UNIL

5.3.2 Preparation

El Java
MUML

professional
1

As part of the OOSF_ course the sub . jects studied 00 programming in Java. desion

presentation using tile UML desiOn evaluation. design patterns. and the process of
00 development. The work on design evaluation covered both heuristic-based

evaluation and 00 desion nictrics. The sub' 3 one-hour lectures on L_ jects received _3
heuristics and metrics and the\ spent an equivalent amount of time on related paper

reviewing and focused discussion.

The heuristics material was based oil our own review of 00 desion heuristics
Cý

(Kirsopp and Webster 1997) and tile book by Riel (1996). Tile subýjects were

introduced to tile idea of' heuristics and the issues surroundingo, tile use of' heuristics.

They were also talked-through a representative subset of the heuristics from tile tr
catalogue.

The metrics teaching material Ilocused on the . Nork of Chiclaniber & Kenierer (CK)

(Chidamber. Darcý et al. 1998: Chiciamber and Kemerer 1994, Chiclamber and
Kernerer 1991) and Brito e Abreu (Abreu and Mclo 1996, Abreu, Goulao et al. 1995.

140

Abreu and Carapuca 1994), as well as covering the Lorenz & Kidd mctrics (Lorenz

and Kidd 1994). The CK mctrics were chosen bccausc they arc the most Nvidcly cited

and validated set of measures. The MOOD mctrics of Abrcu ct al. arc also widely

cited and have received third party validation. The measures in the MOOD set are

also focused on a different entity type from the CK mctrics, being sYstcm-lcvcl mther

than class-level. The Lorenz and Kidd measures were well suitcd to the task - coming

ready supplied with heuristic thresholds. 11cy also covered a wide range of entity,

types, including method level measures, which arc not covered by the other two sets.

A one-hour 'hands-on' tutorial on the use of the design mcasuremcnt tool was also

given. The tool tutorial covered sctting-up projects for measurement, defining

measures, creating measurement sets, collecting measures, and ad-hoc querying of the,

design model.

5.3.3 The task

The application used for the study was the 'Second Language Vocabulary TutOr'

(Vocab Tutor). This is a small application to allow learners of a second language tc),

increase their vocabulary through a process of actively learning new words and testing

themselves on their progress. The system was developed by the OOSE unit leader as

a teaching aid for 00 concepts and programming. It is coded in Java 1.1 and has a

GUI interface built using the standard AWT (abstract windows toolkit) componentr,. -

The Vocab Tutor consists of 15 classes and around 1500 lines of code. Five of the'

classes make up the GUI and the remaining ten implement the problem domain. The

application contains a simple inheritance hierarchy with a depth of one -a single

parent class with a number of child classes.

The subjects were provided with design documents (appendix H) and source code
(appendix I) for the Vocab Tutor. They were also given access to the MOT desigrl

measurement tool, which allowed the collection of rrictrics from the suites suggested
by Chidamber and Kemerer (1994), Lorenz and Kidd (1994) and Abreu and Melo

(1996).

141

The task comprised two major sections. In the first section, the subjects were asked to

assess the design of the Vocab Tutor. They were asked to indicate the weak points in

the design and to back up those arguments with heuristics and metric results. In the

second section they were to outline the design changes they would make and explain

the motivation for these changes, again they should back up these arguments with
heuristics and metric results. The exact wording of the task can be seen on the original

assignment sheet included as appendix J.

The case study database is very complex being made up of 20 entities (only an aspect
is shown in figure 54). The case study also generated large amount of data, so that

the extent of the tables is also very large. To keep the amount of data analysis to a

manageable level it was decided to restrict the analysis to first half of the case study,
i. e., the initial design assessment. No discussion of, or results from, the redesign and

reassessment section of the task will be presented in this thesis.

To give an idea of the amount of work involved in performing the task the subjects

were asked to estimate (after the event) the number of hours they spent on different

aspects of the task. Table 5-1 shows a summary of this information. The table shows

the total time and a breakdown of the time spend on the three main sub-tasks. It

should be noted that the times given cover both the assessment and re-design sections

of the task.

Variable Mean Median Min Max
Time on research 6.7 7 2 12
Time on analysis 6.3 5 2 16
Time on write up 9.3 8 4 16
Total time 1 22.2 1 21 1 91 42

Table 5-1 Summary of time spend on the task (in hours)

5.3.4 Data collection

The data collection for this case study comprised of three different elements. Firstly,

all actions performed using the design analysis tool were logged. Secondly, each

142

subject was required to produce two written reports, one for each section of the task.

Finally, after the reports were handed in, the subjects were asked to complete a

debriefing questionnaire. The data collected were organised into a case study database.

The data logging activity di&t prove to be as useful a source of information as

originally hoped. This was due to the subjects using the tool in a very limited manner.
It was hoped that the subjects would create their own measurement sets to suit their

Own Particular goals. It was thought that they would use the tool's ad hoc query facility

to fOllow-up on anomalous results. There was even the possibility that they might
create new measures to automatically assess particular heuristics they wanted to apply.
What actually happened was that the subjects simply collected results from one or two

of the predefined metric sets and performed all of their subsequent work off-line. This

meant that no meaningful data was collected from the logging activity. The analysis
will therefore be done with data from the reports and questionnaires only.

The reports produced by the subjects had to be codified into a form suitable for further

analysis. In considering the assessment of a single design, the main output of the

assessment is the set of problems identified. Additional information might include

any justification for believing particular elements of the design to be problematic.
From the phrasing of the task, these problems are likely to appear as heuristic

violations. These violations might be justified using measurement results. As

mentioned earlier in the description of design heuristics, a heuristic violation in itself

may not represent a problem. If the violation occurs outside of the intended context of

the heuristic, the apparent violation may have resulted from a misapplication of the

heuristic.

Even within the correct context, heuristics are only guidelines and not 'hard-and-fast'

rules that always apply. For these reasons, the author wishes to separate the notions of

problem and heuristic violation. The term 'issue' will be used to describe any reported
heuristic violation, and 'real issue' to describe a heuristic violation that is believed

(subjectively) to indicate a real design problem. Any mention of a heuristic violation
in the subjects' reports was entered into the case study database. References to

143

measurement results and the use of measurement results to justify these issues were

similarly recorded. Additional information was also recorded, such as the nature of the
heuristic that was violated, the location of the violation, etc.

MetricJustifieslssue
nkect
metric
ofty
isswID

MetricUse

metric
sub ject
m2ty

Mctric

metricName
acron
mtricSet

SubjectIssue

E±ject
issuclD

FI-ll-W-O
issueTD
beuristiclD
is-real-issue
beation

0---ý

Hetristic

beuristicID
heuristicType
entiyType
heuristicTe)d

IleuristicGroup

RMUP
descrotion

grouplD

Figure 5-4 An aspect of the case study database model

The data model in Figure 5-4 should help to clarify the relationships between these

variables. An 'Issue' is the violation of a particular 'Heuristic' at a particular location

and may, or may not, be considered a real issue. A 'Subjectlssue' is the use, by a

particular subject, of a particular issue in their evaluation of the system. A

'MetricUse' is a reference by a subject to the measurement of a particular entity in the

system using a particular metric. An entry in 'MetricJustifiesIssue' shows that a

particular subject justified the inclusion of a particular issue by a particular

measurement result ('MetricUse'). Heuristics are also assigned to a particular

HeuristicGroup. A heuristic group collects together heuristics from different sources

but with similar underlying rationale and intent (this will be discussed further at the

point at which it is used in the results section).

The report produced by the subjects described their actions during the design

assessment in unstructured prose. Clearly, there will be some circumstances where

the mapping of such unstructured prose onto the structure of a relational data model is

less than clear-cut. For example, a subject may have stated that a heuristic concerning

144

class size had been violated but not explicitly state the measure used in their

assessment. In such cases a *best guess' as to the subject's actions and intentions had

to be made (in the example above, the most likely ineasure would been considered to

have been implicitly used).

The problems with mapping prose onto the data model were not limited to simply

deciding what the subject intended. There are subtleties in the manner in which the

subjects used the measures and heuristics that are lost in the mapping. Much time was

given to deciding, on the structure of the data model. A more complex data model

could capture more information. but would be more difficult to analyse. In the end a

tradc-off had to be made between loss of infomiation and ease of analysis.

An example of some of the problerns identified by the subjects and the type of

e justifications used is given in appendix K. This should help to clarify th nature of the

mapping bet\vecn the reports and the data model.

As described earlier the dcbriefing questionnaire was designed to collect both

inflorniation not covered by the other data sources and to add corroboration to the

othcr data sources. It included sections on attitudinal information. background

experience. and time expended. This information was also input into the case stud),

database. The Full data model for the case study database can be seen in appendix L.

5.4 Results

'I'lic results are grouped into seven subsections. These subsections cover the l'ollowing

areas ofanalvsis:
I- Metric selection: how the subJects selected tile metrics they used to perforill tile

assessment

2. Metric usage (by nictric): the patterns ofusc for particular nictrics
3. Metric usage (by subject): the level of metric usage by the individual subjects

4. Issues: the issues I'Mind by the subjects
5.1 Icuristics: the manner in which the subjects applied heuristics in tile evaluation

Dil'Ici-crices hetwecri students and industrialists: evidence for dift'ercrices in the

145

approach between the industrialists and the students
7. Subjects' views on measurement: the subjects' post-study attitudes toward

software measurement

5.4.1 Metric selection
The first question, which faced the subýjects when performing the task, was the

selection of the metrics they were to use. How would they go about this selection?

The two pie charts contained in Figure 5-5 show the results from two of the questions

from the debriefing questionnaire.

1. 'Did you consider taking a pIck'n'rnix approach to selecting metrics? (taking some

metrics from one author's set and some from another)'

2. 'Did you consider using a different set of metrics for analysing the design

refinement than you did for the initial assessment?

pick'n'mix

m r-lo

U14p-

]Figure 5-5 Results from the metric selection section ofthe qucstionnairc

The results from the first question show that over lialf' of' the suh. jects didn't C\CII

consider selecting across suites of metrics proposed by difTcrcrit authors. Thcý sinipl\

chose a set, as given, and tried to apply it.

Although this chapter concentrates on the evaluation section of' the task, the subJects

also had to redesign the systern based on their initial assessment. and compare Ilicir

new version of the system to the original. From a measurement perspective. the nature

146

of this second task is a qualitatively different task from tile first (Whitmire 1997).

Firstly, the measurement results are now being used to compare relative 'quality'.

rather than being used for finding specific problems. Secondly, the measurement

results are being compared with similar results from another system rather than a

threshold set by a heuristic. Question 2 in this section was intended to discover

whether the subjects recognised this distinction and considered using different rnetrics

to achieve these differing ends. The answer. quite overwhelmingly, is that they did

not.

If most suýjects did not consider selecting nictrics frorn different authors. or using

different sets of metrics for different tasks, how did they rationalise their selection?

The following are typical answers given by the subjects when asked for a rationale for

their metric selection.

'Ran them all und used the ones that best. fit the process I ii 1ý1 -as (Ioing 10 use. '

This is more a lack of selection. Such a shotgun approach seems likely to be very

inefficient, particularly when scaled up to large applications.

'By
...

deciding which set was the most suitable to the application. '

This kind of vague reply was typical. It suggests a general lack of fliought given to

metric selection.

V he milysidle 1 knevi, we/I and understood was CK. '

The ones I couldfind infi)rmalion aboul. '

I, his tý'Pc of reply shows the importance of comprehensible and accessible

inf'orination ahout inctrics. If you can't find information about a nlctrlcý or you can't

widerstand that information, you won't use the metric. Accessibility of' information

"cell's to have been the main reason for the lack of use oftl I orenz and Kidd (1994) le ý
inctrics. Papers describing the CK and MOOD metrics were given to the sub. Iccts.

147

The Lorenz and Kidd (L&K) metrics are described in a book and as such were not so

easily (cheaply) available.

Figure 5-6 shows the level of use of the various metric sets and combinations of sets.

Almost half (7) of the subjects used only the Chidamber and Kemerer metric set. A

further 4 used both the CK and the MOOD metrics and one used all three sets (CK,

MOOD, L&K). This means that 12 of the sub . Jects used the CK rnetrics while 7 used

the MOOD measures and only one used L&K. One subject didn't used measurement

support for their evaluation.

No metric support

CK, MOOD, L&K

MOOD only

CK and MOOD

CK only

012345678

Number of subjects

Figure 5-6 Metric-sets used by subjects to support their analysis

5.4.2 Metric usage (by rrietric)

In thj,,, section, the manner in which the actual rnetrics were employed will be

examined. The uses of' a metric can be considered at a number of' levels.

measurement result frorn the metric could be referenced in a subject's report. IIII. S

measurement result may, or may not. have been used to justik, a particular issue. The

issue may. further more, be considered (by the 'experts"') either to be a real' problem

with the design or a non-issue. Figure 5-7 displays the uses of' nictrics at these three

lcvcls.

Reading from left to right. the first f'Our metrics are from the Lorcnz and Kidd (1994)

set (1, &, K). Each of these metrics was only rellcrenced once and not used lo. justik an

Issue. The next six nictrics are the MOOD inctrics (Abrcu and Carapuca 1994. Ahrcu.

' The cxpcri judgemcnt* was agreemcm between the author and the marking lutor I'Or the assignment.

148

Goulao et a]. 1995; Abreu and Melo 1996). The final six nictrics are those proposed

by Chidamber and Kemerer (1991: 1994) (CK). Appendix M gives a briefdescription

of the metrics shown on Figure 5-7. A point to note is the obvious difference in usage

between the MOOD rnetrics and the CK nictrics. This is due to the different nature of

the rnetrics and the way the uses are counted. A use 'Is defined as the application of a

particular metric to a particular entity by a particular subJect. The entity measured bN,

the MOOD metrics is an entire system. There is thcrefore only scope for one use of

each of these nictrics by each subject. The CK inctrics. oil the other hand, measure

classes. This means that, potentially, each subject may use each CK metric with each

class in the system.

Reading Figure 5-7 frorn back to front: firstly we see the total number of references to

each metric; then the subset of these references which were used to justify issues: then

the subset of these justifications which were taken to be 'real' issues. A large drop

from the references (back) to the justifications (middle) indicates that few of the

rellerences were used in justifying issues. This may mean that there were few problems

in the system that the metric was helpful in indicating, or that the results of the metric

were difficult to interpret into concrete problems.

Metric usage levels

30

25

20
Nrea I justifications

13ju stific a tio ns
Oreferences

Usage count
15

10

B El IEI El
0

: FZF,.: F Z, z

ii

ý9

Metrics

Figure 5-7 Metric usage, by metric and usage type

A large drop from thcJustifications (middle) to tile real JUStifiCatiOn"I (front) indicates

that I'M of the issucsJustificd were considered to be real issues. i. e., tile metric results

149

led to erroneous conclusions (or had been misinterpreted).

Considering some specific examples, CBO and LCOM are both heavily referenced.

This indicated that the subjects thought that there were coupling and cohesion issues

to be considered within the system. A clear difference between these nietrics can be

seen in the rate at which their use declines toward the front of the chart. C'130

decreases very little from front to back, showing that it clearly indicates particular

problem areas to the sulýject and the problems are identified are consider to be 'real'

problems. LCOM on the other hand halves in value between references arid

justifications. This may mean that there were fewer cohesion problems in the system,

or that subjects had difficulty finding cohesion problems using this metric. The

justifications. This means LCOM value falls almost to nothing when we consider real I

that on most occasions where the sulýjccts interpreted LCOM's result as showing a

problem. they were mistaken. These apparent problems with LCOM are consistent

with views and results of other authors (for example (Basili. Briand et al. 1995.

lienderson-Sellers, Constantine ct al. 1996, I-litz and Montazeri 1996)).

The DIT and NOC rnetrics have very similar patterns of use, rcasonabl) high

references and then very fev, 'Justifications. This appears to be largely due to the size

and 'shape' of the system. There \vIII be little scope for finding, problems using

inheritance-based counts in a system containing only I level of Inheritance (excluding

system classes).

jects to express their 6 The questionnaire included the opportunity for the sub* I ICWS

about the usefulness and the understandability of the nictrics that the\- had selected.

Responses were given on a IlUmeric scale beovecri I and 4 (4 being the MOSt Useful Or

understandable). Table 5-2 below shows the median valucs (metrics on which 1cwer

than 5 opinions were expressed have been excluded).

150

Metric Useful Understandable
C130 4 4
wmc 4 3.5
RFC 3.5 2
COF 3 4
POF 3 3
NOC 2.5 4
DIT 4
AHF 2 4
MHF 2 4
AIF 2 4
MIF 2 4
LCOM 2 3

Table 5-2 Subjects' opinions on the metrics they selected

Note the parallels between this table of subjective views and the analysis of actual

usage earlier. LCOM's possible problems again appear with the equal lowest

usefulness and the equal second lowest understandability. The sub J ects did not find

DIT or NOC particularly useful for evaluating this particular system although they

were easily understood. Low values for usefulness of the MOOD metrics reflect the

difficulty of trying to infer specific problems from systern wide metrics.

RFC is also an interesting case - being the most difficult to understand whilst also

being considered very useful. The fact that the counting rules for RFC are quite

involved is likely to have resulted in the low understandability. llowcver. from the

manner in which the subýjects used the RFC metric, they clearly understood that it was

type of coupling measure and thought coupling measures useful. This suggests that

complex measures arc not necessarily problematic. They may still be successfully

applied so long as those utilising them understand the underlying intent.

5.4.3 Metric usage (by subject)
The chart below (Figure 5-8) gives an indication ofthe range of measurement use by

the individual subjects. It shows both the number of distinct measures used by each

subject and the number ofoccasions on which the subject. used these measures. The

range ol'distinct measures used by the subject varies from 0 up to 10 and the number

151

of measurements cited in the evaluation varies firom 0 to 33. A low value Ior nietrics

used suggests that the sub
..
ect's assessment utilised mainly semantic heuristics. A II

high value suggests a more syntactic approach. The ratio of measures used to

measurement uses also varies widel . This is mainly due to the entity type to which y

the measures apply and will be discussed later.

35
30
25
20
15
10
5

Metric_us es
Metrics_used

[I [I[, ER [In E70 ON

19 10 11 12 13 14 15

Subject

Figure 5-8 Number of metric uses and metrics used by subject

5.4.4 Issues

As previously mentioned, issues are heuristic violations. Thcy can be dividcd into

four quadrants as shown in Table 5-3. The 'flound' column contains the 1111111ber of'

distinct issues identified by the sub . jects. Those issues in the 'not flound' colunin are

those issues identified by the "experts', but not 11ound by any of the sub. jects. The rows

divide the issues based on whether the *experts' considered those particular heuristic

violations highlighted real design problerns. Only three ol'thc quadrants are used a,,,

the nurnbcr of false issues not Iound is not assessable (possibly infinitc!).

Found Not found

Real issue 86 99
40.4% 46.0%

False issue 29

Table -5-3 Distinct issues by issue quadrant

152

Table 5-3 shows that the subjects to ha\e detected less than hall' of the real issues.

This might be taken to suggest that the sub. jects \, \, Crc poor at finding problems with

the system. There are reasons for not taking this reading ofthese results.

Table 5-4 shows the distribution ofissues found and not lound with tile importance Of

the issues. This table clearly shows that 67% of' issues not found were trivial in

nature. whereas 90% (75 found and 9 not f'ound) of the important issues were found.

These results indicate that rather than being poor at detecting issues, the subjects

simply focused their attention on the more important issues and ignored the trivial.

Another factor, which compounds this apparent problem. is that the trivial issues tend

to be associated with the more numerous 'method' and *attribute' entity-types. This

tendency exaggerates the failure to identify trivial issues by creating more trivial

issues.

trivial significant important
Count 'yo Count 0% Count %

_ Issues found _ 17 1011 75
8.7 52.8 3) 8.5

Issues not found 61 21 9

- -----
67.0 2 3.1 9.9

Table 5-4 Importance level for issues found and not found

The classification into 3 quadrants described above can be further refined. 'Fable 5-5

shows the distribution of issues by the assessment type of heuristic vi ated and the

issue quadrant. These figures include all subýject issues. not Just distinct issues, as is

the case above. Many of semantic issues raised by subjects were erroneous. This

might indicate that the subjective interpretation necessary in applying semantic

heuristic makes thern more difficult to identify correctly.

153

real-issues non-issues real-issues not total
found found found

count (YO
_count

yo count (YO count (Yo
semantic 15 12 32

46.9%
-37.5% 15.6% 100%

hybrid 89 11 1 13 11
78.8% 9.7% 11.5% 100%

svntactic 84 16 74 174
48.3% 9.2% 42.5% 1 001YO

total 39 92 319
58.9% 12.2% 28.8% 1 00(ý/()

Table 5-5 Heuristic-type by issue quadrant

It may also be the case that where syntactic rnetrics have been used as proxies for

measures of semantic properties. they have been largely, misleading. There is also a

notably higher proportion ofthe syntactic issues that were not found (439%) than for Z__
the other types of issue. At first sight this seems counter intuitive, as s\11tactic issues

should be arnenable to automated rnetrics and so should be easily fOL111d. I"Urther

investigation has shown that these unfound issues are mostly trivial. in the fine detail

of the design. The sub ects gencrally did not collect suitable nictrics to highlight these J
zn

problems. This large section of trivial syntactic issues can be clearly seen in the Table

5-6, which shows the break down of' real-issues by their level of' importance. This

table also shows that semantic heuristics lead to few, but gcncrally important issues.

trivial significant imp ortant ta -I

count 'yo count (YO count yo cou n-t
semantic 5 Iý 20

10.0% 25.0% 6 5.0 'ý! /O I
hybrid 5 56 41 102

4.9% 54.9% 40.2(, /ý, 1 00(ý/(,
syntactic 65 63

-30 158
4 1.1 (Vo 39.9% 1 9. ()(YO

total 72 124 84 280
25.7% 44.3% 1000

'rabic 5-6 lieu ristic-type by issue significance

Another way of analysing the issues is by considering tile tN, pe of ciltil, tile heuristics

were applied to. Jigurc 5-9 shoNA's the split of' 'i-cal issues' and '11011-ISSUCS l`6LIIld-

154

between the live major types of entity found in an 00 system.

It should be noted when reading these charts that the definition of an issue. *the

violation of a particular heuristic by a particular entity", means that there is greater

potential for issues relating to certain entity types because there are more of these

entities in the system. For instance, since there are 15 classes in the system studied.

there is potential for each subject to find 15 violations of each class heuristic. This

means that there is potential for far more method and attribute issues than class issues

due to the larger numbers of attributes and methods in the systern. Similarly the small

numbers of system and hierarchy issues reflect their relatively low potential numbers.

All real issues

, +I merarchy
iýl J,! ý' I method

m syEterr,

cittribute

class
v, iercirchy

method

--i-Istern

Figure 5-9 Real-issues and non-issues by entity type

Even though there is greater potential for attribute and method issues, around fiftý'

percent of' the real issues identified were heuristic violations at the class level. This

may suggest that partitioning a system"s functionality into a well-dcsioned set of'

classes is an intrinsically difficult task. Alternatively, it might be that this high level

ol'class issues is an artifact of heuristic maker's preoccupation with tile class (but if it

isn't problematic why would the class attract this level of attention?)

When comparing the real issues found and the non-issues found. the rnost striking L_

feature is the remarkable similarity in their distributions. This means that errors were

made in proportion to the numbers of real issues that were found for each entity type.

It scenis the subjects were equally likely to make mistakes whatever the entity type

they were looking at.

19M cittribute
class LI-11

Non-issues found

Figure 5-10 shows the distnbution by cntity type of issues identified by sub J ccts and

155

real issues not identified by any of' the subjects. The first notable point is the large

numbers of attribute issues that went undetected. This is due to the subjects not

examining the design in sufficient detail to highlight these issues, i. e., the subjects
tended not to use attribute level heuristics. It can be seen that higher levels of system

and class level issues were identified relative to the real issues available for the

subjects to find. Again this shows that the subjects concentrated on the higher level

heuristics.

Issues found

attribute
cI Cass
hiercirchy

El mpthod
systerr, SN

H.
I '11tv -, -". -- 0 Systerr,

Figure 5-10 Issues found and not found by entity type

5.4.5 Heuristics

-5.4.5.1
Analysis qf hewistics used

First of all, some summary information on the heuristic-use is presented. Yhere were a

total of 56 distinct heuristics used by the 15 sub
. lects and a total of'222 sub. icci-issucs

found. From figure 5-11 it can be seen that there is a wide variation in the numhcr of' Z__

issues Identified by individual subjects. The sub'ccts found between 4 and 37 1 9 .1 issues.

Less than half of the subjects found more than 12 issues.

8

40

i
0 E: IF,

Issues not found

24

-- -4 MI attribute

M hierarchy

4f,

Issums faund

156

Figure 5-11 Histogram of number ofissues found per subject

To further investigate this variation in the behaviour ol'thc ,, 1h., ccts. an analysis of the

overlap between the issues found by individual subjects was performed. The lighter

bars on figure 5-12 show this distribution. It is most likely that a particular issue will

.I
only identified by I out of the 15 sub-ects. There is a slightly lower chance of 2

subjects finding the same issue. The chances of' 3 or more subjects identifying the

same issue are less than 16%.

It might be argued that this small overlap is an artifact of the definition of an issue.

'I efi i. e.. the violation of a particular heuristic on a particular entit" - 'his d mition leads

to the violation of similar heuristics (from different authors) being treated as distinct

issues, and so fails to identify overlap where the rationale for the issue was the same.

This effect can be removed by collapsing the set of heuristics into oroups of similar

heuristics. However when this is done (shown by the dark bars on figure 5- 12), only a

slight improvement to the overlap between subjects is seen. The modal number of

subjects detecting the same issue has only increased from one to two.

60

50 D Individual heuristics

EGrouped heuristics

40

30

20

10

0 om 1--m F-Im
1 567 8

Number of subjects finding same issue

Figure 5-12 Subject overlap on issues

A larger change might have been expected frorn grouping the heuristics. I lowever, a

potential reason for this is in the selection of' the subset of the heuristics catalogue

presented to the subjects during the preparation stage. -I-lic selection deliberateIN

avoided the inclusion of similar heuristics. The remaining overlap is likely to be that

between the catalogue subset and the heuristics related to the nietrics suites used (and

157

between those relating to different metric suites).

In a given system, a subject can only use a system heuristic once, but a class heuristic

many times (once for each class in the system), and a heuristic for an attribute or

method even more times (the two most highly used heuristics apply to attributes and

methods respectively). A direct comparison between the usage counts for heuristics Z: '

of different entity types is. therefore, not very meaningful. It should also be noted that

the level of use of particular heuristics is also highly dependent on the system being

assessed.

Heuristics

IS attributý
Ll olclsý

hier-c3rohy
rnethod

IM system

M attribute
class
hierarchy
rr, ýthod
S, -IEtem

Figure 5-13 Heuristics and heuristic-uses shown by entity "'pe

Comparing the pie charts in figure5-1 3 also shows this relationship between usaLe

levels and entity-type. The first chart shows the distribution ofthe 56 heuristics hý the

type of entity to which they apply. The second chart shows the distribution ol'

heuristic usage by entity type. Method and attribute heuristics have a far larger share

of the usage than the heuristic count would otherwise suggest. The class and systclil

usage is smaller than their heuristic count would suggest. The first pie chart also

echoes the distribution of suggested heuristics from the literature. Most object-

oriented design heuristics are aimed at classes, rather than other entities in the design.

This may suggest that other areas offieuristic application have been undcr-cxploited.

5.4.5.2 Stwid-alone heuristic use

The description given in the section on heuristic application distinguished bct\ýccjj

three different types of heuristic use, comparison. rule and threshold. Since the case

Heuristic uses

158

study described here is a stand-alone assessment it would be expected that threshold

and rule-based heuristics would be used. The charts in Figure 5-14 do show a lower

proportion of' comparative heuristic uses than of comparative heuristics. However.

there is still a sizeable use of comparative heuristics in a stand-alone assessment.

"euristics Heuristic use

Figure 5-14 Use-type in heuristics and hcuristic-uses

Examination of the comparative heuristic uses show that there are two ways in Which

the subjects applied these to a single system. Firstly, the subjects could create their

o\vn thresholds for the comparative heuristics. For example, one subject was using L-

the heuristic 'the higher the inter-object class coupling the more rigorous the testing

needs to be' (Chidamber and Kernerer 1994). The subject measured tile coupling

using tile CBO metric and decided that a value of II was too high. t us introducing a

threshold not included in the original heuristic. The second approach taken Was to do

within-design comparison. liere an attribute on one entity in the system was

compared with other entities of the same type within the system. In this way tile

sub. lects cl , f'ectivcly identified outliers. For example, Chidamber and Kernerer (1994)

state that "the larger the number of methods that call be invoked I-roil' a class, the

greater the complexity ofthe class". Clearly, a large number of methods that can be

invoked are considered worse than a small number, but no particular threshold is

given. Rather than introducing their own threshold. some of the sub_) cct. s noted that a

particular class had the largest number that could be invoked (as measured by tile RFC

metric).

Fable 5-7 shows sublect performance by use-type. The threshold licuristIcs, "I'llicil

159

should suit this type of assessment, show no fialse problerns. The comparative
heuristics also have a fairly low false problem count. The highest error-rate is with Z__

the rule-based heuristics. Initially, a relationship between the rule-based heuristics

and the error-prone semantic heuristics was suspected for this result. However, the

rule-based false problems were found to be almost equally distributed between

semantic, hybrid and syntactic. Analysis of the data has yet to provide a satisfactory

explanation for the high rate of false problems with rule-based heuristics.

real problem false problem total
count 'yo count 'yo count

comparison 9 6 45
86.7 1 100

rule 12 6 159
79.2 20.8 100

threshold 18 0 18
100 0 100

total 1833
-)9 222

1 82.4 1 17.6 1 100

Table 5-7 Subject performance by heuristic usage-type

5.4.6 Differences between students and industrialists

It has been a point of discussion lor sorne tirrie whether the results ofenipirical work
based on student subjects gave an accurate picture of how industrialists would bellmv,

e. g., (Fenton and l"fleeger 1996; Shepperd 1995). Since this case study contains an

almost equal split of students and industrialists, it presents an opportunity to add sonic
data to this discussion.

The data I, or the number and significance ot'issues identified appears to sho\N a clear
distinction between students and industrialists. The number of' issues flound by the

individual students and the industrialists (summary data sho\vn in Table 5-8) was

significantly different (2-Sample t-Test (i = 0.05). There is also a significarit ((x

0.001) difIercrice in the distribution ol'the importance ol'the issues Jouild hetwecri the

two groups (Table 5-9).

160

Count Mean Median Min X
Students 9 21.4

-,
107

I Industrialists 1718.0 6
4--

18

Table 5-8 Summary of issues found bý subject tý pe

C ount Trivial Significant I niportant Total
Students 8 98 43) 141

Per subject 1.25 11.0 5.38 21.4,
Industrialists 7 1 14 47

Per subject 0. -14 7- 2.0 4.57 8.0

Table 5-9 Significance of issues found bN subject t. * pc

Although it is tempting to suggest that these differences are due to the student-

industrialist difference between the groups, there are a number of other differences

between the groups that might contribute to these results. For instance, the

'industrialists' are generally older (more mature) than the full-time students, their

mode of work as part-time students may also have affected the Nvay they perfOrr-ned

the task, etc. However the results are interpreted. there \\as clearly a difference in the

way these two groups performed (or at least reported) this task. Consequenfly. if on1v

full-time students had been used. the results from this case study would clearly have

been different.

This is a potentially significant result as much ofthe rescarch in software engineering

is based on work done with student subiects. If there 'is a su,, gest, oil that students and

professional engineers behave differently. it brings into question many existing results

that have been generalised from student -studies to industrial practice.

5.4.7 Subjects' views on measurement

The three pic charts shown in Figure 5-15 represcnt the answers given

questlonnaire concerning the subjects' views on measurement.

ill the

161

Helped Understanding

yes

Figure 5-15 Subjects' views on measurement

Question 1: 'Do youftel Mal relating ideas aboul quality lo mcasuremcill (hila 11(1. ý

helpedyou understand design qualiýv morefiully? '

Most subjects clearly thought that it had. This may indicate that measurement has a

role in the teaching of 00 design.

Question 2: 'Givensuitable lool support, wouldyou choose to appýv measurement to

help you design. /ulure prqjecls? '

Again, the replies were generally positive.

Qucstion 3: 'Wouldyour experience wilh lhis assignment makeyou moresupportive o/

a suggestion to implement a measurement programme in U C07171)U17.1'. 161- Which you

u,, orked? '

This question considered the change in attitude toward the implementat loll of' a

measurement programme following an experience of using measurement. Very Im

162

of the subjects seem to have considered this case study a negative experience.

5.5 Discussion

The case study, whilst providing interesting insights and suggestions for further work,

was not a controlled experiment and so no statement can be made as to whether the

results would generalise beyond the particular system used. Given this proviso, here is

a Summary of the results of the work and some conclusions drawn from it.

5.5.1 Summary of results
The first finding of the case study is that users of measurement may not give sufficient

thought to the selection of the measures that they use. They tend to use what is

provided for them or what they already know, rather than making a logical decision on

what they need to measure. This suggests that additional support should be given

within measurement tools to aid the user in selecting measures appropriate for their

Purposes.

In Figure 5-7, the usage profiles for the measures collected by the subjects are given.

It was shown how this chart could be used to assess the usage of the individual

measures. The level of metric references shows the subject's view of the importance

of the measure (or the attribute it purports to measure). The number of times the

measure is used to justify a problem shows how useful the measure proved to be (at

least within a given system). The ratio of justifications to real justifications shows

how accurate the measure is at identifying problems. In the system being studied,

coupling and cohesion were considered to be the most important attributes. Of the

CK metrics CBO, WMC and RFC were all used to good effect. DIT and NOC were

of little use in finding problems with this particular system (there was only one level

of inheritance in the system). LCOM was shown to be most likely to lead to

erroneous problem identification. These problems with LCOM support the criticisms

made by other authors (e. g., (Basili, Briand et al. 1995; Henderson-Sellers,

Constantine et al. 1996; Hitz and Montazeri 1996)).

Using syntactic heuristics leads to larger numbers of more accurate issues being

163

uncovered, but care must be taken to separate the trivial from the important.

Violations of semantic heuristics are almost always important issues, however, their

subjective nature means that great care must be taken to ensure they are being

correctly interpreted and applied.

Genuine semantic issues tend to highlight important problems. However, a high

degree of semantic issues raised by subjects were non-issues. This finding is strongly
linked to the problems with LCOM. It is felt that the use of syntactic measures (like

LCOM) as proxies for semantic attributes (like cohesion) is a practice that should be

treated with caution.

The subjects concentrated on measures and heuristics that operate at the class level.

This led to a large number of issues at the attribute and method level remaining

undetected. However, this was not a significant difficulty, as most of these issues

were not considered to be major problems. The relatively large number of heuristics

aimed at classes may mean that insufficient effort has been spent identifying heuristics

for other entity types. Alternatively, it may highlight the need for additional guidance
for designers to help them achieve better coverage of problems in other entity-types.

The subjects' focus on using class-level heuristics echoes 00 writer's concentration

on writing class-level heuristics. This raises questions about the much-hyped

'intuitive nature' of 00 development (Berard 1993; Coad and Yourdon 1991a). If it

is so intuitive, why are so many heuristics needed to ensure that the central construct

in 00 is used properly?

The case study highlighted a wide variation in the behaviour of the subjects. There

was a huge range in the number of issues identified and metrics used by subjects, as

well as a lack of overlap between the issues identified by individual subjects. It was

also shown that users of heuristics would apply comparative heuristics within a stand-

alone assessment. They did this either by supplying a threshold themselves when one

was not given in a heuristic, or by comparing entities within the design. Within

164

design comparisons seems a perfectly valid tactic and is effectively a form of outlier

analysis. However, the ad hoc creation of thresholds is likely to lead to problems,

Particularly if there are multiple assessors each working to different values.

Nothing can be said about the general usefulness of particular heuristics from a single

case study, but semantic heuristics and rule-based heuristics appear to be more error

prone. The problems with the semantic heuristics are due to the use of the LCOM

measure. However, the author would suggest that these problems are inherent in the

class of measure to which LCOM belongs - those that use of syntactic proxies for

semantic attributes. The reason for the poor performance of rule-based heuristics

remains unclear.

There were significant differences in way the full-time students and the industrialists

carried out the study's task. Since much of the empirical work published within

software engineering utilises student subjects, this raises the question of whether the

results of such studies can be generalised to industrial practice. The significance of

this finding is considered further in the discussion chapter.

The views expressed by the subjects were generally positive, with the large majority

of both students and professionals saying that, given suitable support, they would use

measurement for future projects.

5.5.2 Tbreats to validity
It must be acknowledged that this study took place in a university environment as an

assignment, and not in the work place on a real project. In general terms, it would be

difficult to try to predict whether, and in what way, this may have affected the results.
One specific problem is the possibility that the reports and questionnaires reflected

what the subjects believed their tutor wanted to hear. To alleviate this problem, it Was

made clear to the subjects that their questionnaire answers would in no way affect
their marks. They were also informed that the analysis of the questionnaires and

reports would only begin after the assignment marking had been completed.

165

Another potential threat is the size of the system used in the case study, 15 classes is

not an industrial scale piece of software. However, the task was essentially a design

review, and design reviews of this detail would only be done in practice on small

subsystems. A complication is that when reviewing a subsystem, the context of the

entire system must be considered and this was not present in the case study. As has

already been mentioned, the size of the application rendered some of the metrics less

useful than might have been the case in a larger application. The example mentioned

previously was that DIT was of little use in a system containing only one level of

inheritance.

In dealing with a particular application in such depth, some of the results are

obviously dependent on the set of potential problems with this application. Some

metrics or heuristics may have been used heavily because there were problems with

this application that they were useful in highlighting. Similarly, some generally useful

metrics may have been underused because the application was not weak in their areas

of use.

The subjects used in this study would certainly not be classified as experts and so the

results of this study may not be relevant to more experienced practitioners. However,

their level of experience is similar to that of many professional software engineers and

so there is scope to believe the results have some applicability to industry.

5.5.3 Future work

The work presented here is only part of the analysis from the evaluation section of the

case study. There is still work to do on this case study to analyse the changes

suggested by the subjects as a result of the initial assessment and of their comparisons
between the original version of the system and their altered versions.

There is also evidence that different subjects used different approaches to assessment.

This difference might be exploited to improve fault detection in design reviews, by

166

utilising the reduced issue-overlap between styles in choosing review teams. For this

to be possible there would need to be a way of identifying different styles before the

review. This might be done by finding some predictor of assessment style or by

showing that individuals have consistent styles that can be identified in one review

and used in team selection during subsequent reviews.

This work suggests that there may be differences in the way students and industrialists

perform software tasks. It would seem prudent to undertake work to directly test the

validity of generalising such student-based empirical studies to industry. This is

unlikely to prove a straightforward piece of work as the differences between students

and professional engineers may be significant in some types of tasks but not in others.

As previously mentioned, there have been far more suggestions in the literature for

class level heuristics. This might suggest that more time be spent investigating

heuristics for other entity types.

This chapter has concentrated on the application of measurement to design

assessment, but this is just one use of design measurement within the software

process. Any development activity in which a design is created, altered or reviewed

could potentially use design measurement. Empirical studies might also be used to

investigate the use of measurement in areas such as initial design formation; design

comparison during iterative design refinement (covered in the second part of this case

study); measurement within QA and various software maintenance tasks.

5.5.4 Conclusions

The empirical work reported in this chapter was a piece of exploratory work intended

to help rectify the lack of empirical support for the utility of measures in product

evaluation. In particular, the study involved a design assessment of an object-oriented

system. During the design of the case study three main questions were set.

Questionl: 'What support is necessary to enable the practical application of design

measurementT

167

The lack of rationale behind measurement selection shown by the subject suggests that

support for measurement selection needs to be supplied. As has been previously

mentions there is a general consensus that measurement collection needs to be

automated. None of the subjects in this study collected any measures other than those

for which there was automated support. It is also clear that anyone who is to use

measurement data must be supplied with sufficient information to be able to

understand what the measurement means and how it can be used. The subjects

avoided collecting measures if they didn't feel they had a good understanding of their

purpose. If measures or heuristics are applied without an understanding of their

limitations it is likely they will be misapplied.

Question2: 'In practice, how would engineers use measurement results during design

evaluationT

There was a wide variation in the way measures were used by the subjects. The

variation was both in the number of metrics and heuristics used and in the approach to

using them. Some subjects took a more measurement-centric approach, basing

assessment directly on the measurement results. Others took a more heuristic-centric

approach using the measurement results as support for assertions about heuristic

violations.

The lack of overlap between the issues identified by the subjects has a number of

implications. It seems unlikely that similarity of individual reviews could be used as a

measure of the reviewer's competence or of the review's completeness. Additionally,

it suggests that several reviewers should be used to get reasonable coverage of

potential problems.

The subjects didn't always use the measurement results in the manner expected. neir

ingenuity in managing to apply measurement results with comparative heuristics

during a stand-alone assessment was particularly interesting.

168

Question3: 'Given the necessary training and experience would engineers choose to

apply measurement to help design systemsT

The results have shown that, on the whole, the subjects did a good job of spotting the

important high-level problems with the system and it seems the measures were a real

aid in doing this. Attitudinal results from the post-task section of the questionnaire

suggest that the subjects found the measurement-based approach to assessment helpful

and would be more likely to use measurement in design assessment as a result of the

experience.

169

Chapter 6 Discussion

This chapter is divided five sections. Section I gives a brief summary of the work
done, which provides a reminder of the content and flow of argument from the main
body of the thesis. Section 2 summarises the findings of the work and discusses its

consequences and significance. An evaluation of the work done for the thesis is

presented in section 3. It raises possible weaknesses in the methodology and potential

threats to the validity of the empirical results. Section 4 describes how the work could
be developed further and what new work has been suggested by this thesis. The

chapter concludes in section 5 with a discussion of the main contributions of the work.

6.1 Summary of work done

The goal of this research is to examine the theoretical limitations and practical

considerations of people using measurement to assess design quality in real situations.
The work focused specifically on the assessment of object-oriented designs. A natural

starting point for the investigation was the current state of the art in object-oriented
design assessment. The traditional view of quality was presented by discussing

validation, verification and evaluation. Previously published methods of software

quality modelling were also examined. Within 00 design in particular, various
design heuristics have been suggested as a means of assessing design quality. The

nature of these heuristics was examined and their application discussed. The extent to

which the standard qualities identified by quality modelling can be automatically

assessed was also examined.

The particular view taken of automation in design assessment was a measurement-

centric view. To consider automation of design assessment it is necessary to examine

both the extent to which automation is theoretically possible and the mechanisms by

which it may be achieved. This means that the mechanisms of software measurement

also had to be considered. An introduction to software measurement was presented

170

which included a definition of what software measurement is and why measurements
are taken. Measurement related terminology was also defined to help clarify the
discussions. This introduction also discussed the important relationship between

measurement and modelling.

If measures are used to assess quality, it is important that the measures correctly

represent the attributes they purport to measure. This is the job of measurement

validation. Both the theoretical and empirical validation of measures were discussed,

including property-base and algebraic techniques. The most widely cited style of

validation is based on the application of measurement theory. An extensive
discussion of the problems associated with the application of measurement theory is

presented.

In considering the manner in which measures are developed and used, it was proposed

that the development and the use of measures should be addressed separately. These

two aspects of measurement are presented as separate processes showing the stages

that measures go through both during their development and their subsequent active

use.

One point to emerge from the review of related software measurement research was

the need for automation of measurement. A discussion of the facilities available in

current measurement tools was presented. This showed the de iciencies in their f

support for measurement-based design assessment. A new tool was proposed as a

proof of concept for some of these facilities. The conception, design, building and

testing of this tool were discussed. The completed tool was evaluated against the

criteria for which it was built and also against a range of other measurement tools.

The evaluation showed that the tool produces accurate measurement results and has a
favourable set of features in comparison with both research based and commercial
measurement tools.

The empirical section of this research work is intended to investigate the real-world
use of automation in the assessment of object-oriented designs. In the study IS

171

subjects (full-time student and industrialists) were asked to assess the architecture of a

small system (15 classes) written in Java using design heuristics and measurement.

The results of this evaluation along with answers from a follow-up questionnaire were

analysed to show how the subjects went about the task of assessing the design.

Evidence was gathered to show the approach the subjects adopted for the task and

how effective they were at using automation to assist in the evaluation.

6.2 Summary of findings

This section collects and surnmarises the findings presented in the body of the thesis.
The intention is to show the contribution to knowledge provided by the work.
Findings are presented in a chapter by chapter order.

6.2.1 Assessing 00 designs

The review of existing quality modelling methods clearly shows the difficulty (and

pointlessness) of trying to produce a single definition of quality for all viewpoints,

goals and environments. This means that quality models must be built on a per system

basis. Anyone reviewing quality must, therefore, be clear about their assessment goals

and the viewpoint(s) from which the review is done. Although the quality models

themselves may have to be built on a per system basis, it may be possible to create a

standard process for deriving these custom models. The author believes that the

future quality research should focus in this area.

Two main questions were posed when considering the degree to which quality

assessment for 00 designs can be automated. The first was to determine the degree

to which quality is directly assessable from the information within 00 design models.

ne second was the degree to which this assessment could be automated. To the

author's knowledge this was the first attempt to quantify these properties of design

quality. The information on what is directly assessable at design-time is useful for

anyone performing design reviews or building quality models. Attempts to assess

quality factors where the information is not available for direct assessment can lead to

dangerous and inappropriate operational definitions of factors. The fact that not all

172

assessable quality factors can be automated, shows that tools can never produce as

complete an assessment of a designs quality as a human reviewer (unless artificial
intelligence improves greatly!). It must therefore be accepted that either assessment is

partial or that expensive expert effort must be included in any assessment.

The differences in process between 'traditional' and 00 development are well
documented (de Champeaux 1997; Yourdon 1994). Consideration of this fact in

relation to assessment activities shows these differences may introduce additional

problems for design assessment. Designs are often left intentionally incomplete

compared with what would be possible in the design notation. This means that

assessment must be done on incomplete designs. The incremental approach often

adopted in 00 projects often leads to partially completed, but working, classes that

are augmented in later increments. How do you allow for this partial design and

construction when applying thresholds and heuristics to such systems? This is still a

question for further work.

When considering the automation of design assessment, the use of measurement as

the means of automation is a decision that almost makes itself There are no real

alternatives. Once the use of measurement is accepted the question then becomes how

are the measurement results to be interpreted? The idea of heuristics as formalised

best practice has already been proposed for object-oriented design. Heuristics

appeared to be a candidate for interpreting measurement results but additional
investigation was necessary into the suitability of heuristics and the relationship
between heuristics and measures. This work resulted in the construction of a

heuristics catalogue and the discussion of heuristics given in chapter 2.

The heuristics catalogue brings together suggestions for heuristics from a wide range

of sources and as such is probably the largest and most complete collection of 00

design heuristics available at the moment. The consideration of the properties of

heuristics and the ways in which heuristics are applied has led to additional
information being stored with the heuristics that should make it simpler to find and

apply the correct heuristic for a given situation. This additional information includes

173

considerations such as trade-offs, contradictions, lifecycle applicability and

objectivity. The catalogue should prove useful to those trying to apply 00 design

heuristics. The discussion on heuristic properties and relationships should give those

identifying and publishing heuristics additional guidance on how they should be

described (as is done with design patterns).

6.2.2 Software measurement
Attempts to structure the software measurement chapter were initially hampered by

difficulties with the exact meaning of widely used terminology. This prompted the

attempt to clarify these terms given in the measurement chapter (this was originally

started purely for the benefit of the author himself). It is difficult to discuss ideas

without a clearly defined and agreed vocabulary. Hopefully this discussion will bring

people's attention to the problems with the terminology, and start some discussion

leading towards the development of an agreed measurement terminology.

In an attempt to produce a description of software measurement that avoided the

problems which initially hampered the writing of the software measurement chapter

two innovations were introduced. The first of these was the clear separation of the

different elements of measurement. A distinction was made between the techniques

available in measurement and the activities in measurement processes. These

processes were further distinguished by separating the development of measures from

their subsequent use. This was done by describing measurement-related activities

within two distinct measurement processes - one for development and one for use.

This separation helps to remove any confusion that may occur from the conflation of

these distinct sections of measurement. It provides different focuses for the academics

developing measures and the practitioners using them.

The second innovation was the central use of modelling in the description software

measurement. There have been suggestions in the measurement literature that

measurement is meaningless without modelling (Kyburg 1984). An attempt was

174

made in the thesis to clarify the position of modelling within measurement (and

measurement within modelling) and to make modelling central to measurement
definition and validation. This is done both by extending the measurement model

suggested by Shepperd and Ince (1993) and in describing the activities Of

measurement in terms of the models built and the activities to validate and apply these

models. This view helps to focus on the uses of measurement when defining a

measure and clarifies the validation necessary before (and during) real-world use of

the measure.

6.2.3 Measurement tool
When deciding on the information from a design which is to be stored in a

measurement tool there is a clear trade-off to be considered. it is a trade-off of

gn nf rmation simplicity and regularity against richness of representation. Richer desi i0

enables more measures to be defined and leads to more flexibility in how designs are

analysed. However, it creates difficulties when using the same measures or analysis

on design information taken from different sources. Different 00 programming

languages and design notations share some central concepts, but differ in the detail of

the concepts they represent and the manner in which they are represented. This means

that central 00 concepts considered at a high-level are common to all and are easily

stored within a common repository. However, the fine detail of even central 00

concepts differs from notation to notation and concepts more on the periphery of 00

will be present in some notations but absent from others. This problem becomes

apparent when attempts are made to define general 00 measures (as observed by

Churcher and Shepperd (1995b)) and also in attempts to create cross-source

measurement tools. What you gain in specificity you lose in comparability. The

implications for measurement definition are that measures which depend on the fine

conceptual detail or peripheral concepts will have to have separate definitions for each

language or notation to which they will be applied. Measurement tools that

implement this type of measure are likely to be those intended for use with a single

language or notation.

175

One design consideration of the tool was how the design information was represented
internally. It was observed that the internal format in which the design information is

stored would limit the type of measurements that can be taken, and impact how easily

particular measures may be implemented. The choice of storage format also imposes

the mechanisms for defining measures. An object meta-model and a relational

representation were considered for the tool. If the user wants to define measures, a

widely used and declarative language such as SQL may be beneficial. If few users

actually want to create measures, an object meta-model approach may be more

flexible. There is also a tie in with providing guidance on measure selection. Support

for a method such as GQM may highlight the need for new measures and increase the

likelihood that users will wish to define these measures.

Measurement texts often cite the need for tool support for measurement, e. g., (Grady

and Caswell 1987; Fenton and Pfleeger 1996). The testing of the tool provided some

hard evidence in support of this. The results produced by the tool were compared

with that produced by hand calculation. It was noted that for the system being

measured (the 'VocabTutor' from the case study) that the tool took around 2 minutes

to run its full set of measures. To hand calculate the same set of measures took 2

days! It has been mentioned previously that assessment cannot be fully automated. If

hand collection of the subjective measures is unrealistic in terms of time (and so cost)

it may mean that partial automatic collection will be the preferred option. As well as

the issue of time there is the issue of accuracy. The hand calculated results contained

several errors. Although the task in itself is simple, errors will always occur and it is

felt that the tedious repetition involved in measurement calculation was a contributory

factor. Tedious and repetitious tasks are always cited as obvious candidates for

automation.

Churcher and Shepperd (I 995a) presented an argument that counting rules for

measures should be more precisely defined. They used metrics from the Chidamber

and Kemerer (1994) suite to provide examples to justify their position. Chidamber and

Kemerer (1995) replied to this criticism saying that these problems were largely

176

synthetic and the 'correct' counting rules could be derived by the simple application of

common-sense. The comparison of measurement results between MOT and other

tools showed substantial differences due to the variation in the counting rules. This

provides supporting evidence for the position taken by Churcher and Shepperd

(1995a) - that when measures are defined or presented, precise and explicit counting

rules should be given.

6.2.4 Case study
Results from both the report analysis and the questionnaire show that users

-of
measurement tend to apply metric suites as provided by their authors Without giving

more detailed thought to metric selection. This shows that measurement users should
be given guidance in selecting what to measure based on their particular goals.
Methods such as GQM (Basili, Caldiera et al. 1994) could be usefully employed here.

Builders of measurement tools (or CASE tools which include measurement) should

consider adding automated support for measurement selection.

Both comments in the subjects' reports and the results from the questionnaires showed

that the comprehensibility of measures is important to users. If users don't understand

what is being measured or how the results should be applied, they will avoid using a

measure. Some measures are simpler or more intuitive than others. Simple, clear

measures are likely to be used in preference to complex ones (even if they do not

capture the attribute as well). This means that particular care should be taken when

describing more complex measures. it should be made clear to the users what is being

measured and give examples of how these measures are collected or calculated. This

could be aided by measures being initially presented (or later catalogued) in a

consistent manner.

The analysis of heuristic use has shown that syntactic heuristics lead to a greater

number of issues being found than with hybrid or semantic heuristics. Syntactic

heuristics should be capable of complete automation. This means that large numbers

of potential problems can be found using automation. However, many of these

syntactic issues were trivial problems. This means that care must be taken not to get

177

bogged-down in the syntactic trivia that an automated assessment tool may generate.
It may be worth considering allowing users to ignore trivial issues or concentrate

solely on the important issues when using such a tool.

Another result from the case study analysis is that the violation of semantic heuristics

usually indicates important problems. Although generalising from a case study should
be done with caution, this may have serious implications for automated design

assessment. Design quality in 00 systems is heavily linked to the semantics of the

constructs used (classes, methods, etc.) and these semantic heuristics cannot be

automatically checked. This suggests that not spending time on those elements that

must be done by hand is likely to result in missing important problems. Clearly there

is trade-off here between cost and coverage for managers planning design assessment.

The LCOM measure has previously been criticised by a number of authors and the

results from the case study supports these criticisms by showing that the LCOM

metric is likely to indicate false problems. The author believes that this tendency to

show false problems is due to LCOM being a syntactic proxy for a semantic attribute

(cohesion). There is clearly a tendency for metrologists to try to define objective

measures for attributes that they perceive to be important, even if this attribute is

semantic in nature. The lesson to be learned here must be that those involved with

measurement should think carefully before using (or suggesting) measures which

create a syntactic proxy for a semantic attribute.

When performing assessment the subjects appeared to concentrate their effort at the

class level. A result of this is that problems with other types of construct often went

unnoticed. This may be a symptom of poor measurement selection or a natural

tendency to look at the class as the main construct for 00 implementation. It may be

necessary to help assessors to focus on other entity types to ensure a better coverage of

possible problems.

178

The subjects showed a wide variation in approach to assessment. This is shown by the
large variation in number of issues identified and metrics used and also by the lack of

overlap between the sets of issues identified by different subjects. The low overlap in

the issues identified by the subjects suggests that teams (and possibly largish teams)

rather than individuals should be used in design reviews. The differences in approach
taken by the subjects may be turned to an advantage. If individuals have consistent

approaches and these can be identified, it may be helpful in selecting review teams (to

optimise coverage and minimise overlap).

When considering the type of heuristics available and how they were likely to be

applied, a group of heuristics was identified which codified a tendency. The heuristics

said that 'more X was better' or that 'Y should be minimised'. It was considered that

this group of heuristics would only be used in comparing alternative entities.

However, the subjects unexpectedly applied these heuristics within stand-alone

assessment. They did this by creating their own threshold values. Should users be

prevented from using comparative heuristics in this fashion? Or, if they want

thresholds for the attributes addressed by comparative heuristics, should thresholds be

created for them (this would at least ensure consistency). This would in effect be

creating new heuristics to fill a perceived need.

Significant differences in behaviour were identified between full-time students and

industrialists. This may have major implications for those performing empirical

studies in software engineering. Many of the published studies utilise student

subjects. This finding raises questions as to whether these results can be generalised

to industrial practice. - It also questions whether student subjects should continue to be

used. However, this result is from a case study and should not itself be generalised to

all empirical sOftware engineering research. Further work should be done to support
(or challenge) this result.

A final result was that, after the study, the subjects' views were generally positive

about the use of measurement for design evaluation. This is an encouraging result,

especially for those considering introducing measurement-based assessment. Even if

179

measurement were actually useful in design assessment it would be hard to introduce

without the support of those being asked to use it.

6.3 Evaluation of the research work

It is important with any piece of research to able to dispassionately evaluate the

problems and limitations in the work (as well as its strengths). This evaluation will

cover the main parts of the thesis in chapter order. The first two chapters discussed,

'assessing object-oriented designs' and 'software measurement', are largely reviews of

the associated literature. This means that an evaluation of these chapters must centre

on the scope of the literature search, the selection of material and the organisation of

the material presented. The chapters entitled 'the design measurement tool' and 'the

empirical study' are primarily doing chapters. Here the evaluation is focused more on

the work done and method followed.

6.3.1 Assessing object-oriented design

The literature in the areas object-oriented design and software quality is extensive". A

problem with writing a chapter of this sort is in the selection of material to include

(and omit). The approach taken to selection and presentation was to start by covering

the more general questions at a high-level to provide a framework in which to position

the more detailed and more closely focussed material towards the end of the chapter.

By ' this approach, the specifically relevant questions of assessability and

automatability can be tackled in detail and positioned within the wider body of

research without the inclusion of less relevant material from this extensive area of

literature.

There rnay be a tendency in a literature review chapter to simply describe the extant

work and not to discuss it with a sufficiently critical eye or provide any new synthesis

01r analysis from the material. This chapter endeavoured to include a critical analysis

of existing quality methods, a cataloguing and structuring of design heuristics, and a

new quantitative analysis of assessability and autornatability of the standard quality

factors.

180

There were some difficulties encountered whilst writing this chapter. One of these

was in attempting to tackle the philosophical aspects of quality. The author found

that, although this type of question was an interesting discussion point, it tended not to

be helpful in such a practical discipline and metaphysical results are impossible to

validate. Another difficulty was in assessing automatability. If a quality model for a

system is dependent on viewpoint, goal and environment then the set of lilities' to

check for autornatability will also be dependent. This means that the degree of

automatability available will also vary with viewpoint etc. The analysis given of the

FCM 'ilities' is therefore only demonstrative and not definitive.

6.3.2 Software measurement
As with the design assessment work, the structuring of a discussion of software

measurement in a useful and novel manner is not an easy task. This chapter attempted

to avoid a standard presentation by concentrating more on the processes involved in

measurement than the measures themselves. It is hoped that this is a more forward

looking and useful review than a standard chronological retrospective.

One potential criticism of the thesis is the way that measurement is the only approach

to assessment that appears to have been considered. Why only a measurement-centric

approach? The answer to this is to be found within the wider context of the thesis,

which is concerned with automatability. Automation requires objectivity and, no

alternative means of objective assessment were found during the literature search.

6.3.3 The design measurement tool
The development of the tool was a somewhat painful and fraught period of the PhD

study. There were several difficulties with the development. First of these was trying

to building a large and complex tool single-handed in a relatively short period of time.

It is often said that such development is required only as proof of concept and needn't
be of industrial strength. In this particular case the tool was also to be used in the

empirical section of the study. Problems with the function of the tool could adversely
impact the conduct of the case study and seriously jeopardise the PhD.

t The INSPEC database lists 1326 publications in the category of 'object-oriented design' and 4497
publications on 'software quality' (figures taken at 14/06/01)

181

One of the particular difficulties in the development was its investigative nature. The

tool development involved the exploration of what an ideal measurement tool would

provide. This meant that the requirements varied substantially during development

and meant that the time spent in rework was considerable. Another difficulty was the

problem of attempting to produce a cross-source tool. In hindsight, from the point of

view of what the tool needed to do for the case study, this was an unnecessary

complication, although it had its justification from a more general research viewpoint.

A questionable design decision was the use of a relational representation. While this

approach was shown to be plausible, using an object meta-model directly as the

representation would have been more flexible. One of the original considerations in

making the decision was that with the relational model new measures were created by

writing SQL and with the object meta-model new measures would have to be

programmed in a high-level language. It was felt that SQL would be more

approachable to a larger number of users. However, the number of tool users willing

or able to construct their own measures seems very limited". This suggests that the

additional flexibility of the object meta-model approach should have been the

deciding factor rather than the approachability of SQL.

in general the author would question the wisdom of a PhD in which the success of

such a significant piece of development was central the successful completion of the

PhD itself Where the development is in an area that is of interest to commercial

software houses there is the possibility of commercial tools overtaking the research

development (this happened to an extent to this development). Where development

work is undertaken as part of research it shouldn't be too ambitious with the amount

of functionality, it shouldn't be too exploratory (should have well-defined fixed

specification) and should be used for proof of concept only.

9 No tool users have contacted the author about creating new measures, despite the measurement tool
being available on the web for almost 2 years.

182

6.3.4 The empirical study
There are standard sets of questions to consider when reviewing the conduct of an
empirical study. These are generally grouped into four sections, construct validity,
internal validity, external validity and reliability (Yin 1994). Some authors use an
expanded fourth category, termed 'conclusion validity', which includes, but augments,
reliability (Wohlin, Runeson et al. 2000). In this discussion reliability will be used, as
the additional questions posed in conclusion validity are only applicable to formal

experiments. Rather than listing all possible threats to validity only those questions
which raise potential problems for this particular study will be discussed.

Construct validity considers whether the concepts being studied are correctly
represented by the measures being used to describe them. Wohlin lists 'inadequate

preoperational explication of constructs' as one of the design threats to construct

validity. This means that 'constructs are not sufficiently well defined, before they are
translated into measures... ' (Wohlin, Runeson et al. 2000). In the case study the

subjects were asked to assess the 'quality' of the system being studied, but as has been

discussed elsewhere in this thesis, defining quality is not an easy task. The reports

produced by the subjects do suggest some variation in their interpretation of 'quality.

Evaluation apprehension is another possible threat to construct validity. Since the

task was set as an assignment there is a possible bias due to association of the task

with the subjects' course marks (although this was recognised in the design and action
taken to try to reduce this effect). As was discussed in the empirical study chapter, it

was felt that some of the findings might be dependent on the particular application
being studied and this could lead to a lack of generalisability. This problem with
using a single system in the study is an example of 'mono-operation bias' (Wohlin,
Runeson et al. 2000).

Internal validity deals with establishing the causal relationship between the constructs
being studied. The case study described in this thesis is mainly descriptive and
exploratory rather than causal so few of the possible threats apply. There are,
however, a couple of points worth mentioning. Instrumentation can cause a threat to
internal validity. This would include problems of design or wording in data collection

183

forms (such as the case study's debriefing questionnaire) and also any problems with

the measurement tool or training in the operation of the tool. The subject's failure to

use the tool in the manner expected must raise questions about the effectiveness of the

training they received. Although training was given, and the author believed at the

time that the training was sufficient, it may be that more extensive training (or a

different approach to training) would have changed the way the subjects used the tool.

This in tum may have effected some of the case study's results.

Subjects withdrawing during the course of a study is also a threat to internal validity

(this is termed mortality). If withdrawals are not evenly spread in the population this

will bias the sample of the population being studied. In the case study there was one

subject who, in effect, chose to drop out of the study by deciding not to complete the

task in the manner specified. It is however hard to envisage any significant effect on

the results from the loss of a single subject.

External validity deals with the degree to which a study's findings can be generalised.

The main threats to external validity come from the academic setting of the case

study. The system being studied is a relatively small one, the subjects are not all

professional engineers and the assessment was done in a university environment as an

assignment rather than being performed on a real project.

However Wohlin, Runeson et al. (2000) state that:

Threats to external validity are reduced by making the experimental

environment as realistic as possible. On the other hand, reality is not

homogenous. Most important is to characterise and report the

characteristics of the environment, such as staff experience, tools,

methods in order to evaluate the applicability in a specific context.

Although questions are raised as to whether the results would generalise to industrial

practice, there is in reality no standard industrial practice. All that can be done is to

report the characteristics of the enviromnent within which the study was carried-out

along with the results. This has clearly been done with this study. A further point

184

often made regarding generalisation from case studies is that no attempt should be

made to generalise the results themselves. In a case study the results should only be,

generalised to theory which then must be tested by subsequent experiment.

Reliability concerns the repeatability of the operations and measurements within a

study. There arc a number of threats to the repeatability of the study. The use of

subjective 'expert, judgements, e. g., the categorisation of issue importance, is, a

potential problem. More than one evaluator was used to make these judgements more

reliable, but some variation must still be expected if this was repeated by different

evaluators. There were also some fuzzy areas of interpretation when transcribing the

information from the subjects' reports into the case study database.

In hindsight there were a number of problems with the case study that might have

been avoided. The task that was used produced a large and complex structure of data,

which is difficult to extract and analyse. Assessing the quality of a design is a very

wide ranging task and refining the task to reduce its scope would probably have

helped the data complexity problem. The author would also recommend not

underestimating the time necessary for data acquisition and analysis for such complex
data sets. Another problem with data collection concerned the action logging within

measurement tool. In the design of the case study it was intended that action logging

in the tool would be another source of data. The subjects did not use the tool in the

manner expected and this left little useful data in the logs. It might be useful to try to

get more interactive use of the tool by the subjects to facilitate better triangulation of

evidence through action logging. Forcing the subjects to give more thought to metric

selection by removing the predefined metric sets from the tool might do this. An

approach that might be taken in the future would be to ftirther develop the tool to give

more assistance with metric selection and result interpretation. A preliminary study

may have helped to identify some of the problems with the final study. However, as

has already been mentioned, the case study was fixed in time by the teaching calendar

and it proved impossible to schedule a preliminary study in the time available.

Case studies are sometimes considered to be a second-class citizen of empirical

185

studies. There is a feeling that research should be done with the utmost rigour and

that only formal experimentation has this necessary rigour. As Yin (1994) states
'investigators who do case studies are regarded as having insufficient precision,

objectivity, and rigor'. However, there are several forms of empirical approach

available to the researcher, each with their own strengths and weaknesses, and a

predilection for experimentation may result in the most appropriate technique not
being used. In the design of the empirical work the author's initial inclination was a

preference for experimentation. Practical and ethical considerations meant that this

was not possible and so a case study approach was used. This proved to be fortuitous.

The use of a case study approach rather than an experiment allowed a much richer

view of the subjects' use of measurement in assessment. This was felt to be

particularly beneficial in view of the limited amount of previous work in this area.
With little prior knowledge of how subjects would use measurement it would have

been extremely difficult to design a good experiment. This means that 'chance'

practical considerations actually forced a correct methodological decision.

6.4 Further work

The findings of a piece of research are not its only outcomes. Another type of

outcome is the questions that it raises and the opportunities for new work that it

presents. This section reviews suggested further development of the work done

toward this thesis and discusses new areas of work that this research makes possible.

The work on heuristics presented in the 'assessing object-oriented design' chapter can

clearly be taken further. More work is necessary in refining the structure of the

heuristics catalogue and analysing the trade-offs and contradictions between the

individual heuristics. Additional work is also needed to continue the collection and

discovery of heuristics. An analysis of the heuristic catalogue (and the heuristics used

in the case study) shows a large number of class level heuristics. This may indicate

that many heuristics for other entity-types that have not been found (due to

concentration on classes). Alternatively, there may simply be more design

considerations with classes and hence more heuristics defined for them.

186

The review of the measurement literature shows that there are a number of areas
where further work is necessary. These include:
1. deciding what is needed to fully define a measure;
2. moving towards agreement on what is considered sufficient validation fo r

measures (sufficient before publication and sufficient before real-world use);
3. agreeing standard definitions for measurement terminology and ensuring the

interaction between the various dimensions of measurement description are fully

understood.

Further development could clearly be made to extend the facilities of the design

measurement tool. Obvious further work includes:
I. creating input mappings for addition sources of data (e. g., other 00 languages and

CASE tools);
2. adding one or more 'MeasurementMethods' to the tool to give assistance in

measurement selection;
3. adding assistance in result interpretation, e. g., thresholds and acceptable ranges,

outlier identification and design comparisons;
4. extending the number of measures available in the tool

The results presented from the empirical study are an investigation of the use of

measures in 'stand-alone' design assessment. There are many other development

activities in which measures might usefully be applied. The first step in this direction

will be the analysis of the second half of the case study data, which deals with the use

of measurement to compare design alternatives.

It has been mentioned previously that case studies can only be generalised to theory.

This clearly leaves additional work to be done in designing and running formal

experiments to try to confinn the relationships suggested by the study. One of the

more important results for this type of further investigation is the seemingly different

behaviour between student subjects and industrialists. If this difference were

confirmed it would have major implications for the design of empirical studies in

187

software engineering. Such studies are often performed with student subjects but the

study's designers often intend their results to generalise to industry.

The apparent differences in the subjects' behaviour could be further investigated. As

mention earlier, these differences of approach could be applied to help maximise

coverage and minimise overlap in design reviews. Further investigation would need
to establish whether distinct types of assessment approach do in fact exist. There

would also have to be additional work to check whether real benefit could be gained
from using this reviewer classification in team selection.

6.5 Conclusions

Rather than making a single large advance, this thesis makes a number of smaller but

still significant steps on a number of fronts. The quantitative analysis of assessability

and automatability of quality factors for object-oriented designs indicates the degree to

which 00 design assessment can theoretically be automated. Measurement was

proposed as a mechanism for automation. Consideration of current measurement

techniques led to a new model-based structure for considering the process of software

measurement. The extended view of object-oriented design heuristics provides a

mechanism for linking measurement and assessment. The development of a flexible

measurement tool provided many insights into the functionality that measurement

collection tools should supply and the potential problems in their development and

deployment.

A new empirical study was described which assessed how these techniques work

together in practice to facilitate the automated assessment of object-oriented designs.

The study has shown that measurement can successfully be used to aid design

assessment. However, automation can introduce its own problems. Care must be

taken to avoid getting bogged down in the syntactic trivia that a tool can generate.

The desire for automation can also lead to the definition of syntactic measures for

semantic attributes, such measures may be problematic. The study also shows the

importance of semantic issues in design assessment and in doing so shows the

188

continued need for human input.

This work examines a particular use of software measurement - object-oriented design

assessment. There is a body of existing work that uses measurement to assess quality

by looking for correlations between measures and external quality indicators. This

thesis is distinctive because it examines a use of measurement that aids designers in

finding specific problems at design time. It also shows how people actually use

measures in this practical situation.

189

Appendices

Blank,

n'

Original

191

Appendix A OOD heuristics catalogue

The heuristics collected below are generally given verbatim, but some have been

reworded to present ideas as positive heuristics or to enable the ideas to be presented

outside of their original context.

A. 1 Heuristic classification
A large number of general design principles for 00 systems have been proposed.
These heuristics are given below. They are collected into groups relating to the same

00 construct/idea. Some heuristics relate to more than one group, e. g., heuristics for

coupling in inheritance hierarchies. In these cases, a rather arbitrary decision must be

made as the group within which a particular heuristic is presented.

The break down of the groupings is as follows:

Inheritance

" Depth of hierarchy

" When to use / not use inheritance

What inheritance should model

Multiple inheritance

Miscellaneous inheritance

Aggregation

Association

0 Cluster

0 Class

0 Abstract Classes

0 Coupling

Cohesion

Information Hiding

Message Passing

192

" Service

" Attribute

" Protocol

" Polymorphism

" Dynamic Modelling

" Miscellaneous

As well as grouping heuristics by construct, the heuristics may be classified in a

number of other ways.

Heuristics may give guidance on a product, i. e., the design itself. They may be

guidance for the process used for producing the design or the notation used to express

the design. They might also be heuristics for managers trying to control the process.

This classification is shown in the second column of the heuristic tables, 'Prod I Proc

/ Not / Man'.

A fixther way of subdividing these heuristics is by the point in the life cycle at which

they may be applied. The following abbreviations are used:

Life-cycle Activities

AN Analysis

AD Architectural Design

DD Detailed Design

CO Coding

ALL Applies across all life-cycle activities.

AD - DD Means a heuristic is applicable from architectural design to detailed

design.

Another way of classifying heuristics is by their likely method of assessment.
Heuristics may be objective, partially objective, or subjective. Objective heuristics can

193

be objectively assessed and quantified. Objective/subjective heuristics can be

measured to some extent, but subjective assessment of the result of this measurement

is still required. Subjective heuristics are wholly dependent on the subjective appraisal

of the designer or reviewer.

Obj - Objective assessment

Sub - Subjective assessment

Obj/Sub - Partially objective

Some of the heuristics may also be dependent upon the method being used for the

design, or the language intended for its implementation. The final column relates

these dependencies.

Meth - Method dependent

Lang - Implementation language dependent

A. 2 Inheritance

A. 2.1 Depth of hierarchy

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability Style dependent

Systems of around 100 classes should PROD AN-CO Obi / Sub lang
have a depth of hierarchy of
approximately 7±2 levels. Excessively
deep hierarchies may be difficult to
modify. (Coad 1991c)

_ Avoid inheritance structures that are too PROD AN-CO Obi Sub lang

shallow (3) or too deep (7). (Firesmith
1995)
Flat structures and hierarchy depths >5 PROD AN-CO Obi Sub lang

are less maintainable than a depth of 3.

Inheritance hierarchies should be deep. PROD AN-CO Sub

Inheritance hierarchies shouldn't be too PROD AN-CO Obi / Sub lang
deep (more than six levels) or designers

will get lost in the hierarchy. (Riel 1994)

194

The deeper in the hierarchy designers get PROD AN-CO Obj / Sub
the more confusing things are.
Conceptual entropy also increases in an
evolving application hierarchy. (Dvorak
1994)

Table A-1 Depth of inheritance hierarchy heuristics

The ideal depth of hierarchy seems to be based on a trade-off between reuse and

understandability. Reuse encourages deeper hierarchies to make the best use of

commonalties within a system. Excessively deep hierarchies are difficult to maintain
because they are difficult to understand. There is also a suggestion that flat systems

are also more difficult to maintain (Daly, Brooks et al. 1996). A possible reason for

this is that for most OOPLs polymorphism only works within the hierarchy of
implementation inheritance. It is generally held that systems can use PolYmOrPhism to
increase maintainability. If a system has a flat structure it can have no polymorphism
and so may be less maintainable.

At one extreme, there is a lack of maintainability and reuse because the hierarchy is

too flat, At the other extreme, there is a lack of maintainability due to difficulty of

understanding because the hierarchy is too deep. Exactly where in the middle ground

we consider the ideal depth will depend upon the particular problem under

consideration, and our prioritisation between reuse and maintainability.

The ranges given for 'ideal' depth of hierarchy are 5-9 Coad (1991c), 3-7 Firesmith

(1995), 1-5 Daly, Brooks et al. (1996). Coad's heuristic of 5-9 was suggested for

systems of around 100 classes. Daly's suggestion of 1-5 was based on an academic

example of around 20 classes. Firesmith doesn't specify the size Of system his

heuristic referred to. The limited data we have, of a recommended depth of 5-9 for

100 class systems, and 1-5 for a system of around 20 classes, would indicate that the

best depth of hierarchy for a system is also dependent on the size of the system.

Even if a relationship were found which would give an 'ideal' depth of inheritance for

a Particular system size this would only be a guideline. Hierarchies shouldn't be
forced to have a certain depth of hierarchy or to sit within a particular range if this

195

would be inappropriate for the system in question. However a depth of hierarchy

outside of the usual range would merit a re-evaluation of the design to verify that the

hierarchy had been well structured.

Those of the heuristics that give specific numbers for depth of inheritance may be

considered language dependent. This is because the different way the hierarchies are

organised and structured may cause some languages to typically have deeper

hierarchies than others.

A. 2.2 When to use inheritance

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability Style dependent

Inheritance should only be used for PROD AD-CO ObJ Sub

subtyping (as opposed to
implementation inheritance) (Bar-David
1992)
Subclasses should always be subtypes. PROD AD-CO ObJ Sub
(Leavens 1 91)
Only use inheritance when you want to PROD AD-CO ObJ
inherit all the properties of a subclass, PROC

not just some of them. (Rumbaugh
1993)
The assertions of subclasses should be PROD AD-CO ObJ Sub

consistent extensions of the assertions of PROC

their parents. (Firesmith 1995)

The use of inheritance for code reuse PROD AD-CO ObJ Sub

without subtyping should be avoided. PROC

(Rumbaugh 1993)

Replace implementation inheritance PROD AD-CO ObJ / Sub

with aggregation except in the case of PROC

mixins. (Firesmith 1995)

Any subclassing mechanism for reuse PROC AD-CO ObJ / Sub meth

should produce 'clean objects'. (Lee and lang
Tsai 1993)

Don't confuse a class with the classes PROD AD-CO Obi / Sub

needed to implement it. Just because a PROC

class is implemented using other classes

shouldn't mean it inherits from them.
(Rumbaugh 1993)

Subclasses should not delete features of PROD AD-CO O

_their
superclasses. (Firesmith 1995)

1

-1

ý-l

196

Subclasses that overwrite more than 3 PROD AN-CO Obj / Sub
inherited operations may not be
specialisations of their superclasses.
(Firesmith 1995)
A class which doesn't use or rejects PROD AD-CO Sub
many of the attributes and services of its
superclass is generally a poor
specialisation. (Coad and Yourdon
1991b)
Use inheritance when the resulting PROD AD-CO Obj / Sub
subclasses will have different features PROC
and behaviours; otherwise use instances
of power classes. (Firesmith 1995)
Subclassing may be specified in terms of PROD AD-CO Obj / Sub lang
incremental differences, or the PROC meth
specification of some restriction
(constraint) over and above those
imposed on the base class. (Rumbaugh
1993)
Subclasses should be different from their PROD AN-CO Obj / Sub
superclasses. (Firesmith 1995)
Do not model the dynamic semantic of a PROD AN-CO Obj / Sub

system as an inheritance hierarchy. (Riel
1994)
Avoid derived classes which attempt to PROD AD-CO Obj / Sub
cancel out operations defined for the
base class. These derived classes are not
part of the specialisation hierarchy. (Riel
1994)
Never create a new class if you can reuse PROD AD-CO ObJ / Sub

an existing one. (Firesmith 1995) PROC
All the methods in the specialisation PROD AN-CO Sub
interface should be appropriate for
specialisations of the given object.
(Berard 1993)
There shouldn't be any application PROD AD-CO Obj I Sub

specific methods in the specialisation
interface. (Berard 1993)
A subdimension should be a PROD AN-AD Obj / Sub

specialisation of the dimension it
partitions. (McGregor and Korson 1993)

Table A-2 When to use inheritance

There seems a strong movement in the literature away from implementation

inheritance without substitutability and toward inheritance only for defining subtypes.

There are several reason put forward for this shift of emphasis in the literature.

197

Implementation inheritance may give high levels of reuse, but is achieved through

complex procedures involving method deletion, redefinition and, restriction. These

convoluted techniques lead to messy, difficult to understand code, which in turn

causes problems for the testers and maintainers of this code.

Another problem is that in most OOPLs inheritance may be used for either

specialisation, subtyping or subclassing, and it is difficult to identify in the final code

which of these was originally intended. Using inheritance to model what are largely

orthogonal concepts within a single hierarchy (or set of hierarchies) in this way

confuses the reasoning underlying the design of the hierarchy. OOPLs which separate

the subclass and subtype hierarchies side-step this problem to some extent, but

confusion may still exist when some classes in these hierarchies are true

specialisations of their base classes and others are not.

A further problem often cited is that changes in a base class may introduce unwanted

methods into subclasses. This is only true if the inheritance mechanism used specifies

which methods are not to be inherited and would not be true for those inheritance

mechanisms which explicitly specified those which are to be inherited.

There are any number of definitions of subtyping given in the literature, without

producing a formal definition they may be summarised as follows. The 'uses

protocol' for a subtype should be a superset of the union of the protocols of its

supertypes. Here the 'uses protocol' is defined as a description of what is available at

public interface. This includes method names, the typing of method arguments, and

return values, as well as the definition of the behaviour of each of the methods in the

interface under any given situation. An alternative way of putting this is that a

subtype should be both type substitutable and behaviourally substitutable with all of

their supertypes in all contexts. All of the other heuristics aimed at ensuring

substitutability will be observed if these definitions are observed.

Where code reuse without subtyping is desired, it has been suggested that aggregation

198

should be used instead of inheritance (Rumbaugh 1993).

Lee's heuristic about clean object subclassing isn't generally supported by either

methods or languages (Lee and Tsai 1993). Although Rumbaugh's statement that

specialisation can be either by incremental differences or by restriction is strictly true,

specialisation by restriction is not generally supported in methods or languages.

A. 2.3 What inheritance should model

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability Style dependent

An inheritance tree should be a PROD AN-CO Sub

generalisation-specialisation tree with PROC
more specialised capabilities near the
leaves of the tree. (Love 1991)
You will have little trouble with PROD AN-CO Sub
incorrect use of inheritance if an
instance of the subclass is in every
respect an instance of the superclass.
(Rumbaugh 1993)
Specialisation inheritance is better than PROD / AD-CO Obj / Sub
interface inheritance, which is better PROC
than implementation inheritance.
(Firesmith 1995)
Use specialisation inheritance to capture PROD / AN-AD Sub

recognisable 'a kind of taxonomies. PROC
(Firesmith 1995)
Inheritance should be used to model PROD AD-CO Obj / Sub

gen/spec relationships. (Korson and PROC
McGregor 1992)

_ Inheritance hierarchies should be PROD/ AN-CO u ý
1

_
specialisation hierarchies. (Riel 1994) PROC

2-1

- -
Table A-3 What inheritance should model

There is a clear agreement here that inheritance should be used to model specialisation

hierarchies. This point taken together with the recommendation from the previous

section means that inheritance should be used for type substitutable specialisations-

Since this usually must be done through the language mechanism for code reuse

Rumbaugh's statement that the subclass should be in every respect an instance of the

superclass seems to summarise the perceived best practice concisely.

199

A. 2.4 Multiple inheritance

Heuristic

A class being defined via multiple
inheritance should have at most one
subclass in a given dimension.
(McGregor and Korson 1993)
Only use multiple inheritance for:
" Specialisation inheritance
" Adding capabilities using mixins.
" For subclasses whose protocol is

divided into separate roles.
For subclasses that are combining
superclasses from two dimensions.
To separate interfaces from
implementations.

(Firesmith 995)
A subclass should never have more than
two direct superclasses. (Firesmith
1995)
A mixin should be combined with a
single generalisation to Produce a
specialisation with one or more focused
canabilities. (Firesmith 1995)

Prod/Proc/
Not/Man

PROD

PROD
PROC

PROD

PROD
PROC

Try to reduce multiple inheritance to aI PROD/P
single inheritance hierarchy by asking ROC
the question "are any of my base classes
subclasses of one another? " (Riel 1994)
Watch out for the implementation of PR5-D
containment hierarchies as multiple
inheritance. (Riel 1994)

'Common base classes in multiple PRO-D
inheritance typically require virtual
inheritance to model the problem. (Riel
1994)

Life-cycle
Applicability

AN-AD

AN-CO

AN-CO

AD-CO

AN-CO

AN-CO

DD-CO

Assessment
Style

Obj / Sub

Obj / Sub

Obj

Obj

Sub

Obj / Sub

Sub

meth/lang
dependent

lang

lang

lang

lang

lang

lang-7

lang

When adding multiple inheritance to a PROD AN-CO Sub lang
OOD assume a mistake is being made

iel 1994)
A subclass being derived via multiple PROD AN-CO Obj / Sub lang
inheritance should inherit from at most
one class in a dimension. (Firesmith
1995)

Table A-4 Multiple inheritance heuristics

200

According to Firesmith (Firesmith 1995) multiple inheritance should only be used for:

" Specialisation inheritance.

" Adding capabilities using mixins.

" For subclasses whose protocol is divided into separate roles.

" For subclasses that are combining superclasses from two different dimensions.

" To separate interfaces from implementations, especially within reuse repositories.

Firesmith gives no clear indication of how multiple inheritance could be used to

separate interfaces from implementations (point 5). Surely you would use an abstract

class to specify the interface and use single inheritance to produce different

implementations based on this interface?

Firesmith also states that a subclass should never have more than two direct

superclasses. This however could cause problems in the following circumstances:

A class which requires two additional capabilities added through mixins.
A class which requires the capability provided by a mixin but is also derived from

classes from two dimensions.

A class specialises from two parent classes but also requires a mixin.

These examples show that it is easy to produce subclasses which might require three

or more direct superclasses. To produce these classes and still use no more than two

direct base classes would require additional levels to be added into the inheritance

hierarchy. This produces a trade-off between: increasing depth of hierarchy, which

causes difficulty in understanding the overall structure of the hierarchy; and additional

complexity, and difficulty in understanding, of the directly inherited composition of

the individual class.

McGegor & Korson (McGregor and Korson 1993) and Firesmith (Fircsmith 1995)

agree that a class should have at most one parent class in a particular dimension. The

dimensions of an entity can be defined as a set of orthogonal classifications which

201

apply to that entity. If all the possible classes in a dimension form a disjoint

partitioning of the dimension, as stipulated by McGregor and Korson, then this
heuristic seems self evident. Classes not obeying this rule could not be true

specialisations of all of their superclasses.

All of the heuristics in this section have been marked as language dependent because

not all languages support multiple inheritance (most notably Smalltalk).

A. 2.5 Miscellaneous inheritance

Heuristic Prod/Proc/ 1 Life-cycle Assessment meth/lang
Not/Man Applicability style dependent

Use generics rather than inheritance PROD AD-CO ObJ Sub meth
where appropriate. (Firesmith 1995) PROC
Creating and assessing the protocol PROD AD-CO ObJ Sub
hierarchy and the conformance diagram

can show some problems with class
hierarchies. (Cook 1992)
Avoid mixing different levels of PROD AN-AD Sub
abstraction within the same model.
(Rumbaugh 1993)
Subclasses within a dimension should be PROD AN-AD ObJ Sub
defined so that any instance of the parent PROC

class clearly belongs to exactly one
subclass. (McGregor and Korson 1993)
The portion of a class' specification that PROD AD-DD ObJ Sub
is specialised to form the subclass within
a dimension should be disjoint from the

parts of the class' specification used to
form other dimensions. (McGregor and
Korson 1993)

Try to extend hierarchies by adding new PROD / AD-CO ObJ / Sub

classes at the leaf nodes, not near the PROC

root. (Firesmith 1995)

Superclasses should standardise their PROD / AD-CO Obi / Sub

subclasses. (Firesmith 1995) PROC
Each instance of a subclass should also PROD AD-CO ObJ / Sub
indirectly be an instance of its

superclass. (Firesmith 1995)

Use specialisation inheritance to permit PROD AD-CO Obi / Sub
the polymorphic substitution of PROC

subclasses for superclasses. (Firesmith

1995)

202

The extents of subclasses in a dimension PROD AN-CO Obj / Sub
should partition the extent of the
superclass. (Firesmith 1995)
Keep classes in inheritance structures PROD CO Sub
portable and interoperable. (Firesmith

Make the hierarchy's conceptual PROD AN-CO Sub
architecture explicit. (Dvorak 1994) PROC

Table A-5 Miscellaneous inheritance heuristics

Rumbaugh (Rumbaugh 1993) recommends avoiding the mixing of different levels of

abstraction within the same model. This recommendation lacks a clear way of
deciding whether classes are at different levels of abstraction. Are there indeed clear

and distinct levels of abstraction? If so what are they? If it is accepted that there are

not clear and distinct levels of abstraction then there must be a continuum of levels of

abstraction. Whether classes are at sufficiently different levels for it to be considered

a design fault then becomes subjective.

Firesmith recommends trying to extend hierarchies by adding new classes at the leaf

nodes, not near the root. This has the obvious short term advantage of reducing the

extent of the changes to the hierarchy. However, if classes added to a hierarchy are

forced into positions in the hierarchy in which they do not really belong, in an attempt

to obey this rule, the longer term negative implications for the maintenance of the

hierarchy are likely to out weigh the short term advantages. The overriding

consideration in adding to a class hierarchy must be the overall conceptual integrity of

the hierarchy itself, not any short term savings whilst making the additions.

Firesmith states that specialisation inheritance should be used to permit the

polymorphic substitution of subclasses for superclasses. Although substitutability

though subtyping doesn't in theory require inheritance, in practice most OOPLs only

support polymorphism and subtyping through implementation inheritance. As a

practical heuristic this is therefore perfectly valid.

McGregor and Korson state that a sub-dimension should be a specialisation of the

203

dimension it partitions. Firesmith makes the same point in a slightly different way
saying that the extents of subclasses in a dimension should partition the extent of the

superclass. A further suggestion of McGegor and Korson is that the portion of a
class' specification that is specialised to form the subclasses within a dimension

should be disjoint from the parts of the class' specification used to form other
dimensions. Since dimensions represent orthogonal concepts it is reasonable to

assume that the sections of a class relating to different dimensions will have little
interaction. This does however create problems with class cohesion.

The first heuristic in this section shows that the use of generics is marked as method
dependent. Although most major OOPLs support generics in some form (Smalltalk

being the notable exception), direct representation in the methods is generally lacking.

A. 3 Aggregation

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability style dependent

Aggregation should not be used to PROD AN-AD ObJ / Sub

represent non-compositional
relationships, i. e., spatial/temporal
inclusion, attribution, class membership,
attachment, ownership. (Civello 1993)

Methods should allow for more subtle PROC AN-AD ObJ meth
representation of aggregations. They NOT

should support: visibility, separability,
immutability, sharing, ownership.
(Civello 1993)

Designers should be clear about the PROD AN-AD Obi / Sub

precise relationship intended (see above) PROC
for each use of aggregation in a design.

(Civello 1993)

Containing classes should know what PROD AD-CO 0 Ej

they contain, but contained classes

should have no knowledge of who

contains them. (Riel 1994)

If a contained element has behaviour PROD AN-CO Obj / Sub

then at least some of that behaviour

should be used by the containing object.
Riel 1994)

Distribute system intelligence down the TPýR_COD 1 AD-CO Sub

containment hierarchies. (Riel 1994) 1
1

204

Keep contaimnent hierarchies narrow PROD AN-CO Sub
and deep. (Riel 1994)

1-

bj Sub Do not make containment hierarchies PROD AD-CO, Obj Sub
too deep (no more than six levels) or
designers will get lost in their own
hierarchy. (Riel 1994)

s

Table A-6 Aggregation heuristics

Although Civello indicates that aggregation should not be used for attributes this does

often occur. Both attribution and aggregation are usually implemented as class

member variables in 00 languages. This lack of conceptual distinction in the

language often leads to aggregation being used for attributes in design.

The other two heuristics from Civello are related to the overly simplified treatment of

aggregation in most methods. It would be desirable for such issues as, visibility,

separability, immutability, sharing and ownership to be addressed in the design. This

would allow for a more complete description of an aggregation, to the level at which

the implementation of aggregation can be fully specified and verified. Ideally these

considerations will be included in the method. If they are not, the designer should still

consider them to gain a clear idea of how each aggregation would best be

implemented.

Riel's first three heuristics are related to each other. To be considered as a separate

class to be aggregated and not an attribute of the containing class, the contained class

must have its own behaviour. Distributing intelligence down the hierarchy means that

the contained class should be given as much behaviour and responsibility as possible.

In this situation containing classes must know about the classes they contain in order

to request these services. However, aggregation can also facilitate reuse, if the

contained class makes no reference to its containing class the contained class can be

reused without also having to reuse the containing class.

The question of depth of hierarchy for aggregation appears to be similar to that for

inheritance. Too great a depth and the hierarchy becomes difficult understand. Too

205

shallow a hierarchy and less than optimum use is made of reuse and information

hiding. Although there is only one suggested maximum depth given here, it seems

reasonable to assert that 'ideal' depth of aggregation hierarchy as for inheritance will
depend upon the size of the system. The similar natures of the trade-off in depth in

both cases further suggests that aggregation hierarchy depth should normally be

approximately the same as inheritance hierarchy depth for systems of the same size.

- A. 4 Association

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability style dependent

When given the choice of using PROD AD-CO Obj / Sub

association or containment, chose
containment. (Riel 1994)
Implement one-to-one and many-to-one PROD DD-CO Obj lang

unconditional associations as references.
Implement all other associations with
association classes. (Riel 1994)
Both classes in an association have equal PROD AN-AD Obj Sub

status. If one class is subordinate to the

other then aggregation or attribution
should be used. (Rumbaugh 1996) 1 1

. Table A-7 Association heuristics

The first heuristic suggests using containment rather than association where possible.

This is really saying that we should use the strongest form of relationship which is

applicable in a given situation. It was described in the section concerning aggregation

that such considerations as visibility and mutability affect the nature (or strength) of a

relationship and this holds equally well for association as it does for aggregation.

With this in mind the second heuristic is a little over simplistic and the ideal mapping

from design to implementation for associations and aggregations will be far more

involved than this, and may differ from language to language.

A. 5 Cluster

Heuristic
f: I Prod/Proc/ I Life-cycle I Assessment meth/lang

E
Not/Man I Applicability I style

I

dependent
I

206

Classes should be grouped into defined PROD AD-CO ObJ lang

collections of upto twenty classes that PROC meth
have restricted visibility from other
classes in the system. (Love 1991)

- ----- A "system of objects" should represent PROD AD-CO ObJ Sub
an object-oriented concept, as opposed
to a functional concept. (Berard 1993)

_ With a system of objects, all of the PROD AD-CO Obj Sub
component objects should directly
support the object-oriented concept that
the system represents. (Berard 1993)
If a system of objects presents multiple PROD AD-CO Obj / Sub lang
interfaces to the outside world, each of meth
the interfaces should represent a
complete and coherent object-oriented

I concept. (Berard 1993)
Table A-8 Cluster heuristics

The idea of clusters (or subjects or ensembles) is to provide a higher level

grouping/information hiding construct. A first consideration is how large these

groups should be? Love suggests upto 20 classes, while Coad goes for the ubiquitous

7±2

(Coad and Yourdon 1991 a). While this type of heuristic helps guard against extremes

the real question is how we decide what to put in the clusters.

Berard states that a cluster should represent a clear object-oriented concept, rather

than a functional one. He also states that all components should directly support this

object-oriented concept.

Support for higher level structural class groupings and multiple interfaces is limited in

both methods and languages.

A. 6 Class

Heuristic Prod/PrOc/ Life-cycle Assessment meth/lang
Not/Man Applicability style dependent

Avoid having too many services per PROD AD-DD Obi / Sub

class. Each class typically has no more
than six or seven public services. (Coad
1991 C)

207

Given some desirable behaviour in a
system, a decision must be made as to
the class in which to place it. The
following criteria have been offered for
consideration when making such a
decision.
" Reusability- would this behaviour be

useful in more than one context.
" Complexity- how difficult is it to

implement the behaviour.
" Applicability- how relevant is the

behaviour to the type in which it
might be placed.

" Implementation knowledge- does the
behaviour's implementation depend
upon the inter details of a type.

(Booch 1991)
Avoid excessive attributes. On average
only one or two attributes arc needed per
service. (Coad 1991c)_

PROD

PROD

Avoid 'Rizzy' class definitions. A class PROD
should be cohesive with a single, well
defined and clearly bounded purpose.
(Coad 1991c)
A class should have no more than six PROD
data members. (Riel 1994)

1

Keep related information in one place PROD
(class). (Riel 1994)
A class which has no operations should PRO15
not be a class (it is probably an
attribute). (Riel 1994)

I If a class has only one or two operations I PROD
then it should not be a class (it should
probably be implemented as an
operation on some other class). (Riel
1994)
Semantic constraints on a class
shouldn't be implemented in the class
structure if this leads to a proliferation of
classes. (Riel 1994)
Beware classes which have only one
instantiation in a system. (Riel 1994
A class should have easily identifiable

and nameable behaviours. (Coplien

PROD

PROD

PROD

AD

AD-DD

AD

AD-CO

AN-CO

AN-CO

AD-CO

AD-CO

Obj / Sub

Obj / Sub

Sub

Obj

Sub

Obj

Obj / Sub

Obj / Sub

AD-CO I Obj /Sub

AN-CO I Sub

11992)

208

A class should not represent too large or PROD AN-CO Sub
too small an abstraction. (Coplien 1992)
Pre-ordained 141W components and their PROD AN-AD Obj / Sub
S/W interfaces are good candidates for

-system entities. (Coplien 1992)
If you can't think of two good PROD AD-DD Obi / Sub
significantly different implementations,
then a broader abstraction may be
needed. (Coplien 1992)
Each class should attempt to do its own PROD DD-CO Obj / Sub
validation. (Rising 1994)
Beware of classes that are really PROD AN-CO Sub
attributes. (Rising 1994)
Beware of classes that are really PROD AN-CO Sub
operations. (Rising 1994)

---- The number of encapsulated methods in PROD AD-CO Sub
the public interface for any given object
should be kept to a manageable number.

1 (Berard 1993)
Table A-9 Class heuristics

Several of the heuristics relate to the numbers of services and attributes that a class

should contain. Berard suggests that the number of methods in the public interface of

a class should be kept to a manageable number. Coad is a little more specific and

suggest 6 or 7 as the maximum. There are also considerations of the minimum

number of services. Classes with no services would usually be better represented as

an attribute in another class. Classes with only one or two services might be better

shown as operations in another class.

Riel suggests that classes should have no more than 6 data members. Coad relates the

number of attributes to the number of services saying that only one or two attributes

are needed per service. Again there are minimum considerations for number of

attributes. Classes with no attributes are likely to be the result of functional rather

than object-oriented decomposition and are usually better represented as services in,

other classes.

Given some desirable behaviour and some information needed to perform this

behaviour, a decision must be made as to the class in which to place each element of

behaviour and each piece of information. Classes should be the repositorY for related

209

information and behaviour.

Coplien suggests that if two good significantly different implementations can't be

found for a class then a broader abstraction may be needed. This embodies the idea

that classes should hide design decisions. The interface of the class should not depend

upon its implementation, in this way the implementation may be changed without

affecting any other classes with use services provided by this interface.

A. 7 Abstract classes

Heuristic Prod/Proc/ Life-cycle Assessment meffi/lang
Not/Man Applicability style

- -
dependent

Abstract classes should capture common PROD AN-AD Tu b

abstractions. (Firesmith 1995)

Use deferred classes to control future PROD AD-CO Obj / Sub

subclassing if appropriate. (Firesmith
1995)
A class should not constrain the PROD AD-CO Obj / Sub

development of its future subclasses. PROC

(Firesmith 995)
Xbstract

classes should probably not PROD AD-CO Sub

have concrete ancestors. (Firesmith PROC

1995)
Abstract superclass rule (ASR) states: all PROD AN-CO Sub

superclasses must be abstract. (Hursch PROC

1994)
-Ease classes should be abstract to PROD/P AN-CO Obi / Sub

facilitate the maintenance of a ROC

specialisation hierarchy. (Riel 1994) 1 1 1 1

Table A-10 Abstract class heuristics

Firesmith (Firesmith 1995) states that abstract classes should capture common

abstractions. There can be little argument about this. There would be little point in

producing an abstract class unless it captures conunonalties between two or more

existing classes (or envisaged future classes).

Two further heuristics given by Firesmith appear to clash somewhat. Firstly he says

210

that deferred classes should be used to control future subclassing if appropriate, and

also that a class should not constrain the development of its future subclasses. Unless

a class constrains the development of its future subclasses how can it control future

subclassing? The important point here must be that classes should not unnecessarily

constrain the implementation of future subclasses. Nor should they constrain the

interfaces of future subclasses without clear purpose.

Another heuristic suggested by Firesmith is that an abstract class should probably not

have concrete ancestors. The situation of a abstract class having concrete ancestors is

a fairly unusual one, so you might say 'an abstract class will probably not have

concrete ancestors. ' However, there is no apparent reason why they should not. -

A. 8 Coupling

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability style dependent

Avoid having a large, central object PROD AD-CO Obi / Sub

which controls most of the functionality.
(Riel 1994)
Minimise the knowledge one class has PROD AD-CO Obj / Sub

of others, so when one class is changed,
it is less likely to change the others.
(Berard 1993)
The more system components that make PROD AD-CO Obj / Sub

use of a particular object, usually the
better is the design of the overall system.
(Berard 1993)
The larger the number of other distinct PROD AD-CO Obj / Sub

system components with which an object
must deal directly, usually the poorer is
the design of the overall system. (Berard
1993)
Ensure that relationships among PROD AD-CO Sub

components of the system are as tenuous
as possible. (Berard 1993)
The coupling of objects should take PROD AD-CO obj / Sub meth

place only on an application by lang

application basis. (Berard 1993)
--------- -------

Classes near the root of an inheritance PROD AN-CO Obj / Sub

tree should not depend upon classes
further down the tree. (Love 1991)
A base class should not have derived PROD

1
AD-CO Obj

class information. (Rising 1994)
-

211

Coupling- 'on one hand, weakly PROD AN-CO Sub
coupled classes are desirable; on the
other hand, inheritance - which tightly
couples superclasses and their subclasses
- helps us to exploit the commonality
among abstractions. (Booch 1991)
Classes should have the minimum of PROD AD-CO Obj / Sub
coupling with other classes. (Love 1991)
Eliminate unnecessary relationships PROD AD-CO Sub
among modules. (Myers 1978)
Minimise the tightness of those PROD AD-CO Obj / Sub
relationships that are necessary. (Myers
1978)

Table A-1 1 Coupling heuristics

Most of the standard coupling heuristics given above are straight forward and well
known. However Berard makes the seemingly curious statement that 'the more

system components that make use of a particular object, usually the better is the

design of the overall system. ' Normally this type of interconnection would be

included in any measurement of coupling and would therefore give a high coupling

value considered to be an indication of poor design. The significant point here is the

separation of the relationships 'uses' and 'is used by'. For one class to use another

requires that the first class has knowledge of the class it is using. This means that it is

difficult to modify the class being used without modifying the class that is using it. It

also means that the using class cannot easily be reused without the used class also

being reused. From the point of view of the class being used things are quite

different. It has no need of any knowledge about who is using it, and so does suffer

the problems which result from this. This style of 'uni-directional' coupling was also

suggested by Sharble & Cohen who used this type of definition of coupling in metrics

calculation (Sharble and Cohen 1993).

separate consideration should be given to coupling in relation to inheritance. Booch

states that there is again a trade-off when considering the coupling in relation to

inheritance, "On one hand, weakly coupled classes are desirable; on the other hand,

inheritance - which tightly couples superclasses and their subclasses helps us to

exploit the commonality among abstractions" (Booch 1991). Such heuristics as there

212

are concerning inheritance and coupling try to reduce the coupling between the

subclass and superclass whilst still exploiting their commonalties. This is done by

imposing restrictions on the way subclasses and superclasses access each others

elements. Love (Love 1991) and Firesmith (Firesmith 1995) agree that superclasse
.s

should not depend upon, or have visibility of, their subclasses. This means that any,,

changes made in a hierarchy will only propagate down toward the leaf nodes and not'

back up toward the root.

Love also suggests that objects should not directly access data defined in their

superclasses. This allows the implementation details of the superclass to be changed

without affecting its subclasses. This does have a slight performance overhead
because of the need for additional function calls. For most systems this slight

reduction in performance is not significant, this heuristic should therefore be applied
for all but the most performance critical systems.

A. 9 Cohesion

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability style dependent

Ensure all the member variables and PROD AD-DD Sub
methods of a class make sense as part of
the class. (Berard 1993)
Make sure that subsystems are PROD AD-DD Sub
comprised of parts that are all highly
logically related. (Berard 1993)
Any one module should represent a PROD AN-CO Sub
single, coherent concept, at a uniform
level of abstraction. (Berard 1993)
A software engineer should be able to PROW AD-CO Sub
understand the responsibility of a ROC
module without understanding the
module's intemal, design. (Parnas,
Clements et al. 1983)
Each of the methods in the public PROD AD-CO Sub
interface for an object should perform a
single coherent function. (Berard 1993)
An object removed from the context of PROD AD-CO Sub
the immediate application, should, in
isolation, still represent a coherent and
complete object-oriented concept.

I (Berard 1993) 1 1 1

213

An object containing only functions is PROD AD-CO ObJ
not cohesive in an object-oriented sense.
(Berard 1993)
An object containing only data is not PROD AD-CO ObJ
cohesive in an object-oriented sense.
(Berard 1993)
Well-designed objects should contain PROD AD-CO ObJ / Sub
only primitive methods in there public
interface, and their should be at least a
sufficient set of primitive methods - and
preferably a well-thought-out complete
set of methods. (Berard 1993)
All encapsulated methods should be PROD AD-CO Obj / Sub meth
application-independent. (Berard 1993) lang
A classes services should related to each PROD AN-CO Sub
other and to the class in an intuitively
satisfying way. (Coplien 1992)
_ A change to one part of a system should PROD AD-CO ObJ / Sub
have minimum impact on other parts. PROC
(Coad 1991a) I

Table A-12 Cohesion heuristics

Most of the heuristics relating cohesion are rather fuzzy and ill defined. Their general
basis is that the services and attributes of a class are logically related to each other.
The class itself should be based around a single well defined abstraction and should

remain a coherent whole irrespective of the context in which it is used. Services

should follow the saine cohesion rules as apply to non-00 functions, and should be

application independent.

A. 10 Information hiding

Heuristic Prod/Proc/
Not/Man

Life-cycle
Applicability

Assessment
style

meth/lang
dependent

A change to a class should require the PROD AD-CO Obj / Sub
minimum number of design decisions in
other classes to be reconsidered.

(Coplien 1992)
Variables should only be accessed or PROD DD-CO Obj
modified through the sending of PROC

messages to, or the invoking of, the

accessing methods. (Wirfs-Brock and
Wilkerson 1989)

214

An accessing method should only store PROD DD-CO Obj
or retrieve the value of its associated
variable. It should perform no other
computation. (Wirfs-Brock and
Wilkerson 1989)
Follow a policy of strict data hiding. PROD DD-CO Obj
(Riel 1994)
A type should be a logical black box PROD AD-CO Obj Sub
specification of externally visible PROC
behaviour. (Rumbaugh 1993)
It should be possible to change the PROD AD-CO Obj Sub
implementation of one module without
knowledge of the implementation of
other modules and without affecting the
behaviour of other modules. (Parnas,
Clements et al. 1983)
Do not use protected data, it weakens PROD AD-CO Obj lang
data hiding. Use protected access PROC
functions instead. All data in the base
class should be private. (Riel 1994)
Superclasses should not have visibility PROD / AD-CO Obj / Sub
of their subclasses. (Firesmith 1995) PROC
Allow access to inherited state PROD / AD-CO Obj
information only via methods. (Berard PROC
1993)
Objects should not directly access data PROD AN-CO Obj
defined in their superclasses. (Love
1991)

Table A-13 Information hiding heuristics

Most of the information hiding heuristics given here represent universally agreed

points: data should only be accessible via access functions; types should represent

black box specifications independent of internal implementation (hiding design

decisions). Wirfs-Brock's statement that accessing methods should perform no other

function than the storage or retrieval of its associated value is open to question. Does

this mean that data validation cannot take place before storage? Can audit

information about data accesses not be maintained during accesses?

An on-going argument regarding information hiding is that of C++'s friends and

similar constructs. Friend classes are allowed access to private data which breaks

strict information hiding rules. However access for friends is given on a class by class

basis, which means that minimum visibility is given to the accessed data. The

215

alternative would be to provide access functions for the data concerned. This would

maintain information hiding but allow indirect access to a larger set of classes, which

need not have visibility of this data.

Some interesting points occur when information hiding and inheritance come together.

The conventional wisdom and usage has been to consider a subclass as a single entity
including all of the data and functions inherited from the superclass and directly

defined in the subclass. Conceptually this is the case, as an instance of the subclass

represents a single object. However, in practice, implementation considerations must

also be taken into account. One of the reasons behind information hiding is to restrict

the extent to which the change of one class will require changes to others. A subclass

has b een traditionally allowed direct access to the data (and private functions) of its

superclass. This means that changes to the internal implementation of the superclass,

which would not affect classes that use the superclass, may well necessitate changing

subclasses.

The heuristics given above involving inheritance are suggestions made to mitigate this

effect by removing direct access to the superclass' data. Rather than treating a

subclass and the superclass data and functions it inherits as a single object, the

superclass part of a subclass object is treated as a separate object from which the

subclass object requests services. The services that may be requested are those in the

specialisation interface as well as the standard external interface.

A-11 Message passing

Heuristic Prod/Proc/
Not/Man

Life-cycle
Applicability

Assessment
style

meth/lang
dependent

Message passing may be used to PROD AN-CO ObJ Sub mcth
1. request a corresponding service PROC lang
2. - provide notification of an event NOT
3. provide data (actual parameters).
(Firesmith 1993)
Minimise object collaboration. In most PROD AN-AD Obi Sub
cases objects should only collaborate
with three to five other objects.
(Coad 19910

216

Minimise collaborators to 6 for a given PROD AD-CO Obj / Sub
system requirement. The overall
number may be higher. (Rising 1994)

Table A-14 Message passing heuristics

Message passing in 00 is considered conceptually a different activity from function

calling in the procedural paradigm. This can be seen from Firesmith's three uses of

message passing. Numbers one and three used together map to a procedure call. Ile

main difference is event notification. This need not be point to point, as a procedure

call must be, but may be broadcast. The object giving notification of an event need

not (in principle) know how the receiving objects will react to the notification. A

procedure call will have a return value whilst event notification is one way.

In principle we have this distinction between message passing in the object-oriented

Paradigm and function calls in the procedural paradigms. In practice, however,

OOPLs are run on procedural machines with stack frames and return addresses. This

limits the scope of usage of message passing. Running 00 code on a virtual machine

organised around 00 constructs can solve the problem. Software systems like

CORBA which handle message passing at a higher level, and even Windows to an

extent, with it's event queuing system, allow a more natural 00 use of message

passing.

A-12 Service

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability style

-

dependent

Usually if a service requires more than PROD AD-CO ObJ Sub
three parameters something is wrong.

_(Coad
1991c)

00 services are quite small, typically PROD DD-CO ObJ Sub
five to ten source statements. (Coad

_1991c) Services should do some work, not just PROD DD-CO Obi Sub
pass the buck to another service. (Love
1991)
Services with 100+ statements, or with PROD DD-CO Obi Sub
deeply nested blocks, or with extended
CASE statements, should be examined
to see if they can be restructured. (Coad
1991a)

217

00 code should have a minimum PROD DD-CO Obj / Sub
number of branching statements. No
more than one branching statement for
every five lines of code. (Love 1991)
Services of the same name in different PROD AD-DD Sub
classes should mean the same things.

_(Love
1991)

Services of different names should mean PROD AD-DD Sub
different things. (Love 199 1)
Services should obey the same coupling PROD DD-CO Obj / Sub
and cohesion rules as apply to functions
in structured methods.
Keep protocols as simple as possible, PROD AD-CO Obj
have no more than 6 data parameters per
method. (Rising 1994)
Any override must return the same value PROD DD-CO Obj lang
as the base class function would when
applied to the base part of the derived
class object. (Bar-David 1992)
Derived class override must have the PROD AD-CO Obj lang
same signature as the overridden base
class service. (Bar-David 1992)
An operation on a class should not have PROD AD-CO Obj / Sub
the potential for changing the semantics
of behaviour of the class. (Coplien 1992)
The number of lines of source code for PROD Co Sub
well-designed encapsulated methods are

I usually very small. (Berard 1993)

Table A-15 Service heuristics

Services are largely the same as procedures and should obey the same coupling and

cohesion heuristics. Services are usually smaller than procedures and excessively

large, or complex services should be questioned. There is usually less branching in

services because branching based on type should be replaced with polymorphic

service requests.

A. 13 Attribute

Heuristic Prod/Proc/ Life-cycle AssessMent meth/lang LI
Not/Man Applicability

I

style
I

dependent
Heuristic Prod/Proc/

Not/Man
Life-cycle

Applicability
Assessment

style
meth/lang
dcpcndent

218

If a characteristic affects behaviour in PROD AD-CO Obj Sub
the domain, use inheritance or
containment, otherwise, use an attribute.
(Rising 1994)
If derived classes have no meaningful PROD AD-CO 00bij Sub
behaviour, attributes should have been
used. (Rising 1994)
Attributes should contain useful PROD AD-CO ObJ
information about the objects of a class,

1

but should not have associated

i

behaviour. (Rising 1994Y
1 i

Attributes should hold encapsulated PROD AN-CO Obi
unshared values. (Rumbaugh 199(

Table A-16 Attribute heuristics

This again summarises to the difference between attribution and aggregation. If

behaviour is associated with data then aggregation should be used. If the value Of an

attribute effects the behaviour of a class then inheritance should be used.

A. 14 Protocol

Heuristic Prod/Proc/ Life-cycle
li

Assessment
le st

meth/lang, C, dependent Not/Man Applicabi ty y

Keep protocol as simple as possible. PROD AD-CO Sub
(Riel 1994)
Implement a minimal public interface PROD AD-CO Obj Sub

which all classes understand. (Riel 1994)
Do not put implementation details such PROD DD-CO Obj Sub lang

as common-code private functions in the
public interface. (Riel 1994)
The public interface for an item should PROD AD-CO Sub
be consistent with the overall concept
embodied by the item. (Berard 1993)
The protocol of a subclass should be a PROD AD-CO Obj / Sub

superset of the union of the protocols of PROC
its parents. (Firesmith 1995) 1

-
I

Table A-17 Protocol heuristics

What is meant by protocol is generally the full extent of what is available at the

interface. This includes method names, parameter and return types, preconditions and

postconditions.

219

A. 15 Polymorphism

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability style dependent

It is usually preferable to replace CASE PROD AD-CO ON / Sub
and IF-THEN-ELSE statements with an PROC
appropriate gen-spec structure and
polyrnorphic service calls. (Coad 1991c)
To localise the effect of changes and PROD AD-CO, Obj / Sub
hence reduce maintenance effort the use
of polyrnorphisin is essential. (Haythorn
1994)
Great classes are essentially interface PROD AD Sub
specifications embodied as abstract PROC
classes. We don't create the abstract
class because it is evident in the domain

- we create it to control the impact of
future changes in the domain. (Haythorn
1994)
Undisciplined use of polymorphism PROD AN-CO Sub

causes similar problems to the use of PROC

gotos. (Ponder and Bush 1994)
Use polymorphism rather than PROD DD-CO Obj / Sub

switch/case statements for decisions
based on type. (Firesmith 1995) 1 1 1

Table A-18 Polymorphism heuristics

Ponder's (Ponder and Bush 1994) position is somewhat divergent from the rest of the

00 community on the benefits (or otherwise) of polymorphism. Although it is useful

to play devils advocate and question entrenched beliefs he fails to make a strong case

for his point of view.

A. 16 Dynamic modeling

Heuristic Prod/Proc/ Life-cycle Assessment metMang
Not/Man Applicability style dependent

The state models of subclasses should be PROD AD-CO Obi / Sub mcth
consistent extensions of the state models PROC

of their superclasses. (Firesmith 1995)

Table A-19 Dynamic modelling heuristics

The major point to be made about the heuristics for dynamic modelling in the

literature is that there is an extreme dearth of them.

220

A. 17 Miscellaneous

Heuristic Prod/Proc/ Life-cycle Assessment meth/lang
Not/Man Applicability style dependent

Model the real world whenever - PROD AN-AD Sub

convenient since this will provide a
more natural platform for maintenance
personnel. (Riel 1994) 11

Sub Beware of "proliferation of classes". PROD/P AN-AD
Every added class increases system ROC
complexity and adds "usee'. (Rising
1994)

IJIbLIIVULU b. YbLfZJLJ intunigerice as rrwIJ
uniformly as possible. (Rising 1994)
Decentralise control. Eliminate agents PROD AD-DD Obj / Sub'
since many are irrelevant and don't do
anything useful. (Rising 1994)
Systems should be designed as networks PROD AD-CO ObJ
of classes with no free-standing data or PROC
functions. (Korson and McGregor 1992)
Distribute system intelligence across PROD AN-AD Sub
objects sharing lexical scope. (Riel
1994)
Carefully examine system PROD AD Sub
decomposition, paying closest attention
to those parts where there are relatively
small differences in the scales of time
and/or size between a decomposed item
and its components. (Berard 1993)

------- The ease of making a change to the PROW AD-CO Sub
design should bear a reasonable relation ROC
to the likelihood of the change being
needed. (Parnas, Clements et al. 1983)

Table A-20 Miscellaneous heuristics

Riel's statement 'model the real world whenever convenient' is rather vague. Just

when is it convenient? Hawthorn suggests introducing new classes representing Wider

more general abstractions to aid maintainability (Haythom 1994). Obviously there is

a trade-off between these two points. Real world modelling aids maintainability by

making the design easier to understand. Introducing new more general abstraction

which do not exist in the problem domain makes the problem harder to understand but

reduces the likely extent of changes that may need to be made.

A n-T-ITi

221

Rising's recommendation to 'distribute system intelligence as uniformly as possible'
is another way of saying that 00 systems should be structured as a network of

independent but co-operating objects.

A. 18 Summarised heuristics

A. 18.1 Introduction

The following set of tables represents a summary of the full heuristics and discussion

given earlier. This sub-set of heuristics is aimed at architectural design in particular,

therefore any of the previously given heuristics which do not apply to this stage are

left out. The heuristics are similarly targeted at the products of design and not its

process, notation or management. As only heuristics for products of the architectural

design phase are now presented, the columns of the tables giving the lifecycle and

heuristic type information are no longer necessary.

The original tables show much duplication of ideas between authors. Whilst in

discussing the merits of a heuristic a knowledge how widely the heuristic is accepted

is useful in trying to produce a single set of heuristics this duplication is superfluous.

Duplicated heuristics have therefore also been removed. The intention is to leave only

the most clear/concise description of the heuristic, or to replace the variations with a

new but representative version.

A set of heuristics of this sort should be useful in assessing a design therefore a

number of the original heuristics have also been removed because they were thought

to vague to be usefully applied.

18.2 Inheritance

A. 18.2.1 Depth ofinheritance

The ideal depth of hierarchy seems to be based on a trade-off between reuse and

understandability. Hierarchies shouldn't be forced to have a certain depth of hierarchy

or to sit within a particular range if this would be inappropriate for the system in

222

question. However, a depth of hierarchy outside of the usual range would merit a re-

evaluation of the design to verify that the hierarchy had been well structured. A

suggestion for the usual range for depth of inheritance hierarchies is given in table
below.

F Number of classes 1 20 1 50 1 100 500
, deal' Depth of Hierarchy 1 1-4 1 3-6 1 5-9

1
7-10

Heuristic
Number

Heuristic Assessment
Style

Trade-offs- -; ý-ethllang
dependent

Inheritance hierarchy depth should fall Obj Sub lack of
within the range shown above for the reuse
relevant size of system.
Inheritance hierarchies should be no Obj Sub less
deeper than the maximum depth shown understa,
above for the relevant size of system. ndable

Table A-21 Depth of inheritance (summary)

A. 18.2.2 When to use inheritance

Heuristic Heuristic Assessment Trade-offs methAang

Number Style dependent

2.1 Inheritance should only be used for Obj / Sub
subtyping (as opposed to
implementation inheritance) (Bar-David
1992)

2.2 The assertions of subclasses should be Obj / Sub
consistent extensions of the assertions of
their parents. (Firesmith 1995)

2.3 Replace implementation inheritance Obj Sub
with aggregation except in the case of

-I mixins. (Firesmith 1995)
2.4 Don't confuse a class with the classes Obj Sub

needed to implement it. Just because a
class is implemented using other classes
shouldn't mean it inherits from them.
(Rumbaugh 1993)

2.5 Use inheritance when the resulting Obj / Sub
subclasses will have different features
and behaviours; otherwise use instances

power classes. (Firesmith 1995)

'Ideal' Depth of Hierarch
Number of classes 20

1-4
50
3-6

100
5-9

500
7-10

223

2.6 Subclasses should be different from ObJ Sub 10.3
their superclasses. (Firesmith 1995)

2.7 Do not model the dynamic semantic of a Obj Sub
system as an inheritance hierarchy. (Riel
1994)

2.8 Never create a new class if you can ObJ / Sub
reuse an existing one. (Firesmith 1995)

2.9 There shouldn't be any application Obj / Sub
specific methods in the specialisation
interface. (Berard 1993)

2.10 A subdimension should be a ObJ / Sub
specialisation of the dimension it
partitions. (McGregor and Korson 1993)

2.11 All the methods in the specialisation Sub
interface should be appropriate for
specialisations of the given object.
(Berard 1993)

Table A-22 When to use inheritance (summary)

As discussed earlier on of the consequences of applying the abstract superclass rule is

that where a superclass would previously have been instantiated directly, an identical

concrete copy of the now abstract superclass is instantiated instead. This clashes with

rule 2.6 above.

A. 18.2.3 "at inheritance should model

Heuristic Heuristic Assessment Trade-offs meth/lang
Number Style dependent

3.1 An inheritance tree should be a Sub

generalisation-specialisation tree with
more specialised capabilities near the
leaves of the tree. (Love 1991)

3.2 You will have little trouble with Sub flexible
incorrect use of inheritance if an implem-
instance of the subclass is in every entation
respect an instance of the superclass.
(Rumbaugh 1993)

3.3 Specialisation inheritance is better than Obj / Sub
interface inheritance, which is better
than implementation inheritance.
(Firesmith 1995)

Table A-23 What inheritance should model (summary)

224

A. 18.2.4 Multiple inheritance

Heuristic Heuristic Assessment Trade-offs meth/lang
Number Style dependent

4.1 A subclass should never have more than Obi R. W. M. lang
two direct superclasses. (Firesmith
1995)

4.2 A mixin should be combined with a Obi Only lang
single generalisation to produce a one
specialisation with one or more focused mixin?
ca abilitie . (Firesmith 1995)

4.3 A class being defined via multiple Obj / Sub lang
inheritance should have at most one
subclass in a given dimension.
(McGregor and Korson 1993)

4.4 Only use multiple inheritance for: Obj / Sub lang

" Specialisation inheritance
" Adding capabilities using mixins.
" For subclasses whose protocol is
divided into separate roles.
e For subclasses that are combining
superclasses from two dimensions.
e To separate interfaces from
implementations.

1 (Firesmith 1995)
4.5 Watch out for the implementation of Obj Sub lang

containment hierarchies as multiple
inheritance. (Riel 1994)

4.6 Try to reduce multiple inheritance to a Sub lang
single inheritance hierarchy by asking
the question "are any of my base classes
subclasses of one another? " (Riel 1994)

4.7 When adding multiple inheritance to a Sub lang
OOD assume a mistake is being made
and prove otherwise. (Riel 1994)

Table A-24 Multiple inheritance heuristics (summary)

It is possible (if unusual) for a class to be a specialisation of more than two

superclasses. Restricting the maximum number of superclasses, as suggested in 4.1

will prevent these classes being represented as they would be in real world modelling

(RWM).

225

A. 18.2.5 Miscellaneous inheritance

Heuristic ý Heuristic Assessment Trade-offs metMang
Number Style dependent

5.1- Use generics rather than inheritance ON / Sub meth
where appropriate. (Firesmith 1995)

5.2 Subclasses within a dimension should ObJ / Sub
be defined so that any instance of the
parent class clearly belongs to exactly
one subclass. (McGregor and Korson
1993)

5.3 Superclasses should standardise their ObJ / Sub
subclasses. (Firesmith 1995)

5.4,, The extents of subclasses in a dimension Obj / Sub
should partition the extent of the
superclass. (Firesmith 1995)

5.5 The portion of a class' specification that ObJ /Sub possible
is specialised to form the subclass lack of
within a dimension should be disjoint cohesion
from the parts of the class' specification
used to form other dimensions. 12.6
(34cGregor and Korson 1993)

5.6 ?? Avoid mixing different levels of Sub
abstraction within the same model.
(Rurnbaugh 1993)

5.7 Make the hierarchy's conceptual Sub
architecture explicit. (Dvorak 1994) 1 1 1

Table A-25 Miscellaneous inheritance heuristics (summary)

In heuristic 5.5 above the recommended form for the class described is a set of

disjoint sections. This would suggest that the class represents several disjoint

concepts and may present several disjoint interfaces. Such a class would normally be

considered to have poor cohesion.

A. 18.3 Aggregation

14curistic
Number

ý Heuristic Assessment
Style

Trade-offs meth/lang
dependent

6.1- Containing classes should know what Obj
they contain, but contained classes
should have no knowledge of who
contains them. (Riel 1994)

226

6.2 Aggregation should not be used to ObJ / Sub
represent non-compositional
relationships, i. e., spatial/temporal
inclusion, attribution, class membership,
attachment, ownership. (Civello 1993)

6.3 Designers should be clear about the ObJ / Sub
precise relationship intended for each
use of aggregation in a design. (i. e.,
visibility, separability, immutability,
sharing, ownership) (Civello 1993)

6.4 If a contained element has behaviour ObJ / Sub
then at least some of that behaviour
should be used by the containing object.
(Riel 1994)

6.5 Aggregation hierarchy depth should Obj / Sub reuse
normally be approximately the same as vs
inheritance hierarchy depth for systems understa
of the same size. ndabili

6.6 Distribute system intelligence down the Sub 1 1
1

I
contaim-nent hierarchies. (Riel 1994)

Table A-26 Aggregation heuristics (summary)

For aggregation depth as for inheritance depth their is a trade-off between

reuse/reusability and understandability. The more factored the hierarchy the greater

the reuse or potential reuse. The shallower the hierarchy the more easier it is to

understand and therefore to test and maintain.

A. 18.4 Associations

Heuristic
Number

Heuristic Assessment
Style

Trade-offs metMang
dependent

7.1 Both classes in an association have Obj Sub

equal status. If one class is subordinate
to the other then aggregation or
attribution should be used. (Rumbaugh
1996)

7.2 When considering an association or Obj Sub

aggregation use the strongest form of
relationship that is applicable.

Table A-27 Association heuristics (summary)

227

A. 18.5 Clusters

Heuristic Heuristic Assessment Trade-offs meth/lang
Number Style dependent

8.1 Classes should be grouped into defined ObJ lang

collections of upto twenty classes that meth
have restricted visibility from other
classes in the system. (Love 1991)

8.2 A "system of objects" should represent ObJ / Sub

an object-oriented concept, as opposed
to a functional concept. (Berard 1993)

8.3 With a system of objects, all of the Obj / Sub

component objects should directly

support the object-oriented concept that
the system represents. (Berard 1993)

8.4 If a system of objects presents multiple ObJ / Sub cohesion lang
interfaces to the outside world, each of 12.6 meth
the interfaces should represent a
complete and coherent object-oriented
concept. (Berard 1993) f I

Table A-28 Cluster heuristics (summary)

In heuristic 8.4 above it is said that if an object has multiple interfaces each interface

should represent a separate object-oriented concept. Heuristic 12.6 clearly states that

any module should represent a single concept. A single object representing multiple

concepts would normally be considered to have poor cohesion.

A. 18.6 Classes

Heuristic Heuristic Assessment Trade-offs meth/lang
Number Style dependent

9.1 A class should have no more than six Obj
data members. (Riel 1994)

9.2 A class which has no operations should Obj

not be a class (it is probably an
attribute). (Riel 1994)

9.3 If a class has only one or two operations Obj / Sub
then it should not be a class (it should
probably be implemented as an
operation on some other class). (Riel
1994)

228

9.4 Avoid having too many services per Obj / Sub
class. Each class typically has no more
than six or seven public services. (Coad
1991 C)

9.5 Given some desirable behaviour in a Obj STb
system, a decision must be made as to
which class to place it in. The following
criteria have been offered for
consideration when making such a
decision.
o Reusability- would this behaviour be
useful in more than one context.
o Complexity- how difficult is it to
implement the behaviour.
e Applicability- how relevant is the
behaviour to the type in which it might
be placed.
o Implementation knowledge- does the
behaviour's implementation depend
upon the inter details of a type.
(Booch 1991)

9.6 Avoid excessive attributes. On average Obj / Sub
only one or two attributes are needed per
service. (Coad 1991c)

9.7 Pre-ordained H/W components and their Obj / Sub
S/W interfaces are good candidates for

I system entities. (Coplien 1992)
9.8 If you can't think of two good Obj / Sub

significantly different implementations,
then a broader abstraction may be
needed. (Coplien 1992)

9.9 Semantic constraints on a class Obj / Sub R. W. M.

shouldn't be implemented in the class
structure if this leads to a proliferation 16.3
of classes. (Riel 1994)

9.10 Beware classes which have only one Obj / Sub
instantiation in a system. (Riel 1994)

9.11 Beware of classes that are really Sub
operations. (Rising 1994)

--- 9.12 Avoid 'fuzzy' class definitions. A class Sub
should be cohesive with a single, well
defined and clearly bounded purpose.
(Coad 1991c)

9.13 A class should have easily identifiable Sub
and nameable behaviours. (Coplien
1992)

9.14 A class should not represent too large or Sub
too small an abstraction. (Coplien 1992)

229

ý Table A-29 Class heuristics (summary)

Heuristic 9.9 is a pragmatic heuristic designed to prevent class proliferation. This is

done however at the cost of real world modelling. In particular there is a trade off
between this heuristic and 16.3, which states that if the value of a piece of data affects

the behaviour of a class then inheritance should be used. The balance to be

considered is how central the modelling of the semantic constraints is to the problem

and how great a proliferation in classes they're modelling will cause.

- A. 18.7 Abstract classes

Heuristic Heuristic Assessment Trade-offs meth/lang
Number Style dependent

10.1 Use deferred classes to control future Obj / Sub
subclassing if appropriate. (Firesmith
1995)

10.2 Abstract classes should capture common Sub
abstractions. (Firesmith 1995)

10.3 Abstract superelass rule (ASR) states: Sub 2.6
all superclasses must be abstract.
(Hursch 19 4) 1 1

Table A-30 Abstract class heuristics (summary)

The trade-off between 10.3 and 2.6 was discussed earlier.

A. 18.8 Coupling

Heuristic Heuristic Assessment Trade-offs meth/lang
Number Style dependent

Minimise the tightness of those ObJ Sub

relationships that are necessary. (Myers
1978)

11.2 Minimise the knowledge one class has ObJ Sub

of others, so when one class is changed,
it is less likely to change the others.
(Berard 1993)

11.3 The larger the number of other distinct ObJ Sub
system components with which an
object must deal directly, usually the
poorer is the design of the overall
system. (Berard 1993)

230

11.4 Classes near the root of an inheritance Obj / Sub
tree should not depend upon classes
further down the tree. (Love 199 1)

11.5 The coupling of objects should take ObJ / Sub meth
place only on an application by lang
application basis. (Berard 1993)

11.6 Eliminate unnecessary relationships Sub
among modules. (Myers 1978)

11.7 Avoid having a large, central object Sub
which controls most of the functionality.
(Riel 1994)

Table A-31 Coupling heuristics (summary)

A. 18.9 Cohesion

Heuristic Heuristic Assessment Trade-offs metMang
Number Style dependent

12.1 An object containing only functions is Obi

not cohesive in an object-oriented sense.
93)

12.2 An object containing only data is not ObJ

cohesive in an object-oriented sense.
I (Berard 1993)

12.3 All encapsulated methods should be ObJ / Sub

application-independent. (Berard 1993)
12.4 Ensure all the member variables and Sub

methods of a class make sense as Part of
the class. (Berard 1993)

12.5 Make sure that subsystems are Sub

comprised of parts that are all highly
Jogically related. (Berard 1993)

- 12.6 Any one module should represent a Sub

single, coherent concept, at a uniform
level of abstraction. (Berard 1993)

12.7 A software engineer should be able to Sub

understand the responsibility of a
module without understanding the

module's internal design. (Parnas,
Clements et al. 1983)

12.8 Each of the methods in the public Sub
interface for an object should perform a
single coherent function. (Berard 1993)

231

12.9 An object removed from the context of
the immediate application, should, in
isolation, still represent a coherent and
complete object-oriented concept.
(Berard 1993)

Sub

Table A-32 Cohesion heuristics (summary)

A. 18.10 Infonnation hiding

Heuristic Heuristic Assessment Trade-offs meth/lang
Number Style dependent

13.1 Allow access to inherited state Obj execut.
information only via methods. (Berard speed
1993)

13.2 Variables should only be accessed or Obj

modified through the sending of
messages to, or the invoking of, the

accessing methods. (Wirfs-Brock and
Wilkerson 1989)

13.3 A change to a class should require the Obj Sub

minimum number of design decisions in

other classes to be reconsidered.
(Coplien 1992)

13.4 A type should be a logical black box Obj Sub

specification of externally visible
behaviour. (Rumbaugh 1993)

13.5 It should be possible to change the Obj Sub
implementation of one module without
knowledge of the implementation of
other modules and without affecting the
behaviour of other modules. (Pamas,

I Clements et al. 1983)

Table A-33 Information hiding heuristics (summary)

Introducing information hiding between a superclass and its subclasses as suggested in

13.1 has a slight execution speed trade-off. However, as previously discussed this

will not normally cause significant problems.

8.11 Message passing

FHeuristic Heuristic Assessment Trade-offs meth/lang n! Style
n it
7

uInber

IIIII Heuristic
Number

Heuristic Assessment
Style

Trade-offs methAang
dependent

232

14.1 Message passing may be used to -. Obj / Sub meth
1. request a corresponding service lang
2. provide notification of an event
3. provide data (actual parameters).
(Firesmith 1993)

14.2 Minimise object collaboration. In most 0 bJ Su ib-7

cases objects should only collaborate
with three to five other objects.
(Coad 1991c)

14.3 Minimise collaborators to 6 for a given ObJ Sub
system requirement. The overall

I number may be higher. (Rising 1994)

Table A-34 Message passing heuristics (summary)

A. 18.12 Services

Heuristic Heuristic
- Assessment -; Trade-off, meWang

dependent
Number Style

15.1 Keep protocols as simple as possible, Obi
have no more than 6 data parameters per
method. (Rising 1994)

15.2 Any override must return the same value Obj lang

as the base class function would when
applied to the base part of the derived

class object. (Bar-David 1992)
15.3 Usually if a service requires more than Obj / Sub

three parameters something is wrong.
(Coad 1991c)

15.4 An operation on a class should not have Obi / Sub

the potential for changing the semantics
of behaviour of the class. (Coplien
1992)

15.5 Services should do some work, notjust Obj / Sub

pass the buck to another service. (Love
1991)

15.6 Services of the same name in different Sub

classes should mean the s=e things.
(Love 1991)

15.7 Services of different names should mean Sub
different things. (Love 1991)

Table A-35 Service heuristics (summary)

233

- A. 18.13 Attributes

Heuristic Heuristic Assessment Trade-offs meth/lang
Number StyIe dependent

16.1 Attributes should hold encapsulated, Obi
unshared values. (Rumbaugh 1996)

16.2 Attributes should contain useful Obj
information about the objects of a class,
but should not have associated
behaviour. (Rising 1994)

16.3 If the value of a piece of data affects the ObJ / Sub 9.9
behaviour of a class then inheritance
should be used.

16.4 If a piece of data has associated Obj / Sub
behaviour use containment, otherwise,

I

use an attribute.

Table A-36 Attribute heuristics (summary)

The above trade-off was discussed with reference to heuristic 9.9.

A. 18.14 Protocol

Heuristic Heuristic Assessment Trade-offs meth/lang
Number Style dependent

17.1 The protocol of a subclass should be a Obj Sub

superset of the union of the protocols of
its parents. (Firesmith 1995)

17.2 Implement a minimal public interface Obj Sub

which all classes understand. (Riel
1994)

17.3 Keep protocol as simple as possible. Sub
(Riel 1994)

17.4 The public interface for an item should Sub
be consistent with the overall concept
embodied by the item. (Berard 1993)

- Table A-37 Protocol heuristics (summary)

A. 18.15 Polymorphism

Heuristic Heuristic Assessment Trade-offs meMang
Mimber

II
Style

I
dependent

Heuristic
Number

Heuristic Assessment
Style

Trade-offs meMang
dependent

234

18.1 To localise the effect of changes and Obj / Sub
hence reduce maintenance effort the use
of polymorphism is essential. (Haythom
1994)

18.2 Great classes are essentially interface Sub 20.3

specifications embodied as abstract
classes. We don't create the abstract
class because it is evident in the domain

- we create it to control the impact of
future changes in the domain. (Haythom
1994)

Table A-38 Polymorphism heuristics (summary)

Heuristic 18.2 suggests selecting classes to enable control future changes to the

domain, rather than to model its current state as suggested in 20.3.

A. 18.16 Dynamic modelling

Heuristic Heuristic Assessment Tmde-offs metMang

Number Style dependent

19.1 The state models of subclasses should Obi / Sub meth
be consistent extensions of the state
models of their superclasses. (Firesmith
1995)

Table A-39 Dynamic modelling heuristics (summary)

A. 18.17 Miscellaneous

Heuristic Heuristic Assessment Trade-offs meth/lang

Number Style dependent

20.1 Systems should be designed as networks Obi
of classes with no free-standing data or
functions. (Korson and McGregor 1992)

20.2 Decentralise control. Eliminate agents Obj / Sub
since many are irrelevant and don't do
anything useful. (Rising 1994)

20.3 Model the real world whenever Sub 18.2

convenient since this will provide a
more natural platform for maintenance
personnel. (Riel 1994)

20.4 Beware of "proliferation of classes". Sub
Every added class increases system
complexity and adds "uses". (Rising
1994) 1 1 1

235

20.5 Distribute system intelligence as Sub
uni as possible. (Rising 1994)

20.6 Distribute system intelligence across Sub
objects sharing lexical scope. (Riel
1994)

20.7 Carefully examine system Sub
decomposition, paying closest attention
to those parts where there are relatively
small differences in the scales of time
and/or size between a decomposed item
and its components. (Berard 1993)

20.8 The ease of making a change to the Sub
design should bear a reasonable relation
to the likelihood of the change being
needed. (Parnas, Clements et al. 1983)

Table A-40 Miscellaneous heuristics (summary)

Blank

In

Origiiial

237

Appendix B Measurement theory

Measurement theory is a branch of mathematics the fundamental concepts of which

are based on the model theory of logic. It outlines how valid measures can be defined

and underpins the types of data analysis that are meaningful for particular measures.

B. 1 Representational theory

The basic precept of measurement theory is that the numbers or symbols assigned to

entities must represent the perceived relations between the attributes of those entities.
The three main components necessary in defining a measure are an empirical

relational system, a representational theorem, and a uniqueness condition.

B. 1.1 Relational systems

The standard definition of a relational system A is an ordered pair (A, R). Where A is

a set of objects and R is a set of n-ary relations defined on those objects. There is a

variation on this definition which defines A as an ordered triple (A, Ro) where o is a

set of binary operations defined on A. These two definitions are equivalent because in

the first definition R subsumes o. In the second they are identified separately. The

following discussion uses the first definition.

Measures require the definition of two relational systems, an empirical relational

system and a formal (usually numerical) relational system.

B. 1.2 Empirical relational system

An empirical relational system, Q, may be defined as follows:

Q= (QR) where,
Q is a set of real world entities (objects/events/processes) which we wish to measure.
R= (RI, RiR,,) is a set of relations defined on Q. This set of relations is our

perception of how the entities behave, and how they may be manipulated and

compared.

238

B-1.3 Formal relational system
A formal relational system, N, may be defined as follows:
N= (7VP) where,
N is a set of formal entities (symbols/numbers)
P= [PI, Pj, P,,) is a set of relations defined on N.

B-1.4 Representational Theorem

Measurement, M, is a systematic process of mapping an entity's attribute onto a
formal representation M: Q --). N. This mapping must be done in such a way that the

relations between the empirical world entities must hold between their formal world

equivalents. This is the representation theorem and may be more formally described

as follows:

R, (q, r,...) <=-> P, [M(q), M(r),...] Vi = I, n

where,
Pi is a relation on N corresponding to Ri, and q,

B. 1.5 Uniqueness Condition

The conditions under which the representation theorem holds are termed the

representation conditions. In general if the mapping, M, satisfies these conditions they

will be other mappings, M', which will also satisfy these conditions. These other

mappings may be related to the original by a transformation, f, i. e. M' = f(Av. As

these other mapping also hold to the representation conditions it follows that:

R, (q, r
) <* P, [f(M(q)), f (M(r)) I

Transformations for which the above holds are termed admissible transformations.
The set of all such admissible transformations are known as the uniqueness condition.

B. 1.6 Scales

A scale is the term given to the triple of empirical relational system, formal relational

system and a mapping. Following the above definitions, a scale, S, is defined as:

239

S= (Q, N, M. Although in theory each triple has its own scale with it's own

uniqueness condition, in practice scale types are generally considered rather than
individual scales. A scale type encompasses a range of different scales that share a set

of admissible transformations.

B. 2 Scale types

The most commonly used scale types and their 'admissible' transformation are
described in Table B-1.

Scale Type Admissible Transformations Examples
Nominal M=f(M wherefis a 1-1 mapping classification (fault types,

development languages etc.)
Ordinal M'=f(AV wherefis monotonically preferences (more user friendly,

increasing more maintainable)
Interval M'= W+B (ct >0) temperature (centigrade and

I Fahrenheit), time (calendar)
Ratio M'= am (a >0) length (meters), mass (Kg), energy

Q)
Absolute M, =M counting (number of children, depth

I I of inheritance)

Table B-1 Scale types and admissible tranformations

Table B-2 lists the appropriate statistics and tests for the standard scale types.

Scale Type Defining Relations Appropriate Statistics Appropriate tests
Nominal Equivalence. _ Mode, frequency, and

contingency coefficients Non-parametric
ordinal Equivalence, greater than. Median, percentile, statistical tests

Kendall -r, Spearman r,,
and Kendall W

Interval Equivalence, greater than and Mean, standard
known ration of any deviation, pearson
intervals. product-moment

correlation, and multiple
product-moment Non-parametric,
correlation and parametric

Ratio Equivalence, greater than and Geometric mean and statistical tests
known ration of any coeffiecient of variation
intervals, and known ratio of
any two scales

Table B-2 Scale type and appropriate statistics

Blank

In

Original

241

Appendix C Meta-modelling object-oriented designs

The purpose of the data model is to represent the information contained within a
CASE tool output, or a programming language file, in a form suitable for storage on a

relational database. This database must be capable of supporting queries designed to

calculate 00 design metrics.

CA Inputs to the model

A fundamental consideration in the design of the model is that it must be capable of

storing the design information about an 00 system. One problem in designing such a

model is that, although the general concepts behind 00 design are fairly well

understood, the detailed way in which the 00 principles are implemented varies
between particular programming languages and particular design methods. Building a

tool that takes input from a variety of sources requires a common model that captures

as much of the conceptual detail as possible across the more common languages and

methods. In doing this, there is an inevitable loss of precision in the description of

some concepts from the original notations.

A desire to produce a single standard notation to describe the 00 designs recently

emerged in the 00 community in general. This has resulted in two major unification

efforts between the existing methodologists. These are the unified modelling

language (UML) and the OPEN method. UML consists of a notation and a

description of the semantics of the notation. The UML semantics has been accepted

as the basis for a common 00 meta-model by the Object Management Group (OMG)

and as such is likely to become the de facto standard. For this reason the semantics

was used as the principle input for the design of the data model.

As the purpose of the model is to allow metrics to be collected, it must include any

data that is required to calculate known metrics. A second source of input for the data

model must therefore be the knowledge of what information is required to assess

242

existing metrics.

Where information required for a particular metric is not present in the UML meta-

model (and the information is available at design time) this information was used to

extend the data model beyond UML.

An additional source of input for the derivation of the model are additional

requirements imposed on the model because of the desired functionality of the tool.

C. 2 The UML meta-model
The UML meta-model is structured as three top-level packages Foundation,

Behavioural. Elements and Model Management.

Behavioral
Elements

I
Model

Management

/
/

/
Foundation

Figure C-1 UML top-level packages

The Foundation package is further decomposed into four sub-packages Auxiliary

elements, Core, Extension Mechanisms and Data Types.

243

I
Auxiliary
Elements

/
/ __"\

Data Types

Figure C-2 UML foundations package

The Behavioural package is also decomposed into four sub-packages Collaborations,

Use Cases, State Machines and Common Behaviour.

I
Collaborations

I
Use Cases

I

I

vi

Common
Behavior

State Machines

V
V

47

Figure C-3 UML behavioural package

Each of the packages used to describe the UML meta-model contain only those

attributes and relationships which are relevant to that particular package. This means

that to get a complete picture of any class a union of all attributes and relationships

rnust be made across all of the packages in which that class appears. A piecemeal

approach to producing a relational model from the UML meta-model is therefore

fraught with problems of having to continually re-work previous packages as new

relationships are introduced in later packages which invalidate the mappings already

made.

I, /

244

The approach taken to producing a relational model from the UML meta-model is

therefore to first produce a single meta-model diagram showing the complete classes
from all packages. As mentioned earlier there are additional considerations in

producing the relational model. What information about a design needs to be stored
in order for known metrics to be calculated? How will CASE tool and language

mappings be achieved? How the resulting database will be constructed and

maintained? How the database will be used within the tool? These considerations
will be used to modify the meta-model to better suit it's purpose before the relational
model if finalised.

C. 3 Metrics considerations
In this section the elements of the UML meta-model that are necessary for the

calculation of existing measures is considered. One obvious consideration is whether
the dynamic elements of the meta-model are necessary. Design and coding measures

are usually based on the static aspects of a system. There is little reference in the

literature to measuring the dynamic aspects of system. Collecting truly dynamic

measures would require instrumenting and running the code (or executable design).

Dynamic measures would require a very different type of tool from the static analysers

normally used for measurement collection. It was therefore decided to limit the tool

to the static aspects of the UML meta-model.

Some measures described as being design metrics require information not normally

contained in design diagrams. For instance, to calculate LCOM information on which

class methods use which class attributes is required. This information is not generally

available in UML design diagrams. However, the meta-model does have a

stereotyped dependency relationship called 'usage' that could be used to represent

these method-to-attribute relationships. This means that where these relationships

exist in code they could be modelled, but it unlikely that they would be represented in

design diagrams.

A more general method for considering which elements of the meta-model would be

245

useful in supporting measurement is to look at a collection of measures and consider

which meta-model elements would be necessary for their collection. The table below

lists some commonly used design/code measures and gives the meta-model elements

that they would be necessary for their calculation.

Originator Metric UML
Meta-class

Attribute or
Relationship

Chidamber
& Kemerer

WMC Class features

DIT GcneralizableElement isRoot, supertype

NOC GeneralizableElement isLeaf,
subtype

CBO ocallD Dependency

<<usageD Dependency

client, supplier
client, supplier,
description

RFC call oDependencyD client, supplier
LCOM ousage>> Dependency

Modeffilement
client, supplier
type

Lorenz &
Kidd

Number of scenario scripts

Number of key classes
Number of support classes
Average number of support
classes per key class
Number of subsystems Classifier type
Average per-days per class
Average number of classes per
developer
Number of major iterations
Number of contract completed
Number of message sends
Number of statements
Lines of code

------ Average method size
Method complexity
Strings f message sends
Number of message sends ocallD Dependency client, supplier

Number of public instance
methods

Classifier
Feature

features,
visibility, type

Number of instance methods Classifier
Feature

features
seopeKind, ýype

246

Average nurnbcr of instance Classifier features
methods per class Feature visibility, type

Package FI ern ent Reference

Number ofinstance variables Classi ficr I'caturcs
Feature scopeKind, type

Number of'class methods Classifier features
Feature scopeKind, type

Number ofclass variables Classifier features
Feature scopeKind, type

Class hicrarcliv nestinu level OcnerafizabIcIdenient sRoot. supertype
Number ofabstract classes Gencralizablel"Icniclit isAbstract, type

I Jse ofniultiple inheritance supertype
Number ofowi-ridden methods Classifier features

Fcaturc type, name
Behavioral Feature parameters
General izableFlernent super-tvPe

Number of' methods added b\ a Classi I icr features
subclass Feature type, narne

Behavlorall-'eature parameters
GencralizableElcment supcrtype

Specialization index Classi fier features
Feature type. name
Behavlorall'cature parameters
General izablel-dcnient isRoot, supertype

Class cohesion
Global usage
Average number of parameters Behavioral Feature parameters
per method
Use offriend functions 4riend)) Dependency client, supplier

ModelElcinent type
Percentage of function-oriented' -

code
Average nurn)er of comment
lines per method
Average number of commented
methods
Number of problem reports per
class or contract

Table C-I Meta-model element usage by measures

Those elements of meta-model used in the collection of tile listed measures will

clearly be necessary parts of the tool's meta-model. Two other points are also clear
I, rorn the table. Firstly, some of the measures require information for their calculation

that are not availablc from the UNII, meta-model. Should tile tool"s nicta-model he

247

augmented to include this int'Orniation? Alternatively, should these rneasures be

reclassified as code-only rileasures and so not collectable by a design rneasurement

too]? A second point is that soine ofthe inflorniation included in the UML meta-

model is not used in any ofthe incasures listed. Ifelernents of the UML rneta-rnodel

are not used b\ ineasures. they rnight be rernovcd to siniplify the tool's rneta-rnodel.

However, the list of' nicasures is clearlv not exhaustive, and even if it was, thought

might be given as to Nvhether future rneasures NVOUld use additional UML nieta-model

elements. Care should therefore be exercised in rernoving rneta-rnodel elernents.

A further consideration is raised by the 'percentage of function-oriented code' metric.

This measure assesses the amount of not-00 code. To calculate the measure the

meta-model must be capable of representing systems which are only partially obj - , ject

oriented (as is possible in C++). Should the tools meta-Inodel be capable of storing

information about the function-oriented sections of C++ programs, or should such

measures not be considered as 00 design measures and hence not included in all 00

design measurement tool?

Another question is the extent to which Ian---uat,
-, e specific features should be included

in the rneta-model. For instance, should C4+ friend classes/functions or Java inner-

classes be included? There is a clear trade-off between the completeness of the 11)cta-

model and it's complexity.

CA Database considerations

I. Operation narnes require function narnes to be unique (for the primary key)- use

function mangling

2. Consider how to handle long identifier narnes correctly? - limit to a sensible size,

then truncate (or truncate and number as NA Hh shortened file narnes)

3. lJow can Iyou
handle the relational definition of metrics that employ recursion? -

use 'connect by' in oracle (Access/otlier?)

C. 5 Analysis tool considerations

1. Maintain a version attribute flor designs in progress to allow multiple versions to

248

be stored and 'change over time' metrics to be calculated.
2. Add source file date-stamp to type-info in the database to facilitate minimum re-

building?

3. Add a 'source" table to cover the last 2 points. This table vAll include:

" name

" namespace
" filename

" version number

" date stamp
4. Add filename to the primary key of any ModelElement subtypes and update any

foreign keys referring these appropriately.

C-6 Modelling considerations

C-6.1 Paring the UML meta-model
The UML meta-model contains information not only about the design model but also

about how this model should be displayed. This information is useful to those using
the meta-model description to help them in developing UML CASE tools but it is only

the model information itself and not the view information which is of interest for the

data model. For this reason the 'view elements' and their associated constructs will

not be included when converting the UML meta-model into an database schema.

C. 6.2 Converting UML to an RDBMS schema
The UML meta-model on which the data model is based is itself described in UML

notation. As an 00 design notation UML contains such constructs as inheritance and
association, as well as concepts such as polymorphism, which are cannot be directly

modelled in an RDBMS schema. The UML meta-model being described using the
UML notation means that the conversion of these 00 constructs needs to be handled

at two levels. The first of these being the at the level of the model itself and the

second at the level of the data which the model will contain.

249

Rules have already been suggested for converting 00 models into RDBMS schema

e. g., (Blaha, Premerlani et al. 1994). The following points should be considered when

mapping from 00 models to relational schema.

C. 62.1 Classes

In general the classes in a model map to the entities in the relational schema.

However, there are cases when more than one class may be combined into a single

entity, or a single class split so that it is represented by two or more entities.

Considerations:

1. Where one class has a fixed cardinality association (e. g. one-to-one) with another

class (especially where it is a containment association) it may be possible to

combine the two classes into one entity.

2. Entities must contain a fixed number of simple attributes. Where a class contains

complex attributes , e. g., instances of other classes as attributes, it may have to be

split into two or more entities. Similarly, if a class contains a variable number of

attributes, e. g., by containing a Vector, then it may also have to be split.

C. 6 2.2 Template classes

1. Generally each instance of a template class must be treated as a separate entity.
However, there are circumstances in which different template instances may be

represented by the same entity. Some of these circumstances are:

2. If template parameters only affect the operations of the template instances.

3. if a class is parameterized using a value rather than a type and this doesn't affect

the number of attributes of the class.
4. If a class is parameterized using a value rather than a type which affects the

number of attributes of the class, e. g., by setting an array size, but this variable

sizing is dealt with by using a separate entity for the variable attribute (as

discussed above).

C 62.3 Attributes

1. Attributes in classes are generally mapped as equivalent attributes in their classes

250

associated entity. As mentioned above for this direct mapping to take place the

attribute must be a single simple value. Composite attributes, or multiple valued

attributes (arrays), may be modelled as either separate entities or several single

attributes in their class's associated entity.

C62.4 Operations

1. Operations are not generally mapped from object models to entity models.
2. Possibility of mapping operations that represent derived attributes?

C62.5 Associations

I- Simple associations (including aggregation) may be implemented in either of two

ways.
2. Creating an explicit table for the association. This table will include foreign keys

for each of the associated classes and columns for any link attributes.
3. Including the primary key of one of the associated classes as a foreign key in the

other. Any link attributes must also be included along with the foreign key.

Considerations:

1. Creating explicit tables for associations makes the schema more extensible but

will generally reduce performance
2. When considering which form of mapping to use the multiplicity Of the

association must be taken into consideration.
3. An association cannot be made part of an entity which connects to many other

objects via this association.
4. A many-to-many association must be implemented as a separate entity.
5. In a class whose association-role has a lower cardinality limit of one any attributes

representing the association may not be null.
6. Where a separate table is used to represent an association a lower limit of one may

not be enforced.

7. Associations between more than two classes are best modelled with a separate

association entity.

251

C62.6 Composition

1. Composition is a stronger form of association and as such obeys the mapping rules

- for associations.

C62.7 Link classes

1. Link classes may be considered as a collection of link attributes and treated in the

same way. Alternatively they may be mapped to a separate entity with

relationships to each of the other classes involved in the association. Which is

chosen will depend on the number of classes involved in the association and their

various multiplicities.

C62.8 Inheritance

1. Inheritance represents the largest problem in mapping object models into

relational schema. Mapping of inheritance can be done in a number of ways. The

primary consideration on the choice of mapping for inheritance is the manner in

which the various superclasses and subclasses will be used in querying the

resulting database. This basically means the extent to which polymorphism is

used.
2. Use only a single superclass table. Attributes from each subclass are pushed up

into the superclass. An additional attribute is also added to indicate the actual

class - to which a particular entry belongs. All attributes not applicable to a

particular entry are set to null. This mapping violates second normal form because

some attributes are dependent only on the type discriminator and not the full

primary key. Also, it is not possible for most RDBMSs to enforce permissible

permutations of null and non-null values. This is probably the easiest mapping to

use with polymorphism. It will also have the best performance for use with

polymorphism because only a single table need be searched and no joins are

required. However, where deep hierarchies are used the necessary redundancy may
be considered excessive. There may also be problems if partial hierarchy queries

are required for hierarchies of depth greater than one. This is due to the subtypes

only 'knowing' the root class of the hierarchy and not the intermediate levels of
it's definition.

252

3. Use only subclass tables. Superclass attributes are pushed down into the

subclasses. In this mapping it is not possible for most RDBMSs to constrain

values across tables. For situations where polymorphism is not needed, i. e., where

searches only occur within a specific predefined class, this mapping is probably

the simplest and will give the best performance. This is because only a single table

need be searched, no joins are required and no data redundancy is needed.
4. Use one entity for the superclass and an entity for each subclass. All entities must

share a common primary key. Referential integrity can be used to ensure that each

subclass record has a corresponding superclass record. This provides a

compromise solution between I and 2. Superclass and subclass tables may be

joined to allow polymorphic searches whilst each individual subclass also has it's

own table for searches where the subclass is predefined.
5. Use one entity for the superclass, an entity for each subclass and a generalisation

table. The generalisation table connects the primary key of the superclass to the

primary keys of each of its subclasses. Referential integrity can be used to ensure

that each subclass record has a corresponding superclass record. This type of

mapping allows polymorphic queries without data redundancy where a common

primary key between subtype and supertype does not exist.

C62.9 Standard Elements

1. Consider how to deal with standard elements
2. How many of the standard element should be included in the model? All, only a

selection , or none. If only a selection what would be the selection criteria?

3. How should included standard elements be modelled?
4. As subtypes of the Elements to which they apply?
5. As attributes of the Elements to which they apply?
6. Another form of mapping?
7. Might the mapping style be different for each of the three types of standard

elements? (Stereotype, TaggedValue and Constraint)

253

C. 7 Mapping the composite meta-model onto the relational model

C. 7.1 Simplifying the UML structural packages

1. Meta-classes removed as they are solely concerned with the display of models and

not with their content: Geometry, GraphicMarker, ViewElement, Presentation

2. Meta-classes removed as they have no semantic impact: Mapping

3. Remove EnumerationLiteral as it is closer to a code detail that a piece of design.

4. Collapse Primitive, Enumeration and Structure into stereotypes of DataType as

they now contain no additional attributes or relationships.

5. Although shown on the diagram as a subclass of ModelElement it is described as
being a subclass of ViewElement. As a ViewElement a Comment is not part of

the model itself. Even if considered as a ModelElement comments may not be

interpreted by a measurement system and so have no semantic impact. Remove

meta-class Comment.

6. Collapse Refinement, Trace and Usage into stereotypes of Depencency

7. Collapse Model into a stereotype of Package

8. Collapse Interface into a stereotype of Classifier

9. Collapse ProcedureExpression, TimeExpression, ObjectSetExpression and

BooleanExpression into stereotypes of Expression.

10. Remove Element as it has no attributes or associations and there is only one

remaining subclass, ModelElement, as we are no longer considering

ViewElement.

11. Remove the Extension mechanisms. Extensions to the meta-model would require

extensions to the database, the mappings and possibly existing metric scripts. The

standard elements defined in UML will be incorporated into the model but

additional extensions will not be allowed.

12. Add new StereoTypes : Primitive, Enumeration, Structure, Refinement, Trace

Usage, Model, Interface, ProcedureExpression, TimeExpression,

ObjectSetExpression, BooleanExpression

13. The aggregation relationship between Multiplicity and MultiplicityRange allows

any set of non-negative integers to be constructed for a Multiplicity value. In

practice, however, is rare to have other than a single contiguous range. Most

254

CASE tools will also only allow a single lower to upper range. For this reason the
Multiplicity and MultiplicityRange meta-classes will be merged into a single
Multiplicity meta-class with integer attributes of upper and lower.

14. Name with a single body attribute can be similarly substituted in the classes

which contain it (ModelElement, ElementReference, Generalization and
Expression). Addition constraints may be necessary to ensure that these new
String attributes refer to names in the system.

C. 7.2 Mapping the simplified UML structural packages into ERDs

C 7.2.1 Mapping associations and aggregations
1. As Multiplicity now has a fixed number of attributes it can itself be removed and

these attributes (upper and lower) used to substitute for it in the meta-classes

which contain multiplicities (AssociationEnd and StructuralFeature).
2. The composition of an dependency owningDependency to a subDependency may

be modelled by an owningDependency attribute in the Dependency class. Since

the cardinality is OJ this attribute may optionally be NULL.
3. The specification-realisation association between Operation and Method can be

represented as an operation attribute in Method.
4. The parameter association between Parameter and BehavioralFeature can be

represented by a behavioralFeature attribute in the Parameter class. As this

association is ordered it will also require a parameter number attribute.
5. The type association between Parameter and Classifier can be represented by a

type attribute in the Parameter class.
6. The featue-owner association between Feature and Classifier can be replaced by

an owner attribute in the Feature class. Although this realtionship is given the

{ordered) constraint there is no apparent reason for this (and no reason is given in

the UML documentation). There seems no reason, therefore, for any additional

attributes to record the ordering of features.

7. The type-feature association between Classifier and StructuralFeature can be

replaced by a type attribute in the StructuralFeature class. Again there is no

255

apparent reason to retain any ordering information.

8. The ownedElement-namespace association between Modeffilement and
Namespace can be replaced by adding attributes for namespace and visibility (the

ElementOwnership link-class's attribute) into the Modeffilement class.
9. The gerneralization-subtype and the specialization-supertype association between

Generalization and GeneralizableElement can be mapped as attributes in the

Generalization class.
10. The aggregation link between Association and AssociationEnd can be replaced by

adding association and endNumber attributes to AssociationEnd.

11. The template-templateParameter aggregation between Modeffilement and itself

must be replace by a TemplateParameter class because a relationship between an

entity and many instances of itself cannot be represented by merely adding

attributes. The TemplateParameter class has attributes: templateElement, which

represents the ModelElement which is the template itself; parameterType which

represents the Modeffilement which specifies the type for the template argument

of Binding; and parameterNumber, which holds the position in the parameter list

of this particular parameter.

12. Map association as a class called TemplateArgument with attributes binding, type

and argumentNumber.

13. The specification-realization association between Classifier and itself is replaced

with an Implements class (must be a class because of many-to-many relationship).

14. The aggregation of ModelElement into Component appears to a restatement of the

specification-realization relationship between Clasifier and itself. It will therefore

be removed.

C. 7.2.2 Collapsing the inheritance hierarchy

Modeffilement is used polymorphically in Dependency, TemplateParameter and
ElementReference. This means that mapping 2 cannot be used. The depth of
ModelElements hierarchy (5) and the large number of subclasses and hence large

number of attributes make mapping I impractical. If we make the assertion that a
ModelElement's name should be unique with it's namespace then the name-

namespace pair can be used as the primary key for all ModelElements (what ever

256

their subtype). This would allow mapping type 3 to be employed.
2. Make Binding a stereotype of Dependency rather than an explicit subclass.
3. Make Component, Node and DataType stereotypes of Classifier

4. Add Stereotypes: binding, component, node and dataType.

5. Only 2 attributes exist in the subclasses under General izableElement. Mapping I

can be used as polymorphism is required but the small number of subclass
attributes would lead to little data redundancy.

6. Add class, associationClass, association, package and subsystem as stereotypes of
GeneralizableElement. It is not necessary to add a stereotype for Classifier as this

class is abstract and will never have any instances.
7. As StructuralFeature is abstract and has only one subclass, mapping 2 will be used

to collapse the StructuralFeature-Attribute generalisation.
8. BehavioralFeature is used polymorphic by Parameter. Here mapping I can be

used to collapse Operation and Method into BehavioralFeature.
9. Use mapping type I to collapse Namespace and GeneralizableElement.
10. As Feature is an abstract class and there seems no need for polymorphism.

mapping type 2 with be used.

257

Appendix D Design description language (DDL)

The following is a BNF description of the intermediate representation used to describe
00 designs for input to the 'DesignDatabase' datastore.

Literal strings are in bold

Literal characters are in single quotes, e. g., V

DefinitionFile :: = ElementDefinitions

ElementDefinitions
/* EMPTY */
ElementDefinitions ModelElementDefinition
ElementDefinitions TemplateDefinition

ModelElementDefinition:: =
GeneralizableElementDefinition
MethodDefinition
AttributeDefinition
ElementReferenceDefinition
ImplementsDefinition
DeploymentDefinition
GeneralizationDefinition
DependencyDefinition
AssociationEndDefinition
PararneterDefinition

GeneralizableElementDefinition:: =
<GencralizableElement>
<Name>Name
<Namespace> Namespace
<Type> Type
---Stereotype> Stereotype
<Visibility> VisibilityKind
<IsAbstract> BooleanLiteral
<IsActive> BooleanLiteral
<IsInstantiable> BooleanLiteral

. <IsLcaf'> BooleanLiteral

. <IsPersistent> BooleanLiteral
<IsRoot> BooleanLiteral

258

</GeneralizableElement>

MethodDefinition
<Method>
<Namc>Name
<Namespace> Namespace
<Type> Type
<Stereotype> Stereotype
<Concurrency> CallConcurrencyKind
<OwnerScopc> ScopeKind
<Visibility> VisibilityKind
<IsPoIymorphic> BooleanLiteral
<IsQuery> BooleanLiteral
<4Method>

ParameterDefinition
<Parameter>
<Name>Name
<Namespace> Narnespace
<Stereotype> Stereotype
<DefaultValue> DefaultValue
<ParameterDirectionKind> ParameterDirectionKind
<ParameterNumber> ParameterNumber
<ElementType>

<Name>Namc
<Namespace> Namespace

</Parameter>

AttributeDefinition
<Attribute>
<Name>Name
<Namespace> Namespace
<Stereotype> Stereotype
<Changeable> ChangeableKind
<InitialValue> InitialValue
<Multiplicity> Multiplicity
<OwnerScope> ScopeKind
<Visibility> VisibilityKind
<ElementType>

<Name>Name
<Namespace> Namespace

</Attribute>

ElementReferenceDefinition
<ElementRefcrcnce>
<Alias> Alias
<Stereotype> Stereotype
<Visibility> VisibilityKind

259

<Element>
<Name>Name
<Namcspace> Namespace
<Type> Type

<Package>
<Name> Name
<Namespacc> Namespace

</ElementReference>

ImplementsDefinition
<Implements>
<Stereotype> Stereotype
<Realization>

<Name>Name
<Namespace> Nainespace
<Type> Type

<Specification>
<Name> Name
<Namespace> Narnespace
<Type> Type

</Implements>

DeploymentDefinition:: =
<Deployment>
<Stereotype> Stereotype
. cComponent>

<Name>Name
<Namespace> Narnespace

<Node>
<Name>Name
<Namespace> Namespace

</Deployment>

GeneralizationDefinition
<GeneraIization>
<Name>Name
<Namespace> Namespace
<Discriminator> Discriminator
<Stereotype> Stereotype
<Depth> Integer
<Subtype>

<Name>Name
. <Namespacc> Namespace
<Type> Type

<Supertype>
<Namc>Name
<Namespace> Namespace

260

<Type> Type
</Generalization>

DependencyDefinition:: =
<Dependency>
<Name>Name
<Namespace> Narnespace
<Type> Type
<Stereotype> Stereotype
<Client>

<Name>Name
<Namespace> Narnespace
<Type> Type

<Owner>
<Name> OwnerNarne
<Namespace> OwnerNamespace

<Supplier>
<Name>Name
<Namespace> Namespace
<Type> Type

<Dependency>

AssociationEndDefinition
<AssociationEnd>
<Name>Name
<Namespace> Namespace
<Stereotype> Stereotype
<AggregationKind> AggregationKind
<ChangeableKind> ChangeableKind
<Multiplicity> Multiplicity
<TargetScope> ScopeKind
<IsNavigable> BooleanLiteral
<IsOrdered> BooleanLiteral
<Association>

<Name> Narne
<Namespace> Namespace

<ElementTypc>
<Name>Name
<Namespace> Namespace

</AssociationEnd>

TcmplateDefinition :: =
TemplateParameterDefinition
I TemplateArgumentDefinition

TemplateParameterDefinition
<TemplateParameter>
<Type> Type

261

<Stereotype> Stereotype
<ParameterNumber> PararneterNumber
<ElementType>

<Name> Name
<Namespace> Narnespace

<Template>
<Name>Narne
<Namespace> Namespace

</TcmplateParameter>

TemplateArgumentDefinition:: =
<TemplateArgument>
<Stereotype> Stereotype
<ArgumentNumber> ArgumentNumber
<Binding>

<Name> Name
<Namespace> Narnespace

<ElementType>
<Name> Narne
<Namespace> Namespace

</TemplateArgument>

ParameterDirectionKind:: =
#in
#out
#inout
#return

I#unknown

ScopeKind:: =
#classifier
I #instance
I#unknown
I #notApplicable

VisibilityKind:: =
#public

#protected
#private
ffimplementation

-I#unknown
I HnotApplicable

AggregationKind
#none
I#shared
I #composite

262

I#unknown
I #notApplicable

ChangeableKind
#none
Iffrozen
I #addOnly
I #unknown
I #notApplicable

CallConcurrencyKind
#sequential
I#guarded
14synchronous
I NnotApplicable
I#unknown

Multiplicity:: =
LowerMultiplicity
UpperMulitplicity

LowerMultiplicity:: =
integer

UpperMulitplicity
integer
I SimpleName
J /* EMPTY */

BooleanLiteral
#true
I ffalse
I#unknown
I #notApplicable

Type :: =
#Binding
#Refinement
#Usage
#Trace
#Model
#Subsystem

IfiPackage
#Association
#AssociationClass
#Interface
#Class

JONode

263

HConponent
#DataType
#Primitive
#Operation
#Enumeration
#Structure
#Method
#Attribute

I#unknown
I #notApplicable

Alias:: =
SimpleName

ParameterNumber:: =
integer

ArgUMentNumber:: =
integer

Name:: =
SimpleName
CompoundNarne

OwnerName:: =
SimpleName
CompoundName
#none

Namespace :: =
SimpleName
CompoundName
#Primitive
#global

OwnerNamespace:: =
SimpleName
CompoundName
#Primitive
#global
#none

Discriminator:: =
StringLiteral
SimpleName
#nonc

Stereotype :. =

264

Namemame
I Nnone
I#unknown
I #notApplicable

DefaultValue
StringLiteral
I #none

InitialValue
StringLiteral
I Nnone

Integer
[0.. 91+

Simplename:: =
[a.. z A.. Z-$] [a.. z A.. Z 0.. 9-

CompoundName:: =
SimpleName'. 'SimpleName
I CompoundName'. 'SimpleName

StringLiteral :: =
1111 [. 1+ #lot

265

Appendix E Data-model description

EA Table derinitions

The following text is a copy of the SQL file used to set-up the design database. This

can be used as a reference to the tables and columns when creating metric queries.

CREATE TABLE Association_End

project VARCHAR(64) CONSTRAINT AssociationEnd
-

columnl NOT NULL,
version INTEGER CONSTRAINT AssociationEnd

'
column2 NOT NULL,

name VARCHAR(128) CONSTRAINT AssociationETid
-

column3 NOT NULL,
namespace VARCHAR(255) CONSTRAINT AssociationEnd_column4 NOT

NULL,
stereotype VARCHAR(32),
aggregation kind VARCHAR(15),
changeable VARCHAR(15),
lower

-
multiplicity VARCHAR(3),

upper_multiplicity VARCHAR(3),
target_scope VARCHAR(15),
is navigable CHAR(l),
is ordered CHAR(l),
association name VARCHAR(128) CONSTRAINT

AssociationEnd_columnl3 NOT NULL,
association namespace VARCHAR(255) CONSTRAINT

AssociationEnd_columnl4 NOT NULL,
type_name VARCHAR(128) CONSTRAINT AssociationEnd_columnl5 NOT

NULL,
type_namespace VARCHAR(255) CONSTRAINT AssociationEnd_columnl6

NOT NULL,
CONSTRAINT AssociationEnd_primary PRIMARY KEY (project,

version, name, namespace)

CREATE TABLE Attribute

project VARCHAR(64) CONSTRAINT Attribute columnl NOT NULL,
version INTEGER CONSTRAINT Attribute_col-umn2 NOT NULL,
name VARCHAR(128) CONSTRAINT Attribute column3 NOT NULL,
namespace VARCHAR(255)CONSTRAINT AttriSute column4 NOT NULL,
owner_name VARCHAR(128)CONSTRAINT Attribut-e_column5 NOT NULL,
owner

-
namespace VARCHAR(255) CONSTRAINT Attribute_column6 NOT
NULL,

stereotype VARCHAR(32),
changeable VARCHAR(15),
initial_value VARCHAR(255),
lower

-
multiplicty VARCHAR(3),

upper_multiplicty VARCHAR(3),
owner_scope VARCHAR(15),
visibility VARCHAR(15),
type_name VARCHAR(128),
type_namespace VARCHAR(255),
CONSTRAINT Attribute_primary PRIMARY KEY (project, version,

name, namespace)

266

CREATE TABLE Dependency

project VARCHAR(64) CONSTRAINT Dependency_columnl NOT NULL,
version INTEGER CONSTRAINT Dependency_column2 NOT NULL,
name VARCHAR(255) CONSTRAINT Dependency-column3 NOT NULL,
namespace VARCHAR(255) CONSTRAINT Dependency-column4 NOT NULL,
type VARCHAR(32),
stereotype VARCHAR(32),
client name VARCHAR(128) CONSTRAINT Dependency-column7 NOT

'KULL,
client namespace VARCHAR(255) CONSTRAINT Dependency_column8 'ROT NULL,
client_type VARCHAR(32) CONSTRAINT Dependency_column9 NOT

NULL,
owner

- name VARCHAR(128),
owner_namespace VARCHAR(255),
supplier_name VARCHAR(128) CONSTRAINT Dependency-column12 NOT

NULL,
supplier namespace VARCHAR(255) CONSTRAINT Dependency_column13

NOT NULL,
supplier_type VARCHAR(32) CONSTRAINT Dependency_columnl4 NOT

NULL,
CONSTRAINT Dependency_primary PRIMARY KEY (projectt version,

name, namespace)

CREATE TABLE Deployment

project VARCHAR(64) CONSTRAINT Deployment columnl NOT NULL,
version INTEGER CONSTRAINT Deployment_collimn2 NOT NULL,
stereotype VARCHAR(32),
component name VARCHAR(128) CONSTRAINT Deployment_column4 NOT

NULE,
component_namespace VARCHAR(255) CONSTRAINT Deployment_column5

NOT NULL,
node_name VARCHAR(128) CONSTRAINT Deployment_column6 NOT

NULL,
node_namespace VARCHAR(255) CONSTRAINT Deployment_column7 NOT

NULL

CREATE TABLE Element-Reference

project VARCHAR(64) CONSTRAINT Element_Reference_colUmnl NOT
NULL,

version INTEGER CONSTRAINT Element Reference_column2 NOT NULL,
alias VARCHAR(32) CONSTRAINT Eleme-nt_Reference_column3 NOT

NULL,
stereotype VARCHAR(32),
visibility VARCHAR(15),
element name VARCHAR(128) CONSTRAINT Element-Reference_column6

N5T NULL,
element-namespace VARCHAR(255) CONSTRAINT
Element_Reference column7 NOT NULL,
element

-
type VARCRAR(32) CONSTRAINT Element_Reference_column8

NOT NULL,
package name VARCHAR(128) CONSTRAINT Element_Reference_column9

N5T NULL,
package_namespace VARCHAR(255) CONSTRAINT

Element Reference columnlO NOT NULL,
CONSTRAINT Eliiment-Refe-rence_primary PRIMARY KEY (project,

version, alias, package_name, package_namespace)

267

CREATE TABLE Generalizable_Element

project VARCHAR(64) CONSTRAINT Generalizable_Element_columnl
NOT NULL,

version INTEGER CONSTRAINT Generalizable_Element-column2 NOT
NULL,

name VARCHAR(128) CONSTRAINT Generalizable_Element_column3 NOT
NULL,

namespace VARCHAR(255) CONSTRAINT Generalizable_Element-column4
NOT NULL,

type VARCHAR(32) CONSTRAINT Generalizable_Element-column5 NOT
NULL,

stereotype VARCHAR(32),
visibility VARCHAR(15).
isAbstract CHAR(l),
isActive CHARM,
isInstantiable CHAR(l)t
isLeaf CHARM,
isPersistent CHAR(l),
isRoot CHARM,
CONSTRAINT Generalizable

-
Element-primary PRIMARY KEY (project,

version, name, namespace)

CREATE TABLE Generalization

project VARCHAR(64) CONSTRAINT Generalization c0lumnl NOT NULL,
version INTEGER CONSTRAINT Generalization_col-umn2 NOT NULL,
name VARCHAR(128) CONSTRAINT Generalization

-
column3 NOT NULL,

namespace VARCHAR(255) CONSTRAINT Generalization_column. 4 NOT
NULL,

discriminator VARCHAR(32),
stereotype VARCHAR(32),
depth INTEGER CONSTRAINT Generalization

-
column7 NOT NULL,

subtype_name VARCHAR(128) CONSTRAINT Generalization_column8 NOT
NULL,

subtype -
namespace VARCHAR(255) CONSTRAINT

Generalization
-
column9 NOT NULL,

subtype_type VARCHAR7(32) CONSTRAINT Generalization_columnlO NOT
NULL,

supertype_name VARCHAR(128) CONSTRAINT Generalization-columnil
NOT NULL,

supertype
-

namespace VARCHAR(255) CONSTRAINT
Generalization column12 NOT NULL,

supertype_type VARCHTR(32) CONSTRAINT Generalization_column. 13
NOT NULL,

CONSTRAINT Generalization_primary PRIMARY KEY (project,
version, name, namespace)

);

268

CREATE TABLE Implements

project VARCHAR(64) CONSTRAINT Implements columnl NOT NULL,
version INTEGER CONSTRAINT Implements-colinn2 NOT NULL,
stereotype VARCHAR(32),
realization

-
name VARCHAR(128) CONSTRAINT Implements_column4 NOT

NULL,
realization

-
namespace VARCHAR(255) CONSTRAINT

Implements-column5 NOT NULL,
realization

-
type VARCHAR(32) CONSTRAINT Implements_column6 NOT

NULL,
specification name VARCHAR(128) CONSTRAINT Implements-column7

NOT NUCL,
specification_namespace VARCHAR(255) CONSTRAINT

Implements-column8 NOT NULL,
specification_type VARCHAR(32) CONSTRAINT Implements_column9

NOT NULL

CREATE TABLE Method

project VARCHAR(64) CONSTRAINT Method columnl NOT NULL,
version INTEGER CONSTRAINT Method

-
col-umn2 NOT NULL,

name VARCHAR(128) CONSTRAINT Method column3 NOT NULL,
namespace VARCHAR(255) CONSTRAINT Method_column4 NOT NULL,
owner_name VARCHAR(128),
owner_namespace VARCHAR(255),
type VARCHAR(32),
stereotype VARCHAR(32),
concurrency VARCHAR(15),
owner_scope VARCHAR(15),
visibility VARCHAR(15),
is_polymorphic CHAR(l),
is_query CHAR(l),
CONSTRAINT Method_primary PRIMARY KEY (project, version, name,

namespace)

CREATE TABLE Parameter

project VARCHAR(64) CONSTRAINT Parameter columnl NOT NULL,
version INTEGER CONSTRAINT Parameter_col-umn2 NOT NULL,
name VARCHAR(128) CONSTRAINT Parameter column3 NOT NULL,
namespace VARCHAR(255) CONSTRAINT Parameter column4 NOT NULL,
method

-
name VARCHAR(128) CONSTRAINT Paramet-er column5 NOT NULL,

method namespace VARCHAR(255) CONSTRAINT Param-eter_column6 NOT
RULL,

stereotype VARCHAR(32),
default value VARCHAR(255),
kind VA7RCHAR(15),
parameter

-
number INTEGER CONSTRAINT Parameter_columnlO NOT

NULL,
type_name VARCHAR(128),
type_namespace VARCHAR(255),
CONSTRAINT Parameter_primary PRIMARY KEY (project, version,

namespace, parameter_number)

269

CREATE TABLE Template_Argument

);

project VARCHAR(64) CONSTRAINT Template_Argument_columnl NOT
NULL,

version INTEGER CONSTRAINT Template_Argument_column2 NOT NULL,
stereotype VARCHAR(32),
argument_number INTEGER CONSTRAINT Template_Argument_column4

NOT NULL,
binding_name VARCHAR(128) CONSTRAINT Template_Argument_column5

NOT NULL,
binding_namespace VARCHAR(255) CONSTRAINT

Template Argument_column6 NOT NULL,
type_name VARCIIAR(128) CONSTRAINT Template_Argument_column7 NOT

NULL,
type_namespace VARCHAR(255) CONSTRAINT

Template
-

Argument_column8 NOT NULL,
CONSTRAINT Template

--Argument_primary
PRIMARY KEY (project,

version, binding-namespace, binding_.
_,
name,

argument-number)

CREATE TABLE Template_Parameter

);

project VARCHAR(64) CONSTRAINT Template_Parameter_columnl NOT
NULL,

version INTEGER CONSTRAINT Template-Parameter-column. 2 NOT NULL,
stereotype VARCHAR(32),
parameter

-
number INTEGER CONSTRAINT Template_Parameter_column4

NOT NULL,
type_name VARCHAR(128) CONSTRAINT Template_Parameter_col=n5

NOT NULL,
type_namespace VARCHAR(255) CONSTRAINT

Template Parameter_column6 NOT NULL,
template

-
name VARCHAR(128) CONSTRAINT

Template
-

Parameter_column7 NOT NULL,
template

-
namespace VARCHAR(255) CONSTRAINT

Template Parameter column8 NOT NULL,
template_type VARCHAR(327 CONSTRAINT Template_Parameter_column9

NOT NULL,
CONSTRAINT Template_Parameter_primary PRIMARY KEY (project,

version, template
-

name, template_namespace,
parameter_number)

E. 2 Permissible values

Although the types of the columns in the various tables can be understood from the

table definitions the permissible values for these column cannot. Many of the columns

reflect the name of entities as given in the data! s original source and any names that

are allowable in the source are allowed in the table (subject to column width

limitations). Some of the columns, however, have a restricted set of permissible

values and this section lists these values.

project - Any string (max. 64 characters)

270

version - Any positive integer

names -A string not including'. ' characters (max. length 128 characters)

namespaces -A string containing one or more dot separated names (max. length 255

characters)

stereotypes - Some of the tables have predefined possible values for this column,

others have none. Where there are predefined values these will be listed. The listed

sets of values for stereotypes is open to extension by future mappings where this is

found useful.

Association End
aggregation -

kind - none, shared, composite
changeable - none, frozen, addOnly
lower_multiplicity - Any string (max 3 characters)
upper_multiplicity - Any string (max 3 characters)
target

- scope - classifier, instance
is - navigable -T F' (standing for true or false)
is_ordered -T 'F' (standing for true or false)

Attribute
changeable - none, frozen, addOnly
lower_multiplicty - Any string (max 3 characters)
upper_multiplicty - Any string (max 3 characters)
owner_scope - classifier, instance
visibility - public, protected, private, implementation

Dependency
type - Usage, Refinement, Trace
stereotype - becomes, calls, copy, deletion, derived, friend, import, instance,

metaclass, powertype, send, subtraction, uses
client_type - Any concrete meta-type: - Association, AssociationClass,

AssociationEnd, Attribute, Class, Component, Constraint, Dependency,
Generalization, Interface, Method, Model, Node,
Operation, Package, Parameter, Refinement, Subsystem, Usage, Trace

suppliq. ýtype - As for clienLtype

Element-Reference
alias - Any string (max 32 characters)
visibility - public, protected, private, implementation
element_Vpe - Any concrete meta-type: - Association, AssociationClass,

AssociationEnd, Attribute, Class, Component, Constraint, Dependency,
Generalization, Interface, Method, Model, Node, Operation, Package,
Parameter, Refinement, Subsystem, Usage, Trace

271

Generalizable Element
type - Association, AssociationClass, Class, Component, DataType, Interface, Model,

Node, Package, Subsystem
stereotype - facade, framework, implementationClass, metaclass, powertype, process,

stub, system, thread, topLevelPackage, type, utility
visibility - public, protected, private, implementation
isAbstract -T 'F' (standing for true or false)
isActive -T 'F' (standing for true or false)
isInstantiable -T 'F' (standing for true or false)
isLeaf - 'T', F' (standing for true or false)
isPersistent -T 'F' (standing for true or false)
isRoot -T 'F' (standing for true or false)

Generalization
discriminator - Any string (max 32 characters)
stereotype - extends, inherits, private, subclass, subtype, uses
depth - any non-negative integer
subtypq. _type -

Association, AssociationClass, Class, Component, DataType,
Interface, Model, Node, Package, Subsystem

supertypeý_type - As for subtypq_type

Implements
realizatioiLtype - Any concrete meta-type: - Association, AssociationClass,

AssociationEnd, Attribute, Class, Component, Constraint, Dependency,
Generalization, Interface, Method, Model, Node, Operation, Package,
Parameter, Refinement, Subsystem, Usage, Trace

specification,. _type -
As for realization,.

_type

Method
type - Operation, Method
stereotype - create, destroy
concurrency - none, guarded, synchronous
owner_scope - classifier, instance
visibility - public, protected, private, implementation
is_polymorphic - 'T', 'F' (standing for true or false)
isý_query -T 'F' (standing for true or false)

Parameter
default

- value - Any string (max 32 characters)
kind - in, inout, out, return
parameter_number - Any positive integer

Template_Argument
argument-number - Any positive integer

Template_Parameter
parameter_number - Any positive integer
ternplateý_type - Any concrete meta-type: - Association, AssociationClass,

272

AssociationEnd, Attribute, Class, Component, Constraint, Dependency,
Generalization, Interface, Method, Model, Node, Operation, Package,
Parameter, Refinement, Subsystem, Usage, Trace

273

Appendix F Source mappings

The mappings described in this section all produce output suitable a input for the

'DesignDatabase'datastore.

F. 1 Java source-code mapping

The subsections below give details of the translation between elements of Java source

code and the intermediate representation file that is output by the mapping.

F. 1.1 Packages

A package in Java is a grouping mechanism for Classes and interfaces. They are
mapped as GeneralizableElements.

<General izableElement>
<Name> is set as the unqualified name of the package.
<Namespace> is set as the qualified name of the package to which the declared
class belongs. If this is a top-level package it is set to Wglobal'.
<Type> is set as Wackage'
<Stereotype> is always set as '#none', no stereotypes are used with packages.
<Visbility> is always set as '#notApplicable'.
<IsAbstract> is always set as '#notApplicable'.
<IsActive> is always set as '#notApplicable'.
<IsInstantiable> This tag is only applicable to Subsystems. The distinction
between an instantiable subsystem and a uninstantiable subsystem is unclear.
Therefore, this tag is always set to Wunknown'
<IsLeaf> is always set as '#notApplicable'
<IsPersistent> is always set as '#notApplicable'.
<IsRoot> is always set as '#notApplicable'

</GeneralizableElement>

F. 1.2 Compilation units

A compilation unit is a single Java source file (a file with a java extension).
Compilation units are mapped as GeneralizableElements.

274

<General izableElement>
<Narne> is set as the name of the source file.
<Namespace> is set as the qualified name of the package into which the files
contents are placed.
<Type> is set as'#Componenf
<Stereotype> is always set as'file'.
<Visbility> is always set as'#notApplicable'.
<IsAbstract> is always set as'#notApplicable'.
<IsActive> is always set as'#notApplicable'.
<sInstantiable> is always set as'#notApplicable'.
<IsLeaf> is always set as'#notApplicable'.
<IsPersistent> is always set as'#notApplicable'.
<IsRoot> is always set as'#notApplicable'.

</GeneralizableElement>

F. 1.3 Classes

A class declaration is mapped as a Generalizable_element. If any of the elements

within a class makes use of another type in any way a dependency is created between

the class and that type. Any references to methods or attributes from other classes

which are made from within static initialises also result in a dependency with the

class. In Java any classes without a constructor have a default constructor with no

parameters produced for them by the compiler (this is also done by the mapping).

<GeneralizableE]ement>
<Name> is set as the unqualified name of the class.
<Namespace> is set as the qualified name of the class/package to which the
declared class belongs.
<Type> is set as '#Class'
<Stereotype> is always set as #none, no stereotypes are used with classes.
<Visbility> is set as #public if the class is declared with the access modifier
'public'. Similarly for protected and private. If no access modifier is used the

visibility is set as #implementation.
<IsAbstract> is set as #true if the 'abstract! modifier is used. It is set as #false

otherwise.
<sActive> is set as #true if the class or any of it's superclasses implements
Thread, or if the class or any of it's superclasses implement Runnable. It is set
as #false otherwise.
<sInstantiable> This tag is only applicable to Subsystems. It is therefore
always set as #notApplicable for classes.
<IsLeaf> is set as #true if the 'final' modifier is used, #unknown otherwise.
There is no other way of knowing from the class itself whether it will be

extended.
<IsPersistent> is always set as #unknown. There is no straight forward Way to
infer whether the object of a class will be persistent.

275

<IsRoot> is set as ffalse for all classes other than Object.
<General izableEl ement>

F. 1.4 Interfaces

An interface declaration is mapped as a Generalizable_element. If any of the elements

within a class makes use of another type in any way a dependency is created between

the class and that type.

<GeneralizableElement>
<Name> is set as the unqualified name of the interface.
<Namespace> is set as the qualified name of the class/package to which the
declared interface belongs.
<Type> is set as WInterface'
<Stereotype> is always set as #none, no stereotypes are used with interfaces.
<Visbility> is set as #public if the interface is declared with the access
modifier 'public'. Similarly for protected and private. If no access modifier is
used the visibility is set as #implementation
<IsAbstract> is always set as #true. Interfaces can never be instantiated.
<IsActive> is set as #true if the interface, or any of the interfaces it
implements, implement Runnable. It is set as #false otherwise.
<Islnstantiable> This tag is only applicable to Subsystems. It is therefore
always set as #notApplicable for classes.
<IsLeaf> is always set as #unknown. There are no indications from the
interface itself whether it will be extended by other interfaces.
<IsPersistent> is always set as #notApplicable. Interfaces can't be instantiated
and therefore can't have persistent objects.
<IsRoot> is set as ffalse if the interface extends any other interface, Arue
otherwise.

</GeneralizableElement>

1.5 Extends

If a class extends another class this is captured as a Generalization. Both direct and

indirect extension relationships are included in the mapping, i. e., an the relationship

between a class and each of it's ancestors is recorded separately.

<Generalization>
<Name> is set as, qualified name of the extending class + ": extends: " +
qualified name of the extended class.
<Namespace> is set as the qualified name of the class/package to which the
extending class belongs.

276

<Discriminator> is set as #none
<Stereotype> is always set as #none
<Depth> This is the number of levels between the ancestor class and the
descendent. If the ancestor is the immediate parent of the descendent the depth
is 1.
<Subtype>

<Name> The unqualified name of the extending class.
<Namespace>Tbe qualified name of the class/package to which the

extending class belongs.
<Type>Tbe unqualified name of the meta-model type to which the

extending class belongs, i. e., Class or Interface.
<Supertype>

<Name> The unqualified name of the extended class.
<Namespace>Tbe qualified name of the class/package to which the

extended class belongs.
<ýype>The name of the meta-model type to which the extended class

belongs.

</Generalization>

F. 1.6 Implements

If a class implements an interface this is captured as a Implements relation.

<Implements>

<Stereotype> is always set as #none
<Realization>

<Name> The unqualified name of the realising element.
<Namespace>Tbe namespace to which the realising element belongs.
<Type>Tbe name of the meta-model type to which the realising element

belongs, i. e., '#Class'.
<Specification>

<Name> The unqualified name of the specifying element.
<Namespace>Tbe qualified name of the class/package to which the

specifying element belongs.
<Type>The name of the meta-model type to which the specifying element

belongs. i. e. '# Interface'

</Implements>

277

F. 1.7 Fields

A field declaration at the class level is mapped as an Attribute. Field declarations

within methods/blocks are not mapped as they considered to be implementation detail

(rather than design information). Since the initialisation of non-static fields when they

are declared is equivalent to their separate initialisation within each constructor, any

references to fields, methods, classes within their initialising expressions is mapped as
dependencies within each constructor. As the initialisation is considered to take place

within the constructor a dependency between the constructor and the field is also

produced.

<Attribute>

<Name> The name of the attribute.
<Namespace> The qualified name of it's class/interface.
<Stereotype> is always set as #none. There are no standard stereotypes for
attributes.
<Changeable> is set as #frozen if the final modifier is used, #none otherwise.
It is unclear how UML's'addOnly'might be used other than for collections.
<InitialValue> is always set as #none. Although some attributes are given
initial values their extraction from the source code is not yet implemented.

<Multiplicity> is currently always set to 1. Array variables (and possibly other
collections) might be mapped as having a multiplicity of 'many' but this is

currently not implemented.
<OwnerScope> is set as ftlassifier if the 'static' modifier is used, #false

otherwise
<Visbility> is set as #public if the 'public' access modifier is used. Similarly
for protected and private. If no access modifier is used the visibility is set as
#implementation
<ElementType>

<Name> The unqualified name of the attribute's type.
<Namespace> The qualified name of the attribute type's containing

class/package.

</Attribute>

F. 1.8 Methods

This section applies to methods other than constructors.

A dependency is produced for the use of any field, method or class used within a

methods body. Dependencies are also added between the method and the types of it's

parameters (including the return value).

278

<Method>

<N=e> The name of the method.
<Namespace> The qualified name of it's class/interface.
<T)Te> is set as #Operation if the method is abstract, #Method otherwise.
<Stereotype> is set as #destroy if the method is a finalizer, #none otherwise.
<Concurrency> is set as #guarded if the synchronised modifier is used,
#unknown otherwise.
<OwnerScope> is set as #classifier if the 'static' modifier is used, #instance
otherwise
<Visbility> is set as #public if the 'public' access modifier is used. Similarly
for protected and private. If no access modifier is used the visibility is set as
#implementation
<sPolymorphic> is set as #false if the method is static, Arue otherwise.
<IsQuery> In deciding on the value for this tag the standard Java& naming
conventions are assumed. It is set to Arue if the method name begins 'get' or
'is'; ffalse is the name starts with'set'; #unknown otherwise.

</Method>

F. 1.9 Constructors

Any constructor which doesn't explicitly call another constructor as if s first action
(either this(...) or super(...)) does so implicitly. A dependency is added for this implicit

method call. A constructor declaration is mapped as an ordinary method except for the
following:

Tag values are as for method declarations except for the following:

<Type> is always set as Wethod (you can't have an abstract constructor).
<Stereotý is always set as kreate.
<OwnerScope> is always set as #instance
<sPolymorphic> is always set as 4false.
<IsQuery> is always set as ffalse.

F. 1.10 Parameters

Each formal parameter and return value (except'void') is mapped as a parameter

object.

279

<Paraineter>

<Name> The name of the parameter, or'retum'for return values.
<Namespace> The qualified name of the parameter's method.
<Stereotype> is set as #none.
<DefaultValue> is set as #none (Java does not support default values for
parameters).
<ParameterDirectionKind> If the type of the parameter is a basic type is a
basic type or a String, or if the parameter is final, the ParameterDirectionKind
is Win'. Return values are mapped as '#return'. Otherwise, Winout' is used.
<ParameterNumber> return values have the value 0. Other parameters are
numbered in an ascending sequence from left to right starting at 1.
<ElementType>

<Name> The unqualified name of the parameter's type.
<Namespace> Tbe qualified name of the parameter type's containing

class/package.

<. /Parameter>

F. 1.11 Code Blocks

Within code blocks references to other classes, methods or attributes are mapped as

Dependency objects between the referenced object and the owner of the block (either

a method or a class).

<Dependency>

<Name> is set as qualified name of the client element + ": depends0n: " +
qualified name of the supplier element.
<Namespace> is set as the clienfs namespace.
<T'ype> is set as #Usage.
<Stereotype> is set as 'calls' if both client and supplier are methods, #none
otherwise.
<Client> The name of the client element.

<Name> The name of the client element.
<Namespace> The qualified name of it's containing

classfinterface/package.
<Type> If there client's element contains a <Type> tag the corresponding

value is used. Otherwise the meta-model type of the client is used.
<Owner>

<Name> is set as #none.
<Namespace> is set as kone.

<Supplier>
<Name> The name of the supplier element.
<Namespace> The qualified name of it's containing

280

classfinterface/package.
<Týpe> If there supplier's element contains a <Type> tag the

corresponding value is used. Otherwise the meta-model type of the

supplier is used.
</Dependency>

F. 2 Java byte-code mapping

This mapping uses the java reflection classes to extract the structural details from the

'. class' files. This means that the level of detail to which systems can be described is

limited to level of detail available form the rcflection classes. The major problem

caused by this is that the reflection classes do not provide any information about

method internal structure. This means that metrics requiring method-call or attribute-

use information will not work on projects using this mapping.

F. 3 Rational Rose mapping

This mapping uses the Roses built-in scripting language to extract the design

information contained within Roses internal meta-model and output the information in

DDL format. The mapping consists of around one thousand lines of BASIC script. It

can be installed within the Rose tool to create an additional menu item which, when

selected, creates the DDL equivalent of the current model. This mapping can only be

run from within Rose and the script rerun after any changes to the model to keep the

DDL script up-to-date.

281

Appendix G Questionnaire

Blank

In

10 0 Original

28 ',

OOSE assignment debriefing

Ans%Ners given oil this questionnaire %N ill not affect the marking of tile assignment in anN xka\.
Your nanic is necessar\ onk for triangulating the clata SOUrccs.

Name:

"Pre-Assi, qnmenl" Quewions
This set of questions is inici-ided to get an idea of the your experience and knowledge in
relevant areas prior to the siart assignment.

Background and experience
I low much programming experience did you have before the OOSE unit? And in what
languages'. '

Only fill in details for those languages you have used. You should complete the duration
for the highest level of experience. Use the blank lines for any languages not listed.

Duration i in months) Type of e perience
Programming
language

<1 <3 <6 ý_12 >12 casual formal
course

professional
use

Java
C++
C
Pascal
BASIC
COBOL
FORTRAN

How much experience did you have with ob ect-oriented design be re the OOSF unit'? J L- ,
fo

Only fill in details for those methods you have used. You should complete the duration
for the highest lev of experience. Use trie blanK

Duration in months)
lines tor any methods not listed

Type of e perience
Method <1 <3 <6 <12 >12 casual formal

course
professional

use
UML
OMT
Booch
ýýoacl & Yourclon
Shlaer / Mellor

SA/SD
SSADM

284

Understanding of the case study
In the following questions circle the answer which best represents your level of
agreement with the given statement.

I had a clear understanding ofthe pinpo. ve oftlic Vocabulary TLItor pro(grani

agree agree neutral disagree disagree
strongly strongly

I had a clear understandino ofthe hýiýh-levvl design ofthe VoCabLilar" Tutor program L- I --

agree agree neutral disagree disagree
strongly strongly

I had a clear understanding of the soul-ce code of the Vocabulary Tutor program

agree agree neutral disagree disagree
strongly strongly

"Doing-Assignment" Questions
This set of questions is intended to get an idea of' lio\\ \ou went about doing the

assignment.

Time and effort spent on doing the assignment

In the following questions circle the closest value.

Estimate (in hours) the amount of time Nou spent on backgrOUnd research for this

assignment

0123456789 10 11 12 13 14 15 >15

Estimate the amount of time you spent analysing the measures

0123456789 10 11 12 13 14 15 15

Estimate the amount of time you spent writing-up your assignincilt

0123456789 10 11 12 13 14 15 >15

285

Metric selection

I low did you choose the nictrics on \\ hich to base)'OUr analysis?

In the following two questions circle one answer

Did you consider taking a pick"ri'mix approach to selecting metrics? (taking sorne metrics
from one authors set and sorne frorn another)

YES NO UNSURE

Did you consider using a diff'erent set of metrics for analysing the desion refinement than
you did flor the initial assessment?

YES NO UNSURE

Use of data sources

How important \Nere the follovving data-sources/activities in forming your comments on
the designs?

Give separate answers for their importance in the initial formation of ideas and their
importance in providing sufficient corroboration of an idea to convince you of that idea's
validity. Use the blank lines to add any other data-sources/activities which contributed to
the formation of your comments.

not important P, very important -4

initial formation of
ideas

corroboration of'
ideas

Data-source /Activity r c o t 3) 1411121 TTTý

mr easurernent results n u r e a
source code c o

f

I i, , rz a(, r zai-ns d i n s ii i -, e d
CRC card enactment

286

Opinions on individual metries
Grade the following list of metrics according to how understandable they were and how
useful you found them for your assignment. If you didn't research or use a particular
metric (or can't recall any details) just leave it blank.

1- difficult to understand o easy to understand -4
1- not useful at all o very useful -4

Useful
Metric naiiie No opinion 1 2 4 No opinion

Chiclainher & Keinerer
Weighted methods per class
Response set lor a class
Coupling between object classes
Lack ofcolicýion in methods
Depth of inheritance tree
', Number ot'children
Abreu (MOOD)
Attribute hidin,

-, I'actor
Method biding factor
Attribute inheritance factor
Method inheritance factor
Coupling factor

polymorphism factor
Lorenz& Kidd
Number of subsystems

Number of message sends
Average method size

Number of public instance methods
Number of instance methods
Average number of instance method
Number of instance variables
Avera, -, e number ofinstance variabl,
Number of class methods
Number of class variables

Class hierarch,,, nestim-, level
Number of abstract classes
Use of multiple inheritance

Number ofmethods overr idden
Number of methods inherited
Number ofmethods added
Specialization index

Average number of parameters
method

Class coup] in,,
Number of methods thrown away
Number of classes thrown away

I Intior; iandable

I

I

I

I

287

Tool use

In the second part of the assigninctit how mmy different versions of the prQject (not
includin the original) did \ou measure usino the tool'?

Circle one answer

0111 45 >6

Did the usabihtý/functionality ofthe tool adversely affect the NA, ay went about the process
of the assionment? L-

0 Circle one answer

YES NO UNSURE

I low might the usability and Functionality ofthe tool be improved?

"Po, vi-As. vignment" Questions

This set of questions is intended capture your reflections on the process of' the assignment
and to get an idea of how your kno\vledge and views on related topics have changed as a
result of doing the assignment.

Reflections on the process

Which aspects of the assignment did you find particularily difficult?

288

What could have been changed to make the assessment/refinement easier?

What additional information or resources would have been useful?

Changes in views and knowledge

In the following questions circle one answer

Do you feel you that relating ideas about quality to measurement data has helPed you
understand design quality more fully?

YES NO UNSURE

Given suitable tool support, would you choose to apply measurement to help you design
future projects?

YES NO UNSURE

Would your experience with this assignment make you more supportive of a suggestion to
implement a measurement programme in a company for which you worked?

YES NO UNSURE

11
&ead (Thank you very much)

289

Appendix H Design documents

Blank

Origi al

291

An Informal Specification

2nd Language Vocabulary Tutor
This is an infon-nal specification of a small
program which we will use in our design
review exercise. The program is aimed at
those users whose first language is English
and who are learning a second language. The
purpose of the prograrn is to aid in the
tedious task of learning vocabulary in the
second lan(, uage. Research suggests that the
most successful tactic fo r learning
vocabulary in a second, and any subsequent

ME

ýEAPNJ
=TEST ýL -EAPN

language, is to force the user to actively construct a range offinks. These links connect
words and ideas from the first. or source language. to words in the second, or target
language. This program embodies that principle. Every word that the user attempts to
learn has to be entered into the program and a collection of links have to be created f'or
each word. There is no built in dictionary. the user does the work and this constructive
effort aids the leaming process. When the user wishes to test his ability to remember
the words he has entered he may ask the program to test him. If he fails to remember
accurately and requests some help, then he is given help in the form of a hint. a hint is
a reminder of a link that he originally entered. One implication of this model of'
leaming is that any user will need a copy of the program and a vocabulary of' their
own. The vocabulary will be kept as a separate file and will grow over time.
The 3 screen pictures in this note use a simple convention for the various screen
elements. Push buttons are shown shaded. Boxes which arc editable are shown with a
thin line surround and boxes for system output arc shown \vith a thicker line surround.

The program consists of 4 screens, a welcome
screen. a help screen. a learn screen and a test
screen. The program commences with a
welcome screen. The user now has the
opportunity to go to the help screen to read the
help information which describes how to use
the program. Each user ofthe system will need
their own vocabulary file so at this point the
program needs to either retrieve or create the
file. Users are required to type their name in the

How to use t1% pr.)gram

I., -

- T. ' - K. NAße
hlTrEFLED

HELI

H '-

Test
:: -,. ýN

L, am /

0

user narne box and the systern will either create a new vocabulary filc flor thern (Il'it is
their first time) or open their existing vocabulary file. The user may now scicct to
learn sorne more words or to be tested oil the ýýords they already have it) their
vocabulary file. Pressing the appropriate button NA-ill I take thcrn to the appropriate
screen. They may also quit straight out oftlic program.
-I'lic state transition diagram shows the various paths that a user can take through 111c
prograrn. This shows that the wc1corne screen is quite complex: it has modal
behaviour. A user cannot jurrip straight to the learning or testing screens unless the)
have already loaded (or created) their vocabulary file. It should be noted that is
, lot intended to be an excniplary user intcl-111CC. Our 110CLIS is on the internal dcsign of'

19"

the program. Nýc acccpt that the program ls sllghtlý user-hostlic in placcs.

We cxplain the behaviour oftlic learn scrccii next as. on first LISC. the Liser has to enter
some words bct'orc a test becomes nicatillIL! I'Lll.

The leam screen allows the user to perform tý%o r, Qh-
HIRTS

tasks, adding new words and reviewing existing, cash

words. The basic learn operation is as t1ollows. ...
Cow-

cash Thc user types the "ord they wish to learn into
the source, word box and the, translation into the ash

vache target word box. At this point the user can Hamilkedthe vache

submit the word to the vocabulary and it %%III be
remembered. A word can be submitted to the MST

ý1113MIT
QUIT

vocabulary without an), hints, but it must haýe a
translation. The next part is the most important
as far as the leaming goes. The user has no" to create I series ofhInts and type them
into the appropriate boxes. The range of possible hints are outlined bclo".
Target rhj, tnes - find a "ord from the users source lanotiaoc that rhýnles Xvith tile
target word.
Target reminds - find a word from the users source language which sornelloxv reminds
the user of the target "ord. t:: 1

Source in target - find a word from the users source language \%hich appears as a part
of the target word. This can either be a spelling or a similar pronunciation.

gLiaoe \vIth tile Source sentence - construct a short sentence in the users source larl

source word replaced by the target word.
Source containing target - find a source word which contains the target word as a
component. Again, this can either be by spelling or pronunciation.
When the user is happy with his hints he maý press submit and the source word. target

word. and hints will be remembered.
To learn another word the user simply has to type in a nevv source and target word and
press submit which will clear the hints currcnt]V on display.

_ The other use of the leaming screen is in
reviewing words that have already been entered.
Users may review previously entered words b)
typing the source word into the source word box
and pressing return. This will retrieve the word.
its translation and all of its hints. They will now

cow

be allowed to amend some or all of their
previously entry for the retrieved word. Again. in

C"D. -

(

C

)

)
order to ensure that the changes are remembered
the user must press submit. At any point in the learn screen the uscr nia" either quit
the program or entcr the test screen.

The final screen is the test screen. The user is presented with a randorn word frorn
their vocabulary file and asked for the translation. 'l-hey type the translation into the
target word window and upon pressing the return key the word is checked. Theý either
get the answer correct and receive a positive message in the result window or they get
it wrong and then get a conciliatory message in the result window. li'tllc\ wish to try
again they may do so. They may also ask for a hint. It'they ask for a hint then a hint

.. Hýt Pýýgsýý

29 33

selected at random from those connected with the word will appear in the hint window
and this may be cnough to prompt a retry. 'I'licy may keep asking for hints until they
have seen all of the hints for that word. If tile), keep asking they are told there are no
more hints and givcn the correct answer.
Ifthe user xvishes to move oil to another word then they simply press the next button
and are olven the next random word.]'his continues until all of tile words have been

used. At any point in tile test screen the user may either quit the prograrn or enter the
learn screen.
Note that when tile source sentence hint is being used in the test screen the target word
will need to be replaced with the correct source word otherwise the answer \vill be
given away.

HA Class diagram

Voc2b tutor class diagram details

V... b B. - N

rr. ri; I, k4kýd 41
1--i- kikkXll
I

'%hIr. K'-k
4-ým inlaieq -r. -O
*. - 1.1 M1.5, Hl ne kin")
'% I, I N- IDIIP 126, HI nPlflrg ()

C-W- d HI nk
r. ntI-Hlnk)

tikEmirosii in% I
lbý mný-lm Ink)
*-ý rý nl! r- III nk

I, ic-on isned Mir, %
e loý. k! gr,, Hln
eI Fkcff, Ird Oin
I, I RV- Mir, t)
e JEýn kmn. Mir, K)

'%ýA It! Fil e Dai 1! k
*I. Stirv o

I

ow e. a

*g .iw. ic i
14 iHin K)
, thlý 11A- K)

G..,

V.. b. I. Y

1pA0. dv. cm

%W dkloMb EI- en K)

13- en Ký
%ý fflý - NO

4miHim()
'%e INInu
tbý FIIE shl rc
%IV l. ywlnk

/

i N

F-t

*"V, t) qv-deec)
m Be()

LAIC M ýT. Wf- .

s, uIy

11

Tu u

0.9,4)

[l ,
de lp2>-, m

294

11.2 Behavioural diagyrams

Adding a new v ocab element - detail

I Lea(iSu* to L. ýt-t. ".,, raccA I[I,,. "I tmý tI r', I a, r
We 11 -1 L 21,19 1 L-0-1111, I

r IbIH-lltF HINI CQUIll Hb

L

U low 0

S. s elsol retwora 0 Li

7: SeMrTtftrdo

-Tl
113 le 0

se

12: 5 ef)D Mk ed Mb 13 New

14 selmllbD

Li

abd too& ý.

Adding a new vocab element -detail

1: newo
5: setSourceVVordo
7: setTargetVVordo
T setContainsHinX)

12: setContainedHirdo
3ý

1: LearnSc ree

1C setHinto
11: setHinto

4: n evoo

F-ý i --uc
I newo

6
2: n evvoý

rtarord SiiJ

theElerrprdNoc abElemen I

/
\\ Pfirlinf1

theHints HintVector

10: nevyO

C' ontain-

3: nevý) 5

ContainedHint

I-u, " ---" "', .-

13: nevý) and all the
other hints

tý

295

Adding a new vocab element - oveiview

Ile art, -cro eb 11 v
r-. - F-. F-- F --

CA, Oeme it I Coit3bHlit u)lt3bel"lkt I : WmbdH! id : RbVMeHli I
-*I V ILý Hkt

L

I6 ie I

2. se t-qoi rc*

tem

be W

I
7: Se t)ok 131be OHN IQ

II "", - - -'-'--z, ý I

I

T. F k

III

Ad ding a new vo cab element - ov en, iew
1: newo

2: setSourceo
3: setTarqeto

5: setContainsHintO
7: setC onta ined Hinto
9: setRernindHinto
11: setPhymc-Hinto

13: setSente nceH into

VocabElement

15: saveToFileo
14: add\/ocabElemento

III

III I
9: setl* mb dMito

iIiII

12: heou

11: 1 eSe blP ko, HI I%)

I-

16. c ýa rTe AD we s Ci

:C ontai ned Hint
,
PhynieHint

l--V
C-CA, 4 13 -rV

: Sent encc-H in t

296

Test screen - using, a hint

T T* I kt Eý mt It F evcc-- iEA-Utm "'. 1ýat-Etmest

1 sex t
-2 gttft Om EI me it I cfe at

gemsdom! Itmebt

15
slow tiocattiemelt

FI bt

3 qt IDIFPMý, H 6"rbq

9 Serrext
i ill

asswer 11 gerra7 Ifuord

ý t2 c ampa rt t3rge t E

13 S*tI. PV ID"t

5 showvocab element
9 seffeýrl

12 compare tarqet
13 set reply to yes

t TestScreen

Test Scryen - using a hint

UserBuftons
Nl- 1. ne4

6: hi rit

2 getRandomElerrent
k oetRandorr-Eierrent

7 moreDisplayHint"Strinqs
8. cletDis; 31avHintString

N
11 rjptTarcjpN%'Lird . .. V-- - . --

297

Appendix I Source code for the 'Second language

vocabulary tutor'

Blank.

In

Original

299

File Name: ContainedHint. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

class ContainedHint extends Hint
I

public ContainedHint
f

super () ;
end ContainedHint

public ContainedHint (String s, String t, String h)

super(s, t, h);
I // end ContainedHint

public ContainedHint(Hint h)
f

super (h) ;
end ContainedHint

public String displayHinto

// return a version for display
return new String (hintString);

end displayHint
}

300

/ *
File Name: ContainsHint. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

class ContainsHint extends Hint

public ContainsHint
I

I

f

super () ;
end ContainsHint

public ContainsHint (String s, String t, String h)

super(s, t, h);
end ContainsHint

public ContainsHint(Hint h)

super (h) ;
end ContainsHint

public String displayHinto

return a version for display
return new String (hintString);

end displayHint
I

301

/ *

File Name: HelpScreen. java
Author: P. Webster
Modified: 14/11/98

package vocabtutoroose;

import java. awt. *;
import java. awt. event. *;

public class HelpScreen extends Frame implements WindowListener
I

TextArea instructionsTA new
TextArea("", 10,30, TextArea. SCROLLBARS NONE);

String words = "Welcome to the secorTd- language tutor\n\n" +
"You need to type your name to open your vocabulary file\n\n"

+ "Remember to press return when you enter a new word";

public HelpScreeno
I

super () ;
setSize(300,210);
add(instructionsTA);
instructionsTA. setText(words);

addWindowListener(this);
I
public void windowClosed(WindowEvent e)
public void windowIconified(WindowEvent e)
public void window0pened(WindowEvent e)
public void windowClosing(WindowEvent e)
f

this-hideo;
I
public void windowDeiconified(WindowEvent e)
public void windowActivated(WindowEvent e) 1)
public void windowDeactivated(WindowEvent e)

}

302

File Name: Hint. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

public abstract class Hint (

// Fields
protected String hintString = null;
protected String sourceString = null;
protected String targetString = null;

protected static final String DELIMITER = "I";

//Methods

public Hinto

sourceString = null;
targetString = null;
hintString = null;

end Hint

public Hint(String s, String t, String h)
f

sourceString = new String(s);
targetString = new String(t);
hintString = new String(h);

end Hint

public Hint(Hint h)
I

if (h != null)

sourceString new String(h. sourceString);
targetString new String(h. targetString);
hintString = new String(h. hintString);

end Hint

public void setHint (String s)
I

hintString = new String(s);
end setHint

public String getHinto

return new String (hintString);
// end getHint

public String toFileStringo
I

return new String(((sourceString - null)? "":
sourceString) + DELIMITER + ((targetString == null)
? "": targetString) + DELIMITER + (((hintString ==
null)ll(hintString. equals(Ill')))? "*": hintString H;

end toFileString

public abstract String displayHinto;

I // end Hint

Blan-k

In

Original

304

File Name: HintVector. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

import java. util. Vector;

public class HintVector extends Vector
I

public static final int CONTAINS - 1;
public static final int CONTAINED - 2;
public static final int REMINDS 3;
public static final int RHYMES 4;
public static final int SENTENCE - 5;

public HintVectoro
I

super (6) ;
setSize(6);
for(int i-1; 1 <- 4; 1++)
{

setHint(new ContainsHint("", "", "")t i);
// ugly fix as Hint is abstract

I
setHint(new SentenceHinto, HintVector. SENTENCE);

I

public HintVector(HintVector hv)

super (6) ;
setSize(6);
for(int i-1; 1 <- 4; i++)
I

setHint(new ContainsHint(hv. getHint(i)), i);

setHint(new SentenceHint(hv. getHint(HintVector. SENTENCE)),
HintVector. SENTENCE);

I

public Hint getHint(int hintPosition)

return (Hint)elementAt(hintPosition);
I

public void setHint(Hint theHint, int hintposition)
I

setElementAt(theHint, hintPosition);

}

public boolean hintIsSet(int hintPosition)

return ! (getHint(hintPosition). getHinto. equals(""));
I

I

305

File Name: LanguageTutorFrame. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

import java. awt. *;
import java. awt. event. *;

// Provides the ability to close

public abstract class LanguageTutorFrame extends Frame
I

Vocabulary theVocab;

public LanguageTutorFrameo

setSize(300,200);
setTitle(getClasso. getNameo);

}

public void windowClosed(WindowEvent e) (I
public void windowIconified(WindowEvent e)
public void window0pened(WindowEvent e) fj
public void windowClosing(WindowEvent e)
f

System. exit(O);
I
public void windowDeiconified(WindowEvent e)
public void windowActivated(WindowEvent e) {)
public void windowDeactivated(WindowEvent e)

public abstract void setScreens(LanguageTutorFrame first,
LanguageTutorFrame second);

public abstract void setVocabulary(Vocabulary theVocab);

} // end LanguageTutorFrame

306

File Name: LearnScreen. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

import java. awt. *;
import java. awt. event. *;
import java. io. *;

public class LearnScreen extends LanguageTutorFrame implements
ActionListener, WindowListener
I

TextField rhymeTF new TextField(10);
TextField remindTF new TextField(10);
TextField containsTF - new TextField(10);
TextField sentenceTF - new TextField(IO);
TextField containedTF - new TextField(10);

Label rhymeL new Label("rhyme");
Label remindL new Label("remind");
Label containsL - new Label("contains");
Label sentenceL - new Label("sentence");
Label containedL - new Label("contained");

Label sourceL - new Label("source");
Label targetL - new Label("target");

TextField sourceTF - new TextField(10);
TextField targetTF - new TextField(10);

Button quitButton - new Button("Quit");
Button submitButton - new Button("Submit");
Button testButton - new Button("Test");

LanguageTutorFrame learnScreenL;
LanguageTutorFrame testScreenL;

VocabElement theElement;
Vocabulary theVocab;

LearnScreeno
f

super() ;

setSize(600,420);
setLayout(null);

add(sourceL);
sourceL. setBounds(40,60,100,20);

add(sourceTF);
sourceTF. setBounds(40,80,210,40);

add(targetL);
targetL. setBounds(40,160,100,20);

add(targetTF);
targetTF. setBounds(40,180,210,40);

307

add(quitButton);
quitButton. setBounds(20,320,60,60);

add(submitButton);
submitButton. setBounds(120,320,60,60);

add(testButton);
testButton. setBounds(220,320,60,60);

add(rhymeL);
rhymeL. setBounds(300,20,100,20);

add(rhymeTF);
rhymeTF. setBounds(300,40,260,40);

add(remindL);
remindL. setBounds(300,100,100,20);

add (remindTF) ;
remindTF. setBounds(300,120,260,40);

add(containsL);
containsL. setBounds(300,180,100,20);

add(containsTF);
containsTF. setBounds(300,200,260,40);

add(sentenceL);
sentenceL. setBounds(300,260,100,20);

add(sentenceTF);
sent6nceTF. setBounds(300,280,260,40);

add(containedL);
containedL. setBounds(300,340,100,20);

add(containedTF);
containedTF. setBounds(300,360,260,40);

quitButton. addActionListener(this);
submitButton. addActionListener(this);
testButton. addActionListener(this);

rhymeTF. addActionListener(this);
remindTF. addActionListener(this);
containsTF. addActionListener(this);
sentenceTF. addActionListener(this);
containedTF. addActionListener(this);

sourceTF. addActionListener(this);
targetTF. addActionListener(this);

addWindowListener(this);

I // end constructor

public void actionPerformed(ActionEvent evt)
f

String next = evt. getActionCommando;

//user pushes the Quit button
if (next. equals("Quit'l))

System. exit(O);

. 7V6

I

//user pushes the Submit button
if (next. equals("Submit"))
i

String s- sourceTF. getTexto;
String t- targetTF. getTexto;

theElement - new VocabElemento;

if((s null && ! s. equals(""))
(t null && ! t. equals(""))

there must be both a source and target field as a minimum
construct a new or revised vocab element and save it

theElement. setSourceWord(s);
theElernent. setTargetWord(t);

theElement. setContainsHint(new ContainsHint(s, t,
containsTF. getTexto));

theElement. setContainedHint(new ContainedHint(s,
t, containedTF. getTexto));

theElement. setRemindsHint(new RemindHint(s, t,
remindTF. getTexto));

theElement. setRhymeHint(new RhymeHint(s, t,
rhymeTF. getTexto));

theElement. setSentenceHint(new SentenceHint(s, t,
sentenceTF. getTexto));

theVocab. addVocabElernent(theElement);

// clear all the text fields
sourceTF. setText("");
targetTF. setText("");
containsTF. setText("");
containedTF. setText("");
remindTF. setText("");
rhymeTF. setText(Il");
sentenceTF. setTextt"");

//then save to file
try

theVocab. saveVocabularyo;
I
catch (IOException e)

System. exit(l);
e. toStringo;

I // end if - both a source and target string

) // end if submit

// user pushes the Test button
if (next. equals("Test"))

this. hideo;
testScreenL. showo;

I

// user presses return in the source TextField
if (evt. getSourceo -- sourceTF)

309

// check if there is a VocabElement for this source
if(theVocab. hasElement(sourceTF. getTexto))

// if there is then load it
theElement = theVocab. getElement(

sourceTF. getTexto);

// and set the text fields
targetTF. setText(theElement. getTargetWordo);
// if the hint is null, display an empty string
if(theElement. getContainsHinto null)
f

containsTF. setText(theElement.
getContainsHinto. getHinto);

}
if(theElement. getContainedHinto null)

containedTF. setText(theElement.
getContainedHinto. getHinto);

I

if(theElement. getRemindsHinto null)
f

remindTF. setText(theElement. getRemindsHinto. g
etHinto);

I

if(theElement. getRhymeHinto null)

rhymeTF. setText(theElement. getRhymeHinto.
getHinto);

if(theElement. getSentenceHinto null)
f

sentenceTF. setText(theElement.
getSentenceHinto. getHinto);

if there is not then create a new one
else
I

theElement = new VocabElemento;
// and set the text fields to show empty
targetTF. setText("");
containsTF. setText("");
containedTF. setText(I'll);
remindTF. setText("");
rhymeTF. setText("");
sentenceTF. setText("");

I

) // end actionPerformed

public void setScreens(LanguageTutorFrame learn,
LanguageTutorFrame test)

f
learnScreenL = learn;

310

I
testScreenL = test;

public void setVocabulary(Vocabulary theVocab)
I

I
this. theVocab - theVocab;

I // end LearnScreen

311

File Name: RemindHint. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

public class RemindHint extends Hint (

public RemindHint

super () ;
end RemindHint

public RemindHint (String s, String t, String h)
I

super(s, t, h);
end RemindHint

public RemindHint(Hint h)
f

super (h) ;
end RemindHint

public String displayHinto
f

// return a version for display
return new String (hintString);

end displayHint

} // end RemindHint

312

File Name: RhymeHint. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

public class RhymeHint extends Hint

public RhymeHint

super () ;
end RhymeHint

public RhymeHint (String s, String t, String h)

super(s, t, h);
// end RhymeHint

public RhymeHint(Hint h)

super(h);
// end RhymeHint

public String displayHinto

return a version for display
return new String (hintString);

end displayHint

) // end RhymeHint

313

File Name: SentenceHint. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

public class SentenceHint extends Hint

public SentenceHint
I

super () ;
end SentenceHint

I

public SentenceHint (String s, String t, String h)
f

super(s, t, h);
end SentenceHint

public SentenceHint(Hint h)

super (h) ;
// end SentenceHint

public
f

if (targetWordStart == 0)
f

else

firstPart = it it
;

firstPart = hintString. substring(O,
targetWordStart); //-l

if (targetWordEnd > hintString. lengtho)

else

thirdPart = it if
;

thirdPart
hintString. substring(targetWordEnd);

String displayHinto

// if there is a version of the word in the string
if(hintString. index0f(targetString) != -1)
I

int targetWordStart = hintString. Index0f
(targetString);

int targetWordEnd = targetWordStart +
targetString. lengtho;

String firstPart, thirdPart;

return firstPart + sourceString + thirdPart;

else

314

return "malformed sentence hint";

) // end displayHint

) // end SentenceHint

315

File Name: TestScreen. java
Author: S. Webster
modified 14/11/98

package vocabtutoroose;

import java. awt. *;
import java. awt. event. *;

public class TestScreen extends LanguageTutorFrame implements
ActionListener, WindowListener
f

TextField resultTF = new TextField(10);
TextArea hintTA = new TextArea("", 2,10,

TextArea. SCROLLBARS-NONE);

Label resultL = new Label("result");
Label hintL = new Label("hint");

Label sourceL = new Label("source");
Label targetL = new Label("target");

TextField sourceTF = new TextField(10);
TextField targetTF = new TextField(10);

Button quitButton = new Button("Quit");
Button learnButton = new Button("Learn'l);
Button nextButton = new Button("Next");
Button hintButton = new Button("Hint Please! ");

LanguageTutorFrame learnScreenT;
LanguageTutorFrame testScreenT;

VocabElement theElement;

boolean firstMessage = true; allows alternate conciliatory
message displays

public TestScreeno

super () ;

setSize(600,420);
setLayout(null);

add(sourceL);
sourceL. setBounds(40,60,100,20);

add(sourceTF);
sourceTF. setBounds(40,80,210,40);

add(targetL);
targetL. setBounds(40,160,100,20);

add(targetTF);
targetTF. setBounds(40,180,210,40);

add(quitButton);
quitButton. setBounds(20,320,60,60);

316

add(learnButton);
learnButton. setBounds(120,320,60,60);

add(nextButton);
nextButton. setBounds(220,320,60,60);

add(resultL);
resultL. setBounds(300,60,100,20);

add(resultTF);
resultTF. setBounds(300,80,260,40);

add(hintButton);
hintButton. setBounds(300,180,260,40);

add(hintL);
hintL. setBounds(300,300,100,20);

add(hintTA);
hintTA. setBounds(300,320,260,60);

quitButton. addActionListener(this);
learnButton. addActionListener(this);
nextButton. addActionListener(this);

targetTF. addActionListener(this);
hintButton. addActionListener(this);

addWindowListener(this);

public void actionPerformed(ActionEvent evt)
I

String next = evt. getActionCommando;
if (next. equals("Quit"))
I

System. exit(O);

if (next. equals(I'Learn"))

this. hideo;
learnScreenT. showo;

if (next. equals("Next"))
I

// retrieve a new VocabElement from the Vocabulary
theElement = theVocab. getRandomElemento;
theElement. newHintSequenceo;
// display the VocabElement
sourceTF. setText(theElement. getSourceWordo);
// clear all other text fields
hintTA. setText("11);
targetTF. setText(Ill');
resultTF. setText(to");

I
if (next. equals("Hint Please! "))

// check that there is a current element
if(theElement !- null)

317

// compare with the source and send a message
if (theElement. getTargetWordo. equals(targetTF.

getTexto))

hintTA. setText(theElement.
getNextDisplayHintStringo);

I
else
I

{

// check that there are hints to give
if(theElement. moreDisplayHintStringso)

I

//say well done
resultTF. setText("Well done, that is correct! ");

I
else

//say try again in one of two ways
if (firstMessage)

resultTF. setText("Sorry, please try again");
firstMessage = false;

I
else

I

hintTA. setText("No further hints are stored");

if (evt. getSourceo == targetTF)
f

I
I

resultTF. setText("Go on try again");
firstMessage = true;

} // end actionPerformed

public void setScreens(LanguageTutorFrame learn,
LanguageTutorFrame test)

{
learnScreenT learn;
testScreenT test;

public void setVocabulary(Vocabulary theVocab)
f

}
this. theVocab = theVocab;

} // end TestScreen

318

Driver program for Vocab Tutor

File Name: Tutor. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

public class Tutor (

static WelcomeScreen w;
static LearnScreen 1;
static TestScreen t;

public static void main (String args(l)
f

w- new WelcomeScreeno;
1- new LearnScreeno;
t- new TestScreeno;

w. setScreens(l, t);
l. setScreens(l, t);
t. setScreens(l, t);

w. show () ;

end main

end Tutor

319

/ *

File Name: VocabElement. java
Author: S. Webster
Modified: 14/11/98

A vocabulary element is a collection of related information about a
single
language element that the user is attempting to learn.
It contains the source word, the target word and a collection of
hints.
The user may request the hints to be put into a random sequence and
may
then call for the display strings from each hint in the sequence.

package vocabtutoroose;

import java. util. *;
import java. io. *;

public class VocabElement I

// Fields
private String sourceWord;
private String targetWord;

private HintVector theHints;

// These variables are not part of the objects state they are
transient

private Hint[] theTempHints;
private int hintCursor;

private static final String DELIMITER
// used for file handling

//Methods

public VocabElemento
I

I

sourceWord = new String("");
targetWord = new String(I'll);

theHints = new HintVectoro;

public VocabElement(String s, String t)

//create internal objects
sourceWord = new String(s);
targetWord = new String(t);

I
theHints = new HintVectoro;

public VocabElement(VocabElement v)

//Create internal objects
sourceWord new String(v. getSourceWordo), '
targetWord new String(v. getTargetWordo);

theHints = new HintVector(v. getHintVectoro);
end copy constructor

320

public VocabElement(String fileString)

// create tokeniser
StringTokenizer t- new StringTokenizer(fileString, fill');

//create internal objects
sourceWord - new String(t. nextTokeno);
targetWord - new String(t. nextTokeno);

theHints - new HintVectoro;

//read in the first possible hint
String sourcel - t. nextTokeno;
String targetl - t. nextTokeno;
String hintl - t. nextTokeno;

// check it is a valid hint
if (hintl. equals("*"))

else
f

I

theHints. setHint(new ContainsHint(sourceWord,
targetWord, ""), HintVector. CONTAINS);

theHints. setHint(new ContainsHint(sourcel, targetl,
hintl), HintVector. CONTAINS);

//read in the second possible hint
String source2 t. nextTokeno;
String target2 t. nextTokeno;
String hint2 - t. nextTokeno;

// check it is a valid hint
if (hint2. equals("*"))
i

else
f

target2,

}

theHints. setHint(new ContainedHint(sourceWord,
targetWord, ""), HintVector. CONTAINED);

theHints. setHint(new ContainedHint(source2,

hint2), HintVector. CONTAINED);

//read in the third possible hint
String source3 = t. nextTokeno;
String target3 - t. nextTokeno;
String hint3 - t. nextTokeno;
// check it is a valid hint
if (hint3. equals("*"))

theHints. setHint(new RemindHint(sourceWord,
targetWord, ""), HintVector. REMINDS);

I
else
f

theHints. setHint(new RemindHint(source3, target3,
hint3), HintVector. REMINDS);

//read in the fourth possible hint
String source4 - t. nextTokeno;

321

String target4 = t. nextTokeno;
String hint4 = t. nextTokeno;

// check it is a valid hint
if (hint4. equals("*"))
I

I
else
I

theHints. setHint(new RhymeHint(sourceWord,
targetWord, ""), HintVector. RHYMES);

theHints. setHint(new RhymeHint(source4, target4,
hint4), HintVector. RHYMES);

//read in the fifth possible hint
String source5 = t. nextTokeno;
String target5 = t. nextTokeno;
String-hint5 = t. nextTokeno;

// check it is a valid hint
if (hint5. equals(""))
I

theHints. setHint(new SentenceHint(sourceWord,
targetWord, ""), HintVector. SENTENCE);

I
else

theHints. setHint(new SentenceHint(source5, target5,
hint5), HintVector. SENTENCE);

I
end constructor from file string

public void setSourceWord (String s)
I

sourceWord = s;
end setSourceWord

public void setTargetWord (String s)

targetWord = s;
end setTargetWord

public String getSourceWordo

return sourceWord;
end getSourceWord

public String getTargetWordo
f

return targetWord;
// end getTargetWord

public HintVector getHintVectoro

return theHints;

322

public void newHintSequenceo
f

hintCursor = -1; // reset to start of array
int hintCount = 0;

// initialise the array
theTempHints = new Hint[6];

// need an empty location at the end

// put in all the items
if (theHints. hintIsSet(HintVector. CONTAINED))

theTempHints[++hintCursor] - new ContainedHint(
theHints. getHint(HintVector. CONTAINED));

hintCount++;

if (theHints. hintIsSet(HintVector. CONTAINS))

theTempHints[++hintCursor] = new ContainsHint(
theHints. getHint(HintVector. CONTAINS));

hintCount++;

if (theHints. hintIsSet(HintVector. REMINDS))

theTempHints[++hintCursor) = new RemindHint(theHints.
I

hintCount++;
getHint(HintVector. REMINDS));

if (theHints. hintIsSet(HintVector. RHYMES))

theTempHints[++hintCursor) = new RhymeHint(theHints.
getHint(HintVector. RHYMES));

f

hintCount++;

if (theHints. hintIsSet(HintVector. SENTENCE))

theTempHints[++hintCursor] = new SentenceHint(
theHints. getHint(HintVector. SENTENCE));

hintCount++;
I

shuffle them
for 1 to hintCount loop
put this one into a temp - put a random one here - put

//temp where the random came from

for(int i=0; i< hintCount; i++)
1

int j= (int)(Math. randomo * hintCount);
Hint tempHint = theTempHints[i];
theTempHints[i] = theTempHints[jl;
theTempHints[jl = tempHint;

hintCursor = -1; // reset to start of array

// end newHintSequence

public boolean moreDisplayHintStringso

return (theTempHints(hintCursor + 11 != null)
end moreDisplayHintStrings

323

public String getNextDisplayHintStringo

return new String(theTempHints[++hintCursor]
. displayHinto);

end getNextHint

/* --- */

public void setContainedHint(Hint h)
I

theHints. setHint(h, HintVector. CONTAINED);
end setContainedHint

public void setContainsHint(Hint h)
f

theHints. setHint(h, HintVector. CONTAINS);
end setContainsHint

public void setRemindsHint(Hint h)
f

theHints. setHint(h, HintVector. REMINDS);
end setRemindsHint

public void setRhymeHint(Hint h)
f

theHints. setHint(h, HintVector. RHYMES);
end setRhymeHint

public void setSentenceHint(Hint h)
f

theHints. setHint(h, HintVector. SENTENCE);
end setSentenceHint

public Hint getContainedHinto

return theHints. getHint(HintVector. CONTAINED);
end getContainedHint

public Hint getContainsHinto
f

return theHints. getHint(HintVector. CONTAINS);
end getContainsHint

public Hint getRemindsHinto
I

return theHints. getHint(HintVector. REMINDS);
end getRemindsHint

324

public Hint getRhymeHinto
I

return theHints. getHint(HintVector. RHYMES);
end getRhymeHint

public Hint getSentenceHinto

return theHints. getHint(HintVector. SENTENCE);
end getSentenceHint

public void writeFileData(PrintWriter outFile) throws

IOException
I

outFile. print(((sourceWord null)? "": sourceWord) +
DELIMITER);

outFile. print(((targetWord null)? "": targetWord) +
DELIMITER);

if (theHints. getHint(HintVector. CONTAINED). equals(""))
f

ContainedHint tempContainedHint = new ContainedHint(
sourceWord,

targetWord,
outFile. print(tempContainedHint. toFileStringo +

DELIMITER);

else

I

outFile. print((theHints. getHint(HintVector. CONTAINED
)). toFileStringo + DELIMITER);

if (theHints. getHint(HintVector. CONTAINS). equals(fill))
f

else
I

ContainsHint tempContainsHint = new ContainsHint(
sourceWord, targetWord,

outFile. print(tempContainsHint. toFileStringo +
DELIMITER);

outFile. print((theHints. getHint(HintVector. CONTAINS)
). toFileStringo + DELIMITER);

if (theHints. getHint(HintVector. REMINDS). equals(""))
I

else
I

}

RemindHint tempRemindHint = new RemindHint(
sourceWord, targetWord,

outFile. print(tempRemindHint. toFileStringo +
DELIMITER);

outFile. print((theHints. getHint(HintVector. REMINDS))

. toFileStringo + DELIMITER);

if (theHints-getHint(HintVector. RHYMES). equals(""))
I

RhymeHint tempRhymeHint = new RhymeHint(sourceWord,
targetWord, "*");

325

outFile. print(tempRhymeHint. toFileStringo +
DELIMITER);

I
else

}

outFile. print((theHints. getHint(HintVector. RHYMES)).
toFileStringo + DELIMITER);

if (theHints. getHint(HintVector. SENTENCE). equals(vwvr))
f

SentenceHint tempSentenceHint = new SentenceHint(
sourceWord, targetWord, I'");

outFile. print(tempSentenceHint. toFileStringo+"\n");
I
else
I

outFile. print((theHints. getHint(HintVector. SENTENCE)
). toFileStringo + tf\n");

end writeFileData

public String toStringo

return (sourceWord ++ targetWord);

end VocabElement

326

/ *
File Name: Vocabulary. java
Author: S. Webster
Modified: 14/11/98

package vocabtutoroose;

import java. util. *;
import java. io. *;

public class Vocabulary

// Fields
private final int MAX_WORDS = 20;
String ownerName;
int wordCount;
VocabElement(] words;

//Methods
public Vocabulary(String name)
f

ownerName = name;
wordCount = 0;
words = new VocabElement(MAX-WORDS];

public void loadVocabulary(String fileName)
I

try
f

File f= new File(fileName);
if (! f exists

PrintWriter pw new PrintWriter(new
FileWriter(f));

pw. print(ownerName + "\n");
pw. print(wordCount + "\n");
pw. closeo;
I

turn vocab file into something reasonable to read from
BufferedReader vocabFile = new BufferedReader(new

FileReader(f));
ownerName = new String(vocabFile. readLineo);
wordCount = Integer. value0f(vocabFile. readLineo)

. intValueo;
for(int i=0; i< wordCount; i++)

VocabElement(vocabFile. readLineo);

vocabFile. closeo;

catch (FileNotFoundException e)

words[i]=new

System. out. println("loadVocabulary Error: "+ e);
System. exit(l);

catch (IOException e)

System. out. println(I'loadVocabulary Error: "+ e);
System. exit(l);

I

327

) // end loadVocabulary

public void saveVocabularyo throws IOException

try
f

PrintWriter pW = new PrintWriter(new FileWriter(
ownerName + ". dat"));

pW. print(ownerName + "\nur);
pW. print(wordCount + re\nFf);
for(int i=0; i< wordCount; i++)

words[i]. writeFileData(pW);

pW. closeo;

catch (IOException e)

}
) // end saveVocabulary

public void addVocabElement(VocabElement ve)
I

I

I

// check to see if we already have this element
if(hasElement(ve. getSourceWordo))

I
else
{

System. out. println("Error: + e);
System. exit(l);

// we do so override the old element
for(int i=0; i< wordCount; i++)
f

if(words[ij. getSourceWordo. equals(ve.
getSourceWordo))

words[i] = new VocabElement(ve);

I

words[wordCount++] = new VocabElement(ve);

end addVocabElement

public VocabElement getRandomElemento

return words[(int)(Math. randomo * (wordCount))];

end getRandomElement

public boolean hasElement(String sourceWord)

// linear search the array, return true if found
boolean itemFound = false;
for(int i=0; i< wordCount; i++)
{

if(words[i). getSourceWordo. equals(sourceWord))
I

itemFound = true;

328

I

return itemFound;
end hasElement

public VocabElement getElement(String sourceWord)
I

// linear search the array, return element, exception if
//not found

VocabElement sendBack = new VocabElemento;

if (this. hasElement(sourceWord))

for(int i=0; i< wordCount; i++)

if(words(i]. getSourceWordo. equals(sourceWord))

sendBack = words(i];

I
else
I
System. out. println(I'Vocabulary. getElemento "+

11 item not present");
System. exit(l);

I

return sendBack;
end getElement

I // end Vocabulary

329

/ *

File Name: WelcomeScreen. java
Author: S. Webster
Modified: 14/11/98
*1

package vocabtutoroose;

import java. awt. event. *;
import java. awt. *;
import java. io. *;

public class WelcomeScreen extends LanguageTutorFrame implements
ActionListener, WindowListener
I

Button quitButton = new Button("Quit");
Button learnButton = new Button(I'Learn");
Button testButton = new Button("Test");
Button helpButton = new Button("How to use this program");
TextField userInputTF = new TextField(30);

LanguageTutorFrame learnScreenW;
LanguageTutorFrame testScreenW;

HelpScreen help = new HelpScreeno;

Vocabulary theVocab;

WelcomeScreeno

super () ;
setSize(600,420);
setLayout(null);

add(helpButton);
helpButton. setBounds(140,100,260,40);

add(userInputTF);
userInputTF. setBounds(140,200,260,40);

add(learnButton);
learnButton. setBounds(60,320,60,60);

add(testButton);
testButton. setBounds(180,320,60,60);

add(quitButton);
quitButton. setBounds(400,320,60,60);

helpButton. addActionListener(this);
userInputTF. addActionListener(this);

quitButton. addActionListener(this);
learnButton. addActionListener(this);
testButton. addActionListener(this);

addWindowListener(this);

I // end constructor

public void actionPerformed(ActionEvent evt)
f

330

String next = evt. getActionCommando;
if (next. equals("Quitit))
f

System. exit(O);
I
if (next. equals("Learn'l))

// if there is something in the input field
if (! userInputTF. getTexto. equals(""))
f
theVocab = new Vocabulary(userInputTF. getTexto

. trimo);

theVocab. loadVocabulary(userInputTF. getTexto.
trimo + ". dat");

learnScreenW. setVocabulary(theVocab);
testScreenW. setVocabulary(theVocab);
this. hideo;
learnScreenW. showo;
}

if (next. equals("Testly))
I

// if there is something in the input field
if (! userInputTF. getTexto. equals(Illf))
f
theVocab = new Vocabulary(userInputTF. getTexto

. trimo);

theVocab. loadVocabulary(userInputTF. getTexto.
trimo + ". dat");

learnScreenW. setVocabulary(theVocab);
testScreenW. setVocabulary(theVocab);
this. hideo;
testScreenW. showo;

I
if (next. equals("How to use this program"))

I

//call help screen
help. showo;

) // end actionPerformed

public void setScreens(LanguageTutorFrame learn,
LanguageTutorFrame test)

learnScreenW learn;
testScreenW test;

}

public void setVocabulary(Vocabulary theVocab)
I

set in the instance of this class so
no need to implement anything here

) // end WelcomeScreen

331

Appendix J Case study task

Blank

In

Original

333

BSc Software Engineering Management Year 4 (1998-99)
Object Oriented Software Engineering - Assignment

Set date: 24/11/98
Due date: 17/02/99
Retum date: 10/03/99

Introduction
This assignment is concerned with 00 design evaluation. You are given a complete
working (small) application. You are first to assess the quality of the design of the
application and you will be expected to employ a design evaluation tool to help in this
process. You will then amend the design and implementation of the product, without
altering its behaviour, and then assess the quality of the finished result again
employing the design evaluation tool.

The process
The assignment is in 2 parts, a preliminary report to be completed and handed in late
January and a final report to be handed in on the due date mid February.
The preliminary report is to contain your initial analysis of the design. Your analysis
should indicate the weak points in the design and should back up those arguments
with heuristics and metrics.
The final report should outline the design changes you have made and explain the
motivation for these changes, again you should back up these arguments with
heuristics and metrics. You should also critically evaluate the design/evaluation

process you followed.
To help in the construction of your preliminary report the final lab session before the
Christmas break will be given over to using the design evaluation tool.
It will be possible to make the tool available in other labs after Christmas to allow you
some extra flexibility.

The case study
The case study we are using is the Second Language Vocabulary Tutor. This is a small
application to allow learners of a second language to increase their vocabulary through
a process of actively learning the new words and testing themselves on their progress.
The details of the case study are to be found on the OOSE web pages. The source code
for the case study will be available on the web page and also in the public area on the
Unix system.

Deliverables
preliminary report - This report has a target length of 2 side of A4 (excluding
diagrams) and should definitely take no more than 3 sides of A4. Any metrics tool
outputs may be included as appendix material. This report is to be handed directly to
S. Webster and is due in on 20th January. 40%

Final Report - This report can be up to 5 sides of A4 in length again excluding
diagrams. Any metrics tool outputs may be included as appendix material. 60%

Set by: S. Webster QA: M. Machura

Blank

In

Origi al

'13)

Appendix K Example heuristic analysis

This appendix shows how measures and heuristics can be used to identit') potential

design problems and suggest changes. The example problems discussed arc taken

from the analysis ol'the VocabTutor system and are chosen to sliow a range problem

types and approaches. This should help to clarify both the use of' measures and

heuristic for design assessment in general (as discussed in section 23.4) and also the Z-- Zý,

mapping of the subjects' reports onto the case study database (section 5.33.4).

This section should be read in conjunction with VocabTutor design documents

(appendix H) and the source code (appendix 1)

KA Measurement results

The flollowing tables (K-1. K-2 and K-3) show results t'rom selccled measures Im the

VocabTutor systern. Shaded results are those that are refiercilced in the exampic issues

discussed in sections K. 2 and K. ') belo\, \,.

CLASS WMC CBO LCOM RFC DIT NoC
Containedflint 4 2 6 8 2
Containsilint 4 2 6 8 2
flelpScreen 8 7 28 15 5
flint 7 10
HintVector 5 5 8 15 2
LanýuageTutorFrarne 10 5 45 16 5 3
LearnScreen 4 20 0 47 6

-ke--mindf lint 4 ? 6 8 2
Rhyrnelfint 4 2 6 8 2 0
Sentencef lint

-
4 2 6 11 2

fe- stScreen 4 15 2 29 6
Tutor 2 4 1 9 1 0
VocabElement 24 11 0 47 1 0
Vocabulary 7 11 25 1 0 rlýtclcomcScrcen

-1 1: 77T -11
2 =4 -7L --) -- 70

Table K-1 Chidamber and Kemerer metrics results

336

Class NOCV NOW NOW NOPIM cc
Containedflint 0 0 4 4 5
Containstlint 0 - 0 4 4 5
IlelpScreen 0 2 8 8 8
Hint 1 3 7 7 9
llintVector 5 0 5 5 12
Language'FutorFrame 0 1 10 10 6
LeamScreen 0 21 4 I 4

_3
RernindIfint 0 4 4 5
RhN, meFfint 0 0 4 4 5
Sentencellint 0 0 4 10
TestScreen 0 16 4 4 28
Tutor 3 0 1 1 7
VocabElement 1 5 24 24 67
Vocabulary 0 4 7 7 32
WelcomeScreen o 9 -1,

19

Table K-2 Selected Lorenz & Kidd class-lc%, cl mctrics results

Class Method NOMS
LearnScreen action 11crformed(Act] on EN, cnt) 32
TestScreen act Ion Performed(Act i on E vent) 13
TestScreen TestScrceno 12
Vocabulary I oad Vocabu I ary(Stri n 12
LeamScreen LearnScreeno II
VocabElement VocabElement(String) II
WelcomeScreen WelcomeScreeno

Table K-3 Lorenz & Kidd method size metrics results (top-end subset)

K. 2 Real problems

This section discusses a number of heuristic violations in the VocabTutor systern that

were considered to indicate real problems with the systern.

Issue I

VocablEleincrit violates Riel"s heuristic "do not create god classcs/oýjects in your

system' (Riel 1996). This is shown by the values of three of the CK nictrics and one

of Lorenz and Kidds rnetrics.

Weighted methods per class (WMC - 24): Lar_uest class in tile system

Response for a class (RFC - 47), Class coupling (CC - 67): 1 lighest degree of

coupling Nxith other classes

Couplim, bemeen ob . lects (C'130 - 11): Coupliii,,
-, with a large number ofdistinct

(,, d
classes I highest)

These results COLI]d be indicative ofat least two problems:

" Poor allocation of responsibility. i. e.. the VocabElernent class contains

functionalitN that belongs in other classes.

" Insufficient class decomposition. i. e., the VocabElernent class should be broken-

down into 2 or more classes.

Issue 2

FlintVector violates the heuristic 'a well defined class provides a crisp abstraction of

something drawn from the problem domain or solution domain' (Booch 1996a). f Icre

the heuristic is semantic and the result is not supported by any metric results. The

assessor s judgement on the meaning and quality of' the abstraction must be used to

detect this issue.

Issue 3

LearnScreen violates Lorenz & Kidd"s heuristic 'a Ul class should have no more than

9 instance variables' (Lorenz and Kidd 1994). This is shown by value of' Lorenz &

Kidd's number of instance variables metric (NOW - 21). This indicates insufficient

decomposition in the interface classes.

Issue 4

Vocabular. ICII Ile 11 y. IoadVocabulary(String) violates Lorenz &, Kidd's h uristic 'a It od

should not send more than 9 messages' (Lorenz and Kidd 1994). This is shown by

value of' Lorenz &, Kidd's number of message sends metric (NOMS - 12). This

indicates either function-oriented desion or poor allocation of responsibilities. It call
be seen from table K-3 that a total of 7 methods fall into this category.

Issue 5

'I'lie similarity between the ýýajue tbr)\IOIA4 and NOPIM shows that fhere is little Lise

of' protectcd or private methods (2 only), This may indicate a lack decomposition of'

338

methods within the class (the NOMS values from table K-3 also support this view).
Alternatively, there may be methods in the public Interl'ace ot'classes that should not
have been declared public.

K. 3 False problems

As has previously been discussed, a heuristic violation does not necessarily indicate a

real problem with the system under investigation. This section lists example heuristic

violations found in the VocabTutor system that were considered not to indicate real

problems.

Non-issue I

flintVector violates Lorenz & Kidd's heuristic 'a class should ha\c no more than 3

class variables' (Lorenz and Kidd 1994). This is shový, ýn by value of' Lorenz & Kidd's

number of class variables metric (NOCV - 5). Ilowcver examination of tile

I lintVector class showed that these 5 class variables \vcre in fact constants (denoted

"final' in Java). The cause ofthis issue could be either an oversight in tile definition

of the metric counting rules, or applying the heuristic out of context. In either case,

this was considered as a 'non-issue".

Non-issue 2

LanguaggeTutorlFrame violates the heuristic 'any one module should represent a single.

coherent concept, at a uniform level of abstraction' (Berard 19931). A number of the

case studies subjects used the LCOM metric as a justification for this heuristic

violation (LCOM - 45). However, an examination of the semantics of tile class didn't

show any cohesion problems. It was fclt that LCOM didn't really capture the level

cohesion of the class and therefore this was considered as a 'non-issue'.

)39

Appendix L Data model for the case study database

Language Expenence

student

, language
! du ration Elev

eI
1.

Design Experience

student
method
duration
leve I

1 ..

LdataSourceU sage I j.. -

student
dataSource
f ormation
corroboration

/0.. -

/

DifficultAspects ProcessChanges

student student

aspect

MetricJustif iesissue

student
metric
entity
attribute
issuelD

MetncUse_
m-etric
student
entity
attribute
source

0*

ý Metric
name
sourceRef
acrony m ýmetdcSet

/o. *

Student

name
mark
course
understands Purpose
understandsDesign

change

\
0...

OpinionsOnMetrics-I

student
metric
understandable
useful

Course
title
is FullTime

[Ad-d
i(io

-nrces
alResour

student
I resource

__j

we
tc

Studentl! sueý
ISS

istudent 0ti C-b-
r

ýissuelD
source

Ltýyýe

--ýISSuelD
is-real-issue
location

notes

-0. .-

Heuristic

originator
Metric-vs-Heuristic

Or-

ýý ref erence
metric 1 heuristiclD
heuristiclD ýtYpe
applicability ent it y_ty peý

text
grouplD

understandsCode
ýtimeOnResearch

--I
itimeOnAnalysis
ItimeOnWriteup
v ersionsBuilt
helpedU nderstanding

: wouldUseMeasurement
wouldS upport Programme
pic k'n'm ix
u different sets ll,

MetricSetSelect ion Reason

student
imetricSet

0.. * 1; reason

0

HeuristicGro-u p-l

grouplD
description

Figure L-I Data model for case study database

Blank.

In

Origi"nal 0

341

Appendix M Description of metrics used

Chidamber and Kernerer metrics

LCOM Lack of COhesion in Methods
: intra-class cohesion measure

CBO Coupling Between Objects
:a class level coupling measure

WMC Weighted Methods per Class
:a count of the number of methods in a class

RFC Response For a Class
:a size/complexity/coupling measure

DIT Depth of Inheritance Tree
: the maximum number of inheritance levels between a class to it's
farthest ancestor

NOC Number Of Child
:a count of the number of immediate descendant classes

MOOD metrics

AHF Attribute Hiding Factor
: system level measure of the degree of attribute hiding

AIF Attribute inheritance Factor
: system level measure of the degree of attribute inheritance

MBF Method Hiding Factor
: system level measure of the degree of method hiding

MIF Method Inheritance Factor
: system level measure of the degree of method inheritance

COF COupling Factor
: system level measure of the degree of class coupling

PF Polymorphism Factor
: system level measure of the extent of use of polymorphism

Lorenz and Kidd metrics

Ah number of hidden attributes per class
Mh number of hidden methods per class

Blank

Original

343

References

Abreu, F. B. 'Metrics for object-oriented enviromnents', in Proc. 3rd International

Conf on Software Quality. Lake Tahoe, Nevada: 1993.

Abreu, F. B. and R. Carapuca, 'Candidate Metrics for Object-Oriented Software

within a Taxonomy Framework', Journal ofSystems & Software, 26, pp87-96,1994.

Abreu, F. B., M. Goulao, et al. 'Toward design quality evaluation of object-oriented

software systems', in Proc. 5th International conference on software quality. Austin,

Texas, USA: 1995.

Abreu, F. B. and W. Melo. 'Evaluating the impact of object-oriented design on

software quality, in Proc. 3rd International software metrics symposium. Berlin,

Germany: IEEE, 1996.

Albrecht, A. J. 'Measuring Application Development Productivity', in Proc. SHARE-

GUIDE Symposium. Monterey, CA: IBM, 1979.

Banker, R. D., R. J. Kauffman, et al., 'Repository evaluation of software reuse', IEEE

Transactions on Software Engineering, 19(4), pp379-389,1993.

Bar-David, T., 'Practical consequences of formal definitions of inheritance,, Journal of

Object Oriented Programming, '(July/August), pp43-49,1992.

Basili, V., G. Caldiera, et al., The goal question metric approach, in Encyclopedia of

software engineering, Wiley: 1994.

Basili, V. R., L. Briand, et al., A validation of object-oriented design metrics as

quality indicators. No. CS-TR-3443, University of Maryland, 1995.

344

Basili, V. R., L. C. Briand, et al., 'A validation of object-oriented design metrics as

quality indicators', IEEE Transactions on Software Engineering, 22(10), pp751-761,

1996.

Basili, V. R. and H. D. Rombach, 'The TAME project: Towards Improvement-

oriented software enviromnents', IEEE Transactions on Software Engineering, 14(6),

pp758-771,1988.

Belkhouche, B. and M. Chavarro, 'Analysis of object-oriented designs', Journal of

Object Oriented Programming, 7(9), pp3O-42,1995.

Berard, E. V., Essays on object-oriented software engineering. Prentice Hall: 1993.

Berdie, R. D., J. F. Anderson, et al., Questionnaires: design and use. 2 ed. The

Scarecrow Press, Inc.: 1996.

Biernan, J. M. and L. M. Ott, 'Measuring functional cohesion', IEEE Transactions on

Software Engineering, 20(8), pp644-657,1994.

Bieman, J. M. and J. X. Zhao, 'Reuse through inheritance: a quantitative study of C++

software', Proc. 4 CM Software Reusability Symp. (SRS94), (April), 1995.

Blaha, M., W. Premerlani, et al., 'Converting 00 models into RDBMS schema!, IEEE

Software, 11(3), pp28-39,1994.

Boehm, B. W., J. R. Brown, et al., Characterisics ofsoftware quality. TRW Series of

Software Quality: Amsterdam, North Holland, 1978.

Booch, G., Object-Oriented Design: with applications. Benjamin Cummings: 1991.

Booch, G., Object-Oriented Design: with applications. 2nd ed. Benjamin Cummings:

1994.

345

Booch, G., 'The unified modeling language', Unix review, 14(13), pp4l-4,46,48,
1996.

Briand, L., E. Arisholm, et al., Empirical studies of object-oriented artifacts, methods

and processes: State of the art and future directions. Technical report No. ISERN-99-

12, ISERN, 1999.

Briand, L., K. El Emam, et al., 'On the application of measurement theory in software

engineering', Empirical Software Engineering. an internationaljournal, I(l), 1996.

Briand, L., T. Langley, et al., A replicated assessment and compafison of common

software cost modeling techniques. Technical report No. ISERN-99-15, Fraunhofer

Institute for Experimental Software Engineering, 1999.

Briand, L. C., C. Bunse, et al., 'A contolled experiment for evaluating guidelines on

the maintainability of object-oriented designs', IEEE Transactions on Software

Engineering, 27(6), pp5l3-530,2001.

Briand, L. C., J. Daly, et al. 'Predicting fault-prone classes with design measures in

object-oriented systems', in Proc. Proceedings Ninth International Symposium on

Software Reliability Engineering. IEEE Comput. Soc, 1998a.

Briand, L. C., J. W. Daly, et al., 'A unified framework for cohesion measurement in

object-oriented systems', Empirical Software Engineering, 3(l), pp65-117,1998b.

Briand, L. C., J. W. Daly, et al., 'A unified framework for coupling measurement in

object-oriented systems', IEEE Transactions on Software Engineering, 25(l), pp9l-

121,1999.

Brown, W. J., R. C. Malveau, et al., AntiPatterns: refactoring software, architectures

andprojects in crisis. Wiley: 1998.

346

Budgen, D., Software design. Addison-Wesley: 1994.

Bunge, M., Treatise on basic philosophy: ontology P The furniture of the world.
Riedel: Boston, 1977.

Bunge, M., Treatise on basic philosophy: ontology IP The world of systems. Riedel:

Boston, 1979.

Cain, A., Metric. (Web Site) Swinburne University of Technology. URL:

http: //jmetric. it. swin. edu. au/products/Jýmetric/. [Accessed 01/06/99]

Cartwright, M. and M. Shepperd. 'Building predictive models from object-oriented

metrics', in Proc. 8th European Software Control andMetrics Conf Berlin: 1997.

Cartwright, M. H., An empirical investigation into metrics for object-oriented

software. Ph. D. Tbesis, Computing Department, Bournemouth University, 1998.

Chalmers, A. F., nat is this thing called science. 2nd ed. Open University Press:

1982.

Chidamber, S. R., D. P. Darcy, et al., 'Managerial use of object oriented software

metrics: an exploratory analysis', IEEE Transactions on Software Engineering, 24(8),

pp629-639,1998.

Chidamber, S. R. and C. F. Kernerer, 'Towards a metrics suite for object oriented

design', SIGPLAN Notices, 26(11), ppl97-211,1991.

Chidamber, S. R. and C. F. Kemerer, 'A metrics suite for object oriented design!, IEEE

Transactions on Software Engineering, 20(6), pp476-493,1994.

Chidamber, S. R. and C. F. Kemerer, 'Authors' reply', IEEE Transactions on Software

Engineering, 21(4), pp265,1995.

347

Churcher, N. and M. J. Shepperd, 'Comment on "A metrics suite for object oriented

design"', IEEE Transactions on Software Engineering, 21(3), pp263-265,1995a.

Churcher, N. 1. and M. J. Shepperd, 'Towards a Conceptual Framework for Object

Oriented Software Metrics', ACM SIGSOFT Software Engineering Notes, 20(2),

pp69-76,1995b.

Civello, F. 'Roles for composite objects in object-oriented analysis and desigif, in

Proc. OOPSL4 93. Addison-Wesley, 1993.

Coad, P., 'OOD Criteria, Partl', Journal of Object Oriented Programming, (June),

pp67-70,1991a.

Coad, P., 'OOD Criteria, Part2', Journal of object Oriented Programming,

(July/August), 1991b.

Coad, P., 'OOD Criteria, PartY, Journal of Object Oriented Programming,

(September), pp67-70,1991 c.

Coad, P. and E. Yourdon, Object-Oriented Analysis. Second Edition ed. Yourdon

Press: 1991a.

Coad, P. and E. Yourdon, Object-Oriented Design. Yourdon Press/Prentice Hall:

1991b.

Cook, S. and J. Daniels, Designing object systems : object-oriented modelling with
Syntropy. The object-oriented series, Prentice Hall: 1994.

Cook, W. R. 'Interfaces and Specifications for the Smalitalk-80 Collection Classes', in

Proc. OOPSL4 '92. Vancouver, Canada: 1992.

348

Coplien, J. 0., Advanced C++ : programming styles and idioms. Adison Wesley:

1992.

Coppick, J. C. and T. J. Cheatham. 'Software metrics for object-oriented systems', in

Proc. Annu. ACM Computer Science Conf Kansas: ACM Press, 1992.

Creswell, J. W., Qualitative inquiry and research design: choosing among five

traditions. Sage Publications: 1998.

Curtis, B., M. I. Kellner, et al., 'Process modeling', Communications of the ACM,

35(9), pp75-90,1992.

Daly, J., A. Brooks, et al. 'The effect of inheritance on the maintainability of object-

oriented software: an empirical study, in Proc. Int. Conf on So/tw. Maintenance

ICSM95. Nice: 1995.

Daly, J., A. Brooks, et al. 'Evaluating the effect of inheritance on the maintainability

of object-oriented software', in Proc. Empirical Studies of Programmers.

Washington, DC: 1996.

de Champeaux, D., Object-oriented development process and metrics. Prentice Hall

International: 1997.

DeMarco, T., Controlling software projects. Yourdon Press: New York, 1982.

Dvorak, J., 'Conceptual Entropy and Its Effect on Class Hierarchies. ', IEEE Computer,

(June), pp59-63,1994.

El Emam, K., Tenchmarking Kappa: interrater ageement in software process

assessments', Empirical Software Engineering, 4(2), ppI 13-33,1999.

349

El Emam, K. 'The reliability and validity of software process assessments', in Proc.

Empirical Assessment in Software Engineering. Keele, UK: 200 1.

Fenton, N. E., software nietrics: a rigorous approach. Chapman and Hall: London,

UK, 1991.

Fenton, N. E., S. Lawrence Pfleeger, et al., 'Science and substance: a challenge to

software engineers, IEEE Software, (July), pp86-95,1994.

Fenton, N. E. and S. L. Pfleeger, Software metrics: a rigorous and practical

approach. 2nd ed. International Thompson Computer Press: London, UK, 1996.

Fink, A. and J. Kosecoff, How to conduct surveys. Sage publications: 1985.

Finkelstein, L. and A S. Leaning, 'A review of the fundamental concepts of

measurement', Measurement, 2(l), pp25-34,1984.

Firesmith, D., 'An Expanded View of Messages', Journal of Object Oriented

programming, (July/August), pp5l-52,1993.

Firesmith, D., 'Inheritance Guidelines', Journal of Object-Oriented Programming,

(May), pp67-72,1995.

Fowler, F. J., Improving survey questions: design and evaluation. Applied social

research methods series, Sage Publications: 1995.

Gamma, E., R. Helm, et al., Design Patterns: Elements of Reusable Object-Oriented

Software. Addison -Wesley: 1994.

Gibbon, C., Heuristics for object-oriented design. Ph. D. Thesis, Computer Science

Department, University of Nottingham, 1997.

350

Gibbon, C. and C. Higgins, 'Teaching object-oriented design with heuristics',

SIGPLANNotices, 31(7), ppl2-16,1996.

Gilb, T., Tools for design by objectives, in Software requirements specification and

testing, T. Anderson, Editor, Blackwell Scientific: 1986.

Gilb, T., Principles of software engineering management. Addison Wesely: Reading,

Mass., USA, 1988.

Grady, R., Practical software metrics for project management and process

improvement. Prentice-Hall: 1992.

Grady, R. B., 'Measuring and managing the software maintenance process', IEEE

Software, 4(5), pp35-45,1987.

Grady, R. B., 'Successfully applying software metrics', IEEE Computer, 27(9), ppl8-

25,1994.

Grady, R. B. and D. L. Caswell, Software metrics: Establishing a company-wide

program. Prentice Hall: Englewood Cliffs, NJ, 1987.

Graham, I., Migrating to Object Technology. Addison-Wesley: 1995a.

Graham, I. 'Progress with object-oriented metrics', in Proc. Object Expo Europe.

London: 1995b.

Graham, I., 'Making progress in metrics', Object magazine, 6(8), pp68-73,1996.

Greenwood, D. J. and L. Morten, Introduction to action research. Sage Publications:

1998.

351

Hall, T., 'Software quality programmes: a snapshot of theory versus reality, Software

qualityjournal, 5(4), pp235-242,1996.

Hall, T. and N. Fenton, 'Implementing effective software metrics programs', IEEE

Software, 14(2), pp55-65,1997.

Hall, T. and N. E. Fenton, 'Implementing software metrics - the critical success

factors', Software QualityJournal, 3, ppl95-208,1994.

Halstead, M. H., Elements of Computer Science. Elsevier North-Holland: 1977.

Harrison, R., S. J. Councell, et al., 'An evaluation of the MOOD set of object-oriented

software metrics, IEEE transactions on software engineering, 24(6), pp491-496,

1998.

Harrison, R. and R. Nithi. 'An empirical evaluation of object-oriented design metrics',

in Proc. OOPSL496 -workshop: 00 product metrics. 1996.

Haythorn, W., 'What is Object-Oriented Design', Journal of Object Oriented

Programming, (March/April), pp67-78,1994.

Henderson-Sellers, B., '00 metrics proganune', Object Magazine, (October), pp73-

79,95,1995.

Henderson-Sellers, B., Object-oriented metrics: measures of complexity. Prentice

Hall: 1996a.

Henderson-Sellers, B., OPEN and the OPENIMeNtOR project. (Web Page)

Swinbume University. URL: http: //www. csse. swin. edu. au/cotar/OPEN/openl. html.

[Accessed 8/11/971

352

Henderson-Sellers, B., L. Constantine, et al., 'Coupling and cohesion (towards a valid

metrics suite for object-oreinted analysis and design)', Object-oriented Systems, 3(3),

ppl43-158,1996.

Henderson-Sellers, B. and I. Graham, 'OPEN: toward method convergence',

Computer, 29(4), pp86-89,1996.

Henderson-Sellers, B., 1. M. Graham, et al., 'Methods unification: the open

methodology', JOOP, 10(2), pp4l43,55,1997.

Henry, S. and D. Kafura, 'Software quality metrics based on inter-connectivity',

Journal ofSystems & Software, 2(2), ppl2l-131,1981a.

Henry, S. and D. Kafura, 'Software structure metrics based on information flow, IEEE

Transactions on Software Engineering, 7(5), pp5lO-517,1981b.

Hitz, M. 'Measuring reuse attributes in object-oriented systems', in Proc. OOIS95.

Dublin City University: Springer-Verlag, 1995.

Hitz, M. and B. Montazeri. 'Measuring coupling and cohesion in object-oriented

systems', in Proc. Int. Symposium on Applied Corporate Computing. Monterrey,

Mexico: 1995a.

Hitz, M. and B. Montazeri. 'Measuring product attributes of object-oriented systems',

in Proc. ESEC '95 (5th European Software Engineering Conference). Barcelona,

Spain: Springer Verlag 1995,1995b.

Hitz, M. and B. Montazeri, 'Chidamber & Kemerer's metrics suite: A measurement

theory perspective', IEEE Transactions on Software Engineering, 22(4), pp267-71,

1996.

353

Hopkins, T., Complexity metrics for quality assessment of object-oriented design, in

Software Quality Management II, vol. 2: Building Quality into Software, P. M. Ross,

C. A. Brebbia, G. Staples and J. Stapleton, Editor, Computational Mechanics Press:

1994.

Hopkins, T. P., 'Do we need object-oriented design metrics? ', Hotline on Object-

Oriented Technology, 2(8), ppl6-17,1991.

Hursch, W. L. 'Should Superclasses be AbstractT, in Proc. European Conference on

Object-Oriented Programming. Springer Verlag, 1994.

IFPUG, Function Point Counting Practices Manual: Release 3.4. No. , International

Function Point User's Group, 1992.

IS09001, Quality systems - Assurance model for design/development, production

installation and servicing capability. Standard No. 9001 (Part 1), International

organization for Standardization, 1987.

Jeffery, R. and M. Berry. 'A framework for evaluation and prediction of metrics

programme success', in Proc. 1st Intl Metrics Symposium. Baltimore, U. S. A.: IEEE

Computer Press, 1993.

Keyes, J., New metrics needed for new generation!, Software Magazine, 12(6), pp42-

56,1992.

Kirsopp, C., Automated Supportfor Assessing 00 Architectures. (Presentation slides)

Bournemouth University.

URL: http: //dec. boumemouth. ac. uk/-ckirsopp/OOPS_l 16. htm. [Accessed 07/02/00]

Kirsopp, C. 'Measurement and the software development process', in Proc. 121h

European Software Control and Metrics Conference. London, UK: 2001 a.

354

Kirsopp, C., A survey and review of object-oriented design heuristics. Tech Report

No. ESERG TR-O 1 -04, Bournemouth University, 200 1 b.

Kirsopp, C. and S. Webster. 'Object-Oriented Design Heuristics: BOF Session', in

Proc. Object Technology '97. Oxford, UK: 1997.

Kitchenham, B., S. L. Pfleeger, et al., Towards a framework for software

measurement validation, IEEE transactions on software engineering, 21(12), pp929-

944,1995.

Kitchenham, B. A., 'Towards a constructive quality model Part I: Software quality

modelling, measurement and prediction', Software Engineering Journal, 2(4), ppIO5-

113,1987.

Kogure, M. and Y. Akao, 'Quality function deployment and CWQC in Japan', Quality

Progress, (October), pp25-29,1983.

Korson, T. and J. D. McGregor, 'Technical criteria for the specification and evaluation

of object-oriented libraries', Software Engineering Journal, (March), pp85-94,1992.

Krantz, D. H., R. D. Luce, et al., Foundations of Measurement. Vol. 1. Academic

Press: 1971.

Krantz, D. H., R. D. Luce, et al., Foundations of Measurement. Vol. 2. Academic

Press: 1989.

Krantz, D. H., R. D. Luce, et al., Foundations of Measurement. Vol. 3. Academic

Press: London, 1990.

Kyburg, H. E., Theory and Measurement. Cambridge Univ. Press: Cambridge,

England, 1984.

355

Land, L., R. Jeffery, et al., Validating the defect detection performance advantage of

group designs for software reviews: report of a replicated experiment. Technical

report No. ISERN-97-16, Centre for Advanced Empirical Software Research, 1997.

Leavens, G. T., 'Modular Specification and Verification of Object-Oriented Programs',

IEEESoftware, (July), pp72-80,1991.

Lee, H. J. and W. T. Tsai, A new Partial Inheritance Mechanism and its Applications,

Journal of Object Oriented Programming, (July/August), pp53-63,1993.

Lee, Y. S., B. S. Liang, et al. 'Some Complexity Metrics for Object-Oriented

Programs Based on Information Flow, in Proc. Proceedings, Computers in Design,

Manufacturing and Production. Pris-Evry, France: IEEE Computer Society Press,

1993.

Li, W., Applying Software Maintenance Metrics in the Object-Oriented Software

Development Life Cycle. Ph. D. Thesis, Virginia Polytechnic Inst. and State Univ.,

1992.

Li, W. and S. Henry. 'Maintenance metrics for the object oriented paradigm', in Proc.

Ist IntL Software Metrics Symposium. Baltimore: IEEE Computer Society, 1993 a.

Li, W. and S. Henry, 'Object-oriented metrics that predict maintainability', Journal of
Systems and Software, 23(2), pplll-122,1993b.

Li, W. and S. Henry, 'An empirical study of maintenance activities in two object-

oriented systems', Journal of Software Maintenance Research and Practice, 2(2),

ppl3l-147,1995,

Li, W., S. Henry, ct al., 'Measuring object-oriented design', JOOP, 8(4), pp48-55,
1995.

356

Liu, C. -P., B. -S. Liang, ct al. 'A validation of software complexity metrics for object-

oriented programs', in Proc. International Computer Symposium 1994, (ICS94).

Taiwan, R. O. C.: 1994.

Lorenz, M., Object Oriented Software Development: A Practical Approach. ed. B.

Meyer. Prentice Hall: 1993.

Lorenz, M. and J. Kidd. '00 metrics position paper', in Proc. OOPSLA '93 Workshop

on Processes and Metrics for Object Oriented Software Development. Washington

DC: 1993.

Lorenz, M. and J. Kidd, Object-Oriented Software Metrics. Object-Oriented Series,

Prentice Hall: Englewood Cliffs, N. J., 1994.

Love, T., 'Timeless Design of Information Systems', Object Magazine,

(November/December), pp42-4 8,199 1.

Martin, R., Designing Object Oriented C++ Applications Using the Booch Method.

Vol. ISBN 0-13-203837-4. Prentice Hall: Englewood Cliffs, New Jersey, 1995.

McCabe, T. J., 'A software complexity measure, IEEE transactions on software

engineering, 2(4), pp308-20,1976.

McCall, J. A., P. K. Richards, et al., Factors in software quality. No. NTIS AD/A-

049 014, NTIS AD/A-049 015, NTIS AD/A-049 055, US Roma Air Development

Center, 1977.

McGregor, J. D. and T. Korson, 'Supporting dimensions of classification in object-

oriented design', Journal of Object Oriented Programming, (February), pp25-30,

1993.

357

Melo, W. L., L. C. Briand, et al., Measuring the impact of reuse on quality and

productivity in objeett-oriented systems. Technical Report No. CS-TR-3395,

University of Maryland, Dept of Computer Science, 1995.

Miller, G., M. Woof, et al., Project MOOD: Business structure. No. PS-MOOD-CS-

000003, Parallax Solutions Limited, 1996a.

Miller, G., M. Woof, et al., Project MOOD: Requirements capturing approach. No.

PS-MOOD-CS-000002, Parallax Solutions Limited, 1996b.

Miller, J. 'Can results from software engineering experiments be safely combined', in

Proc. Sixth international software metrics symposium. Boca Raton, Florida: IEEE

Computer Society, 1999.

Myers, G. J., CompositelStructured Design. Van Nostrand Reinhold: New York,

1978.

Nehaniv, C. L., ed. Computation for metaphors, analov, and agents. Springer-

Verlag: Berlin, Germany, 1999.

Number-Six-Software, MetricsOne. (Measurement tool) Number Six Software, Inc.

URL: http: //www. numbersix. com/metricsone/. [Accessed 07/02/00]

Parnas, D. L., P. C. Clements, et al. 'Enhancing reusability with information hiding', in

Proc. HT Workshop on reusability in programming. 1983.

Paulk, M. C., B. Curtis, et al., 'Capability maturity model, version IT, IEEE

Software, IO(July), ppl8-27,1993.

Payne, S. L., The art of asking questions. Princeton University Press: Princeton, New

Jersey, 1951.

358

Pfleeger, S. L., 'Lessons learned in building a corporate metrics program', IEEE

Software, 10(5), pp67-74,1993.

Pfleeger, S. L., 'Experimental design and analysis in software engineering', Software

Engineering Notes, 19-20(vol. 19no. 4tovol. 20no. 5), 1994.

Pfleeger, S. L., 'Maturity, models and goals: how to build a metrics pl&, Journal of

systems andsoftware, 31(2), ppl43-155,1995.

Pickard, L. M., B. A. Kitchcnham, et al., 'Combining cmpirical rcsults in softwarc

enginccring', Information and Software Technology, 40(14), 1998.

Ponder, C. and B. Bush, 'Polymorphism considered harmful', ACM SIGSOfT

Software Engineering Notes, 19(3), pp35-37,1994.

Pressman, R. S. and D. Ince, Software engineering: a practitioners approach. 5th ed.
McGraw-Hill: 2000.

Rajaraman, C. and M. R. Lyu. 'Reliability and maintainability related software

coupling metrics in C++ programs', in Proc. 3rd Inil. Symposium on Software

Reliability Engineering. IEEE Computer Press, 1992a.

Ralaraman, C. and M. R. Lyu. 'Some coupling measures for C++ programs', in Proc.
J

8th IntL Conf Technology of Object-Oriented Languages and Systems. Santa

Barbara: Prentice Hall, 1992b.

Rational, UML Resource Center. (Web page) Rational Software Corporation. URL:

http: //www. rational. com/uml/index. jtmpl. [Accessed 07/02/00]

Reyes, L. and D. Carver. 'Predicting object reuse using metrics', in Proc. SEKE '98.

Tenth International Conference on Software Engineering and Knowledge

Engineering. Knowledge Syst. Inst, Skokie, IL, USA: 1998.

359

Riel, A. J. 'Tutorial 38 handout : object-oriented design though heuristics', in Proc.

OOPSL4 '94. Portland, Oregon: 1994.

Riel, A. J., Object oriented design heuristics. Addison Wesley: Reading,

Massachusets, USA, 1996.

Rising, L., 00 Design Heuristics. Internal Company Document No. AG

Communication Systems, 1994.

Roberts, F. S., Measurement theory with applications to decision making, utility, and

social sciences. Adison-Wesley: Reading, MA, 1979.

Rombach, H. D. and V. R. Basili. 'Practical benefits of goal-oriented measurement', in

Proc. Annual Worýshqp of the Centre for Software Reliability. - Reliability and

Measurement. Garmisch-Partenkirchen, Germany: Elsevier, 1990.

Rosson, A B. and E. Gold, 'Problem-solution mapping in object-oriented design',

SIGPLANnotices, 24(10), pp7-10,1989.

Rumbaugh, J., 'Disinherited! Examples of Misuse of Inheritance, Journal of Object

Oriented Programming, (Febuary), pp22-24,1993.

Rumbaugh, J., 'A search for values : attributes and associations', Journal of object

orientedprogramming, (June), pp6-8,49,1996.

Sharble, R. C. and S. S. Cohen, 'The ObJ ect-Oriented Brewery: A Comparison of Two

Object-Oriented Development Methods', SIGSOFT Software Engineering Notes,

18(2), pp60-73,1993.

Shepperd, M., Foundations ofsoftware measurement. Prentice Hall: 1995.

360

Shepperd, M. and D. Ince. 'Algebraic validation of software metrics', in Proc. 3rd

european software engineering conference. Milan: Springer-Verlag, 199 1.

Shepperd, A J. and D. C. Ince, Derivation and validation of software metrics. Open

University Press: 1993.

Siegel, S. and N. Castellan, Nonparametric statistics for the behavioural sciences. 2

ed. McGraw-Hill: New York, 1988.

Sommerville, I., Software engineering. 6th ed. Addison-Wesley: 2001.

Tegarden, D. P., S. D. Sheetz, et al. 'Effectiveness of Traditional Software Metrics for

Object-Oriented Systems', in Proc. Twenty-Fifth Hawaii International Conference on
System Sciences. Hawaii: IEEE, 1992.

Tegarden, D. P., S. D. Sheetz, et al., 'A software complexity model of object-oriented

systems', Decision Support Systems: the International Journal, , 1993.

Velleman, P. F. and L. Wilkinson, Nominal, ordinal, interval and ratio typologies are

misleading', The American Statistician, 47(l), pp65-72,1993.

Visaggio, G., Assessing the maintenance process through replicated, controlled

experiment. technical report No. ISERN-97-27, University of Bari, 1997.

von Mayrhauser, A. and A. M. Vans, 'Industrial experience with an integrated code

comprehension model', Software engineeringjournal, 10(5), ppl7l-182,1995.

Webster, S., On the evolution of 00 methods. 1996, Bournemouth University:

Unpublished.

Wei, L., Applying Software Maintaining Metrics in the Software Development Life

Cycle. Masters Thesis, MIT, 1992.

361

Weyuker, E. J., 'Evaluating Software Complexity Measures', IEEE Transactions on
Software Engineering, 14(9), ppl357-1365,1988.

Whitmire, S. A. 'A formal object model for measurement', in Proc. OOPSL496

workshop: 00product metrics. 1996.

Whitmire, S. A., Object-oriented design measurement. John WIley & Sons, Inc.:

1997.

Wilkie, F. G. and B. Hylands, 'Measuring complexity in C++ software', Software

practice and experience, 28(5), pp513-546,1998.

Wirfs-Brock, A. and B. Wilkerson, 'Variables Limit Reusability', Journal of Object-

Oriented Programming, 2(l), pp34-40,1989.

Wohlin, ý. 'Software inspection benchmarking: a feasability study and illustration of

opportunities', in Proc. Empirical assessment in software engineering (F, 4SE). Keele,

UK: 2001.

Wohlin, C., P. Runeson, et al., Experimentation in software engineering: an
introduction. The Kluwer intemation series in software engineering, ed. V. R. Basili.

Kluwer Academic Publishers: 2000.

Yin, R. K., Applications of case study research. Applied social research methods

series, Sage Publications: 1993.

Yin, R. K., Case study research: design and methods. 2nd ed. Applied social research

methods series, Sage Publications: 1994.

Yourdon, E., Object-Oriented Systems Design: An Integrated Approach. Prentice Hall
International Editions: 1994.

362

Zhao, M., C. Wohlin, ct al., 'A comparison between software design and code metrics
for the prediction of software fault content', Information and Software Technology,

40(14), pp801-9,1998.

Zuse, H., Software Complexity. Measures and Methods. de Gruyter: Berlin, 199 1.

Zuse, H., Foundations of the validation of object-oriented software measures, in

Theorie und Praris der Softwaremessung, H. Zuse and D. Reiner, Editor, DUV

Deutsche Universitiitsverlag: 1994.

Zuse, H., A framework of software measurement. Walter de Gruyter & Co.: Berlin,

1997.

Zuse, H. and P. Bollmann, 'Software metrics: using measurement theory to describe

the properties and scales of static complexity metrics', A CM SIGPLAN Notices, 24(8),

pp23-33,1989.

