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Abstract

This paper contributes to the existing literature on the analysis of spatial time series pre-
senting a new clustering algorithm called COFUST, i.e. COpula-based FUzzy clustering
algorithm for Spatial Time series. The underlying idea of this algorithm is to perform
a fuzzy Partitioning Around Medoids (PAM) clustering using copula-based approach to
interpret comovements of time series. This generalisation allows both to extend usual
clustering methods for time series based on Pearson’s correlation and to capture the uncer-
tainty that arises assigning units to clusters. Furthermore, its flexibility permits to include
directly in the algorithm the spatial information. Our approach is presented and discussed
using both simulated and real data, highlighting its main advantages.

Keywords: Copula, Fuzzy Clustering, Partitioning Around Medoids, Spatial Statistics,
Time Series, Tourism Economics

1. Introduction

Clustering of time series aims to identify similarities in patterns across time. As such,
several methods have been developed according to different concepts of similarity that
can be based on values, functional shapes, autocorrelation structure, approximation by
prototype objects, etc.

Following Caiado et al. (2015) time series clustering methods can be classified into
three methodological approaches (for more details, see also Warren Liao, 2005; Caiado
et al., 2015; D’Urso et al., 2016a):

1. Observation-based clustering approach: in this case, the methods are based on the
observed time series or suitable transformations thereof (see, e.g., Coppi & D’Urso,
2002, 2003, 2006; D’Urso, 2005; Coppi et al., 2010, and references therein).
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2. Feature-based clustering approach: it contains methods that exploit specific features
of the time series. For instance, these methods are based on:

• time domain features such as autocorrelation function (ACF) (Alonso & Ma-
haraj, 2006; Caiado et al., 2006, 2009; D’Urso & Maharaj, 2009), partial autocor-
relation function (PACF) and inverse autocorrelation function (IACF) (Caiado
et al., 2006), quantile autocovariance function (QAF) (Lafuente-Rego & Vilar,
2016; Vilar et al., 2017);

• frequency domain features such as periodogram and its transformations (Caiado
et al., 2009), coherence (Maharaj & D’Urso, 2010) and cepstral (Maharaj &
D’Urso, 2011);

• wavelet features such as wavelet decomposition (D’Urso & Maharaj, 2012; D’Urso
et al., 2014);

3. Model-based clustering approach: the methods belonging to this class assume the
existence of a stochastic mechanism generating the time series. Moreover, they are
based on the fact that a set of time series generated from the same model would most
likely have similar patterns. In general, here the time series are clustered by means
of the parameter estimates or exploiting the residuals of the fitted models (Caiado
et al., 2015). In this class, one can include, among others, methods based on:

• ARMA or ARIMA models (see, e.g., Piccolo, 1990; Maharaj, 1996; Kalpakis
et al., 2001; D’Urso et al., 2013b);

• GARCH representation (see, e.g., Caiado & Crato, 2010; Otranto, 2010; D’Urso
et al., 2013a, 2016a);

• density function and forecast density (Alonso & Maharaj, 2006; D’Urso et al.,
2017).

• functional approach (see, e.g., James & Sugar, 2003);

• splines (see, e.g., Garcia-Escudero & Gordaliza, 1999).

• copulas, measures of association, and tail dependence (see, e.g., De Luca &
Zuccolotto, 2011; Durante et al., 2014b; De Luca & Zuccolotto, 2015; Durante
et al., 2015; Di Lascio & Giannerini, 2016).

Inside the class of model-based methods, here we focus on the copula-based approach, as
recently reviewed in Di Lascio et al. (2017). Copulas are probability distribution functions
with uniform marginals, which can be also seen as aggregation functions with special
properties (see Durante & Sempi, 2016; Grabisch et al., 2009). They have been extensively
used for modelling uncertainty of different types, from probabilistic methods (see Joe, 2015;
Nelsen, 2006) to imprecise probabilities and decision theory (see Yager, 2013; Klement
et al., 2014; Montes et al., 2015). Nowadays, copula-based models are also frequently
used in many problems from spatial statistics; (see, e.g., Bárdossy & Li, 2008; Durante &
Salvadori, 2010; Kazianka & Pilz, 2010; Guthke & Bárdossy, 2017).
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In stochastic models, copulas are employed in order to represent a joint probability
distribution function of a random vector in terms of its marginal distributions. A copula-
based model for time series assume that (1) each time series is a realisation of a suitable
univariate model (like ARMA, GARCH, ARIMA, etc.) and (2) the innovations (εit) of
the individual time series are jointly coupled by means of a time-invariant copula C (see
Patton, 2012).

Moreover, since copulas capture the rank-invariant dependence structure of a random
vector (see Durante & Sempi, 2016), these algorithms are invariant under strictly increasing
transformations of the time series of interest. In other words, two data matrices produce
the same cluster composition if one matrix is obtained from the other one by a monotone
increasing transformation of its rows (or columns).

Copula-based clustering algorithms for time series are based on this latter decomposi-
tion and their specific similarity criterion is derived from the copula information (in both
parametric and non-parametric form). Such a similarity is often driven by ad-hoc measures
of association, like conditional correlations, tail dependence coefficients or variants thereof
(see, e.g., De Luca & Zuccolotto, 2011; Durante et al., 2014a,b; De Luca & Zuccolotto,
2015; Durante et al., 2015). Then, in order to identify the partitions, hard clustering
algorithms, such as c–means or hierarchical clustering, are usually run on the similarity
matrix.

Fuzzy clustering extensions of these methods have been presented in Wang et al. (2017)
(for the specific purpose of a portfolio selection algorithm) and in D’Urso et al. (2016b).
This latter reference, in particular, suggested the adoption of the copula-based dissimi-
larity in the fuzzy Partitioning-Around-Medoids (PAM) algorithm. As known, the main
advantage of PAM is that prototypes of each cluster, henceforth “medoid time series”, are
time series actually observed and not “virtual” time series, like the “centroids time series”
derived by means of the c-means algorithm. The possibility of obtaining non-fictitious rep-
resentative time series (i.e. the medoids) is often very appealing for the interpretation of
the selected clusters (Kaufman & Rousseeuw, 2005). Moreover, fuzzy clustering algorithms
are computationally more efficient (for instance, dramatic changes in the value of cluster
membership are less likely to occur in estimation procedures) and they are less affected by
both local optima and convergence problems (Everitt et al., 2001; Hwang et al., 2007).

This study aims to revisit the methodology introduced by D’Urso et al. (2016b) for
time series, extending these preliminary steps to the problem of classifying spatial units,
based on a set of quantitative features observed at several time occasions, namely spatial
time series.

One way to cope with the complexity of spatial-time dataset, is to reduce the number
of dimensions in order to apply a traditional clustering technique on a two-way matrix.
The reduction can be performed in different ways, for example: including the relationships
between space and time into a traditional two-way matrix as a new column (Krishnapu-
ram & Freg, 1992; Shekhar et al., 2015); adopting the hierarchical time series clustering
algorithm where the clustering is performed at different spatial level (Athanasopoulos &
Hyndman, 2009). However, this reduction process can cause a loss of information that
leads to prefer the development of ad-hoc clustering techniques that incorporate spatial as
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well as temporal information. Similar to the classification proposed by Fouedjio (2016) for
the clustering of spatial data, existing spatial-time clustering models can be distinguished
into the following four different approaches: non-spatial time series clustering based on a
spatial dissimilarity measure (Izakian et al., 2013); spatially constrained time series clus-
tering (Hu & Sung, 2006; Coppi et al., 2010; Gao & Yu, 2016); density-based clustering
(Ester et al., 1996; Wang et al., 2006; Birant & Kut, 2007; Ienco & Bordogna, 2016; Xie
et al., 2016); model-based clustering (Basford & McLachlan, 1985; Viroli, 2011; Torabi,
2014, 2016).

Following this latter approach, a COpula-based FUzzy clustering algorithm for Spatial
Time series, shortly COFUST, is proposed and described. In particular, the paper is
structured as follows: in Section 2 the suggested algorithm is described and discussed in
depth; in Section 3 different simulated case studies are presented in order to show the main
features of the algorithm; in Section 4 the methodology is illustrated by analysing real data
describing the behaviour of the tourism flows in a destination, i.e. spatial region. Section
5 concludes.

2. The methodology

The starting point is represented by a (n× T )–data matrix, X, defined as follows:

X =


x11 . . . x1t . . . x1T
... . . .

... . . .
...

xi1 . . . xit . . . xiT
... . . .

... . . .
...

xn1 . . . xnt . . . xnT


where xit is a generic element that represents the value of the i-th unit (i = 1, . . . , n) at
the t-th period (t = 1, . . . , T ). We also assume to have additional information on units,
represented by an (n×n) data matrix S, whose generic entry sij can be interpreted as the
“spatial distance” between the i-th and j-th units (i, j = 1, . . . , n). Obviously, sij ≥ 0.

The clustering process can be split in five consecutive steps: 1. data preprocessing; 2.
choice of the appropriate dissimilarity measure; 3. choice of the clustering algorithm; 4.
selection of the best partition and cluster validation; 5. profiling and interpretation of the
final optimal partition.

The choices made at the first three steps of the clustering process lead to the definition
of the proposed COFUST algorithm for time series with spatial information. The first
step requires the estimation of a convenient time-series model for each individual time
series allowing for the extraction of the corresponding residuals. At the second step of
the clustering process, a suitable copula-based dissimilarity measure, that also includes
the spatial information between any pair of units xi and xj (i, j = 1, . . . , n and i 6= j),
has to be defined. At the third step, the fuzzy PAM algorithm is suggested in view of
its valuable advantages. Whereupon, any internal validity measures for fuzzy algorithms
suggested in the literature can be adopted both to validate the results and to identify the
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best partition that has to be profiled at the final step of the clustering process (Xie & Beni,
1991; Campello & Hruschka, 2006). These steps are presented in figure 1 and described in
detail below.

Figure 1: The COFUST steps.
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2.1. Data preprocessing

In order to disentangle the marginal effects of each univariate time series from the
(rank-invariant) dependence properties, it is necessary to conduct a preliminary filtering of
the data matrix. Specifically, we can assume that each time series (x1, . . . ,xn) is generated
by the stochastic process (Xt,Ft) such that one has

Xit = µi(Zt−1) + σi(Zt−1)εit,

where Zt−1 depends on Ft−1, the available information up to time (t− 1), and the innova-
tions εit are distributed accordingly to a probability distribution function Fi. Moreover, the
joint distribution function of (ε1t, . . . , εnt) can be expressed in the form of C(F1, . . . , Fn)
for some copula C. Thus, C is not directly related to the original data, but to the residuals
obtained after removing from each time series the conditional mean/variance part (see, for
instance, Patton, 2012).

Analogously to Durante et al. (2014b, 2015), this pre-filtering serves to mitigates the
effects of heteroscedasticity and autocorrelation in the estimation of the dependence struc-
ture. In fact, after removing the marginal behaviour, the resulting residuals are approxi-
mately a random sample from the copula C.

2.2. Copula-based dissimilarity

The Copula-based dissimilarity measure dij between xi and xj (i, j = 1, . . . , n and
i 6= j) can be formalised as a suitable function of the copula Cij (expressing the dependence
between the i-th and j-th units) and the spatial information sij.

In the absence of the latter component, a copula-based dissimilarity can be defined as a
degree of departure of Cij from the Fréchet upper-bound copula M(u, v) = min(u, v), which
interprets the maximal degree of similarity (comonotonicity) among time series. Thus, if
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Cij = M , the dissimilarity measure between xi and xj (i, j = 1, . . . , n and i 6= j) is usually
set to 0. In D’Urso et al. (2016b), for instance, one sets

dij = f(‖M − Cij‖),

where ‖ · ‖ is a suitable norm in the copula space, while f is a convenient real-valued
function. In order to include also the spatial information in the latter formula, we suggest
to proceed as follows.

First, we transform the spatial matrix S, into a matrix whose entries are objects of the
copula space. This can be done associating to each pair of units i and j the copula

Sij = s̃ijW + (1− s̃ij)M (1)

where W is the Fréchet lower-bound copula given by W (u, v) = max(u + v − 1, 0), and
s̃ij = sij/(maxi,j=1,...,n sij) is the normalised spatial distance between the i-th and j-th units.
The idea is that, when s̃ij ≈ 0, i.e. the i-th and j-th units are spatially close, then Sij ≈M ,
while when s̃ij ≈ 1, i.e. the i-th and j-th units are far away, then Sij ≈ W , which is the
copula representing maximal dissimilarity among time series (i.e. countermonotonicity).

Remark 1. Notice that (1) defines an element of the Fréchet family of copulas (see, for
instance, Durante & Sempi, 2016). Clearly, other parametric families of copulas can be
chosen as well, provided that they are comprehensive (i.e. they include W and M as
elements) and ordered (with respect to concordance as defined, e.g., in Durante & Sempi,
2016).

Second, we associate to each pair (i, j) of units a copula that merges dependence and
spatial information, namely

C̃ij = βCij + (1− β)Sij, (2)

where β ∈ [0, 1] is a tuning parameter (we recall that any convex combination of copulas is a

copula). Roughly speaking, C̃ij combines both the dependence and the spatial information
among the units i and j. The parameter β ∈ [0, 1] reflects the prior belief of the decision
maker about the desired influence of the spatial component on the clustering procedure.
If the aim is to obtain a clustering output that only reflects the dependence information
between units, the β parameter has to be set equal to 1. As much as the spatial information
is considered to be relevant for the clustering analysis, β has to take smaller values.

Finally, we define the dissimilarity measure as

dij = f(‖M − C̃ij‖), (3)

where ‖ · ‖ is a suitable norm in the copula space (like the Crámer-von Mises L2–norm,
‖ · ‖2, and the Kolmogorov-Smirnov norm or L∞–norm, ‖ · ‖∞), while f is an increasing
and continuous real-valued function with f(0) = 0. Notice that, regardless the value of
β, dij ≈ 0 when both the i-th and j-th units are spatially close, i.e. Sij ≈ M , and the

6



dependence between the units is very strong, i.e. Cij ≈M . In other words, if the units are
spatially adjacent and their time series are comonotone, then their dissimilarity is equal
to 0, while the dissimilarity increases when we have a small deviation from such limiting
case.

Remark 2. Eq. (3) can be rewritten as

dij = f(‖M − βCij − (1− β)Sij‖
= f(‖β(M − Cij) + s̃ij(1− β)(M −W )‖), (4)

which emphasizes the role played by both spatial and dependence information in the de-
termination of the dissimilarity measure.

Remark 3. Given any two time series (xit)t=1,...,T and (xjt)t=1,...,T related to the i–th and
j–th units, the copula Cij (and, hence, the related dissimilarity computed following eq. (3))
can be estimated either parametrically or non-parametrically. In the latter case, we can
use the empirical copula

Cij(u, v) =
1

T

T∑
t=1

1

(
Rit

T + 1
≤ u,

Rjt

T + 1
≤ v

)
, (5)

where Rit and Rjt are the ranks associated with the (residuals of) original time series.

2.3. Clustering algorithm

The COFUST clustering algorithm can be formalised as follows:

min
uik

:
n∑
i=1

K∑
k=1

upikdik(xi,xk) =
n∑
i=1

K∑
k=1

upikf(‖β(M − Cik) + s̃ik(1− β)(M −W )‖)

s.t.
K∑
k=1

uik = 1, uik ≥ 0

(6)

where uik indicates the membership degree of the i-th unit in the k-th (k = 1, . . . , K)
cluster; p > 1 is a weighting exponent that controls the fuzziness of the obtained partition;
xk represents the time series of the medoid of the k-th cluster; dik(xi,xk) is the copula-
based dissimilarity measure (see subsection 2.2) computed between the time series of the
i-th unit and the time series of the k-th medoid.

Remark 4. Notice that the fuzziness parameter p is chosen in advance and plays an
important role in fuzzy clustering and, in particular, in our fuzzy PAM clustering method.
In fact, if p is close to 1, the algorithm output will result in a partition with most of the
memberships close to 0 or 1. Conversely, choosing a large p will lead to disproportionate
overlap with all memberships close to 1/K (see, e.g., Wedel & Steenkamp, 1989). For
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this reason, Kamdar & Joshi (2000) recommended to select a value of p included in the
range (1, 1.5]. Although there have been some empirical heuristic procedures to determine
the value of p, there seems to exist no theoretically justifiable manner of selection. For a
discussion and a detailed list of references on the choice of p, see also D’Urso (2015).

Remark 5. In general, internal validity measures provide useful guidelines in the identi-
fication of the best partition (as suggested by Handl et al., 2005; D’Urso, 2015). Suitable
measures for fuzzy clustering algorithm have been suggested by Xie & Beni (1991) and
Campello & Hruschka (2006). Among them, the Fuzzy Silhouette (FS) index (Campello
& Hruschka, 2006) is a popular measure that is computed as the weighted average of the
individual silhouettes width, λi, as follows:

FS =

∑n
i=1(uir − uiq)α · λi∑n
i=1(uir − uiq)α

, λi =
(bi − ai)

max{bi, ai}
(7)

Here, ai is the average distance between the i-th unit and the units belonging to the
cluster r (r = 1,...,k) with which i is associated with the highest membership degree; bi
is the minimum (over clusters) average distance of the i-th unit to all units belonging to
the cluster q with q 6= r; (uir − uiq)α is the weight of each λi calculated upon the fuzzy
partition matrix U = {uik; i = 1, . . . , n, k = 1, . . . , K}, where r and q are, respectively,
the first and second best clusters (accordingly to the membership degree) to which the i-th
unit is associated; α ≥ 0 is an optional user defined weighting coefficient. Note that, the
traditional (crisp) Silhouette measure is obtained by setting α = 0. The higher the value
of FS, the better the assignment of the units to the clusters simultaneously obtaining
the minimisation of the intra-cluster distance and the maximisation of the inter-cluster
distance.

Remark 6. Regarding the comparison between two partitions, different measure of par-
tition correspondence have been suggested in the literature based on the well-known Rand
index (Rand, 1971). Here we adopt the Adjusted Rand Index (ARI) computed as:

ARI =

(
n
2

)
2a− 2(a+ b)(a+ c)(

n
2

)
[(a+ b) + (a+ c)]− 2(a+ b)(a+ c)

(8)

where a is the number of pairs objects placed in the same group in both partitions, b and c
count the number of time two objects are paired only in one partition, and

(
n
2

)
is the total

number of possible combinations of pairs. The ARI index assumes value 1 when perfect
match between the two partitions is found (for more details see Hubert & Arabie, 1985).

In the fuzzy framework, one of the most recent and frequently used measure is the
Fuzzy Rand Index (FRI) suggested by Hüllermeier et al. (2012) and defined as follows:

FRI = 1−
∑

(xi,xj)∈K |E
A(xi, xj)− EB(xi, xj)|(

n
2

) (9)

where A and B are two fuzzy partition, EA(xi, xj) = 1− ‖uAi − uAj ‖, ‖ · ‖ is any norm on
[0, 1]K , uAi = {uAi1, uAi2, . . . , uAiK} ∈ [0, 1]K where uAik is the membership degree of the i−th
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unit in the k-th cluster of the A fuzzy partition. Therefore, the FRI takes values between 0
and 1. The closer the FRI value to 1 the higher the similarity between two fuzzy partition.

3. Illustration with simulated data

Here we illustrate the COFUST algorithm under various simulation setups, showing its
main performance and features. In this section, we assume that the dissimilarity measure
of eq. (3) is computed via the empirical copula, the norm ‖ · ‖ is the L2 or the L∞ norm
(which are commonly used in various goodness of fit tests for copulas as copula distances,
see Genest et al., 2009), the function f is set equal to f(t) = exp(t) − 1. This latter
choice has been empirically tested and seems to be the most convenient to highlight small
differences among dissimilarity values, but clearly other functions f could be used provided
that f is increasing with f(0) = 0. Finally, the fuzzy parameter p in eq. (6) is set equal to
1.5. This is the maximum value suggested by Kamdar & Joshi (2000) and for values of p
lower than 1.5, but higher than 1, the final partition becomes less fuzzy.

The other parameters to be set are: the tuning parameter β ∈ [0, 1], the spatial matrix
S, the final number of clusters K, the copula model describing the dependence among the
n innovations of length T . For simplicity, we assume that the number of clusters is always
well identified, while the cluster composition is clearly unknown. Below, several cases are
considered and described.

3.1. Case 1: clustering of time series without spatial information

First, we check the ability of the methodology to identify correctly the cluster compo-
sition when no spatial information is included (i.e. β = 1).

We consider n = 100 time series of innovations of length T ∈ {100, 200}. For simplicity,
we assume that the time series are grouped in k = 2 clusters and, specifically, they are
generated via the following copula model:

C(u1, . . . , u100) = C1(u1, . . . , u50) · C2(u51, . . . , u100), (10)

where C1 and C2 are copulas belonging to the families of Frank, Clayton, and Gumbel with
a pairwise Kendall’s τ in {0.1, 0.25}. As known, these families describe three different situ-
ations in terms of tail properties, namely asymptotic independence in the lower and upper
tail (Frank), asymptotic dependence in the lower tail (Clayton), asymptotic dependence in
the upper tail (Gumbel). In other words, the time series are divided into two clusters that
are independent each other, while the dependence within clusters is given by the copulas
C1 and C2 respectively.

For each replication R = 1, . . . , 250, we simulate from model (10) and we apply CO-
FUST algorithm to determine the membership degree of each time series belonging to the
two clusters. In order to evaluate whether the time series are adequately classified or not,
we compute the percentage of correctly classified time series and the percentage of non-
fuzzy assignments. To obtain the last percentage, we consider a non-fuzzy a time series
associated to a cluster with a membership degrees higher or equal to 0.7, as suggested by
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Family Correct (%) Non-Fuzzy (%) ARI FRI

Clayton (τ = 0.10) 86.8080 54.0600 0.5675 0.6149
Clayton (τ = 0.25) 99.6960 95.5400 0.9880 0.8401
Gumbel (τ = 0.10) 79.6320 44.3160 0.4007 0.5785
Gumbel (τ = 0.25) 99.6720 94.9160 0.9870 0.8350
Frank (τ = 0.10) 86.5400 53.0840 0.5549 0.6129
Frank (τ = 0.25) 99.8200 96.7760 0.9928 0.8550

Table 1: Results of COFUST algorithm (based on L2 norm) ) with dissimilarity measure obtained from
(4) (β = 1) related to simulated data of length T = 100 from model (10). Mean values over R = 250
replications.

Family Correct (%) Non-Fuzzy (%) ARI FRI

Clayton (τ = 0.10) 94.5920 71.1040 0.7984 0.6874
Clayton (τ = 0.25) 99.9920 99.5840 0.9997 0.9134
Gumbel (τ = 0.10) 91.1120 63.0000 0.6853 0.6506
Gumbel (τ = 0.25) 99.9800 99.3720 0.9992 0.9047
Frank (τ = 0.10) 94.4200 70.7520 0.7931 0.6863
Frank (τ = 0.25) 100.0000 99.8520 1.0000 0.9243

Table 2: Results of COFUST algorithm (based on L2 norm) ) with dissimilarity measure obtained from
(4) (β = 1) related to simulated data of length T = 200 from model (10). Mean values over R = 250
replications.

D’Urso et al. (2017). Moreover, we calculate the ARI (eq. 8) and the FRI (eq. 9) to
quantify how much the obtained group composition matches with the theoretical one.

The results obtained using the L2 norm are reported in Table 1 (for the case T = 100)
and Table 2 (for the case T = 200). Analogously, the results obtained using the L∞ norm
are reported in Table 3 (for the case T = 100) and in Table 4 (for the case T = 200).

The results can be summarised as follows:

• At the increase of the length T of the time series, the overall performance improves
(as expected).

• Regardless the chosen copula family, if we increase the dependence parameter τ , the
algorithm performs better, identifying more separated clusters. However, it seems to
perform slightly worse when the data are generated from Gumbel copulas.

• Given all the other parameters fixed, the dissimilarity based on L2 norm seems to be
more capable than the L∞ norm in the identification of the true cluster composition.

In order to check whether the previous performance may depend on the number of
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Family Correct (%) Non-Fuzzy (%) ARI FRI

Clayton (τ = 0.10) 74.0520 4.7480 0.2906 0.5200
Clayton (τ = 0.25) 97.8440 32.6920 0.9164 0.6192
Gumbel (τ = 0.10) 67.1080 3.4160 0.1778 0.5105
Gumbel (τ = 0.25) 96.5280 28.4120 0.8852 0.6108
Frank (τ = 0.10) 74.6520 4.7080 0.3140 0.5222
Frank (τ = 0.25) 99.2400 46.0280 0.9696 0.6492

Table 3: Results of COFUST algorithm (based on L∞ norm) ) with dissimilarity measure obtained from
(4) (β = 1) related to simulated data of length T = 100 from model (10). Mean values over R = 250
replications.

Family Correct (%) Non-Fuzzy (%) ARI FRI

Clayton (τ = 0.10) 84.2280 2.1920 0.5063 0.5263
Clayton (τ = 0.25) 99.7800 21.3440 0.9912 0.6252
Gumbel (τ = 0.10) 75.1000 1.9400 0.3467 0.5165
Gumbel (τ = 0.25) 99.7400 21.6240 0.9897 0.6265
Frank (τ = 0.10) 85.9000 2.3600 0.5795 0.5338
Frank (τ = 0.25) 99.9440 37.4720 0.9978 0.6529

Table 4: Results of COFUST algorithm (based on L∞ norm) ) with dissimilarity measure obtained from
(4) (β = 1) related to simulated data of length T = 200 from model (10). Mean values over R = 250
replications.
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Family ARI FRI ARI FRI
T = 100 T = 100 T = 200 T = 200

Clayton (τ = 0.10) 0.3153 0.4652 0.5763 0.5290
Clayton (τ = 0.25) 0.9791 0.7333 0.9994 0.8404
Gumbel (τ = 0.10) 0.2310 0.4467 0.4541 0.5009
Gumbel (τ = 0.25) 0.9641 0.7170 0.9985 0.8257
Frank (τ = 0.10) 0.3051 0.4624 0.5868 0.5334
Frank (τ = 0.25) 0.9866 0.7521 0.9999 0.8556

Table 5: Results of COFUST algorithm (based on L2 norm) with dissimilarity measure obtained from (4)
(β = 1) related to simulated data of length T ∈ {100, 200} from model (11). Mean values over R = 250
replications.

clusters, we also consider the following 128–dimensional copula model:

C(u1, . . . , u128) =
4∏
i=1

Ci(u1+32(i−1), . . . , u32+32(i−1)), (11)

where Ci is a copula belonging to the families of Frank, Clayton, and Gumbel with a
pairwise Kendall’s τ in {0.1, 0.25}. In other words, the model considers four independent
clusters, each of them composed by 32 time series. The results are summarised in Table 5.
As can be noticed, the performance of COFUST seems to be independent from the number
of clusters.

3.2. Case 2: clustering of time series with spatial information

Given the previous simulation setup, one may wonder whether the presence of spatial
information may increase the membership degree of some units to a specific cluster. To
this end, we consider n = 100 time series of innovations of length T = 100. The time series
are generated through the copula models specified in (10), where C1 and C2 are copulas
belonging to the families of Frank, Clayton, and Gumbel with a pairwise Kendall’s τ = 0.1.
The spatial matrix is defined in such a way that sij = 0 when either i, j ∈ {1, . . . , 50} or
i, j ∈ {51, . . . , 100}, otherwise sij = 1. In other words, two units linked by either C1 or C2

are also spatially close to each other.
As before, for each replication, we compute the percentage of correct classifications,

whether the assignment is fuzzy or non-fuzzy, and we calculate the ARI and FRI indices.
The results are reported in Table 6. As can be seen, the spatial information seems to
influence the cluster composition even for values of β sufficiently close to 1 (that is the
limiting case when no spatial information are considered).

Therefore, it seems critical for the correct application of the algorithm to determine a
value of β that is consistent with the decision maker’s attitude towards a group composition
that reflects the spatial grouping of the time series. To this end, we run a final experiment
and we consider n = 50 time series of length T = 100. We assume that the time series
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Family β Correct (%) Non-Fuzzy (%) ARI FRI

Clayton (τ = 0.10) 0.90 99.8960 97.1160 0.9959 0.8504
Clayton (τ = 0.10) 0.75 100.0000 100.0000 1.0000 0.9751
Gumbel (τ = 0.10) 0.90 99.7800 95.6680 0.9913 0.8351
Gumbel (τ = 0.10) 0.75 100.0000 100.0000 1.0000 0.9731
Frank (τ = 0.10) 0.90 99.8960 97.2520 0.9958 0.8527
Frank (τ = 0.10) 0.75 100.000 100.000 1.000 0.975

Table 6: Results of COFUST algorithm (based on L2 norm) with dissimilarity measure obtained from (4)
(β ∈ {0.75, 0.90}) related to simulated data of length T = 100 from model (10). Mean values over R = 250
replications.

are grouped in k = 2 clusters and that the first two time series are linked by a copula C1,
while the other time series are linked by a copula C2. Moreover, we assume that the first
two units are independent of the remaining ones. Since the choice of the copula family
does not play a major role in the performance of COFUST, the copula model is set to be

C(u1, . . . , u50) = C1(u1, u2) · C2(u3, . . . , u50), (12)

where C1 and C2 are Frank copulas with a pairwise Kendall’s τ in {0.5, 0.75}. The spatial
matrix is defined in such a way that sij = 0 when both i, j ∈ {2, . . . , 50}, while s1j = 1
for every j 6= 1. In other words, the first time series is maximally far from the other time
series that, conversely, are spatially close to each others.

Figure 2 reports the membership degree of unit 2 to the same cluster of unit 1 at
different levels of β. Clearly, when β = 1 (i.e. no spatial information) units 1 and 2 tend
to belong to the same cluster, since they are dependent via the copula C2. However, when
β decreases, the spatial component plays a major role and, roughly speaking, it moves
unit 2 far from unit 1, i.e. in a different cluster. Finally, it is important to highlight that,
regardless the value of the dependence parameter τ , the membership degree of unit 2 to
the same cluster of unit 1 is very high for values of β included in the interval [0.6, 0.9],
while for β lower than 0.5 it becomes approximately 0.

4. A case study with economic data

A tourism agglomeration can be defined as a geographic concentration of interconnected
tourism businesses that cooperate (but also compete) creating a network of relationships
that allows them to perform better certain tourism economic activities (see, e.g., Yang,
2012). As such, the detection of the existence of agglomeration of touristic sites and the
analysis of their trend over time-space is recognised as a key factor in promoting tourism
development (Yang, 2012).

Here we exploit the COFUST algorithm in the problem of finding a common behaviour
of touristic flows. Specifically, given a geographic region having various localities as pos-
sible touristic attractions, we aim at identifying agglomerations of cities characterised by
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Figure 2: Results of COFUST algorithm (based on L2 norm) with dissimilarity measure obtained from
(4) (β ∈ [0, 1]) related to simulated data of length T = 100 from model (12) with Kendall’s τ equal to 0.50
(left) and 0.75 (right). Mean values over R = 50 replications.

a common trend of the tourist flows over time and, eventually, by a geographic close-
ness. Adopting the suggested COFUST algorithm, we have the opportunity to: 1) identify
agglomerations of cities made up considering both common tourist flow trends and geo-
graphical proximity; 2) recognise the medoid of each agglomeration, i.e. the municipality
that characterises each agglomeration and that can be considered as the representative
touristic municipality (in statistical terms) of a given sub-region.

In this analysis, we consider monthly tourist arrivals in the municipalities located in
South-Tyrol region (Northern Italy) collected by ASTAT (the local institute of statistics)
from 2008 to 2014. South–Tyrol is a tourist destination characterised by 116 municipalities
grouped into eight administrative districts that follow the geomorphology of the region.

The distance (in meters) between each pair of towns/villages has been calculated by
ISTAT (the national institute of statistics) using a commercial street map (TomTom’s
MultiNet). The normalised spatial distance between pair of units has been used in the
calculation of the copula-based dissimilarity as described in sections 2.2.

Individual time series show the presence of a seasonal component, which should be
removed before calculating the dissimilarity measure (as described in sections 2.1). To
this end, each time series has been separately fitted via a seasonal ARIMA model whose
order has been selected accordingly to the stepwise procedure suggested by Hyndman &
Khandakar (2008) (output of the analysis available upon request). The resulting residuals
from the time series are hence used to determine the copula-based dissimilarity. First of
all, we should notice that the pairwise dependence among the residual time series is low, as
can be observed from the pairwise Kendall’s measure of association represented in Figure
3.
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Figure 3: Heatmap of the pairwise Kendall’s correlation between residuals time series.
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In order to provide an estimation of the copula among each pair of time series, we
consider hence the empirical copula as in eq (5). Then, the dissimilarity measure has been
calculated by means of eq. (3) where the L2–norm has been selected and the function f
has been set equal to f(t) = exp(t)− 1 (as in the simulation study). Finally, the obtained
dissimilarity matrix has been used as input of the optimisation problem (6) setting p = 1.5.
The algorithm has been performed under different levels of both spatial information (i.e.
different choices of β) and number of clusters k. Figure 4 summarises the values of the FS
Index calculated for k from 2 to 10 and for β from 1 (no spatial information) to 0.5 setting
α = 1 (as suggested by Campello & Hruschka, 2006). The choice of the β−values has been
made accordingly to the simulation results that revealed that for β−values lower than 0.5
the effect of spatial information is too high. The trajectories showing the FS values suggest
that, regardless β, the best partition is k = 2.

For an easy comprehension of the final results, the membership degrees of each town/village,
along with the medoids of each cluster, are represented in figure 5 where: map 6(a) shows
the results obtained considering only the empirical copula (i.e. the dependence among
time series); while map 6(f) shows the results obtained weighing equally the empirical and
spatial copulas, i.e. β = 0.5.

As expected, the higher the weight of the spatial information, the higher the proportion
of non-fuzzy units and higher the spatial separation between the clusters. However, for this
case study, an optimal value of β seems to be β = 0.7 since the medoids are quite stable
and the level of spatial separation between the clusters is satisfactory. Focusing on this
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Figure 4: COFUST Algorithm applied to touristic flows time series (see text). Values of the Fuzzy
Silhouette Index for each cluster partition for k from 2 to 10, varying β from 1 to 0.5.

final cluster solution (figure 6(d)), we can notice that the two medoids are geographically
far, they belong to two separate and not adjacent valleys. In particular, Tesimo belongs to
the Adige valley, well-known for summer holidays, while Bressanone belongs to the Isarco
valley, one of the biggest valleys in South-Tyrol mainly characterised by winter attractions.

From a managerial point of view, a two-clusters partition sometimes cannot be fully
informative and the analysis of the second-best partition is often recommended (D’Urso
et al., 2015). From the inspection of the FS index curve (see figure 4), the second-best
partition obtained setting β = 0.7 is k = 7. The membership degree of each town/village,
along with the medoid of each cluster, are represented in maps 7(a)-7(g) for an easy
interpretation of the results. In map 7(h), the final medoids are compared with the districts
to whom they belong from an administrative point of view. As we can observe, Campo
Tures and San Lorenzo di Sebato belong to the same administrative district, but they are
the medoids of two different clusters. The same situation can be observed for Lagundo
and Gargazzone in the Burgraviato. Conversely, Bressanone seems adequate to represent
not only Valle Isarco, the district to which it belongs, but also the Alta Valle Isarco.
The Salto-Scilliar district is represented by a combination of two medoids, Bressano and
Montagna. Finally, Bolzano, the biggest municipality of South-Tyrol, is mostly associated
to the cluster represented by Gargazzone with which it shares similar co-movements in the
tourism flows.

Summarising, we can argue that, tourist flows policies created on the basis of the
existing administrative districts are not always well representative of the real situation
of the region. Their use is hence subject to caution and should take into consideration
also the co-movement of tourists in the different localities in order to further enhance the
promotion of ad-hoc managerial and marketing policies for regional tourism development.
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Figure 5: Distribution of the membership degrees for the best partition obtained varying β from 1 to 0.5.
The city-medoids of the best partitions are highlighted in each map.
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Figure 6: Distribution of the membership degree for the second-best partition obtained setting β = 0.7
(maps 7(a)-7(g)) and districts distribution (map 7(h)). The city-medoids are highlighted in each map.
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5. Conclusions

In this paper a new clustering algorithm for spatial-time series, i.e. the COpula-based
FUzzy clustering algorithm for Spatial Time series (COFUST), has been presented. In
particular, the aim is to identify cluster of time series in which the dependence is identify
through a copula-based approach and the spatial information regarding units are included
in the clustering algorithm. The PAM clustering algorithm has been adopted in order to
identify actual units, i.e. time series, representing the final clusters since the possibility
to interpret the results using non-fictitious units is appealing in many real applications.
Moreover, the fuzzy approach has been adopted since it is well known that fuzzy clustering
algorithms are computationally more efficient, they tend to be less affected by both local
optima and convergence problems. Furthermore, the possibility to belong to more than
one cluster simultaneously allows to cope with the uncertainty in the unit assignments.

Different simulation studies and a real case study have been presented to illustrate the
usefulness and effectiveness of the suggested clustering method for spatial-time series. In
particular, the findings of the simulation studies suggest that, in the absence of spatial
information and regardless the copula family selected, the COFUST tends to identify the
true cluster composition. Moreover, the inclusion of spatial information in the clustering
algorithm affects the cluster composition, pushing units weakly dependent, but spatially
close each other, in the same cluster. Here, the value for the tuning spatial parameter β,
that defines the weight of the spatial information in the calculation of the dissimilarity
between each pair of units, plays a crucial role.

The application to the real case study shows that the COFUST algorithm may help in
the selection of groups that are both dependent and spatially close, making more appealing
the applicability of the results of the cluster analysis.
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