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Abstract 

The collection of scales is common when fish communities are sampled within research 

and monitoring programmes in freshwater fisheries. Although used primarily to age 

individual fish, there is increasing evidence of their potential for application to other 

ecological methods, yet there is also considerable uncertainty in how this can be achieved. 

Thus, the purpose of this research was to examine how the use of scales within age and 

growth studies can be enhanced and investigate their application to freshwater trophic 

ecology, with a particular focus on advancing their utilisation within stable isotope 

analysis (SIA). 

The research used fishes of the Cyprinidae family as the focal species. Cyprinids are 

of substantial global, socio-economic importance as their communities are valued 

ecologically, commercially and recreationally. The research assessed current 

methodologies, highlighted extant gaps in knowledge and sought to resolve these issues. 

It covered work regarding the intrinsic error contained in estimating fish age from scales 

and improved scale application within SIA through the provision of key data that is 

currently lacking within the literature. 

An initial invasion ecology case-study provided new insights into the growth and 

trophic impacts of a model native and two non-native fishes under three distinct 

approaches of differing spatial scale and complexity. The results revealed a range of 

ecological consequences for the native species from the invaders, although the extent of 

these was also a function of spatial scale. Additionally, a number of procedural concerns 

relating to the collection of fish age data and current SIA methodologies were highlighted.  

The use of scales to derive estimates of the ages of fish is well established, with outputs 

used to address questions on aspects of fish and fisheries ecology, but the process remains 

prone to inherent errors. The research revealed that precision of growth estimates is 

significantly influenced by the sub-sampling regime applied. Where individuals are long-

lived and slow-growing, sub-sampling strategies that result in few scales being analysed 

produced imprecise data and potentially erroneous outcomes. Additionally, uncertainty 

in the accuracy of ageing scales also potentially results from subjective interpretation of 
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scale features. A statistical model was developed to incorporate this uncertainty into 

analyses, using Bayesian statistics and a bootstrapping methodology, to improve age and 

growth rate estimates. The model successfully produced error adjusted von Bertalanffy 

growth parameters.  

Food web and trophic analyses have traditionally been completed through stomach 

content analysis, but increasingly SIA is preferred, as it provides greater temporal 

perspectives and requires smaller sample sizes. In fish studies, dorsal muscle tissue is 

typically favoured, but this is often collected destructively. The research revealed that 

non-destructively collected tissues, such as scales, can act as a proxy for muscle and their 

isotopic values can be converted with minimal error when species-specific factors are 

used. When stable isotope data are applied to dietary studies, their use in statistical mixing 

models requires accurate step-wise enrichment values between diet and consumer (i.e. 

discrimination factors). There is considerable uncertainty in the variability of 

discrimination factors between species and the influence of their diet. Consequently, 

specific diet-tissue discrimination factors were produced for a range of cyprinid species 

and diet was shown to significantly affect diet-tissue discrimination. The application of 

species-specific values within mixing models can result in significant differences when 

compared with using standard values and consideration of the influence of diet needs to 

be made when investigating omnivorous species. The rate of turnover of carbon and 

nitrogen stable isotopes was also determined and variability between tissues was revealed, 

indicating that species- and tissue-specific half-lives should be considered when deciding 

upon experimental time-frames.  

In summary, the research has provided substantial information targeting extant 

knowledge gaps relating to the application of scales from cyprinid fishes to ecological 

studies. Regarding fish age and growth, issues surrounding accuracy and precision of 

estimates has been tackled, informing researchers of the influence on precision of 

applying sub-sampling regimes to subsequent growth analyses and providing an original 

statistical tool that can improve accuracy through producing growth parameters that better 

reflect inherent errors in fish age data. In contributing to the use of scales in SIA, novel 

data have been provided that will reduce the requirement for destructive sampling of 

fishes and enhance present understandings of the significance of species- and tissue-

specific discrimination factors and turnover rates. 
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Chapter 1. General introduction 

 

This thesis investigates how the use of fish scales in ecological studies can be improved 

through developing contemporary methods and providing vital new insights that will 

enhance their application to important research questions. Fishes of the Cyprinidae 

(cyprinid) family are used as the focal species to complete these investigations, although 

the methodologies and techniques will be applicable more widely. Cyprinid fishes are of 

substantial socio-economic importance, both locally and globally, comprising the second 

largest family of vertebrates on earth (over 3000 species; Nelson et al., 2016). Their 

communities are valued as both a commercial crop and within recreational fisheries, as 

well as having considerable ecological significance due to their wide-ranging distribution 

in many areas of the world. The research covers topics that include how the use of scales 

within fish age and growth studies can be enhanced, as well as investigating their 

application to freshwater trophic ecology, with a particular focus on advancing their 

utilisation within stable isotope analysis, an increasingly applied, contemporary, 

ecological technique. The purpose this chapter is to introduce some basic concepts and 

develop the rationale for the research aim and objectives.  

 

1.1. Estimating fish age from body structures 

 

 

 

 

 

 

 

 

Figure 1. A chub Squalius cephalus scale at x 48 magnification. The red circle shows the 

location where the first spring circuli cuts across an incomplete winter circuli, creating an 

annulus. The yellow star indicates the scale focus and the blue arrow represents the scale 

radius (i.e., the distance from the scale focus to the scale edge). 
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As fish are ectothermic animals, their internal body temperature is strongly affected by 

the temperature of their environment (Neuheimer and Taggart, 2007) and so their growth 

is significantly influenced by temperature. In areas with periodic differences in 

temperature throughout the year, such as temperate regions, fish grow in response to 

seasonal patterns and fluxes in temperature (Jobling, 1997; Pörtner et al., 2001), with 

most growth occurring during the warmer summer months and relatively little growth 

occurring through the cooler winter period (Gotthard, 2001). Much like the ability to 

estimate the age of a tree through the growth rings present within its trunk, calcified 

structures within the body of a fish portray its growth history (Casselman, 1990). For 

example, as fish scales grow, ridges, known as circuli, form around the outer edge and 

create a concentric pattern on the scale over the course of a year (Schneider et al., 2000; 

Fig. 1). In the warmer months, the circuli are spread further apart, and in the colder 

months, they are closer together and may create incomplete rings and hence the pattern 

of spacing between circuli corresponds to the growth patterns of the fish. The first circuli 

of spring may ‘cut across’ an incomplete winter circuli, creating a distinguishable ‘check’ 

on the surface of the scale, indicating an annual marking, or annulus (Schneider et al., 

2000; Fig. 1). Validation studies have been undertaken for a variety of species that 

confirm significant relationships between the growth represented on calcified structures 

and the actual growth rate of the fish (e.g., Leim, 1924; Casselman, 1990; Heidarsson et 

al., 2006). Whilst scales are a common structure used to age fish (Robillard and Marsden, 

1996), other structures can also be used, including otoliths (Bagenal and Tesch, 1978), 

opercula (Baker and Timmons, 1991), vertebrae (Brown and Gruber, 1988), fin rays (Cass 

and Beamish, 1983) and cleithra (Casselman, 1990). 

A principal difference between some of the structures used to age fish is that the 

collection of scales is non-lethal, enabling the individual fish to be returned to water alive 

after the removal of some scales, with these lost scales subsequently regenerated by the 

fish (Broussonet, 1786, 1789; Bereiter-Hahn and Zylberberg, 1993). In contrast, the 

collection of all the other structures previously mentioned is destructive, a potential issue 

for studies of fishes that are protected or endangered or that have conservation 

implications. For example, the goliath grouper Epinephelus itajara is listed as Critically 

Endangered on the IUCN (International Union for Conservation of Nature) Red List of 

Threatened Species (Craig, 2011) and is federally protected against fishing in the United 

States of America (NMFS, 2006). However, fisheries such as those in French Guiana 
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remain open, and age and growth analyses are required in order to assess the impacts on the 

sustainability of the E. itajara stock (Artero et al., 2015). Therefore, the ageing of non-

lethally collected structures, such as scales, are required and have been investigated (Brusher 

and Schull, 2009). 

The process of analysing scales to estimate fish ages is well established, with the first 

documentation of the method dating back to the 18th century (Jackson, 2007). Scales and 

otoliths are the most common structures used for ageing fish (Campana, 2001), with 

scales increasingly preferred due to their non-destructive collection, as outlined above. 

Additionally, once dried, scales are suitable for long-term storage with little degradation 

in quality (Al-Absy and Carlander, 1988). Nevertheless, scales can be problematic for 

ageing fish due to subjective interpretations of scale features, resulting in inaccuracies, 

with otoliths tending to provide more accurate ages (Secor et al., 1995; Liao et al., 2013). 

The most common method to determine ages from scales is through their direct mounting 

on a projecting microscope, with other methods including use of cellulose acetate 

impressions of scales (Smith, 1954), digitizing tablets (Frie, 1982), imaging systems and 

digital software that can aid in identifying annuli, such as TNPC (Traitement Numérique 

des Pièces Calcifiées or Numerical Treatment of Calcified Structures) software developed 

for the digital processing of calcified structures (Mahe et al., 2016). In response to the 

arduous techniques and outdated equipment often used, Hagen et al. (2001) developed an 

approach for scale analysis through creating a digital archive of scale images to share 

among researchers and applied a high-resolution digital imaging technique to extract 

scale measurements and counts of circuli and annuli. However, the implementation of 

such technologically aided ageing systems are still not widespread. 

 

1.2. Utilisation of age estimates and growth history 

In addition to age estimates, scales enable reconstruction of the growth history of each 

fish through the process of back-calculation (Francis, 1990; Ricker, 1992; Pierce et al., 

1996). This determines the growth rate of each fish, as the length at each annulus can be 

estimated using measurements of scale radii (i.e., the distance from the scale focus to the 

scale edge; Fig. 1) and fish body lengths at capture within equations such as those of 

Dahl–Lea (Dahl, 1907; Lea, 1910) and Fraser–Lee (Fraser, 1916; Lee, 1920). Both are 

used commonly and their accuracy has been validated (e.g., Klumb et al., 1999; 

Heidarsson et al., 2006).  
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The derived estimates of fish age and growth rates are important in developing 

understandings of the fundamental processes and factors that influence the ecology of fish 

populations and the biology of fisheries (Bagenal and Tesch, 1978; Francis, 1990; 

Coggins and Pine, 2010). These data play key roles in addressing questions on basic 

ecological relationships whose outputs can then be used to underpin the formulation of 

management strategies for fisheries specifically, and aquatic ecosystems more generally 

(Beardsley and Britton, 2012). The types of information that can be obtained from ageing 

fish scales include growth rate, age at maturity, number of spawning periods per life span, 

age at harvest, age class composition, abundance of year classes and longevity (Carlander, 

1974). These can help indicate the productivity of aquatic ecosystems and how this can 

shift with environmental or management changes, such as nutrient enrichment, habitat 

loss and restoration (Beardsley and Britton, 2012), through, for example, comparison of 

growth increments for the specific years involved. The information collected from the 

ageing of scales can provide estimates of recruitment, mortality and maturity (Campana, 

2001), that can then be used to estimate optimum yields and catch regulations in fisheries.  

Fish scales are also routinely collected in response to Government policy and 

legislation. For example, the Water Framework Directive (WFD) is a European directive 

which aims to protect and improve the water environment and requires the ecological 

status of rivers in England to be assessed (WFD, 2000). The ecological status of the fish 

fauna is a key element in the way that rivers are classified, as fish are recognised as 

important indicators of the quality of the freshwater ecosystem. Surveys of fish 

populations, including cyprinid fishes, are used to assess the status of stocks which 

contributes to the overall status of a water body via metrics including species composition 

and age structure. Waters with good and high ecological status contain disturbance-

sensitive species and have fish populations with age structures that indicate no or few 

failures in their reproduction or development, as would be indicated by the absence of 

age classes (WFD, 2000).  

The application of these data to fisheries management has not, however, always been 

successful due to issues of ageing error. For example, individuals within a population of 

orange roughy Hoplostehus atlanticus, in a commercial fishery in New Zealand, were 

drastically under-aged in the 1980s and these ages were applied to biological models to 

devise appropriate fishing limits (Smith et al., 1995). Due to the substantial under-ageing 

of the structures, growth and mortality rates that were set in the model were overly 
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optimistic and therefore the exploitation rates that the model suggested were far higher 

than the population could sustain. Consequently, the population was rapidly over 

exploited and subsequently collapsed (Smith et al., 1995). The systematic under-

estimation of fish age can impede understandings of recruitment variability and longevity 

and can also bias estimates of survivorship. For instance, a misunderstanding of cisco 

Coregonus artedi biology, driven by scale-ageing error, again through age under-

estimation, was linked to the collapse of their fisheries in the Great Lakes of North 

America (Yule et al., 2008). Increases in body length after age 8 years in this species is 

negligible, but individuals can survive for an additional 10 or more years (Yule et al., 

2008), and so the application of scales to estimate their ages is open to a high degree of 

error in fishes aged over 8, as annual circuli formation will be minimal and therefore 

annuli will be difficult to identify at the scale edge. Unfortunately, the Van Oosten (1929) 

method of scale ageing that was used to study the populations had not been validated for 

C. artedi and so early investigators concluded that the species were short-lived and had 

relatively constant recruitment levels. As a result, they too were overfished and all the 

populations in the Great Lakes collapsed during the 20th century (Yule et al., 2008). 

Additionally, in freshwater fish of the Cyprinidae family, Musk et al. (2006) revealed 

errors in the ageing of fish in older age groups whose growth rates had decreased 

following sexual maturity. This resulted in recruitment patterns being previously 

misinterpreted. Hence, any exclusion of data from difficult scales, primarily from older 

fishes, could seriously affect mortality estimates that are required to calculate optimum 

yields (Carlander, 1974). Therefore, the accurate ageing of fish, using body structures 

such as scales and otoliths, is required if such errors are not to be repeated in future.  

 

1.3. Error and subjectivity surrounding the ageing process  

There are two main categories of error that surround the process of ageing fishes from 

hard structures, regardless of the structure used. Firstly, process error, which is due to the 

difficulty of identifying annual markings on structures and secondly, interpretation error, 

which is the subjective element and comes from a reader’s ability to distinguish true 

annuli from other features (Chang, 1982). Some of the difficulties that are encountered 

include resorption of the scale edge (Crichton, 1935) that occurs under conditions of 

starvation, such as the cessation of feeding due to spawning, which may be so severe that 

previous annuli are totally reabsorbed and cannot be discerned (Linfield, 1974). 
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Furthermore, annuli may not be created where the fish are so small at the first winter that 

the scales are only just forming; or when growth does not stop or slow down enough to 

disrupt the scale pattern, such as in tropical climates; or when fish growth is so slow that 

the scale does not grow enough to show an annulus or the annuli are so narrow that 

determining them is extremely difficult, such as in fish that may be old and growing very 

little (Carlander, 1974), as in C. artedi (cf. Section 1.2.). Moreover, markings that may 

appear to be annuli, but that are false and have been created during a growth year can be 

challenging to separate from true annuli and can occur in response to stress, sudden 

changes in temperature or injury (Schneider et al., 2000). Attempts have been made to 

standardise the identification of these ‘false annuli’ through accepting only those which 

can be followed all around the scale and which are a constant feature of all scales 

examined from any one fish. However, the periodic features in calcified structures tend 

to vary markedly in appearance and relative size among fish (Campana and Neilson, 

1985), contributing to the difficulty of determining true annuli from false.  

In a report published by the Environment Agency, it was estimated that £1.18 billion 

was spent on freshwater angling in England and Wales in 2005, with coarse angling 

responsible for £971 million of this, demonstrating the economic importance of 

freshwater angling activities (Radford et al., 2007). The Cyprinidae family is central to 

catch-and-release freshwater angling in England and Wales, with many species prized by 

recreational anglers. Consequently, a number of cyprinid fishes are farmed in hatcheries, 

such as roach Rutilus rutilis, chub Squalius cephalus and European barbel Barbus barbus 

(Britton et al., 2004a), with these fishes then stocked into wild fisheries in large numbers 

(Cowx and Gerdeaux, 2004; Hickley and Chare, 2004). Thus, in some locations, stocked 

fishes may make up a significant proportion of the population (Bašić and Britton, 2016). 

For stock assessment and work under the WFD, this might be problematic, as particular 

difficulties have been reported that specifically relate to identifying false annuli on the 

scales of recaptured stocked fish that spent their early life stages at a hatchery (Britton et 

al., 2004a; Ibáñez et al., 2008; Britton, 2010). For example, Britton et al. (2004a) 

indicated that fish of known age, 1+, often appeared to be at least 3+ years old and, in 

some cases, as high as 5+ years. Subsequent work revealed that false annuli were being 

produced on scales in responses to husbandry changes, such as movement from indoor to 

outdoor tanks where a sudden temperature change would occur (Ibáñez et al., 2008). 

Hence, given all of these issues, the process of determining the ages of fishes from scales 
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will always retain an element of subjectivity that will contribute various degrees of error 

to age determinations (Campana et al., 1995).  

In addition to the error surrounding the process of ageing fish from hard structures, 

errors also occur due to deviations in the true versus derived age. These errors relate to 

accuracy, which is a measure of the proximity of the age estimate to its true value (Kalish 

et al., 1995), and precision, which is the reproducibility of individual measurements from 

a structure (Campana et al., 1995; Kalish et al., 1995). The reliability of age estimates 

can thus be called into question where studies have failed to assess the accuracy and 

precision of the technique used (Campana, 2001). The issue of ageing accuracy and 

precision is confounded in many fish populations by individuals that are slow-growing 

and long-lived as this increases the probability of ageing error (Vilizzi et al., 2013). 

Furthermore, populations of cyprinid fish in temperate lowland rivers are often 

distinguished by populations of relatively slow-growing species, such as S. cephalus that 

comprise of individuals that can sometimes live for over 20 years (Mann, 1976; Britton, 

2007). Moreover, their lengths-at-age are often characterised by significant individual 

variation within and between age classes (Britton, 2007). This often results from multiple 

spawning strategies causing variation in length at age 1 (Nunn et al., 2002), but with 

consistent annual length increments thereafter (Bolland et al., 2007).  

Increased awareness of the intrinsic errors associated with the ageing process has 

triggered efforts to quantify and account for it, with studies emphasising the importance 

of ageing validation studies (e.g., Beamish and MacFarlane, 1983; Campana, 2001; 

Francis et al., 2010) and estimating measures of reader bias and precision (e.g., Campana 

et al., 1995, Campana, 2001). As it is possible to derive precise age estimates that are 

inaccurate, it is important that studies address the accuracy of their procedures before the 

precision of their estimates (Campana et al., 1995). Validation studies can help to improve 

the accuracy of, and confidence in, age estimates (Jackson, 2007) and consequently, there 

are an assortment of validation methodologies available. These range from the basic, such 

as mark-recapture studies using fish of known age in the wild (Shirvell, 1981), to the 

more complex, such as radiochemical dating (Campana, 2001) and marginal increment 

analysis, a method that often incorporates marking body structures with chemicals such 

as tetracycline (Nagiec et al., 1995).  

Quality control procedures applied within the process of ageing fishes have also been 

shown to improve accuracy. Procedures currently used include the employment of a 
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secondary reader who re-ages a random sub-set of a scale sample (i.e. 10 %: Musk et al., 

2006; 20 %: Kimura and Anderl, 2005) without prior knowledge of the ages estimated by 

the primary reader and if any disagreements are found, the scale(s) are reviewed by both 

readers to allow a consensus to be reached. Alternatively, Liao et al. (2013) performed a 

quantitative evaluation of ageing bias and its effects on the assessment of Atlantic striped 

bass Morone saxatilis stock by comparing the results of scale- and otolith-age data using 

a statistical catch-at-age model and found biases in scale ages, including a 15 % 

underestimate of population abundance, a 19 % overestimate of fishing mortality and that 

weak age 1 recruitment years appeared stronger and strong years appeared weaker. They 

also demonstrated that by using a relatively small sample of paired scale–otolith ages, 

these biases can be corrected (Liao et al., 2013). The ability to use statistical and graphical 

techniques to assess precision and bias in age estimates has been recognised (Campana et 

al., 1995), with, for example, the use of age-bias plots to identify the problems of 

detecting under- and over-ageing and issues where younger fish are over-aged and older 

fish are under-aged, or vice versa.  

Despite all of these advances in knowledge on how ageing accuracy can be improved, 

the process is still subject to erroneous interpretations that remain difficult to eradicate. 

Errors in ageing that arise from the subjective determination of true annuli will always 

remain when wild fish are sampled. Consequently, despite these exhaustive efforts to 

reduce error, statistical methods that can incorporate aspects of ageing uncertainty into 

analyses, such as models based on Bayesian statistics or bootstrapping methodologies, 

might provide a more realistic alternative as they are able to acknowledge that some 

ageing error is inherent to the methods and can work with, not against, the uncertainty in 

order to produce adjusted and more realistic growth metrics and parameters. For cyprinid 

fishes, however, such a tool has yet to be developed. Furthermore, where issues of using 

different sample sizes to calculate population ages and growth rates occur, such as the 

application of different sub-sampling regimes, as are routinely applied within many stock 

assessment programmes, then statistical methods can be applied to determine the effect 

on the precision of growth data. Indeed, some studies have already been completed to 

quantify the effects that different sampling strategies have on the estimates of mean 

length-at-age of reef fishes (e.g. Goodyear, 1995) and the influence that sample size has 

on the precision of derived population parameters (e.g. Kritzer et al., 2001). However, 

similar information is not available for many freshwater fishes, including long-lived 
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cyprinid fishes in temperate freshwaters. Consequently, this remains as an outstanding 

knowledge gap in the ageing data derived from scales of cyprinids. 

 

1.4. Application of fish scales to ecological studies  

As scales have been collected by Government agencies and research institutions in 

numerous countries for many years, archives of fish scale collections are available for 

various freshwater systems and species. These archives have the potential to provide a 

valuable tool for assessing ecological changes that may have occurred over extensive 

temporal scales. For example, scale archives have been used to provide insights into the 

long-term growth performance of freshwater fishes in relation to changes in water quality 

(Grey et al., 2009; Beardsley and Britton, 2012), changing patterns of recruitment in 

relation to climate (Britton et al., 2004b) and to quantify temporal variations in Atlantic 

salmon Salmo salar smolt ages (Englund et al., 1999). However, many scale archives are 

still largely under-valued and under-utilised.  

 

1.4.1. Stable isotope analysis 

Stable isotopes of a particular atom have nuclei that contain the same number of protons 

but a different number of neutrons and so they differ in their nuclear mass. The ratio of 

naturally occurring heavy to light stable isotopes of different elements, such as carbon 

(13C: 12C) and nitrogen (15N: 14N), vary predictably in the environment and from resource 

to consumer (Fry et al., 1999). As stable isotopes are transferred up food chains and food 

webs, there is a step-wise enrichment of the heavier isotopes compared with the lighter 

isotopes, and hence, trophic structure can be reconstructed and trophic niche size can be 

analysed in order to expose the arrangement of the overall food web (Grey, 2006; Fig. 2). 

This can provide insights into the trophic relationships between species and their diets 

(Vander Zanden et al., 1999; Grey, 2006). Stable isotopes are measured using a mass 

spectrometer (Peterson and Fry, 1987) and are usually expressed in delta (δ) values, which 

are parts per thousand (per mille, ‰) differences from an international standard, such as 

carbon in the PeeDee limestone and nitrogen gas in the atmosphere (Peterson and Fry, 

1987). The energy source of a consumer is indicated by the carbon stable isotope (δ13C), 

which tends to show minor changes between trophic levels (DeNiro and Epstein, 1978; 

Post, 2002), and trophic position by the nitrogen stable isotope (δ15N) (DeNiro and 
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Epstein, 1981; Minagawa and Wada, 1984; Post, 2002; Fig. 2). The analysis of food web 

structure and trophic niche size has traditionally been completed through stomach 

contents analysis (Hyslop, 1980; Rybczynski et al., 2008). However, stomach contents 

analysis only provides a ‘snap-shot’ of the diet of a fish, can require large sample sizes 

and is incapable of elucidating the extent to which a fish is assimilating energy from 

putative food resources (Pinnegar and Polunin, 1999). Thus, stable isotope analysis (SIA) 

has been increasingly used in ecological studies in recent times, either singularly or in 

addition to stomach contents analysis (Cucherousset et al., 2012b).  

 

 

Figure 2. A stable isotope ‘map’ of a simplified aquatic food chain demonstrating the 

step-wise enrichment of carbon and nitrogen stable isotopes (δ13C and δ15N) that occurs 

between a consumer and its resources at increasing trophic levels. 

 

The interpretation of stable isotope data is reliant upon two principal metrics; the step-

wise enrichment of heavier stable isotopes from diet to consumer (Fig. 2), referred to as 

the discrimination factor (or fractionation, depending on the author), and the rate of 

isotopic change that occurs within tissues when a consumer undergoes a dietary shift, 

known as the turnover rate. Turnover rates are particularly important when studying the 

trophic ecology of mobile or migratory species or species that experience ontogenetic 

shifts in their diets (e.g., MacAvoy et al., 2001; Buchheister and Latour, 2010; Hertz et 

al., 2015), as, if tissues are sampled prior to them reaching isotopic equilibrium with the 

new diet then erroneous data interpretations could occur (O’Reilly et al., 2002). Notably, 

variability has been shown in turnover rates between tissues of freshwater fishes and thus 
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species-specific data are often necessary (e.g., McIntyre and Flecker, 2006; Church et al., 

2009; Carleton and Martínez del Rio, 2010). In order to accurately predict the diet of 

consumers, correct discrimination factors are also required. The values most commonly 

cited in the literature are discrimination factors of 0.4 ± 1.3 ‰ for δ13C and 3.4 ± 0.98 ‰ 

for δ15N (DeNiro and Epstein, 1981; Minagawa and Wada, 1984; Post, 2002). However, 

studies such as Mill et al. (2007) stress the importance of determining discrimination 

values for consumers on a case-by-case basis, rather than using standard values, as the 

factors can be affected by many aspects including age, diet quality, protein quality and 

content, body size, sample preparation and tissue type (Pinnegar and Polunin, 1999; Jacob 

et al., 2005; Jardine et al., 2005). Discrimination factors also have importance as 

fundamental components of the statistical mixing models that derive quantitative 

estimates of dietary contributions of consumer species from their isotopically distinct 

putative food sources (Parnell et al., 2010).  

The application of stable isotope mixing models to diet predictions requires an 

understanding of their assumptions and limitations in order to provide insights into 

consumer-resource relationships (Phillips et al., 2014). They require precise estimates of 

diet-tissue discrimination factors (Phillips and Gregg, 2001; Bond and Diamond, 2011; 

Phillips et al., 2014), assume that the factors are constant, irrespective of the animal’s 

biology or feeding behaviour (Mill et al., 2007), and that the tissues analysed are in 

equilibrium with the diet. In a recent review, Phillips et al. (2014) stated that diet-tissue 

discrimination factors are one of the major causes of uncertainty in using mixing models 

to assess diet. It is therefore vital that discrimination factors are as accurate as possible, 

as small variations may lead to important differences in the outputs (Ben-David and 

Schell, 2001) and may produce a confused or obscured dietary analysis (Pinnegar and 

Polunin, 1999). However, diet-tissue discrimination factors can be challenging to 

estimate in wild situations, due to inter- and intra-specific, temporal and spatial variation 

and dietary and environmental influences (Grey, 2006; Davis et al., 2012; Layman et al., 

2011). Hence, ex situ experiments on discrimination factors and turnover rates can be 

completed alongside SIA in field studies in order to gain insights into the underlying 

ecological processes (Cucherousset et al., 2012b; Layman et al., 2011). 

Dorsal muscle tissue is most commonly analysed in stable isotope studies of fishes, as 

it most closely resembles that of the diet of the fish (Pinnegar and Polunin, 1999). 

Recently, however, there has been a shift towards analysing samples that can be collected 
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non-destructively, such as fin tissue and scales, as significant relationships between the 

isotopic signatures of the tissues have been revealed (e.g., Jardine et al., 2005; Kelly et 

al., 2006; Hanisch et al., 2010; Jardine et al., 2011; Fincel et al., 2012). Fish scales are 

effective archived biological material, since they are typically stored dry for many years 

without preservatives that could degrade stable isotope signals (Roussel et al., 2014). 

Thus, scale archives are now recognised as important ecological resources (Syväranta et 

al., 2008), containing information not only on age and growth rates, as previously 

mentioned, but that can potentially reveal trophic changes that have occurred over 

relatively long time-scales. Given the number of scale archives held by various museums 

and institutions, and the relatively few studies that have retrospectively applied them to 

trophic analyses (Grey, 2006; Syväranta et al., 2008), they largely exist as a significant, 

but currently under-utilised resource. This is despite archived scales having revealed 

spatial and temporal changes in food web dynamics in studies dating back over 20 years 

(e.g. Wainright et al., 1993) and more recently they have been applied to long-term 

studies on assessments of anthropogenic impacts on nutrient cycling in river ecosystems 

(Roussel et al., 2014) and responses to improvements in the water quality of a freshwater 

lake (Grey et al., 2009). One possible explanation of their under-exploitation is that the 

collection of samples to represent the ‘baseline’ (i.e., primary consumers; Fig. 2) within 

stable isotope analyses might be lacking or inconsistent in relation to the scale archive, 

although the determination of trophic interactions within and between fish species does 

not require this data. In addition, to enable comparison of stable isotope studies based on 

scales with those based on other tissues, principally dorsal muscle, investigation into the 

relationships of the stable isotope data of the different tissues is required (e.g. Bašić and 

Britton, 2015) and existing information on stable isotope tissue conversion factors is 

largely lacking, particularly for cyprinids, despite recent efforts (e.g. Tronquart et al., 

2012). Consequently, the extensive application of fish scales to investigating long-term 

ecological changes in freshwater systems remains constrained by this substantial 

knowledge gap.  

 

1.5. Assessing the ecological impacts of non-native fishes 

Fishes are among the most widely introduced group of aquatic animal in the world (i.e. 

at least 624 species; Gozlan, 2008). Their strong association with human activities has 

resulted in their accidental and/or intentional release into unnatural environments, and in 
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the UK, the translocation of fishes of angling interest, particularly of species belonging 

to the Cyprinidae family, have been significant (Copp et al., 2005). Therefore, the tools 

for application to assessments of the ecological impacts of non-native fishes on recipient 

communities are fundamentally important.  

In fish introduced outside of their native range, patterns of invasion success and 

impacts on resident fishes are often explained by the expression of their life-history traits, 

including growth, that are strongly influenced by temperature and latitude (Cucherousset 

et al., 2009; Benejam et al., 2009; Britton et al., 2010c), as well as through alterations to 

food web structure within the receiving communities, from, for example, increased 

competition for resources (Vander Zanden et al., 1999; Britton et al., 2010b). As the 

biological features that determine the success of an invasive species include rapid growth, 

which can be determined from fish scales, and a broad feeding spectrum, that can be 

revealed through SIA of fish tissues, along with traits such as high fecundity and high 

tolerance of environmental conditions (Ruesink, 2005), assessment of these 

characteristics can be used to evaluate the potential risk of a non-native species becoming 

invasive, as well as revealing any negative consequences within the native ecosystem. 

Indeed, the quantification of age and growth is a fundamental component in prioritising 

control and management operations of invasive fishes (Kwak et al., 2006) and SIA has 

been successfully used to investigate competition and predation in food webs (Peterson 

and Fry, 1987; Fry, 2006), thus, both scale ageing and SIA have recently been used in 

combination to determine the ecological effects of a non-native fish on a native species 

(e.g. Jackson et al., 2016a). Between 1999 and 2010, 80 % of studies specifically using 

SIA to assess the ecological impacts caused by the presence of non-native fishes were 

performed on cyprinids as the non-native species (Cucherousset et al., 2012b), 

highlighting the significance and relevance of the invasive threat posed by this family of 

fishes. 

Two species of cyprinids that present strong examples of non-native or invasive fishes 

are common carp Cyprinus carpio and goldfish Carassius auratus. Cyprinus carpio is 

now among the most widely distributed and invasive species on earth (Vilizzi et al., 

2015). Consequently, C. carpio is ranked within the top 100 of the world’s worst invasive 

alien species (Lowe et al., 2000). The application of scale ageing to provide information 

on their invasion success has indicated their fast, temperature dependent growth rates are 

a key determinant that enables their rapid colonisation of warm waters, such as those in 
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Australia (Vilizzi and Walker, 1999; Koehn, 2004) and equatorial countries such as 

Kenya (Britton et al., 2007; Oyugi et al., 2011). Therefore, information on C. carpio age 

and growth rates (Jackson et al., 2007; Weber and Brown, 2011a), that can be obtained 

from their scales, can provide important ecological information on their invasions that 

assist formulation of subsequent management strategies, including options to suppress 

and/or extirpate populations that negatively influence important sport and commercial 

fisheries (Britton et al., 2011b; Yates et al., 2016). Additionally, C. carpio can potentially 

have strong ecological impacts on ecosystem functioning and trophic interactions (e.g., 

Koehn, 2004; Cucherousset and Olden, 2011), caused by, for example, direct competition 

for resources, as well as C. carpio-induced habitat alterations, that have been shown to 

reduce the diversity of prey and decrease the dietary niche of sympatric species (e.g. 

Jackson et al., 2012). As previously mentioned, a broad feeding spectrum can increase 

the success of an invasive species, and in a recent study, SIA revealed that invasive fishes, 

including the cyprinids C. carpio and C. auratus, occupied similar trophic niches and 

trophic positions (Guinan et al., 2015) that may be attributed to their omnivorous feeding 

strategies (García-Berthou, 2001; Lorenzoni et al., 2007), thus allowing them to 

maximise their feeding potential and increasing their likelihood of establishment.  

Carassius auratus is not as widely distributed as C. carpio, but has successfully 

established populations throughout Europe, where it has been referred to as the worst 

alien fish species (Veer and Nentwig, 2015), as well as in North (Gido and Brown, 1999) 

and South America (Gomez et al., 1997), New Zealand (Rowe, 2007) and Australia 

(Lintermans, 2004). Similarly to C. carpio, the back-calculated lengths from scales of C. 

auratus have been used to determine their growth rates in order to assist in their control 

(Lorenzoni et al., 2010), however, use of SIA to expose the trophic implications of these 

populations is not yet widespread. A possible explanation is the notion that C. auratus 

threats relate mainly to hybridisation with native species and not from competition for 

resources (Hänfling et al., 2005; Tarkan et al., 2009), although this has not been fully 

explored and may have been overlooked. Hence, both scale ageing and SIA can be 

valuable tools for assessing the ecological impacts of, and trophic interactions between, 

non-native and native fishes. 
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1.6. Research aim and objectives 

 

Sections 1.3 and 1.4 outlined several inherent issues that remain apparent in the 

application of scales from cyprinid fishes to ecological studies that rely on current 

methods to determine age and growth rate and/or perform stable isotope analysis. Thus, 

the primary aim of this research is to overcome these considerable information gaps 

through the expansion of knowledge and development of methodologies via a range of 

in- and ex-situ studies within freshwater systems. This is initially completed by work on 

an invasion ecology case-study that, whilst providing new insights into the ecological 

interactions of native and non-native fishes, also highlights a number of methodological 

concerns that relate to ageing and stable isotope analysis. The following research then 

aims to resolve these specific procedural problems through the acquirement of novel data 

and development of a new statistical modelling tool. Consequently, the research 

objectives (O) are to: 

 

O1: Assess the ecological impacts on a model native fish, crucian carp Carassius 

carassius, from invasion by the non-native fishes Carassius auratus and Cyprinus 

carpio, using in- and ex-situ experimental contexts, with identification of gaps in 

knowledge and analytical tools for subsequent study (Chapter 2); 

 

O2: Identify how different strategies of collecting scales affects the subsequent 

precision in the growth rate data across three species of cyprinids (Chapter 3); 

 

O3: Determine how data from the ageing of scales can incorporate information on the 

uncertainty of the ages in order to account for potential errors in age estimates, using 

statistical modelling approaches based on bootstrapping methods (Chapter 4); 

 

O4: Enhance the application of scales to stable isotope studies, with a view to 

minimising the use of dorsal muscle tissue, and thus destructive sampling, through 
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completing the following sub-objectives, using a range of cyprinid fishes as model 

species in primarily ex situ experimental contexts: 

 

O4a: Assess the isotopic relationships between non-lethally collected tissues 

and calculate their conversion factors to muscle tissue (Chapter 5);  

O4b: Determine the effect of diet composition on diet-tissue discrimination 

factors (Chapter 6);  

O4c: Quantify carbon and nitrogen stable isotope turnover rates in a range of 

tissues in Barbus barbus (Chapter 7). 

 

1.7. Thesis structure 

 

The subsequent data chapters (Chapters 2 to 7) are each developed from objectives 1 to 4 

(cf. Section 1.6). They take the form of discrete pieces of work and so are presented in 

that format without a generic materials and methods chapter. The final chapter (Chapter 

8) will discuss the findings from Chapters 2 to 7, with recommendations to improve the 

utility and practical application of fish scales within ecological studies. A list of 

references and appendices will conclude the thesis. 

 

1.8. Ethical considerations 

 

The necessary ethical aspects and associated regulated scientific procedures carried out 

were considered in an independent ethical review committee under Bournemouth 

University’s Home Office (HO) Certificate of Designation. All procedures (anaesthesia, 

PIT tagging) were completed under appropriate project licences. Permission to use the 

data in Chapter 3 was granted by the Environment Agency.  
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Chapter 2. Stable isotope and growth rate analyses suggest contrasting 

ecological impacts on crucian carp Carassius carassius from two 

invasive fishes  

 

Part of this chapter was published as: 

Busst, G. M. and Britton, J. R., 2015. Quantifying the growth consequences for crucian 

carp Carassius carassius of competition from non-native fishes. Ecology of Freshwater 

Fish, 24(3), pp.489-492. 

 

This paper covered the work reported in the tank aquaria experiments (Sections 2.3.1, 

2.4.1 and 2.5.1). 

 

2.1. Summary  

 

Ecological consequences for native fishes arising from invasive fish include the negative 

impacts of increased inter-specific competition in co-existing fishes, including modified 

trophic positions and trophic niche sizes, and suppressed growth rates. Here, the impacts 

on the growth rates and trophic ecology of a model native fish, crucian carp Carassius 

carassius, from two model invasive fishes, goldfish Carassius auratus and common carp 

Cyprinus carpio, were tested over three spatial scales and system complexities. In tank 

aquaria, testing growth rate impacts for C. carassius of intra- and inter-specific 

competition revealed that inter-specific competition from C. carpio and C. auratus 

significantly suppressed growth rates when compared to intra-specific interactions. In 

pond enclosure experiments, the three species were held for 100 days in allopatric and 

sympatric treatments, with their trophic relationships tested using stable isotope analysis 

(δ13C and δ15N) and growth rates using incremental increases in length. These revealed 

that the trophic position, trophic niche size (as the isotopic niche) and somatic growth 

rates were similar for C. carassius in allopatry and in sympatry with C. auratus. When in 

sympatry with C. carpio, however, C. carassius growth rates were significantly reduced, 

despite a significant increase in their trophic niche size when compared to allopatry. In a 
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field based, non-replicated experiment, C. carassius and C. carpio were held for up to 

300 days in allopatric and sympatric contexts. In sympatry, the trophic niche of C. 

carassius was increased, contrasting with C. carpio, which was significantly reduced, 

when compared to allopatry. The trophic niche of C. carassius was also significantly 

larger than C. carpio in sympatry. These results reveal a range of ecological consequences 

from the invaders for C. carassius, although the extent of these was also a function of 

spatial scale. A series of issues relating to scale ageing and the application of stable 

isotope analysis to fish ecological studies were also detected and discussed.  

 

2.2. Introduction 

 

Biological invasions can have negative and irreversible impacts on the receiving 

populations (Cucherousset and Olden, 2011), with their influences potentially including 

the adverse effects of increased inter-specific competition for resources within the 

recipient communities, such as reduced growth rates and abundance of native species 

(Rahel and Olden, 2008; Gozlan et al., 2010). Competitive interactions between invasive 

and native fishes have traditionally been demonstrated using analyses of diet composition 

gained from stomach contents analysis (Declerck et al., 2002; Cucherousset et al., 

2012b), although this can require large sample sizes that are often achieved through 

destructive sampling (Hyslop, 1980). In recent years, the application of stable isotope 

analysis to invasion ecology has revealed its high utility for analysing temporal and spatial 

impacts of invaders on native fishes (Vander Zanden et al., 1999; Britton et al., 2010b; 

Remon et al., 2016; cf. Section 1.5). These include, for example, the impacts on food 

webs of invasive red swamp crayfish Procambarus clarkii (Jackson et al., 2012, 2016b) 

and the importance of terrestrial food sources for invasive European catfish Silurus glanis 

(Cucherousset et al., 2012a) 

Competition in fish communities occurs principally through two mechanisms, 

interference competition and exploitative competition. The former is where the 

competitor uses aggression to monopolise resources and the latter is where there is no 

direct interaction between competitors, with the species generally having similar feeding 

modes and exploiting the available resources non-aggressively, thus reducing the overall 

resource availability for individuals (Connell, 1983). In the context of invasive fishes, as 
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the invader might become more numerous, exploit resources more effectively, or be a 

superior competitor (Ruetz et al., 2003), adverse effects for native fishes, such as reduced 

somatic growth rates and reduced fitness and population abundance, can occur (Crowl et 

al., 1992; Martin et al., 2010; Britton et al., 2011a; Weber and Brown, 2011b). For 

example, a high density population of invasive topmouth gudgeon Pseudorasbora parva 

that shared trophic space with native roach Rutilus rutilus resulted in the significantly 

suppressed growth rates of the native fish (Britton et al., 2010b). 

Ecological theory suggests that increased competition for food resources, such as 

following the introduction of a non-native species, can result in the development of larger 

trophic niches in the competing species, through, for example, developing a broader 

feeding spectrum, as this reduces the intensity of the inter-specific feeding interactions 

(Svanbäck and Bolnick, 2007; Svanbäck et al., 2008; Bolnick et al., 2010). Contrarily, 

the niche variation hypothesis predicts that under increased inter-specific competition, 

populations become less generalised in their diet (Van Valen, 1965), with trophic niche 

sizes of the competing species reducing and, often, diverging (partitioning) (Human and 

Gordon, 1996; Thomson, 2004; Olsson et al., 2009). Niche divergence can thus facilitate 

the co-existence of the non-native and native species, enabling the integration of the non-

native species into the community (Guo et al., 2014; Jackson and Britton, 2014; Tran et 

al., 2015). This is because divergence minimises the occurrence of inter-specific feeding 

interactions, through reducing the direct sharing of resources, with the underlying 

mechanisms likely to include specialisations in foraging microhabitat and shifts in diel 

activity patterns (Jones et al., 2001; Amarasekare, 2003). Thus, the development of these 

feeding interactions can determine the outcome of introductions of non-native species 

(Baiser et al., 2010; Jackson et al., 2012), for example, through their influence on the 

success of establishment (Tilman, 2004) and the ecological impacts that subsequently 

develop in the native communities (e.g., Woodford et al., 2005; Kakareko et al., 2013).  

Invaded freshwater ecosystems are well suited to testing hypotheses on trophic niche 

theory, as they provide relatively stable systems with well-defined functional groups 

across different trophic levels that enable shifts in trophic niches to be detected using 

methodologies such as stable isotope analysis (Cucherousset et al., 2012b; cf. Section 

1.4.1). However, understanding how introduced species integrate into communities can 

be inherently difficult, due to, for example, an absence of data in the pre-invaded phase, 

the complexity of multi-species fish communities involving populations with high diet 
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plasticity, and some potential context dependency in outcomes (Cucherousset et al., 

2012b; Guo et al., 2012, 2014). Hence, incorporating experimental systems into studies 

on trophic impacts can assist the understanding of the trophic relationships in species 

within more complex wild scenarios, as patterns in trophic position, and trophic niche 

breadth and divergence, can show consistency across different spatial scales and system 

complexities (Tran et al., 2015). In addition, the outcomes of exploitative competitive 

interactions involving invasive fishes can be difficult to measure in field studies due to 

the numerous abiotic and biotic factors that influence parameters such as fish growth 

rates, food availability and diet composition (Britton et al., 2011a). Consequently, studies 

that initially focus on co-habitation experiments in controlled conditions can be 

advantageous in helping to understand the outcomes of species’ interactions in the wild 

(Korsu et al., 2009). 

The crucian carp Carassius carassius has been described as native to the British Isles 

(Tarkan et al., 2009), primarily to South East England (Wheeler, 2000), and has been 

regulated as such by governmental regulatory authorities. It should be noted, however, 

that this has been subject to some conjecture recently following genetic analyses that 

suggest the species has only been present in Britain for around 600 years and so may 

instead be considered naturalised (Jeffries et al., 2016). Carassius carassius is a relatively 

small bodied (generally < 300 mm) benthic feeding species that potentially has an 

important role in nutrient cycling and trophic dynamics within small water bodies due to 

the disturbance of surface sediments during foraging (Holopainen et al., 1992). The 

species has experienced a substantial decline in the extent of its range in England in recent 

decades (Copp et al., 2008; Tarkan et al., 2009, 2016) and is sufficiently threatened that 

a ‘Biodiversity Action Plan’ is in place in one region of Eastern England (Copp and Sayer, 

2010; Sayer et al., 2011). As pond-dwelling fishes are particularly sensitive to the 

potential effects of fish introductions (Sayer et al., 2011), due to the likelihood of 

experiencing more intense interactions than in larger systems, the principal threats to 

populations include introductions of its Asian congener, goldfish Carassius auratus 

(Tarkan et al., 2009) and the common carp Cyprinus carpio, a globally invasive fish 

(Copp et al., 2008; Jackson et al., 2012; Vilizzi, 2012; cf. Section 1.5), as well as habitat 

loss, such as loss of wetland pond systems (Sayer et al., 2011). Both C. auratus and C. 

carpio are increasingly present in pond systems in England for recreational catch-and-

release angling (Britton et al., 2010a). Whilst their impacts on C. carassius primarily 
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relate to a loss of genetic integrity in populations through hybridisation (e.g. Hänfling et 

al., 2005), there are also concerns relating to the adverse effects of increased inter-specific 

competition for food resources (Copp et al., 2008). Tarkan et al. (2009) found no 

difference in growth rates among wild allopatric populations of C. carassius and 

populations in sympatry with C. auratus, leading the authors to suggest that there was no 

evidence of impacts from competitive interactions. However, this study was based on 

only four wild populations of limited sample sizes and any trophic implications that may 

have resulted from the species being present in sympatry were not quantified. Therefore, 

it was concluded that further research was required for the effects to be better understood. 

Consequently, the aim of this chapter was, through application of stable isotope and 

growth rate analyses, to determine the ecological consequences for C. carassius of 

invasions of C. auratus and C. carpio across different spatial scales that involved three 

experimental systems: tank aquaria, pond enclosures and wild ponds. Objectives were to: 

(1) use controlled co-habitation aquaria experiments, under two temperatures, to quantify 

the consequences for the growth rates of C. carassius of their feeding interactions with 

C. auratus and C. carpio when food resources are fixed; and (2) use pond enclosures and 

wild pond systems to experimentally quantify the consequences for the trophic positions, 

trophic niche sizes and growth rates of the fishes when in allopatric and sympatric 

contexts. Given the results of Tarkan et al. (2009), the outputs were used to test the 

prediction that when in sympatry, C. carassius, C. auratus and C. carpio will have 

reduced trophic niche sizes compared to allopatry, with divergence in these niches that 

reduces their competitive interactions, maintains their somatic growth rates and so 

facilitates their co-existence. A final outcome of the Chapter was also the assessment of 

the utility of stable isotope and growth rate analyses for investigating the ecological 

impacts of biological invasions in the context of non-native fishes (cf. Section 1.5). These 

aspects are discussed to identify gaps in knowledge and in analytical tools for subsequent 

study in the thesis.  
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2.3. Materials and methods 

 

2.3.1. Tank aquaria experimental design 

The initial experiment was designed to test the strength of intra- and inter-specific 

competitive interactions between the three fishes under controlled conditions in tank 

aquaria. By feeding fixed food rations on a daily basis, the growth rate responses of the 

fishes could be measured and tested at the end of the experiment to identify whether the 

strength of inter-specific competition from C. auratus and C. carpio had a stronger effect 

on the somatic growth rates of C. carassius than intra-specific competition from 

conspecifics.  

The experimental design comprised of a control and treatments that all started with 

four C. carassius. The control was an allopatric context where four more C. carassius 

were added and two treatments were used that represented sympatric contexts, where 

either four C. carpio (‘+C. carpio’) or four C. auratus (‘+C. auratus’) were added, with 

each control and treatment replicated three times. All fish were measured (fork length, 

nearest mm) and weighed (to 0.01 g) at the commencement of the experiment. As water 

temperature has a significant and positive effect on the growth and foraging rates of these 

fishes (Oyugi et al. 2012a, b), then the experiment was performed at water temperatures 

of 18 and 22°C to identify whether these temperatures influenced the outcome of the 

interactions. These temperature increases were achieved using in situ water heaters and 

were monitored for their accuracy using temperature loggers. The experiments were 

completed in aquaria of 45 l volume that were arranged in columns of three shelves (one 

aquarium per shelf) on re-circulating systems. The fish were sourced from aquaculture 

and were young-of-the-year that had been pond-reared using supplementary feeding 

(pelletized fishmeal) and were approximately 4 months old. The experimental period 

lasted 35 days during which the fish were fed daily with a fixed food ration of crushed 

pelletized fishmeal at 2 % mean C. carassius body weight of the control and the 

treatments, as this was above maintenance but below ad libitum, so providing the fish 

with a food supply that was limited but not limiting. At the conclusion of the experiment, 

all of the fish were re-measured and weighed.  

An issue in the experimental design was the variable starting lengths and weights of 

the fish, as the young-of-the-year fish species available all differed in their length ranges. 
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Differences in the starting lengths and weights of the initial C. carassius and additional 

fish were minimised as much as possible and a generalised linear model (GLM) was used 

to test their significance, as the data were not normally distributed, where length or weight 

was the dependent variable and treatment was the independent variable. Outputs were the 

mean differences in length or weight according to pairwise comparisons with Bonferroni 

adjustments for multiple comparisons. The differences also meant that the daily food 

ration, at mean 2 % body weight, differed between the control and treatments, i.e. a ration 

was calculated for the control at their mean 2 % body weight and then separately for the 

treatments at their mean 2 % body weight. 

To quantify the consequences for C. carassius growth of the additional fish in the 

controls and treatments at both temperatures, the growth metrics of specific growth rate 

(SGR) and incremental fork length (IL) were calculated for the initial four C. carassius 

in the control and treatments. Whilst only calculating IL was an option, given the field 

study of Tarkan et al. (2009) was based only on length, the relatively short experimental 

period (35 days) meant that there was uncertainty as to how much growth in length would 

be produced by the fish in that small time-frame and so SGR, based on weight, was also 

calculated to complement the output. IL was determined from; 

(1) IL = ( Lt + 1 – Lt ) / t  

where Lt is the total initial length, Lt + 1 is the total final length and t is the number of 

days. SGR was determined from; 

(2) SGR = [(( ln Wt + 1 ) ln Wt ) ⁄  t ] * 100 

where Wt is the total starting weight, Wt + 1 is the total final weight and t is the number 

of days.  

Linear mixed effects models (LMEM) were then used to test for differences in the 

growth metrics between the control and treatments, and between the temperatures, where 

the dependent variable was IL or SGR, the treatment was the fixed factor and tank 

position (top, middle or bottom shelf) was the random variable. The initial models used 

the starting lengths or weights of the initial C. carassius and the additional C. carassius, 

C. auratus and C. carpio as covariates to control for the effects of the differences between 

the treatments. The starting lengths and weights of the initial C. carassius and additional 

fishes all had non-significant effects (P > 0.05) in these models and thus were removed 
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from the final models. The outputs of each model included the mean adjusted values of 

the growth metric for the control and treatments at each water temperature and their 

significance from pairwise comparisons with Bonferroni adjustments for multiple 

comparisons. All statistics were completed using IBM SPSS Statistics (version 22.0). 

 

2.3.2. Pond enclosure experimental design 

This experiment was designed to test the trophic interactions and growth consequences 

for the three species in allopatric and sympatric contexts. It was thus similar to the tank 

aquaria experiment (cf. Section 2.3.1), but was completed under natural conditions and 

over a longer time period. Consequently, the experiment comprised of three control 

treatments, where each of the three species was present in allopatry (n = 8), and three 

sympatric treatments; C. carassius and C. auratus, C carassius and C. carpio, and C. 

carpio and C. auratus (n = 4 of each species), with each treatment replicated three times. 

The fishes were sourced from aquaculture and had been pond-reared using supplementary 

feeding (pelletized fishmeal), and were approximately 1 year old at the start of the 

experiment. 

The controls and treatments were set up within enclosures that sat within two large 

ponds that were located on an ex-aquaculture site in Southern England and were adjacent, 

separated by an earth bank of 2 m width. The ponds were both approximately 30 x 12 m 

and had consistent depths of approximately 1 m. Each enclosure comprised of an 

aluminium frame of 1.05 m (length) x 1.05 m (width) x 1.2 m (height) that was within a 

net of 7 mm2 mesh that prevented fish movements into and out of the enclosure, but 

allowed the ingress and egress of macro-invertebrates. Nine enclosures were placed in 

each of the large ponds and the replicated treatments were located randomly across them. 

Space between each enclosure was at least 0.5 m to ensure they provided enclosed and 

independent habitats for each treatment that were identical at the commencement of the 

experiment. Avian predators were prevented from entering the enclosures through netting 

placed over the top of all enclosures (15 mm2 mesh).  

The experiment commenced in May 2014 and ran for 100 days on the assumption that 

this would provide adequate time for fish dorsal muscle to undergo sufficient isotopic 

turnover and thus indicate the trophic ecology of the fishes in the pond enclosures 

(Jackson et al., 2013). Fish reproduction in the enclosures was prevented by using 
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sexually immature fish. The enclosures were placed into the ponds 7 days prior to the 

start of the experiment and all fish were measured (fork length, nearest mm) prior to their 

release. As previously mentioned, water temperature has a significant and positive effect 

on the growth and foraging rates of these fishes (Oyugi et al., 2012a, b), so a temperature 

logger was placed into each of the large ponds to measure daily means and to allow testing 

between the adjacent ponds. On day 100, each enclosure was removed from the ponds, 

the fish recovered, euthanized (anaesthetic overdose, MS-222) and placed on ice. At the 

same time, samples of macro-invertebrates were taken from the enclosures. In the 

laboratory, the fish were re-measured (fork length, nearest mm) and a sample of dorsal 

muscle taken from the anterior region above the lateral line and below the dorsal fin, for 

stable isotope analysis. The macro-invertebrates were sorted into samples, where samples 

represented between 3 and 9 individuals per species, with triplicate samples used for each 

pond. These samples, and the fish dorsal muscle samples, were then dried at 60 °C to 

constant mass.  

 

2.3.2.1. Stable isotope analysis 

The macro-invertebrate and dorsal muscle samples were then submitted to the Cornell 

University Stable Isotope Laboratory, New York, USA, for analysis of 13C and 15N 

(Cornell University Stable Isotope Laboratory, 2016). The tissues were ground to powder, 

with approximately 0.5 mg weighed out into a tin cup and the actual weight recorded 

using a Satorius MC5 microbalance to ~1000 µg. The samples were then analysed on a 

Thermo Delta V isotope ratio mass spectrometer (Thermo Scientific, Waltham, MA, 

USA) interfaced to a NC2500 elemental analyser (CE Elantach Inc., Lakewood, NJ, 

USA). These were verified for accuracy against internationally known reference 

materials, whose values are determined by the International Atomic Energy Agency 

(IAEA; Vienna, Austria), and calibrated against the primary reference scales for δ13C and 

δ15N values. The accuracy and precision of the sample runs were tested after every 10 

samples using a standard animal sample (mink) to compensate for possible machine drift 

and as a quality control measure; the overall standard deviation was 0.11 ‰ for δ15N 

values and 0.09 ‰ for δ13C values. Linearity correction was carried out to account for 

differences in peak amplitudes between sample and reference gases (N2 or CO2); the 

analytical precision associated with the δ15N and δ13C sample runs were estimated at 0.42 

and 0.15 ‰, respectively. Final outputs were values of δ13C, as an energy source indicator 
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and δ15N, as a trophic level indicator (cf. Section 1.4.1; Fig. 2), expressed as their isotope 

ratios per mille (‰), for each individual fish and macro-invertebrate sample. The C: N 

ratios of the fish were below 3.5 and thus there was no requirement to correct for lipid in 

the 13C data (Post et al., 2007; Skinner et al., 2016). 

The initial step in the analysis of the stable isotope data was to determine whether there 

were differences in the putative foods between the two large ponds. The focus of these 

analyses was macro-invertebrate groups, as these are important prey resources of the 

model fishes at the lengths introduced to the experimental enclosures. For example, C. 

carassius is increasingly reliant on benthic macro-invertebrates as their body size 

increases, with shifts away from algae and benthic planktonic resources (Penttinen and 

Holopainen, 1992). The macro-invertebrate groups analysed were Corixidae and 

Odonata, with both expected to contribute strongly to fish diet (Penttinen and Holopainen, 

1992). Although Chironomidae larvae were also expected to be an important dietary 

component of the fishes, insufficient numbers were collected during sampling to provide 

triplicate samples per pond and so were not included in the analyses. For each pond, the 

mean values of the triplicate samples per macro-invertebrate group were calculated along 

with their 95 % confidence limits; where the confidence limits showed overlap in their 

values then the stable isotope data were interpreted as not being significantly different 

and so the stable isotope data of the fishes were comparable between the two large ponds 

without any correction. 

 For testing differences in δ15N between treatments, the data were converted to trophic 

position (TP), as this has greater ecological relevance. This conversion was completed 

using: 

(3) TPi  =  [( δ15Ni - δ
15Nbase ) / 3.4] + 2 

where TPi is the trophic position of the individual fish, δ15Ni is the isotopic ratio of that 

fish, δ15Nbase is the isotopic ratio of the primary consumers (i.e. the ‘baseline’ 

invertebrates), 3.4 is the discrimination between trophic levels and 2 is the trophic 

position of the baseline organism (Post, 2002; cf. Section 1.4.1; Fig. 2).  

 The TP and δ13C data were then used in linear mixed effects models (LMEM) to assess 

their differences between the species in sympatry, and to identify how the allopatric and 

sympatric contexts affected the trophic position of each species. Species were entered into 

models according to their treatments so, for example, C. carassius were present in models 
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as allopatric C. carassius, and in sympatry with C. carpio and C. auratus. The dependent 

variable was δ13C or TP and treatment was the fixed factor. To correct for the inflation of 

the residual degrees of freedom that would otherwise have occurred if the data of each 

individual fish were used as true replicates, the models were fitted with enclosure as a 

random effect on the intercept (Tran et al., 2015). Differences in δ13C and TP by species 

and treatment were determined using estimated marginal means and pairwise 

comparisons with Bonferroni adjustments for multiple comparisons. A similar LMEM 

approach was also used to test for differences in the initial fish lengths between sympatric 

species and to identify any length differences for each species between allopatry and 

sympatry. 

The δ13C and δ15N stable isotope data were then used to calculate the trophic niche 

size of the fishes and treatments. Trophic niche size was calculated using the metric 

standard ellipse area (SEA) and thus represented the isotopic niche. Whilst the isotopic 

niche is closely related to the trophic niche, it is also influenced by factors including 

growth rate and metabolism (Jackson et al., 2011). Hereafter, the term trophic niche is 

used throughout. Standard ellipse areas were calculated in the SIAR and SIBER packages 

(Jackson et al., 2011) in the R computing program (R Development Core Team, 2013, 

2014). Standard ellipse areas are bivariate measures of the distribution of individuals in 

isotopic space. As each ellipse encloses ≈ 40 % of the data, they represent the core dietary 

breadth and thus reveal the typical resource use within a species or population (Jackson 

et al., 2011, 2012). Due to variable and generally small sample sizes (n < 20), then a 

Bayesian estimate of SEA (SEAB) was used for testing differences in niche size between 

analysed groups. The Bayesian approach returns a distribution representing estimates of 

SEA that reflect uncertainty arising from the sampling process, with larger uncertainty 

associated with smaller sample sizes (Jackson et al., 2011). SEAB was calculated using a 

Markov chain Monte Carlo simulation with 104 iterations for each group (Jackson et al., 

2011; R Development Core Team, 2014; Tran et al., 2015). This generated a range of 

SEAB probable values which can be compared in a quantitative manner, the mode of 

which are reported along with their 95 % confidence intervals. Where these confidence 

intervals did not overlap between comparator groups, the niche sizes were interpreted as 

being significantly different. Bayesian inference also allows a direct probabilistic 

interpretation of the differences in SEAB depending on the grouping level. This can be 

achieved through pairwise comparisons by calculating the proportion of SEAB that 
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differed between two groups and can be interpreted as a direct and robust proxy for the 

probability that one group is larger than the other (Jackson et al., 2011). The probabilities 

are calculated from the solutions generated by the model and the values range from 0 to 

1, indicating very low (0) to very high probability (1) of one group being smaller than 

another (Jackson et al., 2011). To then enable calculation of the extent of the overlap of 

niches within each species, SEAc was calculated (the subscript ‘c’ indicates that a small 

sample size correction was used), with the niche overlap determined as the extent to which 

the respected niches shared isotopic space (%). This overlap was calculated for each 

combination of species in their allopatric contexts, in order to demonstrate their potential 

niche overlap and enable comparison with their realised niche overlap, from the sympatric 

context.  

To quantify the growth consequences for the fishes of the allopatric and sympatric 

contexts, the mean incremental fork lengths (IL) were calculated as previously defined in 

Eq. (1), but instead of using the total initial (Lt) and total final (Lt + 1) lengths of the 

fishes, to prevent any inaccuracies where not all individuals were recovered from an 

enclosure, the mean initial and mean final lengths were used instead to generate a mean 

IL for each species within each enclosure. This enabled the calculation of an overall mean 

IL for each species within each context. To test for differences in IL for each species 

between their allopatric and sympatric treatments, generalised linear models (GLM) were 

used, as the data were not normally distributed. The dependent variable was IL, the 

independent variable was treatment and enclosure was the random variable. Outputs were 

the mean adjusted IL per treatment and the significance of their pairwise comparisons 

with Bonferroni adjustments for multiple comparisons.  

 

2.3.3. Wild pond experimental design 

The purpose of this final experiment was to identify whether the results detected in 

relatively controlled conditions (i.e. tank aquaria and pond enclosures) were comparable 

when the fish were used in similar contexts but at larger spatial scales. As the outputs of 

the tank aquaria and pond enclosure experiments (Sections 2.3.1 and 2.3.2) indicated that 

greatest impacts on C. carassius were from co-habitation with C. carpio, then it was these 

two species that were focused on here. Note that due to working at larger spatial scales, 
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i.e. ponds of 360 m2 area, logistics dictated that this aspect of the work was not able to 

use replicates of the different treatments.  

This experiment used three rectangular ponds on the same ex-aquaculture site as used 

in Section 2.3.2; each pond was approximately 360 m2 in area and up to 1.3 m in depth. 

Two ponds were used for allopatric contexts (n = 124) and one was for where the two 

species were in sympatry (n = 62 + 62). Prior to the commencement of the experiment, 

all the ponds had been drained to ensure no other fishes were present. The fish were 

sourced from aquaculture and had been pond-reared using supplementary feeding 

(pelletized fishmeal) and were approximately 2 years old. They were released into the 

ponds on two separate occasions. In August 2015, 12 C. carassius and 12 C. carpio were 

added to the sympatric pond and 24 C. carpio and 24 C. carassius were added to their 

respective allopatric ponds. All were measured (fork length, nearest mm) prior to their 

release. The numbers of fish used were relatively low due to difficulties in sourcing C. 

carassius. However, following concerns of over-winter survival, in February 2016 a 

second batch of fishes were sourced and 50 C. carassius and 50 C. carpio were added to 

the sympatric pond and 100 C. carassius and 100 C. carpio were added to their respective 

allopatric ponds. For these fishes, a random sub-sample of 30 fish of each species was 

measured (fork length, nearest mm) before release. The fishes from the first addition are 

subsequently referred to as the 2015 fish, and fishes from the second addition, the 2016 

fish. They were consequently identifiable through their differences in length.  

Similar to the experimental tank aquaria, an issue in the experimental design was the 

variable starting lengths of the fish as the fish species available all differed in their length 

ranges and, due to the large number of fish being added to the ponds, only a sub-sample 

was measured prior to release. It was thus unavoidable that there were differences 

between the mean lengths of the fishes used between the allopatric and sympatric 

treatments. Consequently, the differences in the starting lengths of the fish in each 

addition were minimised as much as possible, particularly with regard to the fishes in the 

sympatric pond. 

At the end of the experimental period (June 2016), the fish were recaptured from each 

pond through the use of baited fish traps that were left within the ponds overnight and 

removed and emptied the following morning. From the allopatric ponds, 9 C. carassius 

and 24 C. carpio were recovered and from the sympatric pond, 12 C. carassius and 12 C. 

carpio were recovered. All fishes were euthanized (anaesthetic overdose, MS-222) and 
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placed on ice. At the same time, samples of macro-invertebrates were taken from each 

pond. In the laboratory, the fish were re-measured and a sample of dorsal muscle taken 

from the anterior region above the lateral line and below the dorsal fin, for stable isotope 

analysis. In addition, between 5 and 10 scales were also removed from the region above 

the muscle sample to assist in identification and separation of the 2015 and 2016 fishes. 

Scales were air dried before being stored in paper envelopes. The macro-invertebrates 

were sorted into samples, where samples represented between 3 and 5 individuals per 

species, with triplicate samples used for each pond. These samples, and the fish dorsal 

muscle samples were then dried at 60 °C to constant mass before analysis at the Cornell 

University Stable Isotope Laboratory, New York, USA for their stable isotopes of δ13C 

and δ15N (cf. Section 2.3.2.1 for details). 

As per the pond enclosures, the initial analytical step was to determine whether there 

were significant differences in the stable isotope data of the putative food resources of the 

three ponds. The 95 % confidence limits showed no overlap in the stable isotope data 

between the ponds, indicating a significant difference in isotopic values, so in order to 

compare the fish data between the ponds, their data were corrected for these isotopic 

differences in their food sources. For δ15N, correction was by calculating trophic position 

(TP), as previously defined in Eq. (3) and for δ13C, correction was according to δ13Ccorr: 

(4) δ13Ccorr = δ13Ci - δ
13Cmeaninv / CRinv 

where δ13Ci is the uncorrected isotope ratio of that fish, δ13Cmeaninv is the mean invertebrate 

isotope ratio (i.e. the ‘baseline’ invertebrates; cf. Section 1.4.1; Fig. 2) and CRinv is the 

invertebrate carbon range (δ13Cmax - δ
13Cmin: Olsson et al., 2009). The corrected stable 

isotope data were then used in linear mixed effects models (LMEM) to assess differences 

in δ13Ccorr and TP between the species in sympatry, and to identify how the allopatric 

and sympatric contexts affected the trophic position of each species. Species were entered 

into models according to their treatments. Thus, C. carassius were present in models as 

allopatric C. carassius and in sympatry with C. carpio. δ13Ccorr or TP was the dependent 

variable and treatment was the fixed factor. Differences in δ13Ccorr and TP by species 

and treatment were determined using estimated marginal means and pairwise 

comparisons with Bonferroni adjustments for multiple comparisons.  

The corrected stable isotope data were then used to calculate the standard ellipse area 

(as SEAB), representing the trophic niche for each species and treatment as previously 
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described, using the SIBER package (Jackson et al., 2011) in the R computing program 

(R Development Core Team, 2013). Then, SEAc was calculated to determine the niche 

overlap between the sympatric fishes to reveal the amount of actual resource sharing. In 

addition, this overlap was calculated for C. carassius and C. carpio in their allopatric 

contexts in order to demonstrate their potential niche overlap and enable comparison with 

their realised niche overlap, as was performed in the pond enclosure experiment. 

 

2.4. Results 

 

2.4.1. Tank aquaria experiments 

The initial and final lengths and weights of the fishes used in the experiment are shown 

in Table 1 and increases in lengths and weights were apparent in the control and 

treatments. Outputs of the GLM testing the differences between the starting lengths and 

weights of the initial and additional fishes revealed there were some significant 

differences between the controls and treatments, with the largest difference between the 

mean lengths being only 11.8 ± 1.4 mm and mean weights 7.73 ± 0.69 g (Table 2). The 

LMEMs testing for differences in both of the growth metrics (IL, SGR) between the 

control and treatments, and between the temperatures, were significant (P < 0.01, for IL 

and SGR). The model results revealed that, when compared to the control, the 

consequences of adding C. auratus or C. carpio were significantly reduced SGR and IL 

for C. carassius, irrespective of temperature (P < 0.01 in all cases; Fig. 3). Whilst the 

addition of C. auratus resulted in a greater decrease in C. carassius growth rate than the 

addition of C. carpio at both temperatures, the differences were not significant (P > 0.05 

in all cases; Fig. 3). In the controls at 18 and 22 °C, the difference in SGR of C. carassius 

was not significant (P > 0.05; Fig. 3), but IL was significantly reduced at 18 °C (P < 0.05; 

Fig. 3). In the controls, there were also no significant differences in the IL and SGR 

between the initial and additional C. carassius (P > 0.05 in all cases). In both treatments, 

differences in C. carassius growth rates were not significant between the temperatures (P 

> 0.05; Fig. 3). Thus, the water temperatures used did not significantly affect the 

magnitude of growth depression in the sympatric contexts. However, the addition of 

either C. auratus or C. carpio resulted in significantly depressed growth of C. carassius 

compared with the addition of conspecifics. 
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Table 1. Mean initial (A) and final (B) fork lengths and weights of the fishes used in the experimental tank aquaria. Errors around the means represent 

standard errors. 

 A)          

Temperature  

(oC) 

Treatment Initial length  

C. carassius 

(mm) 

Initial weight  

C. carassius  

(g) 

Initial length  

additional fish 

(mm) 

Initial weight  

additional fish  

(g) 

18 Control 40.38 ± 1.60 1.02 ± 0.05 41.44 ± 1.62 1.16 ± 0.03 

 +C. auratus 51.58 ± 1.13 2.44 ± 0.09 48.50 ± 0.82 2.63 ± 0.04 

 +C. carpio 45.75 ± 0.63 1.54 ± 0.07 56.33 ± 0.57 4.10 ± 0.07 

22 Control 42.36 ± 0.92 1.08 ± 0.04 40.43 ± 0.95 1.04 ± 0.05 

 +C. auratus 50.67 ± 0.94 2.36 ± 0.05 48.67 ± 1.05 2.76 ± 0.07 

 +C. carpio 50.83 ± 2.15 2.57 ± 0.06 52.17 ± 0.79 3.36 ± 0.08 

  

B) 

 

 

        

Temperature  

(oC) 

Treatment Final length  

C. carassius 

(mm) 

Final weight  

C. carassius  

(g) 

Final length  

additional fish 

(mm) 

Final weight  

additional fish  

(g) 

18 Control 43.17 ± 1.45 1.45 ± 0.04 44.07 ± 1.36 1.76 ± 0.06 

 +C. auratus 52.42 ± 1.13 2.66 ± 0.08 54.17 ± 0.89 4.18 ± 0.10 

 +C. carpio 47.17 ± 0.69 1.70 ± 0.08 61.00 ± 0.43 6.15 ± 0.16 

22 Control 42.83 ± 0.98 1.34 ± 0.05 41.07 ± 1.00 1.25 ± 0.05 

 +C. auratus 51.25 ± 1.16 2.37 ± 0.05 55.25 ± 1.16 4.41 ± 0.10 

 +C. carpio 52.42 ± 2.11 2.68 ± 0.05 58.42 ± 1.08 4.84 ± 0.14 
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Table 2. Outputs of generalised linear models testing the differences between the controls and treatments of the mean starting fork lengths and weights 

of the initial C. carassius and the additional C. carassius, C. auratus and C. carpio from the tank aquaria experiment (cf. Table 1). Values represent mean 

differences according to pairwise comparisons with Bonferroni adjustments for multiple comparisons; *difference is significant at P < 0.05. All models 

were significant at P < 0.01. Errors around the means represent standard deviations.  

 

Treatment Temperature 

(oC) 

Initial C. carassius 

length (mm) 

Initial C. carassius 

weight (g) 

Initial additional 

length (mm) 

Initial additional 

weight (g) 

Control vs. Control 18 / 22  1.0 ± 1.3  0.47 ± 0.71  1.0 ± 1.1  0.47 ± 0.69 

+C. auratus vs. +C. auratus 18 / 22  0.9 ± 1.8  0.32 ± 0.71 -0.2 ± 1.6 -0.49 ± 0.69 

+C. carpio vs. +C. carpio 18 / 22 -5.1 ± 1.8 -4.10 ± 0.71* -3.5 ± 1.6  2.93 ± 0.69* 

Control vs. +C. auratus 18 / 18 -10.2 ± 1.6* -1.10 ± 0.71 -7.1 ± 1.4* -1.89 ± 0.69 

 22 / 22 -10.3 ± 1.6* -1.30 ± 0.71 -8.3 ± 1.4* -2.85 ± 0.69* 

 18 / 22 -9.3 ± 1.6* -0.79 ± 0.71 -7.3 ± 1.4* -2.38 ± 0.69* 

Control vs. +C. carpio 18 / 18 -4.4 ± 1.6  2.50 ± 0.71* -7.3 ± 1.4* -7.73 ± 0.69* 

 22 / 22 -10.5 ± 1.6* -2.00 ± 0.71 -11.8 ± 1.4* -5.28 ± 0.69* 

 18 / 22 -9.5 ± 1.6* -1.62 ± 0.71 -10.8 ± 1.4* -4.81 ± 0.69* 

+C. auratus vs. +C. carpio 18 / 18  5.8 ± 1.8*  3.60 ± 0.71* -0.2 ± 1.6 -5.84 ± 0.69*  

+C. auratus vs. +C. carpio 22 / 22  0.8 ± 1.8 -0.51 ± 0.71 -3.7 ± 1.6  -2.90 ± 0.69* 
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Figure 3. Comparisons between controls and treatments of mean specific growth rates of C. carassius at 18 °C (A) and 22 °C (B), and incremental fork 

length of C. carassius at 18 °C (C) and 22 °C (D); *difference in growth rate between the control and treatment is significant at P < 0.05. Error bars 

represent standard errors.
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2.4.2. Pond enclosure experiments 

The initial and final lengths of the fishes are shown in Table 3, with all fishes increasing 

in length over the experimental period. Although the LMEM testing the differences 

between the starting lengths of the species was significant (P < 0.05), pairwise 

comparisons revealed that there were no significant differences in the starting lengths of 

fish in any of the treatments involving the fish in sympatry, nor between the lengths of 

any of the species between their allopatric and sympatric treatments (P > 0.05; Table 3). 

There were also no significant differences in daily mean water temperature between the 

two ponds in which the enclosures were located (F1,98 = 0.23, P > 0.05). Mean daily 

temperatures were 18.3 ± 0.2 and 18.5 ± 0.4 °C across the 100 days.  

At the end of the 100 days, all but four of the fish that started the experiment were 

recovered (96 % recovery rate), with no more than one fish absent from a replicate (Table 

3). The GLMs testing the influence of treatment on the incremental growth rates of each 

species were significant (P < 0.01 in all cases). Whilst the growth rates of allopatric C. 

carassius and C. auratus were not significantly different to when they were present in 

sympatry (P > 0.05), their growth rates were both significantly reduced in sympatry with 

C. carpio (P < 0.05; Table 3). In contrast, C. carpio grew at a faster rate in their sympatric 

treatments than in allopatry, with the difference significant in sympatry with C. carassius 

(P < 0.05; Table 3). 

Comparison of the macro-invertebrate stable isotope samples between the two large 

ponds revealed considerable overlaps in their 95 % confidence intervals and were thus 

considered similar, and so the stable isotope data could be compared between the ponds 

without correction (Odonata: δ13C: -34.98 ± 0.31 vs. -33.14 ± 2.23; δ15N: 3.76 ± 0.26 vs. 

3.98 ± 0.12; Corixidae: δ13C: -31.75 ± 0.70 vs. -33.37 ± 0.91; δ15N: 4.26 ± 0.81 vs. 3.40 

± 0.95). Nevertheless, δ15N was converted to TP for the purpose of testing the data as this 

has more ecological relevance. The LMEMs testing the influence of species and treatment 

on TP and δ13C were both significant (P < 0.01; Table 4). When compared to their 

allopatric treatments, TP of C. carassius was significantly increased when in sympatry 

with C. carpio (P < 0.05). When C. carassius and C. auratus were sympatric, there were 

no significant differences in δ13C and TP compared with their allopatric treatments (P > 

0.05; Table 4), but for C. carpio, δ13C and TP were significantly decreased when 

sympatric with both C. carassius and C. auratus when compared to their allopatric 

treatment (P < 0.01; Table 4).  
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The calculation of standard ellipse areas (as SEAB and SEAc) as a measure of trophic 

niche size revealed that there were changes in the niche sizes of the fishes between their 

allopatric treatments and when the species were in sympatry, with the direction and extent 

of this change being context specific. For C. carassius, there was minimal change in their 

trophic niche size between their allopatric treatment and when sympatric with C. auratus 

or C. carpio, based on the distribution of SEAB (Table 5A). For C. auratus however, when 

compared to their allopatric treatment, their trophic niche size decreased slightly when in 

sympatry with C. carassius (probability of C. auratus niche being smaller than C. 

carassius was 0.86, compared to 0.69 in allopatry) and their trophic niches overlapped in 

both contexts (Table 5; Fig. 4A, B). In contrast, when sympatric with C. carpio, C. 

auratus trophic niche increased and the probability of C. auratus niche being smaller was 

reduced from 1.00 in allopatry to 0.82 in sympatry. In allopatry, C. auratus and C. carpio 

had significantly different trophic niches, based on the distribution of SEAB. Whilst this 

suggested that their niches would not overlap in sympatry, they actually did, with C. 

auratus sharing 50 % of their trophic niche with C. carpio (Table 5; Fig. 4E, F). For both 

Carassius species, their niche sizes were significantly smaller than C. carpio in both 

allopatric and sympatric contexts even though C. carpio trophic niche size was reduced 

in sympatry compared with allopatry (Table 5A). For C. carassius and C. carpio, there 

was no trophic niche overlap in either context according to SEAc, however, based on the 

distributions of SEAB, their trophic niches were not significantly different (Table 5B; Fig. 

4C, D). 
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Table 3. Mean initial and final fork lengths and growth rates (as mean incremental length, IL) of the fishes used in the pond enclosure experiment; 

*significantly different to allopatric context at P < 0.05, as determined from generalised linear models where enclosure was the random variable. Errors 

around the means represent standard errors. 

 

Species Context   Initial length  Final length  IL  

      (mm)     n (mm)     n (mm d-1)   

C. carassius Allopatric   61.46 ± 1.27 24 76.96 ± 1.70 24 0.15 ± 0.02   

  Sympatric with C. auratus 61.67 ± 2.23 12 76.75 ± 1.39 12 0.15 ± 0.02   

    C. carpio 61.42 ± 1.52 12 67.73 ± 1.32 11 0.06 ± 0.02 * 

C. auratus Allopatric   64.88 ± 1.41 24 86.95 ± 1.41 22 0.22 ± 0.01   

  Sympatric with C. carassius 64.75 ± 1.34 12 85.82 ± 1.46 11 0.21 ± 0.01   

    C. carpio 63.92 ± 1.97 12 78.10 ± 1.51 10 0.14 ± 0.01 * 

C. carpio Allopatric   64.08 ± 1.41 24 74.50 ± 1.54 24 0.10 ± 0.02   

  Sympatric with C. carassius 57.58 ± 1.65 12 75.08 ± 1.28 12 0.18 ± 0.02 * 

    C. auratus 59.92 ± 2.02 12 75.17 ± 2.56 12 0.16 ± 0.02   
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Table 4. Outputs and significance of the final linear mixed effects models testing the difference in carbon stable isotope (δ13C) and trophic position (TP) 

between the species across the pond enclosure experiment, where enclosure was the random effect on the intercept. Values represent mean differences 

according to pairwise comparisons with Bonferroni adjustments for multiple comparisons; *difference is significant at P < 0.01. 

 

Final models: 

δ13C ~ species x experimental treatment (AIC = 430.87; log likelihood = 428.87; P < 0.01) 

Trophic position ~ species x experimental treatment (AIC = -5.14; log likelihood = -9.14; P < 0.01) 

        

Pairwise comparison Difference in δ13C Difference in TP 

Allopatric C. carassius  vs. C. carassius sympatric with C. auratus 0.402   0.031   

    C. carassius sympatric with C. carpio 1.248   0.414 * 

Allopatric C. auratus  vs. C. auratus sympatric with C. carassius 0.178   0.023   

    C. auratus sympatric with C. carpio 0.034   0.223   

Allopatric C. carpio  vs. C. carpio sympatric with C. carassius 1.810 * 0.313 * 

    C. carpio sympatric with C. auratus 1.783 * 0.312 * 

C. carassius in sympatry with C. auratus 0.986   0.204   

C. carassius in sympatry with C. carpio 3.580 * 0.457 * 

C. carpio in sympatry with C. auratus 1.577   0.07   
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Table 5. Mean carbon stable isotope (δ13C), trophic position (TP) and trophic niche sizes (as standard ellipse areas; SEAB with 95 % confidence intervals 

(CI) and SEAc) of the fishes used in the pond enclosure experiment (A) and probabilities that trophic niche sizes (as SEAB) are smaller, whether trophic 

niche sizes are significantly different (as indicated by no overlap in SEAB 95 % CI’s) and percentage overlaps of trophic niches (as SEAc) in allopatric 

and sympatric contexts (B). Errors around the means represent standard errors. 

 

   

A)                           
 

Species Context   n Mean δ13C (‰) Mean TP SEAB (‰2) (95 % CI range) SEAc (‰
2) 

C. carassius Allopatric   18 -25.76 ± 0.34 4.65 ± 0.05 1.39 (0.87 - 2.38) 1.35 

  Sympatric with C. auratus 12 -25.36 ± 0.42 4.69 ± 0.06 1.62 (0.85 - 2.98) 1.49 

    C. carpio 11 -24.51 ± 0.44 5.07 ± 0.06 1.18 (0.63 - 2.23) 1.43 

C. auratus Allopatric   18 -26.52 ± 0.34 4.46 ± 0.05 1.21 (0.78 - 2.00) 1.23 

  Sympatric with C. carassius 11 -26.34 ± 0.44 4.48 ± 0.06 0.96 (0.55 - 1.91) 1.17 

    C. carpio 10 -26.49 ± 0.46 4.68 ± 0.07 1.86 (0.92 - 3.64) 1.75 

C. carpio Allopatric   18 -26.28 ± 0.34 4.92 ± 0.05 3.31 (2.02 - 5.30) 3.45 

  Sympatric with C. carassius 12 -28.09 ± 0.42 4.61 ± 0.06 2.77 (1.54 - 5.38) 3.03 

    C. auratus 12 -28.06 ± 0.42 4.61 ± 0.06 2.77 (1.52 - 5.18) 3.15 

B)     

Species Context SEAB smaller SEAB 95 % CI  SEAc overlap (%) 

C. carassius vs. C. auratus Allopatric  0.31 vs. 0.69 overlap 35 vs. 38 

  Sympatric 0.14 vs. 0.86 overlap 27 vs. 34 

C. carassius vs. C. carpio Allopatric  0.99 vs. 0.01 overlap no overlap 

  Sympatric 0.98 vs. 0.02 overlap  no overlap 

C. carpio vs. C. auratus Allopatric  0.00 vs. 1.00 no overlap no overlap 

  Sympatric 0.18 vs. 0.82 overlap 28 vs. 50 
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Figure 4. Stable isotope data and trophic niches (as standard ellipse area, SEAc) of 

allopatric C. carassius and C. auratus (A); sympatric C. carassius and C. auratus (B); 

allopatric C. carassius and C. carpio (C); sympatric C. carassius and C. carpio (D); 

allopatric C. carpio and C. auratus (E) and sympatric C. carpio and C. auratus (F); ○ 

stable isotope data for C. carassius; ● stable isotope data for C. auratus and ▲ stable 

isotope data for C. carpio. Black solid lines mark the trophic niche of C. carassius; grey 

solid lines the trophic niche of C. auratus and black dashed lines the trophic niche of C. 

carpio.   
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2.4.3. Wild pond experiments 

The initial and recovered lengths of the fishes are shown in Table 6. As only a sub-set of 

the 2016 fishes were measured before allocation to the ponds and as the fishes were not 

identifiable individually, IL was not calculated. However, observation of the scales 

collected from the fishes, in addition to their recaptured lengths, allowed identification of 

any fishes present that were released in 2015. There were 6 allopatric C. carpio recaptured 

in June 2016 that were identified as being from the 2015 release, as these fish were 

significantly larger than the other allopatric C. carpio (177.0 ± 8.8 mm vs. 118.8 ± 9.7 

mm; Table 6B; GLM; P < 0.01) and not only were these fish different in length, but they 

were also isotopically distinct from the allopatric C. carpio added in 2016, suggesting an 

ontogenetic dietary shift (Table 7A; Fig. 5).  

Comparison of the macro-invertebrate stable isotope samples between the ponds 

revealed overlaps in the 95 % confidence intervals for δ13C between the three ponds, 

however for δ15N, the 95 % confidence interval of one pond did not overlap with the other 

two and thus was considered as being significantly different (Odonata: δ13C: -30.27 ± 

0.89 vs. -30.26 ± 0.72 vs. -29.89 ± 0.51; δ15N: 4.65 ± 0.69 vs. 4.64 ± 0.52 vs. 6.50 ± 0.59). 

Consequently, all of the stable isotope data was corrected in order to allow comparison 

across all the ponds. 

The LMEMs testing the influence of species and treatment on δ13Ccorr and TP were 

both significant (P < 0.01; Table 8). For C. carassius, when compared to their allopatric 

treatment, TP was slightly increased and δ13Ccorr slightly decreased when in sympatry 

with C. carpio (Table 7A), but these changes were not significant (Table 8). For C. carpio, 

when compared to their allopatric treatment, δ13Ccorr decreased when in sympatry with 

C. carassius (P < 0.01; Table 7A), with the difference being significant for the C. carpio 

added in 2016 (Table 8). In allopatry, the difference in TP between C. carassius and C. 

carpio was not significant. In sympatry, however, they were significantly different, with 

TP of C. carassius increasing and C. carpio decreasing (P < 0.01; Tables 7A, 8). The 

difference between C. carassius and C. carpio in δ13Ccorr remained significant in both 

allopatric and sympatric contexts (P < 0.05; Table 8), with both species decreasing in 

δ13Ccorr in sympatry when compared to allopatry (Table 7A).  

The calculation of standard ellipse areas (as SEAB and SEAc) as measures of the size 

of the trophic niche revealed that there were changes in both species between their 
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allopatric and sympatric contexts. For C. carassius, their trophic niche size was larger 

when in sympatry with C. carpio than in allopatry and there was some overlap in the 95 

% confidence intervals of SEAB (Table 7). For C. carpio, however, their trophic niche 

size was significantly larger in allopatry than sympatry (Table 7A; Fig. 5). Additionally, 

outputs from the allopatric treatments predicted that the trophic niche areas would be 

significantly different and so would not overlap between the 2016 C. carassius and 2016 

C. carpio when in sympatry (based on distributions of SEAB), and this prediction was 

accurate (Table 7; Fig. 5). Furthermore, the trophic niche of C. carassius was significantly 

smaller than C. carpio when these fishes were allopatric, but in sympatry, the trophic 

niche size of C. carassius increased, becoming significantly larger than C. carpio 

(switching the probability of having a smaller trophic niche from 1.00 to 0.00) (Table 7B; 

Fig. 5). 

 

 

Table 6. Mean initial (A) and recovered (B) fork lengths of the fishes used in the wild 

pond experiment. All fishes from the 2015 addition were measured before allocation into 

the experimental pond, but in 2016, only a sub-set of 30 fish from each species were 

measured before allocation and therefore the sympatric and allopatric contexts cannot be 

specifically applied to this data. Errors around the means represent standard deviations. 

A)             

Addition Context Species n Initial length (mm) 

2015 Sympatric C. carassius 12 103.08 ± 5.28 

    C. carpio 12 118.67 ± 4.12 

  Allopatric C. carassius 24 107.46 ± 6.53 

    C. carpio 16 124.00 ± 5.19 

2016   C. carassius 30 135.20 ± 7.01 

    C. carpio 30 97.30 ± 9.21 

 

B)             

Addition Context Species n Recovered length (mm) 

2015 Sympatric C. carassius         

    C. carpio         

  Allopatric C. carassius         

    C. carpio 6 177.00 ± 8.76 

2016 Sympatric C. carassius 12 141.17 ± 10.99 

    C. carpio 12 144.67 ± 6.80 

  Allopatric C. carassius 9 133.33 ± 5.79 

    C. carpio 16 118.81 ± 9.73 
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Table 7. Mean corrected carbon stable isotope values (δ13CCorr), trophic position (TP) and trophic niche sizes (as standard ellipse areas; SEAB with 95 

% confidence intervals (95 % CI) and SEAc) of the fishes used in the wild pond experiment (A) and the probability that the trophic niche size (as SEAB) 

of C. carassius is smaller than C. carpio, whether the trophic niche sizes are significantly different (as indicated by no overlap in SEAB 95 % CI’s) and 

the percentage overlap of their trophic niches (as SEAc) in allopatric and sympatric contexts (B). Errors around the means represent standard errors. 

 

A)                           

Context Species n Mean δ13Ccorr Mean TP SEAB (‰2) (95 % CI) SEAc (‰
2) 

Allopatric 2016 C. carassius 9 0.97 ± 0.14 3.26 ± 0.05 0.07 (0.04 - 0.15) 0.06 

  2015 C. carpio 6 1.72 ± 0.17 3.07 ± 0.06 0.14 (0.06 - 0.35) 0.23 

  2016 C. carpio 16 4.49 ± 0.11 3.18 ± 0.04 0.26 (0.16 - 0.45) 0.38 

Sympatric 2016 C. carassius 12 0.76 ± 0.12 3.43 ± 0.04 0.16 (0.08 - 0.29) 0.09 

  2016 C. carpio 12 1.34 ± 0.12 3.12 ± 0.04 0.03 (0.02 - 0.05) 0.05 

 

B)         

Species Context SEAB smaller SEAB 95 % CI  SEAc overlap (%) 

2016 C. carassius vs. 2015 C. carpio Allopatric  0.94 vs. 0.06 overlap no overlap 

2016 C. carassius vs. 2016 C. carpio Allopatric  1.00 vs. 0.00 no overlap no overlap 

  Sympatric 0.00 vs. 1.00 no overlap no overlap 
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Table 8. Outputs and significance of the final linear mixed effects models testing the differences in corrected carbon stable isotopes (δ13CCorr) and 

trophic position (TP) between the species across the wild pond experiment. Values represent mean differences according to pairwise comparisons with 

Bonferroni adjustments for multiple comparisons; *difference is significant at P < 0.01. 

  

Final models: 

δ13Ccorr ~ species x experimental treatment (AIC = 69.84; log likelihood = 67.84 ; P < 0.01) 

Trophic position ~ species x experimental treatment (AIC = -30.94 ; log likelihood = -32.94 ; P < 0.01) 

Pairwise comparison Difference in δ13Ccorr Difference in TP 

Allopatric C. carassius  vs. C. carassius sympatric with 2016 C. carpio 0.21 0.17   

  vs. Allopatric 2015 C. carpio  0.75 * 0.19   

  vs. Allopatric 2016 C. carpio  3.52 * 0.08   

Allopatric 2015 C. carpio  vs. Allopatric 2016 C. carpio  2.77 * 0.11   

  vs. 2016 C. carpio sympatric with C. carassius 0.38   0.05   

Allopatric 2016 C. carpio  vs. 2016 C. carpio sympatric with C. carassius 3.15 * 0.06   

C. carassius in sympatry with 2016 C. carpio 0.58 * 0.31 * 
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Figure 5. Corrected stable isotope data (as δ13CCorr and trophic position, TP) and trophic 

niches (as standard ellipse area, SEAc) of allopatric C. carassius and C. carpio (A) and 

sympatric C. carassius and C. carpio (B); ○ corrected stable isotope data for C. carassius; 

▲ corrected stable isotope data for C. carpio added in 2015 and ∆ corrected stable isotope 

data for C. carpio added in 2016. Black solid lines mark the trophic niche of C. carassius 

and black dashed lines the trophic niche of C. carpio. 

 

2.5. Discussion 

 

The principal aim of this Chapter was to reveal the ecological consequences for C. 

carassius, as a model native fish, arising from introductions of invasive C. auratus and 

C. carpio by comparing their trophic interactions and somatic growth rates under 

controlled and wild conditions, and sympatric and allopatric contexts. The three 

approaches used in the Chapter revealed some significant impacts on the somatic growth 

rates and trophic interactions of C. carassius, but these outcomes varied according to the 

condition and context. The results from each approach are discussed in turn in Sections 

2.5.1 to 2.5.3. 

 

2.5.1. Co-habitation tank aquaria 

The experimental outputs from the co-habitation aquaria suggest that when C. carassius 

is sympatric with either C. auratus or C. carpio and food resources are restricted, then 

unless there is the possibility of resource partitioning (Guo et al., 2014), inter-specific 

competition is likely to occur and could result in depressed C. carassius somatic growth 
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rates. The mechanism of this competition was exploitative, as no antagonistic interactions 

were observed during the daily feeding, although this was not quantified as an output. 

Although the variability of the intensity of intra-specific competition under different 

feeding regimes and fish abundances was not measured, C. carassius growth is known to 

be negatively impacted in allopatric contexts when under conditions of limited food 

supply (Paszkowski et al., 1990; Holopainen et al., 1997).  

An issue with experimental co-habitation studies is that outcomes do not always match 

field observations, as the spatial experimental constraints can result in unnaturally intense 

interactions, and there is a lack of complexity compared with natural situations (Korsu et 

al., 2009). Indeed, there was a marked difference between the intense competitive 

interactions from C. auratus in the experimental conditions here, which significantly 

reduced C. carassius growth, to the studies of Tarkan et al. (2009) and Copp et al. (2010), 

which found no differences in wild C. carassius growth rates between allopatric and 

sympatric contexts. This difference might relate to the experimental conditions of the tank 

aquaria providing a limiting food supply, whereas in wild conditions, the sympatric 

species might either have been resource partitioning (Guo et al., 2014) or sharing food 

resources that were unlimited, and so growth rates were not constrained. In combination, 

this suggests that negative growth consequences for C. carassius from inter-specific 

competition with non-native fishes in natural conditions are likely to only be incurred 

where their food resources are limiting and resource partitioning is not possible. 

Consequently, in order to remove the potential effects of a limited food supply due to the 

fixed feeding in the aquaria and to explore the competitive feeding interactions of the 

species under more natural conditions, the additional pond enclosure and wild pond 

experiments were implemented where an increased spatial scale and the availability of 

natural food resources added system complexity and reduced controlled parameters. 

Additionally, the pond experiments provided the opportunity to explore trophic 

interactions via the use of stable isotope analysis to assess whether resource partitioning 

or convergence was realised between the species in allopatric and sympatric contexts. 

 

2.5.2. Experimental pond enclosures 

In the tank aquaria experiments, the food resource and the feeding rate was fixed on a 

daily basis and so the fish had no option but to share these resources. This was in contrast 
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to the pond enclosure experiment where natural food resources were available as the 

enclosures were placed in situ within larger pond systems and their mesh size enabled the 

ingress of macro-invertebrate communities. The results from the pond enclosure 

experiment revealed that when the congenic C. carassius and C. auratus were in 

sympatry, there were minimal and non-significant shifts in their trophic positions and 

somatic growth rates when tested against their allopatric treatments. This was contrary to 

the prediction developed from the results of the tank aquaria experiment in which strong 

divergence in their niches would develop when they were in sympatry. Instead, there were 

considerable increases in trophic position and trophic niche size of both C. carassius and 

C. auratus when they were in sympatry with C. carpio, although this shift was insufficient 

for their growth rates to be similar to levels measured in their allopatric treatments. 

Moreover, for C. auratus, this increase in trophic niche size in sympatry resulted in some 

niche convergence with C. carpio, with this not predicted from the allopatric treatment 

where their niches were in significantly different isotopic space. Again, this conflicted 

with the prediction that sympatry would result in decreased niche sizes and niche 

divergence. Hence, the results of their allopatric and sympatric treatments in pond 

enclosures provided no evidence that the presence of C. auratus impacted the trophic 

niche size, trophic position and growth rate of C. carassius, aligning with Tarkan et al. 

(2009), who also found no differences in C. carassius growth rates between allopatric 

populations and populations sympatric with C. auratus in the wild. These results are 

despite the outcome from the tank aquaria revealing that their competitive interactions 

were asymmetrical, with C. carassius as a poor competitor in C. auratus presence when 

food availability was restricted. 

As congeners, C. carassius and C. auratus are functionally similar, suggesting that 

sharing food resources could result in high competitive interactions that, if asymmetric, 

could result in depressed growth rates of C. carassius. However, the growth rates of both 

species were similar between their allopatric and sympatric contexts, suggesting that 

although they were occupying similar niches, their food resources were not limiting or 

were at least sufficient to maintain their somatic growth rates. This meant there was no 

requirement for developing, for example, larger niche sizes in sympatry to reduce the 

intensity of their interactions (Svanbäck and Bolnick, 2007; Svanbäck et al., 2008; 

Bolnick et al., 2010). This contrasts with Copp et al. (2010) who found feral C. auratus 

growth rates were greatest in sympatry with C. carassius, whereas C. carassius growth 
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was similar in allopatry and sympatry. Copp et al. (2010) also found differences in body 

condition and fecundity of the fishes, with higher values in both for C. carassius in 

sympatry. Co-habitation may thus lead C. carassius to allocate greater growth in weight, 

although here only growth in length was assessed.  

By contrast, C. carpio had a strong trophic influence on both Carassius fishes in 

sympatry, with their presence resulting in significant increases in Carassius trophic 

position and trophic niche size. These results were contrary to the niche variation 

hypothesis (Van Valen, 1965) that predicted that the Carassius niche sizes would reduce 

in C. carpio presence due to the competitive effects resulting in greater diet specialisation 

(Van Valen, 1965). Nevertheless, the significant decrease in C. carassius and C. auratus 

growth rates when in sympatry with C. carpio, despite their increases in trophic niche 

size and trophic position, indicated that these shifts were insufficient to maintain their 

growth rates at levels observed in their allopatric treatments.  

 

2.5.3. Experimental wild ponds 

Given the outputs of the pond enclosure experiment, co-habitation of C. carassius and C. 

carpio in wild ponds was predicted to result in trophic niche divergence between the 

species. Indeed, this prediction was supported, with no evidence that the trophic niches 

of the two fishes overlapped in either allopatry or sympatry. The outcomes of the trophic 

interactions between these species were thus broadly similar to those of the pond 

enclosures, but also with some important differences.  

In the pond enclosure experiment, C. carpio had a strong influence on both Carassius 

species in sympatry, with their presence resulting in significant increases in Carassius 

trophic position and niche size. In the wild ponds, C. carassius did increase in trophic 

position when sympatric, but this change was not statistically significant. However, the 

trophic niche size of C. carassius was significantly increased and, as in the enclosures, 

this result was contrary to the niche variation hypothesis that predicted that the C. 

carassius niche size would reduce in C. carpio presence due to the competitive effects 

resulting in greater diet specialisation (Van Valen, 1965). In fact, in the wild ponds the 

opposite was apparent, with C. carpio niche size significantly reduced when compared to 

allopatry and significantly smaller than C. carassius in sympatry, indicating a switch to a 

more specialised diet. Even though C. carassius and C. carpio occupied significantly 
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different trophic niches, with no niche sharing indicated in either context, significant 

changes were detected in the trophic niche sizes of both fishes in response to their co-

habitation, with this potentially reducing the intensity of any inter-specific interactions 

(Svanbäck and Bolnick, 2007; Svanbäck et al., 2008; Bolnick et al., 2010). A possible 

explanation for these patterns in niche size alterations between the two approaches is that 

in the wild ponds, the fish were able to utilise both littoral and open water habitats, 

whereas in the enclosures, these were all located in the open water habitats and so the 

fishes might have had restricted access to a wide range of food resources.  

Some significant differences in the corrected stable isotope data were detected between 

the C. carpio fishes added in 2015 (300 days) and those added in 2016 (125 days). Trophic 

diversifying effects have been recorded among members of a single species in response 

to competition, where individuals may mitigate the effects of intra-specific competition 

by switching to use alternative resources not used by conspecifics (Svanbäck and Bolnick, 

2007), which may explain this difference. Additionally, as immature fishes rapidly 

develop and grow they are able to feed on progressively larger and a broader range of 

prey, and are thought to alter their resources and ecological niches to heighten their 

chances of survival through their early life stages (King, 2005). Cyprinus carpio 

demonstrate major dietary shifts through ontogeny from newly hatched larvae through 

development into juvenile stages and adulthood (Vilizzi, 1998; Nunn et al., 2007; King, 

2005). For example, they have been shown to shift from feeding on zooplankton, such as 

copepod nauplii, in larval stages (Nunn et al., 2007), to broadening their diet and feeding 

on a range of microfauna and small macro-invertebrates, such as Chironomidae larvae, 

as juveniles (King, 2005). The length differences between the 2015 and 2016 cohorts may 

hence have promoted this division in resources use, via intra-specific competition and/or 

through selecting different prey due to ontogenetic dietary changes encouraged by their 

differences in size, and so the resulting isotopic position of the allopatric 2016 C. carpio 

fish may have been different if the 2015 fish were not present. 

 

2.5.4. Ecological consequences for C. carassius from invasive fishes 

Tarkan et al. (2011) suggested that C. carassius may be adversely affected under the 

conditions of climate change predicted for South East England (Hulme et al., 2002), as 

these circumstances are expected to exacerbate the potential impact of non-native C. 
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auratus, given their recruitment success is positively correlated with temperature 

(Morgan et al., 2004). Indeed, in the tank aquaria SGR and IL of C. carassius was more 

suppressed by the presence of C. auratus at the higher temperature. Additionally, Britton 

et al. (2010a) suggested that the establishment and subsequent invasion of C. carpio 

would benefit substantially from the predicted warming temperatures of 2050 in England 

and Wales. Carassius carassius might also derive some benefit from the warmer climatic 

temperatures predicted, as the onset of their growth season might be earlier in the year 

and last for longer periods (Ruiz-Navarro et al., 2016a, b). Nevertheless, C. carpio and 

C. auratus would then also have an earlier seasonal onset of growth and therefore an 

advantage over C. carassius in having greater opportunity to monopolise food 

availability, to grow larger more rapidly and therefore intensify inter-specific 

competition.  

Cyprinus carpio is a highly invasive fish at a global scale and has caused negative 

impacts across a range of ecological indicators (e.g., Lougheed et al., 1998; Parkos et al., 

2003; Koehn, 2004; cf. Section 1.5). Regarding their trophic consequences, Jackson et al. 

(2012) reported that invasive C. carpio reduced the trophic position of another invasive 

species, the red swamp crayfish Procambarus clarkii, through P. clarkii shifting their diet 

to avoid resource sharing with C. carpio and thus minimising their competitive 

interactions. Tran et al. (2015) revealed that when C. carpio were in sympatry with 

topmouth gudgeon Pseudorasbora parva, P. parva also reduced their niche size and their 

trophic position. In the pond experiments, however, these outcomes were not apparent; 

rather than decreased niche size and divergence from C. carpio, as per P. parva and P. 

clarkii, the Carassius species both increased their niche size and trophic position, and in 

the case of C. auratus, this resulted in niche convergence with C. carpio, something not 

predicted from allopatric treatments. Given that this was insufficient to maintain their 

growth rates at levels observed in their allopatric treatments in the pond enclosures then 

it suggests that for native populations of C. carassius, negative consequences will be 

incurred from introductions of C. carpio in terms of their feeding and growth rates, 

whereas the negative consequences from invasive C. auratus appear to be primarily 

related to the loss of genetic integrity through hybridisation (Hänfling et al., 2005; cf. 

Section 1.5). It should be noted, however, that C. carassius hybrids with C. carpio do also 

occur. Sayer et al. (2011) observed C. carassius hybrids with C. auratus and C. carpio in 

20 % of the 51 ponds they studied and in some cases the fish assemblage was dominated 
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by hybrids, suggesting that the C. carassius populations were in the process of being 

extirpated through this process. Therefore, hybridisation threats from C. carpio should 

not be disregarded in any conservation efforts and should be considered in conjunction 

with the ecological impacts that can develop, as revealed here. 

 

2.5.5. Issues with stable isotope analysis and growth rate analyses resulting 

from the experiments 

Whilst the experiments were successful in revealing some trophic and growth 

consequences arising from the interactions of the three fishes, there were also a number 

of potentially confounding issues apparent throughout that could not be easily solved 

using current knowledge in the literature. These are outlined below.  

Stable isotope turnover, the rate of change of stable isotopes that occurs within tissues 

when a consumer changes its diet, is affected by multiple factors that include the type of 

tissue, the body size of the consumer and their growth rate (Martínez del Rio et al., 2009; 

Weidel et al., 2011; Thomas and Crowther, 2014; Vander Zanden et al., 2015). Thus, 

when a dietary shift in a consumer species occurs, the stable isotopes within the tissues 

gradually change to approach the isotopic values of the new diet. Therefore, it is important 

that sufficient time passes so that they fully equilibrate before being used within trophic 

studies to avoid any misinterpretation (cf. Section 1.4.1). The pond enclosure experiment 

ran for 100 days and the 2016 fishes in the wild pond experiment were left for 125 days 

on the basis that this would be an adequate time-frame to allow muscle tissue to undergo 

isotopic turnover and so indicate the trophic ecology of the fishes (Jackson et al., 2013). 

However, variability in turnover rates has been demonstrated between tissues of 

freshwater fishes (e.g., McIntyre and Flecker, 2006; Church et al., 2009; Carleton and 

Martínez del Rio, 2010) and although there have been relatively fast turnover rates (< 3 

months) reported for fish muscle tissue (Buchheister and Latour, 2010; Jardine et al., 

2011), turnover rates specifically relating to the cyprinid fishes used in the Chapter are 

currently lacking from the literature.  

General equations are available to facilitate the estimation of turnover rates where 

specific values are unavailable (e.g., Buchheister and Latour, 2010; Thomas and 

Crowther, 2014; Vander Zanden et al., 2015), however, the validity and wider 

applicability of these equations have yet to be demonstrated beyond the studies they were 
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generated within. Xia et al. (2013a, b) measured turnover in the cyprinid grass carp 

Ctenopharyngodon idellus, of starting mass 52.7 ± 0.7 g, and estimated δ 15N turnover in 

muscle tissue to be 68 days (Xia et al., 2013b) and 53 days for δ 13C (Xia et al., 2013a). 

If these estimates are similar to the turnover rates occurring within the dorsal muscle 

tissues of the fishes used here, and as consumers are generally considered to have 

equilibrated to their food resources in four to five half-lives, i.e. 94 to 97 % isotopic 

replacement in their tissues (Hobson and Clark, 1992), then for δ15N, 100 days would 

only be 1.5 half-lives and for δ13C, 1.9 half-lives. Note, however, that turnover rates are 

influenced by body size and metabolic rates, and the starting mass of the fish used by Xia 

et al. (2013a, b) were considerably higher than those used here. In entirety, this suggests 

there is an outstanding requirement for knowledge on stable isotope turnover rates in 

cyprinid fishes.  

Another factor critical to the interpretation of stable isotope data is the isotopic 

discrimination (Martínez del Rio and Wolf, 2005), which is the step-wise enrichment that 

occurs between trophic levels, amongst consumers and their resources (Boecklen et al., 

2011; Section 1.4.1; Fig. 2). The commonly cited value of 3.4 ± 0.98 ‰ for δ15N (DeNiro 

and Epstein, 1981; Minagawa and Wada, 1984; Post, 2002), was applied here to calculate 

the trophic positions of the fishes in the pond experiments. However, studies increasingly 

suggest that discrimination can vary between species, ages, diets and tissues (Brush et al., 

2012; Locke et al., 2013). Thus, the use of 3.4 ‰ in the calculation of their trophic 

positions could be inappropriate and misleading. Indeed, Sweeting et al. (2007a) suggest 

that a nitrogen discrimination of 3.15 ‰ could be used for fishes generally, although Mill 

et al. (2007) recorded a discrimination of 5.25 ‰ for 15N, demonstrating the variation that 

exists among fishes. Application of the correct discrimination factor is particularly 

relevant within this Chapter for the comparisons between the allopatric and sympatric 

contexts where the Carassius fishes shifted their trophic positions in response to the 

presence of C. carpio. However, if the discrimination factors of these fishes are indeed 

species-specific, then the current interpretation of this data may be misguided and thus 

may require some adjustment.  

Dorsal white muscle is the typical tissue used within trophic studies of fishes (Pinnegar 

and Polunin, 1999; Perga and Gerdeaux, 2005) and hence it was the tissue of choice for 

the stable isotope analyses completed here (cf. Section 1.4.1). This resulted in the 

destructive sampling of all the fishes. This is common practise for sample collection, as 
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many species are unsuitable for the use of biopsy plugs that are able to excise muscle 

tissue without the animal being sacrificed (Tronquart et al., 2012). This supposed 

requirement for destructive sampling to harvest appropriate tissues limits the utility of 

this method in research programmes on threatened or protected species and in situations 

where non-destructive sampling is necessary, such as in mark-recapture and tracking 

studies (Sanderson et al., 2009; Tronquart et al., 2012; Huang et al., 2013). Recently, 

there has been a shift towards more sustainable non-lethal sampling and the use of tissues 

such as fin and scales that can be removed and the fish returned alive (e.g., Jardine et al., 

2005; Kelly et al., 2006; Hanisch et al., 2010; Jardine et al., 2011; Tronquart et al., 2012). 

As significant differences and strong correlations in isotopic signatures have been 

detected between fish tissues, there exists a requirement for the conversion of data to 

muscle values. Currently there exist few studies on discrimination factors of cyprinid 

fishes (although see Tronquart et al., 2012) and none that provide tissue-conversion 

equations for scales, for which stable isotope data in general are limited. This paucity of 

information is currently limiting the progression of the use of such non-lethally sampled 

tissues that would benefit the study of cyprinids specifically as well as other fishes. 

The prediction tested in the Chapter was designed from Tarkan et al. (2009), whose 

growth analyses were based on small sample sizes, that might have impacted precision 

(e.g. Kritzer et al., 2001), and there was no quantification of ageing error via validation 

methods, with this potentially impacting ageing accuracy (e.g., Beamish and MacFarlane, 

1983; Campana, 2001; Francis et al., 2010). Thus, there were potential confounds in that 

study that require resolution more generally. Whilst work has been completed on the 

effects of different sampling strategies on mean length-at-age estimates (e.g. Goodyear, 

1995) and sample size on the precision of population parameters of reef fishes (Kritzer et 

al., 2001), similar information is not available for temperate cyprinid fishes (cf. Section 

1.4.1), such as those used within the Chapter.  

Consequently, the subsequent data chapters explore how the precision and accuracy of 

fish scale ageing could be improved in ecological studies, and how non-destructive 

sampling, such as the collection of fish scales, could be utilised for stable isotope analysis 

within trophic investigations. This would require knowledge on isotopic conversion 

factors between different tissues, species- and tissue-specific discrimination factors 

between the fish and their prey items, and the time taken for different fish tissues to reach 

isotopic equilibrium with their new diet, i.e. the turnover rate.  
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Chapter 3. Precision of the age-length increments of three cyprinid 

fishes: effects of fish number and sub-sampling strategy 

 

A version of this chapter was published as: 

Busst, G. M. and Britton, J. R., 2014. Precision of the age–length increments of three 

cyprinids: effects of fish number and sub-sampling strategy. Journal of Fish Biology, 

84(6), pp.1926-1939. 

 

3.1. Summary 

 

Scale ageing provides the basis of calculations on fish growth and productivity, and so it 

is important to understand how the number of fish aged and the scale sub-sampling 

strategies used can affect the precision of growth estimates. Here, their effects were tested 

on the precision of estimates of mean age-length increments from populations of roach 

Rutilus rutilus, dace Leuciscus leuciscus and chub Squalius cephalus from river fish 

communities in Eastern England. Regarding the number of fish analysed in each age 

group, for each species and mean length-increment-at-age, significant relationships were 

detected between sample size (n) and the coefficient of variation of the mean (CV𝑥), and 

the mean length-increment (𝑥) and measured variance (s2). These enabled calculation of 

the number of scales required for producing a mean length-increment-at-age according to 

n = a 𝑥b-2 CV𝑥-2. The number of scales required increased substantially as precision 

increased, but with little variation between species per age category. Ageing between 7 

and 12 scales per age group would thus provide estimates at 10 % precision. As the ages 

of fish are not known in advance of scale ageing, however, then the effect of scale sub-

sampling regime on precision was also tested using randomised strategies of 10 fish per 

5 mm length category, 5 per 5 mm, 3 per 5 mm, 10 per 10 mm, 5 per 10 mm and 3 per 10 

mm. These were randomly applied to the datasets and the consequences of the reduction 

in the number of scales for precision was determined using CV𝑥 = a0.5𝑥(b/2)-1n-0.5. When 

compared to no sub-sampling, ageing 3 fish per 10 mm always significantly reduced data 

precision whereas ageing 10 fish per 5 mm never significantly reduced precision. These 

outputs can thus be applied to the design of fish sampling protocols where age and growth 
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estimates are required, with the randomised sub-sampling strategy likely to be the most 

useful for this. 

 

3.2. Introduction 

 

Estimates of fish growth rates are important for understanding the fundamental processes 

and factors that influence fish and fisheries biology (Bagenal and Tesch, 1978; Francis, 

1990; Coggins and Pine, 2010). These data play key roles in addressing questions on basic 

ecological relationships whose outputs can then be used to underpin the management of 

fisheries specifically and aquatic ecosystems more generally (Beardsley and Britton, 

2012). The accuracy and precision of ageing fish from bony structures has received a lot 

of research attention, with studies emphasising the importance of ageing validation 

studies (Beamish and MacFarlane, 1983; Campana, 2001; Francis et al., 2010) and 

estimating measures of reader bias and precision (Campana et al., 1995, 2001; cf. Section 

1.3). Issues have also been highlighted in the consequences of inaccurate and imprecise 

ageing of bony structures, whether arising through reader error (Chang, 1982) or through 

difficulty of estimating age from that structure (cf. Section 1.3), such as for recaptured 

stocked fish that spent their early life stages on a culture site (Britton et al., 2004a; Britton, 

2010). A further consideration is the effect of sampling strategy and sample size on the 

precision and accuracy of age-length parameter estimates (Goodyear, 1995; Garner, 

1997). For example, Kritzer et al. (2001) revealed that the growth parameters of four reef 

fishes reached precisions of 10 % when 75 fish were aged per population (cf. Section 1.3).  

Populations of cyprinid fish in temperate lowland rivers are often characterised by 

relatively slow-growing species comprising individuals that can sometimes live for over 

20 years (Cragg-Hine and Jones, 1969; Mann, 1973, 1974, 1976; Britton, 2007; Britton 

et al., 2013). Their lengths-at-age are often characterised by significant individual 

variation within and between age groups (Britton, 2007). This often results from variation 

in length at age 1, through multiple spawning strategies, as observed in chub Squalius 

cephalus (Nunn et al., 2002), but with consistent annual length increments thereafter 

(Bolland et al., 2007). In England and Wales, these populations of cyprinid fishes also 

have high recreational value for catch and release angling (e.g., Cowx and Broughton, 

1986; Hickley and Chare, 2004; Britton et al., 2013; cf. Section 1.3). Thus, stock 
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assessment exercises of these fisheries that involve the production of age and growth 

estimates are reliant on using scales, for their collection is non-destructive (Britton, 2007). 

Whilst work has been completed on the effects of different sampling strategies on mean 

length-at-age estimates (e.g. Goodyear, 1995) and sample size on the precision of 

population parameters of reef fishes (e.g. Kritzer et al., 2001), similar information is not 

available for temperate cyprinid fishes present in recreational river fisheries. 

Consequently, the aim of this Chapter was to investigate the precision of mean age-length 

increments produced by scale ageing according to scale sample size and scale sampling 

strategy for populations of three cyprinid fishes. Outputs can be used subsequently for 

designing fisheries research programmes and stock assessment exercises. The objectives 

of the Chapter were thus to determine for each species: (1) the effect of the number of 

scales aged on the coefficient of variation (CV𝑥) of the mean age-length increment 

estimates; the relationships between the mean age-length increment estimates and 

measured variance; and the maximum number of fish per age group required to be aged 

from scales to produce a length increment estimate at a specified level of precision 

(according to CV𝑥); and (2) the effect of randomised scale sampling strategies (hereafter 

referred to as sub-sampling strategies) on the number of scales aged per strategy and the 

precision of the mean annual length increments.  

 

3.3. Materials and methods 

 

3.3.1. Fish age and growth data 

The age and growth data used throughout the Chapter were generated from riverine fish 

population monitoring surveys completed during summer periods between 2005 and 2006 

in Eastern England. Sampled by electric fishing or seine netting (depending on river 

characteristics), the surveys mainly comprised catches of roach Rutilus rutilus, dace 

Leuciscus leuciscus and S. cephalus, and were assumed to capture representative samples 

of these species at lengths above 80 mm (approximately > 1 year old for these species). 

Following their capture, the fish were identified to species, measured (fork length, nearest 

mm) and between 3 and 5 scales removed from the area of the body below the base of the 

dorsal fin and above the lateral line and stored in a paper envelope for subsequent 

analysis. The fish were then returned alive to the water. 
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In the laboratory, the scales were aged on a projecting microscope (at x 48 

magnification) and the quality control procedure described in Britton et al. (2013) was 

utilised. This meant that all scales were aged by a single primary reader and then a sub-

set of 10 % of the scales were chosen at random and read by a secondary reader who had 

no prior knowledge of the primary readers’ age estimates. If any disagreements between 

readers were found, the scale(s) were re-viewed by both in order to reach a consensus. 

Following ageing, the distances from the scale focus to the scale edge, and focus to each 

annulus, were measured from one scale per individual fish to enable back-calculated 

lengths-at-age to be determined (cf. Section 1.1; Fig. 1). This was completed using the 

scale proportional method, derived from the ‘scale proportional’ hypothesis (Francis, 

1990):  

(1) f ( Li ) = ( Si / Sc ) f ( Lc ) 

where, L is the fish length, S is the scale radius, the subscript c indicates those values at 

capture, the subscript i indicates those values at formation of the ith annulus and f is the 

mean scale radius for fish at length L, determined from regression of S and L. Given the 

relatively high inter-population variation in the back-calculated lengths-at-age (cf. 

Hickley and Dexter, 1979; Britton, 2007), rather than using estimated lengths in 

subsequent analyses, annual length increments were used as these were less influenced 

by the fish starting length at the beginning of the growth year.  

 

3.3.2. Effects of the number of fish aged on precision 

To determine the effects of the number of fish aged on precision, back-calculated length-

at-age data were utilised from 43 sampled fish populations, each from a different river in 

Eastern England, with each being surveyed only once. The initial analyses indicated 

sample sizes (n) were highest for length increments produced between the age of 1 and 2 

years (hereafter referred to as the length-increment at age 1) and tended to decrease with 

age (cf. Section 3.4). For R. rutilus and S. cephalus, the number of fish used at each age 

remained relatively high up to the age of 7 years (i.e. the length-increment at age 6) but 

reduced thereafter, with this being age 5 years (i.e. length-increment at age 4) for L. 

leuciscus. Thus, the increments produced between age 1 and 6 were determined for 

relevant populations of R. rutilus and S. cephalus, and 1 and 4 for L. leuciscus. Note that 

the first growth increment (0 to 1 year) was not used as these can be difficult to compare 
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between years and populations due to, as previously mentioned, annual variability in 

spawning times in temperate environments that impacts the length of the first growth 

season (Nunn et al., 2002; Bolland et al., 2007). 

For each age per population and species, the following metrics were determined: 

number of fish aged (n), mean body length-increment (𝑥), standard error (SE), variance 

(s2) and coefficient of variation. The coefficient of variation that was calculated and used 

in subsequent analyses was the coefficient of variation of the mean (CV𝑥), determined 

from (SE/𝑥), rather than the coefficient of variation of samples (SD/𝑥, where SD is the 

standard deviation). This is because the coefficient of the mean is a function of the mean 

body length-increment-at-age (𝑥), the number of scales used to produce the mean (n) and 

the variance (s2) in the length increments used to produce the mean (Cyr et al., 1992). 

Thus, for a given sample, CV𝑥 can be adjusted by changing values of n and s2, so 

providing the ability to determine n according to s2 and CV𝑥 (Cyr et al., 1992). 

The first step was to determine the mean length-increment-variance relationship from 

(Cyr et al., 1992; Garner, 1997): 

(2) s2 = a𝑥b  

where the coefficients a and b were determined by least squares linear regression using 

the log10-transformed relationship of mean length and variance and following this, 

unbiased values of parameter a were de-transformed. In combination, this provided the 

coefficients a and b for use in estimating CV𝑥 according to (Cyr et al., 1992): 

(3) CV𝑥 = a0.5 𝑥(b/2)-1 n-0.5 

where the rearrangement enabled the calculation of the number of scale samples required 

to give a mean length-increment-at-age according to changing levels of CV𝑥 (i.e. 

precision) (Cyr et al., 1992; Garner, 1997) from: 

(4) n = a 𝑥b-2 CV𝑥-2  

For presentation purposes, precision levels (i.e. CV𝑥) were then multiplied by 100 to 

enable precision to be expressed as percentages (i.e. CV𝑥 values of 0.01 to 0.10 convert 

to 1 to 10 %). The mean lengths used in Eq. (4) were the range of mean-length-

increments-at-age derived from the populations of the species. The required numbers of 
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scales displayed for an age group and species was thus the maximum calculated for that 

age according to the mean length-increment range. 

 

3.3.3. Effects of random scale sub-sampling strategies on precision 

To determine how randomised scale sub-sampling strategies influence the subsequent 

precision of the mean annual length-increment estimates, the following strategies were 

tested: 10 fish per 5 mm length category, 5/5 mm, 3/5 mm, 10/10 mm, 5/10 mm and 3/10 

mm. These strategies were applied to a sub-set of the dataset used to test the effects of 

scale sample size (Table 9). A pre-requisite of their selection was that sub-sampling had 

not been applied during their collection in the field. These data were also supplemented 

by data for each species from the River Wensum, Norfolk, which was sampled in 1983, 

1986, 1991, 1994, 2005 and 2006 (Table 9). The rationale for this was that these samples 

provided increased variation in overall sample numbers, lengths-at-age and age range for 

each species across the six sampling occasions. For each population used, the data used 

from each individual fish were length-at-capture, estimated age and estimated final annual 

length-increment.  

For each fish population, the first step was to generate and store a random number for 

each individual fish. The fish were then sorted by length and separated into their sub-

sampling increments, i.e. either 5 mm length classes (e.g. 51 to 55 mm, 56 to 60 mm etc.) 

or 10 mm length classes (e.g. 51 to 60 mm, 61 to 70 mm etc.). Within these increments, 

the fish were sorted again, this time by their random number (in ascending order). It was 

the output of this final sorting that was used to apply the sub-sampling strategy. For 

example, to apply 3/10 mm, the three fish selected per 10 mm length-increment were 

those with the three lowest random numbers. The subsequent output was the number, age 

and the final annual body length-increment for all of the fish in the original sample, and 

then the number, age and final annual body length-increment of the sub-sampled fish in 

each sub-sampling strategy. The sub-sampled data for each population was then sorted to 

provide the number and length-increment of fish per age group and sub-sampling 

strategy. These data were then applied to Eq. (3) to provide the CV𝑥 for each age 

according to the original sample and each sub-sampling strategy. To compare how CV𝑥 

changed according to each sub-sampling strategy, a generalised linear model (GLM) was 

constructed for each species, as the data were not normally distributed. The dependent 
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variable was CV𝑥, the independent variable was scale sampling strategy and the covariate 

was age, as it was apparent that CV𝑥 was variable according to age. Model outputs were 

the mean adjusted values (for age) of CV𝑥 per scale-sampling strategy and the 

significance of their pairwise comparisons with Bonferroni adjustments for multiple 

comparisons. All statistical analyses were completed using IBM SPSS Statistics (version 

22.0).  
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Table 9. The number (n), length and age range of the fish samples used for testing the effects of sub-sampling scales on the precision of mean length-

increment estimates. 

 

  R. rutilus L. leuciscus S. cephalus 

River n Length range 

(mm) 

Age range 

(years) 

n Length range 

(mm) 

Age range 

(years) 

n Length range 

(mm) 

Age range 

(years) 

Stour  293 61 - 321 1 - 9 174 72 - 241 1 - 7 111 57 - 487 1 - 11 

Blackwater 258 60 - 350 1 - 9 121 83 - 260 1 - 7    

C & B Canal* 305 60 - 293 1 - 11       

Colne 340 61 - 335 2 - 14 113 53 - 218 1 - 7 197 80 - 482 2 - 18 

Gipping 276 56 - 319 2 - 12    156 60 - 522 2 - 15 

Waveney 307 24 - 218 1 - 5 103 54 - 180 1 - 5 64 45 - 529 1 - 14 

Wensum (1983) 150 60 - 364 1 - 13 65 84 - 265 1 - 7 184 87 - 510 1 - 16 

Wensum (1986) 75 77 - 335 1 - 11 64 72 - 260 1 - 9 94 174 - 500 3 - 14 

Wensum (1991) 108 54 - 376 1 - 12 56 106 - 258 2 - 7 331 59 - 521 1 - 17 

Wensum (1994) 124 46 - 347 1 - 10 89 62 - 243 1 - 6 254 52 - 515 1 - 18 

Wensum (2005) 63 71 - 321 1 - 14 81 71 - 252 1 - 7 73 75 - 537 1 - 17 

Wensum (2006) 145 67 - 309 1 - 10 68 82 - 247 1 - 6 86 67 - 551 1 - 15 

*Chelmer and Blackwater Canal  
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3.4. Results 

 

3.4.1. Effects of the number of fish aged on precision 

There was a general decrease in the annual body length-increments with age in the three 

species (Table 10). Coefficients of variation of the mean length-increments by age varied 

between 0.01 and 0.13 (Table 10), with CV𝑥 significantly increasing as sample sizes 

decreased (Table 11). The relationships of mean length-increment and measured variance 

were also significant (Table 12). Use of the de-transformed a and b coefficients from 

these relationships within Eq. (4) enabled the number of scales, and therefore individuals, 

required per age and species to provide an estimate of mean length-increment at different 

levels of precision. This revealed a substantial increase in the maximum number of scales 

required as precision increased (Table 13). For example, for R. rutilus at 10 % precision, 

a maximum of beween 7 and 10 scales were required, increasing to between 26 and 49 

scales at 5 % (Table 13A). Between the species, the maximum number of scales required 

at each age and level of precision was similar; at 10 % between 7 and 10 scales were also 

required for L. leuciscus, and between 10 and 12 for S. cephalus (Table 13). 

 

3.4.2. Effects of scale sub-sampling strategy on precision 

When the sub-sampling strategies were applied to each dataset, their initial consequence 

was to significantly reduce the number of fish used in subsequent analyses when 

compared to the original sample (GLM, P < 0.01 in all cases; Fig. 6). As the fish increased 

in length with age, this affected the number of fish captured at that age, with no 

populations where there were age groups with more than four fish above the age of 7 

years for R. rutilus and 6 years for L. leuciscus. For S. cephalus, the maximum age where 

there was more than four fish per age group was also 7 years except for two populations 

where this was 11 years. In all models, the effect of age as a covariate on the number of 

fish aged was significant (P < 0.01).  

The GLM revealed that sub-sampling always decreased the precision of the mean 

annual length-increments when compared to the original data (as indicated by increasing 

values of CV𝑥 ), but this reduction was only significant for some sub-sampling regimes 

(P < 0.01; Fig. 7). This was species-dependent; for R. rutilus, only 10/5 mm was not 

significantly different to the original data (P > 0.05, Fig. 7A), for L. leuciscus 3/10 mm 
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was the only significantly different sub-sampling strategy (P < 0.01; Fig. 7B), and for S. 

cephalus, 3/5 mm, 5/10 mm and 3/10 mm were all significantly different to the original 

data (P < 0.01; Fig. 7C). In all models, the effect of age as a covariate on precision was 

significant (P < 0.01).  

 

Table 10. The number of populations of R. rutilus (A), L. leuciscus (B) and S. cephalus 

(C) per age category used to determine the effects of scale sample size on the precision 

of mean annual body length-increments and their range in number (n), mean length-

increment, standard error (SE) and the coefficient of variation of the mean (CV𝒙).  

A)   

Age category Populations n Mean length- 

increment (mm) 

SE CV𝑥 

1 43 4 - 424 27 – 52 0.5 - 2.8 0.01 - 0.10 

2 28 4 - 319 24 – 46 0.6 - 5.3 0.01 - 0.10 

3 28 4 - 319 21 – 51 0.7 - 4.3 0.01 - 0.10 

4 23 4 - 231 18 – 40 0.8 - 5.4 0.02 - 0.11 

5 20 4 - 147 18 – 37 0.9 - 3.9 0.02 - 0.12 

6 12 4 - 103 18 – 30 1.3 - 4.1 0.02 - 0.11 

B)   

Age category Populations n Mean length- 

increment (mm) 

SE CV𝑥 

1 33 4 - 201 43 - 65 0.7 - 3.6 0.01 - 0.09 

2 19 4 - 173 33 - 51 0.8 - 3.2 0.02 - 0.09 

3 16 4 - 127 26 - 40 1.1 - 4.6 0.02 - 0.12 

4 15 4 - 101 20 - 35 0.7 - 2.9 0.02 - 0.12 

C)   

Age category Populations n Mean length- 

increment (mm) 

SE CV𝑥 

1 26 4 - 264 33 - 61 0.8 - 9.6 0.01 - 0.09 

2 16 4 - 264 30 - 60 0.9 - 6.0 0.01 - 0.11 

3 16 4 - 239 34 - 59 0.8 - 6.1 0.02 - 0.12 

4 15 4 - 227 31 - 58 0.9 - 6.6 0.02 - 0.12 

5 13 4 - 215 31 - 53 0.9 - 4.8 0.02 - 0.13 

6 13 4 - 190 26 - 48 0.9 - 4.7 0.03 - 0.13 
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Table 11. Outputs of regressions (power) of the relationships between the number of fish 

aged in a population and the corresponding coefficient of variation of the mean length-

increment (CV𝒙) per species and age category for populations of R. rutilus (A), L. 

leuciscus (B) and S. cephalus (C). 

 

A)   

Age category R2 ANOVA  

1 0.82 F1,41 = 187.2, P < 0.01 

2 0.79 F 1,26 = 118.8, P < 0.01 

3 0.87 F 1,26 = 201.3, P < 0.01 

4 0.86 F 1,21 = 199.3, P < 0.01 

5 0.73 F 1,18 = 44.1, P < 0.01 

6 0.76 F 1,10 = 25.1, P < 0.01 

 

B)   

Age category R2 ANOVA  

1 0.79 F 1,31 = 124.3, P < 0.01 

2 0.71 F 1,17 = 56.2, P < 0.01 

3 0.61 F 1,14 = 27.8, P < 0.01 

4 0.59 F 1,13 = 15.7, P < 0.01 

 

C)   

Age category R2 ANOVA  

1 0.83 F 1,24 = 92.4, P < 0.01 

2 0.72 F 1,14 = 85.4, P < 0.01 

3 0.91 F 1,14 = 107.2, P < 0.01 

4 0.89 F 1,13 = 91.6, P < 0.01 

5 0.71 F 1,11 = 39.4, P < 0.02 

6 0.89 F 1,11 = 31.3, P < 0.01 
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Table 12. Outputs of linear regressions of the relationships between the age category of 

log10(mean length-increment) and log10(measured variance) per species for populations 

of R. rutilus (A), L. leuciscus (B) and S. cephalus (C), where predicted variance (s2) = 

a𝒙b. 

  

A)     

Age category R2 ANOVA  a b 

1 0.65 F 1,41 = 14.4, P < 0.01 0.13 1.59 

2 0.61 F 1,26 = 18.8, P < 0.01 0.16 1.49 

3 0.59 F 1,26 = 23.8, P < 0.01 0.14 1.51 

4 0.60 F 1,21 = 9.1, P < 0.01 0.12 1.47 

5 0.63 F 1,18 = 22.8, P < 0.01 0.16 1.39 

6 0.45 F 1,10 = 5.1, P < 0.05 0.25 1.38 

 

B)     

Age category R2 ANOVA a b 

1 0.69 F 1,31 = 27.3, P < 0.01 0.07 1.72 

2 0.49 F 1,17 = 4.1, P < 0.05 0.11 1.68 

3 0.51 F 1,14 = 7.8, P < 0.01 0.16 1.52 

4 0.53 F 1,13 = 8.9, P < 0.01 0.10 1.69 

 

C)     

Age category R2 ANOVA  a b 

1 0.66 F 1,24 = 12.4, P < 0.01 0.28 1.44 

2 0.62 F 1,14 = 10.2, P < 0.01 0.20 1.51 

3 0.61 F 1,14 = 9.9, P < 0.01 0.19 1.49 

4 0.63 F 1,13 = 11.2, P < 0.01 0.13 1.53 

5 0.49 F 1,11 = 9.4, P < 0.02 0.25 1.49 

6 0.51 F 1,11 = 11.3, P < 0.01 0.18 1.56 
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Table 13. The maximum number of fish (n) required per age category for estimates of 

mean length-increment according to precision levels (as defined by CV𝒙 × 100), where 

the maximum was the highest estimate from the mean length-increment range in Table 

10 for populations of R. rutilus (A), L. leuciscus (B) and S. cephalus (C).  

 

 

A)      CV𝑥  × 100 
 

Age category a b 1 2.5 5 7.5 10 

1 0.31 1.59 803 128 32 14 8 

2 0.33 1.49 653 104 26 12 7 

3 0.42 1.51 945 151 38 17 9 

4 0.45 1.47 973 156 39 17 10 

5 0.58 1.39 995 159 49 18 10 

6 0.63 1.38 1050 168 42 19 10 

  

 

 
    

  

B)  CV𝑥  × 100 
 

Age category a b 1 2.5 5 7.5 10 

1 0.19 1.72 663 106 27 12 7 

2 0.26 1.68 849 136 34 15 8 

3 0.51 1.52 1068 171 43 19 11 

4 0.25 1.69 988 158 40 18 10 

  

 

 
    

  

C)  CV𝑥  × 100 
 

Age category a b 1 2.5 5 7.5 10 

1 0.71 1.44 1002 160 40 18 10 

2 0.58 1.51 1096 175 44 19 11 

3 0.63 1.49 1043 167 42 19 10 

4 0.52 1.53 1035 166 41 18 10 

5 0.61 1.49 1059 172 42 19 11 

6 0.51 1.56 1216 195 49 22 12 
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Figure 6. The mean adjusted number of fish aged per scale sub-sampling strategy for R. 

rutilus (A), L. leuciscus (B), and S. cephalus (C); values were derived from the 

generalised linear models where the effect of age on the number of fish aged was the 

covariate; ‘original’ represents the scale sample with no sub-sampling applied; 

*significantly different to the original at P < 0.01. Error bars represent standard errors. 
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Figure 7. The mean adjusted precision (CV𝒙) of estimated mean length-increment per 

scale sub-sampling strategy for R. rutilus (A), L. leuciscus (B) and S. cephalus (C); values 

were derived from the generalised linear models where the effect of age on precision was 

the covariate; ‘original’ represents the scale sample with no sub-sampling applied; 

*significantly different to the original at P < 0.01. Error bars represent standard errors. 
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3.5. Discussion 

 

Scale sample size had substantial effects on the precision of body length-increment 

estimates at age, with increased precision in samples that aged greater numbers of scales, 

and therefore fish. Randomised scale sub-sampling strategies had significant 

consequences for the precision of subsequent length-increment estimates at age. The sub-

sampling regimes which caused the greatest reductions in the number of scales aged 

resulted in the highest losses of precision.  

The outputs of the effects of the numbers of scales aged have utility in the analysis of 

archived scale records when retrospective age and growth analyses are to be completed 

(cf. Section 1.4). The outputs suggest that achieving 10 % precision for the mean length-

increment estimates for the majority of age groups present in riverine populations of these 

fishes should be broadly achievable in most studies and would thus require between 7 and 

12 fish to be aged per age group. Obviously, where increased precision is necessary, the 

number of fish scales analysed would be increased accordingly. Note that when users 

apply this option to the ageing of their scale samples, it is recommended that between 7 

and 12 fish are aged in each age class, where feasible, rather than ageing a total of between 

7 and 12 older fish and relying on the back-calculated lengths of these fish to satisfy the 

precision estimates in the lower age groups. This should then avoid issues in populations 

where ‘Lee’s phenomenon’ is apparent, i.e. the older fish are slower growing (Lee, 1912).  

Arguably, of the two methods utilised here, it is the outputs of the effects of the 

randomised scale sub-sampling that has the greatest utility to fish biologists. This is 

because they can be applied to both the scenario outlined above, given that the ages of 

fish are not known in advance of their analysis, and also in the design of new fish 

population sampling programmes and protocols. Application of a single, specific scale 

sub-sampling strategy is not being recommended, as this should be determined in relation 

to the overall sampling objectives, the resources available and the species concerned. 

However, where very precise data are required but sub-sampling is necessary then the 

outputs suggest the sub-sampling strategy applied should be selection of a random 10 fish 

per 5 mm, at least for R. rutilus.  

Throughout the Chapter, length-increments were used to derive the precision 

estimates. This contrasts to other studies, such as Kritzer et al. (2001), who used von 
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Bertalanffy growth parameters in conjunction with bootstrapping methodologies that 

provided simulated sample sizes between 25 and 1000. Here, with up to 43 riverine 

populations available per species and with sample numbers per population available of 

up to 424 fish, there was arguably little requirement for data simulation in this manner. 

The sample data were of sufficient size to enable generation of the precision estimates, 

with the underpinning calculations from Eq. (2) indicating significant relationships 

between the variables for each age and species. Moreover, length-increments at age were 

used in preference to von Bertalanffy growth model parameters, in part this was due to 

Živkov et al. (1999) who suggested that for many populations, ‘L infinity’ (L∞), the 

asymptotic length at which growth is zero, has little biological value as growth rates do 

not approach the asymptote. In addition, use of length-increments at age enables a wider 

range of growth analyses to be completed and hypotheses to be tested without preventing 

subsequent use of the von Bertalanffy growth model where appropriate. 

The cyprinid fish species used here are capable of life spans of at least 8 years (L. 

leuciscus), with individual S. cephalus in some populations living to at least 20 years old 

(Mann, 1976; Britton, 2007; Beardsley and Britton, 2012). Here, however, the maximum 

age used was 7 years old (i.e. the length-increment produced between age 6 and 7 years). 

The only exception was for sub-sampling S. cephalus where two populations used some 

11 year old fish in the sub-sampling analysis. The minimal presence and use of older fish 

in the analyses was for two reasons. Firstly, with increasing age, the number and sample 

size of populations suitable for inclusion was reduced, and thus the addition of more age 

groups may have resulted in decreased significance of the underlying relationships of the 

parameters. Furthermore, the 16 age-length increments used across the three species in 

the scale number analyses revealed broadly similar requirements at 10 % precision, and 

so could arguably be considered as being representative of samples from all ages across 

their populations. Secondly, there remains an underlying question of ageing accuracy and 

issues of error in relation to the process of scale ageing (cf. Section 1.3). Although a 

quality control procedure was used during the ageing and measuring of the scales (cf. 

Section 3.3.1), separate validation studies were not completed, as per the 

recommendations of Beamish and MacFarlane (1983) and Campana (2001). The ability 

to accurately age scales from cyprinid fishes tends to decrease with age (Musk et al., 

2006), with this also observed in other species (e.g. Kimura and Lyons, 1991). Thus, had 

age groups above those used been included here then it is likely that there would have 
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been increased proportions of incorrectly aged scales, and thus incorrect length-increment 

estimates, within the calculations. It should be noted, however, that as per Kritzer et al. 

(2001), the purpose of this Chapter was not to assess this ageing accuracy, only to provide 

estimates of precision according to data collected from a process where ageing accuracy 

was not quantified. Nevertheless, the output that ageing between 7 and 12 fish per age 

group was required to produce a mean length-increment at a 10 % level of precision, 

across the three species, was consistent with Kritzer et al. (2001) who suggested ageing 

of 7 to 10 fish per age group was also suitable for estimating a variety of population 

parameters for reef fishes at 10 % precision. 

In summary, the effect of sub-sampling scales during the sampling of populations of 

cyprinid fishes can impact the precision of mean length-at-age data that are subsequently 

produced. Correspondingly, where sub-sampling strategies are utilised, or indeed small 

sample sizes are collected in field studies, due to, for example, low capture efficiency, 

then this has potential to impact the precision of the subsequent growth data. Given the 

relatively low sample sizes in Tarkan et al. (2009), outlined in Chapter 2, then these might 

have influenced the precision of the data used to compare the growth performance of C. 

carassius and C. auratus.  
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Chapter 4. Development and application of a simple method to 

incorporate uncertainty in fish age estimates into growth rate analyses 

 

4.1. Summary 

 

Errors in fish ages estimated from hard structures such as scales and otoliths occur 

through issues of precision and accuracy. Uncertainty in the estimates of ages tends to 

increase with fish age and length. In combination, these result in inherent errors in growth 

rates analyses, such as those from the von Bertalanffy growth function (VBGF) and thus 

could impact management decisions based on these data. Here, a simple method was 

developed to incorporate this uncertainty in age estimates into growth rate analyses to 

produce more robust VBGF parameters. Using scales collected from riverine populations 

of chub Squalius cephalus, dace Leuciscus leuciscus and roach Rutilus rutilus, age 

estimates were derived and assigned confidence ratings of 1 (certain) to 3 (most 

uncertain). The VBGF parameters of L∞, k and t0 were then determined. For each age per 

species, the uncertainty levels were translated into distributions (%) of probable ages 

around the age estimate. These were then used in a bootstrapping procedure to randomly 

generate a new age from a normal distribution that produced adjusted VBGF parameters 

(L∞-adjusted, k-adjusted and t0-adjusted). Across the three fishes, ageing uncertainty increased 

with fish age, with significant non-linear relationships. Comparison of the original 

(uncertainty omitted) versus adjusted (uncertainty included) VBGF parameters revealed 

some significant differences, with general patterns of higher L∞-adjusted and lower k-adjusted 

than the original estimates, suggesting that these were produced from under-aged fish. 

These adjusted VBGF parameters also impacted length-at-age estimates, with shifts 

toward slower growth rates. The development of this simple method based on 

bootstrapping procedures should provide a highly useful ecological tool that works with 

uncertainty in scale age estimates, and potentially other hard structures. Here, its 

application to populations of riverine fishes revealed that it produced adjusted VBGF 

parameters that better reflect the uncertainty in the original data. In doing so, it should 

enable improved management decision-making in fish and fisheries ecology. 
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4.2. Introduction 

 

Estimating the ages and growth rates of fish populations is fundamental to studying 

aspects of their ecology (Bagenal and Tesch, 1978; Allen and Hightower, 2010; Beardsley 

and Britton, 2012). Data on the ages of individual fish provides insights into fish 

population demographics such as age structure and longevity, and dynamic rate functions 

including growth, recruitment and mortality that regulate fish populations (Ricker, 1975). 

Quantifying dynamic rate functions generally requires the use of data on the ages of fish 

that have been estimated from hard structures such as scales, otoliths and fin rays, 

especially in temperate regions (Beamish and Macfarlane, 1983; Britton et al., 2004a). 

Thus, obtaining accurate and precise age estimates is a pre-requisite for understanding 

the ecology of fish populations and their response to exploitation and management actions 

(Britton et al., 2004a; Ibáñez et al., 2008).  

Within species, energy allocation for somatic growth is traded-off against other life-

history parameters, such as reproduction (Lester et al., 2004; Shuter et al., 2005). This is 

particularly true for fishes which have indeterminate growth (Charnov and Berrigan, 

1991). The von Bertalanffy growth function (VBGF) (von Bertalanffy, 1938) utilises the 

interactions between life-history parameters to model growth and is an important 

component of many population growth rate analyses (Pardo et al., 2013; Rogers-Bennett 

and Rogers, 2016). Calculation of the VBGF is often reliant upon an accurate description 

of the lengths-at-age of fish within a population, yet estimates of fish ages from hard 

structures are often accompanied by errors that can have substantial effects on subsequent 

analyses (Campana, 2001; cf. Section 1.3). These ageing errors relate to accuracy, which 

is a measure of the proximity of the age estimate to its true value, and precision, which is 

the reproducibility of individual measurements from a structure (Campana et al., 1995; 

Kalish et al., 1995). There are instances worldwide where ageing error, usually through 

under-estimation of age, has contributed to the mismanagement of a fish stock (cf. Section 

1.2). For example, estimates of productivity were over-estimated and longevity under-

estimated in the orange roughy Hoplostethus atlanticus fishery of New Zealand, resulting 

in overfishing and a collapse in population numbers (Smith et al., 1995; Tracey and Horn, 

1999; cf. Section 1.2). 
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A number of studies have identified issues of error regarding the accuracy and 

precision of ageing fish from structures such as scales and otoliths (e.g., Beamish and 

Macfarlane, 1983, 1995; Ibáñez et al., 2008). These issues include poor readability and 

inconsistent annulus formation that can cause incorrect age estimates (Ibáñez et al., 2008; 

Quist et al., 2012; cf. Section 1.3). Validation exercises help minimise these errors, thus 

improving the accuracy and reducing uncertainty in the age estimates (Jackson, 2007; cf. 

Section 1.3). Validation methodologies include using mark-recapture of fish of known 

age and marginal increment analysis that often incorporates marking body structures with 

chemicals such as tetracycline (Shirvell, 1981; Nagiec et al., 1995; cf. Section 1.3). In 

general, the results of validation exercises indicate that both accuracy and precision 

decrease with the size and age of fish, with these issues often difficult to eliminate 

completely given the inherent subjective nature of the age determination process (Musk 

et al., 2006). Beamish and Macfarlane (1983, 1995) stressed the importance of 

considering and accounting for the inherent error in fish age estimates in order to improve 

ecological evaluations and management decision-making.  

The need to incorporate uncertainty into fish age estimates obtained from hard 

structures has led to the development of various techniques. For example, Richards et al. 

(1992) used classification matrices to describe the relationship between observed and true 

ages within a statistical framework by estimating the probability of assigning a particular 

age to fish, given its true age, and their classification distributions tended to increase with 

age, highlighting the issues of ageing older fish. Alternatively, use of confidence-ranking 

systems, which represent graded levels of uncertainty, have been shown to improve age 

and growth estimates as they enable data to be used only from those individuals for which 

the age is associated with the highest readability and precision (e.g., Koch et al., 2008, 

2009, Spiegel et al., 2010; Watkins et al., 2015a, b). Uncertainty generally increases as 

age increases and this has been demonstrated in many fish species, including shovelnose 

sturgeon Scaphirhynchus platorynchus (Koch et al., 2008), common carp Cyprinus 

carpio and mountain whitefish Prosopium williamsoni (Watkins et al., 2015b). In age 

estimates of bowfin Amia calva, precision between readers was only 100 % for the fish 

that had been assigned the highest confidence ratings (Koch et al., 2009). In addition, 

ageing error can be incorporated into growth models, for example, Cope and Punt (2007) 

applied a random effects modelling framework to VBGF parameters and found that the 

results were more accurate and precise than traditional non-linear techniques. Whilst the 



 

97 

 

 

9
7
 

issues of ageing error in older fishes and reader bias were not resolved in that study, it 

suggests that incorporating levels of uncertainty that capture ageing bias and ageing errors 

into growth modelling techniques has potential for resolving some of these outstanding 

issues. 

The aim of this Chapter was thus to develop a simple method to incorporate 

uncertainty from age estimates taken from subjective interpretations of hard structures, 

such as scales, into the process of fish ageing and age analyses, to provide more realistic 

estimates of growth rates and growth parameters. The objectives were to: (1) identify, 

through literature review, the extent of uncertainty across studies that quantified error in 

estimating fish ages from hard structures; (2) develop a statistical model that incorporates 

identified levels of uncertainty into estimates of fish growth rates; and (3) apply this 

method to datasets of three temperate freshwater cyprinid fishes; chub Squalius cephalus, 

dace Leuciscus leuciscus and roach Rutilus rutilus. 

 

4.3. Materials and methods 

 

4.3.1. Literature review on the uncertainty of estimating fish age from hard 

structures 

To obtain information regarding the range of uncertainty from existing studies, a literature 

review was performed using ISI Web of Science and the following search terms 

(cyprinid*, S. cephalus, L. leuciscus, R. rutilus, along with; age validation, age estimates, 

accuracy, precision), combined with manual searches of references cited within these 

articles. The uncertainty surrounding age estimates produced by reading scales from 

members of the Cyprinidae family were the focus of the review, although information 

from studies that used other calcified structures and other fishes was also considered. The 

common themes that arose from the review formed the basis of the procedure that was 

developed to incorporate inherent ageing error into age estimates.  

 

4.3.2. Datasets of three temperate freshwater fishes  

The research was based on age data generated from scales of S. cephalus, L. leuciscus 

and R. rutilus that were obtained from 19 rivers across England. These populations had 
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been sampled between 2012 and 2014. The sites were 100 m stretches, sampled using 

electric fishing, with all captured fish identified to species level, measured (fork length, 

to nearest mm) and between 3 and 5 scales removed from the anterior region above the 

lateral line and below the dorsal fin and stored in paper envelopes. These scales were aged 

by a single primary reader using a projecting microscope at  48 magnification. 

Validation of the estimated ages was provided by a proportion (10 to 25 %) of the scales 

per population being randomly selected and aged by a secondary reader, without 

knowledge of the primary readers age estimate, if any disagreement was found, the 

scale(s) were re-viewed by both in order to reach a consensus (Musk et al., 2006; cf. 

Section 3.3.1). Information on the date of sampling, species and length of each fish was 

available to both readers.  

For each age estimated, a confidence ranking was also assigned, whereby three levels 

of uncertainty were used, 1 to 3, where 1 was ‘most certain’ and 3 was ‘least certain’. 

Following the derivation of an age estimate, one scale per fish was measured for the 

distance from the scale focus to the first, second and last annulus (cf. Section 1.1; Fig. 1). 

Using the scale proportional method (Francis, 1990; cf. Section 3.3.1), the lengths at age 

1, 2 and the last annulus were then estimated by back-calculation. This enabled the length-

increment between age 1 and 2 years to be determined. The length at the last annulus 

ensured that subsequent analyses could compare the lengths of the captured fish without 

bias from their time of sampling, such as fish captured early and late in the growth season. 

The length-increment between age 1 and 2 years was used as a growth rate metric. As in 

Chapter 3 (cf. Section 3.3.2), this was in preference to the length-increment produced in 

the first growth year (i.e. between age 0 and 1 years) to avoid issues relating to variability 

in spawning times with S. cephalus being a ‘fractional spawning’ species, i.e., they ripen 

successive batches of eggs within a season, contrasting with ‘total spawning’ where a 

single batch is shed in a short period, or ‘protracted spawning’ where a single batch is 

spawned over an extended period (Nunn et al., 2002; Bolland et al., 2007). 

The relationship between the estimated ages and their uncertainty levels was identified 

by fitting linear, quadratic and cubic non-linear regressions (i; 1-3) to the data from each 

species. This used the lmtest function in the R computing program (R Core Development 

Team, 2013). The best-fitting model was selected by minimising the small-sample, bias-

corrected form of the Akaike information criterion (AICc) through the AICcmodavg 

package. The model with the smallest AICc value (AICcmin) was thus selected as the most 
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appropriate model. According to Burnham and Anderson (2002), models with an Akaike 

difference (∆i = AICci – AICcmin) of more than 10 have essentially no support and might 

be omitted from further consideration, whereas models with ∆i < 2 have substantial 

support. To then determine how the body length-increment between age 1 and 2 years 

influenced the uncertainty of the age estimate of that fish, the increments were rounded 

to the nearest 5 mm and the mean level of uncertainty calculated for each species and 

each 5 mm incremental interval. The mean level of uncertainty was then plotted against 

the growth increment for each species to reveal any relationships.   

 

4.3.3. Incorporating uncertainty into estimates of fish growth rates 

The age estimates and their uncertainty levels, for each species, were then used to develop 

a simple method that would incorporate uncertainty into growth rate analyses via 

statistical modelling and bootstrap methodologies. The first step was to translate each age 

estimate and its level of uncertainty into a distribution (%) of probable ages surrounding 

the age estimate. For example, for a fish estimated to be 4 years old, the distribution that 

could actually be 3, 4 or 5 years old was determined according to its level of uncertainty, 

i.e. 30 % of the fish could actually be 3 years old, 60 % 4 and 10 % 5, with this informed 

by the literature review and author opinion. To convert these distributions into a form for 

use statistically, a list of 100 individual ages (each age representing 1 percent from the 

distribution of probable ages) for each age and uncertainty level was generated. A ‘best 

estimate’ age (BEA) was then calculated through taking the mean of each set of 100 ages 

along with the standard deviation (SD). This was repeated for each species, generating a 

BEA and its associated SD for each estimated age and level of uncertainty.  

The next step was to generate growth rate parameters through application of the von 

Bertalanffy growth function (VBGF) (von Bertalanffy, 1938). The VBGF is a logarithmic 

function that describes change in body size over time for a wide range of taxa and is 

commonly applied to fishes (Chen et al., 1992; Frisk et al., 2001). The three-parameter 

model was used (Beverton and Holt, 1957): 

 Lt = L∞ (1 – e – k ( t - t0 ) ) 

where t is the time period, L is the length of the fish (mm), L∞ is the asymptotic length 

(the maximum theoretical size that a species will grow towards), k is the growth 

coefficient (the rate at which growth approaches the asymptotic length) and t0 is the size-
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at-age zero which equates to the y-intercept. For each fish population per species, the 

VBGF growth parameters of L∞, k and t0 were generated. Initially, this was completed 

without inclusion of the uncertainty levels to generate the growth parameters for the 

original data set (L∞-original, k-original and t0-original) using the nls function in R (cf. Appendix 

1: Step 1, for R code).  

The VBGF growth parameters were then generated with inclusion of the levels of 

uncertainty to provide a set of adjusted parameters (L∞-adjusted, k-adjusted and t0-adjusted). 

These were generated by applying the BEA and SD for each estimated age and 

uncertainty level to a bootstrapping procedure. For every estimated age and uncertainty 

level in the original data, its corresponding BEA and SD were used to randomly generate 

a new age from a normal distribution using the rnorm command. From these new, 

randomly generated ages, estimates for the three VBGF parameters were obtained. This 

process was conducted 1000 times (following the procedure in Crawley, 2005), producing 

an output of adjusted VBGF parameters (cf. Appendix 1: Step 2, for R code). Data for 

fishes assigned age estimates above those for which the distributions of probable ages 

were produced were excluded prior to analyses. The outputs from this procedure were the 

three growth parameters for the original data set and a set of 1000 adjusted growth 

parameters from the bootstrapped modelling procedure, from which an adjusted mean 

and upper and lower 95% confidence limits were obtained.  

 

4.3.4. Relationships between the original and adjusted VBGF parameters 

The values for L∞ and k generated for all populations from the original data sets were 

plotted against the means of their adjusted values (i.e., L∞-original vs. L∞-adjusted and k-original 

vs. k-adjusted). Deviation from the equivalence line demonstrated a shift in parameter 

estimates. Linear regressions were performed to determine whether a significant shift had 

occurred using the 95 % confidence interval (CI) range of the b coefficient, significant 

deviation was indicated when the range failed to cross 1.0 (Sheath et al., 2015). Data 

points that were deemed biologically irrelevant were removed prior to analyses (e.g. L∞ 

for R. rutilus > 500 mm), as these anomalies suggest issues with the original data set, for 

example, that the sampled fish have not started slowing down their growth sufficiently to 

produce an exponential growth curve and thus enable robust calculation of the 
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parameters. L∞ was then plotted against k for the original and adjusted data. All statistical 

analyses were completed using IBM SPSS Statistics (version 22.0). 

 

4.3.5. Effects of adjusted data on growth outputs 

The VBGF parameter values generated from the original data from each population were 

used to estimate age-at-length data for the range of ages used within the model (i.e., for 

S. cephalus aged 1 to 15 years, L. leuciscus aged 1 to 10 years and R. rutilus aged 1 to 13 

years). This was completed via their input into the von Bertalanffy growth equation. In 

order to capture the full extent of variety within the adjusted VBGF parameter values, the 

upper and lower 95 % CI for the mean of L∞-adjusted, k-adjusted and t0-adjusted was used to 

generate the corresponding upper and lower estimated lengths for each age. Therefore, 

for each species and population, there were three length estimates for each age in the age 

range; the estimated length from the original data and the upper and lower estimated 

lengths from the 95 % CI from the adjusted data. These estimated age-at-length values 

were then used to produce growth curves for comparison. In addition to producing growth 

curves for the individual populations, a single plot containing the data from all 

populations was also produced for each species to enable comparison of general themes.  

 

4.4. Results 

 

4.4.1. Literature review on age uncertainty 

A total of 17 peer reviewed papers were sourced on fish age and growth rate errors. Of 

these, none provided data specifically on L. leuciscus, although the majority provided 

information for other cyprinid species (cf. Appendix 2). In relation to S. cephalus and R. 

rutilus, Mann (1973, 1976) noted that their scales were difficult to read from fish over 10 

years old due to close annuli formation on the scale edge. Musk et al. (2006), performing 

an age precision exercise on R. rutilus scales, found that agreement in age estimates 

significantly decreased with fish age. Across all the species reviewed, general themes 

were that: (i) accuracy, precision and certainty in producing age estimates from calcified 

structures decreases with fish age; (ii) ageing accuracy was highest in younger fishes; (iii) 

older fish were more likely to be under-aged than over-aged, with this increasing with 
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fish age; (iv) reader certainty in assigned age estimates and agreement between readers 

decreased with fish age; and (v) scales became more difficult to read with age due to 

crowded annuli on scale margins and therefore scales might only be appropriate for 

ageing younger, smaller and/or immature fishes (cf. Appendix 2).  

These outputs were used to develop the ranked uncertainty levels that were applied 

subsequently during the ageing of scales. As reader uncertainty is a function of the 

precision of age estimates (e.g., Koch et al., 2008, 2009, Spiegel et al., 2010; Watkins et 

al., 2015a, b), for each species and scale age estimate, dependent on meeting clearly 

defined criteria (Table 14), an uncertainty level was assigned. It was these levels of 

uncertainty that were then translated into distributions of probable ages for S. cephalus 

aged 1 to 15, L. Leuciscus aged 1 to 10 and R. rutilus aged 1 to 13 (Table 15). 

 

 

 

Table 14. Criteria used to assign levels of uncertainty to scales from populations of S. 

cephalus, L. leuciscus and R. rutilus from 19 rivers in England (adapted from Spiegel et 

al., 2010). 

   

Level of uncertainty Guidelines for assigning level of uncertainty 

 

1: Certain 

 

 Annuli easy to identify.  

 No disagreement between scales. 

 Cutting over present for majority of annuli. 

 Annuli exhibit tightly packed circuli. 

 

 

2: Some uncertainty 

 

 Scale disagreement of a maximum of 1 year.  

 Cutting over apparent on the majority of annuli. 

 

 

3: Most uncertain 

 

 Annuli difficult to identify.  

 Disagreement between scales ≥ 2 years.  

 Some annuli exhibit cutting over.  

 False annuli present.  

 Annuli do not exhibit tightly spaced circuli. 
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Table 15. Examples of how ageing uncertainty was incorporated into age estimates using 

distributions of probable ages (%) from scales of R. rutilus (A), L. leuciscus (B) and S. 

cephalus (C).  

 

A)     

Age estimate 

(years) 

Level of  

uncertainty 

Estimated distribution of probable ages 

1 1 1: 95%; 2: 5% 

  2 1: 80%; 2: 20% 

  3 1: 70%; 2: 15%; 0: 10%; 3: 5% 

3 1 3: 90%; 4: 10% 

  2 3: 75%; 4: 13%; 2: 12% 

  3 3: 65%; 4: 13%; 2: 12%; 1: 5%; 5: 5% 

6 1 6: 70%; 5: 10%; 7: 20% 

  2 6: 55%; 5: 15%; 7: 20%; 8: 10% 

  3 6: 40%; 5: 15%; 7: 25%; 8: 15%; 4: 5%; 

9 1 9: 60%; 8: 10%; 10: 20%; 11: 10% 

  2 9: 50%; 8: 10%; 10: 20%; 11:15%; 7: 5% 

  3 9: 35%; 8: 15%; 10: 25%; 11: 15%; 7: 5%;  

12: 5% 

 

 

B)     

Age estimate 

(years) 

Level of 

uncertainty 

Estimated distribution of probable ages 

1 1 1: 95%; 2: 5% 

  2 1: 80%; 2: 20% 

  3 1: 70%; 2: 15%; 0: 10%; 3: 5% 

3 1 3: 90%; 4: 10% 

  2 3: 75%; 4: 13%; 2: 12% 

  3 3: 60%; 4: 15%; 2: 15%; 1: 5%; 5: 5% 

6 1 6: 75%; 5: 10%; 7: 15% 

  2 6: 60%; 5: 15%; 7: 20%; 8: 5% 

  3 6: 45%; 5: 15%; 7: 20%; 8: 15%; 4: 5% 

9 1 9: 65%; 8: 5%; 10: 20%; 11: 10% 

  2 9: 55%; 8: 7%; 10: 20%; 11: 15%; 7: 3% 

  3 9: 40%; 8: 10%; 10: 25%; 11: 15%; 7: 5%;  

12: 5% 
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Table 15 continued 

 

C)     

Age estimate 

(years) 

Level of  

uncertainty 

Estimated distribution of probable ages 

1 1 1: 95%; 2: 5% 

  2 1: 80%; 2: 20% 

  3 1: 70%; 2: 15%; 0: 10%; 3: 5% 

4 1 4: 80%; 3: 10%; 5: 10% 

  2 4: 60%; 3: 20%; 5: 20% 

  3 4: 40%; 3: 20%; 5: 20%; 2: 10%; 6: 10% 

8 1 8: 55%; 7: 15%, 9: 20%; 10: 15% 

  2 8: 45%; 7: 15%; 9: 20%; 10: 15%; 6: 5% 

  3 8: 30%; 7: 20%; 9: 25%; 10: 15%; 6: 10% 

12 1 12: 30%; 11: 10%; 13: 35%; 14: 25% 

  2 12: 20%; 11: 10%; 13: 35%; 14: 30%; 15:5% 

  3 12: 15%; 11: 5%; 13: 35%; 14: 30%; 15: 10%; 

16: 5% 

 

 

 

4.4.2. Age data and uncertainty of age estimates 

Across the three species, data from 4702 fishes were used: 1241 S. cephalus (age 

estimates: 1 to 20 years), 1007 L. leuciscus (1 to 10 years), and 2454 R. rutilus (1 to 13 

years). Lengths-at-last-annulus varied between 48 and 532 mm for S. cephalus, 24 and 

275 mm for L. leuciscus, and 36 and 335 mm for R. rutilus. All fishes revealed a similar 

non-linear relationship between estimated age and uncertainty level, with uncertainty in 

age estimates increasing with age (Fig. 8). Mean uncertainty per age and per species 

ranged between 1.1 and 3.0 for S. cephalus, 1.1 and 2.5 for L. leuciscus and 1.1 and 2.3 

for R. rutilus and in all species, low uncertainty levels were apparent in ages up to 5 years 

(Fig. 8). For S. cephalus, all ages estimated as 15 years or older had the highest level of 

uncertainty. Analysis of the relationships between age and uncertainty revealed that for 

S. cephalus, the cubic function produced the lowest AICc with the quadratic and linear 

functions having very little support (∆i = 29.23 and 31.18, respectively; Table 16). For L. 

leuciscus and R. rutilus, the quadratic function was the best model fitted and had the 

lowest AICc, with the cubic function having some support but ∆i = > 2 in both cases 

(Table 16).  
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Figure 8. Age estimates versus mean level of uncertainty assigned during the scale ageing 

process for S. cephalus (A), L. leuciscus (B) and R. rutilus (C). Error bars represent 

standard errors. 
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Table 16. For each species and for each candidate model the small-sample bias-corrected 

form of Akaike’s information criterion (AICc), Akaike differences (∆i) and weights (wi). 

Species Model AICc ∆i wi (%) 

S. cephalus Cubic -32.15 0.00 100 

  Quadratic -2.91 29.23 0 

  Linear -0.97 31.18 0 

L. leuciscus Quadratic 2.20 0.00 82 

  Cubic 5.67 3.47 14 

  Linear 8.27 6.07 4 

R. rutilus Quadratic -17.51 0.00 80 

  Cubic -14.67 2.84 19 

  Linear -7.33 10.18 0 

 

4.4.3. Length-increment versus level of uncertainty in age estimates 

The annual growth increments produced in the second year of the fishes (between age 1 

and 2 years) ranged between 10 and 80 mm for S. cephalus, 10 and 75 mm for L. leuciscus 

and 10 and 70 mm for R. rutilus (Fig. 9). Both S. cephalus and R. rutilus revealed a ‘U’ 

shaped pattern between this growth increment and their mean level of uncertainty, 

indicating that uncertainty in age estimates was higher for fishes with growth increments 

that were lower or higher than expected; increment < 30 mm and > 65 mm for S. cephalus 

(Fig. 9A) and increment < 20 mm and > 60 mm for R. rutilus (Fig. 9C). For L. leuciscus, 

the uncertainty was highest for fishes with a lower growth increment (< 25 mm), but not 

for higher (Fig. 9B).  

 

4.4.4. Relationships between the VBGF parameters 

Linear regression of the original versus adjusted values of L∞ revealed that the 95 % 

confidence interval (CI) of b failed to cross 1 for both S. cephalus and R. rutilus, 

indicating significant deviation from equivalence (Table 17; Fig. 10A, E). This was not 

apparent for L. leuciscus (Table 17; Fig. 10C). Linear regression of the original versus 

adjusted values of k revealed that the 95 % CI of b failed to cross 1 in L. leuciscus and R. 

rutilus (Table 17; Fig. 10D, F). This was not apparent for S. cephalus (Table 17; Fig. 

10B). Plots of L∞ versus k revealed similar significant relationships across the fishes, 

with L∞ increasing as k decreased, with the interaction between the VBGF parameters 

remaining consistent between the original and adjusted data for S. cephalus and R. rutilus 

(Fig. 11A, C), but not for L. leuciscus (Fig. 11B).   
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Figure 9. Back-calculated growth increments (between years 1 and 2) versus mean level 

of uncertainty assigned during the scale ageing process for S. cephalus (A), L. leuciscus 

(B) and R. rutilus (C). Error bars represent standard errors. 
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Table 17. Outputs of linear regressions of the von Bertalanffy growth parameters (VBGF); L∞ and k, between their original (uncertainty omitted) and 

adjusted (uncertainty incorporated) values; *significant deviation from the equivalence line.  

 

Species VBGF parameters R2 F P 

b: 95 %  

confidence interval  

S. cephalus L∞: original vs. adjusted  0.95 259.88 < 0.001 0.70 - 0.92 * 

  k: original vs. adjusted 0.94 195.75 < 0.001 0.77 - 1.05   

L. leuciscus L∞: original vs. adjusted  0.89 50.55 < 0.001 0.69 - 1.42   

  k: original vs. adjusted 0.87 40.16 < 0.001 0.40 - 0.90 * 

R. rutilus L∞: original vs. adjusted  0.98 470.21 < 0.001 1.11 - 1.38 * 

  k: original vs. adjusted 0.95 154.62 < 0.001 0.60 - 0.88 * 
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Figure 10. Bias plots between original estimates (uncertainty omitted) and their mean 

adjusted values (uncertainty incorporated) of L∞ and k for populations of S. cephalus (A 

and B, respectively), L. leuciscus (C and D) and R. rutilus (E and F); solid lines represent 

linear regressions, dashed lines represent the equivalence line. Error bars represent 95 % 

confidence limits. 
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Figure 11. Relationship between L∞ and k for the original estimates (uncertainty omitted) 

and their mean adjusted (uncertainty incorporated) values for populations of S. cephalus 

(A), L. leuciscus (B) and R. rutilus (C); solid lines and filled circles represent the original 

data, dashed lines and open circles represent the adjusted data. Error bars represent 95 % 

confidence limits. 
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4.4.5. Effects on length-at-age estimates 

Comparison of the original versus adjusted length-at-age data produced from the VBGF 

equation revealed that in the adjusted data, the mean lengths-at-age were generally 

reduced in the older fish in all three species (Fig. 12). When plotted by population, these 

patterns were apparent for most populations of S. cephalus and R. rutilus (e.g. Fig. 13A, 

G) and one population of L. leuciscus (Fig. 13D). However, 75 % of L. leuciscus 

populations showed the opposite pattern, with the adjusted data increasing the mean 

lengths-at-age across the entire age range of the fishes (e.g. Fig. 13F), and this opposing 

pattern was also seen in a single population of S. cephalus and R. rutilus (Fig. 13C, I). 

Out of the 19 river populations used in the analyses, two populations of S. cephalus, one 

population of L. leuciscus and four populations of R. rutilus show the original data growth 

curve siting within the upper and lower 95 % confidence limit curves of the adjusted data 

(Fig. 13B, E, H). 

 

Figure 12. Length-at-age growth curves for combined populations of S. cephalus (A), L. 

leuciscus (B) and R. rutilus (C) generated from the von Bertalanffy growth parameters. 

Solid lines represent the original data (uncertainty omitted) and dashed lines represent the 

upper and lower 95 % confidence range for the adjusted data (uncertainty incorporated). 
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Figure 13. Length-at-age growth curves for selected populations of S. cephalus (A: River Lee; B: River Cray; C: River Great Stour), L. leuciscus (D: 

River Colne; E: River Wey; F: River Can) and R. rutilus (G: River Thames; H: River Old Bedford; I: River Medway) generated from the von Bertalanffy 

growth parameters. Solid lines represent the original data (uncertainty omitted) and dotted lines represent the upper and lower 95 % confidence range for 

the adjusted data (uncertainty incorporated). 
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4.5. Discussion 

 

The development and application of this simple method based on using the uncertainty in 

age estimates within bootstrapping procedures was successful in incorporating sources of 

errors from scale ageing into subsequent growth rate analyses. Age estimates and 

uncertainty levels from the three cyprinids revealed strong patterns of uncertainty 

increasing with estimated fish age, with this providing the basis for subsequent analyses. 

The adjusted VBGF growth parameters and subsequently calculated lengths-at-age 

showed some deviation from the original and generally suggested an issue of under-

ageing older fish, likely due to the annual growth increments of those fishes being 

minimal, thus creating difficulty in estimating the age from scales where annuli are 

stacked close to the scale edge. 

Scales are frequently used to study and monitor freshwater fish populations given that 

their non-lethal collection is advantageous over more destructive methods such as fin ray 

sectioning and otolith removal (cf. Section 1.1). However, estimating fish age by counting 

annuli can result in large biases and uncertainties due to the combination of process and 

interpretation errors (Beamish and McFarlane, 1995; Campana, 2001; cf. Section 1.3). 

Both error types affect the accuracy and precision of fish population demographics and 

dynamic rate functions, such as growth and mortality, which are required for population 

modelling. Although advances have been made to incorporate different types of error 

when fitting growth models, such as the VBGF, only a few studies have attempted to 

quantify errors in age estimates (but see Dortel et al., 2013; Richards et al., 1992) and 

many still fail to consider ageing error in their analyses. For example, stochastic 

environmental fluctuations (Prajneshu and Venugopalan, 1999), individual variation in 

VBGF growth parameters (Pilling et al., 2002) and transient variation in growth rates 

(Webber and Thorson, 2016) have been considered, but all assumed that age estimates 

were accurate, potentially confounding the outputs of the studies. In this Chapter, a simple 

method was developed to allow incorporation of the uncertainty of a scale reader in the 

age estimates they assign to provide more realistic evaluations of growth rates and growth 

parameters.  

Uncertainty levels are a useful tool that provide an easy method to include error into 

age estimates, as uncertainty is significantly and negatively related to precision (e.g., 
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Koch et al., 2008, 2009, Spiegel et al., 2010; Watkins et al., 2015a, b). Uncertainty in age 

estimates is also significantly related to fish age, with Spiegel et al. (2010) reporting that 

precision decreased as age increased. Similarly, here, levels of uncertainty increased with 

fish age. Furthermore, the uncertainty in age estimates remained low for fishes up to 5 

years, with Quist et al. (2007) also finding that agreement between ageing structures was 

high for cyprinids up to age 5. Likewise, Horka et al. (2010) found significant deviation 

between estimated and known ages of European grayling Thymallus thymallus for fish of 

over 5 years. This general pattern of uncertainty increasing and precision decreasing with 

fish age may be widely applicable. However, the interaction between uncertainty and 

estimated age is likely to be species-specific, given that the relationship was best 

described by two different non-linear functions in the three cyprinid species studied.  

If data generated from the subjective process of ageing hard structures is to be used in 

population management, maintenance and conservation, then it can be argued that rather 

than being disregarded, it should be integral to the subsequent analyses. Issues have been 

encountered previously when ageing error has been overlooked, such as attempts to relate 

recruitment success to environmental factors (Myers and Drinkwater, 1989) and the 

phenomenon of ‘ageing drift’ (Frear and Cowx, 2003) which is where a single, strong 

year class identified in a survey early in its life becomes spread over several year classes 

in later surveys as their ages become more difficult to estimate. Incorporating error 

through building uncertainty levels into the VBGF model resulted in significant shifts in 

L∞ and k for all three species, indicating that ageing uncertainty has consequences for 

growth rate analyses. Indeed, under- or over-estimation of growth parameters can have 

dramatic implications for fisheries management (cf. Section 1.2 regarding populations of 

orange roughy Hoplostethus atlanticus and the cisco Coregonus artedi). Pardo et al. 

(2013) demonstrated how this can occur using a simple yield-per-recruit model, where an 

8 % underestimate of t0 resulted in a 20 % increase in k compared to the true value, leading 

to a 20 % increase in yield-per-recruit biomass when compared with calculations based 

on true t0.  

In the three cyprinid fishes used here, outputs from the bootstrapping procedure 

suggested that there was both significant under- and over-estimation of L∞ and k in the 

original data sets. Given that VBGF growth parameters are strongly correlated with each 

other (Pilling et al., 2002; Britton, 2007; Ruiz-Navarro et al., 2016b), any bias in the 

estimation of k is likely to impact the estimation of L∞. Indeed, for all three species L∞ 
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and k were negatively correlated, as has been previously detected (Britton, 2007). When 

applied to generating length-at-age curves, the adjusted data generally reduced mean 

lengths-at-age, particularly in the older fish, reiterating that uncertainty and precision are 

correlated with age. At the population level though, the changes were species-specific, 

for example, the majority of L. leuciscus populations showed the opposite pattern where 

the adjusted data increased mean lengths-at-age, possible owing to the lower levels of 

uncertainty present in the older ages when compared to the other species.  

There are alternative methods that also incorporate error into age estimates. Cope and 

Punt (2007) included error in their growth models by treating true age as a random effect. 

The outcomes from the literature review suggest, however, that there are non-random 

associations between estimated age and true age, and thus treating true age as a random 

effect will fail to capture this bias in age reading and that ageing error may be skewed for 

older individuals (Campana, 2001). Other studies utilise repeat readings of the same 

structure to produce error estimates or error matrices based on precision (e.g., Richards 

et al., 1992; Candy et al., 2012; Dortel et al., 2013). This is, however, resource- and time-

consuming. Although it is argued that the method developed here represents an 

improvement on these other processes, one issue of subjectivity remains around 

translating each age estimate and uncertainty into an age distribution. Though the 

distributions were based on literature review wherever possible, they also required some 

additional input and correspondingly the ‘best estimates of age’ might have some inherent 

error. Whilst this could be quantified through long-term validation exercises using mark-

recapture, the time-frames required are likely to be unrealistic for most studies. An 

alternative is to disregard all age estimates assigned the highest uncertainty levels or 

where scales have been used to age the largest fish. This would help reduce ageing error, 

however, these larger, older fish can be an important component of the fish population, 

including for catch-and-release angling and assessments of ecological status under the 

Water Framework Directive (WFD, 2000; cf. Section 1.2).  

In summary, the method developed here and applied to three cyprinid fishes provides 

a simple process to capture the uncertainty in the age estimates of scales, and potentially 

from other structures. By working with the inherent uncertainty, analyses of population 

growth rate parameters and lengths-at-age can thus be more accurately estimated, 

ensuring that the subsequent growth analyses can be used within ecological studies and 

applied to fisheries management with more confidence.   
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Chapter 5. Stable isotope signatures and trophic-step discrimination 

factors of fish tissues collected as non-lethal surrogates of dorsal muscle 

 

A version of this chapter was published as: 

Busst, G. M, Bašić, T. and Britton, J. R., 2015. Stable isotope signatures and trophic-step 

fractionation factors of fish tissues collected as non-lethal surrogates of dorsal muscle. 

Rapid Communications in Mass Spectrometry, 29(16), pp.1535-1544. 

 

5.1. Summary 

 

Dorsal white muscle is the standard tissue analysed in fish trophic studies using stable 

isotope analyses. As muscle is usually collected destructively, scales and fin tissue can be 

used as non-lethal surrogates; hence, the utility of scales and fin tissue as proxies for 

muscle tissue was examined. The muscle, fin and scale δ13C and δ15N values from 10 

species of cyprinid fishes were compared. The fish comprised of samples from the wild 

and samples from tank aquaria that were held for 120 days and fed a single food resource. 

Relationships between stable isotope ratios of muscle, fin and scales were examined for 

each species and for the entire dataset, with the efficacy of four methods of predicting 

muscle isotope ratios from fin and scales being tested. The discrimination factors between 

the three tissues of the laboratory fishes and their food resource were then calculated and 

applied to Bayesian mixing models to assess their effect on fish diet predictions. The 

isotopic data of the three tissues per species were distinct, but were significantly related, 

enabling estimations of muscle values from the two surrogates individually. Species-

specific equations provided the least erroneous conversions of scale and fin tissue stable 

isotope ratios to muscle (errors < 0.6 ‰). The discrimination factors for δ15N were in the 

range obtained for other species, but were often higher for δ13C. Their application to data 

from two fish populations in mixing models resulted in significant alterations in diet 

predictions. In summary, scales and fin tissue can both be strong surrogates of dorsal 

muscle in food web studies as they can provide estimates of muscle values within an 

acceptable level of error when species-specific methods are used. Their derived 
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discrimination factors can also be applied to models predicting the composition of fish 

diets from δ13C and δ15N values. 

 

5.2. Introduction 

 

Stable isotope analysis (SIA) is an important tool in food web ecology, with applications 

such as investigating trophic structure and detecting variations in trophic niche size (e.g., 

Finlay et al., 2002; Post, 2002; Layman et al., 2005; Jackson et al., 2012). SIA takes 

advantage of natural variations in naturally occurring stable isotope ratios of 13C to 12C 

(δ13C values) and 15N to 14N (δ15N values) (cf. Section 1.4.1) and has been applied to, for 

example, impact assessments of biological invasions (Cucherousset et al., 2012b) and 

highlighting responses of populations to bioremediation and long-term changes in water 

chemistry (Grey et al., 2009; Roussel et al., 2014). 

Stable isotope analysis also has ecological application in providing an alternative fish 

dietary analysis tool to stomach contents analyses (Cucherousset et al., 2012b), although 

their outputs can be conflicting due to fundamental differences in their methodology 

(Locke et al., 2013). Stomach contents analysis tends to require high temporal and/or 

spatial sampling, and relatively high numbers of individuals for processing (Hyslop, 

1980). By contrast, the application of stable isotope data from focal fish species and their 

putative food resources to Bayesian mixing models tends to use relatively small sample 

sizes to predict diet composition (Jackson et al., 2011). This approach has a higher 

resolution and can, for example, indicate important dietary differences between species 

(Guo et al., 2014), locations (Bašić et al., 2015), and seasons (Brush et al., 2012). These 

models are based on isotopic discrimination factors and so require accurate estimates of 

diet-tissue discrimination (Phillips and Gregg, 2001; Bond and Diamond, 2011; Phillips 

et al., 2014). They generally assume that the discrimination factors are constant, 

irrespective of the biology of the focal species or its feeding behaviour (Mill et al., 2007), 

enabling use of standard values or those derived for other species. Isotopic discrimination 

can, however, be affected by species, age, diet quality, body size, sample preparation and 

tissue type (e.g., Jacob et al., 2005; Brush et al., 2012; Mill et al., 2013). Indeed, diet-

tissue discrimination factors have been described as a major source of uncertainty in 

applying mixing models to predict diets (Phillips et al., 2014). 
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Dorsal white muscle is the standard tissue used in fish trophic studies (Pinnegar and 

Polunin, 1999; Perga and Gerdeaux, 2005), despite it often resulting in destructive 

sampling, as many species are inappropriate for the use of biopsy plugs that can remove 

muscle tissue without sacrificing the animal (Tronquart et al., 2012). This limits its utility 

in research programmes on threatened species and in work where non-destructive 

sampling is necessary, such as in mark-recapture and tracking studies (Sanderson et al., 

2009; Tronquart et al., 2012; Huang et al., 2013). Correspondingly, recent work has 

focused on the use of other tissues for stable isotope analysis whose collection is non-

destructive, such as scales and fin tissue, with subsequent conversion of their data into 

muscle values through regression relationships and correction factors, as significant 

differences in isotopic signatures have been detected between fish tissues (Jardine et al., 

2005; Kelly et al., 2006; Hanisch et al., 2010; Jardine et al., 2011; Tronquart et al., 2012). 

The aim of this Chapter was to develop stable isotope conversion and discrimination 

factors for different fish tissues, and to assess their influence on dietary analyses. Ten 

species of the Cyprinidae family of freshwater fishes were used, enabling variability 

between closely related species and general patterns to be assessed and identified. 

Presently, no studies are known on discrimination factors of cyprinid fishes, and, whilst 

Tronquart et al. (2012) provide tissue-conversion equations for fin tissue and muscle for 

some of the species used from populations in France, similar equations were not produced 

for scales, for which data remain relatively scarce. This is despite scales being collected 

widely in research programmes of cyprinid fishes and used within ecological and stable 

isotope studies (e.g., Sterner and George, 2000; Jones and Waldron, 2003; Britton, 2007; 

Bašić et al., 2015; cf. Section 1.4). The objectives were thus to: (1) quantify differences 

in δ13C and δ15N values in white dorsal muscle tissues and compare them with values 

from scales and fin tissue for a range of freshwater fishes; (2) determine the differences 

in the δ13C and δ15N values and discrimination factors of these fishes in relation to a single 

food resource; and (3) apply these discrimination factors to stable isotope mixing models 

to assess their influence on dietary predictions. 
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5.3. Materials and methods 

 

5.3.1. Fish species, tissues and stable isotope analysis 

Ten cyprinid fishes were used: European barbel Barbus barbus, goldfish Carassius 

auratus, crucian carp Carassius carassius, common carp Cyprinus carpio, dace Leuciscus 

leuciscus, fathead minnow Pimephales promelas, topmouth gudgeon Pseudorasbora 

parva, roach Rutilus rutilus, chub Squalius cephalus and tench Tinca tinca. The tissues 

used were white dorsal muscle, removed from the anterior region of each fish above the 

lateral line and below the dorsal fin, proportions of pelvic fins ('fin clip') and scales, 

removed from the region above the dorsal muscle tissue sample. 

For the SIA, fin clips and dorsal muscle were rinsed with distilled water prior to drying 

and scales were lightly cleaned with distilled water to remove mucus. The outer portion 

of the scales were removed and used, as this represents the most recent growth and thus 

stable isotope values are representative of the recent diet of the fish (Grey et al., 2009; 

Bašić et al., 2015). All the samples were oven dried at 60 °C to constant mass prior to 

analysis. Lipids were not extracted from samples, as the C: N ratios were < 3.5 %, 

indicating low lipid content and thus lipid extraction or normalisation would have little 

effect on the δ13C values (Post et al., 2007). The tissues were then analysed at the Cornell 

University Stable Isotope Laboratory, New York, USA, for δ13C and δ15N (cf. Section 

2.3.2.1 for details) and the δ13C and δ15N data were provided as ‰. 

 

5.3.2. Relationships between δ13C and δ15N values among wild fish tissues 

The relationships between the three tissues in their δ13C and δ15N data were determined 

for samples of L. leuciscus, P. parva, R. rutilus, S. cephalus and T. tinca that were 

available as frozen samples collected (time frozen: 1 to 6 months) from a range of inland 

waterbodies in Southern England. These had been collected using back-mounted electric 

fishing (Smith Root LR-24; Smith-Root, Vancouver, WA, USA). When compared with 

Tronquart et al. (2012) (n = 466), the overall sample size (n = 47) and the species-specific 

sample sizes (n = 5 – 21) were relatively low, a result of only using samples that were 

already available from other research programmes. This meant that no fish were lethally 

sampled for completing this objective specifically. In each case, the fishes were defrosted 

and samples of dorsal muscle, pelvic fin and scales removed and prepared for SIA (cf. 
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Section 2.3.2.1). The initial test was to determine whether the stable isotope ratios of fin 

and muscle, and scales and muscle, were significantly different. This was completed 

through paired Wilcoxon tests, as the data were not normally distributed (Shapiro-Wilk 

test). To then test whether fish lengths had significant effects on the stable isotope ratios 

of their tissues, linear regressions were completed.  

The next step was to develop predictive linear models for fin and muscle, and scales 

and muscle, using each species separately and then combined within a general model. 

The robustness of these linear models was tested in two ways. Firstly, due to the relatively 

small sample sizes used for some species, a post hoc power analysis was completed for 

each model. These assessed whether the slope b was identical to a fixed value of b (b = 

0; i.e. b0), where the null hypothesis was b – b0 = 0. These tests were completed using 

G*Power software (version 3.1). Where the post hoc power was above 0.8, the model was 

considered robust and no bootstrapping was required to improve the model fit. Secondly, 

for each model, the δ13C and δ15N values of muscle were predicted from scale and fin 

tissue for each individual fish and its error expressed as its difference from the observed 

value, i.e. its residual. This testing generally followed Tronquart et al. (2012), although 

the limited size of the dataset meant that unlike Tronquart et al. (2012), a subset of the 

data could not be used solely for testing the models and so the data that was used to 

construct the models was also used for its testing. Four methods were compared: (1) 

muscle isotope ratios were used directly as the fin or scale isotope ratio values; (2) muscle 

isotope ratios were predicted for each individual species from fin and scale values using 

species-specific linear models; (3) muscle isotope ratios were predicted for each species 

from fin and scale values using the linear model derived for data for all species (i.e. the 

general model); and (4) muscle isotope ratios were predicted for each species from fin 

values using the general linear models derived for 14 European freshwater fishes by 

Tronquart et al. (2012): 

Muscle δ 
13C = 0.82 * fin δ 

13C - 5.89; 

Muscle δ15N = 1.01 * fin δ15N + 0.74. 

Differences in the residuals of each of the four methods were then tested using generalised 

linear models (GLMs), as the data were not normally distributed (Shapiro-Wilk test), 

where the residuals were the dependent variable, methods were the independent variable 

and species was the covariate. To determine whether the mean residuals of methods 1, 3 
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and 4 were significantly different to the mean residuals of method 2 (the species-specific 

method), linearly independent pairwise comparisons with Bonferroni adjustments for 

multiple comparisons were used. 

 

5.3.3. Relationships between δ13C and δ15N values and discrimination 

factors in laboratory fish 

The relationships between the three tissues in their δ13C and δ15N data were determined 

for B. barbus, C. auratus, C. carassius, C. carpio, P. promelas and S. cephalus that were 

sourced from aquaculture. The fish used were age 0+ and 50 to 60 mm in length. The 

exception was P. promelas, where the fish were 30 to 35 mm in length. Sample sizes for 

each species were between 8 and 14 individuals, and each species was held separately in 

tanks of 45 l at 20 °C on recirculating systems. The fish were fed daily ad libitum on a 

fixed diet of crushed pelletized fishmeal (45 % protein, 10 % fat, 1.4 % crude fibre, 5.8 

% ash and 1.1 % total phosphorus). A single, homogenous batch was used throughout the 

holding period and no other sources of food were available to the fish. The fish were held 

for 120 days, over which time the length increase of each fish was at least 20 mm; thus, 

considerable somatic growth had occurred relative to their starting length. This increase 

in body size meant that sufficient isotopic turnover in the tissues should have occurred to 

enable the δ13C and δ15N values to reflect their fixed diet (Perga and Gerdeaux, 2005). 

Following the SIA the initial test determined whether the isotope ratios of the different 

tissues were significantly different (paired Wilcoxon tests). Then the conversion factors, 

as the mean differences in δ13C and δ15N values between muscle and fin, and muscle and 

scales, were determined for each species (i.e. the species-specific method: method 1) and 

then all species (i.e. the general method: method 2), and used to predict muscle values for 

each fish from their fin and scale values, with the residuals then expressed as the 

difference from the observed muscle value. Differences in the residuals of the two 

methods were tested using GLMs, as the data were not normally distributed (Shapiro-

Wilk test); residuals were the dependent variable, methods were the independent variable 

and species was the covariate, with the differences in the residuals determined using 

pairwise comparisons with Bonferroni adjustments for multiple comparisons.  

Following this, the δ13C and δ15N data for each species were tested for the extent of 

their discrimination (∆) between each tissue and the food resource using GLMs, again as 
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the data were not normally distributed (Shapiro-Wilk test); the dependent variable was 

the δ13C or δ15N value and the independent variables were the food resource and the tissue 

type (muscle, fin or scales). Mean differences between the food resource and each tissue 

per species were tested using estimated marginal means and pairwise comparisons with 

Bonferroni adjustments for multiple comparisons, with the latter providing the species-

specific discrimination factors through the mean difference between the food resource 

and each tissue type.  

To determine the effect of the discrimination factors on predictions of fish diet using 

Bayesian mixing models, data were used from a population of two cyprinid fishes; S. 

cephalus and B. barbus from a small tributary of the River Great Ouse in Cambridgeshire 

(52°19'39'' N; 0°06'57'' W), of maximum width 8 m and depth 1.5 m. The occurrence of 

angling at the site was minimal and thus the fish were likely to have a relatively natural 

diet rather than being reliant on angler bait (Perga and Gerdeaux, 2005). Sampling was 

completed in August 2014 by boat-mounted, generator-powered (2.5 kVA) electric 

fishing (Electracatch International, Killiney, Ireland). A maximum of 5 scales were 

removed from each fish from the anterior region above the lateral line and below the 

dorsal fin after recording their fork length (nearest mm). At the conclusion of fish 

sampling, putative food resources were also collected; these included small fishes, such 

as European bullhead Cottus gobio, and macro-invertebrates, such as Gammarus pulex. 

For the small fishes, a minimum of three individuals were collected. For macro-

invertebrates, the same number of samples was collected, but with each sample 

comprising 3 to 6 individuals. In the laboratory, the scales and putative food resource 

samples were prepared and analysed individually for their δ15N and 13C values (cf. 

Section 2.3.2.1). These stable isotope data then were applied to Bayesian mixing models 

to determine the relative contribution of each putative food resource to the diet of the each 

individual B. barbus and S. cephalus. The models were run using the SIAR package in 

the R computing program (Parnell et al., 2010; R Development Core Team, 2013). 

Putative food resources with similar isotope ratio values were combined a priori, while 

respecting the taxon and functional affiliation of the individual species (Phillips et al., 

2005), Gammaridae and water louse Asellus aquaticus were combined and applied to the 

model as Arthropods and unidentified species of snail and mussels as Molluscs. The 

initial model (model 1) was run using ‘standard’ discrimination factors commonly cited 

in the literature, i.e., 3.4 ± 0.98 ‰ for 15N and 0.39 ± 1.3 ‰ for 13C (DeNiro and 
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Epstein, 1981; Minagawa and Wada, 1984; Post, 2002; Perga and Gerdeaux, 2005), and 

was then re-run using the species-specific discrimination factors derived here for scales 

(model 2). The model outputs were the predicted proportions of the contribution of each 

putative food resource to the diet of each fish (ranging from 0 to 1). Differences in model 

outputs were tested by comparing these individual proportions between the two models 

using independent samples t-tests, with separate analyses performed for each species and 

between each category of putative food resource. All statistical analyses were completed 

using IBM SPSS Statistics (version 22.0). 

 

5.4. Results 

 

5.4.1. Relationships between δ13C and δ15N values in wild fish 

The differences in the 13C and 15N values between fin and muscle and scales and muscle 

of the five species were significant (P < 0.01 in all cases). The effects of fish lengths on 

the 13C and 15N values were non-significant in all cases (P > 0.05), other than for the 

δ13C values for P. parva (R2 = 0.38; F1,19 = 5.85, P < 0.05). The linear relationships 

between 13C and 15N among the tissues were significant in all cases, including the 

relationships for the combined data for all the species of wild fishes (P < 0.05; Table 18). 

The GLMs testing differences in the residuals of each conversion method were significant 

for both 13C and 15N values (Table 19), with the species-specific linear equations 

generally resulting in the lowest mean residual values (usually < 0.60 ‰ for δ13C and < 

0.30 ‰ for δ15N; Fig. 14), whereas the general linear equation for the dataset produced 

estimates of ≤ 0.80 ‰ for 13C and ≤ 0.50 ‰ for 15N of muscle (Fig. 14). The mean 

residuals produced by conversions using the general equations of Tronquart et al. (2012) 

were both higher than the species-specific and general linear equations produced here 

(Table 19). 
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Table 18. Number and mean fork length of wild fishes and outputs and post hoc power statistic of linear regressions between the stable isotope (δ13C 

and δ15N) values of pelvic fin and white dorsal muscle, and scales and white dorsal muscle tissue. 

Species Mean length Tissue Stable 

isotope 

R2 F P Regression coefficients Post hoc  

(range) (mm)   a b power 

L. leuciscus 180 Fin δ13C 0.99 710.69 <0.001 0.00 0.59 1.00 

n = 5 (105 - 225)   δ15N 0.94 49.20 <0.010 -0.09 1.02 1.00 

    Scales δ13C 0.99 400.70 <0.001 13.58 1.59 1.00 

      δ15N 0.89 23.14 <0.050 -1.91 1.25 1.00 

P. parva 55 Fin δ13C 0.88 135.09 <0.001 -1.86 0.96 1.00 

n = 21 (38 - 77)   δ15N 0.84 96.44 <0.001 4.21 0.62 1.00 

    Scales δ13C 0.88 139.08 <0.001 -6.51 0.73 1.00 

      δ15N 0.90 175.02 <0.001 2.52 0.78 1.00 

R. rutilus 79 Fin δ13C 0.94 92.66 <0.001 -9.88 0.73 1.00 

n = 8 (65 - 99)   δ15N 0.66 11.66 <0.050 -1.93 1.20 0.90 

    Scales δ13C 0.63 10.09 <0.050 -15.48 0.51 0.90 

      δ15N 0.88 44.34 <0.010 -0.20 1.10 1.00 

S. cephalus 222 Fin δ13C 0.76 9.54 0.05 -10.96 0.64 0.80 

n = 5 (204 - 245)   δ15N 0.93 38.60 <0.010 -1.18 1.13 1.00 

    Scales δ13C 0.83 14.41 <0.050 -1.00 1.05 0.90 

      δ15N 0.88 21.02 <0.050 -2.77 1.33 1.00 

T. tinca 126 Fin δ13C 0.86 36.44 <0.050 3.42 1.19 1.00 

n = 8 (85 - 150)   δ15N 0.82 27.26 <0.050 0.69 0.93 1.00 

    Scales δ13C 0.82 32.39 <0.050 0.87 1.06 1.00 

      δ15N 0.85 33.39 <0.050 1.22 0.89 1.00 

All species  101 Fin δ13C 0.94 687.78 <0.001 0.24 1.05 1.00 

n = 47 (38 - 245)   δ15N 0.95 915.42 <0.001 1.69 0.88 1.00 

   Scales δ13C 0.87 294.80 <0.001 -0.37 1.02 1.00 

      δ15N 0.91 434.77 <0.001 2.76 0.81 1.00 
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Table 19. Outputs of generalised linear models testing differences in error residuals 

between muscle conversion methods for stable isotope (13C and 15N) values for five 

cyprinid species sampled from wild populations; *difference in error between method and 

method 2 (the species-specific method) is significant at P < 0.05 (cf. Section 5.3.2 for 

details of methods). Overall model significant at P < 0.01 and the effect of species as a 

covariate was significant (P < 0.05). Errors around the means represent standard errors. 

    Method 

n = 47 Wald x2 1 2 3 4 

δ13C  

Fin: muscle 

 

15.401 

 

1.19 ± 0.10* 

 

0.65 ± 0.10 

 

0.81 ± 0.10 

 

1.02 ± 0.10 

δ13C  

Scale: muscle 

 

16.561 

 

1.31 ± 0.11* 

 

0.70 ± 0.11 

 

1.14 ± 0.11* 
  

δ15N  

Fin: muscle 

 

27.231 

 

0.49 ± 0.04* 

 

0.27 ± 0.04 

 

0.30 ± 0.04 

 

0.53 ± 0.04* 

δ15N  

Scale: muscle 

 

54.371 

 

0.90 ± 0.06* 

 

0.33 ± 0.06 

 

0.46 ± 0.06 
  

 

 

Figure 14. Mean error residuals per method for five cyprinid species sampled from wild 

populations used in determining stable isotope (13C and 15N) values for dorsal muscle 

from pelvic fin tissue and scales (cf. Section 5.3.2 for details of methods); ▲ P. parva; ○ 

T. tinca; ● R. rutilus; Δ S. cephalus; ■ L. leuciscus. Error bars represent standard errors. 
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5.4.2. Relationships between δ13C and δ15N values in laboratory fish 

There was a general pattern of 13C enrichment and 15N depletion from white dorsal muscle 

to pelvic fin tissue to scales in all species (Table 20). The differences between the stable 

isotope ratios of muscle and scales and muscle and fin for each species were significant 

for 13C (P < 0.01) and other than for muscle and scales for C. carpio and muscle and fin 

for P. promelas, were significant for 15N (P < 0.05). Using the mean differences in stable 

isotope ratio values between fin and muscle and scales and muscle as tissue conversion 

factors, for each species and the whole dataset, to estimate stable isotope values for 

muscle, revealed that errors were always significantly lower when using species-specific 

data (P < 0.05; Table 21) and were ≤ 0.25 ‰ for 13C and ≤ 0.30 ‰ for 15N (Fig. 15). 

 

 

Figure 15. Mean error per method for six cyprinid species used in determining stable 

isotope (15N and 13C) values for dorsal muscle from pelvic fin tissue and scales, derived 

from a laboratory trial where the fish were fed a fixed diet for 120 days; method 1 is the 

general method and method 2 is the species-specific method; ▲ B. barbus; Δ S. cephalus; 

● C. auratus; ■ P. promelas;  C. carassius; ▲ C. carpio. Error bars represent standard 

errors. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2

13C scale:muscle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2

13C fin:muscle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2

15N fin:muscle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2

15N scale:muscle

Method 

M
ea

n
 e

rr
o
r 

(‰
) 



 

 

 

1
2
7

 

Table 20. Number, mean fork length and stable isotope (δ13C and δ15N) values of pelletized fishmeal food source and white dorsal muscle, pelvic fin 

and scale tissues for laboratory fishes fed a fixed diet for 120 days. Errors around the means represent standard errors. 

 

Species Mean length Tissue Mean δ13C (‰) 95 % confidence 

interval 

Mean δ15N (‰) 95 % confidence 

interval (range) (mm) 

Fishmeal pellet     -22.15 ± 0.06 -22.32 - -21.99  8.51 ± 0.07 8.33 - 8.70 

n = 5                             

B. barbus 118 Muscle -19.59 ± 0.04 -19.66 - -19.51 10.92 ± 0.04 10.84 - 10.99 

n = 9 (105 - 127) Fin  -18.31 ± 0.04 -18.38 - -18.24 10.60 ± 0.04 10.52 - 10.68 

    Scales -17.41 ± 0.04 -17.49 - -17.34 10.70 ± 0.04 10.63 - 10.78 

C. auratus 62 Muscle -20.58 ± 0.07 -20.71 - -20.45 12.28 ± 0.06 12.17 - 12.40 

n = 9 (55 - 73) Fin  -19.04 ± 0.07 -19.18 - -18.91 11.73 ± 0.06 11.62 - 11.85 

    Scales -18.65 ± 0.07 -18.78 - -18.52 11.24 ± 0.06 11.13 - 11.35 

C. carassius 58 Muscle -19.86 ± 0.05 -19.96 - -19.77 12.40 ± 0.09 12.22 - 12.58 

n = 11 (50 - 66) Fin  -18.25 ± 0.05 -18.35 - -18.16 11.13 ± 0.09 10.94 - 11.31 

    Scales -17.61 ± 0.05 -17.70 - -17.51 11.23 ± 0.09 11.05 - 11.41 

C. carpio 78 Muscle -20.46 ± 0.05 -20.56 - -20.36 11.55 ± 0.07 11.41 - 11.68 

n = 8 (72 - 85) Fin  -18.91 ± 0.05 -19.01 - -18.81 12.11 ± 0.07 11.97 - 12.25 

    Scales -18.25 ± 0.05 -18.35 - -18.15 11.48 ± 0.07 11.34 - 11.61 

P. promelas 48 Muscle -19.30 ± 0.06 -19.42 - -19.18 11.88 ± 0.07 11.74 - 12.03 

n = 14 (40 - 53) Fin  -18.41 ± 0.06 -18.53 - -18.29 11.70 ± 0.07 11.56 - 11.85 

    Scales -17.27 ± 0.06 -17.38 - -17.15 11.30 ± 0.07 11.15 - 11.44 

S. cephalus 128 Muscle -20.16 ± 0.05 -20.26 - -20.06 10.86 ± 0.05 10.78 - 10.95 

n = 11 (94 - 183) Fin  -18.91 ± 0.05 -19.01 - -18.81 10.79 ± 0.05 10.71 - 10.88 

    Scales -17.25 ± 0.05 -17.35 - -17.15 10.48 ± 0.05 10.39 - 10.56 
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Table 21. Tissue conversion factors between pelvic fin and dorsal muscle, and scales and dorsal muscle, for six cyprinid species held in laboratory 

conditions and fed a fixed diet for 120 days; 'General' represents combined data for the species; muscle values are derived by subtracting the values in 

the table from the fin and scale values (A) and outputs of generalised linear models testing differences in error residuals between the two muscle 

conversion methods for δ13C and δ15N; *difference in error between method 1 (general method) and method 2 (species-specific method) is significant at 

P < 0.05 (B); overall model significant at P < 0.01 and the effect of species as a covariate was significant (P < 0.05). Errors around the means represent 

standard errors. 

 A) General B. barbus S. cephalus C. carassius C. carpio C. auratus P. promelas 

13C fin: muscle -1.31 -1.28 -1.25 -1.61 -1.56 -1.53 -0.88 

13C scale: muscle -2.26 -2.17 -2.91 -2.25 -2.21 -1.93 -2.03 

15N fin: muscle 0.29 0.31 0.07 1.27 -0.56 0.55 0.18 

15N scale: muscle 0.57 0.21 0.39 1.17 0.07 1.04 0.59 

 

 

 

 B)   Method  

n = 62 Wald x2 1 2 

13C fin: muscle 9.66 0.26 ± 0.02* 0.17 ± 0.02 

13C scale: muscle 12.72 0.30 ± 0.03* 0.17 ± 0.03 

15N fin: muscle 22.02 0.42 ± 0.04* 0.18 ± 0.04 

15N scale: muscle 28.59 0.39 ± 0.03* 0.19 ± 0.03 
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5.4.3. Diet-tissue discrimination factors of laboratory fish 

The discrimination factors between the food resource and each tissue corresponded to the 

patterns of 13C enrichment and 15N depletion between the tissue types (Table 20), with 

muscle generally having lower discrimination factors than the other tissues for δ13C, and 

the converse for δ15N (Table 22). For dorsal muscle, the ∆13C for the six fishes ranged 

between 1.58 ± 0.11 ‰ for C. auratus and 2.86 ± 0.12 ‰ for P. promelas and, for ∆15N, 

ranged between 2.35 ± 0.08 ‰ for S. cephalus and 3.89 ± 0.15 ‰ for C. carassius 

(Table 22). 

Application of the derived and standard discrimination factors to the mixing models 

resulted in differences in the predicted proportions of the putative food resources to B. 

barbus and S. cephalus diets (Fig. 16). Differences in outputs per resource were 

significant in all cases for B. barbus, with the standard discrimination factors resulting in 

significantly higher contributions of Fish and Molluscs than with the derived 

discrimination factors (Fish: t(12) = 3.26, P < 0.01; Molluscs: t(12) = 4.45, P < 0.01), and 

the opposite for Arthropods (t(12) = –5.70, P < 0.01) (Fig. 16A). For S. cephalus, the use 

of standard discrimination factors also resulted in significantly higher proportions of 

Molluscs (t(10) = 3.56, P < 0.01) and lower proportions of Arthropods (t(10) = –0.50, P < 

0.01) than with the derived values, although differences in estimates of the contributions 

of Fish were not significantly different between the models (t(10) = –0.22, P > 0.05) (Fig. 

16B). 

 

 

Table 22. Mean isotopic discrimination (∆) and 95 % confidence intervals (CI) between 

the pelletized fishmeal food source and white dorsal muscle (A), pelvic fin (B) and scale 

(C) tissues of the six laboratory cyprinid fishes. Errors around the means represent 

standard errors.  

A)                         

Species Mean ∆13C (‰) 95 % CI Mean ∆15N (‰) 95 % CI 

B. barbus 2.57 ± 0.06 2.73 - 2.40 2.40 ± 0.07 2.58 - 2.23 

C. auratus 1.58 ± 0.11 1.87 - 1.28 3.77 ± 0.10 4.02 - 3.52 

C. carassius 2.29 ± 0.08 2.50 - 2.08 3.89 ± 0.15 4.28 - 3.49 

C. carpio 1.69 ± 0.08 1.91 - 1.47 3.03 ± 0.11 3.33 - 2.74 

P. promelas 2.86 ± 0.12 3.16 - 2.55 3.37 ± 0.14 3.74 - 3.00 

S. cephalus 1.99 ± 0.09 2.23 - 1.76 2.35 ± 0.08 2.56 - 2.14 
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Table 22 continued 

B)                         

Species Mean ∆13C (‰) 95 % CI Mean ∆15N (‰) 95 % CI 

B. barbus 3.84 ± 0.06 4.01 - 3.68 2.09 ± 0.07 2.26 - 1.91 

C. auratus 3.11 ± 0.11 3.40 - 2.81 3.22 ± 0.10 3.47 - 2.97 

C. carassius 3.90 ± 0.08 4.11 - 3.69 2.61 ± 0.15 3.01 - 2.22 

C. carpio 3.24 ± 0.08 3.46 - 3.02 3.59 ± 0.11 3.89 - 3.30 

P. promelas 3.74 ± 0.12 4.04 - 3.44 3.19 ± 0.14 3.55 - 2.82 

S. cephalus 3.24 ± 0.09 3.48 - 3.01 2.28 ± 0.08 2.49 - 2.07 

 

C) 

                        

Species Mean ∆13C (‰) 95 % CI Mean ∆15N (‰) 95 % CI 

B. barbus 4.74 ± 0.06 4.90 - 4.57 2.19 ± 0.07 2.36 - 2.02 

C. auratus 3.50 ± 0.11 3.80 - 3.21 2.73 ± 0.10 2.98 - 2.47 

C. carassius 4.54 ± 0.08 4.75 - 4.34 2.72 ± 0.15 3.11 - 2.32 

C. carpio 3.90 ± 0.08 4.12 - 3.68 2.96 ± 0.11 3.26 - 2.67 

P. promelas 4.89 ± 0.12 5.19 - 4.58 2.78 ± 0.14 3.15 - 2.42 

S. cephalus 4.90 ± 0.09 5.14 - 4.67 1.96 ± 0.08 2.17 - 1.75 

 

 

 

 

 

 

Figure 16. Predicted contributions to fish diet of putuative food resources for B. barbus 

(A) and S. cephalus (B) derived from two mixing models where model 1 (grey bars) 

utilised standard discrimination values (Post, 2002) and model 2 (white bars) used 

species-specifc values derived here for scales (Table 22). Error bars represent standard 

errors.   
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5.5. Discussion 

 

5.5.1. Variations between isotopic signatures of tissues 

Across the 10 cyprinid species, there was substantial variation in δ13C and δ15N values 

between their tissues, with a consistent pattern of δ13C being most depleted in muscle and 

most enriched in scales. These results correspond with Sanderson et al. (2009) who 

reported that caudal fin tissues were enriched in δ13C relative to muscle for Chinook 

salmon Oncorhynchus tshawytscha and rainbow trout Oncorhynchus mykiss. The 

opposite was apparent for δ15N, with muscle most enriched and scales most depleted. This 

is consistent with other fishes, with the fin tissue of Atlantic salmon Salmo salar smolts 

being depleted in δ15N relative to muscle (Jardine et al., 2005). In addition, Pinnegar and 

Polunin (1999) found that muscle was significantly more enriched with δ15N than other 

tissues in O. mykiss, which they attributed to factors such as the structural-protein amino 

acids in the muscle, rather than to lipid concentrations.  

 

5.5.2. Utility of scales and fin clips as proxies for dorsal muscle tissue 

The relationships between the δ13C and δ15N values in scales, pelvic fin tissue and white 

dorsal muscle were significant, with these relationships being consistent with those 

detected in other fish families. In salmonid species, significant relationships in stable 

isotope data between caudal fin and muscle tissue has revealed in S. salar, O. 

tshawytscha, O. mykiss and brook trout Salvelinus fontinalis, and between adipose fin and 

muscle tissue in S. salar and brown trout Salmo trutta (Jardine et al., 2005; Sanderson et 

al., 2009; Graham et al., 2013). In European freshwater fishes, Tronquart et al. (2012) 

quantified the relationships between muscle and fin stable isotope ratios, but not scales, 

for species including R. rutilus, L. leuciscus and S. cephalus, and revealed high 

correlations between fin and muscle stable isotope ratios. 

As the variation between the tissues was generally predictable according to linear 

methods, this enabled conversion of fin and scale data to predict muscle values. 

Comparison of errors derived from the dataset indicated that the smallest errors generally 

resulted from application of species-specific equations and conversion factors, with the 

combined general equation from the dataset also being relatively accurate compared with 

using fin and scale isotopic data as muscle values directly without conversion. 
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Application of the general equations derived by Tronquart et al. (2012) for European 

freshwater fishes provided more accurate values than no conversion, but higher errors 

than the species-specific and general equations derived here. Consequently, whilst the 

outputs align with other studies suggesting that fin and scales can be used successfully 

within stable isotope studies as non-lethal surrogates of dorsal muscle (e.g., Jardine et al., 

2005, 2011; Tronquart et al., 2012), there remains some conjecture as to how widely 

general conversion equations can be applied without incurring relatively high error 

values. 

 

5.5.3. Discrimination factors for fish tissues 

Across the species, the ∆15N factors ranged from 2.35 to 3.89 ‰, with a mean of 3.13 ‰. 

Sweeting et al. (2007a) suggested that for European sea bass Dicentrarchus labrax, and 

other fishes generally, a similar value of 3.15 ‰ for ∆15N was appropriate for fish muscle. 

By contrast, the results for δ13C discrimination in muscle tissue were generally higher 

than those reported for other fishes (Post, 2002) with values ranging between 1.58 and 

2.86 ‰, with a mean of 2.16 ‰. Discrimination factors for 13C are generally more debated 

than those for 15N, with ranges for δ13C commonly cited between 0 ‰ (Peterson and Fry, 

1987) and 1 ‰ (DeNiro and Epstein, 1978). In a review by Post (2002), a mean of 0.39 

± 1.3 ‰ was suggested for Δ13C and this has been applied to mixing models in a recent 

study (Bašić et al., 2015). Conversely, Sweeting et al. (2007b) suggested that a value of 

1.5 ‰ for Δ13C was more appropriate for fishes, and that samples that had not undergone 

any treatment for lipid were likely to have even higher discrimination factors for 13C, such 

as 2.27 ‰, which is much closer to the mean derived here (2.16 ‰). These arguments are 

important given the implications of applying Δ13C values to interpretations of food web 

structure and the potential sensitivity of dietary mixing models to values of Δ13C and ∆15N 

(Gaye-Siessegger et al., 2004). 

 

5.5.4. Mixing model performance according to discrimination factors 

Previous studies have emphasised the importance of applying species-specific 

discrimination factors in isotopic mixing models in order to provide robust estimates of 

contributions to diet of putative food resources (Phillips and Gregg, 2001; Bond and 

Diamond, 2011; Phillips et al., 2014). Here, significant differences in model outputs were 

detected between the use of standard discrimination factors (Post, 2002) and the species-
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specific factors derived within the Chapter. Not only were differences detected for each 

resource, the overall pattern of the relative importance of the putative food resources to 

fish diet also altered, with contributions to the diet of two macro-invertebrate groups 

having quite different outcomes between the models. Nevertheless, all outputs did 

indicate relatively low dietary contributions of fish compared with macro-invertebrates. 

It can thus be argued that the specific discrimination factors calculated here are more 

appropriate for application in subsequent trophic studies on these and similar species than 

standard published values. However, some caution should be applied, as the 

discrimination factors were derived experimentally using a single food resource in the 

form of a pelletized formulated feed and general issues surrounding experimentally 

derived discrimination factors from formulated feeds have been strongly debated. For 

example, Caut et al. (2008) reported that discrimination factors for rats Rattus rattus 

altered markedly according to the isotopic ratio of their diet and they provided 

discrimination factors quite different from those from other studies. However, Perga and 

Grey (2010) suggested that these outputs might be less related to issues of discrimination 

and diet composition, and more to factors of experimental design and the effects of 

isotopic routing resulting from their formulated feeds. The feeds within Caut et al. (2008) 

contained a variety of dietary protein sources, with the possible preferential routing of 

essential amino acids to proteinaceous tissues, such as muscle, in the different protein 

sources potentially causing the differences observed between different diets (Perga and 

Grey, 2010). Thus, the discrimination factors recorded here might relate more to aspects 

of the composition of the pelletized feed, particularly its relatively high protein content 

(45 %), than to actual differences between the fishes and their more usual food resources 

of lower protein content. Notwithstanding, the extent of isotopic routing may vary 

considerably in prevalence and magnitude between ectotherms and endotherms (Kelly 

and Martínez del Rio, 2010) and so the explanations for the relationships provided by 

Perga and Grey (2010) considering the work on R. rattus may be less applicable to fish. 

Irrespective of this, there remains sufficient uncertainty in how representative these 

discrimination factors are in relation to cyprinid fish diets more generally to suggest that 

further work is necessary to substantiate and/or refine these discrimination factors, such 

as through using different feed formulae, particularly those with lower protein content 

and this issue is tackled within the proceeding chapter. 
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5.5.5. Summary and conclusions 

This Chapter provides data that can be applied to studies on cyprinid fishes that 

incorporate stable isotope analyses, including evaluation of trophic positions and diet 

composition, and where non-lethal sampling is required or desired. In particular, data 

have also been provided on the use of scales for trophic studies that are otherwise 

unavailable (Tronquart et al., 2012), thereby increasing the utility of scales within stable 

isotope analysis. The application of the derived discrimination factors to Bayesian mixing 

models for S. cephalus and B. barbus emphasises the importance of these to obtaining 

robust dietary predictions and although it is not necessarily a recommendation that they 

should be applied unequivocally in future studies, as a minimum, they suggest sufficient 

uncertainty in the stable isotope discrimination factors of cyprinid fishes to warrant 

further investigation as the use of general values commonly cited and applied may be 

inappropriate. 
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Chapter 6. High variability in stable isotope diet-tissue discrimination 

factors of two omnivorous freshwater fishes in controlled ex situ 

conditions 

 

A version of this chapter was published as: 

Busst, G. M. and Britton, J. R., 2016. High variability in stable isotope diet–tissue 

discrimination factors of two omnivorous freshwater fishes in controlled ex situ 

conditions. Journal of Experimental Biology, 219(7), pp.1060-1068. 

 

6.1. Summary 

 

Diet-tissue discrimination factors (Δ13C and Δ15N) are influenced by variables including 

the tissues being analysed and the taxon of the consumer and its resources. Whilst 

differences in Δ13C and Δ15N are apparent between herbivorous and piscivorous fishes, 

there is less known for omnivorous fishes that consume both plant and animal material. 

Here, the omnivorous cyprinid fishes European barbel Barbus barbus and chub Squalius 

cephalus were held in tank aquaria and exposed to three diets that varied in their 

constituents (plant-based to fishmeal-based) and protein content (14 to 45 %). After 100 

days and isotopic replacement in fish tissues to 98 %, samples of the food items, and 

dorsal muscle, fin tissue and scales were analysed for δ13C and δ15N. For both species and 

all diets, muscle was always enriched in δ15N and depleted in δ13C compared with fin 

tissue and scales. Across the different diets, Δ13C ranged between 2.0 and 5.6 ‰ and Δ15N 

ranged between 2.0 and 6.9 ‰. The diet based on plant material (20 % protein), always 

resulted in the highest discrimination factors for each tissue, whilst the diet based on 

fishmeal (45 % protein) consistently resulted in the lowest. The discrimination factors 

produced by non-fish diets were comparatively high compared with values in the 

literature, but were consistent with general patterns for some herbivorous fishes. These 

outputs suggest that the diet-tissue discrimination factors of omnivorous fishes will vary 

considerably between animal and plant resources and these specific differences need 

consideration in subsequent analyses, such as application to Bayesian mixing models for 

accurate predictions of their diet composition, and for calculation of trophic position.  
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6.2. Introduction 

 

The application of stable isotope analysis (SIA) to ecological studies provides 

considerable insight into many aspects of species’ interactions (Boecklen et al., 2011). 

Natural variations in stable isotope ratios of 13C to 12C (δ13C) and 15N to 14N (δ15N) have 

been applied widely to trophic and food web studies in aquatic environments (cf. Section 

1.4.1) and have, for example, revealed the impacts of non-native fishes in native fish 

communities (Tran et al., 2015), and the movements and ecology of endangered species 

(Seminoff et al., 2012; Hamidan et al., 2015). Critical to the interpretation of stable 

isotope ratios is the step-wise enrichment that occurs along trophic levels between 

consumer species and their prey resources (Boecklen et al., 2011; Section 1.4.1; Fig. 2), 

otherwise known as the isotopic discrimination (Martínez del Rio and Wolf, 2005).  

An increasingly important use of stable isotope discrimination factors is within 

Bayesian mixing models that predict the proportional composition of consumer diets from 

data on their putative food resources (Jackson et al., 2011). These models have been 

applied widely in recent years, including application to questions relating to the use of 

allochthonous and autochthonous food resources in freshwater consumers (Grey and 

Jackson, 2012) and the relative contributions of native and non-native taxa to consumer 

diet (Britton et al., 2010d). A fundamental requirement of these models is robust estimates 

of the stable isotope discrimination factors between the resources and consumer tissue 

being analysed (Bond and Diamond, 2011; Phillips et al., 2014). In general, they assume 

discrimination factors are constant across the size range of the consumer being studied 

and their dietary spectrum, overlooking potential differences that might occur through, 

for example, ontogenetic diet changes (Mill et al., 2007; Phillips et al., 2014). 

 This general application of constant discrimination factors across consumers within 

mixing models is potentially problematic, as studies increasingly suggest they can vary 

between species, ages, diet compositions, body sizes, sample preparations and tissue 

types (Locke et al., 2013; Brush et al., 2012; cf. Chapter 5). The commonly cited 

‘standard’ values of 3.4 ± 0.98 ‰ for δ15N and 0.39 ± 1.3 ‰ for δ13C (DeNiro and Epstein, 

1981; Minagawa and Wada, 1984; Post, 2002) could thus be inappropriate for use in many 

models, resulting in dietary predictions whose variability within and between species 

could be due more to inappropriate discrimination factors than actual dietary variation 

(cf. Chapter 5). The specific food items that contribute to the diet of a consumer can 
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substantially influence the resulting stable isotope discrimination factors between the 

consumer and their overall diet (Caut et al., 2008). For example, McCutchan et al. (2003) 

suggested that discrimination factors of δ15N were lower in consumers with invertebrate-

based diets (1.4 ± 0.21 ‰) than consumers with diets containing higher protein contents 

(3.3 ± 0.26 ‰) and mixed diets provided values between these (2.2 ± 0.30 ‰). In 

herbivorous fishes, discrimination factors for δ15N have been recorded as high as 5.25 ‰ 

(Mill et al., 2007), with Carassou et al. (2008) suggesting that herbivorous fishes have 

distinct stable isotope discrimination factors that distinguish them from piscivores.  

Correspondingly, understanding the relationships between the long-term composition 

of the diet of consumer and their diet-tissue discrimination factors is a pre-requisite for 

obtaining robust dietary predictions from models (Parnell et al., 2013; Phillips et al., 

2014). Whilst there are often clear discrimination differences apparent between 

herbivorous, insectivorous and piscivorous fishes, this potentially becomes more complex 

for omnivores, with their diets potentially comprising of a wide range of food resources 

with contrasting discrimination factors (Caut et al., 2008; Florin et al., 2011). This 

variability could be incorporated into models, and whilst this can be done via use of their 

weighted averages (Florin et al., 2011), Robbins et al. (2010) suggested that erroneous 

estimates occurred in the dietary nitrogen of assimilated mixed diets when these were 

used in mixing models.  

The aim of this Chapter was therefore to quantify and assess the extent to which stable 

isotope discrimination factors were significantly affected by diet composition in two 

omnivorous cyprinid fishes; European barbel Barbus barbus and chub Squalius cephalus, 

and across three tissue types; dorsal muscle, pelvic fin tissue (‘fin-clip’) and scales. The 

model species were selected to be representative of omnivorous freshwater fishes and 

although both tend to be rheophilic, they also tolerate lentic conditions (Britton and Pegg, 

2011), and are relatively long-lived (> 15 years; Britton, 2007). They are also present 

across much of Eurasia and have socio-economic importance as angler-target species. 

Importantly, in the wild, both are highly omnivorous, with diets comprising a wide range 

of plant and animal taxa, including insect larvae, crustaceans, fish and macrophytes 

(Mann, 1976; Britton and Pegg, 2011). Thus, when estimations of their diet compositions 

are based on stable isotope data, these analyses may require awareness of differences in 

discrimination factors that might be present between common items in their diet. The 

objectives were thus to: (1) test the hypothesis that diet-tissue discrimination for the three 

tissues of each species will vary according to their exposure to three constant diets that 
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differ in their protein composition and content; and (2) assess how the diet-tissue 

discrimination factors relate to the difference in pre- and post-experimental stable isotope 

values of tissues as well as the change in body mass of individual fishes.  

 

6.3. Materials and methods 

 

6.3.1. Experimental design 

The model fishes were sourced from pond aquaculture where their diets were a mix of 

natural foods (zooplankton and macro-invertebrates), supplemented with some 

formulated feeds. Their starting lengths were approximately 60 to 80 mm fork length 

(mean 69.4 ± 0.9 mm) and their body mass 2 to 7 g (mean 3.8 ± 0.2 g).  

The experiment exposed the fish to three fixed diets which were fed ad libitum for 100 

days. The duration of the experiment was balanced between feeding fish a single food 

source for an extended period and their tissues reaching an isotopic steady state with their 

new diet, i.e. turnover leading to equilibrium. Consumers are generally considered to have 

equilibrated to their food resources in four to five half-lives, i.e. 94 to 97 % isotopic 

replacement in their tissues (Hobson and Clark, 1992). Estimates of half-lives and 

isotopic replacement for the fishes over 100 days are provided by literature and calculated 

estimates (Thomas and Crowther, 2014; Vander Zanden et al., 2015). The estimated half-

life for consumers of 1 g at 20 oC is 23 days for δ13C (100 days = 4.3 half-lives or 95 % 

replacement) and 25 days for δ15N (100 days = 4.0 half-lives or 94 % replacement) 

(Thomas and Crowther, 2014). Estimates using the mean starting mass of fishes and 

equations from Vander Zanden et al. (2015) provided a half-life for both isotopes as low 

as 17 days (5.9 half-lives or 98.3 % replacement), whereas estimates from equations of 

Thomas and Crowther (2014) suggested half-life for δ13C was 30 days (so 3.4 half-lives 

or 90 % replacement in 100 days) and for δ15N was 32 days (3.1 half-lives or 88 % 

replacement).  

The three diets used in the experiment were all based on pelletized feeds; these were 

preferred to natural foods given that the experiment would expose the species to these 

diets over a set time period and thus variability in the stable isotope values of the feeds 

would vary little through use of single, homogenous batches, and arguably less than if 

natural food sources were utilised (cf. Chapter 5). They also enabled fish to be exposed 
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to set levels of the food over the course of the experiment. Correspondingly, the first diet 

was ‘Red krill pellets’, henceforth referred to as ‘krill’, comprising 13.7 % protein, 11.5 

% fat, 6.5 % crude fibre and 3.8 % ash, and whose base ingredient was krill oil (order 

Euphausiacea). The second diet was ‘Wheatgerm pellets’, referred to as ‘wheatgerm’, 

comprising 20 % protein, 6 % fat (as oil), 2.5 % crude fibre and 2.5 % ash, and whose 

base ingredient was plant based. The third diet was crushed pelletized fishmeal, referred 

to as ‘fishmeal’, comprising 45 % protein, 10 % fat, 1.4 % crude fibre, 5.8 % ash, and 

whose base ingredient was marine fish. Note that data for the fishmeal diet were generated 

in the previous Chapter (5) and was not repeated here to avoid unnecessary use of live 

fishes in experiments.  

All the fish were measured (fork length, nearest mm) and weighed (nearest 0.01g) prior 

to the commencement of the experiment. For the krill and wheatgerm diets, the fish were 

also anaesthetised (MS-222) and a small incision made to the abdomen to allow for the 

insertion of a passive integrated transponder tag (PIT tag) into the stomach cavity to 

enable individual identification, with a sample of pelvic fin tissue taken and immediately 

frozen for subsequent stable isotope analysis and to allow comparison with the other 

pelvic fin at the close of the experiment. Following their recovery in oxygenated water, 

they were randomly allocated into experimental tanks. The fish were released into four 

90 l tanks at 20 °C on a 16: 8 light: dark cycle and water quality was maintained through 

a flow-through filtration system. A maximum of 11 fish were allocated per tank, with the 

species held separately. The krill and wheatgerm diets were assigned to each tank, and 

thus across the four tanks, each species was exposed to each diet with daily ad libitum 

feeding. At the end of the experimental period, the fish were removed from the tanks, 

identified according to their PIT tag, re-measured and weighed, euthanized (anaesthetic 

overdose, MS-222), and samples taken of dorsal muscle, pelvic fin tissue (the unclipped 

fin) and scales, which were removed from the anterior region above the lateral line and 

below the dorsal fin. As the fishes exposed to the fishmeal diet in Chapter 5 had not been 

PIT tagged, individual changes in their body masses could not be determined, but other 

than for the PIT tagging procedure, the fishes were subjected to the same experimental 

conditions as the fishes on the krill and wheatgerm diets, including the same tank sizes, 

filtration systems, water temperature and chemical parameters, light: dark cycle and 

feeding regime.  
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6.3.2. Stable isotope analysis 

For the SIA, fin clips and dorsal muscle were rinsed with distilled water and dried. Scales 

were lightly cleaned with distilled water to remove mucus, with their outer portion 

removed and used as this represents the most recent growth and thus their stable isotope 

values represent the most recent diets of the fish (Grey et al., 2009; Bašić et al., 2015). 

All samples were oven dried at 60 ºC to constant mass prior to analysis. Lipids were not 

extracted from samples as C: N ratios were < 3.5 %, indicating low lipid content and thus 

extraction or normalisation would have little effect on δ13C (Post et al., 2007). The tissues 

were then analysed at the Cornell University Stable Isotope Laboratory, New York, USA 

(cf. Section 2.3.2.1 for details) and the δ13C and δ15N data were provided as ‰. 

 

6.3.3. Relationships in δ13C and δ15N and diet-tissue discrimination factors 

Following the SIA, the δ13C and δ15N data for each species were tested for the extent of 

their discrimination (∆) between each tissue and diet using general linear models (GLMs). 

The dependent variable was δ13C or δ15N and the independent variables were diet (krill, 

wheatgerm or fishmeal) and tissue type (muscle, fin or scales). Mean differences in the 

δ13C or δ15N values between the diets and each tissue per species were tested via their 

estimated marginal means with pairwise comparisons with Bonferroni adjustments for 

multiple comparisons. The pairwise comparisons provided the species- and diet-specific 

discrimination factors through the mean difference between the adjusted values for δ13C 

and δ15N for each diet and each tissue type, as well as the significance of the difference 

in δ13C and δ15N between each tissue, per species and per diet.  

 

6.3.4. Relationships in change of δ13C and δ15N with change in fish mass 

To test the relationship between the extent of change in δ13C and δ15N in fin tissue and 

the growth of the fish, isotopic data were calculated by deducting the values of the fin 

clips taken at the end of the experiment from those gained from fin clip samples taken at 

the start. The individual fish were identified via their PIT tag code, enabling their increase 

in mass to be determined over the course of the experiment. Univariate linear regressions 

were then completed separately for each isotope (δ13C and δ15N) and for each species and 

diet (krill and wheatgerm), where the independent variable was the increase in mass and 

the dependent variable was the difference in isotope value of the fin tissue between the 
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start and end of the experiment. All statistical analyses were completed using IBM SPSS 

Statistics (version 22.0). 

 

6.4. Results 

 

6.4.1. Stable isotope discrimination factors between diets and tissues 

The stable isotope values of the fish fed on each diet indicated some considerable 

differences. Fish fed on fishmeal had the highest δ13C values, wheatgerm had the highest 

δ15N, and those fed on krill had the lowest δ13C and the lowest δ15N (Table 23).  

The muscle, fin and scale tissues were also distinct in their isotopic signatures, with 

the highest δ15N in muscle, followed by fin tissue and then scales, with the converse 

relationship between the tissues for δ13C (Table 23). These relationships were consistent 

in both species and across the three diets. The GLMs testing differences in stable isotope 

data per tissue and diet were significant (δ13C: F17,155 = 164.76, P < 0.01; δ15N: F17,155 = 

30.56, P < 0.01) and revealed some significant differences across the tissues and diets 

(Tables 24, 25).  

These differences in the isotopic values then translated into considerable variation in 

the discrimination factors (Δ) between the three diets. The largest differences in 

discrimination factors for each species were between the wheatgerm and fishmeal diets 

(Fig. 17). For wheatgerm, the highest Δ13C recorded for B. barbus and S. cephalus was 

5.6 and 5.0, respectively (both in scale tissue) and the highest Δ15N recorded was 6.9 and 

6.8, respectively (Fig. 17). In contrast, for fishmeal, the highest Δ13C recorded for B. 

barbus and S. cephalus was 4.7 and 4.9, respectively (again, both in scale tissue) and the 

highest Δ15N recorded for both species was only 2.4 (Fig. 17). 
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Table 23. Mean initial and final fork lengths and stable isotope (δ13C and δ15N) values per diet and species for muscle, fin and scale tissues. Errors around 

the means represent standard errors. 

Diet Species Initial length (mm) 

Final length (mm) 

Tissue Mean δ13C (‰) 95 % confidence  

intervals 

Mean δ15N (‰) 95 % confidence  

interval 

1 = Krill     -24.62 ± 0.11 -24.83 - -24.42 5.03 ± 0.18 4.67 - 5.39 

2 = Wheatgerm     -24.94 ± 0.26 -25.45 - -24.43 4.35 ± 0.15 4.04 - 4.65 

3 = Fishmeal     -22.15 ± 0.06 -22.32 - -21.99  8.51 ± 0.07 8.33 - 8.70 

1 B. barbus 70 ±  2 Muscle -21.79 ± 0.08 -21.96 - -21.63 11.03 ± 0.12 10.79 - 11.27  
n = 9  90 ± 2 Fin  -20.65 ± 0.08 -20.82 - -20.49 10.03 ± 0.12 9.79 - 10.27 

       Scales -20.23 ± 0.08 -20.40 - -20.07 9.25 ± 0.12 9.01 - 9.49 

2 B. barbus 76 ± 2 Muscle -20.98 ± 0.09 -21.16 - -20.80 11.22 ± 0.12 11.00 - 11.45 

  n = 8  91 ± 1 Fin  -19.49 ± 0.09 -19.67 - -19.31 10.78 ± 0.12 10.56 - 11.01 

       Scales -19.16 ± 0.09 -19.33 - -18.98 9.89 ± 0.12 9.66 - 10.12 

3 B. barbus 87 ± 2 Muscle -19.59 ± 0.04 -19.66 - -19.51 10.92 ± 0.04 10.84 - 10.99 

  n = 9  118 ± 2 Fin  -18.31 ± 0.04 -18.38 - -18.24 10.60 ± 0.04 10.52 - 10.68 

       Scales -17.41 ± 0.04 -17.49 - -17.34 10.70 ± 0.04 10.63 - 10.78 

1 S. cephalus 69 ± 1 Muscle -22.26 ± 0.07 -22.41 - -22.11 10.09 ± 0.13 9.83 - 10.34 

  n = 10 90 ± 3 Fin  -21.88 ± 0.08 -22.04 - -21.73 9.62 ± 0.14 9.35 - 9.89 

       Scales -20.26 ± 0.07 -20.40 - -20.11 9.12 ± 0.13 8.86 - 9.37 

2 S. cephalus 69 ±  2 Muscle -21.48 ± 0.09 -21.66 - -21.30 11.02 ± 0.10 10.82 - 11.22 

  n = 10 83 ± 2 Fin  -20.70 ± 0.09 -20.88 - -20.52 11.14 ± 0.10 10.94 - 11.33 

       Scales -19.93 ± 0.09 -20.11 - -19.75 10.04 ± 0.10 9.84 - 10.23 

3 S. cephalus 97 ± 6 Muscle -20.16 ± 0.05 -20.26 - -20.06 10.86 ± 0.05 10.78 - 10.95 

  n = 11 128 ± 8 Fin  -18.91 ± 0.05 -19.01 - -18.81 10.79 ± 0.05 10.71 - 10.88 

          Scales -17.25 ± 0.05 -17.35 - -17.15 10.48 ± 0.05 10.39 - 10.56 
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Table 24. Differences in stable isotope (δ13C and δ15N) values between diets per fish tissue and species, according to pairwise comparisons from general 

linear models, where comparisons have undergone Bonferroni adjustments for multiple comparisons; *difference is significant at P < 0.05. Errors around 

the means represent standard errors. Note the data for the fishmeal diet were obtained in Chapter 5. 

Species Tissue Diet comparison Difference in δ13C (‰) Difference in δ15N (‰) 

B. barbus Muscle Fishmeal vs. Wheatgerm 1.52 ± 0.17 * - 0.31 ± 0.18    
  Fishmeal vs. Krill 2.21 ± 0.17 * - 0.11 ± 0.17   

    Wheatgerm vs. Krill 0.69 ± 0.17 *   0.20 ± 0.18   

  Fin Fishmeal vs. Wheatgerm 1.33 ± 0.17 * - 0.18 ± 0.18   

    Fishmeal vs. Krill 2.34 ± 0.17 *   0.57 ± 0.17   

    Wheatgerm vs. Krill 1.02 ± 0.17 *   0.75 ± 0.18 * 

  Scales Fishmeal vs. Wheatgerm 1.88 ± 0.17 *   0.81 ± 0.18 * 

    Fishmeal vs. Krill 2.82 ± 0.17 *   1.45 ± 0.17 * 

    Wheatgerm vs. Krill 0.94 ± 0.17 *   0.64 ± 0.18   

S. cephalus Muscle Fishmeal vs. Wheatgerm 1.32 ± 0.10 * - 0.16 ± 0.15    
  Fishmeal vs. Krill 2.10 ± 0.16 *   0.18 ± 0.16 * 

    Wheatgerm vs. Krill 0.78 ± 0.10 * 
 

0.93 ± 0.16 * 

  Fin Fishmeal vs. Wheatgerm 1.79 ± 0.10 * - 0.34 ± 0.15   

    Fishmeal vs. Krill 2.97 ± 0.16 *   1.18 ± 0.16 * 

    Wheatgerm vs. Krill 1.18 ± 0.11 *   1.52 ± 0.16 * 

  Scales Fishmeal vs. Wheatgerm 2.68 ± 0.10 *   0.44 ± 0.15   

    Fishmeal vs. Krill 3.01 ± 0.16 *   1.36 ± 0.16 * 

    Wheatgerm vs. Krill 0.33 ± 0.10 *   0.92 ± 0.16 * 
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Table 25. Differences in stable isotope (δ13C and δ15N) values between fish tissues per species for each diet according to pairwise comparisons from 

general linear models, where comparisons have undergone Bonferroni adjustments for multiple comparisons; *difference is significant at P < 0.05. Errors 

around the means represent standard errors. Note the data for the fishmeal diet were obtained in Chapter 5. 

Diet Species Tissue comparison Difference in δ13C (‰) Difference in δ15N (‰) 

Fishmeal B. barbus Muscle vs. Fin - 1.28 ± 0.17 *   0.32 ± 0.17   

  n = 9 Muscle vs. Scales - 2.17 ± 0.17 *   0.21 ± 0.17   

    Fin vs. Scales - 0.89 ± 0.17 * - 0.10 ± 0.17   

  S. cephalus Muscle vs. Fin - 1.25 ± 0.15 *   0.07 ± 0.15   

  n = 11 Muscle vs. Scales - 2.91 ± 0.15 *   0.39 ± 0.15   

    Fin vs. Scales - 1.66 ± 0.15     0.32 ± 0.15   

Wheatgerm B. barbus Muscle vs. Fin - 1.47 ± 0.18 *   0.44 ± 0.18   

  n = 8 Muscle vs. Scales - 1.81 ± 0.18 *   1.33 ± 0.18 * 

    Fin vs. Scales - 0.34 ± 0.18     0.89 ± 0.18 * 

  S. cephalus Muscle vs. Fin - 0.77 ± 0.10 * - 0.12 ± 0.16   

  n = 10 Muscle vs. Scales - 1.55 ± 0.10 *   0.98 ± 0.16 * 

    Fin vs. Scales - 0.78 ± 0.10 *   1.10 ± 0.16 * 

Krill B. barbus Muscle vs. Fin - 1.14 ± 0.17 *   1.00 ± 0.17 * 

  n = 9 Muscle vs. Scales - 1.56 ± 0.17 *   1.78 ± 0.17 * 

    Fin vs. Scales - 0.42 ± 0.17     0.78 ± 0.17 * 

  S. cephalus Muscle vs. Fin - 0.38 ± 0.16     0.47 ± 0.17   

  n = 9 Muscle vs. Scales - 2.00 ± 0.16 *   0.97 ± 0.16 * 

    Fin vs. Scales - 1.62 ± 0.16 *   0.50 ± 0.17   
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Figure 17. Stable isotope discrimination factors for B. barbus (A, C, E) and S. cephalus 

(B, D, F) for muscle (A, B), fin (C, D) and scales (E, F); Δ plant based ‘wheatgerm’ diet; 

□ fish based ‘fishmeal’ diet; and ○ invertebrate based ‘krill’ diet. Filled symbols are as 

per open symbols, except they represent mean values and standard errors. 
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6.4.2. Changes in stable isotope data in fin tissues 

Across the experimental period, an increase in body mass was evident in all fishes fed on 

krill and wheatgerm (Table 26). Outputs of univariate linear regressions testing the extent 

of change in stable isotopes in the fin tissues of individual fish with their changes in body 

mass over the experiment revealed a lack of consistent pattern across the species and diets 

(Table 26). There were, however, some significant relationships between isotopic change 

and increase in mass for both species on krill (P < 0.05; Table 26). 

The stable isotope data from the fin clips taken at the start and end of the experiment 

from the individual fish revealed the extent of isotopic change that occurred over the 100 

day period (Table 27A). The GLMs testing the significance of the differences between 

these data were significant (δ13C: F11,93 = 59.77, P < 0.01; δ15N: F11,93 = 122.46, P < 0.01), 

with pairwise comparisons revealing significant decreases in the δ15N of fin tissues 

between the start and end of the experiment for both krill and wheatgerm diets (P < 0.01), 

but for δ13C, differences were only significant for wheatgerm (P < 0.01) (Table 27B).  

 

 

 

 

Table 26. Relationships between increase in mass of fishes over the experimental period 

and the shift in stable isotope (δ13C and δ15N) values determined by individual univariate 

linear regressions. Errors around the means represent standard errors.  

Diet Species 
Mean increase 

in mass (g) 

Stable 

isotope 
R2 F P 

Krill B. barbus 4.2 ± 0.7 δ 13C 0.05 0.29 0.61 

 n = 8  δ 15N 0.58 8.21 0.03 

 S. cephalus 5.8 ± 0.8 δ 13C 0.49 6.60 0.04 

 n = 9  δ 15N 0.64 12.47 0.01 

Wheatgerm B. barbus 4.2 ± 0.1 δ 13C 0.05 0.27 0.62 

 n = 7  δ 15N 0.22 1.43 0.29 

 S. cephalus 3.8 ± 0.2 δ 13C 0.07 0.54 0.49 

 n = 9  δ 15N 0.24 2.24 0.18 
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Table 27. Mean stable isotope (δ13C and δ15N) values and diet discrimination factors of fin tissues between the start and end of the experiment (A) and 

differences according to pairwise comparisons from general linear models comparing stable isotope data of fin tissues between the start and end of the 

experiment where comparisons have undergone Bonferroni adjustments for multiple comparisons; *difference is significant at P < 0.01 (B). Errors 

around the means represent standard errors. 

 

A)       

Diet Species Fin clip Mean δ13C (‰) Mean Δ13C (‰) Mean δ15N (‰) Mean Δ15N (‰) 

Krill B. barbus Start -20.96 ± 0.09       12.27 ± 0.13       

  

  End -20.65 ± 0.08 3.97 ± 0.14 10.03 ± 0.12 5.00 ± 0.21 

S. cephalus Start -21.85 ± 0.07       12.53 ± 0.13       

    End -21.88 ± 0.08 2.74 ± 0.13 9.62 ± 0.14 4.59 ± 0.23 

Wheatgerm B. barbus Start -20.82 ± 0.09       12.34 ± 0.12       

  

  End -19.49 ± 0.09 5.31 ± 0.09 10.78 ± 0.12 6.43 ± 0.13 

S. cephalus Start -21.97 ± 0.09       12.53 ± 0.10       

    End -20.70 ± 0.08 4.24 ± 0.10 11.14 ± 0.10 6.79 ± 0.10 

 

B)     

Diet Species Fin clip Difference in δ13C (‰) Difference in δ15N (‰) 

Krill B. barbus (n = 9) Start vs. End   0.30 ± 0.18   -2.24 ± 0.18 *  
S. cephalus (n = 10) Start vs. End -0.03 ± 0.17   -2.92 ± 0.17 * 

Wheatgerm B. barbus (n = 8) Start vs. End  1.28 ± 0.19 * -1.55 ± 0.19 *  
S. cephalus (n = 10) Start vs. End  1.27 ± 0.12 * -1.40 ± 0.14 * 
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6.5. Discussion 

 

6.5.1. Diet-tissue discrimination factors 

There was considerable variation in the stable isotope discrimination factors produced by 

the three diets in the tissues of the two fishes, as per the hypothesis. Across the diets, Δ13C 

ranged between 2.0 and 5.6 ‰ and Δ15N ranged between 2.0 and 6.9 ‰. For each tissue, 

the wheatgerm diet (20 % protein) always had the highest discrimination factors, whilst 

fishmeal (45 % protein) had the lowest. These diet-tissue discrimination factors contribute 

to a growing knowledge base on the general patterns of how the diet and feeding 

behaviour of fishes affects their stable isotope data. For example, whilst the 

discrimination factors for Δ15N produced by krill and wheatgerm were high compared 

with most other fishes, the fishmeal values were relatively consistent with Sweeting et al. 

(2007a), as previously mentioned in Chapter 5, who suggested that white muscle of 

piscivorous European sea bass Dicentrarchus labrax had Δ15N of 3.15 ‰. Their 

suggestion that this could be used for fishes generally was, however, not consistent with 

the means derived here for the krill and wheatgerm diets (Δ15N of 5.1 to 6.9 ‰). 

Nevertheless, these latter elevated discrimination factors were largely in line with Mill et 

al. (2007), who recorded Δ15N up to 5.25 ‰ in herbivorous fishes. They are also in 

general agreement with Carassou et al. (2008), who suggested that herbivorous fishes 

have distinct stable isotope discrimination factors that distinguish them from piscivorous 

fishes. Thus, an omnivorous fish with a strong proportion of plant material in their diet 

should be distinguishable from a conspecific with a fish-based diet through Δ15N.  

For Δ13C, literature generally suggests values for dorsal white muscle of fishes of 

between 0 and 1 ‰ (e.g., Peterson and Fry, 1987; Phillips et al., 2005; Cucherousset et 

al., 2012b), with Post (2002) suggesting a mean of 0.39 ± 1.3 ‰, which has recently been 

applied to mixing models to estimate fish diet composition (e.g. Bašić et al., 2015). 

However, Sweeting et al. (2007b) suggested that 1.5 ‰ was more appropriate for Δ13C 

for fish muscle and samples that had not undergone lipid treatment could have higher 

values, such as 2.27 ‰. This latter inference is consistent with the outputs here for all 

diets, where the lowest Δ13C for dorsal muscle was 2.0 and highest was 3.8 ‰, and where 

no sample had undergone lipid treatment due to the low C: N ratios.  

Correspondingly, whilst there are some general patterns apparent in Δ13C and Δ15N 

across herbivorous and piscivorous species and diets, the basis of these differences 
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remains uncertain. The outputs suggest that the primary reason behind the differences 

between the three diets was their contrasting sources of dietary protein (McClelland et 

al., 2003). These differences could then relate to one of two opposing hypotheses. Firstly, 

the protein quality hypothesis suggests that discrimination in the stable isotopes of 

consumers and their prey will increase as protein quality decreases, and thus as carnivores 

tend to assimilate higher quality protein than herbivores, discrimination factors decrease 

with trophic level (Roth and Hobson, 2000). The results support this hypothesis, as 

fishmeal contained 45 % protein derived from marine fishes and had consistently low 

discrimination factors. Wheatgerm, although having the mid-range protein content of the 

three diets (20 %), was likely to have had the lowest quality protein as it was derived from 

plant material, and consistently produced the highest discrimination factors. This is 

generally consistent with Macko et al. (1986), who suggested that as dietary protein 

increases, the percentage of nitrogen in the diet increases and more amino acids are 

catabolised for energy, potentially reducing discrimination factors in protein rich diets. 

Secondly, the protein quantity hypothesis suggests that discrimination increases with 

dietary nitrogen concentration (i.e. decreasing C: N ratios), and thus as carnivores 

assimilate more protein than other fishes then discrimination increases with trophic level 

(Pearson et al., 2003). This is contrary to the findings of the Chapter, as the diet with the 

highest protein content and trophic position (fishmeal) had the lowest discrimination 

factors.  

When the two fish species were compared, then discrimination factors tended to be 

higher in B. barbus than S. cephalus, irrespective of diet and despite the species both 

being cyprinids. The reason for this difference between the species is not clear. Although 

somatic growth differences can result in differences in the isotopic enrichment of tissues 

(Thomas and Crowther, 2014; Vander Zanden et al., 2015) and have been used as an 

explanation for differences in discrimination factors between sexes (Kurle et al., 2014), 

the growth increments of each species per diet were similar here. However, the growth of 

the individual tissues within the species was not measured, and Reich et al. (2008) suggest 

that tissue growth may influence differences in isotopic incorporation among tissues. 

While the fishes grew at similar rates over the experimental period, differences in the 

growth of the tissues sampled may exist and could offer some explanation into the 

differences in discrimination values observed. Though this might relate to species-

specific differences in metabolic activity and isotopic routing within tissues, as these can 

both influence the extent of discrimination (Caut et al., 2008; Vander Zanden et al., 2015), 
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this is speculative and was not quantified. Notwithstanding, the differences demonstrate 

both the underlying complexity of understanding discrimination factors within and 

between species, and the importance of determining differences in species-specific 

discrimination factors across different prey items.  

Resolution of the differences in discrimination factors between food items comprising 

of varying protein sources and content is required in studies that predict trophic level and 

diet composition using, for example, Bayesian mixing models (Parnell et al., 2013; 

Phillips et al., 2014). The outputs indicate the difficulty of estimating discrimination 

factors from consumers with mixed diets. Whilst a final diet comprising of a 50: 50 mix 

of the wheatgerm and fishmeal feed might have indicated a discrimination factor between 

their values when fed in isolation, that could have utility in subsequent analyses, this was 

not completed due to both ethical and logistical concerns. As the fishes both show natural 

shoaling behaviours, especially in smaller sizes (Britton and Pegg, 2011), then holding 

them individually for extended periods in order to tightly control their food intake can 

represent an unnatural and highly stressful environment. Whilst this can be overcome by 

holding numbers of fish together, it is then difficult to control the food intake of individual 

fish, with the potential for substantial deviations from the 50: 50 food ratio through 

selective feeding. Greer et al. (2015) suggested a mathematical method for calculating 

combined discrimination factors based on the known diet composition of a captive parrot, 

but this approach might have limited applicability in natural situations as it loses the 

isotopic variability that is often inherent in wild diets. For example, diet composition can 

vary considerably between individuals of the same species due to ontogenetic dietary 

shifts (Byström et al., 2012). Moreover, in omnivorous fishes, whilst stomach contents 

data can indicate high proportions of algae and plant based material in their diet, this does 

not mean that a high proportion will actually be assimilated into tissues, making it difficult 

to determine the relative importance of plant based materials as a food and energy source 

(e.g. Hamidan et al. 2015). In combination, these issues of varying diet-tissue 

discrimination factors between different food resources suggest that this variability 

should be captured within predictive models used for estimating the diet composition of 

omnivores, rather than relying on the use of a single discrimination factor covering all 

putative food items (Phillips et al., 2014).  

The discrimination factors supplied here, produced in controlled conditions on fixed 

diets, thus provide strong evidence that tissue- and diet-specific discrimination factors 

require further consideration in fishes and, potentially, other taxa. Although general issues 
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surrounding experimentally-derived discrimination factors using formulated feeds have 

provoked debate in literature, for example, the study by Caut et al. (2008) and responses 

from Perga and Grey (2010), as previously mentioned in Chapter 5 (cf. Section 5.5.4), the 

extent of isotopic routing occurring within tissues may vary considerably in prevalence 

and magnitude between ectotherms and endotherms (Kelly and Martínez del Rio, 2010). 

Indeed, there is strong evidence to suggest that the rate in which stable isotopes turnover 

is significantly different between ecto- and endotherms, with the half-lives of the former 

being considerably longer (Thomas and Crowther, 2014; Vander Zanden et al., 2015). 

There also remains some uncertainty in how the discrimination between different food 

types will play out within omnivorous diets in the wild, as it is likely that they would 

consume foods that vary extensively in both protein quality and quantity, which may alter 

temporally. Where diet shifts occur regularly, the likelihood of tissues reaching isotopic 

equilibrium with each diet before a shift occurs is reduced. Furthermore, the consumption 

of food items that have different discrimination factors, may not be additive and linear 

and may vary with the degree of amino acid complementation determined by the entire 

diet (McClelland et al., 2003; MacNeil et al., 2006; Robbins et al., 2010), thus reducing 

the reliability of subsequent estimations of the assimilated diet where these interactions 

have not been factored into analyses within mixing models. Evidently further work is 

required in order to reconcile some of the differences identified here. 

 

6.5.2. Stable isotope values across different tissues 

It was also apparent in the outputs that there was variability in the stable isotope values 

between the tissue types, with a general pattern of muscle always being enriched in δ15N 

and depleted in δ13C compared with fin tissue and scales. This was consistent with the 

outcomes of Chapter 5, where the same relationships for wild and laboratory populations 

of the two model species used here were reported. These general patterns were also 

consistent with those between muscle and fin tissue for Chinook salmon Oncorhynchus 

tshawytscha, brook trout Salvelinus fontinalis, brown trout Salmo trutta, rainbow trout 

Oncorhynchus mykiss and Atlantic salmon Salmo salar (Pinnegar and Polunin, 1999; 

Jardine et al., 2005; Sanderson et al. 2009; Graham et al., 2013). Tronquart et al. (2012) 

also showed similar relationships between these tissues for 14 European freshwater 

fishes. These differences in isotopic enrichment between the tissues may relate to 

variation in amino acid profiles (Reich et al., 2008). The δ13C and δ15N of individual 

amino acids can vary significantly (McClelland and Montoya, 2002; Fogel and Tuross, 
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2003), and thus differences in amino acid composition of tissues can lead to differences 

in isotopic discrimination among them (Howland et al., 2003). The amino acid profiles 

of the tissue samples analysed here were not determined, but doing so may be worth 

consideration in future experiments where a range of tissues are sampled for use in stable 

isotope analysis. Additionally, the differences in tissues are likely to have been influenced 

by factors that determine isotopic turnover, including somatic growth and metabolic 

replacement (Martínez del Rio et al., 2009; Weidel et al., 2011; Thomas and Crowther, 

2014; Vander Zanden et al., 2015). Due to the varying metabolic activity of tissues, the 

rate of isotopic turnover found in each often differs, with a strong relationship between 

turnover and metabolism, for example, in fishes, internal organs and blood plasma have 

shorter half-lives, and therefore faster turnover, than whole blood and muscle (Thomas 

and Crowther, 2014; Vander Zanden et al., 2015). Although, Weidel et al. (2011) state 

that many fish diet-switch studies conclude that growth is primarily responsible for δ13C 

change, and found metabolic replacement had a negligible effect on turnover, this could 

relate to the use of predominately juvenile fish. 

 

6.5.3. Summary and conclusions 

The outputs reveal that for two omnivorous cyprinid fishes, there were differences across 

diet-tissue discrimination factors by diet and by species. Although further work is 

required to disentangle some of the processes involved, they nevertheless demonstrate 

that considerable attention must be made on the discrimination factors, according to the 

consumer and their putative food resources, in dietary studies of omnivorous fishes using 

SIA. Additionally, they also support the findings of Chapter 5, in that the destruction of 

fishes to take muscle samples is unnecessary and can be substituted by non-destructive 

sampling through use of scales or fin clips, thus facilitating a shift towards the use of non-

lethal and more sustainable sampling methods for stable isotope tissue collection.   
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Chapter 7. Ex situ estimates of stable isotope turnover rates and 

discrimination factors in tissues of European barbel Barbus barbus 

 

7.1. Summary 

 

Interpretation of stable isotope data relies heavily upon knowledge of the turnover rate, 

which is the rate of isotopic change occurring within tissues after a consumer changes 

diet, and the discrimination factor between the consumer and its resources. Determining 

these values for consumers in situ can be problematic as they tend to assimilate a range 

of prey items that vary in isotopic content. The turnover rates and discrimination factors 

of carbon and nitrogen stable isotopes were estimated for the freshwater cyprinid 

European barbel Barbus barbus in ex situ controlled conditions. The fish were fed distinct 

formulated diets over two discrete time periods, with concomitant shifts in the stable 

isotope values of their tissues measured for estimating turnover rates, stable isotope 

values at equilibrium, and stable isotope discrimination factors. For 15N turnover among 

tissues, the estimates from the best-fitting models ranked muscle as having the shortest 

half-life (84 days), followed by fin (91 days) and then scales (145 days). For 13C, the half-

life for muscle was 138 days and for scales, 91 days. Isotopic values at equilibrium were 

estimated as ranging between 6.75 and 9.63 ‰ for 15N, and -0.27 and -17.64 ‰ for 13C. 

The estimated diet-tissue discrimination factors were considerably higher than the 

standard values commonly cited in literature and ranged between 2.48 and 6.35 ‰ for 

δ15N and 5.01 and 6.94 ‰ for δ13C. Thus, the estimation of these data in ex situ conditions 

provides considerable insight into the turnover rates and discrimination factors of B. 

barbus and emphasises the importance of estimating these parameters for consumers at 

the species level. 

 

7.2. Introduction  

 

Stable isotope analysis is an important tool in food web ecology that can be applied to 

reconstructing the trophic interactions and energy pathways within and between 

organisms (Fry, 2006). Natural variations of the ratios of 13C to 12C (δ13C) and 15N to 14N 
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(δ15N) can be applied to Bayesian mixing models that predict the relative contributions 

of assimilated prey sources to consumer species (cf. Chapter 5), as well as identifying 

their trophic positions within the food web (cf. Chapter 2; Vander Zanden et al., 1997; 

Post, 2002). Recent applications have included identifying the feeding grounds of 

migratory species (Hertz et al., 2015; Madigan et al., 2016) and characterising trophic 

niche spaces and dietary overlaps between species (Shelton et al., 2016; Wedchaparn et 

al., 2016).  

The interpretation of stable isotope data is reliant upon two principal factors: the rate 

of isotopic change that occurs within tissues when a consumer undergoes a dietary shift, 

known as the turnover rate, and the discrimination factor between the consumer and its 

resources (cf. Chapters 5, 6; Boecklen et al., 2011). The turnover rate of stable isotopes 

in consumer tissues tends to be expressed as their half-life, defined as the time required 

for the stable isotope values in tissues to reach 50 % equilibration with the new diet 

(Vander Zanden et al., 2015). Identifying isotopic turnover rates is particularly important 

for assessing the trophic ecology of mobile and migratory species and species that 

undergo ontogenetic dietary shifts (e.g., MacAvoy et al., 2001; Buchheister and Latour, 

2010; Hertz et al., 2015). This is because the isotopic characteristics of their diet are likely 

to be temporally variable and so if tissues are sampled prior to them reaching isotopic 

equilibrium with a new diet (generally considered to equate to four to five half-lives; 

Hobson and Clark, 1992) then erroneous data interpretations will result (O’Reilly et al., 

2002). Estimates of isotopic half-lives are also important in the design of manipulative 

field studies and mesocosm experiments where, for example, the duration of the study 

could be confounded if it is of insufficient length for stable isotope equilibrium to be 

reached (Jackson et al., 2013; Tran et al., 2015). Importantly, variability has been shown 

in turnover rates between tissues of freshwater fishes and thus species-specific data are 

often required (e.g., McIntyre and Flecker, 2006; Church et al., 2009; Carleton and 

Martínez del Rio, 2010). Similarly, stable isotope discrimination factors can vary between 

tissues, diet compositions, species, ages and sample preparations, and thus calculating 

precise values enables more accurate use of analytical techniques, such as statistical 

mixing models that are used to predict the diet composition of consumers (cf. Chapters 5, 

6; Sweeting et al., 2007a, b; Caut et al., 2009).  

The determination of tissue turnover rates of consumers in the wild can be problematic, 

as they tend to assimilate a range of prey items that vary in isotopic content, with single 

prey species also showing isotopic variation over time (Perga and Gerdeaux, 2005). This 
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results in increased uncertainty in the isotopic values of the prey items, and therefore the 

isotopic ‘baselines’ (cf. Section 1.4.1; Fig. 2), that contribute to the turnover rate. 

Additionally, consumers are unlikely to feed on the same proportions of prey items on a 

daily basis, and consumer isotopic turnover rates are also influenced by a number of other 

factors, including temperature fluctuations and life-history events, such as reproduction, 

during which nutrient allocation between somatic and gonadal growth may change (e.g., 

Bearhop et al., 2002; Bosley et al., 2002; Witting et al., 2004). Thus, an alternative 

approach for estimating turnover rates is the use of experimental diet-switch studies 

completed in controlled conditions (e.g., Herzka and Holt, 2000; Logan et al., 2006; 

Buchheister and Latour, 2010; Heady and Moore, 2012; Xia et al., 2013a, b). In these 

studies, the diet is fixed to provide prey with consistent stable isotope values that should 

then produce more reliable turnover estimates in the consumer tissues (Logan et al., 

2006). Although these turnover estimates might have limited applicability in more wild 

scenarios, they at least enable greater understandings of the mechanisms involved in 

isotopic replacement (Buchheister and Latour, 2010; Heady and Moore, 2012). 

Furthermore, should reliable turnover rates be obtained from tissues then there is potential 

to utilise the natural variation in turnover rates between tissues to estimate the time since 

a resource shift has occurred, using the tissues as ‘stable isotope clocks’ (Phillips and 

Eldridge, 2006; Heady and Moore, 2012). Recent studies, such as Vander Zanden et al. 

(2015), have also attempted to provide general equations based from meta-analyses that 

provide half-life estimates using temperature and consumer starting mass, negating the 

use of diet-switch experiments to calculate turnover.  

Isotopic turnover is driven by two general processes that occur concomitantly; the 

addition of new tissue from growth and from metabolic replacement (Xia et al., 2013a, 

b). Thus, the rate of turnover is influenced by both the growth rate, representing synthesis 

of new tissue from the new diet, and the metabolic rate, representing the balanced rate of 

breakdown of old tissue, synthesised during feeding on a previous diet, and the re-

synthesis of tissue components made from the new diet (Hesslein et al., 1993). With 

known growth rates, the proportional contributions of metabolism and growth to stable 

isotopic turnover can be estimated from non-linear regressions of the isotopic turnover 

trajectories (Buchheister and Latour, 2010). As the change in isotopic content within the 

tissues can be plotted on a temporal scale as well as a feature of increase in body mass, 

models can be based on either of two methodologies: time-based or growth-based. Time-

based methods calculate turnover over a temporal scale and produce half-life estimates in 
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units of days and growth-based methods calculate turnover through an increase in body 

mass, producing half-life estimates in terms of weight gain in grams or an x-fold increase 

in body mass (Hobson and Clark, 1992; Hesslein et al., 1993; Fry and Arnold, 1982). The 

modelling method chosen is important as it can effect estimations of turnover rates as 

well as the diet-tissue discrimination factors (Martínez del Rio and Wolf, 2005; Kurle, 

2009). 

Correspondingly, the aim of this Chapter was to determine the turnover rates of 13C 

and 15N stable isotopes in the freshwater fish B. barbus under controlled conditions. The 

fish were fed distinct formulated diets over two discrete time periods, with concomitant 

shifts in stable isotope values of the fish tissues measured to determine their turnover 

rates, stable isotope values at equilibrium, and stable isotope discrimination factors. The 

specific objectives were thus to: (1) determine the discrimination factors and turnover 

rates of 13C and 15N in dorsal muscle, fin tissue and scales of B. barbus through the 

application of time- and growth-based models; (2) quantify the proportional contributions 

of metabolism and growth to the turnover rates of 13C and 15N in each tissue; (3) use an 

information-theoretic approach to determine the most appropriate model for estimating 

the turnover rates of 13C and 15N within each tissue; and (4) compare the turnover rate 

estimates from the final models with general estimates of turnover available from 

literature (e.g. Vander Zanden et al., 2015). 

 

7.3. Materials and methods  

 

7.3.1. Experimental design 

The experiment utilised juvenile B. barbus that were sourced from pond aquaculture 

where they had been reared in outdoor ponds and fed on a mixture of natural food 

resources supplemented with formulated feeds. Their initial fork lengths and weights 

ranged between 75 and 85 mm and 4 and 7 g, respectively. Following their transfer to the 

laboratory, they were acclimated to conditions for 10 days before being measured and 

tagged with 12 mm passive integrated transponder (PIT) tags to enable their subsequent 

individual identification, following the PIT tagging procedure as described in Chapter 6 

(cf. Section 6.3.1). The fish were then measured (fork length, nearest mm) and weighed 

(to the nearest 0.01g). The experimental design then used two feeding periods. The first 
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was on a set formulated diet, to provide all fish with similar isotopic values and lasted 

125 days; the second immediately followed this and feeding was on an alternative 

formulated feed for a further 125 days during which the changes in the isotopic values of 

the fish were measured. These timescales were used as 125 days should have provided at 

least four isotopic half-lives and thus the fish would be close to their isotopic equilibrium 

at the end of each period (cf. Section 6.3.1; Hobson and Clark, 1992; Thomas and 

Crowther, 2014). 

Correspondingly, following their tagging and measurement, the fish were transferred 

to 45 l tanks at 20 oC where they were held in groups of 6 and were fed a ‘control’ diet 

ad libitum for 125 days. This feed consisted of crushed pelletized fishmeal (as used 

previously in Chapters 5 and 6) and was composed of 45 % protein, 10 % fat, 1.4 % crude 

fibre and 5.8% ash. The mean 13C and 15N values were -23.19 ± 0.11 ‰ and 9.34 ± 

0.05 ‰ respectively (n = 5). At the end of the first 125 day feeding period, the fish were 

removed from their tanks, re-measured and weighed, and separated into three groups. The 

first two groups each comprised of 6 B. barbus. One of these groups was immediately 

euthanized with an overdose of anaesthetic (MS-222) and used to provide stable isotope 

data on the tissues of the fish at the start of the second feeding period. The second of these 

groups was then used as a ‘control’ group of fish that was kept in a separate 45 l tank and 

their diet maintained on the ‘control’ feed for the entirety of the subsequent 125 day 

feeding period. The third group of fish comprised of 24 fish that were used for the diet-

switch experiment and were held in 45 l tanks in groups of 6. The new food source, 

hereafter referred to as the ‘experimental’ diet, was pelletized wheatgerm (as previously 

used in Chapter 6), a plant based feed that comprised 20 % protein, 6 % fat (as oil), 2.5 

% crude fibre and 2.5 % ash and with stable isotope ratios of 13C and 15N of -25.35 ± 

0.08 ‰ and 3.28 ± 0.02 ‰, respectively (n = 5). Thus, the control and experimental diets 

were isotopically distinct. For the diet-switch fish, on day 50, 75, 100 and 125, 6 fish were 

removed and euthanized (anaesthetic overdose, MS-222) with fish selected randomly 

from the tanks throughout the experimental period. Their feeding was at ad libitum, with 

husbandry conditions of 20 oC on a 16: 8 light: dark cycle and with the tanks on a flow 

through, recirculating system. Environmental enrichment in the tanks was identical, 

comprising of artificial plants and plastic pipes of 65 mm diameter and 120 mm length 

for refugia. 

Following euthanasia of the fish at each sampling time point, they were re-measured 

and weighed, with a sample of white dorsal muscle tissue excised from the anterior region 
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above the lateral line and below the dorsal fin, with scales (n = 5 to 10) removed from the 

area above the muscle sample and pelvic fin clips also taken. All samples were rinsed 

with distilled water, with scales also cleaned to ensure mucus and skin was removed and 

samples were then oven dried at 60 °C to constant mass. Following their drying, the fish 

tissues and diet samples were submitted to the Cornell University Stable Isotope 

Laboratory, New York, USA, for analysis (cf. Section 2.3.2.1 for details). The 13C and 

15N data were provided per mille (‰) and were used subsequently in models to 

determine isotopic turnover rates.  

 

7.3.2. Time-based modelling of stable isotope turnover rates 

The time-based model estimated the stable isotope turnover rates in each of the different 

B. barbus tissues via modelling changes in 13C and 15N as an exponential function of 

time following the diet-switch, as described by Hobson and Clark (1992): 

(1) δt = ( δi – δf ) e c t + δf 

where δt is the δ13C or δ15N value of fish at experimental time t, δf is the expected isotopic 

value for B. barbus in equilibrium with the new diet, δi is the initial δ13C or δ15N prior to 

the diet-switch, and c is the turnover constant. δf was estimated using non-linear 

regression. The mean 13C and 15N of the 6 fish collected before the diet-switch were 

used as the estimate of δi in the model; c was derived by fitting the exponential model in 

Eq. (1) to match the observed isotopic data, i.e. using the experimental time (t) as the 

independent variable and the corresponding δ13C or δ15N values of fish at time t (δt) as 

the dependent variable. The time period needed to achieve a 50 % turnover (half-life, T0.5) 

of δ13C or δ15N was calculated as (Hobson and Clark, 1992): 

(2) T0.5 = ln ( 0.5 ) / c 

To allow the relative contributions of growth and metabolism to stable isotope turnover 

to be separated, a second time-based model was also used, as described by Hesslein et al. 

(1993): 

(3) δt = δf + ( δi – δf ) e – ( k + m ) t 

where δt, t, δf and δi are as previously defined in Eq. (1). m is the metabolic turnover 

constant derived by fitting the exponential model in Eq. (3) to match the observed isotopic 

data, i.e. using the experimental time (t) as the independent variable, and the 
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corresponding δ13C or δ15N values of fish at time t (δt) as the dependent variable. The 

growth rate constant k was represented by the specific growth rate; this was determined 

for each individual fish from (Sun et al., 2012): 

(4) k = ln ( Wf / Wi ) / t  

where Wi is the initial weight of B. barbus on Day 0, and Wf is the final weight when 

sampled at time t. Any turnover of δ13C and δ15N in excess of growth was attributable to 

metabolic tissue replacement (m). Expected δ13C and δ15N changes due to growth alone 

was calculated using Eq. (3), where m was set to 0 (Hesslein et al., 1993). The relative 

contributions of growth (k) and metabolism (m) were calculated as the ratio of each 

parameter to the sum of the two parameters (k + m). This calculation yielded the 

contributing proportions of growth (Pg) and metabolism (Pm) to the turnover of δ13C and 

δ15N. The half-life (T0.5) of tissue turnover of δ13C and δ15N was calculated using (Tieszen 

et al., 1983): 

(5) T0.5 = - ln ( 0.5 ) / ( k + m ) 

 

7.3.3. Growth-based modelling of stable isotope turnover rates 

The changes 13C and 15N caused by the diet shift were then modelled as a function of 

increase in mass after the diet-switch. This was initially done by adjusting the time-based 

equation of Hobson and Clark (1992), Eq. (1), by substituting t for the increase in mass 

from Day 0 (m). The growth-based model was thus represented by: 

(6) δm = ( δi – δf ) e  c  m + δf 

where, t, δf, δi and c are as previously defined in Eq. (1) and δm is δ13C or δ15N at mass 

increase m. The increase in mass required to achieve a 50 % turnover (half-life, G0.5) of 

δ13C or δ15N was calculated as (Hobson and Clark, 1992): 

(7) G0.5 = ln ( 0.5 ) / m 

Similar to the time-based modelling, a second growth-based model was then also 

applied to enable the relative contributions of growth and metabolism to turnover to be 

separated. Changes in δ13C and δ15N were modelled as a function of relative growth after 

the diet-switch. This growth-based model was represented by (Fry and Arnold, 1982): 

(8) δWR = δf + ( δi – δf ) WR  
c 
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where δi and δf are as previously defined in Eq. (1). The relative increase in weight of B. 

barbus (WR) was calculated as the final wet weight divided by the initial wet weight, and 

the variable δWR was the measured isotopic value for a fish given its increase in weight; 

c was the turnover rate constant and was derived by fitting the exponential model in Eq. 

(8) to match the observed isotopic data, i.e. using the relative mass increase WR as the 

independent variable, and the δ13C or δ15N values corresponding to the WR (δWR) as the 

dependent variable. In the growth-based model, if c = −1, growth was entirely responsible 

for the isotopic turnover, whereas if c < −1, metabolism was contributing to turnover, 

with more negative values representing greater contributions by metabolism. The amount 

of relative growth needed to achieve a 50 % turnover (half-life, G0.5) of δ13C and δ15N 

was calculated as (Buchheister and Latour, 2010): 

(9) G0.5 = e ln ( 0.5 ) / c 

where the growth-based half-life (G0.5) represents the relative amount of growth needed 

for a 50 % conversion between the initial and final stable isotope values. Hence, the half-

lifes estimated with the growth-based model are expressed as an x-fold mass increase. 

The fractions of new tissue derived from growth (Dg) and from metabolism (Dm) were 

calculated at the midpoint between the old and new isotopic values (Witting et al., 2004): 

(10) Dg = 2 ( G0.5 – 1 ) / G0.5 

(11) Dm = ( 2 – G0.5 ) / G0.5 

 

7.3.4. Model fitting and selection 

To determine the best-fitting models for the stable isotope data across both the growth- 

and time-based methods, models were assessed using an information-theoretic approach 

to model selection. Models either estimated δf (the value of the stable isotope when in 

equilibrium with the diet) via non-linear regression or used the mean 13C and 15N data 

of the experimental fish on Day 125, therefore assuming that equilibrium had been 

reached. Additionally, models were parameterised to either include or exclude a 

metabolic contribution to turnover to examine the relative importance of metabolism to 

the turnover process in each tissue. Five models were generated (i; 1-5): model A, specific 

turnover parameter and δf estimated (time-based Eq. 1 and growth-based Eq. 6); model 

B, specific turnover parameter estimated, δf obtained from data (time-based Eq. 1 and 

growth-based Eq. 6); model C, specific turnover parameter and δf estimated (time-based 
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Eq. 3 and growth-based Eq. 8); model D, specific turnover parameter estimated, δf 

obtained from data (time-based Eq. 3 and growth-based Eq. 8) and lastly, model E no 

metabolic contribution to turnover and δf estimated (i.e., for time-based Eq. 3 and growth-

based Eq. 8, m was set to 0 and c was set to -1, respectively). These model formulations 

were fitted to each isotope–tissue combination and were initially assessed separately for 

the growth- and time-based methods and then across all models and both methods to 

determine the overall best-fitting model for each isotope-tissue combination. 

Evaluations of the best model parameterisation for each isotope-tissue combination 

were based on Akaike’s information criterion corrected for small sample sizes (AICc). 

Model selection was performed using the AICcmodavg package in the R computing 

program (R Development Core Team, 2013). The model with the most empirical support 

generated ∆i = 0 (from ∆i = AICci - AICcmin; cf. Section 4.3.2). Burnham and Anderson 

(2002) suggest that ∆i values < 2 indicate substantial support for the model, whereas 

values from 4 to 7 suggest considerably less support, and ∆i values > 10 indicate minimal 

support for that model. 

 

7.3.5. Estimating stable isotope turnover rates 

In addition to the time- and growth-based turnover models, estimates for the rates of stable 

isotope turnover among the tissues were also predicted from equations available from the 

literature. These equations used temperature, body mass and growth constants in order to 

obtain turnover estimates with the intention to remove the requirement for undertaking 

diet-switch experiments. Relevant equations were identified from three studies. Firstly, 

Buchheister and Latour (2010) developed a generalised model for predicting the time 

scale of isotopic turnover from growth-based turnover parameters; the turnover rate 

constant c, as determined in Eq. (8) and the specific growth rate k, as determined in Eq. 

(4). Their equation was developed to help evaluate isotopic equilibrium assumptions of 

fishes in the field. Secondly, Thomas and Crowther (2014) use literature-derived turnover 

estimates from animal species of differing body sizes to develop a predictive tool to 

estimate turnover rates in tissues of other taxa that only requires the input of the species’ 

body mass and temperature. Lastly, Vander Zanden et al. (2015) also collected previously 

published half-life estimates and examined how half-life is related to body size, testing 

for tissue- and taxa-varying allometric relationships. They separated vertebrate 

ectotherms from invertebrates and combined half-life estimates for carbon, nitrogen and 
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sulphur stable isotopes, generating group specific intercepts for inclusion into their 

equation, along with body mass. All the estimated turnover times were produced as half-

lives in terms of days and therefore the outputs allowed comparison with estimates 

generated from the time-based models used in the Chapter. 

 

7.3.6. Final diet-tissue discrimination factors 

The final step was estimating the discrimination factors (Δ) of δ13C and δ15N between the 

experimental diet and each tissue using (Minagawa and Wada, 1984): 

(12) Δ = δf – δd 

where δf is the average isotopic ratio of the experimental fish collected on Day 125 and 

δd is the δ13C or δ15N of the experimental diet. Additionally, in case tissues had not 

reached equilibrium with the diet, discrimination factors were also calculated for each 

tissue type, using the δf value estimated in the best-fitting model for each isotope-tissue 

combination, as selected from the lowest AICc values.  

 

7.3.7. Statistical analysis 

Differences in the isotopic ratios between the sampling time points in the experiment and 

between the three types of tissue, i.e. muscle, fin and scales, were analysed using 

generalised linear models (GLM), as the data were not normally distributed, with either 

the sampling time points or tissue types as independent variables and δ13C or δ15N as 

dependent variables. Differences in the dependent variables according to the independent 

variables and their significance were determined from pairwise comparisons with 

Bonferroni adjustments for multiple comparisons. All statistical analyses were performed 

with IBM SPSS Statistics (version 22.0). 

 

7.4. Results  

 

7.4.1. Fish growth 

All B. barbus individuals grew during the initial 125 day control feeding period prior to 

the diet-switch. At the start of this initial period, mean fork lengths and weights were 79.6 
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± 2.8 mm and 5.5 ± 0.6 g respectively, with these increasing to 89.3 ± 4.6 mm and 8.1 ± 

1.3 g, by the end. During the subsequent 125 day diet-switch period, all B. barbus 

individuals in the control and experimental groups also increased in length and weight, 

with their increments varying according to the timing of the removal of the fish from the 

tanks (Table 28).  

Specific growth rates (k) varied across individuals and sampling time points, and 

between the experimental and control groups (Table 28). Overall, mean growth rates 

increased with time and ranged from 0.004 to 0.006 at Day 50 and Day 125, respectively, 

in the experimental fish. No fish decreased in mass over the experimental period. The 

control fish, that were maintained on the pelletized fishmeal feed for the 125 day 

experimental period, had significantly higher k values than the experimental fish at the 

end of their feeding period (mean k control fish 0.010 vs. 0.006 of the experimental fish 

at Day 125; ANOVA: F1,11 = 26.50, P < 0.001). 

 

 

Table 28. Number, fork length, weight, specific growth rate (k, as defined in Eq. 4), and 

relative growth (WR; final wet weight divided by initial wet weight) of B. barbus fish in 

the experimental (A) and control group (B) at each sampling time point after the diet-

switch. Errors around the means represent standard deviations. 

A) 

Time 
point 

n Fork length (mm) Weight (g) k WR 

Day 0 6 90.17 ± 6.68 7.65 ± 1.44 
 

Day 50 6 102.50 ± 3.73 12.20 ± 0.89 0.004 ± 0.001 1.24 ± 0.08 

Day 75 6 99.83 ± 4.02 11.89 ± 1.37 0.005 ± 0.001 1.44 ± 0.13 

Day 100 5 103.20 ± 4.27 11.84 ± 1.43 0.005 ± 0.001 1.53 ± 0.22 

Day 125 6 111.83 ± 4.40 16.58 ± 1.87 0.006 ± 0.001 2.11 ± 0.18 

 

B) 

    

Time 
point 

n Fork length (mm) Weight (g) k WR  

Day 125 6 139.67 ± 8.96 30.28 ± 6.92 0.010 ± 0.002 4.28 ± 1.02 
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7.4.2. Stable isotope ratios of δ13C and δ15N 

Comparison of the δ13C and δ15N data for the 6 B. barbus euthanized on Day 0 of the 

diet-switch experiment with the control group of 6 B. barbus that were maintained on 

the pelletized fishmeal control diet over the second 125 day feeding period revealed 

that their δ13C and δ15N data were not significantly different and so had remained 

relatively constant over this second feeding period (GLM; δ13C: Wald 2 = 410.59, d.f. 

= 17, P > 0.05; δ15N: Wald 2 = 801.02, d.f. = 17, P > 0.05; Table 29). The only 

exception was δ13C in fin tissue, where the difference was 1.24 ‰, suggesting the 

tissue may not have been in equilibrium with the control feed at the end of the initial 

125 days (Table 29; Table 30A). 

Following the diet-switch to the wheatgerm based experimental feed in the second 

feeding period, the euthanized fish at each subsequent sampling time point revealed 

significant shifts in δ15N when these data were compared to the fish at Day 0 (Table 

29). The only exception was fin tissue, where a significant shift was not apparent until 

Day 75 (Table 29; Table 30A; GLM: Wald 2 = 801.02, d.f. = 17, P < 0.05). For δ13C, 

however, significant shifts in stable isotope ratios relative to the composition at Day 0 

were only apparent on Day 125 for scales, whereas for dorsal muscle and fin tissue, no 

significant shifts were apparent (Table 29, Table 30A). After the diet-switch, the 

observed stable isotope values of the three fish tissues showed an overall increase in 

δ13C and reduction in δ15N. There was a consistent hierarchy of muscle having the 

highest δ15N values and scales the lowest; for δ13C, the opposite occurred, with scales 

having the highest δ15N values and muscle the lowest (Table 29). The lack of 

significant changes in δ13C of fin tissues throughout the experiment, coupled with the 

presence of a significant difference between stable isotope ratios on Day 0 and the 

control group on Day 125 indicate unreliable data, and thus δ13C for fin tissue was not 

analysed further (Table 30A).   
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Table 29. Mean stable isotope (δ13C and δ15N) values of the control and experimental 

diets and tissues of B. barbus fish in the experimental and control groups at each 

sampling time point.; *significantly different from Day 0 at P < 0.05, according to 

pairwise comparisons from generalised linear models where comparisons have 

undergone Bonferroni adjustments for multiple comparisons. Errors around the means 

represent standard errors. 

 

 

Tissue Time point δ13C    δ15N 

Control diet -23.19 ± 0.11   9.34 ± 0.05 

Experimental diet -25.35 ± 0.08   3.28 ± 0.02 

Muscle Day 0 -20.90 ± 0.13   12.28 ± 0.10 

  Day 50 -20.75 ± 0.13   11.13 ± 0.10* 

  Day 75 -21.08 ± 0.13   10.55 ± 0.10* 

  Day 100 -20.99 ± 0.15   10.38 ± 0.10* 

  Day 125 -20.34 ± 0.13   9.63 ± 0.10* 

  Control Day 125 -21.16 ± 0.13   11.89 ± 0.10 

Fin Day 0 -19.14 ± 0.22   11.37 ± 0.16 

  Day 50 -19.03 ± 0.22   10.87 ± 0.16 

  Day 75 -19.04 ± 0.22   10.21 ± 0.16* 

  Day 100 -19.58 ± 0.24   10.16 ± 0.18* 

  Day 125 -19.40 ± 0.22   9.32 ± 0.16* 

 Control Day 125 -20.38 ± 0.22*  11.75 ± 0.16 

Scales  Day 0 -19.46 ± 0.18   11.21 ± 0.11 

  Day 50 -19.13 ± 0.18   10.35 ± 0.11* 

  Day 75 -19.05 ± 0.18   10.04 ± 0.11* 

  Day 100 -18.79 ± 0.20   9.91 ± 0.12* 

  Day 125 -18.41 ± 0.18*  9.33 ± 0.11* 

 Control Day 125 -19.37 ± 0.18   11.36 ± 0.11 
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Table 30. Differences in stable isotope (δ13C and δ15N) values between sampling time points per fish tissue (A) and between fish tissues per sampling 

time point (B) of B. barbus fish in the experimental and control groups. Differences were calculated according to pairwise comparisons from generalised 

linear models where comparisons have undergone Bonferroni adjustments for multiple comparisons; *difference is significant at P < 0.05. Errors around 

the means represent standard errors. 

 

A)                     

Stable isotope Time point comparison Muscle Fin Scales 

δ13C Day 0 vs. Day 50 -0.15 ± 0.25 -0.11 ± 0.25 -0.33 ± 0.25 

  Day 0 vs. Day 75 0.19 ± 0.25 -0.10 ± 0.25 -0.41 ± 0.25 

  Day 0 vs. Day 100 0.09 ± 0.27 0.44 ± 0.27 -0.67 ± 0.27 

  Day 0 vs. Day 125 -0.56 ± 0.25 0.26 ± 0.25 -1.04 ± 0.25* 

  Day 0 vs. Control Day 125 0.26 ± 0.25 1.24 ± 0.25* -0.09 ± 0.25 

δ15N Day 0 vs. Day 50 1.15 ± 0.18* 0.50 ± 0.18 0.86 ± 0.18* 

  Day 0 vs. Day 75 1.73 ± 0.18* 1.16 ± 0.18* 1.17 ± 0.18* 

  Day 0 vs. Day 100 1.90 ± 0.19* 1.21 ± 0.19* 1.30 ± 0.19* 

  Day 0 vs. Day 125 2.65 ± 0.18* 2.05 ± 0.18* 1.88 ± 0.18* 

  Day 0 vs. Control Day 125 0.39 ± 0.18 -0.39 ± 0.18 -0.15 ± 0.18 
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Table 30 continued 

 

B)                                       

Stable 

isotope 

Tissue 

comparison 

Day 0 Day 50 Day 75 Day 100 Day 125 Control Day 125 

δ13C Muscle vs. 

Fin 

-1.76 ± 0.25* -1.72 ± 0.25* -2.04 ± 0.25* -1.41 ± 0.28* -0.94 ± 0.25* -0.78 ± 0.25 

  Fin vs. 

Scales 

0.31 ± 0.25 0.10 ± 0.25 0.01 ± 0.25 -0.79 ± 0.28 -0.99 ± 0.25* -1.01 ± 0.25 

  Scales vs. 

Muscle 

1.44 ± 0.25* 1.62 ± 0.25* 2.04 ± 0.25* 2.20 ± 0.28* 1.93 ± 0.25* 1.79 ± 0.25* 

δ15N Muscle vs. 

Fin 

0.91 ± 0.18* 0.26 ± 0.18 0.34 ± 0.18 0.21 ± 0.20 0.31 ± 0.18 0.14 ± 0.18 

  Fin vs. 

Scales 

0.16 ± 0.18 0.52 ± 0.18 0.17 ± 0.18 0.25 ± 0.20 -0.01 ± 0.18 0.40 ± 0.18 

  Scales vs. 

Muscle 

-1.07 ± 0.18* -0.78 ± 0.18* -0.51 ± 0.18 -0.46 ± 0.20 -0.30 ± 0.18 -0.53 ± 0.18 
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7.4.3. Modelling stable isotope turnover 

 

7.4.3.1. Time-based methods 

For model A, estimates of parameter c and δf, obtained through non-linear regression, 

explained more of the variation in the model for δ15N than δ13C, with R2 values ranging 

from 0.69 for scales to 0.92 for muscle versus 0.46 for scales and 0.58 for muscle (Table 

31). The δf estimates for δ15N and δ13C were not achieved within the experimental period, 

indicating that equilibrium had not been reached (Fig. 18). It should be noted that the δf 

values for δ15N and δ13C used here were estimated in the growth-based version of model 

A due to model fitting difficulties when running the time-based version. In model B, 

where only parameter c was estimated through non-linear regression and δf was the 

average of the stable isotope values of the experimental group at Day 125 (assuming that 

equilibrium had been reached by the tissues), the model explained similar levels of 

variation when compared to model A for δ13C, but slightly less for δ15N (Table 31) and 

estimates for the turnover rate constant c were higher than in model A.  

In model C, estimated contributions to turnover from growth and metabolism were 

separated, revealing differences between the tissues. Across both isotopes and all tissues, 

growth contributed more to turnover than metabolism (Table 31). Additionally, for δ15N 

and δ13C, there was a clear reduction in the contribution to turnover from metabolism 

within the tissues, from muscle to fin to scales, but with δ15N having relatively higher 

contributions from metabolism to turnover than δ13C (Table 31; Fig. 19). For scale δ13C, 

metabolism was estimated to not contribute to turnover. Estimates of parameters m and 

δf explained a high proportion of the variation within the model for δ15N, with R2 ranging 

from 0.80 for scales to 0.94 for muscle, compared to 0.49 for scales and 0.58 for muscle 

for δ13C (Table 31). The δf values estimated for both δ13C and δ15N were not achieved, 

indicating that equilibrium had not been reached (Fig. 19).  

For model D, where only parameter m was estimated through non-linear regression 

and δf was the average of the stable isotope values of the experimental group at Day 125 

(assuming that equilibrium had been reached by the tissues), differences between the 

relative contributions of growth and metabolism to turnover between the tissues were 

distinct. Across both isotopes and all tissues and in contrast to model C, metabolism 

contributed more to turnover than growth (Table 31). Patterns for δ15N were similar to 
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model C, with a reduction in the contribution of metabolism to turnover from muscle to 

fin to scales (Table 31). However, the differences between the tissues were much reduced 

in this model, with contributions to turnover ranging from 72 % for muscle to 67 % for 

scales, versus 42 % for muscle to 0.6 % for scales in model C (Table 31). For δ13C, scales 

had a higher contribution from metabolism to turnover than muscle and across all tissues 

and isotopes estimates for the metabolic constant m were higher than model C.  

Lastly, in model E, where there was no contribution of metabolism to turnover and δf 

was estimated through non-linear regression, more variation was again explained by the 

model for δ15N than δ13C, with R2 ranging from 0.80 for scales to 0.89 for muscle, versus 

0.49 for scales and 0.58 for muscle. The δf values estimated for both δ13C and δ15N 

indicate that isotopic equilibrium had not been reached (Table 31).  

 

 

 

 

 

Table 31. Parameter estimates and calculations from time-based methods of models A to 

E of stable isotope turnover in B. barbus tissues. c, turnover rate constant; m, metabolic 

constant; k, growth constant; Pm, relative contributions of metabolism to turnover; Pg, 

relative contributions of growth to turnover; T0.5, half-life (days); δf, estimated 

equilibrium value; *estimate was obtained from the growth-based method of the 

corresponding model (Table 32). Errors around the means represent standard errors. 

Model Stable 

isotope 

Tissue Parameter estimate R2 δf (‰) T0.5 

A 13C Muscle c -0.005 ± 0.001 0.58 -19.74 *   138.29     

    Scales c -0.008 ± 0.002 0.46 -18.06 *   90.73     

  15N Muscle c -0.012 ± 0.001 0.92 9.25 *   56.80     

    Fin c -0.011 ± 0.001 0.83 8.89 *   61.75     

    Scales c -0.009 ± 0.001 0.69 8.78 *   80.49     

B 13C Muscle c -0.011 ± 0.002 0.55 -20.27 ± 0.04 63.81     

    Scales c -0.012 ± 0.004 0.45 -18.41 ± 0.13 56.09     

  15N Muscle c -0.015 ± 0.001 0.86 9.63 ± 0.13 45.05     

    Fin c -0.015 ± 0.001 0.76 9.32 ± 0.10 47.55     

    Scales c -0.013 ± 0.002 0.65 9.33 ± 0.09 51.64     
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Table 31 continued 

 

Model Stable 

isotope 

Tissue Parameter estimate R2 k + m Pm Pg δf (‰) T0.5 

C 13C Muscle m 0.001 ± 0.003 0.58 0.005 ± 0.0005 0.15 ± 0.01 0.85 ± 0.01 -19.93 ± 0.39 122.41 ± 6.55 

    Scales m 0.000 ± 0.004 0.49 0.004 ± 0.0005 0.00 ± 0.00 1.00 ± 0.00 -17.64 ± 0.87 145.38 ± 9.72 

  15N Muscle m 0.003 ± 0.001 0.94 0.008 ± 0.0004 0.42 ± 0.01 0.58 ± 0.01 8.44 ± 0.34 84.25 ± 2.84 

    Fin m 0.003 ± 0.002 0.84 0.007 ± 0.0004 0.37 ± 0.01 0.63 ± 0.01 8.07 ± 0.57 91.89 ± 3.42 

    Scales m 0.000 ± 0.001 0.80 0.005 ± 0.0004 0.06 ± 0.00 0.94 ± 0.00 7.87 ± 0.53 139.61 ± 8.51 

D 13C Muscle m 0.006 ± 0.002 0.56 0.010 ± 0.0005 0.62 ± 0.04 0.38 ± 0.04 -20.27 ± 0.04 78.19 ± 5.06 

    Scales m 0.007 ± 0.003 0.47 0.011 ± 0.0005 0.67 ± 0.04 0.33 ± 0.04 -18.41 ± 0.13 65.65 ± 3.46 

  15N Muscle m 0.010 ± 0.001 0.88 0.015 ± 0.0004 0.72 ± 0.02 0.28 ± 0.02 9.63 ± 0.13 48.18 ± 1.59 

    Fin m 0.009 ± 0.001 0.79 0.014 ± 0.0004 0.70 ± 0.02 0.30 ± 0.02 9.32 ± 0.10 51.20 ± 1.82 

    Scales m 0.008 ± 0.002 0.70 0.013 ± 0.0004 0.67 ± 0.03 0.33 ± 0.03 9.33 ± 0.09 57.04 ± 2.31 

E 13C Muscle m 0.000     0.58 0.005 ± 0.0003 0.00     1.00     -19.82 ± 0.12 145.38 ± 9.72 

    Scales m 0.000     0.49 0.004 ± 0.0005 0.00     1.00     -17.64 ± 0.24 145.38 ± 9.72 

  15N Muscle m 0.000     0.89 0.004 ± 0.0004 0.00     1.00     6.86 ± 0.17 145.38 ± 9.72 

    Fin m 0.000     0.81 0.004 ± 0.0004 0.00     1.00     6.75 ± 0.23 145.38 ± 9.72 

    Scales m 0.000     0.80 0.004 ± 0.0004 0.00     1.00     7.74 ± 0.16 145.38 ± 9.72 
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Figure 18. Changes in B. barbus stable isotope (δ15N: filled symbols and δ13C: open 

symbols) values estimated from the time-based method of model A for muscle (A), fin 

(B), and scales (C). The horizontal dashed lines represent the expected final isotopic 

values of the tissues in equilibrium with experimental feed (δf).  
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Figure 19. Changes in B. barbus stable isotope (δ15N: filled symbols and δ13C: open 

symbols) values estimated from the time-based method of model C for muscle (A), fin 

(B), and scales (C). Solid lines represent the isotopic values with the contribution of 

growth and metabolism, and dotted lines are the isotopic values with the contribution of 

growth alone (m = 0). The horizontal dashed lines represent the expected final isotopic 

values of the tissues in equilibrium with experimental feed (δf). Error bars represent 

standard deviations.   
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7.4.3.2. Growth-based methods 

Similar to the time-based version of the model, estimates of parameter c and δf in model 

A explained more of the variation in δ15N than δ13C with R2 ranging from 0.79 for scales 

to 0.91 for muscle, compared to 0.58 for scales and 0.62 for muscle (Table 32). The δf 

values for δ15N and δ13C were not achieved by Day 125, indicating that isotopic 

equilibrium had not been reached (Fig. 20). In model B, where only parameter m was 

estimated through non-linear regression and δf was the average of the stable isotope 

values of the experimental group at Day 125 (assuming that equilibrium had been reached 

by the tissues), similar levels of variation were explained when compared to model A for 

δ13C, but were slightly less for δ15N (Table 32). Estimates for the turnover rate constant 

m were also higher than in model A.  

In model C, where estimated contributions from growth and metabolism were 

separated, a similar pattern to the time-based version of the model was revealed. For δ15N, 

there was again a reduction in the contribution to turnover from metabolism from muscle 

to fin to scales, but for δ13C contributions from growth and metabolism for muscle and 

scales were very similar, with both showing minimal contributions of metabolism to 

turnover (Table 32). Estimates of turnover rate constant c and δf explained a high 

proportion of the variation for δ15N, with R2 ranging from 0.79 for scales to 0.91 for 

muscle, versus 0.49 and 0.59 for δ13C (Table 32). The δf values estimated for δ15N were 

similar to those generated in time-based version of model C and revealed isotopic 

equilibrium had not been reached (Fig. 21). It should be noted that the δf values for δ13C 

used here were estimated in the time-based version of model C due to model fitting 

difficulties when running this growth-based version of the model.  

In model D, where only parameter c was estimated through non-linear regression and 

δf was the average of the stable isotope values of the experimental group at Day 125 

(assuming that equilibrium had been reached), there were differences between the relative 

contributions of growth and metabolism to turnover between the tissues. In contrast to 

model C, metabolism contributed more to turnover than growth for δ15N and there was 

an almost even contribution from growth and metabolism to turnover for δ13C in both 

muscle and scales (Table 32). Patterns for δ15N were similar to model C, with a reduction 

in the contribution of metabolism to turnover from muscle to fin to scales, but with 

differences between the tissues much reduced, with values ranging from 61 % for muscle 

to 55 % for scales, compared to 44 % for muscle to 0.8 % for scales in model C. Across 
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all tissues and isotopes, estimates for the turnover rate constant c were lower than model 

C (Table 32).  

Finally, in model E, where there was no contribution of metabolism to turnover and δf 

was estimated through non-linear regression, similarly to all proceeding models, more 

variation was explained in the model for δ15N than δ13C with R2 values ranging from 0.88 

for muscle to 0.79 for scales, versus 0.57 for muscle to 0.49 for scales for δ13C. The δf 

values estimated for both δ13C and δ15N were not achieved by Day 125, indicating that 

equilibrium had not been reached (Table 32).  

 

 

 

 

 

 

Table 32. Parameter estimates and calculations from growth-based methods of models A 

to E of stable isotope turnover in B. barbus tissues. m and c, turnover rate constants; Dm, 

relative contribution of metabolism to turnover; Dg, relative contribution of growth to 

turnover; G0.5, half-life; δf, estimated equilibrium value. Growth-based half-lives of 

models B, D and E are expressed as an x-fold increase in body mass (x BM); *estimate 

was obtained from the time-based method of the corresponding model (Table 31). Errors 

around the means represent standard errors. 

 

Model Stable 

isotope 

Tissue Parameter estimate R2 δf (‰) G0.5 

A 13C Muscle m -0.08 ± 0.09 0.62 -19.74 ± 0.96 8.24 g 

    Scales m -0.19 ± 0.11 0.58 -18.06 ± 0.52 3.66 g 

  15N Muscle m -0.24 ± 0.04 0.91 9.25 ± 0.24 2.89 g 

    Fin m -0.22 ± 0.06 0.81 8.89 ± 0.41 3.19 g 

    Scales m -0.16 ± 0.05 0.79 8.78 ± 0.45 4.25 g 

B 13C Muscle m -0.19 ± 0.04 0.60 -20.27 ± 0.04 3.60 g 

    Scales m -0.24 ± 0.07 0.50 -18.41 ± 0.13 2.93 g 

  15N Muscle m -0.31 ± 0.02 0.78 9.63 ± 0.13 2.25 g 

    Fin m -0.29 ± 0.03 0.67 9.32 ± 0.10 2.40 g 

    Scales m -0.26 ± 0.03 0.62 9.33 ± 0.09 2.64 g 
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Table 32 continued 

 

Model Stable isotope Tissue Parameter estimate R2 Dm Dg δf (‰) G0.5 

C 13C Muscle c -1.13 ± 0.17 0.59 0.08 0.92 -19.93 *   1.84 x BM 

    Scales c -1.00 ± 0.19 0.49 0.00 1.00 -17.64 *   2.00 x BM 

  15N Muscle c -2.13 ± 0.43 0.91 0.44 0.56 8.96 ± 0.38 1.39 x BM 

    Fin c -1.81 ± 0.62 0.82 0.36 0.64 8.45 ± 0.72 1.47 x BM 

    Scales c -1.13 ± 0.64 0.79 0.08 0.92 8.02 ± 1.23 1.85 x BM 

D 13C Muscle c -2.02 ± 0.40 0.54 0.42 0.58 -20.27 ± 0.04 1.41 x BM 

    Scales c -2.47 ± 0.74 0.48 0.51 0.49 -18.41 ± 0.13 1.32 x BM 

  15N Muscle c -3.20 ± 0.23 0.89 0.61 0.39 9.63 ± 0.13 1.24 x BM 

    Fin c -3.00 ± 0.31 0.80 0.59 0.41 9.32 ± 0.10 1.26 x BM 

    Scales c -2.73 ± 0.32 0.74 0.55 0.45 9.33 ± 0.09 1.29 x BM 

E 13C Muscle c -1.00     0.57 0.00 1.00 -19.82 ± 0.12 2.00 x BM 

    Scales c -1.00     0.49 0.00 1.00 -17.64 ± 0.24 2.00 x BM 

  15N Muscle c -1.00     0.88 0.00 1.00 6.87 ± 0.17 2.00 x BM 

    Fin c -1.00     0.81 0.00 1.00 6.76 ± 0.23 2.00 x BM 

    Scales c -1.00     0.79 0.00 1.00 7.75 ± 0.16 2.00 x BM 
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Figure 20. Changes in B. barbus stable isotope (δ15N: filled symbols and δ13C: open 

symbols) values estimated from the growth-based method of model A for muscle (A), 

fin (B), and scales (C). The horizontal dashed lines represent the expected final 

isotopic values of the tissues in equilibrium with experimental feed (δf). 
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Figure 21. Changes in B. barbus stable isotope (δ15N: filled symbols and δ13C: open 

symbols) values estimated from the growth-based method of model C for muscle (A), 

fin (B), and scales (C). Solid lines represent the isotopic values with the contribution 

of growth and metabolism, and dotted lines are the isotopic values with the 

contribution of growth alone (c = -1). The horizontal dashed lines represent the 

expected final isotopic values of the tissues in equilibrium with experimental feed (δf). 

Error bars represent standard deviations.   
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7.4.4. Fitting the stable isotope turnover models 

The best-fitting models, as indicated by having the lowest AICc values, varied within 

and between each method (growth- or time-based), isotope and tissue. For time-based 

modelling, the best-fitting models varied between the isotope–tissue combinations. For 

δ13C, muscle and scales were best described by model A, for δ15N, muscle and fin were 

best described by model C and scale δ15N turnover was best described by model E 

(Table 33A). Within the growth-based modelling of δ13C, muscle and scales were best 

described by model B, fin and scales by model E, and muscle δ15N turnover by model 

B (Table 33A). Only muscle and scales for δ15N were best described by the same model 

when analysed separately for time- and growth-based methods (Table 33B). When 

model fitting was compared across all models and both methods, δ13C was always best 

described by growth-based models and δ15N by time-based models. In no cases was 

model D selected as the best-fit. Additionally, there was variability within the model 

∆i values for both carbon and nitrogen stable isotopes, with there being substantial 

support (∆i < 2) for almost all models for δ13C across both time- and growth-based 

methods, in contrast to δ15N, where most models had considerably less or minimal 

support when compared to the best-fitting model (Table 33).  
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Table 33. Comparisons of ∆i among models A to E, where; the equilibrium value (δf) was either estimated (model A, B and E); or obtained from the 

experimental Day 125 data (model C and D); separation of the relative contributions of metabolism and growth to turnover was allowed (model B and 

D); or had no contribution of metabolism to turnover (model E). Models were fitted using the time- and growth-based methods for each isotope and 

tissue and are compared across time and growth-based methods separately (A) and combined (B). The best-fitting models are identified in bold face, 

models with ∆i < 2 have considerable support and are underlined (cf. Section 7.3.4 for full model descriptions). 

 

A)   ∆AICc                     

Stable   Time-based method   Growth-based method 

isotope Tissue 
Model 

A 

Model 

B 

Model 

C 

Model 

D 

Model 

E 
  

Model 

A 

Model 

B 

Model 

C 

Model 

D 

Model 

E 

δ13C Muscle 0.00 1.53 2.68 1.13 0.05   1.40 0.00 1.23 2.60 1.06 

  Scales 0.00 0.43 0.65 0.03 0.65   0.18 0.00 1.97 1.53 1.97 

δ15N Muscle 12.63 17.82 0.00 12.44 12.09   0.80 1.52 0.00 2.77 4.93 

  Fin 4.28 7.36 0.00 4.43 2.11   1.98 1.04 0.67 1.22 0.00 

  Scales 10.12 12.90 2.53 9.19 0.00   2.57 3.04 2.55 4.90 0.00 

B)   ∆AICc 

Stable   Time-based method   Growth-based method 

isotope Tissue 
Model 

A 

Model 

B 

Model 

C 

Model 

D 

Model 

E 
  

Model 

A 

Model 

B 

Model 

C 

Model 

D 

Model 

E 

δ13C Muscle 1.05 2.58 3.73 2.18 1.10   1.40 0.00 1.23 2.60 1.06 

  Scales 1.43 1.86 2.08 1.46 2.08   0.18 0.00 1.97 1.53 1.97 

δ15N Muscle 12.63 17.82 0.00 12.44 12.09   7.96 8.68 7.16 9.94 12.09 

  Fin 4.28 7.36 0.00 4.43 2.11   4.09 3.15 2.78 3.33 2.11 

  Scales 10.12 12.90 2.53 9.19 0.00   2.57 3.04 2.55 4.90 0.00 
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7.4.5. Estimated stable isotope turnover rates 

Half-life estimates varied considerably and were slightly more wide-ranging across 

13C than 15N, from 37 to 159 days for 13C, compared to 40 to 141 days for 15N (Table 

34). In comparison to the turnover estimates produced from the best-fitting models 

across the time-based methods, for 13C, Buchheister and Latour’s (2010) equation was 

the closest estimate for the half-life of muscle tissue; 141 days compared to 138 in 

model A and for scales Vander Zanden et al.’s (2015) equation was closest; 61 days 

compared to 91 in model A. For half-life estimates of 15N, Buchheister and Latour’s 

(2010) equation was closest for all three tissues, estimating half-lives within 10 days 

of those estimated from the best-fitting models (Table 34).  

 

7.4.6. Diet-tissue discrimination factors 

The diet-tissue discrimination factors calculated for 13C, where δf was the average 

stable isotope value of the experimental fish at Day 125 (assuming equilibrium had 

been reached), produced discrimination factors ranging from 5.01 ‰ for muscle to 

6.94 ‰ for scales (Table 35B). For 15N, isotopic discriminations were higher than 13C 

for muscle and fin, but lower for scales and the differentiation between the tissue types 

was also narrower for 15N, with discrimination factors ranging from 6.04 ‰ for fin to 

6.35 ‰ for muscle. The isotopic discrimination for 15N calculated using δf values from 

the best-fitting models, as identified by having the lowest ∆i (Table 33), were lower 

than those produced from the experimental data, however, the differentiation between 

the tissues was increased; 2.48 ‰ for scales, 4.79 ‰ for fin and 5.16 ‰ for muscle 

(Table 35B). As the best-fitting model for 13C for both muscle and scales was model 

B, where the δf values were taken from the experimental fish on Day 125, the isotopic 

discriminations are the same as for the experimental data. 
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Table 34. Estimates of carbon and nitrogen stable isotope turnover rates, as half-lives (T0.5), generated from equations. Time-based methods produce 

half lifes in days (d-1) and growth-based methods as a gain in mass (g) or as an x-fold increase in body mass (x BM). Body temperature (BT), body mass 

(BM) and growth constants are used within the equations. Values in bold are from the best-fitting models (∆i = 0; Table 33); *mass value converted from 

x BM to grams (g) from the initial weights of the fish that underwent the diet-switch. Errors around the means represent standard errors. 

Method Reference Equation Tissue 13C T0.5   15N T0.5 

Time-

based 

Hobson & Clark (1992) δt = (δi – δf) e c t + δf Muscle 138.29     d-1 56.80     d-1 

  Fin         61.75     d-1 

  Scales 90.73     d-1 80.49     d-1 

  Hesslein et al. (1993) δt = (δi – δf) e–(k + m)t + δf Muscle 122.41 ± 6.55 d-1 84.25 ± 2.84 d-1 

  Fin         91.89 ± 3.42 d-1 

  Scales 145.38 ± 9.72 d-1 145.38 ± 9.72 d-1 

  Thomas & Crowther  

(2014) 

log10(
13C T0.5) = 1.6668 + 0.1935  

* log10 BM + -0.0153 * BT 

Muscle 37.03 ± 0.20 d-1 39.55 ± 0.22 d-1 

  log10(
15N T0.5) = 1.6884 + 0.1933  

* log10 BM + -0.0149 * BT 

                  

  Vander Zanden et al. 

(2015) 

Vertebrate ectotherm muscle: Muscle 42.26 ± 0.27 d-1 42.26 ± 0.27 d-1 

ln (T0.5) = 0.22 * ln (BM) + 3.28                   

Vertebrate ectotherm whole body: Muscle 61.18 ± 0.38 d-1 61.18 ± 0.38 d-1 

  ln (T0.5) = 0.22 * ln (BM) + 3.65                   

Buchheister & Latour 

(2010) 

T0.5 =  ln (50 / 100) / k c Muscle 140.82 ± 12.16 d-1 75.02 ± 6.48 d-1 

                  Fin         88.22 ± 7.62 d-1 

  Scales 159.44 ± 13.76 d-1 141.38 ± 12.21 d-1 
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Table 34 continued 

 

Method Reference Equation Tissue 13C G0.5   15N G0.5  

Growth-

based  

Hobson & Clark (1992) δt = (δi – δf) e c m + δf Muscle 3.60     g 2.89     g 

  Fin         3.19     g 

  Scales 2.93     g 4.25     g 

  Fry & Arnold (1982) δWR = (δi – δf) WR
c + δf Muscle 1.84     x BM 1.39     x BM 

  Fin         1.47     x BM 

  Scales 2.00     x BM 2.00*     x BM 

    Muscle 6.83 ± 0.18 g 3.17 ± 0.08 g 

  Fin         3.82 ± 0.10 g 

  Scales 8.13 ± 0.22 g 8.13* ± 0.22 g 

   



 

 

 

1
8
3

 

Table 35. Stable isotope equilibrium values (δf) of B. barbus fish tissues, either obtained from experimental data or estimated from best-fitting models 

(∆i = 0; Table 33) (A) and the corresponding isotopic discrimination factors between the experimental diet and tissues (B). Errors around the means 

represent standard errors along with 95 % confidence intervals (CI). 

 

A)                           

Data Tissue δf 13C 95 % CI δf 15N 95 % CI 

Experimental  Muscle -20.34 ± 0.10 -20.52 - -20.15 9.63 ± 0.09 9.45 - 9.81 

(Day 125) Fin -19.40 ± 0.10 -19.59 - -19.21 9.32 ± 0.09 9.14 - 9.50 

  Scale -18.41 ± 0.10 -18.60 - -18.22 9.33 ± 0.09 9.15 - 9.51 

Best-fitting model  Muscle -20.34 ± 0.10 -20.52 - -20.15 8.44 ± 0.34 7.75 - 9.14 

(∆i = 0) Fin             8.07 ± 0.57 6.90 - 9.24 

  Scale -18.41 ± 0.10 -18.60 - -18.22 7.74 ± 0.16 7.41 - 8.07 

 

B)                           

Data Tissue ∆13C 95 % CI ∆15N 95 % CI 

Experimental  Muscle 5.01 ± 0.17 4.58 - 5.45 6.35 ± 0.16 5.93 - 6.77 

(Day 125) Fin 5.95 ± 0.17 5.51 - 6.38 6.04 ± 0.16 5.62 - 6.46 

  Scale 6.94 ± 0.17 6.50 - 7.37 6.05 ± 0.16 5.63 - 6.47 

Best-fitting model  Muscle 5.01 ± 0.17 4.58 - 5.45 5.16 ± 0.02 5.11 - 5.21 

(∆i = 0) Fin             4.79 ± 0.02 4.74 - 4.84 

  Scale 6.94 ± 0.17 6.50 - 7.37 2.48 ± 0.02 2.44 - 2.53 
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7.5. Discussion  

 

This ex situ diet-switch experiment using juvenile B. barbus enabled estimations of carbon 

and nitrogen stable isotope turnover rates, expressed as half-lives, as well as separation of 

the relative contributions from metabolism and growth to turnover, along with 

determinations of tissue-specific discrimination factors. Equilibrium between the 

experimental diet and the tissues was not reached within the time-frame of the experiment, 

with this reflected in the half-life estimates. These outputs are discussed in turn in the 

following sub-sections.  

 

7.5.1. Estimated stable isotope turnover rates 

The results indicated that the nitrogen stable isotope signatures of the B. barbus tissues 

reflected and approached those of their new diet, with the turnover processes being 

mathematically predictable using turnover models (Buchheister and Latour, 2010; Xia et 

al., 2013b). For 15N turnover among the fish tissues, in the best-fitting models, there was a 

consistent ranking of muscle having the shortest turnover time (84.3 days), followed by fin 

(91.2 days) and scales having the longest (145.4 days). This hierarchy is supported by other 

studies that show dramatically different turnover rates between fish tissues (Buchheister 

and Latour, 2010; Xia et al., 2013b), although some other studies have detected only minor 

inter-tissue differences in turnover rates (e.g., Hesslein et al., 1993; Sweeting et al., 2005; 

McIntyre and Flecker, 2006). This suggests that tissue turnover differentiation, as well as 

the relative ordering of turnover rates among tissues, may be species-specific. For example, 

Heady and Moore (2012) calculated 15N half-lives for muscle, fin and scales in rainbow 

trout Oncorhynchus mykiss and found fin had the fastest rate of turnover (12.9 days), 

followed by muscle (39.0 days) and scales (40.0 days). These turnover estimates are shorter 

than those produced here, however the authors recognised that their turnover rates were 

fast, approximately 71 % faster for muscle than estimates from a previous O. mykiss isotope 

diet-switch study (Church et al., 2009) and this was attributed to experimental conditions 

(Heady and Moore, 2012). Buchheister and Latour (2010) studied summer flounder 

Paralichthys dentatus liver, blood and muscle tissue and found muscle to have the slowest 

turnover (84.9 days) which is comparable to the muscle half-life estimated here (84.3 days). 

Xia et al. (2013b) measured turnover in grass carp Ctenopharyngodon idellus, and 
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estimated 15N turnover in muscle tissue to be 68.3 days. Where differences between tissue 

turnover rates are observed, they generally follow the pattern that more metabolically 

active tissues show higher stable isotope turnover rates than less active tissues (Tieszen et 

al., 1983). 

The results of the carbon isotopic signatures of B. barbus showed that changes within 

the tissues did occur, but unlike nitrogen, they did not approach those of the experimental 

feed, which was more negative in δ13C compared to the control feed, with the tissues 

becoming less negative in δ13C over the course of the experimental period. The carbon 

isotopic turnover processes were mathematically predictable following the turnover 

models, but the variation explained within the models was reduced compared to 15N. The 

best-fitting models for muscle and scales produced half-life estimates of 138.3 and 90.7 

days, respectively, suggesting that muscle 13C turnover is slower than scales and for both 

tissues 13C turnover is slower than 15N. There are fewer comparisons available in the 

literature for 13C turnover in fish tissue, as most studies concentrate on nitrogen stable 

isotopes (e.g., Logan et al., 2006; MacNeil et al., 2006; Heady and Moore, 2012; Xia et 

al., 2013a) and this is the first known attempt to calculate carbon turnover in fish scales. 

Though, Buchheister and Latour (2010) estimated that muscle tissue had a carbon stable 

isotope half-life of 68.9 days in P. dentatus, compared to 84.9 days for nitrogen.  

A possible explanation of the difficulty encountered with determining the turnover of 

13C in B. barbus tissues is the issue of the differences between the diet-switch feeds not 

being sufficiently large enough. In a study by MacNeil et al. (2006), control and treatment 

diets maintained relative δ15N differences of more than 200 ‰ during their experiment. 

They highlight that a considerable challenge in studying stable isotope dynamics has been 

in selecting suitable control and treatment diets that differ substantially in stable isotope 

values as differences of 3 ‰ are in fact at the 5th to 6th decimal place when converted to 

actual concentrations (Pinnegar and Polunin, 1999). Most studies of isotopic turnover have 

not achieved differences of more than 3 ‰ between diets (MacNeil et al., 2006). Here, the 

difference between control and experimental feeds for δ15N was 6.06 ‰, although 

differences between feeds for δ13C were small, only 2.16 ‰, which may account for the 

minimal changes in δ13C, which might limit conventional analyses of turnover (Sweeting 

et al., 2005). Consequently, the data obtained for 15N turnover derived here is likely to be 

more reliable than 13C.  
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A potential confounding factor of diet-switch experiments in general is that tissues are 

not fully equilibrated to the control diet before the diet-switch occurs, leaving tissues either 

closer to, or further from, their equilibrium level with the new diet. However, here, control 

fish tissues showed little change in isotopic signatures, with relatively small variations 

between tissues sampled before the diet-switch and those maintained on the control feed 

and sampled on Day 125, suggesting that the fish were initially near isotopic equilibrium 

with the control diet. Given that the pre- and post-diet-switch periods were equal in their 

duration this indicates that the turnover rate of the control feed was faster than that of the 

experimental feed. A possible explanation for this is the differing protein source and 

content of the different feeds. Few studies have controlled for the potential effects of 

protein composition on stable isotope turnover, but MacNeil et al. (2006) observed a 

difference in the rate of δ15N uptake and elimination within tissues when shifts occurred 

between high and low (elimination) and low and high (uptake) δ15N concentration. The 

diet-switch here was from a high (9.34 ‰) to a low (3.28 ‰) δ15N concentration, which 

may have influenced the rate of turnover occurring within the tissues, creating a difference 

between the two diets. 

 

7.5.2. Proportional contributions of metabolism and growth to turnover 

The proportional contributions of growth and metabolism to the turnover rates of 13C and 

15N could only be calculated from models C, D and E and so the contributions discussed 

are those generated from those models with the lowest AICc value for each tissue and 

isotope. For muscle, fin and scale tissue, growth was the predominant contributor to 15N 

turnover, accounting for 58, 63 and 100 % of isotopic change, respectively. For 13C, growth 

accounted for 100 % of turnover in muscle, but in scales, metabolism was slightly 

dominant, accounting for 51 % of the change in isotopes in the best-fitting model. 

However, other models with substantial support (∆i < 2; Burnham and Anderson, 2002) 

suggest that growth accounted for up to 100 % of turnover for 13C in scales, which is a 

more realistic estimate as scale collagen is deposited only during seasonal growth and is 

generally thought not to turnover metabolically (Hutchinson and Trueman, 2006). Hesslein 

et al. (1993) utilised juvenile broad whitefish Coregonus nasus to examine δ13C and δ15N 

in response to a dietary shift and attributed 90 % of the observed isotopic changes in the 

fish to growth. The dominant influence of growth on turnover is supported here and 

elsewhere for ectotherms (e.g., Herzka and Holt, 2000; MacAvoy et al., 2001; Bosley et 
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al., 2002; Perga and Gerdeaux, 2005; Heady and Moore, 2012) and is attributed to 

ectothermic animals having lower metabolic activities than endotherms (Bosley et al., 

2002; Tominaga et al., 2003).  

Perga and Gerdeaux (2005) suggested that as fish, and other ectotherms, have a 

discontinuous pattern of growth over the year, the δ13C and δ15N of muscle may only reflect 

food consumed during periods of growth. They found that muscle exhibits a slow and 

discontinuous turnover and that food consumed during nearly half of the year cannot be 

detected within the tissue (Perga and Gerdeaux, 2005). Herzka and Holt (2000) also found 

that growth explained over 90 % of the observed variability in turnover of both carbon and 

nitrogen isotopes. However, one caveat to these experiments is that the majority focused 

solely on muscle tissue, and for most fishes, the roles of growth versus metabolism on 

tissue-specific turnover rates have not been investigated. Where multiple tissues have been 

compared, contrasting results have been found, showing that the isotopic turnover rate 

substantially varies depending on the relative metabolic activity of various tissues (e.g., 

Herzka et al., 2001; Logan et al., 2006; McIntyre and Flecker, 2006; Carleton and Martínez 

del Rio, 2010) and several authors have found that high metabolic rates do appear capable 

of elevating muscular δ15N signatures (Herzka and Holt, 2000; Gaye-Siessegger et al., 

2004). Additionally, some studies have noted that results may not be consistent across all 

fish life stages as the majority of ex situ diet-switch experiments have utilised juveniles 

(Hesslein et al., 1993; Herzka and Holt, 2000; Perga and Gerdeaux, 2005). Indeed, 

experiments on older or larger fishes and those with lower specific growth rates found 

replacement to be a major proportion of total turnover, in some cases accounting for 80 % 

of isotopic change in dorsal muscle tissue (Suzuki et al., 2005; Logan et al., 2006; Tarboush 

et al., 2006). Heady and Moore (2012) found that metabolism contributed more to 15N 

turnover for faster turnover tissues contributing 68 % for fin, 6.1 % for muscle, and 0.7 % 

for scales. The estimated contributions derived here are similar for scales, but for muscle, 

the influence of metabolism was much stronger, accounting for 42 and 44 % of turnover in 

the time- and growth-based models, respectively. 

Size, growth rate, tissue type and turnover rate may thus influence the relative 

contributions of growth and metabolism to turnover. Moreover, experimental design, and 

in particular temperature, may also have a significant effect, as recognised by Heady and 

Moore (2012) for their fast turnover rates. Furthermore, Frazer et al. (1997) examined δ13C 

and δ15N of larval Antarctic krill Euphausia superba Dana and found an effect of 
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metabolism on turnover only at the higher of two rearing temperatures; and in studies that 

utilised similar sized fishes, higher water temperatures reduced the half-lives of carbon in 

muscle tissue (Bosley et al., 2002; Witting et al., 2004). Caution must be applied where 

the contributions of metabolism to turnover are estimated and represented by a metabolic 

constant, as in reality, it is the turnover observed that is not attributable to growth (MacNeil 

et al., 2006). It should be recognised, therefore, that this constant includes all other 

processes that contribute to turnover, such as inter-tissue recycling of nutrients, preferential 

isotopic routing and amino-acid effects, and these processes may operate differently during 

isotopic uptake and elimination (MacNeil et al., 2006). There is a considerable lack of 

analysis of the relative fates of 13C and 15N in turnover in fishes, and without such specific 

research providing a mechanistic basis for predicting stable isotope dynamics, the 

biological processes that contribute to the metabolic constant, specifically, and that 

underpin isotopic turnover more generally, cannot be fully understood. Nonetheless, the 

majority of studies do support the speculations by Tieszen et al. (1983) that metabolic 

activity is positively correlated with turnover. 

 

7.5.3. Using AICc to determine best-fitting models 

An information-theoretic approach to model selection highlighted differences between the 

best-fitting models for carbon and nitrogen stable isotope turnover, with time-based 

methods providing better fits for 15N turnover and growth-based methods for 13C turnover. 

All of the time-based models that were selected for 15N turnover included specific-growth 

rates and metabolic constants. Weidel et al. (2011) also found that models including a 

tissue replacement parameter were generally better supported than models predicting 

turnover based solely on growth, but with regard to 13C turnover. The growth-based models 

that were best-fitting for 13C were generated from Hobson and Clark’s (1992) equation, 

which was developed from a stable isotope study in birds, which are endothermic animals 

and that have a higher basal metabolic rate than ectotherms, such as fishes (Tieszen et al., 

1983; Hobson and Clark, 1992; Herzka and Holt, 2000). Thus, whilst model B provided 

the best-fit for 13C turnover of muscle and scales according to ∆i, it is questionable that 

equilibrium was reached during the experimental time-frame when other substantially 

supported models of 13C turnover of muscle and scales suggest otherwise. These data were 

also potentially unreliable due to the limited change of isotopic values observed within the 
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tissues, and therefore, the use of the turnover estimates for 13C from model B is not 

recommended. 

 

7.5.4. Comparing turnover estimates from models with general equations 

In addition to the assessed models, general equations available from the literature were 

applied to the data to generate estimates of stable isotope turnover. This allowed 

comparison of half-lives between the equations and the best-fitting models for each 

isotope-tissue combination. Buchheister and Latour’s (2010) equation was closest for 15N 

turnover for all tissues and 13C for muscle. Although the best-fitting 13C time-based model 

for scales produced a half-life close to Vander Zanden et al.’s (2015) equation, as 

previously mentioned, the data for 13C may be questionable and therefore Buchheister and 

Latour’s (2010) equation could provide a more realistic estimate. Buchheister and Latour 

(2010) generated their equation from a fish diet-switch experiment, which, when compared 

to Thomas and Crowther (2014) and Vander Zanden et al. (2015), who calculated their 

equations from broad data sets encompassing many different species and types of animal 

under varied experimental conditions, could explain the proximity of their half-life 

estimates to those observed here. Although a limitation to Buchheister and Latour’s (2010) 

equation is that it requires accurate estimates of the specific growth rate (k) and the turnover 

constant (c), whereas the others only require body mass and temperature.  

The range of half-lives produced from the experimental data reveal how model selection 

can influence turnover and equilibrium estimates, and the associated discrimination factors 

which are critical when applying stable isotope data to food web ecology. Consequently, 

the results of previous studies that have used such general equations to justify their 

experimental time-frame or for determination of the extent of isotopic turnover observed 

(e.g. Milardi et al., 2015) may be confounded as outputs here suggest that equilibrium may 

not have been reached. It is therefore suggested that where possible, researchers should use 

half-life estimates derived for the species in question, or if not available, from a closely 

related taxa, or of similar biology (e.g. ecto- or endo-thermic) and generated from 

comparable temperature conditions to those experienced by the species. 
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7.5.5. Diet-tissue discrimination factors 

The diet-tissue discrimination factors observed here are considerably higher than the 

standard values that are commonly cited (i.e., 3.4 ± 0.98 ‰ for δ15N and 0.39 ± 1.3 ‰ for 

δ13C; DeNiro and Epstein, 1981; Minagawa and Wada, 1984; Post, 2002) and that have 

been recently applied to a stable isotope mixing model (Bašić et al., 2015). However, these 

values are increasingly recognised as inappropriate for application across a wide range of 

species, tissues and diets. In Chapter 6, where the same wheatgerm diet was fed to B. 

barbus continuously for 100 days, discrimination factors for δ15N were 5.31 ‰ and 6.43 

‰ for δ13C in fin tissue. These values are comparable to the estimates here that were 

calculated using δf as the stable isotope values from the experimental fish sampled on Day 

125; 5.95 ‰ for δ13C and 6.04 ‰ for δ15N, which demonstrates consistency in 

discrimination factors for this wheatgerm diet in B. barbus. However, the outputs of this 

ex situ experiment suggest that the experimental fish used in Chapter 6 would not have 

reached equilibrium with their diet within the time-frame of 100 days. Heady and Moore’s 

(2012) best-supported δ15N diet-tissue discrimination factors for O. mykiss were 3.4 ‰ for 

muscle, 1.6 ‰ for fin, and 2.2 ‰ for scales. Results here for δ15N are alike for scales using 

δf from the best-fitting model (2.44 ‰), but discrimination factors calculated for muscle 

and fin are much higher, 5.16 and 4.79 ‰, respectively. A potential reason for this is that 

Heady and Moore (2012) found fin tissue to have a faster turnover rate than muscle.  

As highlighted previously (cf. Chapter 6), differences between the discrimination factors 

derived here and those elsewhere may be attributed to the protein compositions of the diets 

which can influence the diet-tissue discrimination, as authors have suggested a strong 

association between amino acid composition and tissue δ15N enrichment (e.g., Pinnegar 

and Polunin, 1999; Schmidt et al., 2004). This creates difficulties when comparisons are 

made between discrimination factors that have been estimated from diets that have 

different protein compositions. Here, the protein sources, and hence, amino acid profiles, 

of the control and experimental diets were different (fishmeal based to plant based) and 

this might have impacted on the discrimination factors measured.  

 

7.5.6. Summary and conclusions 

The outputs of this Chapter reveal that B. barbus tissues exhibit variation in their turnover 

rates and discrimination factors. The results add to a growing body of evidence that suggest 
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stable isotope turnover is faster in tissues with higher metabolic activity and within muscle, 

fin and scale tissue, growth is the dominant contributor to isotopic change. Nevertheless, 

contribution from metabolism should not be disregarded or underestimated, particularly in 

muscle tissue. This is the first known instance where carbon and nitrogen stable isotope 

turnover in scales has been estimated, providing novel values for 13C turnover in all fishes 

and the first for 15N in B. barbus. In addition, the application of general equations can be a 

valuable tool where specific turnover estimates are unavailable and/or an experimental 

diet-switch study cannot be undertaken, however, it is recommended that where possible, 

the equations are derived from the species in question or from a species with a similar 

biology in order to derive the best half-life estimates to therefore allow allocation of a 

sufficient time-frame to ensure stable isotope turnover has fully occurred and the tissues 

have reached equilibrium with the diet. 
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Chapter 8. General discussion 

 

8.1. Introduction 

 

The use of fish scales within studies on fish and fisheries ecology is long established, 

particularly with regard to their use within investigations on population demographics, 

such as age structure and growth rates (e.g., Jackson et al., 2007; Vilizzi et al., 2013; Yates 

et al., 2016). More recently, they are increasingly applied within research investigating the 

long-term trophic ecology of fishes, primarily due to the expansion and popularisation of 

contemporary stable isotope techniques, coupled with a desire to utilise material collected 

in a non-destructive manner (Gerdeaux and Perga, 2006; Trueman and Moore, 2007; Yao 

et al., 2016). In addition, the successful extraction of DNA from scales in sufficient 

quantities for completing modern genetic analyses is also possible and has been used, for 

example, to investigate the phylogeography of European barbel Barbus barbus in Great 

Britain (Antognazza et al., 2016). Notably, all of these applications are possible from 

removing a small number of scales from a fish in a non-lethal and marginally invasive 

manner, with their subsequent long-term storage causing minimal degradation in their 

quality (Al-Absy and Carlander, 1988). Despite these advantages, there remain some 

significant concerns regarding the use of scales within ecological studies due to a series of 

substantial knowledge gaps regarding tackling the inherent issues associated with their use. 

These include the difficulties of scale interpretation for ageing and a lack of information 

on stable isotope turnover rates as well as the isotopic discrimination between a fish’s 

scales and its food resources. Thus, the overarching aim of thesis was to overcome some 

of these paucities in knowledge via the completion of a range of in- and ex-situ studies 

completed on freshwater fishes in temperate systems. These outputs, whilst focussed on 

fishes of the Cyprinidae family, should have applicability more widely. In the subsequent 

sub-sections, the results of the research are discussed in wider detail and in response to the 

issues outlined regarding their application to population demographics and trophic studies, 

followed with recommendations for future research directions.  
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8.2. Investigating the ecological interactions of non-native fish 

The investigation into how the impacts of non-native fish can be studied, through utilising 

a range of spatial scales, was successful in providing a series of new insights into the 

interactions of a model native and two non-native fishes. Importantly, it also emphasised a 

series of inherent issues that were apparent when applying data from fish scales to the 

ecological study. These included difficulties of estimating the accuracy and precision of 

ages derived from scales, and understanding the discrimination factors and isotopic 

turnover rates when using scales within stable isotope analyses. Nevertheless, through use 

of three cyprinid species, two considered non-native (goldfish Carassius auratus and 

common carp Cyprinus carpio) and one considered native (crucian carp Carassius 

carassius) and across three approaches of differing size and complexity, Chapter 2 was still 

successful in revealing a range of ecological consequences for the native fish from the non-

native fishes, although these impacts were a function of spatial scale.  

The initial approach utilised the fishes in co-habitation aquaria and revealed C. 

carassius growth rates were significantly suppressed when they were present in sympatry 

with C. auratus or C. carpio. These results from this controlled feeding experiment were 

interesting due to their contrast with the field study of Tarkan et al. (2009), who detected 

no detrimental consequences for the somatic growth rates of C. carassius populations when 

they were present in ponds with C. auratus. Consequently, the following approach then 

developed this further through the completion of an experiment in semi-wild conditions, 

using pond enclosures, which enabled the testing of the interactions of the fishes in a less 

artificial system where the fishes would exploit natural food resources. The results 

indicated that when C. auratus and C. carassius were in sympatry, there were no negative 

impacts on the growth rates of either species, with them occupying similar trophic positions 

and niche sizes. Despite some resource sharing, the growth rates suggested there was no 

inter-specific competition apparent between the fishes, most likely due to the food 

resources not being limiting, a distinction from the controlled feeding experiment 

completed in aquaria. In contrast, C. carpio had a strong influence on both Carassius 

species in sympatry, with their presence resulting in significant increases in Carassius 

trophic position and niche size, but suppression in their growth rates. The final approach 

was completed within non-replicated ponds using only C. carassius and C. carpio. The 

results were similar to the pond enclosures, with C. carassius increasing in trophic niche 

size in the presence of C. carpio.  
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In respect to ecological theory, the results from the pond experiments were contrary to 

the niche variation hypothesis that predicts that the increased competitive interactions that 

result from an introduction of a non-native species would result in diet constriction, leading 

to increased diet specialisation in the post-introduction period and translating into a 

reduced trophic niche size (Van Valen, 1965; Thomson, 2004; Olsson et al., 2009). Instead, 

the results were consistent with Svanbäck and Bolnick (2007) who suggested that larger 

trophic niches can result from increased resource competition, as the competing species 

exploit a wider dietary base to maintain their energetic requirements, although it should be 

noted that despite increasing their niche size in the presence of C. carpio, the Carassius 

fishes were still unable to maintain their growth rates at levels observed in allopatry. Thus, 

these results suggest that the interaction of native C. carassius and non-native C. auratus 

had minimal ecological implications for C. carassius, but when in the presence of the 

globally invasive C. carpio (cf. Section 1.5), the ecological impacts were significant. 

Accordingly, for native fishes such as C. carassius, negative trophic and demographic 

consequences would be predicted from introduced C. carpio, whereas impacts of invasive 

C. auratus appear to be primarily related to a reduced genetic integrity through 

hybridisation (Hänfling et al., 2005).  

The range of results detected in Chapter 2 between the three approaches highlights the 

importance of considering spatial scale and complexity across ecological experiments, 

especially where co-habitation experiments in controlled conditions are to be extrapolated 

to wild situations. Moreover, inherent issues were encountered regarding the current 

methods and techniques that were applied. Specifically, these related to: (i) whether the 

destructive sampling of fishes to obtain muscle tissue for stable isotope analysis is 

necessary when there are potential non-lethal alternatives, such as scales; (ii) whether the 

standard diet-tissue discrimination factors commonly cited are appropriate for wide-spread 

application, as studies indicate they may be species- and tissue-specific; (iii) what time-

frame should be allowed in order for tissues to reach equilibrium with a new diet, i.e., what 

is the rate of turnover of stable isotopes within the tissues of these fishes?; and (iv) how 

sample sizes, and the error and subjectivity that surrounds obtaining fish age estimates, 

may affect the accuracy and precision of subsequent analyses, as numbers were low and 

no age validation was completed in Tarkan et al. (2009). The focus of the following 

research was therefore to attempt to resolve these specific procedural problems in order to 

increase the efficacy of future experimental studies completed in field contexts.  
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8.3. Issues with scale age estimates: dealing with precision and uncertainty  

It was outlined in Section 8.2 that despite their wide use in ecological research, there remain 

some fundamental issues with the use of fish scales in studies on age and growth. In 

investigations such as Tarkan et al. (2009), where sample sizes are limited, there is 

considerable uncertainty in how precise the subsequent growth rate data are. In addition, 

the difficulties associated with ageing fish from their scales, especially where validation 

methods are inapplicable, means that there is potential for the accuracy of ageing to be 

variable across the data-set, leading to considerable confounds in subsequent analyses.  

The use of fish scales to age fish is also a fundamental component in determining the 

ecological status of fish fauna under the Water Framework Directive (WFD, 2000; cf. 

Section 1.2). When large numbers of fish are sampled within monitoring programmes to 

assess ecological status, then scale sub-sampling strategies are usually employed. It was 

demonstrated within Chapter 3 that the use of sub-sampling regimes can significantly 

influence the precision of the growth data subsequently produced. Across the three cyprinid 

species studied (roach Rutilus rutilus, dace Leuciscus leuciscus and chub Squalius 

cephalus) and between age groups, there was consistency in the number of scales that 

needed to be aged in order to achieve a desired level of precision. The results indicated that 

to achieve a 10 % precision, between 7 and 12 scales per age group would require ageing. 

However, given that the ages of fish are rarely, if ever, known in advance of scale ageing, 

then the effect of sub-sampling scales on precision was also tested, with ageing 10 fish per 

5 mm length category (e.g. 51 to 55 mm, 56 to 60 mm etc.) never significantly reducing 

precision.  

Knowledge of the impacts of sub-sampling, and the number of scales required in order 

to achieve an acceptable level of precision, is important in order to improve the application 

of scale ageing to relevant studies. Furthermore, it ensures that researchers have the 

information required to formulate the most appropriate sampling strategies in the design of 

new fish population sampling programmes and protocols according to the species being 

studied and their objectives, and ensures that interpretations and evaluations of the data are 

reliable. Whilst precision is an important aspect of age determination, as it represents the 

reproducibility of individual age estimates from a given structure (Kalish et al., 1995), the 

focus for researchers should primarily be improving ageing accuracy, which is the 

proximity of an age estimate to the true age (Kalish et al., 1995), as precise age estimates 

can be obtained that are not accurate and although vice versa can also occur, the 



 

196 

 

 

implications for inaccurate age estimates are likely to have more negative consequences 

for subsequent calculations, such as growth rate analyses, than imprecise estimates. Thus, 

Chapter 4 investigated how the inherent errors in age estimates, that can arise from features 

of fish scales that lead to uncertainty, can be utilised within analytical methods to provide 

more robust estimates of age structure and growth rate analyses.  

Errors in estimating the ages of fish from hard structures are difficult to eliminate 

completely given the subjective nature of the process (cf. Section 1.3; Musk et al., 2006). 

Hence, if data subjectively generated from ageing, is to be used in research and monitoring 

programmes, then it can be argued strongly that rather than disregarding this, it should be 

integral to subsequent analyses. Consequently, a statistical model was developed to 

incorporate uncertainty levels into growth rate calculations via their application to age 

estimates within a bootstrapping methodology. This then produced adjusted von 

Bertalanffy growth function (VBGF) parameters where the ageing uncertainty had been 

incorporated. The model results and evaluations revealed that across R. rutilus, L. 

Leuciscus and S. cephalus, the extent of ageing uncertainty increased with fish age, with 

significant non-linear relationships. Comparison of the original versus the adjusted VBGF 

parameters revealed some significant differences, with general patterns of higher L∞-adjusted 

and lower k-adjusted than the original estimates, indicating that these were produced from fish 

that were under-aged, a common characteristic of scale ageing identified in the literature 

review (cf. Appendix 2). These adjusted VBGF parameters also impacted length-at-age 

estimates, with shifts toward slower growth rates. 

The development of this simple method based on bootstrapping procedures provides a 

highly useful ecological tool that works with uncertainty in scale age estimates. It has 

potential for application beyond scales, to other hard structures used for ageing, such as 

otoliths, and could be used for a broad range of freshwater and marine species. One issue, 

however, remains within the method proposed, as there exists some subjectivity around 

translating each age estimate and uncertainty level per species into a distribution of 

probable ages (cf. Section 4.3.3). Whilst the distributions were based on literature review 

wherever possible, they also required some additional input and therefore some inherent 

error might remain. Notwithstanding, here its application to populations of riverine fishes 

revealed that it produced adjusted VBGF parameters that better reflect the uncertainty in 

the original data.  
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The uncertainty incorporated, adjusted VBGF parameters, can then be used, for 

example, within fish stock assessment models that utilise the von Bertalanffy growth 

function to determine the growth of fish, such as ‘stock synthesis’, which is a statistical 

age-structured population modelling framework (Methot and Wetzel, 2013). These stock 

assessment models have far reaching implications; by 2012, 5 stocks in the United States 

of America, 10 tuna/ billfish stocks in three oceans, 4 European stocks, and 12 Australian 

stocks had been assessed using this approach (Methot and Wetzel, 2013), demonstrating 

the importance of ensuring the parameters used within them are as accurate as possible to 

ensure sustainable fishing rates can be correctly estimated. In incorporating the inherent 

error into age estimates, the proposed method should thus enable improved management 

decision-making in fish and fisheries ecology.  

 

8.4. Obtaining stable isotope data from fish scales 

The use of stable isotope analysis (SIA) has increased dramatically within freshwater 

ecological studies over the past 20 years, due to a reduction in costs of analysis and 

increased awareness of the ability of SIA to provide insights into trophic interactions within 

ecosystems (Grey, 2006). This flourish in the application of SIA has been cautioned by 

some researchers (e.g., Gannes et al., 1997; Martínez del Rio et al., 2009; Phillips et al., 

2014), resulting from the lack of understanding of the fundamental processes that drive the 

isotopic changes within tissues, including diet-tissue discrimination factors (∆), the rate of 

stable isotope turnover, and the aspects that influence these. Variability in isotopic 

discrimination has been attributed to a range of factors such as diet, temperature, species, 

tissue, sample preparation, protein source, content and concentration, as well as amino acid 

composition (Gannes et al., 1997; McClelland et al., 2003; MacNeil et al., 2006; Barnes et 

al., 2007; Robbins et al., 2010; Kurle et al., 2014). Additional concerns have also been 

raised with regard to the ethics of destructive sampling to obtain muscle tissue, which is 

principally collected for SIA in fishes, and the problem that this raises in relation to the 

study of endangered or protected species (Sanderson et al., 2009; Huang et al., 2013; 

Hamidan et al., 2015). Consequently, a recent onus has been placed on investigating the 

use of tissues that can be collected non-lethally. This present change in approach requires 

information regarding how non-destructively sampled tissues, such as scales and fin tissue, 

compare to those that tend to be collected through lethal sampling, such as dorsal muscle. 

The advantage of using scales over fin tissue is that many research institutes have 
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collections of scales kept in archives covering extensive temporal scales, opening the 

possibility of these being utilised to identify major long-term changes in the trophic niches 

of these fishes. In addition, scales are collected routinely within fish stock assessment 

exercises and thus developing knowledge on the use of scales in stable isotope ecology 

could increase access to a large volume of material to help answer relevant questions. Thus, 

Chapters 5, 6 and 7 investigated some of these issues, as highlighted in Chapter 2, with the 

results evaluated below, along with the contributions they have made towards the 

progression of the utilisation of scales within SIA.  

 

8.4.1. Scales as a non-lethal surrogate for dorsal muscle tissue 

The application of scales for stable isotope analyses within food web and trophic 

investigations is growing, given the recent ethical shift towards increasing the use of non-

lethally sampled tissues. However, compared to fin tissues, there remains very little 

information on the stable isotopes of scales. The results of Chapter 5 revealed that scales 

are appropriate to use as a proxy for muscle tissue in a range of cyprinid fishes and their 

stable isotope values can be successfully converted to muscle values through the 

application of simple linear regression equations with relatively low error, especially when 

species-specific methods are used.  

The results also suggested that the production and use of species-specific diet-tissue 

discrimination factors are more suitable and informative than the use of standard values 

that are commonly cited (i.e., 3.4 ± 0.98 ‰ for δ15N and 0.39 ± 1.3 ‰ for δ13C; DeNiro 

and Epstein, 1981; Minagawa and Wada, 1984; Post, 2002), as the difference between the 

results can be marked. Consequently, the use of standard discrimination values in order to 

quantitatively determine the relative contributions of putative food resources to the diets of 

fishes, as well as their use within calculations of trophic position, as was done in Chapter 

2, should be avoided wherever possible, and specific discrimination factors that relate to 

the focal species should be used to obtain the most accurate predictions, where possible. In 

a recent study, Yao et al. (2016) utilised a historical scale archive of two omnivorous 

cyprinid fishes, bighead carp Hypophthalmichthys nobilis and silver carp 

Hypophthalmichthys molitrix, which are important aquaculture species that are also highly 

invasive in North America. The study revealed trends in resource use in response to 

resource availability and was successful in detecting dynamic trophic interactions between 
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the species, regarding their trophic niche positions and widths, over an 11 year period. 

However, their methodology assumed that the discrimination factor per trophic level was 

3.4 ‰ for δ15N. The results of Chapter 5 indicate that this might not be appropriate, with 

lower values, such as between 1.96 and 2.96 ‰, found for scale ∆15N, more likely to be 

representative. Thus, the provision of specific diet-scale discrimination data for a range of 

cyprinids, especially those with high ecological and socio-economic importance, will 

contribute to promoting the application of scales within stable isotope studies and will 

increase knowledge on the variability that exists between species in their diet-scale 

discriminations. It also further promotes the application of scale archives to answering 

research questions based on long-term ecological and/or environmental changes, as 

currently there remains an absence of exploitation of these invaluable sources of data. 

 

8.4.2. Effect of diet composition on tissue-specific isotopic discrimination  

Along with their application to food web and trophic investigations, an increasingly 

important use of stable isotope discrimination factors is within statistical mixing models 

that predict the proportional composition of consumer diets from data on their putative 

food resources (Jackson et al., 2011). A fundamental requirement of these models is robust 

estimates of the stable isotope discrimination factors between the prey resources and the 

consumer tissue being analysed (Bond and Diamond, 2011; Phillips et al., 2014). However, 

diet-tissue discrimination factors are influenced by numerous variables, including the 

tissues being analysed and the taxon of the consumer and its food resources. Whilst 

differences in Δ13C and Δ15N are apparent between herbivorous and piscivorous fishes, 

there is less known for omnivores that consume both plant and animal material, hence 

Chapter 6 aimed to quantify and assess the extent to which stable isotope discrimination 

factors were significantly affected by diet source and protein content in two omnivorous 

cyprinids, B. barbus and S. cephalus, and across scale, fin and muscle tissues. The results 

revealed that the diet based on plant material (20 % protein), always resulted in the highest 

discrimination factors for each tissue, whilst the diet based on marine fishes (45 % protein) 

consistently resulted in the lowest, suggesting that the diet-tissue discrimination factors of 

omnivorous fishes will vary considerably between animal and plant food items. 

Additionally, there were species-specific differences, with discrimination factors tending 

to be higher in B. barbus than S. cephalus, irrespective of diet and despite the species being 

closely related. 
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Awareness of the requirement for using species-specific discrimination factors within 

the analyses of stable isotope data is increasing and consequently, these are being 

progressively factored into studies. However, issues regarding the influence of different 

food resources on the resulting diet-tissue discrimination factor still require resolution. For 

example, in a recent investigation, Garcia et al. (2016) explored the temporal variability in 

basal food resources in an omnivorous fish, the onesided livebearer Jenynsia multidentata, 

over a five year period. In the absence of species-specific discrimination factors, the 

authors used experimentally derived values from a similar species, which outputs from 

Chapter 5 suggest should be more representative than the use of standard values. However, 

the outcomes of Chapter 6 indicate that the putative food resources that they analysed, 

which were either pelagic or benthic, could discriminate differently among the tissues and 

this was not recognised by the authors. Additionally, the species-specific or tissue-specific 

isotopic turnover rates were unknown. Thus, the results of the study potentially have 

several important confounds, but these remain unquantifiable.  

The issues of varying diet-tissue discrimination factors between different food 

resources, as revealed in Chapter 6, suggest that rather than relying on the use of a single 

discrimination factor covering all putative food items (Phillips et al., 2014), as per Garcia 

et al. (2016), this variability must be captured within the predictive model used for 

estimating the diet composition of a consumer and particularly of an omnivore. Therefore, 

resolution of the differences in discrimination factors between food items comprising of 

varying protein content and source is required in order to obtain the maximum value from 

studies that predict trophic level and diet composition, such as those using Bayesian mixing 

models (Parnell et al., 2013; Phillips et al., 2014). Hence, although the outputs from 

Chapter 6 contribute to achieving this goal, questions on how and why these specific 

differences in diet-tissue discrimination occur need further investigation in order to 

facilitate the consideration of these variables in subsequent analyses and allow for more 

accurate predictions of diet composition and trophic position to be made.  

 

8.4.3. The rate of carbon and nitrogen stable isotope turnover  

Identifying isotopic turnover rates is particularly important for assessing the trophic 

ecology of mobile and migratory species, and species that undergo ontogenetic dietary 

shifts (MacAvoy et al., 2001; Buchheister and Latour, 2010; Hertz et al., 2015). Estimates 
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of turnover, as isotopic half-lives, are also important in the design of manipulative field 

studies and mesocosm experiments where, for example, erroneous outcomes could result 

if the time-frame is of insufficient length for stable isotope equilibrium to be reached within 

the tissues analysed (Jackson et al., 2013; Tran et al., 2015). The aim of Chapter 7 was thus 

to determine turnover rates for carbon and nitrogen stable isotopes from a range of B. 

barbus tissues, using a variety of approaches including time- and growth-based models and 

general equations. For 15N turnover among tissues, the estimates from the best-fitting 

models ranked muscle as having the shortest half-life at 84 days, followed by fin at 91 days 

and then scales at 145 days. For 13C, the half-life for muscle was 138 days and for scales, 

91 days. Comparison of the derived turnover rates with those estimated from general 

equations revealed some similarities, with the equation provided by Buchheister and Latour 

(2010) producing estimates within 10 days of those from the best-fitting models for 15N 

turnover. The process of determining half-life estimates from a range of models was 

beneficial in highlighting how model selection can influence turnover and equilibrium 

estimates, and the associated discrimination factors, which are critical when applying stable 

isotope data to food web ecology.  

It is evident that scales can be, and are being, used successfully within SIA (cf. Sections 

8.4.1 and 8.4.2) and over recent years there has been an increase in their specific application 

to trophic studies, which is beneficial for the non-destructive sampling of fishes and will 

encourage researchers to exploit historical scale archives. However, a major problem exists 

that is likely to confound the outputs of these studies as there is scarce information available 

regarding the rate of stable isotope turnover occurring within them, not only for cyprinids, 

but fishes in general. This is a potentially serious issue, as without this knowledge, 

inferences made regarding trophic interactions and positioning as well as dietary analyses 

are highly likely to be inaccurate and misguided, due to the scale tissue not reaching 

equilibrium with the diet, jeopardising the robustness and validity of any outputs. It is 

therefore surprising that Chapter 7 is one of only a few attempts to estimate stable isotope 

turnover within scales, providing the first known values for 13C turnover in all fishes and 

the first for 15N turnover in B. barbus. Although it is thought that metabolic turnover in 

scales is negligible (Hutchinson and Trueman, 2006), significant isotopic addition within 

scales, through growth, has been demonstrated here and thus the use of the outer portions 

of scales that have been formed on a recent diet can be used. Therefore the half-life 

estimates provided should have utility in future trophic investigations, providing 
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researchers with a better estimate of the time-frames and growth required for stable isotope 

turnover in scales.  

In hindsight, the initial investigation into the application of scales in SIA should have 

been the determination of their turnover rate, as this would have provided a better guideline 

for the time-frames necessary for equilibrium to be reached. As this is a prerequisite of 

accurate calculations of diet-tissue discrimination factors, the issues regarding the 

experimental time-frames for the SIA completed in Chapters 5 and 6 would have been 

resolved. Thus, the calculation of these novel data in ex situ conditions provides 

considerable insight into the turnover rates and discrimination factors of B. barbus, 

emphasising the importance of estimating these parameters for consumers at the species 

level, but also indicating that the utilisation of general equations can be a valuable tool 

where specific turnover estimates are unavailable. 

 

8.5. Future directions 

 

The outputs of this thesis have been successful in providing valuable information with 

regard to overcoming many of the existing knowledge gaps that are apparent in the use of 

scales in ecological studies, as highlighted in Chapter 2. Nevertheless, some unresolved 

problems remain, especially regarding their use in SIA, as there is such limited information 

currently available for fishes in general and especially for cyprinids. It is thus argued that 

the main focus for future work should be to continue to resolve these issues caused by this 

lack of data.  

Much of the variation in diet-tissue discrimination factors occurs between fish in 

different trophic groups, with this highlighted in Chapters 5 and 6 where there were distinct 

differences between the closely related species. The reasons for this variability are often 

poorly understood (Vander Zanden et al., 1997) and it remains unclear whether the cause 

of this variation is random or due to specific, predictable influences (Gannes et al., 1997). 

If explanations can be found for some of this variation, then it will greatly contribute to the 

development of this area of ecology and will improve the interpretation of stable isotope 

data and ensure that stable isotope techniques can be applied with greater confidence and 

lead to more robust and reliable understandings. 
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There remains some uncertainty in how the different discrimination factors between 

types of food item will result within omnivorous diets in the wild, as it is likely that 

omnivorous fishes would consume foods that vary extensively in both protein quality and 

quantity. Additionally, as diet shifts of omnivores may occur regularly in response to food 

availability, this reduces the likelihood of tissues reaching equilibrium with each diet 

before a shift occurs. So where these interactions have not been factored into analyses 

within mixing models, the reliability of subsequent estimations of the assimilated diet could 

be questionable. Chapter 6 highlighted that further work was required in order to reconcile 

some of the issues identified, and consequently, a next step could be to perform a similar 

experiment but use a diet that contained a 50: 50 mix of two distinct types of food, rather 

than feeding the fish one type or another, and to house the fish in tanks individually to 

ensure that each type of food was consumed in the same proportion. This would more 

closely resemble the mixed consumption of food items that omnivores experience in wild 

situations. As mentioned in Chapter 6, housing the fishes individually was inappropriate 

for B. barbus and S. cephalus, due to ethical concerns. However, this design could be more 

suitable for another species of cyprinid, such as C. auratus, that is used as a model 

experimental species across various disciplines including behavioural, genetic and 

developmental biology and is tolerant to solitary conditions (e.g., Sánchez-Vázquez et al., 

1996; Thompson and Walton, 2004). 

Equilibrium between the experimental diet and the fish tissues analysed was not reached 

within the time-frame of the stable isotope turnover experiment conducted in Chapter 7. 

However, the results suggested that the fish were initially near isotopic equilibrium with 

the control diet. Thus, given that the pre- and post-diet-switch periods were equal in their 

duration and experimental conditions, this indicates that the turnover rate of the control 

feed was faster than that of the experimental feed, suggesting that the rate of isotopic 

change occurring within tissues is affected by diet. As Chapter 6 indicated that isotopic 

discrimination is also affected by diet, then in combination with the results of Chapter 7, 

this suggests that the interactions between turnover rate, diet-tissue discrimination and diet 

should be explored further. Consequently, conducting a comparable study over a longer 

time-frame, to allow equilibrium within the tissues to be reached, would facilitate a more 

accurate determination of the stable isotope turnover rates of carbon and nitrogen for these 

fishes and tissues, as this could be measured directly, rather than relying upon predicted 

values extrapolated from fitting exponential models to the data. It would be beneficial to 
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increase the frequency of sampling during the early phases post diet-switch as this would 

provide more data points for the exponential models to be fitted to, which would be 

advantageous as this is the period where most rapid isotopic change occurs and may solve 

some of the model fitting difficulties encountered when fitting some of the time- and 

growth-based models within the Chapter. Additionally, performing a diet-switch between 

two diets that were more separated in their stable isotope values would be advantageous as 

this was indicated as a potential confounding factor, particularly with regard to the turnover 

of 13C.  

As growth rates have been found to influence turnover rates (e.g. Weidel et al., 2011), 

and temperature significantly affects growth in ectothermic fishes (Jobling, 1997; Pörtner 

et al., 2001), than it seems probable that temperature will also affect the rate of turnover 

and diet-tissue discrimination factors (e.g. Bosley et al., 2002). Indeed, Barnes et al. (2007) 

found that temperature affected the discrimination of 13C and 15N when rearing European 

sea bass Dicentrarchus labrax on identical diets at 11 and 16 °C. They therefore concluded 

that temperature would confuse the interpretation of δ15N as an indicator of trophic level, 

or δ13C as an indicator of trophic source, when comparing populations exposed to different 

temperatures. Thus, single discrimination values are not necessarily applicable in all 

environments. Additionally, Bloomfield et al. (2011) studied the effects of temperature on 

13C and 15N turnover and discrimination in omnivorous black bream Acanthopagrus 

butcheri reared at 16°C or 23°C and fed either a fishmeal or vegetable feed. For δ15N they 

found increased turnover and smaller discrimination factors at warmer temperatures and 

temperature and tissue δ13C values were also affected by diet (Bloomfield et al., 2011). 

Moreover, the fish reared on the vegetable feed showed greater δ15N changes and larger 

discrimination than those reared on a fishmeal feed, concurring with the outputs from 

Chapter 6. Consequently, further experimentation is required in order to determine the 

effects of temperature on the turnover rate, and the resulting diet-tissue discrimination 

factors, in order to reveal whether these patterns are applicable more widely. Experimental 

conditions should look to replicate the range of temperatures that the focal species would 

experience in the wild in order to be most beneficial for researchers and enable 

extrapolation of findings to observational studies.  

In combination, these points demonstrate that the trophic discrimination of δ13C and 

δ15N can be considerably different to values typically used in food-web analyses, and the 

effects of diet composition and temperature are also potentially significant. These findings 
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are particularly relevant for ecological studies that are reconstructing food webs where 

organisms from different trophic levels may experience different environmental 

conditions. They are also relevant for investigations carried out within temperate regions, 

where seasonal shifts in temperature can be significant, as well as long-term studies or 

those that require repeated measurements over extended time-frames, where the 

temperature may have changed substantially. These should all consider whether the 

influence of temperature is impacting the rate of stable isotope turnover occurring within 

tissues and the discrimination between the consumer and their diet. In order to better 

interpret stable isotope data, the effects of environmental variability and dietary 

composition on isotopic discrimination factors and tissue turnover rates must be further 

explored, clarified and then validated. 

 

8.6. Final conclusions 

 

The vast array of information that is available for extraction from fish scales is potentially 

invaluable to ecologists and fisheries scientists alike. The contribution that the data 

obtained from them is able to make towards the study of fish regarding population 

dynamics, food web structure and trophic interactions is unsurpassed for a tissue that can 

be non-lethally collected. Whilst many of the issues that this research has examined still 

require further work to be resolved fully, the investigations completed have made a 

considerable contribution to the enhancement of the practical application of scales within 

ecological studies, enabling researchers to reduce the error surrounding data collection 

when applying sub-sampling strategies, proposing a simple methodology to incorporate the 

inherent uncertainty in fish ages estimates into growth analyses, and providing vital lacking 

information regarding tissue conversions, diet-tissue discriminations and turnover rates 

that is required to improve scale use within stable isotope analysis.  
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Appendix 1: R code for fitting the three-parameter von Bertalanffy 

growth function (VBGF) using the nls() function. 

 

For a more in depth review of model fitting, see: 

http://derekogle.com/fishR/examples/oldFishRVignettes/VonBertalanffy.pdf    

The VBGF equation is in the form of:                            

Length = Linf - ((Linf - t0 * exp (-k*Estimated age))            

#Read in libraries required: 

library(FSA) 

library(nlstools) 

#Read in data file containing fish lengths (Length), age estimates (Age) and uncertainty 

#levels (Conf.): 

dta <- read.table("Roach.river.colne.csv", sep = ",", header = TRUE) 

attach(dta) 

 

Step 1: Generate VBGF parameters for original data 

#Calculate estimates for VBGF parameters for original data, without uncertainty levels: 

#Starting parameters are estimated for optimisation: 

svTypical1 <- vbStarts(Length~Age, data=dta, type="typical") 

#von Bertalanffy growth equation is defined: 

vbTypical1 <-Length~Linf*(1-exp(-K*(Age-t0))) 

#nls() function applied to data: 

fitTypical1 <- nls(vbTypical1, data=dta, start=svTypical1)  
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Step 2: Apply bootstrapping to obtain VBGF parameters for adjusted data 

#Read in BEAs and SD's generated from the pre-set distributions of probable ages: 

BEAs<-read.table("BEAs.roach.csv", sep = ",", header = FALSE) 

sds <-read.table("sd.roach.csv", sep = ",", header = FALSE) 

#Set up bootstrap: 

boot.size <- 1000 

store.data<-array(NA,c(boot.size,3)) 

xx<-dim(dta) 

xx<-xx[1] 

intial.store<-array(NA,c(boot.size)) 

#Generate VBGF parameters for adjusted data using uncertainty levels: 

for(boot in 1:boot.size){ 

  new.age <- array(NA,xx) 

  for(x in 1:xx){ 

      a <- AGE[x] 

      b <- Conf.[x] 

      c<- BEAs[a,b] 

      d<- sds[a,b] 

      new.age[x]<-(rnorm(1,c,d))} 

  svTypical2 <- vbStarts(Length~new.age, data=dta) 

  vbTypical2 <-Length~Linf*(1-exp(-K*(new.age-t0))) 

  fitTypical2 <- nls(vbTypical2, data=dta, start=svTypical2) 

  store.data[boot,1]<-coef(fitTypical2)[1] 

  store.data[boot,2]<-coef(fitTypical2)[2] 

  store.data[boot,3]<-coef(fitTypical2)[3]}
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Appendix 2: Key outputs of the literature review into the uncertainty of age estimates gained from hard structures. 

 

Species Habitat Structure(s) Output Reference 

Carpiodes 

velifer, 

Carpiodes 

cyprinus, 

Carpiodes carpio 

Freshwater Scales, 

Pectoral fin 

rays 

 Precision between readers low for scales. Spiegel et al. 

(2010)  Precision of ageing structures decreased as age increased. 

 Estimates for C. velifer scales were generally 1-3 years less than fin 

rays. 

 Agreement between readers increased with increased confidence.

Cyprinus carpio Freshwater Otoliths  Annulus counts are reliable indicators of ages 3 - 14 years. Brown et al. (2004) 

Cyprinus carpio Freshwater Scales, 

Vertebrae, 

Opercula bones, 

Otoliths, 

Pectoral fin 

rays 

 Most ages overestimated by scales, vertebrae, and opercula up to age 

6 but underestimated over 10. 

Phelps et al. (2007) 

 Ages from pectoral fin rays nearly as precise as otoliths up to age 13.

 Fin rays underestimated ages of fish older than 13.

 For fish age 14+ discrepancies were as high as 6 years.

 Maximum ages from scales, vertebrae, and opercula were 

underestimated by as much as 12 years.

 Scales aged to a maximum of 15, versus otolith age of 24.

Cyprinus carpio Freshwater Scales, 

Dorsal spines 

 Ages from scales as much as 8 years less and 7 years greater than 

dorsal spines. 

Jackson et al. 

(2007) 

 Discrepancies occurred in young as well as old fish. 

 Scale ages and age ranges were lower than dorsal spines.

 Scales estimated to be age 6 by 1 reader were assigned ages 2 - 12 by 

other reader.

 Neither reader felt confident in ageing scales beyond age 1.
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Species Habitat Structure(s) Output Reference 

Cyprinus carpio Freshwater Otoliths  Due to decrease in width of translucent zones, interpretations of 

otoliths with >8 growth zones became difficult.

Winker et al. 

(2010) 

 The maximum number of growth zones counted was 14. 

Gadus morhua Marine Otoliths  Age misclassification rates increased considerably when older 

individuals were considered.

Doering-Arjes et 

al. (2008) 

 Pen cod showed an error rate of ~5% for ages 2–4 years and 11% for 

ages 2–6, wild fish showed an error rate of 14% for ages 2–4 years.

Gila robusta, 

Semotilus 

atromaculatus, 

Catostomus 

discobolus, 

C. commersonii, 

C. latipinnis 

Freshwater Scales, 

Pectoral fin 

rays, 

Cleithra, 

Opercula bones 

 Scale ages agreed with less than 20% of otolith ages, many 

disagreements differed by more than 5 years. 

Quist et al. (2007) 

 Disagreements were due to a lower scale age relative to otolith age 

and most discrepancies occurred for age 5 and older fish.

 There was a high agreement between scale age and otolith ages for all 

fish with an otolith age less than 5.

 Age estimates from scales were up to 9 years (frequently 5 years) less 

than otolith ages.

Hypophthal-

michthys nobilis 

Freshwater Scales, 

Pectoral spines 

 Agreement for age 1 fish using scales was 100% and 20% for age 2. Nuevo et al. (2004) 

 Accuracy of scale readings was 100% for age 1 and 60% for age 2.

 Fish scales were over-aged by up to 3 years, 100% of scales read were 

aged within 3 years of known age.

 Accuracy of interpreting the scales of known-age fish was 78%.

 Scales yielded lower age estimates than spine sections for older fish.

 Scales are harder to read as fish get older.

 Suggested using pectoral spine sections to age fish of 2 years and 

older because they showed more and sharper annuli than scales.

 



 

 

 

2
4
9

 

 

Species Habitat Structure(s) Output Reference 

Rhodeus sericeus Freshwater Scales  Annuli clearly visible in all parts of scales.  Przybylski & 

García-Berthou 

(2004) 
 The number of annuli corresponded to the number of bands in 

operculum bone.

 Shape of scales changed with fish size. Due to change the radius does 

not occupy constant position, shifts towards the caudal part.

 In the anterior part annuli were crowded near the margin.

 In the lateral part annuli had no fixed position producing some 

difficulties in radial measurement of the annuli.

Rutilus rutilus Freshwater Scales, 

Opercula 

 For fish up to 10, the ages from scales and opercula’s had few 

discrepancies.

Mann (1973) 

 Scales had clearer inner but opercula’s clearer outer annuli in fish >9 

years.

 Roach over 10 years were determined from opercula bones as 

distinguishing annuli near scale edge either difficult or impossible.

Rutilus rutilus Freshwater Scales  Re-ageing exercise revealed only 69% agreement with the original 

ages, with a significant decrease in agreement with age.

Musk et al. (2006) 

 Agreement above 80% at ages 1, 2, and 4 and reduced to 6% at age 9. 

Salvelinus 

namaycush 

Freshwater Scales, 

Cleithra, 

Opercula bones, 

Otoliths, 

Vertebrae 

 Counts of annuli on all structures from immature fish were similar. Sharp & Bernard 

(1998)  Fewer annuli on scales than on other structures from larger fish.

 For scales, otoliths, opercula bones, and vertebrae, sampling SEs were 

higher for older larger fish than for younger smaller fish.

 Differences in mean counts were greater for larger, older fish.

 Counts from scales were skewed toward younger ages.

 Scales are useful in determining the age of immature fish.
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Species Habitat Structure(s) Output Reference 

Scavdinius  

evythvophthalmus 

Freshwater Scales  1 of 6 correctly aged all material, others <50% success. Mann & Steinmetz 

(1985)  15% of incorrect ages resulted from misinterpretation of false or true 

annuli from age 2 onwards, 85% from overlooking the first annulus.

 In faster-growing fish where the first annulus was further from the 

centre there were no such errors.

 Only two fish were incorrectly aged by more than one year.

 Age 1 aged 100% accurately, 2: 64%, 3: 42%, 4: 44% and 5: 83%.

 Only 6.9% were incorrectly aged, this may have increased had 

samples contained scales from fish > 10 years.

Semotilus 

corporalis 

Freshwater Otoliths  Majority of otolith annuli were relatively easy to identify at low 

magnification, in contrast to scales which are often hard to read.

Victor & Brothers 

(1982) 

Squalius 

cephalus 

Freshwater Scales, 

Opercula 

 Annuli on scales up to age 10 not difficult to see, but care necessary 

to avoid overlooking first annulus near scale centre.

Mann (1976) 

 Annuli formed on scale edge of older fish could not be separated.

 Ageing using only scale examination did result in some under-ageing 

compared with ages obtained from opercula bones.

Thymallus 

arcticus 

Freshwater Scales, 

Otoliths, 

Fin rays 

 Reader agreement twice as high for otoliths and fin rays than scales. Sikstrom (1983) 

 Scale ages differed by up to 5 but generally within 3 years.

 Scale age never exceed otolith age, differed by as much as 6 years.

 Maximum age determined from scales was 7, versus 12 from otoliths. 

 Discrepancies in age assessment started at scale ages 2 and 3.

 Scales developed a dense edge in which annuli could not be 

distinguished.

 

  



 

 

 

2
5
1

 

 

Species Habitat Structure(s) Output Reference 

Thymallus 

thymallus 

Freshwater Scales  Accuracy of scales high in 1-2 years (error 4.15%) decreased in older.Horka et al. (2010) 

 In >4 year fish underestimation occurred and error in reading scales 

rose to 51.9% in 5 year-old fish.

 Scale ages underestimated tag-recapture age by as much as 3 years.

 The validation of 1+ year aged fish demonstrated that scale reading 

was correct in 97% of cases, with this decreasing with age.

 Annuli formed on scales of young fish easier to read than older fish, 

due to poor visibility of annuli at edge of scales.

 Significant and increasing deviation between scale-read age and tag 

age ≥5, age of older and maximum age cannot be accurately determined 

from scales.
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