
An Interactive Editor for Curve-Skeletons: SkeletonLab

Simone Barbieria, Pietro Melonib, Francesco Usaib, L. Davide Spanob, Riccardo Scatenib

aCentre for Digital Entertainment, Bournemouth University, Bournemouth, United Kingdom
bDepartment of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy

Abstract

Curve-skeletons are powerful shape descriptors able to provide higher level information on topology, structure and semantics of
a given digital object. Their range of application is wide and encompasses computer animation, shape matching, modelling and
remeshing. While a universally accepted definition of curve-skeleton is still lacking, there are currently many algorithms for the
curve-skeleton computation (or skeletonization) as well as different techniques for building a mesh around a given curve-skeleton
(inverse skeletonization). Despite their widespread use, automatically extracted skeletons usually need to be processed in order to
be used in further stages of any pipeline, due to different requirements. We present here an advanced tool, named SkeletonLab,
that provides simple interactive techniques to rapidly and automatically edit and repair curve skeletons generated using different
techniques proposed in literature, as well as handcrafting them. The aim of the tool is to allow trained practitioners to manipulate
the curve-skeletons obtained with skeletonization algorithms in order to fit their specific pipelines or to explore the requirements of
newly developed techniques.

Keywords: Curve-Skeleton, 3D Meshes, Geometry Processing, Interactive Editing

1. Introduction

A curve-skeleton is a compact mono-dimensional representa-
tion able to provide meaningful information about both topol-
ogy and the volume of a shape. While the skeleton of a two
dimensional shape is defined as its Medial Axis Transform [1],
which is the locus of centres of its maximal inscribed discs, this
definition leads, for three dimensional shapes, to a collection of
connected curves and sheets that are impractical to use in most
real world applications.

Constraining the skeleton of a 3D shape to be a one-
dimensional structure results in a simpler and more intuitive
representation, that is also easy and natural to manipulate. As
of today, however, there is no unique, precise and universally ac-
cepted definition of curve-skeletons, hence different approaches
for its computation have been proposed, each obtaining results
with different features, characteristics and defects [2].

The range of applications in which curve-skeletons are used
is wide and comprises computer animation [3], shape match-
ing [4], modelling [5], remeshing and quad layout extraction
[6], polycube [7], and hexahedral mesh construction [8]. Since
each of these applications requires skeletons with different prop-
erties, further processing is often required in order to obtain op-
timal results in the pipeline in which they will be used. More-
over, it is often difficult to define algorithms to process a skele-
tal structure in order to reflect the required features, due to the
semantic nature of the information it conveys.

Tools for interactive creation of curve-skeletons already exist
(e.g. in the the medical imaging field [9]). These tools usually
allow the user to create a curve-skeleton from scratch so that
it can be used as the input for an inverse skeletonization algo-
rithm. The main difference with our tool is that, due to our

different goals, the basic operations they offer are not sufficient
for editing an automatically extracted skeleton.

In [6] an algorithm for computing a coarse quad-layout start-
ing from a shape and its curve skeleton was introduced. We
discovered that using automatically extracted skeletons often
brought to sub-optimal results even when using some simplifi-
cation strategies. This led to the development of the tool we
present in this paper, which has shown to be easy-to-use and
practical for interactively editing curve-skeletons. It allowed us
to obtain optimal results within our quad-layout computation
method and we think it can allow other researchers or practi-
tioners to obtain, even within minutes, curve-skeletons that are
tailored for their specific tasks.

The rest of the paper is organized as follows: in Section 2 we
will give a brief overview of the different algorithms for comput-
ing curve-skeletons at the state-of-the-art, interactive tools for
curve-skeleton handcrafting will be discussed as well; in Sec-
tion 3 we will discuss the limitation of using the current skele-
tonization approaches in real world applications and why the
tool we are presenting in this paper could be a useful resource;
in Section 4 we will give an overview of our tool, describing its
functionalities; in Section 5 we will report the results of a com-
plete user evaluation session conducted in our lab; in Section
6 we will present an example of a specific use case, to give an
idea of the capabilities of our tool; in Section 7 we will draw our
conclusions, consider the limitations, and explain what could be
done in the future to improve the work.

The project page with binaries and link to the repository con-
taining the entire source code of the presented tool is available
at http://francescousai.info/skel_lab. This paper is
a substantial extension and revision of the work “Skeleton Lab:

Preprint submitted to Computers & Graphics August 16, 2016

http://francescousai.info/skel_lab


an Interactive Tool to Create, Edit, and Repair Curve-Skeletons”
[10], presented at the 2015 EuroGraphics Italian Chapter Con-
ference, held in Verona in October 2015. The work received the
Best Paper Award at the end of the Conference.

2. Related work

Several automatic skeletonization methods have been pre-
sented in the last two decades. These are commonly categorised
based upon their input, which can be a surface mesh [11, 12], a
point cloud [13, 14] or a voxel grid [15, 16]. Volumetric repre-
sentations, while important, are not handled by our tool, hence
they will be not discussed. We refer to [2] for a recent survey.
Currently, a universally accepted definition of curve-skeleton
is still lacking. The medial geodesic skeleton defined in [17]
is the only meaningful attempt to fill this gap; however, while
the theoretical definition is precise and sound, the implemen-
tation of the skeletonization algorithm provided by the authors
presents some defects, such as long computational times and
sensitivity to small perturbations of the surface. Both these is-
sues arise due to the well known sensitivity of the medial axis
itself, which is computed and processed to obtain the final skele-
ton. The main issue is the presence of noisy skeletal paths and
spurious branches, especially between nodes where the branch-
ing occurs.

Since different skeletonization approaches exist, it is difficult
to compare the quality of the results of each method. Important
information about the desirable properties of a curve-skeleton
can be found in [18].

The current trend in skeletonization is to use a contraction-
based approach, which relies on contracting the 3D shape rep-
resented as a triangle mesh accordingly to its mean curvature-
flow until it collapses to a monodimensional object. We refer to
[15, 19] for a qualitative comparison of the most representative
methods based on this idea. A recent contraction-based method
is [11] which is a robust skeletonization algorithm whose re-
sulting skeletons are topology-preserving, usually well centered
and smoother than previous similar methods.

Notable exceptions to this trend are [20, 21, 22] which, rather
than relying on the geometric properties of the input, operate
emulating human perception, synthesising the curve-skeleton
of a 3D object from those of its 2D silhouettes (obtained from
different points of view).

This approach, although less robust than [17, 23, 11] presents
heuristics for collapsing spurious branches and closing loops
whenever two terminal nodes have intersecting maximal balls,
which are beneficial for the resulting structure. A particularly
notable example of point cloud based methods is the work of
Huang et al. [14], which allows to obtain high quality skele-
tons from raw and potentially incomplete scans by using the
L1-median operator.

2.1. Skeleton editing tools

The term skeletonization denotes the process of computing a
curve-skeleton from a 3D shape. Similarly, inverse skeletoniza-
tion can be defined as the process of building a 3D shape around

Figure 1: A direct comparison of three automatic skeletonization methods. [11]
(left), [17] (center) and [21] (right) on the same hand model. One can notice
that the terminal nodes are the same in all the three skeletons, while the internal
nodes are different in number and position. It is difficult to tell which one is the
most correct.

a curve-skeleton respecting its structural and volume informa-
tion.

In recent years, inverse skeletonization became a quite active
research topic, giving rise to different research works [24, 25,
26] and commercial solutions [27, 28] for building 3D shapes,
especially creature-like, from a user created skeleton.

The aim of these tools is to quickly create 3D models that will
have to be further refined. They are designed to allow the user
to handcraft a skeleton, providing a small set of simple skele-
ton editing operations such as adding new nodes, moving them
around and changing the radii of their associated balls. These
basic operations do not provide a sufficiently wide toolset for
a user that needs to process the results of one of the presented
skeletonization methods. Our tool addresses this need, allow-
ing users to operate on curve-skeletons at different granulari-
ties with functionalities that are absent in other tools and have
shown to be useful.

3. Motivation

From a practical point of view all the skeletonization meth-
ods presented in the previous section have specific properties
and issues, and their resulting skeletons are typically difficult to
use without processing. We noticed, from our own experience
and the results of the experiments found in literature, that curve-
skeletons are usually assumed to have some specific properties
or are manually edited to have them (e.g. in [26, 7] ).

Each of the methods presented in section 2 requires some in-
put parameters to be set in order to fine-tune how the algorithm
behaves, especially regulating its ability to catch small scale
features. This brought us to make the following observations:

• The computation of a good curve-skeleton is not a fully
automated operation. It requires a, sometimes complex,
parameter setting that could be tightly coupled to both the
specific application and the specific shape; this usually
takes several attempts before obtaining the desired skele-
ton.

• Most of the parameters pertain to the detection of small
scale features. On the one hand, more sensitivity usually
means more noise and spurious branches; on the other
hand, less noise could potentially mean missing meaning-
ful features of the shape being processed.

2



• Given the semantic nature of the information encoded in a
curve-skeleton it is difficult, from an application agnostic
point of view, to define what a meaningful feature is and
how much noise can be tolerated in order to capture it.

As can be seen in Fig. 1 different skeletonization methods
give very different results even on models of moderate complex-
ity. The three methods used in the experiment have different
approaches and lead to distinct results. Since we can not use a
single universal and formal definition of 3D curve-skeleton, it is
not possible to say which of the three skeletons is correct. Fur-
thermore we can say that rather than evaluating if an extracted
curve-skeleton is correct or not, it is worth to evaluate if it meets
certain desired properties and if it can bring optimal results or
not.

We have observed that it is usually not practical to rely on
a completely automatic pipeline, because the input parameters
of these algorithms must be fine tuned. Moreover, the user has
to decide the balance between meaningful features versus noise
and spurious branches. Taking this into consideration, we think
that working in a pipeline where an automatic extraction stage
(with a limited choice of standard parameter values) followed
by an interactive editing stage is more practical.

3.1. Applicative contexts

As mentioned in the introduction, in [6] we proposed an algo-
rithm for computing a coarse quad-layout starting from a shape
and its curve skeleton. We found that optimal skeletons for this
application are robust, connected, and reliable [18]. Strong ho-
motopy is not required but it is beneficial. Optimal results have
been obtained by using skeletons composed of a small number
of nodes that still approximate the shape accurately. Another
important requirement is for the skeletons to have the associ-
ated balls of the endpoints not intersecting other balls. In some
cases, optimal results have been achieved with a little interac-
tive editing of the automatically extracted skeleton by collaps-
ing spurious branches, manually adjusting the missing ones and
sub-sampling the branches while retaining only the most repre-
sentative nodes.

Another applicative context which benefits from dealing with
a small number of nodes is the definition of kinematic skeletons.
They are in fact usually composed of few nodes for each branch,
requiring particular care on the nodes’ position. In this scenario
an automatic simplification of a skeleton can potentially lead
to results that are not well suited for the purpose. This could
happen because the nodes associated with the shape’s articula-
tions have to be preserved, but the presence of an articulation
itself is a semantic feature that is usually complex to capture
algorithmically.

4. Skeleton Lab

The presented tool, Skeleton Lab, allows the user to both
handcraft curve-skeletons and edit the existing ones, hence it
provides functionalities that are absent in the tools described in
Section 2.1, due to their different purposes. This section will

present its distinguishing features, their purpose and some de-
sign choices.

We consider the skeleton as an attributed graph G = (N, L)
where N is the set of nodes and L the set of links between nodes.
Each node Ni ∈ N has a few attributes:

• Position in space.

• Radius of the associated ball.

• Type of the node (the classification follows).

• List of its neighbouring nodes, since we do not explicitly
store the links.

We classify the nodes of the skeleton as: Joint nodes (Jn)
that have two incident arcs; Leaf nodes (Ln) that have only one
incident arc; and Branching nodes (Bn) that have more than
two incident arcs. We also allow the user to assign a higher
semantic value to a Jn marking it as an Articulation (An), e.g.
in case of a human ankle or elbow.

Figure 2: A visual explanation of the terminology we introduced. In the left
image each Bn is red, each Ln is green, and each An is blue, while no Jn is
shown. In the right image the nodes of Branch have a different color.

With the term Branch we refer to a sequence of linked nodes
starting and ending with either a Bn or a Ln. When a branch
ends with a Ln we call it Ln-ending, if both the starting and
ending nodes are Bn it is said to be internal, while when the
starting and the ending nodes are exactly the same, we have a
Looping-Branch.

With our tool the user is allowed to visualize and manipulate
a curve-skeleton and optionally view the triangle mesh it refers
to. We experimented our tool with skeletons obtained with dif-
ferent methods, namely the ones presented in [17, 20, 11].

By design we have chosen to group functionalities into two
different modes:

Node mode in which each operation refers to the node or the
set of nodes currently selected.

3



Branch mode allows direct manipulation of a selected branch
with operations that are meaningful only when considering
an entire branch.

Moreover, there are several operations that affect the skele-
ton as a whole. From our experience manually editing a
curve-skeleton is usually performed through a trial-and-error
approach, hence undo/redo is available for both operations and
selection.

4.1. Basic operations

All the tools presented in Section 2 allow the user to perform
basic operations only, that are: adding a new node connected to
an existing one; translating and rotate a selected set of nodes;
changing the radii of their associated balls. These basic func-
tionalities of a skeleton editor are available in our tool. They
are trivial and, thus, they will not be described further.

4.2. Node mode

Here we present all the possibilities offered in node mode.

4.2.1. Adding midpoint and constraining movement
Once two existing and directly connected nodes are se-

lected, the user is allowed to create a new node connected
to them and placed at the midpoint
of the segment that connects them
(see inset).

Strictly related to this operation,
is the constrained movement of
nodes. Our tool allows the user to
move a selected Jn constraining its
movement only to points in space
that are linearly interpolated be-
tween the position of its two neigh-
bours, in order to fine tune its po-
sition. These two operations have
shown to be useful when creating
a skeleton from scratch with a pro-
gressive refinement, where only Bn’s and Ln’s are created at
first and branches can be progressively modelled adding Jn’s
between them.

4.2.2. Node Removal
Removing one or more nodes is a simple operation with a

number of different cases that have to be taken into account. In
fact, when removing a single node there are three possible cases
depending on what type of node is going to be removed:

• Ln: the node is removed without any further operations.

• Jn: the node is removed and the two nodes linked to it are
then connected to each other.

• Bn: the user is required to choose between two possibili-
ties. The first one is to delete all the node’s links. Since
we do not allow to create separate components, all the
Ln-ending branches connected to the Bn will be removed.

Other branches, the ones connected to other Bn, will be
kept unchanged except for the fact that one of their end-
points will be removed, becoming a Ln-ending branch. Al-
ternatively, the user can transfer all the links of the Bn that
is going to be deleted to one of its neighbouring nodes,
selected by the user.

The tool allows to handle isolated nodes or branches but does
not allow to explicitly create them. This is a design choice:
since a curve-skeleton is always a single connected component,
SkeletonLab does not allow the user to create disconnected
components, but it allows to load a disconnected skeleton in
order to repair it interactively. When a user tries to remove a
set of nodes in Node Mode, the operation is performed as a se-
quence of single node removals. When Bn’s are involved, all
the Ln-ending branches that are connected to them are traversed
and their nodes removed.

4.2.3. Copy and paste
Especially when creating a skeleton from scratch, the user

may want to replicate a part of the skeleton that (s)he is editing.
For this reason our tool allows to copy and paste a set of con-
nected nodes. When copying, the user is required to choose a
Source node, when pasting a Destination one. The Source node
has to be chosen from the ones that are being copied, the Des-
tination node can be any node of the skeleton. When pasting
the copied nodes, Source will be merged with Destination in or-
der to keep a single connected component. Destination will be
modified only inheriting all Source’s copied neighbours. Copy
and paste are disjoint operations, and, as such, one can perform
them in different moments. The process is depicted in figure 3.

Figure 3: Copy&paste. The user selects a sequence of nodes (left), activates the
copy (similarly to other software that supports this functionality), selects the
source node (middle); then selects the destination node and pastes the copied
nodes (right). The selected destination node has now become a Bn (right).

4.2.4. Creating and breaking links
A curve-skeleton is essentially an undirected graph. Skeleton

Lab allows the user to explicitly manipulate the graph’s connec-
tivity with three operations:

• Merge two unconnected nodes creating a looping-branch.

• Create a link between two unconnected nodes.

• Break an existing link between two nodes. We use the Di-
jkstra’s algorithm to check if breaking the link will create
two separate components, if so we prevent the operation.

4



4.3. Branch mode
The operations explained so far operate on one or more se-

lected nodes, while the operations that will be presented in this
section operate on a higher level of granularity, allowing the
users to work on an entire branch of the skeleton.

4.3.1. Pruning
The pruning operation allows the users to easily shorten the

selected Ln-ending branch, removing its current Ln.

4.3.2. Branch Removal
If the branch is a Ln-ending one, it will be removed without

further operations. In case of an internal branch the user will
be prompted to choose whether (s)he prefers to merge the two
Bn’s at their midpoint, or (s)he would rather retain the position
of one of the two. This operation is particularly useful when
repairing skeletons, since one of the most common defects is
the presence of short spurious branches.

4.3.3. Spurious branches removal
A spurious branch is a branch of the skeleton that breaks ho-

motopy, in the sense that it does not represent any meaningful
component of the shape. Identifying spurious branches would
require to understand the shape’s features at a semantic level,
even if it can be approximated with the use of the volumetric in-
formation provided by the radii of the associated balls. Skeleton
Lab provides the capability of collapsing such branches imple-
menting the topological operations proposed in [20]. In partic-
ular, every branch for which the Zones of Influence [29] of its
two endpoints intersect (i.e. their associated balls intersect) will
be removed.

4.3.4. Resampling
Skeletons computed with state-of-the-art skeletonization al-

gorithms are often composed of a large number of nodes, in
fact they can easily reach a thousand nodes, even for models
of moderate complexity. In usual applications, this level of de-
tail leads to redundancy and is not necessary, indeed it could be
preferable to deal with a smaller number of nodes.

In order to cope with this issue, we allow the users to change
the number of nodes of a branch with a resampling operation.

Resampling is done by arc-length parametrization adopting
the method presented in [30] with slight modifications in or-
der to take into account both position and radii of the involved
nodes. In this way, the three-dimensional structure of the
branch is maintained and the radii of the new nodes are approx-
imated from the original ones. Both sub-sampling and super-
sampling are allowed, but only super-sampling is a smoothness
preserving operation.

A special case for resampling occurs when the branch con-
tains some An’s, since they have been marked by the user as
semantically relevant Jn’s, their position and radii will be pre-
served.

Furthermore since subsampling must retain these nodes, the
minimum number of nodes a user can choose for resampling is
equal to E + #An, where E is the number of distinct endpoints
of the branch.

4.3.5. Approximation
The typical use case for resampling is skeleton simplification.

However, it could be sometimes required to maintain a subset
of the original nodes while simplifying. In these cases skele-
ton simplification through resampling cannot be applied. A dif-
ferent approach to lowering the number of nodes of a skeletal
branch is to approximate it. We implemented two different so-
lutions. The first one relies on the Douglas-Peucker algorithm
[31]. The second is a simple heuristic that operates traversing
the branch and removing all the nodes for which their distance
to the last node visited and not removed is smaller than a given
threshold (i.e., calculated as the sum of their associated ball
radii multiplied by a scaling factor). These two approaches ap-
proximate the branches keeping the original skeletal nodes, thus
not guaranteeing to obtain a smooth curve with uniformly dis-
tributed nodes.

Figure 4: The original branch (left) composed by 50 nodes can be simplified by
resampling (middle) or approximated with Douglas-Peucker algorithm (right).
Both results are composed of 8 nodes.

4.4. Skeleton-wide operations

We here present a few operations that allow the user to manip-
ulate the skeleton position inside the shape described by a mesh
that has been loaded. These operations require an efficient im-
plementation of intersections and distance queries computation,
hence we decided to rely on the AABB tree implementation
found in [32].

4.4.1. Fix the external nodes
When a mesh is loaded along with a skeleton it is possible

to check if some of the skeleton’s nodes are outside the mesh
and move them inside. This can be useful since most of the
skeletonization algorithms cannot guarantee that all the nodes
are internal to the mesh; even the more robust ones as [11] with
particular parameter settings can lead to branches crossing the
mesh boundaries instead of flowing inside them.

For each node Ni we find its closest face of the mesh F with
normal NF . If Ni is outside the mesh we calculate its new posi-
tion as

Ni − [d(Ni,F) + ϵ] · NF

where d is the Euclidean distance and ϵ a small positive num-
ber.

4.4.2. Skeleton recentering
Centeredness is one of the desired properties of a curve-

skeleton, which can be defined as the property of being medial

5



to the shape a skeleton describes. As stated in [18], a skeleton
is perfectly centered if it lies on the medial surface and it is cen-
tered with respect to it. Perfect centeredness is difficult to ob-
tain, but it is also often undesirable due to the sensitivity of the
medial axis to small perturbations on the object’s surface. In or-
der to achieve perfect centeredness a posteriori, one would need
to have at hand both the curve-skeleton and the shape’s medial
axis, while state-of-the-art algorithms do not provide such out-
put. Moreover, several skeletonization algorithms do not com-
pute the medial axis in their pipeline. Skeleton Lab implements
three different algorithms for recovering the centeredness of the
skeleton and estimating the radii of the maximal balls.

The presented methods rely on the definition of the local
skeletal direction of each node Ni denoted with

−→
Ni and com-

puted as:

−→
Ni =


−−−→
N jNi if Ni is Ln
−−−→
NiNk if Ni is Bn
−−−→
N jNi +

−−−→
NiNk if Ni is Jn

where N j and Nk are, respectively, the predecessor and the
successor of Ni in the branch they belong to, choosing an arbi-
trary traversal order. The position of Ni together with the direc-
tion
−→
Ni defines a plane Pi.

Iterative recentering
The first recentering algorithm relies on the description of the

approximate centeredness proposed in [18]. For each skeletal
node Ni we cast n uniformly distributed radial rays that lie onPi

and have origin in Ni, computing their intersections with the ob-
ject surface. For each ray Rh we consider only the intersections
obtained pinching the object from the inside and we store only
the intersection Ih that is closest to Ni. We also discard all the
pairs of opposite rays for which at least one valid intersection
is not found.

Figure 5: A section of the tubular branch where the node Ni is centered. On the
left an application of iterative recentering; in the middle ellipse fitting; on the
right SQEM for which only one of the tangent planes has been depicted.

For each pair of opposite rays (Rh,R
′

h) we calculate the mid-
point Ch of the intersection pair (Ih, I

′

h), then update the position
of Ni as the centroid of all the computed midpoints Ch’s and the
new associated ball radius as the average semi-distance of all
the intersection pairs. If Ni is a Bn we calculate its new posi-
tion and radius, respectively, as the centroid of the positions and
mean radius calculated separately for each incident branch. We
observed that a single iteration of the procedure is usually not
sufficient to obtain optimal results. Moreover, this procedure
does not guarantee convergence, hence it is up to the user to
iterate until the results are satisfactory.

Recentering using ellipse fitting
The great part of the shapes for which makes sense to com-

pute a curve-skeleton, belong to the class of generalized cylin-
der assemblies. According to this assumption we can compute
an approximated centered position for the skeletal nodes using
an approach similar to the recentering procedure described in
[14]. Each branch is traversed and for each node Ni, the inter-
section between its associated plane Pi and the object is com-
puted. This intersection could generate different components,
hence we choose the connected component that is closest to the
node Ni. The selected component will be an arrangement of
segments from which we compute a set of points R composed
of all the segments’ endpoints and midpoints. We then use the
approach proposed [33] to fit an ellipse on the set of points R,
which lie on both the surface andPi, updating the position of Ni

to the center of the ellipse thus obtained. The position of Bn’s is
computed applying the described procedure for each outgoing
branch and computing the centroid of the center of the ellipses.
The radii of the associated balls is approximated as the distance
of each node from its closest point on the object’s surface.

Recentering using Spherical Quadric Error Metric
The Spherical Quadric Error Metric (SQEM) has been intro-

duced in [34] and allows to compute the sphere that optimally
fits an input set of oriented planes. We use this metric to com-
pute the new positions of the skeletal nodes and the radii of their
associated balls. We follow an approach similar to the previous
one. For each node Ni we compute the intersection of the ob-
ject with Pi and the point set R. The point set R is filtered from
the outliers, removing all points for which the ZScore is greater
than 1.96 according to their distance from Ni. For each remain-
ing point r j in R we compute the direction

−−−→
Nir j which, together

with r j, will define a plane Pr j. The set of all the planes Pr j

will be the input of the SQEM computation.
When Ni is a Bn, its new position is obtained computing the

SQEM using as input the set of all the planes Pr j obtained from
the intersections computed for each outgoing direction of the
Bn Ni.

4.4.3. Comparison of the recentering algorithms
All the three algorithms are able to improve the centeredness

of the skeleton, however all of them have their own disadvan-
tages. The iterative approach is particularly sensitive to the
nodes position and local direction of the original skeleton, and
the resulting paths are usually not smooth. Moreover, it is not
able to deal with nodes that are outside the shape, hence their
position needs to be fixed beforehand, as described in 4.4.1.
Both ellipse fitting and SQEM based algorithms are more ro-
bust than the iterative procedure and they are able to produce
good results even with nodes that are slightly outside the shape.
By contrast they are not able to compute a reasonable position
for those nodes lying at the branching parts of the shape. The
ellipse fitting approach usually fails to reposition this kind of
nodes, while SQEM provides reasonable results only for the
shapes which are composed of only tubular parts (e.g., the cac-
tus) and fails on the others (e.g., the hand). A comparison is

6



Figure 6: A comparison of the three recentering methods available in our tool. In the leftmost image we show a skeleton artificially deformed adding noise.

shown in Figure 6. This problem arises due to the fact that the
branching parts of a shape should be entirely represented by a
single Bn, but skeletonization algorithms are usually not able to
differentiate these parts. One possible strategy to alleviate this
issue is to not perform the recentering procedure to all nodes at
once, but use a two step approach. In the first step the positions
of all the nodes that fall inside each Bn’s Zone of Influence can
be kept unchanged. At the second step their new position can
be computed using linear interpolation .

4.4.4. Posing the skeleton
While editing a skeleton, the user might need to move a set

of nodes and at the same time preserving the proportion and the
relative distance of the branch. This allows a user to manually
create a curve-skeleton in a canonical pose that can be modified
once the work is finished.

For this reason, the users are allowed to move a section of
the branch from an An (or a Bn) to a Ln, while keeping the
hierarchy intact, namely the distance and the relative position
with the nodes in between.

To achieve this, the user selects an An or a Ln. Let us identify
this node with Nb

i , where b identifies the branch and i is the
position of the node in the branch (with Nb

0 as the Bn and Nb
n as

the Ln).
Then, the following set of nodes will be marked:

marked = {Nb
j | 0 ≤ j < l}

where Nb
l is the next An from Nb

i toward the Bn. If there are no
other An’s, then Nb

l will be Nb
0 , namely the Bn. These marked

nodes are then involved in a constrained rotation centered on
Nb

l .
This method uses the An’s to pose just the desired portion of

the branch (see an example in Figure 7). The An’s however, are
not required in case of leaf-ending nodes: if there are no An’s,
the entire branch will be posed.

Figure 7: An example of how the user can pose a hand rotating the mesh around
the An’s (in blue in the “thumb up” model).

5. User Evaluation

A user test has been carried out in order to evaluate the skele-
ton editing tool with regard to usability, performance, cognitive
load and the overall experience. The aim was to get feedback
on the current status of the tool and to collect suggestions for
further development of its interface.

7



5.1. Test design
The test was organized in order to provide both quantitative

and qualitative data on different aspects of the tool. Before
starting the trial, the users were asked to read a short docu-
ment describing SkeletonLab, together with a short help on how
to activate the different tool functionalities. After reading the
document, which can be found in the additional material, and
providing some demographic information, the users were asked
to execute different tasks, which we divided in two categories,
namely A and B.

In the A category we included a set of eight introductory
tasks. The tasks A1 to A7 required the users to test a single
function of the tool, while task A8 is a warming-up activity be-
fore starting the evaluation on complex tasks. The aim of this
group was to help the users to understand the capabilities of
SkeletonLab and to prepare them for next phase. The tasks in
the A category are the following:

A1 Creating a new node and changing its position.

A2 Changing the radius of the maximal ball associated to a
node.

A3 Loading a skeleton from the disk and saving it into another
file.

A4 Activating the branch mode, deleting a terminal node and
the entire branch.

A5 Resampling a branch.

A6 Loading the Cactus mesh, its skeleton and aligning them 1

A7 Deleting a branching node from a skeleton and transfer its
links to another one.

A8 Modifying an existing skeleton to obtain a specific shape
(the user was provided with the image of the desired con-
figuration).

After each task, the user was asked to complete the Subjec-
tive Mental Effort Question (SMEQ)[35] for evaluating the task
load. The evaluator registered the completion time.

After finishing the first group, the user was asked to complete
a set of three additional tasks, which required the composition
of different functionalities for reaching the desired configura-
tion. Each task represent a typical use case for SkeletonLab.
The users were provided with an image showing the desired
output, to be considered as success criterion. The tasks in the B
category are the following:

B1 Loading the mesh Guy and creating its skeleton.

B2 Cleaning the skeleton of the octopus as showed in figure 11
(reducing the number of nodes, deleting spurious branches
etc.)

1Please note that task A6 is different from the recentering operator. Task
A6 required the users to rigidly move the skeleton in order to align it with
the mesh, while recentering independently moves each node of the skeleton in
order to improve their centeredness. An example of task A6 can be seen in the
accompanying video and at https://youtu.be/iGhfPvxk_uc

Figure 8: SMEQ ratings for group A tasks. The minimum value is 1, while the
maximum is 150.

B3 Loading the skeleton of a hand and modifying it in order
to get the thumb up pose (figure 7).

After finishing each task, the users were asked to fill the
NASA-TLX questionnaire for assessing the task load [36] and
the evaluator tracked the completion time. At the end of the test,
the users were requested to fill the SUS [37] questionnaire in
order to evaluate the overall usability. The test is composed of
three open-ended questions, regarding which aspects they liked
and disliked in the tool and improvement suggestions for the
interface.

5.2. Test results

Fourteen users participated to the test, 11 males and 3 fe-
males, aged between 30 and 21 (x̄ = 25.07, s = 2.8). Two of
them have a high school degree, 3 a bachelor, 8 a master degree
and one a PhD. They have an average experience in editing 3D
meshes (x̄ = 3.14, s = 1.61 in a 1-5 Likert scale), while they
had little knowledge on creating and manipulating curve skele-
tons (x̄ = 1.57, s = 0.85).

5.2.1. Introductory tasks
All users were able to complete the introductory tasks (type

A). The box plot in figure 8 shows the SMEQ ratings. All the
single function tasks required little effort for the users, who
rated the tasks from A1 to A5 and A7 less than 13 on average.
According to [35], all these tasks are not very hard to do. The
difficulty of the other ones (A6 and A8) is between a bit hard to
do and fairly hard to do.

We expected that modifying an existing skeleton to obtain
a specific shape (A8) was the most difficult task. Indeed, it
requires several operations for obtaining the desired result. We
registered a high variability also for the recentering operation
(A6), caused by the changes of the scene point of view needed
for checking and modifying the alignment.

The analysis of the completion time (figure 9, red boxes) con-
firms the conclusions on SMEQ scores: completing task A6 and
A8 takes longer than the other ones. We found a significant dif-
ference between the completion time of A8 and all the other
tasks but A6. The difference was significant also between A6

8

https://youtu.be/iGhfPvxk_uc


Task A on Completion Time:
F(3.96, 47.48) = 12.78, p = 10−11, η2

partial = 0.51, ϵ = 0.56

Pair 95% c.i. p Pair 95% c.i. p

A6-A1 [77s; 300s] .001 A8-A1 [126s; 512s] .007
A6-A2 [55s; 255s] .01 A8-A2 [96s; 475s] .02
A6-A4 [31s; 243s] .04 A8-A4 [76s; 459s] .03
A6-A5 [100s; 289s] .001 A8-A5 [138s; 513s] .003
A6-A7 [21s; 264s] .001 A8-A7 [76s; 470s] .02

Table 1: Summary of the one-way ANOVA for repeated measures on the task
completion time (type A). Since the repeated measures violated the sphericity
assumption, we applied the Greenhouse-Geisser procedure [38] for correcting
the degrees of freedom of the F-distribution (ϵ). We applied the Bonferroni
correction for counteracting the multiple (pairwise) comparison problem [39].
We report only the significant differences (p < .05).

Figure 9: Completion time for task groups A (red) and B (blue) in seconds.

and the other tasks except A8 and A3. We report the details on
the one-way ANOVA for repeated measures in table 1.

5.2.2. Use cases
The second part of the test included a set of more complex

tasks (B1 to B3). The first task (creating a new skeleton) was
completed by all users, two users abandoned B2 (cleaning a
skeleton) and one B3 (modifying a skeleton pose). Users that
abandoned the tasks shared the opinion that it was caused by
the inability to figure out the sequence of actions for reaching
the desired configuration. Considering that the experience level
with the editing of curve skeletons was low for all users, this
may be motivated with the need of a longer learning phase for
solving complex tasks.

Figure 10 shows the results of NASA-TLX ratings for B1,
B2 and B3. We report the overall difficulty evaluation (Tot) and
the rating for each of the six factors considered in the question-
naire: the mental demand (MD), the physical demand (PD), the
temporal demand (TD), the effort (Eff), the overall performance
(Pr) and the frustration level (Fr). The task load is acceptable
for all tasks, considering a scale from 1 to 100, the average val-
ues are between 33 and 43.

The analysis of each factor highlighted a significant effect of
the considered task in the overall performance ratings. How-
ever, the pairwise comparison resulted only in a small differ-
ence between B1 and B2. The task has a significant impact on

Figure 10: NASA-TLX ratings for group B1 (red), B2 (green) and B3 (blue).
The results for the overall performance (Pr) have been reversed for consistency
with the other dimensions (the lower, the better).

the completion time, and in particular the difference in time be-
tween B1 and B3 is around 4 minutes. Additional details on the
analysis are available in Table 2.

We conclude that users require a similar effort in all the en-
visioned use cases. They seem to be more efficient in changing
the configuration of a skeleton rather than performing editing
operations.

5.2.3. Post test
The SUS post test questionnaire shows that SkeletonLab has

an average overall usability (x̄ = 63.04, s = 16.35). In par-
ticular, the users gave low ratings to question 3 (I thought the
system was easy to use, x̄ = 2.0, s = 0.92) and question 7 (I

Task B on Performance (Pr) ratings:
F(1.32, 13.2) = 11.45, p = .003, η2

partial = 0.055, ϵ = 0.66

Pair 95% c.i. p

B1-B2 [−28.8; 25.9] .007

Task B on Completion Time:
F(1.32, 13.2) = 11.45, p = .003, η2

partial = 0.055

Pair 95% c.i. p

B1-B3 [15s; 480s] .08

Table 2: Summary of the one-way ANOVA for repeated measures for evaluat-
ing the effect of the task (type B) on the overall performance ratings (Pr in the
NASA TLX questionnaire) and completion time. We applied the Greenhouse-
Geisser correction [38] for sphericity on performance ratings and the Bonfer-
roni correction [39] on the pairwise comparisons. We report the ANOVA results
and we list the task pairs having a practically significant difference (p < .1) be-
tween them.

9



would imagine that most people would learn to use this system
very quickly, x̄ = 2.0, s = 1.03). The latter result may be ex-
plained again considering our users’ low knowledge on curve
skeletons.

We can explain the low ratings to question 3 through the an-
swers to the open-ended questions: almost all users suggested
to modify the keyboard shortcuts that are difficult to remember
and they found some combinations difficult to be performed (es-
pecially the cmd+alt+shift ones). However, two users acknowl-
edged that, once learned, the shortcuts allowed them to perform
the operations quickly and they felt confident in using them.
Therefore, we will consider to change some key combinations
and to include buttons and an explicit graphical guidance for
performing the basic operations on skeletons. We expect that,
after the learning phase, most of the users will perform the ma-
nipulations through keyboard shortcuts.

The users found additional difficulties in changing the scene
point of view while manipulating the skeleton, especially dur-
ing the alignment operation. In this case we should consider to
include predefined view camera positions (e.g. front, side and
top) in order to help the users while aligning the skeleton to an
existing mesh. Finally, the procedure for transferring the links
to another branching node was not intuitive for them.

The users appreciated the node color feedback and the overall
manipulation of the skeleton parts.

6. Results and Discussion

In this section we show how some automatically extracted
curve-skeletons have been processed with our tool in order to
be used as input in the pipeline presented in [6].

Figure 12 shows how the skeleton of the Stanford Dragon
model has been edited in order to compute its quad layout. It
has been one of the most challenging skeletons we have faced.
The skeleton originally had 1050 nodes and, as can be seen in
the close-up, some of the branches of the horns were discon-
nected. The skeleton has been simplified resampling most of
its branches and removing 6 spurious ones, and it is now com-
posed of 193 nodes. The complete editing process, from a) to
c), took about 15 minutes.

Another example showing how some state-of-the-art meth-
ods, while successfully completing the skeletonization, may fail
at conveying the correct semantic information can be seen in
Figure 11. Since a human would usually describe an octopus as
a living being composed of a big head and 8 tentacles starting
from the bottom side of the head, we edited the skeleton remov-
ing all the spurious branches that was present inside the head
and one of the tentacles. The original skeleton contained 23
branches while the result shown on the right of Figure 11 con-
tained the 9 branches one would expect. The complete editing
took less than 4 minutes to a trained user. It is also important to
note that in this specific case, using the original skeleton the re-
sulting quad-layout would have been completely wrong, while
the edited version brought to an optimum. In our experiments
the tool shown to be versatile enough to be used for both quick-
fixes and complex editing, and for repairing tasks.

Figure 11: Skeleton of an octopus model extracted using [11] (top) and its
edited version (down) with all the spurious branches collapsed. Close-ups on
right side of the image show how the unnecessary Bn ’s were removed in order
to obtain the quad layout depicted on the lower right.

Our tool relies on the Qt Framework, libQGLviewer [40] and
CGAL [32] , and it is able to load curve-skeletons produced by
the available implementations of [11, 17, 21].

7. Concluding remarks

In this paper we presented a novel tool for the interactive
processing of curve-skeletons in order to make them fit the ap-
plication in which they will be used. We observed that the eval-
uation of what is a good curve-skeleton is strictly dependent
to the application in which it will be used and none of the ex-
isting skeletonization methods provide curve-skeletons that can
be directly used in every application bringing to optimal results.
This is not a defect of the proposed approaches. The topolog-
ical and semantic information that a skeleton encodes are not
easy to capture algorithmically, and fine-tuning the parameters
required by the skeletonization methods is often necessary but
not resolutive. While developing the method presented in [6]
we have observed that an effective and practical approach to ob-
tain optimal results in our pipeline, was to automatically extract
the curve-skeleton (choosing the method we experienced to be

10



Figure 12: Editing process of a complex skeleton extracted with [17], a) has been computed with a number of disconnected branches (close-up) due to a buggy
implementation or erroneous parameter setting. The skeleton was first reconnected b), and simplified c). In the second row we show the skeleton with its associated
maximal balls d) and the quad-layout obtained with it e).

the best suited for the considered shape using standard param-
eter values) and process it with the presented tool in order to
optimally fit our pipeline requirements. The tool has also been
made publicly available both as source code and binaries in or-
der to allow other researchers and practitioners to use it in their
applicative scenarios.

Future work

Interesting directions for future work include the possibility
to extend Skeleton Lab implementing a modified version of the
method presented in [6] in order to be used as an inverse skele-
tonization tool, providing high quality base quad meshes with
a low and controllable number of irregular vertices. Moreover
it can be extended in order to produce rigged meshes. Load-
ing a mesh and a skeleton (either automatically extracted or
handcrafted), the latter can be edited according to the user’s
needs, decimated retaining only Bn’s, Ln’s and An’s. The rig-
ging weights can then be computed in order to obtain a rigged
mesh ready to be used for animation purposes.

[1] Blum H. A Transformation for Extracting New Descriptors of Shape. In:
Models for the Perception of Speech and Visual Form. 1967, p. 362–380.

[2] Tagliasacchi A. Skeletal Representations and Applications. arXiv preprint
arXiv:13016809 2013;abs/1301.6809.

[3] Baran I, Popović J. Automatic Rigging and Animation of 3D Characters.
ACM Trans Graph 2007;26(3).

[4] Hilaga M, Shinagawa Y, Kohmura T, Kunii TL. Topology Matching for
Fully Automatic Similarity Estimation of 3D Shapes. In: Proceedings of
SIGGRAPH ’01. 2001, p. 203–212.

[5] Bærentzen JA, Abdrashitov R, Singh K. Interactive Shape Model-
ing Using a Skeleton-mesh Co-representation. ACM Trans Graph
2014;33(4):132:1–132:10.

[6] Usai F, Livesu M, Puppo E, Tarini M, Scateni R. Extraction of the Quad
Layout of a Triangle Mesh Guided by Its Curve Skeleton. ACM Trans
Graph 2015;35(1):6:1–6:13.

[7] Liu L, Zhang Y, Liu Y, Wang W. Feature-preserving T-mesh construction
using skeleton-based polycubes. Computer-Aided Design 2015;58:162–
172.

[8] Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJ. Patient-specific
vascular {NURBS} modeling for isogeometric analysis of blood flow.
Computer Methods in Applied Mechanics and Engineering 2007;196(29–
30):2943–2959.

[9] Abeysinghe SS, Ju T. Interactive skeletonization of intensity volumes.
The Visual Computer 2009;25(5-7):627–635.

[10] Barbieri S, Meloni P, Usai F, Scateni R. Skeleton Lab: an Interactive
Tool to Create, Edit, and Repair Curve-Skeletons. In: Smart Tools and
Apps for Graphics - Eurographics Italian Chapter Conference. 2015, p.
121–128.

[11] Tagliasacchi A, Alhashim I, Olson M, Zhang H. Mean Curvature Skele-
tons. Comp Graph Forum 2012;31(5):1735–1744.

[12] Jalba A, Sobiecki A, Telea AC. An Unified Multiscale Framework for Pla-
nar, Surface, and Curve Skeletonization. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 2016;38(1):30–45.

[13] Tagliasacchi A, Zhang H, Cohen-Or D. Curve Skeleton Extraction from
Incomplete Point Cloud. ACM Trans Graph 2009;28(3):71:1–71:9.

[14] Huang H, Wu S, Cohen-Or D, Gong M, Zhang H, Li G, et al. L1-medial
Skeleton of Point Cloud. ACM Trans Graph 2013;32(4):65:1–65:8.

[15] Sobiecki A, Jalba A, Telea A. Comparison of curve and surface
skeletonization methods for voxel shapes. Pattern Recognition Letters
2014;47:147–156.

[16] Serino L, Sanniti di Baja G, Arcelli C. Distance-Driven Skeletonization
in Voxel Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 2011;33(4):709–20.

[17] Dey TK, Sun J. Defining and Computing Curve-skeletons with Medial
Geodesic Function. In: Proceedings of SGP ’06. 2006, p. 143–152.

[18] Cornea ND, Silver D, Min P. Curve-Skeleton Properties, Applications,
and Algorithms. IEEE Transactions on Visualization and Computer
Graphics 2007;13(3):530–548.

[19] Sobiecki A, Yasan HC, Jalba AC, Telea AC. Qualitative Comparison
of Contraction-Based Curve Skeletonization Methods. In: Mathematical
Morphology and Its Applications to Signal and Image Processing; vol.
7883 of Lecture Notes in Computer Science. 2013, p. 425–439.

[20] Livesu M, Guggeri F, Scateni R. Reconstructing the Curve-Skeletons of
3D Shapes Using the Visual Hull. Visualization and Computer Graphics,
IEEE Transactions on 2012;18(11):1891–1901.

[21] Livesu M, Scateni R. Extracting curve-skeletons from digital shapes using
occluding contours. The Visual Computer 2013;29(9):907–916.

[22] Kustra J, Jalba A, Telea A. Probabilistic View-based 3D Curve Skeleton
Computation on the GPU. In: Proceedings of the VISAPP ’13. 2013, p.
237–246.

[23] Au OKC, Tai CL, Chu HK, Cohen-Or D, Lee TY. Skeleton Extraction by

11



Mesh Contraction. ACM Trans Graph 2008;27(3):44:1–44:10.
[24] Bærentzen JA, Misztal MK, Wełnicka K. Converting skeletal structures

to quad dominant meshes. Computers & Graphics 2012;36(5):555 – 561.
[25] Ji Z, Liu L, Wang Y. B-Mesh: A Modeling System for Base Meshes of

3D Articulated Shapes. Comp Graph Forum 2010;29(7):2169–2178.
[26] Hijazi Y, Bechmann D, Cazier D, Kern C, Thery S. Fully-automatic

Branching Reconstruction Algorithm: Application to Vascular Trees. In:
Proceedings of SMI ’10. 2010, p. 221–225.

[27] AutoDesk. 123D. http://www.123dapp.com/; 2016. [Online; ac-
cessed 29 January 2016].

[28] ZBrush. ZSpheres. http://pixologic.com/zbrush/features/

zspheres/; 2016. [Online; accessed 29 January 2016].
[29] Serino L, Sanniti di Baja G, Arcelli C. Object Decomposition Via Curvi-

linear Skeleton Partition. In: Pattern Recognition (ICPR), 2010 20th In-
ternational Conference on. 2010, p. 4081–4.

[30] Heckbert PS. Bilinear Coons Patch Image Warping. In: Graphics gems
IV. 1994, p. 438–446.

[31] Douglas DH, Peucker TK. Algorithms for the reduction of the num-
ber of points required to represent a digitized line or its caricature.
International Journal for Geographic Information and Geovisualization
1973;10(2):112–122.

[32] Cgal. computational geometry algorithms library. http://www.cgal.

org; 2016. [Online; accessed 29 January 2016].
[33] Fitzgibbon AW, Pilu M, Fisher RB. Direct least-squares fitting of el-

lipses. Pattern Analysis and Machine Intelligence, IEEE Transactions on
1999;21(5):476–480.

[34] Thiery JM, Guy E, Boubekeur T. Sphere-Meshes: Shape Approx-
imation using Spherical Quadric Error Metrics. ACM Trans Graph
2013;32(6):178:1–178:12.

[35] Zijlstra FRH, van Doorn L. The Construction of a Scale to Measure Sub-
jective Effort. Tech. Rep.; Delft University of Technology, Department of
Philosophy and Social Sciences; Delft, Netherlands; 1985.

[36] Hart SG, Staveland LE. Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research. In: Human Mental Work-
load; vol. 52 of Advances in Psychology. 1988, p. 139 – 183.

[37] Brooke J. SUS: A “quick and dirty” usability scale. In: Usability Evalua-
tion in Industry. 1996, p. 189–194.

[38] Geisser S, Greenhouse SW. An Extension of Box’s Results on the Use of
the F Distribution in Multivariate Analysis. The Annals of Mathematical
Statistics 1958;29(3):885–91.

[39] Dunn OJ. Multiple Comparisons among Means. Journal of the American
Statistical Association 1961;56(293):52–64.

[40] libQGLViewer. http://libqglviewer.com/; 2015. [Online; accessed
29 January 2016].

12

http://www.123dapp.com/
http://pixologic.com/zbrush/features/zspheres/
http://pixologic.com/zbrush/features/zspheres/
http://www.cgal.org
http://www.cgal.org
http://libqglviewer.com/

	Introduction
	Related work
	Skeleton editing tools

	Motivation
	Applicative contexts

	Skeleton Lab
	Basic operations
	Node mode
	Adding midpoint and constraining movement
	Node Removal
	Copy and paste
	Creating and breaking links

	Branch mode
	Pruning
	Branch Removal
	Spurious branches removal
	Resampling
	Approximation

	Skeleton-wide operations
	Fix the external nodes
	Skeleton recentering
	Comparison of the recentering algorithms
	Posing the skeleton


	User Evaluation
	Test design
	Test results
	Introductory tasks
	Use cases
	Post test


	Results and Discussion
	Concluding remarks

