
CRAFT: A Crowd-Annotated Feedback Technique
Mahmood Hosseini1, Eduard C. Groen2, Alimohammad Shahri1, Raian Ali1

1Faculty of Science and Technology, Bournemouth University, UK
2Fraunhofer Institute for Experimental Software Engineering, Germany

Email: 1{mhosseini, ashahri, rali}@bournemouth.ac.uk, 2eduard.groen@iese.fraunhofer.de

Abstract—The ever increasing accessibility of the web for the
crowd offered by various electronic devices such as smartphones
has facilitated the communication of the needs, ideas, and wishes
of millions of stakeholders. To cater for the scale of this input and
reduce the overhead of manual elicitation methods, data mining
and text mining techniques have been utilised to automatically
capture and categorise this stream of feedback, which is also
used, amongst other things, by stakeholders to communicate
their requirements to software developers. Such techniques,
however, fall short of identifying some of the peculiarities and
idiosyncrasies of the natural language that people use colloquially.
This paper proposes CRAFT, a technique that utilises the power
of the crowd to support richer, more powerful text mining by
enabling the crowd to categorise and annotate feedback through
a context menu. This, in turn, helps requirements engineers to
better identify user requirements within such feedback. This
paper presents the theoretical foundations as well as the initial
evaluation of this crowd-based feedback annotation technique for
requirements identification.

Keywords-crowdsourcing; requirements elicitation; feedback
categorisation; crowdsourced text mining

I. INTRODUCTION

The advent of Web 2.0 and social media has provided
millions of users and stakeholders around the world with the
possibility to create their own content. These contributions
also include the requirements of different stakeholders of
software systems, which are normally expressed in the form of
textual representations of their needs and opinions in forums,
feedback platforms, etc. [1]. Typically, the users of a software
system state their requirements by providing comments in a
given text box on a relevant online feedback platform (in-
house or public), or by using a built-in feedback mechanism
within the software to voice their opinions by filling out
text boxes, ticking checkboxes, etc. Text mining and data
mining tools have been devised to facilitate requirements
engineering processes through automated means for capturing
and categorising requirements. For example, the utilisation of
data mining and recommender systems has been proposed to
create an open, scalable, and inclusive requirements elicitation
process over a moderated requirements generation and discus-
sion forum, which can support a large number of stakeholders
[2]. Such a large group of current or potential users of a
software product is commonly referred to as a “crowd” [1].
Furthermore, the use of text mining has been proposed to
identify and analyse requirements on privacy protection and
vulnerabilities in policy documents [3]. Moreover, the use of
text mining for improving requirements specifications has been
studied in [4].

Natural language, however, has numerous peculiarities that
often pose a challenge for machine recognition approaches.
When providing feedback, stakeholders do not typically think
about how their feedback will be processed later by require-
ments engineers or text miners. Instead, they use the language
that suits them best and the message they would like to
communicate to developers and other users, and they usually
do so in the writing style that is most idiosyncratic to them. As
a result, apart from lack of punctuation, possible poor writing
and spelling, or the use of flowery language and emoticons,
user-provided feedback may be flooded with hints and cues
(e.g., “this program works just like Spiderman”), rhetorical
expressions (e.g., “who says this program has no flaws?”),
newly-coined terms and slang or alternative spellings (e.g.,
“this program is supey-dupey”), and irony and sarcasm (e.g.,
“this program runs so smoothly and fast, my foot!”) (see Fig.
1). Moreover, text mining applications become less usable
when other languages are used in feedback forums (also see
Fig. 1).

Fig. 1. Five exhibits showing possible deficiencies in text mining applications
(courtesy of Google Play)

That the feedback language is often informal, ambiguous,
or less structured, does not mean it has no value. For example,
Spiderman can refer to the stealthiness and smoothness of
the software; the tone and the context of “who says this
program has no flaws?” suggest that the software does have
bugs and flaws; “supey-dupey” can mean the software is very
effective and works very well; and the sarcasm suggests the

software does not run smoothly and is very slow. But current
text mining methods cannot capture these obscure intentions
and hidden messages. On the contrary, these methods may
even wrongly interpret users’ sarcasm and irony and produce
inaccurate results, and there is much work ahead before they
will be able to correctly handle these language aspects.

The challenges in processing natural language and user-
generated content are recognised in the literature on text
mining. For example, the use of Knowledge Discovery in
Databases (KDD) has been proposed along with text mining
at the term level, instead of the word level, to produce more
reliable results in text mining applications [5]. FrameNET1 is
a lexical database that can help a text miner understand the
intended meaning from the context in which a word is placed,
for example, whether “tree” refers to a living organism or a
part of a diagram. Also, semantic issues in text mining have
been discussed along with some approaches and methodolo-
gies in the existing literature [6]. While these methods are
successful in resolving some of the aforementioned problems,
they cannot fully eliminate them altogether. For example, they
cannot manage newly-coined terms until their databases are
updated, and they cannot cater for grammatical and lexical
mistakes.

As techniques for automatically detecting the finesses of
language are still at an early stage, this paper proposes the use
of volunteer crowdsourcing [7] as a solution for correctly and
efficiently identifying users’ requirements in their feedback.
Using the wisdom and power of the crowd, volunteering crowd
members get the opportunity to annotate already existing
feedback. Although motivating the crowd is always an issue,
by deeply integrating the feedback system into a product, its
requirements can be elicited by crowd members on an equal
basis, from which the personal benefit will be evident. Since
the crowd is generally familiar with the aforementioned textual
peculiarities, it is expected that only few natural language
processing problems will occur. This means that requirements
are directly elicited from the masses who currently use the
system-as-is, so that these can be incorporated into software
evolution processes for the masses who will use the system-
to-be. We have already investigated crowdsourcing and its
potential in the domain of requirements engineering [8], [9].
However, although some studies have been conducted on
crowdsourcing user annotation [10], little work exists to date
on crowd-based requirements annotation. So far, annotation
on bug reports and functional requirements [11], or on non-
functional requirements [12] has been performed by experts
and researchers, rather than by the end-users themselves.

The remainder of this paper is structured as follows: Section
II describes our proposed CRowd-Annotated Feedback Tech-
nique (CRAFT). As a proof of concept, Section III showcases
the usefulness of CRAFT in a case study. Section IV describes
the challenges that CRAFT needs to address in order to obtain
more reliable results. Section V concludes this paper and
presents future work.

1https://framenet.icsi.berkeley.edu/

II. WHAT IS CRAFT?

The CRowd-Annotated Feedback Technique (CRAFT)
utilises crowdsourcing as a method for harnessing the wisdom
of the volunteering crowd to annotate other users’ feedback.
CRAFT allows requirements engineers to utilise this power
instead of or in addition to automated text mining solutions,
as shown in Fig. 2. In this way, crowd members can annotate
any piece of feedback they want at any given time in context,
and a piece of feedback can be annotated several times by
several crowd members. The outcome is a list of statements
that may represent a requirement expressed in user feedback.
Requirements engineers can then use any aggregation method,
such as averaging, to collect and analyse these annotations. We
also foresee that CRAFT annotations can be contrasted with
text mining classifications to reveal requirements that were
missed or incorrectly categorised by the automated analysis
due to the language aspects discussed above.

Fig. 2. Feedback annotation using text mining and using CRAFT

CRAFT allows the crowd to annotate user feedback using
predefined categories, which is essential because taxonomies
have already been proposed in the literature related to user
feedback [13], [14]. On the other hand, CRAFT also allows
crowd members to add new categories, because as time goes
by, new types of requirements not yet known to requirements
engineers may emerge [15].

In order to prevent a proliferation of feedback types, crowd-
generated categories are not global, i.e., each crowd member
can only see the categories they have personally created. This
ensures that the initial list of feedback types does not get
duplicate entries or becomes excessively long. It also ensures
the integrity of CRAFT. New entries are only added when a
requirements engineer determines that such a new category is
required, either based on their own experience or based on
the frequent recurrence of the new category added by several
users. Only then are the new categories made available to all
crowd members.

To obtain crowd annotations on users’ feedback about
their requirements, we suggest a three-tier design, keeping in
mind the three principles of annotation: simplicity, speed, and
scalability. In the first tier, crowd members specify what type
of feedback they want to annotate; in the second tier, they
specify the type of requirement; and the third tier is used to
provide ratings and optional comments.

TABLE I
USER FEEDBACK CATEGORIES [13]

Topic Description

t1 Praise Expresses appreciation
t2 Helpfulness Scenario the app has proven helpful for
t3 Feature information Concrete feature or user interface
t4 Shortcoming Concrete aspect, user is not happy with
t5 Bug report Bug report or crash report
t6 Feature request Asks for missing feature

t7 Other app Reference to other app, e.g. for
comparison

t8 Recommendation Suggests acquisition
t9 Noise Meaningless information
t10 Dissuasion Advises against purchase
t11 Content request Asks for missing content

t12 Promise Trades a better rating for a specific
improvement

t13 Question Asks how to use specific feature

t14 Improvement
request Requests improvement (e.g. app is slow)

t15 Dispraise Opposite of praise
t16 Other feedback References or answers other feedback
t17 How-to Explains other users how to use app

A. Tier 1: High-Level Feedback Annotation

The first tier in CRAFT is based on the categories shown in
Table I [13] to create new feedback-specific categories, with
the possibility for the crowd to add their own local categories.
Each category in tier 1 corresponds to one or several user
feedback categories in Table I and has some overlaps, as
shown in parentheses in each category below. Moreover, the
categories are not mutually exclusive:

1) Requesting a new functional requirement, e.g., adding
an info button to a dialogue box in the software system
(t6, t8, t11)

2) Suggesting the omission of an existing functional
requirement, e.g., removing the option for data backup
on floppy disks from the software system (t8)

3) Reporting a bug, e.g., unexpected exit upon clicking on
an option during the execution of the software system
(t4, t5)

4) Reporting hardware-related feedback, e.g., RAM us-
age or CPU usage of the software system (t3, t14)

5) Reporting users’ opinions on non-functional require-
ments, e.g., the accuracy or reliability of the software
system (t3, t8, t14, t15)

6) Reporting users’ feelings, e.g., how much a user likes
a feature of the software system (t1, t2, t7, t10, t12)

7) Exchanging information on software usage, e.g., how
the in-app purchase works, and reporting “unicorns”,
fake reviews, or incomprehensible text (t13, t17)

A mock-up containing the categories from the first tier used
in CRAFT is shown in Fig. 3 (left).

B. Tier 2: Low-Level Feedback Annotation

The second tier in the design of the CRAFT technique
deals with the subcategories of every given category. These
subcategories are predefined (and by no means inclusive), and
like tier 1 provide crowd members with the possibility to add
their own local subcategories. The subcategories as defined in
the following are indicative only:

1) Requesting a new functional requirement subcate-
gories can include requesting a new program function-
ality or requesting a new UI functionality

2) Suggesting the omission of an existing functional
requirement subcategories can include omitting an ex-
isting program functionality or omitting an existing UI
functionality

3) Reporting a bug subcategories can include UI bugs,
error handling bugs, boundary-related bugs, calculation
bugs, control flow bugs, data interpretation bugs, or
hardware bugs (as shown demonstratively in Fig. 3)

4) Reporting hardware-related feedback subcategories
can include reports related to the CPU, RAM, storage,
monitor, input devices, peripherals, external ports, or
incompatibilities

5) Reporting users’ opinions on non-functional require-
ments subcategories can include speed, accuracy, reli-
ability, accessibility, portability, usability, privacy, secu-
rity, stability, safety, interoperability, and transparency

6) Reporting users’ feelings subcategories can include
sadness, happiness, anger, or frustration

7) Exchanging information on software usage subcate-
gories can include requesting information from or pro-
viding information to users or developers

A prototypical example of the second tier for the category
“Reporting a bug” as used in CRAFT is shown in Fig. 3
(middle).

C. Tier 3: Feedback and Confidence Rating

The third tier in the design of the CRAFT technique deals
with three final inputs from the crowd. For every feedback
that the crowd members are annotating, they will have the
opportunity to 1) express the level of importance, intensity,
priority, or magnitude of the user feedback, 2) express the
level of confidence the crowd member has in the accuracy of
their annotation, and 3) add comments to their annotation.
These options will help requirements engineers make their
decisions regarding software evolution based on the user
feedback provided in the feedback platform in combination
with the crowd annotation. The three options a crowd member
is provided with in tier 3 are:

• A five-star rating scale for every annotation asks the
annotator to rate the user feedback in terms of how they
perceive the user’s level of strength, priority, importance,
or intensity regarding the categorised item. For example,
if the user feedback is about a new requirement, it

Fig. 3. Interfaces for each of the three tiers in CRAFT: (left) Tier 1: feedback category selection, (middle) Tier 2: subcategories for bug reporting, and (right)
Tier 3: providing ratings and optional qualitative feedback

allows the crowd member to indicate how important
they perceive that new requirement to be. In this case,
one star means the user perceives the new requirement
as having very low importance, and five stars means
the user perceives the new requirement as having very
high importance. To provide another example, if the user
feedback is about a quality characteristic such as speed,
this rating can mean how fast the software system is
perceived by the user. In this case, one star means the
user thinks the software system is very slow, and five stars
means the user thinks the software system is very fast.
Based on this rating scale, a requirements engineer will be
able to quantify the degree of user feedback importance
or intensity in any annotated feedback.

• Another five-star rating scale for every annotation asks
the annotator how confident they are about their own
annotation, ranging from one star (very unsure) to five
stars (very confident). Based on this rating scale, a re-
quirements engineer will be able to determine the strength
of each annotation. This can be considered as a quality
measure for every annotation.

• A free text box allows the annotator to give their final
comments on the user-provided feedback. While the first
two parts are quantitative and can be used in statistical
analyses if and when needed, this part is qualitative and is
mainly a way of communication between annotators and
requirements engineers. This part can also be seen as a
major difference between automated text mining tools,
which only provide machine-generated information, and
CRAFT, which produces crowd-generated comments.

Our prototypical implementation of the third tier of CRAFT
is shown in Fig. 3 (right). Similar to other techniques, crowd
members will need some basic training before they can effi-

ciently use CRAFT to annotate user feedback. Using CRAFT,
a crowd member can then complete the annotation with only
four clicks after highlighting a particular part of a user review,
provided the crowd member decides not to leave a comment.

III. EVALUATION OF CRAFT

To observe how crowd annotation using the CRAFT tech-
nique can actually benefit requirements engineers, we con-
ducted an initial case study as a proof of concept. It was
performed with 12 randomly selected postgraduate computer
science students who responded to an open call. The partici-
pants were asked to use the CRAFT technique to annotate a
collection of eight feedback statements on a mobile application
on Google Play.

The feedback page provided to the participants, along with
their annotations, is shown in Fig. 4. The participants were
asked to identify requirements-related statements in user feed-
back and report on them. Because of page limitations, we only
report on the mode of the participants’ annotations in all three
design tiers. The results are reported close to each annotated
box in Fig. 4 and tabulated in Table II. The two numbers
in each report represent the tier 3 ratings of the participants’
perception of user feedback intensity or importance and their
confidence in their annotation, respectively. In a real-life
context, the overlap between crowd members’ annotations will
allow for statistical analyses to weigh the annotations.

As Table II illustrates, the participants were able to identify
several requirements in user feedback statements. Although
a few participants made mistakes in their categorisation, the
results of the feedback categorisation were satisfactory overall.
The participants mainly rated the intensity (or importance) of
the user feedback as medium to high (3, 4, or 5 stars), and had
high confidence in annotating the user feedback statements (4
or 5 stars).

Fig. 4. The crowd annotation results

It was easy for the participants to pinpoint sarcasm, such
as “it is very hard to be fit and sane with Gfit as it is now”.
User feelings were also easily spotted by the participants in
everyday expressions such as “crap”. The participants could
also identify technical feedback statements, such as hardware
incompatibilities, relatively well.

We acknowledge that this is work in progress and the
concept needs fine-tuning and improvement. But the overall
results suggest that when designed carefully, CRAFT can be
an efficient technique for managing the peculiarities of natural
language and deriving requirements from user feedback.

IV. CHALLENGES

The CRAFT technique helps requirements engineers to
obtain more reliable and accurate results when analysing
user feedback, and can lead to cost savings for businesses
conducting such analyses. However, we have identified four

TABLE II
CROWD ANNOTATIONS ON USER FEEDBACK

Feedback
Category

Feedback
Subcategory

Feedback
Intensity Mode

Annotation
Certainty Mode

Bug report Calculation bug 4 5
User feeling Angry 5 4
Hardware Incompatibilities 5 5
Bug report Calculation bug 5 5
Bug report Calculation bug 5 4
User feeling Annoyed 5 5
Hardware Incompatibilities 5 5
Hardware Incompatibilities 5 5
Hardware Incompatibilities 5 5
Hardware Incompatibilities 3 4
User feeling Happy 3 5
Bug report Calculation bug 4 5
User feeling Annoyed 4 5

challenges that must be addressed before CRAFT can be
implemented efficiently .

The quality of the obtained annotations. In our case study,
all participants were genuinely interested in contributing to our
study. But in the real world, this is not always the case. In
fact, one of the most cited issues with crowdsourcing in the
literature is the issue of the quality of the obtained results
[16], [17]. Several studies have been conducted to assess
and increase the quality of results obtained from the crowd
[18], [19]. Apart from such assessments, another main quality
control routine suggested in the literature is to attract the right
crowd with the right incentives [20], [21]. In CRAFT, it is
easier to spot and remove low-quality results because a piece
of user feedback can be annotated by several crowd members,
which can help identify the correct category by popular vote.

Retention of crowd annotators. Studies suggest that main-
taining the crowd’s involvement in crowdsourcing platforms
can be a big challenge, and that even money cannot guarantee
long-term engagement with such platforms [22]. To mitigate
this challenge, the CRAFT technique proposes an easy-to-
use, simple, and quick annotation process by breaking the
annotation task into several click-through micro-tasks to keep
the crowd interested and motivated. Another proposed solution
is to use digital motivation techniques such as gamification,
which is defined as the use of game elements in non-game
contexts [23]. Several studies have shown that gamification, if
properly applied, has the potential to improve user engagement
and retention in general environments such as the cloud [24],
as well as in crowdsourcing environments [25].

Reliable requirements identification. As potentially any-
one could be a crowd member, their level of familiarity with
requirements should be considered. This CRAFT-specific chal-
lenge can also negatively affect the quality of the annotated
feedback. There are several ways to mitigate this challenge.
The use of a crowd-friendly language, i.e., a language that
crowd members can easily relate to, is essential to minimise
the training of the crowd. In CRAFT, the repetitive nature
of the requirements annotation task can positively affect the
learning curve [26], leading to more familiarity and less
cognitive load on crowd members over time. Tooltips can also
be used to explain each category in order to facilitate the crowd
members’ understanding. The reliability of the classification
should furthermore be established by comparing the perfor-
mance of the crowd against that of automatic classifiers.

Proliferation of the lists of feedback categories and
subcategories. Crowd members can add their own categories
to the list, which potentially can cause the list to become quite
long and deflect them from the category taxonomy provided
in CRAFT. Therefore, a cautious approach should be taken to
managing the list of crowd-generated feedback categories. On
the other hand, this challenge can turn into an opportunity with
the emergence of new, unprecedented requirements, which
crowd members can bring out by devising new categories.
At the same time, the categories may also differ in different
platforms over time depending on the software application’s
domain and the purpose of the annotation.

V. CONCLUSION AND FUTURE WORK

This paper proposes a new technique for feedback anno-
tation, called CRAFT, empowered by harnessing the power
and wisdom of the crowd. CRAFT addresses some of the
challenges in existing text mining applications in dealing with
the peculiarities of natural language processing. The initial
results of a case study suggest that CRAFT has the potential
to be an effective means for feedback annotation in place of
or in addition to text mining applications to reduce monetary
and time-related costs of user feedback analysis.

Our future work will include creating a plugin or an ap-
plication for the CRAFT technique following the gamification
design principles. This plugin will then be used in real-world
feedback forums to obtain crowd feedback annotations, based
on which a systematic comparison to automated classification
using text mining techniques will also become possible. This
will allow for a thorough evaluation of CRAFT’s abilities
and limitations. Another part of future work will include en-
riching the feedback categories by assembling user-generated
categories and shaping them into well-defined categories of
feedback. This will give requirements engineers a powerful
taxonomy of user-perceived feedback categories.

Furthermore, the identification of a crowd-friendly language
to be used in CRAFT can be studied so that crowd members
will have no difficulty in understanding each item listed in
the feedback categories. This might include several represen-
tations (e.g., synonyms, translations, media formats) of the
same feedback category item so that it suits the cognitive
abilities of crowd members. Finally, triangulation between the
results obtained from text mining methods and our proposed
technique can be an aspect of future work. Such triangulation
can help requirements engineers detect potential limitations
in automated interpretations of text mining methods, while
also enabling the detection of anomalies in user input and
potential user clustering or ignored minorities. Moreover, to
keep CRAFT scalable, it is also possible to present only those
portions of the text that have not been classified with a high
degree of confidence to crowd members in order to optimally
benefit from the crowd’s annotation efforts.

REFERENCES

[1] E. C. Groen, N. Seyff, R. Ali, F. Dalpiaz, J. Doerr, E. Guzman, M. Hos-
seini, J. Marco, M. Oriol, A. Perini et al., “The crowd in requirements
engineering: The landscape and challenges,” IEEE software, vol. 34,
no. 2, pp. 44–52, 2017.

[2] C. Castro-Herrera, C. Duan, J. Cleland-Huang, and B. Mobasher, “Using
data mining and recommender systems to facilitate large-scale, open, and
inclusive requirements elicitation processes,” in Proceedings of the 16th
RE Conference, 2008, pp. 165–168.

[3] A. Massey, J. Eisenstein, A. Anton, and P. Swire, “Automated text
mining for requirements analysis of policy documents,” in Proceedings
of the 21st RE Conference, 2013, pp. 4–13.

[4] B. Sateli, E. Angius, S. S. Rajivelu, and R. Witte, “Can text mining
assistants help to improve requirements specifications,” in Proceedings
of the Mining Unstructured Data (MUD), 2012.

[5] R. Feldman, M. Fresko, Y. Kinar, Y. Lindell, O. Liphstat, M. Rajman,
Y. Schler, and O. Zamir, “Text mining at the term level,” in Principles of
Data Mining and Knowledge Discovery. Springer Berlin Heidelberg,
1998, pp. 65–73.

[6] A. Stavrianou, P. Andritsos, and N. Nicoloyannis, “Overview and
semantic issues of text mining,” SIGMOD Record, vol. 36, no. 3, pp.
23–34, 2007.

[7] M. Hosseini, K. Phalp, J. Taylor, and R. Ali, “The four pillars of
crowdsourcing: A reference model,” in Proceedings of IEEE 8th RCIS
Conference, 2014, pp. 1–12.

[8] ——, “Towards crowdsourcing for requirements engineering,” in Pro-
ceedings of the 20th REFSQ Conference - Empirical Track, 2014.

[9] M. Hosseini, A. Shahri, K. Phalp, J. Taylor, R. Ali, and F. Dalpiaz, “Con-
figuring crowdsourcing for requirements elicitation,” in Proceedings of
IEEE 9th RCIS Conference. IEEE, 2015, pp. 133–138.

[10] P.-Y. Hsueh, P. Melville, and V. Sindhwani, “Data quality from crowd-
sourcing: a study of annotation selection criteria,” in Proceedings of the
NAACL HLT 2009 workshop on active learning for natural language
processing (ALNLP), 2009, pp. 27–35.

[11] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?
on automatically classifying app reviews,” in Proceedings of the 23rd
RE Conference, 2015, pp. 116–125.

[12] E. C. Groen, S. Kopczynska, M. P. Hauer, T. D. Krafft, and J. Doerr,
“Users - the hidden software product quality experts? a study on how
app users report quality aspects in online reviews,” in Proceedings of
the 25th RE Conference, 2017 (in press).

[13] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in Proceedings of the 21st RE Conference, 2013, pp. 125–134.

[14] N. Sherief, W. Abdelmoez, K. Phalp, and R. Ali, “Modelling users
feedback in crowd-based requirements engineering: An empirical study,”
in 8th IFIP WG 8.1 working conference on the Practice of Enterprise
Modelling (PoEM). Springer, 2015, pp. 174–190.

[15] S. D. Harker, K. D. Eason, and J. E. Dobson, “The change and evolution
of requirements as a challenge to the practice of software engineering,”
in Proceedings of IEEE International Symposium on RE, 1993, pp. 266–
272.

[16] G. Kazai, “In search of quality in crowdsourcing for search engine
evaluation,” in Advances in information retrieval. Springer, 2011, pp.
165–176.

[17] A. J. Mashhadi and L. Capra, “Quality control for real-time ubiquitous
crowdsourcing,” in Proceedings of the 2nd international workshop on
Ubiquitous crowdsouring, 2011, pp. 5–8.

[18] A. Aker, M. El-Haj, M.-D. Albakour, U. Kruschwitz et al., “Assessing
crowdsourcing quality through objective tasks.” in Proceedings of the
8th International Conference on Language Resources and Evaluation
(LREC), 2012, pp. 1456–1461.

[19] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad,
E. Bertino, and S. Dustdar, “Quality control in crowdsourcing systems:
Issues and directions,” IEEE Internet Computing, vol. 17, no. 2, pp.
76–81, 2013.

[20] A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and G. Vesci, “Choosing
the right crowd: expert finding in social networks,” in Proceedings of
the 16th International Conference on Extending Database Technology
(EDBT), 2013, pp. 637–648.

[21] L. Erickson, I. Petrick, and E. Trauth, “Hanging with the right crowd:
Matching crowdsourcing need to crowd characteristics.” in Proceedings
of the 18th Americas Conference on Information Systems (AMCIS),
2012.

[22] C. Puah, A. Z. A. Bakar, and C. W. Ching, “Strategies for community
based crowdsourcing,” in Proceedings of the International Conference
on Research and Innovation in Information Systems (ICRIIS), 2011, pp.
1–4.

[23] S. Deterding, R. Khaled, L. E. Nacke, and D. Dixon, “Gamification: To-
ward a definition,” in Proceedings of CHI 2011 Gamification Workshop,
2011, pp. 12–15.

[24] A. Shahri, M. Hosseini, R. Ali, and F. Dalpiaz, “Gamification for
volunteer cloud computing,” in Proceedings of the 2nd International
CGCloud Workshop, Co-located with UCC 2014, 2014.

[25] C. Eickhoff, C. G. Harris, A. P. de Vries, and P. Srinivasan, “Quality
through flow and immersion: gamifying crowdsourced relevance assess-
ments,” in Proceedings of the 35th international ACM SIGIR conference
on Research and development in information retrieval, 2012, pp. 871–
880.

[26] M. J. Anzanello and F. S. Fogliatto, “Learning curve models and
applications: Literature review and research directions,” International
Journal of Industrial Ergonomics, vol. 41, no. 5, pp. 573–583, 2011.

