
EUROGRAPHICS 2017/ A. Peytavie and C. Bosch Short Paper

AnimDiff: Comparing 3D Animations for Revision Control

George Madges1 and Idris Miles1 and Eike Falk Anderson1

1The National Centre for Computer Animation, Bournemouth University, UK

Figure 1: Example of a comparison made by our animation differencing system.

Abstract
The process of animating a complex 3D character can be a time consuming activity which may take several iterations and
several artists working in collaboration, each iteration improving some elements of the animation but potentially introducing
artifacts in others. At present there exists no formal process to collate these various revisions in a manner that allows for close
examination of their differences, which would help speed up the creation of 3D animations. To address this we present a method
for equivalence checking and displaying differences between differing versions of an animated 3D model. Implemented in a tool
that allows selective blending of animations, this provides a first step towards a 3D animation revision control system.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities—Software support

1. Introduction

In a feature animation production environment it is likely that sev-
eral artists will be working on different aspects of the same 3D asset
to speed up production, but this collaboration – although intended
– can be a hindrance if not managed properly. Similar problems ex-
ist in software development where they are addressed by so-called
revision or version control systems (VCS’s). These enable collabo-
ration, allow inspection of code history and provide tools for merg-
ing code contributed by different developers, streamlining the soft-
ware development process. We address this by introducing VCS
techniques into the 3D computer animation domain, demonstrated
through an artists’ tool that enables the visualisation of the differ-
ences between multiple design iterations of the same animated 3D
model. This is achieved through a novel method for equivalence
checking and differencing of 3D computer animation data (‘diff’
algorithm).

This paper is organised as follows: In section 2 we discuss re-
lated work in the field of VCS’s for computer graphics. Our ap-
proach and prototype system are presented in section 3. This is
followed with a discussion of results, limitations and potential ex-
tensions of our method in section 4. In section 5 we provide our
conclusions and highlight outstanding issues that we intend to ad-
dress in the future.

2. Version Control Systems for Computer Graphics

Over the past decade there have been several attempts to pro-
vide VCS techniques for computer graphics to aid the creation
of 3D computer generated models in the creative industries. Cur-
rently available systems, e.g as presented by Doboš and Steed
[DS12a, DS12b], allow designers of 3D computer generated mod-
els to successfully compare scene and static (non-animated) 3D
models with one another to highlight differences and modifications.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

EG 2017 - Short Papers, pp. 29-32. The definitive version is available at http://diglib.eg.org/ (DOI: 10.2312/egsh.20171007).

http://dx.doi.org/10.2312/egsh.20171007

G. Madges & I. Miles & E.F. Anderson / AnimDiff

Figure 2: Our system in action: The left view is the original ani-
mation and the right is a new iteration (modification) of the anima-
tion. The middle view highlights the differences between these and
allows blending between left and right. Sliders enable the user to
fade each joint from the original to the new animation allowing for
inspection on a joint by joint basis.

Denning and Pellacini [DP13] discuss a range of applicable match-
ing algorithms for calculating the edit distance between 3D model
versions. Other systems have been inspired by the collaborative
text editing tool Google Docs (https://docs.google.com)
to allow real-time collaborative mesh editing [SSTP15]. Different
from these systems, Silva et al. [dSJCM15] present a massively
parallel approach to VCS’s for computer graphics assets, primarily
focussing on binary files, which allows fast and efficient revision
control but does not provide the user with semantic details about
the differences between revisions. While these systems are rapidly
maturing, they still lack the capability to effectively compare 3D
animations (animation data) and animated 3D models.

2.1. Visualizing Differences

Visual difference data is only usable when presented to the user in a
useful manner [Zam15], i.e. relevant to its purpose. While this has
not yet been addressed for animation data revision control, there
exist a number of solutions in the context of 3D models.

Denning and Pellacini [DP13] discuss colour coding operations
for use with their MeshGit algorithm to enable users to quickly and
easily comprehend changes to a 3D model through visual inspec-
tion. In their implementation differing parts of a mesh are coloured
red to indicate deletion, green to indicate insertion and blue to in-
dicate modification of the geometry (e.g. moved vertex positions).

Similarly, the repository hosting service Github provides an ex-
perimental feature to compare 3D model revisions that takes both
versions of a model that, by using binary space partitioning, com-
putes added, removed, and unchanged parts [Git13]. This system
also follows the convention of colour coding the model to indi-
cate the operations performed and uses similar colour coding as the
MeshGit [DP13] implementation, i.e. red for deletion and green
for addition, however, Github’s tool does not consider modification
of the geometry and displays unchanged parts of a model as wire-
frame instead of shaded. Additionally the Github tool includes a
technique for visualising differences in the form of a revision slider
that tweaks the opacities of the original and new models superim-

posed on top of each other, acting as a time-line of revisions with
old model versions fading into new ones.

Somewhat related to this is Wei’s method for comparing the dif-
ferences between 2D images [Wei10], which compares the history
of operations performed on the image through DAG’s (Directed
Acyclic Graphs), allowing the history of an image to be recognized
with a single glance.

The most important difference between static 3D models and an-
imated meshes is the inclusion of time as a variable in the animation
data, as difference data for animations can change over time and is
by definition non-linear. These non-linear differences between key-
frames provide important information for the animation designer
and require the use of methods that show these changes over time.
Balakrishnan et al. [BDG15] attempt to solve this for video clips
by using overlays. During playback of the video, outlines (detected
edges) of shapes of an edited video clip are overlaid onto the origi-
nal video with the colour of the outlines indicating the edit distance
to the original.

2.2. Comparing Animation

Existing systems for comparing animation (motion) data are mostly
concerned with motion capture data, where application areas are
motion classification and analysis [Val16]. In the context of ani-
mation synthesis and identification from motion capture data, Kul-
backi and Bak “partition sets of primitive motions into appropri-
ate groups according to similarity between motions” [KB02] using
Dynamic Time Warping (DTW) [M0̈7] for computing differences
between animations, which they then discretize into a value that
could be used as a similarity metric in a VCS. There do not appear
to be existing solutions for presenting animation difference data vi-
sually to an animator to help them better understand changes and
thus improve their work.

3. A Differencing Method for Animation Revision Control

We propose introducing version control techniques for 3D com-
puter animation systems, specifically focusing on the ‘diff’ (dif-
ferencing) aspect found at the core of VCS’s and applying this to
animation data. Our system highlights the differences between dif-
fering animations (Figure 2) in a manner that allows users (anima-
tion designers) to inspect changes, e.g. to identify problems with
the animation.

3.1. Comparing Animated 3D Meshes

Our system loads two differing animations of a 3D mesh, which
are then pre-processed (see section 3.1.1) to prepare the animation
data for differencing (see section 3.1.2). Differences between the
animations are stored in a difference data structure that is passed
to a viewer application for visualisation of the 3D mesh animation
and difference data. Our system currently has the following require-
ments:

• The 3D model animation must be skeletal based, i.e. employ a
hierarchical control-rig of joints connected by bones for animat-
ing a skinned mesh.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

EG 2017 - Short Papers, pp. 29-32. The definitive version is available at http://diglib.eg.org/ (DOI: 10.2312/egsh.20171007).

https://docs.google.com

G. Madges & I. Miles & E.F. Anderson / AnimDiff

Figure 3: Each joint in the rig structure contains the transforma-
tions for each key-frame. We calculate the difference values for po-
sition, scale and rotation for the branch (modified animation) from
the master (original) animation’s respective values.

• The skeletal rig must be consistent across differing animations,
i.e. the rigs used in these animations must have an identical joint
hierarchy. Differences in the animation rigs themselves (different
numbers of joints or different connections in the rig hierarchy)
are not currently supported.
• Interpolation between key-frames is assumed to be linear.

3.1.1. Pre-processing

To import animated 3D models we use the Open Asset Import Li-
brary (ASSIMP) [ASS16], which stores the 3D model’s control rig
in a tree structure [ASS12], separate from the animation data. In
a first pre-processing step we convert data from ASSIMP’s inter-
nal format into our own data structure that embeds the animation
into the rig by storing key-framed transformations for each joint, to
simplify the differencing operations.

3.1.2. Computing animation differences

We analyze the data from two different animations and synchronize
their key-frames (Alg. 1) by iterating through each joint of the rig
and subsequently iterating through each key-frame of both anima-
tions (MstrFrms and BrnchFrms), comparing their time-stamps (in-
tervals between key-frames). When key-frames are missing in one

Figure 4: Left is the original animation. Right is the new anima-
tion. In the middle we display the differring version in wireframe to
show that the colour coded rig matches the mesh.

animation but are present in the other, corresponding key-frames
(NewFrm) are created by linear interpolation of the nearest neigh-
bouring key-frames (Frm) to either side of the missing key-frame.

These key-frames are then compared (Alg. 2) to produce dif-
ference values between master and branch position, rotation and
scaling information (Figure 3).

Algorithm 1 Computing Differences
1: procedure COMPUTING DIFFERENCES

2: for each Joint j do
3: m← 0
4: b← 0
5: while m < MstrFrms || b < BrnchFrms do
6: if m == MstrFrms then
7: DIFF(FrmM jm,FrmB jb)
8: b← b+1
9: else if b == BrnchFrms then

10: DIFF(FrmM jm,FrmB jb)
11: m← m+1
12: else
13: if FrmM jm.Time < FrmB jb.Time then
14: ∆t← TimeM jm−TimeB jb−1
15: NewFrm← Lerp(FrmB jb,FrmB jb−1,∆t)
16: DIFF(FrmM jm,newFrm)
17: m← m+1
18: else if FrmB jb.Time < FrmM jm.Time then
19: ∆t← TimeB jb−TimeM jm−1
20: NewFrm = Lerp(FrmM jm,FrmM jm−1,∆t)
21: DIFF(NewFrm,FrmB jb)
22: b← b+1
23: else
24: DIFF(FrmM jm,FrmB jb)
25: m← m+1
26: b← b+1

Algorithm 2 Diff
1: procedure DIFF

2: ∆Position← PositionB−PositionM
3: ∆Scale← ScaleB−ScaleM
4: ∆Rotation← RotationB Rotation−1

M

3.2. Visualising Animation Differences

In our system we play back animations in a similar fashion to most
computer animation systems, i.e. by using linear blend skinning to
deform the mesh according to the skeletal rig and blend weights.
In order to visualise the ‘diff’ we highlight the differing rig bone
by changing its colour to blue and also changing the colour of the
mesh affected by the differing bone to blue (Figure 4), determin-
ing which mesh vertices are affected, and thus shaded, by using
the corresponding mesh vertex blend weights. Due to the rig being
consistent across animations the differences in animation data can
be considered as modifications. This is in contrast to VCS’s such as
Git, that typically consider differences as deletions and insertions
as they often cannot track changes as such.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

EG 2017 - Short Papers, pp. 29-32. The definitive version is available at http://diglib.eg.org/ (DOI: 10.2312/egsh.20171007).

G. Madges & I. Miles & E.F. Anderson / AnimDiff

4. Discussion

The system described here – a tool to aid artists and animators –
only handles linear history edits, i.e. branching is not supported,
as it only implements a ‘2-way diff’. A production environment
would benefit from the ability to create different branches and pro-
vide a non-linear edit history – where several modifications branch
off from an original (parent) version. An extension of the system to
handle branching and merging of revisions would allow several an-
imators to work in parallel. This 3-way differencing and merging –
where several modifications are compared – is a common operation
in text based VCS’s, and the incorporation of this into our system
would greatly enhance its application potential for animation pro-
duction environments.

Storage of ‘diffs’ instead of complete edit histories, as found in
some VCS’s to optimize disk usage, would not work particularly
well with our ‘diff’ algorithm as there would be no cost reduction
– ‘diffs’ could include additional interpolated key-frames, so the
storage requirements for these might even exceed the storage re-
quirements of a complete history.

Our differencing technique also has potential uses in other do-
mains. It could be used for animation education, e.g. in a massive
open online course (MOOC) where students could be tasked with
replicating a reference animation, for which our approach, with
some minor modifications, could be used for automated assess-
ment, determining the similarity of a student’s submission to the
reference animation. Related to this our method could be used in a
tool for plagiarism detection, determining if a submitted animation
is identical to other submissions or animations from a repository.

5. Conclusions and Future Work

We have presented a method for equivalence checking and the dis-
play of differences between differing versions of an animated 3D
model. This introduction of version control techniques into the field
of 3D computer animation not only provides a first step towards a
3D animation revision control system, but may also be applicable
in other related domains.

Adapting our method to handle 3-way differencing – assuming
the existence of a common parent or ancestor [Men02] and two
differing branches – would be fairly straightforward. It could be
achieved by comparing each branch with the parent and possibly an
additional comparison of the results, where differences could indi-
cate a merge conflict. At this point the user could then be prompted
to choose which modification of the joint to use or interpolate be-
tween the two, creating a new version.

Additional future work includes a user study with potential users,
especially artists in an animation production environment, to eval-
uate the effectiveness of the user interface and to explore the sys-
tem’s potential for integration in pipeline tools for animation asset
creation.

Other than implementing a ‘3-way diff’, we hope to extend our
algorithm (Alg. 2) to also compare differing mesh vertex weights
and changes in the rig structure. Eventually, a full version control
solution for 3D animation would not only need to identify differing
animation but also changes in the mesh, requiring the inclusion of

existing methods for static mesh revision control (as discussed in
section 2), the creation of a repository for storage of revisions and
front end integration into off-the-shelf animation production soft-
ware.

6. Acknowledgements

We would like to thank our colleague and mentor Valery Adzhiev
who provided valuable advice. His support, encouragement and
suggestions have made this project possible.

References
[ASS12] ASSIMP TEAM: Open asset import library documentation,

July 2012. URL: http://www.assimp.org/lib_html/. 3

[ASS16] ASSIMP TEAM: Open asset import library website, 2016.
URL: http://www.assimp.org/. 3

[BDG15] BALAKRISHNAN G., DURAND F., GUTTAG J.: Video Diff:
Highlighting differences between similar actions in videos. ACM Trans.
Graph. 34, 6 (2015), 194:1–194:10. 2

[DP13] DENNING J. D., PELLACINI F.: MeshGit: Diffing and merging
meshes for polygonal modeling. ACM Trans. Graph. 32, 4 (July 2013),
35:1–35:10. 2

[DS12a] DOBOŠ J., STEED A.: 3D Diff: An interactive approach to mesh
differencing and conflict resolution. In SIGGRAPH Asia 2012 Technical
Briefs (2012), pp. 20:1–20:4. 1

[DS12b] DOBOŠ J., STEED A.: 3D revision control framework. In Pro-
ceedings of the 17th International Conference on 3D Web Technology
(2012), Web3D ’12, pp. 121–129. 1

[dSJCM15] DA SILVA JUNIOR J. R., CLUA E., MURTA L.: Efficient
image-aware version control systems using gpu. Software: Practice and
Experience 46 (2015), 1011–1033. 2

[Git13] GITHUB: 3D file diffs, 2013. [Online; accessed 29-
December-2016]. URL: https://github.com/blog/
1633-3d-file-diffs. 2

[KB02] KULBACKI M., BAK A.: Unsupervised learning motion models
using dynamic time warping. In Intelligent Information Systems 2002
(2002), pp. 217–226. 2

[M0̈7] MÜLLER M.: Dynamic time warping. In Information Retrieval
for Music and Motion. Springer, 2007, pp. 69–84. 2

[Men02] MENS T.: A state-of-the-art survey on software merging. IEEE
Transaction on Software Engineering 28 (2002), 449–462. 4

[SSTP15] SALVATI G., SANTONI C., TIBALDO V., PELLACINI F.:
MeshHisto: collaborative modeling by sharing and retargeting editing
histories. vol. 34, pp. 205:1–205:10. 2

[Val16] VALČÍK J.: Similarity Models for Human Motion Data. PhD
thesis, Masaryk University, 2016. 2

[Wei10] WEI L.-Y.: Nonlinear Revision Control for Images. Tech. Rep.
MSR-TR-2010-105, Microsoft Research, 2010. 2

[Zam15] ZAMAN L.: User Interfaces and Difference Visualizations for
Alternatives. PhD thesis, York University, Canada, 2015. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

EG 2017 - Short Papers, pp. 29-32. The definitive version is available at http://diglib.eg.org/ (DOI: 10.2312/egsh.20171007).

http://www.assimp.org/lib_html/
http://www.assimp.org/
https://github.com/blog/1633-3d-file-diffs
https://github.com/blog/1633-3d-file-diffs

