Fast and Memory-Efficient Voronoi Diagram Construction on Triangle Meshes

Yipeng Qin Hongchuan Yu Jianjun Zhang
National Centre for Computer Animation, Bournemouth University, UK

Abstract

Geodesic based Voronoi diagrams play an important role in many applications of computer graphics. Constructing such Voronoi diagrams usually resorts to exact geodesics. However, exact geodesic computation always consumes lots of time and memory, which has become the bottleneck of constructing geodesic based Voronoi diagrams. In this paper, we propose the window-VTP algorithm, which can effectively reduce redundant computation and save memory. As a result, constructing Voronoi diagrams using the proposed window-VTP algorithm runs 3-8 times faster than Liu et al.’s method [LCT11], 1.2 times faster than its FWP-MMP variant and more importantly uses 10-70 times less memory than both of them.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Computing geodesic-metric-based Voronoi diagrams on triangle meshes works as a foundation for various applications in computer graphics, including remeshing [PC06,LCT11], surface reconstruction [PM15] and point pattern analysis [LCT11], etc. In these applications, geodesics are used as the distance metric because they reflect the intrinsic properties of surfaces and are invariant to isometric deformations. To construct accurate Voronoi diagrams, Liu et al. [LCT11] employed the MMP algorithm [SSK*05] to it. Compared to other exact geodesic algorithms (e.g. ICH [XW09], VTP [QHY*16]), the MMP algorithm has a unique feature: all the propagated windows are stored and trimmed on edges. The distinct advantage is to bring necessary geodesic information to edges for Voronoi diagram construction. However, as the MMP algorithm always consumes lots of time and memory, it has become the bottleneck of constructing geodesic based Voronoi diagrams. Recently, Xu et al. [XWL*15] proposed the FWP-MMP algorithm as an accelerated version of the MMP algorithm. But it still occupies too much memory to be applied to large scale models.

The main deficiency of the MMP algorithm is to propagate all windows to edges, which results in lots of computation on redundant windows, and even invalid ones. To speed up geodesic computation and save memory, we propose to use the Vertex-sorted Triangle Propagation (VTP) exact geodesic algorithm [QHY*16], which can identify and remove the maximum invalid windows. Moreover for the Voronoi diagram over a mesh, the boundaries of Voronoi cells only occupy a small number of triangles on it (Fig. 1). Thus, most of the windows are redundant in constructing Voronoi diagrams.

Figure 1: Our algorithm outperforms Liu et al.’s method [LCT11] in both running time and peak memory. The upper figure shows the Voronoi diagram on the Rocker Arm model (25K faces). The lower charts compare the performance of Liu et al.’s method and ours on two Rocker Arm models (25K and 482K faces).
This paper aims to reduce redundant computation so as to save time and memory as shown in Fig. 1. To this end, the Redundant Window Removal (RWR) process is proposed to remove redundant windows during the construction of a Voronoi diagram, and is involved in our window-VTP algorithm by selectively retaining windows on edges. The key point is to detect and remove redundant windows simultaneously with the geodesic wavefront propagation.

In summary, the contributions of this paper are:

- A novel Redundant Window Removal (RWR) method to remove redundant windows during the Voronoi diagram construction.
- The high efficiency of Voronoi diagram construction. Our method runs 3-8 times faster than Liu et al.’s method [LCT11].
- 1.2 times faster than its FWP-MMP variant and more importantly uses 10-70 times less memory than both of them, which is ideal for large scale models.

2. Related Work

Discrete Geodesic Computation. Mitchell et al. first formulated the computation of geodesic distances on triangle meshes as the Discrete Geodesic Problem (DGP) [MMP87]. To solve DGP quickly, PDE-based approximation algorithms have been proposed [KS98, CWW13]. However, these algorithms are sensitive to mesh quality and may produce potentially large errors [LCT11]. Thus, we prefer the exact geodesic algorithms as used in this paper.

The window propagation framework is employed by all the state-of-the-art exact geodesic algorithms [SSK05, XW09, XWL15, QHY16]. In this framework, geodesics are encoded in a geometric data structure called window and propagated from the source over the mesh surface. To improve its performance, windows are sorted by a priority queue and propagated according to their distances in a continuous-Dijkstra style. During propagation, effective rules are applied to remove the redundant windows that cannot define geodesics, e.g., the window pruning rule [QHY16]. Among these algorithms, the ICH algorithm [XW09], the FWP-CH algorithm [XWL15] and the VTP algorithm [QHY16] aim to compute geodesic distances of vertices. Thus, propagated windows are not stored on edges in these algorithms. On the other hand, the MMP algorithm [SSK05] and the FWP-MMP algorithm [XWL15] retain all propagated windows on edges and trim them into non-overlapping ones. Hence, the geodesic distance of a point within one triangle can be computed.

Voronoi Diagram Construction. The construction of Voronoi diagrams is studied in various metric spaces like Euclidean space [CM07, HR08] and Non-Euclidean spaces, e.g. spheres [NLC02], hyperbolic spaces [OT95], and Riemannian manifolds [OJ03]. Refer to [Aur91] for a detailed survey.

In computer graphics, geodesic-metric-based Voronoi diagrams usually lie on top of triangular meshes. Kimmel and Sethian proposed the fast marching method [KS98] to compute such Voronoi diagrams [KS99]. However, since it is based on PDE, potentially large errors may occur on bad triangulated meshes. To compute Voronoi diagrams accurately, Liu et al. [LCT11] used the MMP algorithm for exact geodesic distance computation. Their method is extended by [XLS14] to compute polyline-sourced Voronoi diagrams.

3. Redundant Window Removal (RWR)

Since the boundaries of Voronoi cells only cross a minority of the meshes’ triangles, most of the windows stored on edges are redundant. Thus, this section aims to remove such windows which occupy a large amount of memory during the Voronoi diagram construction.

3.1. Preliminaries

For a triangular mesh \(M \), its Voronoi diagram is a set of Voronoi cells partitioning \(M \). As Fig. 2 shows, the boundaries separating Voronoi cells are closed curves spread over a small number of triangles. The definitions of Voronoi cells and their boundaries are presented as follows:

Voronoi Cell Definition [LCT11]. For a given set of source points \(s_0, s_1, \ldots, s_n \) on mesh \(M \), let \(D_{sk}(p) \) be the geodesic distance from source \(s_k \) to point \(p \) on \(M \). Consequently, the Voronoi cell (VC) of each source point is defined as:

\[
VC(s_i) = \{ p | D_{sk}(p) \leq D_{sj}(p), i \neq j, p \in M \}
\]

Voronoi Boundary Definition. With the Voronoi cell definition above, the boundaries of Voronoi cells are formed by the collection of points \(q \) satisfying:

\[
\exists i, j \text{ and } k \text{ such that } D_{sk}(q) = D_{sj}(q) = D_{sj}(q), i \neq j \neq k
\]

In this paper, geodesics on edges are encoded in “windows”, which are used as the primitives for wavefront propagation in the state-of-the-art exact geodesic algorithms [SSK05, XW09, XWL15, QHY16]. The definition of a window is presented as follows:

Window Definition. As Fig. 3 shows, a window \(w \) is located on edge \(AB \), all the geodesic paths in \(w \) are from the same source \(s_i \) or...
Y. Qin, H. Yu, J. Zhang / Fast and Memory-Efficient Voronoi Diagram Construction on Triangle Meshes

That is, a valid triangle contains winds propagated from different sources. Otherwise, this triangle is invalid. In terms of windows, the redundant primitives on a mesh are defined as below.

Redundant Window Definition
Intersection point of an edge satisfy the condition Eq.3.1 originating from two different occupied by the Voronoi boundary. Then, \(q \) must and is shared by two adjacent windows respectively. The triangles boundaries always contain such intersections.

Redundant Windows Removal (RWR)

Definition 3.1 can be directly used to identify redundant windows after the termination of geodesic computation on a mesh. However, too much memory have been consumed. To avoid it, the redundant windows must be identified and removed as early as possible during the geodesic computation. To this end, we define the inactive region as follows:

Definition 3.2 An inactive region is a region behind the geodesic wavefront, in which all the windows will be no longer updated.

Monotonicity. Mitchell et al. [MMP87] proposed the “continuous Dijkstra” technique to organize geodesic wavefront propagation from near to far monotonically. Herein, the wavefront consists of all the windows to be propagated and these windows are managed by a priority queue. In the priority queue, the priority of a window

Figure 3: Illustration of redundant primitives, including redundant triangles (yellow) and redundant edges (green).

Figure 4: Illustration of intersections between Voronoi cell boundaries. The left Voronoi source \(s_i \) and the right one (in green) is \(f \) curve denotes the boundary between the section shared by two windows from \(s_i \) a \(D_{s_i}(q) = D_{s_j}(q) \). The two figures show \(t \) source positions.

Figure 5: Illustration of the monotonicity for window propagations. Point \(r \) (blue) resides in the window \(w \) propagated from \(w \), segment \(pr \) intersects edge \(AB \) at point \(q \) (purple).

Figure 6: Illustration of the monotonicity for window propagations. Point \(r \) (blue) resides in the window \(w \) propagated from \(w \), segment \(pr \) intersects edge \(AB \) at point \(q \) (purple).
Y. Qin, H. Yu, J. Zhang / Fast and Memory-Efficient Voronoi Diagram Construction on Triangle Meshes
w is defined as $-d_{\text{min}}(w)$, i.e. the negative minimum distance of a window. As Fig. 6 shows, if w is a child window propagated from w, we have:

$$d_{\text{min}}(w) = \min (\sigma + \rho \delta) \geq \min (\sigma + \rho q) \geq d_{\text{min}}(w)$$

That is, the minimum distances of windows popped from the priority queue are monotonously increasing.

Inactive Region Formation. To compute geodesics, windows are also check if its edges are redundant and remove all windows on the edges of the mesh and their memory costs are monotonously increasing.

Procedure 1 Redundant Windows Removal (RWR)

Input: f - Face; d - Distance of the nearest window on the wavefront.

Output: f - The face after redundancy removal; d - The wavefront between two scenarios of redundant edges.

1. **procedure** RWR(f, d)
2. Let e_{max} be the longest edge of f;
3. If $d_{\text{min}}(f) + e_{\text{max}} \leq d$ then
4. Check f’s redundancy;
5. If f is redundant then
6. for each edge $e_i \in f$ do
7. Let f_i be the face sharing edge e_i with f;
8. if f_i is redundant then
9. Empty the windows on e_i;
10. end if
11. end for
12. end if
13. end if
14. **end procedure**

Proposition 3.1 The inactive region is formed by all triangles satisfying $d_{\text{min}}(f) + e_{\text{max}} \leq d_{\text{min}}(w_f)$ and none of the windows in it can be updated by later window propagations.

Proof See Appendix B.

Redundant Windows Removal (RWR) Redundant windows always appear within inactive regions. Thus, RWR works on inactive regions. Let f be a redundant triangle for removal, $d = d_{\text{min}}(w_f)$ be the distance of the nearest window on the propagation wavefront. Then, RWR is performed in two steps:

Step 1. Judge if f is in the inactive region with Proposition 3.1. If so, continue to Step 2; else, finish.

Step 2. Check f’s redundancy with Definition 3.1. If f is redundant, also check if its edges are redundant and remove all windows on the redundant edges.

This process is summarized in Procedure 1.

3.3. Performance Verification

To verify that the proposed RWR procedure effectively reduces memory cost, this section compares memory costs against nearest distance $d_{\text{min}}(w_f)$ of the wavefront between two scenarios of Voronoi diagram construction: with and without RWR. The tests are performed on ten models selected from the model set.

Fig. 8 shows the results on two models (Armadillo and Asian Dragon) and the rest of the results have been included in the supplementary materials. It can be seen that applying RWR dramatically reduces the memory cost of Voronoi diagram construction. Specifically, methods without RWR (e.g. [LCT11]) store all propagated windows on edges of the mesh and their memory costs are cumulative. On the contrary, RWR removes redundant windows in the wavefront.

Figure 7: Illustration of an inactive region. Left: the segments in red denote the propagation wavefront w_f and the green shadowed area is the Inactive Region. Right: $d_{\text{min}}(f)$ is the length of the orange path, e_{max} is the longest edge of face f, $d_{\text{min}}(w_f)$ is the length of the blue path.

Figure 8: Performance verification on RWR. The x-axis represents the distance of the nearest window on the wavefront during propagation, i.e. $d_{\text{min}}(w_f)$. The y-axis represents real-time memory cost during propagation.

4. Applying RWR in Geodesic Computation

To construct geodesic-metric-based Voronoi diagrams, we propose the window-VTP algorithm by revising the original VTP algorithm [QHY*16]. The overall workflow is shown in Fig. 9. Our algorithm is essentially a multi-source geodesic algorithm and takes triangles as the primitive for distance propagation. For each source, all visited triangles form its own traversed area. We define the boundary of the traversed area as the propagation wavefront.
For simplicity, consider the one source scenario here. Our algorithm expands its traversed area R and inactive region I at the same time (Fig. 10). Note that the inactive region I is a proper subset of the traversed area R, i.e., $I \subset R$, and the windows in I will not be updated. Both R and I are expanded in continuous Dijkstra style, and gradually involving unvisited triangles abutting the wavefront. First, the proposed algorithm creates the initial windows of each source within its 1-ring neighbourhood and pushes all the adjacent vertices of each source into a priority queue Q. Note that we define one priority queue Q for all traversed areas since each vertex is involved in terms of the propagation distance of the wavefront. When a vertex is popped from the priority queue, the triangles satisfying Proposition 3.1 are expanded by involving ΔR in R, and the wavefront is also updated accordingly. Then, the windows on the previous wavefront (e.g., vE and vB in Fig. 11) are propagated through ΔR and R either till they reach the wavefront, or are eliminated during propagation. To manage windows on the wavefront for the Voronoi diagram construction, the propagated windows are trimmed on edges using the windows trimming and binary insertion methods proposed by the MMP algorithm \cite{SSK+05}.

- **Expanding inactive region I.** As Fig. 10 (b) shows, the expansion of I is limited inside R. In the region between I and R, let ΔI be the unvisited triangles in v’s 1-ring neighbourhood. Then, R is expanded by involving ΔR into R, and the wavefront is also updated accordingly. Then, the windows on the previous wavefront (e.g., vE and vB in Fig. 11) are propagated through ΔR and R either till they reach the wavefront, or are eliminated during propagation. To manage windows on the wavefront for the Voronoi diagram construction, the propagated windows are trimmed on edges using the windows trimming and binary insertion methods proposed by the MMP algorithm \cite{SSK+05}.

- **Expanding traversed area R.** As Fig. 10 (a) shows, let ΔR

Figure 10: Illustration of the triangle-oriented region expansion scheme. (a) Expansion of the traversed area R. (b) Expansion of the inactive region I.

Figure 11: Vertex-sorted Triangle Propagation \cite{QHY+16}.

The outline of our algorithm is shown in Algorithm 2.

Two challenges are rising as below.

1. How to deal with the collision of the wavefronts? Note that it may be a self-intersection of one wavefront or meeting of two wavefronts.
2. How to define the priorities for triangles and vertices in Q_i and Q properly (in Step 4, 5)?

4.1. Wavefront Collision

Proposition 4.1 The proposed window-VTP algorithm automatically handles the wavefront collisions and requires no extra operations.

As Fig. 12 shows, the propagation wavefront consists of different parts corresponding to different sources. When different parts of the wavefront collide with each other, we simply let the windows propagate through the wavefront and enter the interior of the proposed window-VTP algorithm performs the following:

- **Expanding traversed area R.** As Fig 10 (a) shows, let ΔR be
traversed areas. The propagations of these windows will stop when they reach the updated wavefront or be eliminated by the retained windows on edges in the traversed areas using the windows trimming rule \[SSK^\ast 05\]. Thus, no extra operation is required. For example in Fig. 12, the wavefront collides when \(\triangle ABC\) is added to the traversed areas. Then, the windows on edges \(\overline{AB}, \overline{AC}, \overline{BC}\) are propagated into the interior of \(R_1, R_2\) and \(R_3\) (the dashed arrows in Fig. 12). These propagations will stop upon reaching the updated wavefront (the bold red, green, blue line segments in Fig. 12) or be eliminated on the interior edges (the grey line segments in Fig. 12).
Algorithm 2 window-VTP algorithm

Input: M - Mesh;
S - Source set;
Output: M - Mesh with sufficient geodesic information for Voronoi diagram constructions;
1: procedure window-VTP(M, S)
2: Step 0. Perform Initialization.
 • For each source S_i, create a single window for every i positive edge of S_i in its 1-ring neighborhood (bold blue line around S_i in Fig. 11).
 • Push all adjacent vertices of S_i into a priority queue Q.
 • Define a priority queue Q_i, which is used to organize expansion of the inactive regions;
3: while !Q.empty() do
4: Step 1. Pop a vertex v from Q;
5: Step 2. Update the wavefront and traversed areas;
6: Step 3. Expanding the traversed areas.
 • Push the windows on edges of the wavefront incident to v into FIFO queue W;
7: while !W.empty() do
8: • Pop a window w from W;
9: • Propagate w across a triangle;
10: • Retain and trim the propagated windows;
11: • Push the propagate windows into W if they survive the trimming and haven’t reached the wavefront;
12: end while
13: Step 4. Expanding the inactive regions.
14: while !Q_i.empty() do
15: • Let f be Q_i.front();
16: • Perform $RW(R)$ on f to check if f is in the inactive region; If so, remove the redundant window and break the loop;
17: end while
18: end while
19: Step 5. Update vertices’ and triangles’ priorities;
20: Step 6. Push the faces newly added to the traversed area into Q;
21: end procedure

4.2. Priorities Definition

The key point of performing the procedure $RW(R)$ during wavefront propagation is to form the inactive region, which resort to two priorities: the face’s priority and the vertex’s. Recall that the inequality of $d_{min}(f) + \varepsilon_{max} \leq d_{min}(w)$ is used to identify whether a face f is in the inactive region (Proposition 3.1). In our algorithm, the priorities are defined as follows:

Face’s Priority. A face f’s priority in the priority queue Q_i is defined as $-(d_{min}(f) + \varepsilon_{max})$.

Vertex’s Priority. A vertex v’s priority in the priority queue Q is defined as the negative minimum of the current shortest distances to v’s incident edges on the wavefront. For example in Fig. 13, $-d_{min}(A) = -\min(d_{min}(AB), d_{min}(AC))$. In addition, if w is on AB or AC, $-d_{min}(A) = -d_{min}(w)$. Note that the two defined priorities are just the left and right sides of inequality $d_{min}(f) + \varepsilon_{max} \leq d_{min}(w)$ (Proposition 3.1), and thus they can be directly used when performing procedure $RW(R)$.

5. Complexity Analysis

This section focuses on the complexity of geodesic computation since it is the dominant part of the Voronoi diagram construction [LCT11].

Let n be the number of vertices on a mesh. It is easy to verify that the proposed window-VTP algorithm is an improved version of the original MMP algorithm [MMP87]. In the worst case, the number of windows generated in the geodesic computation part is $O(n^2)$ and the time complexity of geodesic computation is $O(n^2 \log n)$. For the redundant windows removal (RWR) part, the checking and deletion processes are performed on each window and thus accounts for $O(n^2)$ time. In addition, the expansion of the inactive region is triangle-oriented and thus costs $O(n \log n)$ time for $O(n)$ triangles.

In summary, the time complexity of window-VTP is bounded by $O(n^2 \log n + n^2 + n \log n) = O(n^2 \log n)$. Since the redundant windows removal process does not consume extra memory, the space complexity of the proposed algorithms is bounded by $O(n^2)$.
The overall performance of the proposed algorithm is evaluated by two measures on the two stages: running time and peak memory usage respectively. As Table 1 shows, the geodesic computation part consumes the majority of time and memory in both Liu et al.’s ([LCT11]) method and ours. However, when replacing the MMP algorithm used in [LCT11] by the proposed window-VTP algorithm for geodesic computation, the Voronoi diagram construction runs 3-8 times faster and uses 10-70 times less memory.

<table>
<thead>
<tr>
<th>Model</th>
<th>Performance</th>
<th>Liu et al. (2011)</th>
<th>Ours</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horse</td>
<td>Time(s)</td>
<td>1.966 + 0.015</td>
<td>9.66 + 0.015</td>
<td>2.93</td>
</tr>
<tr>
<td>Bunny</td>
<td>Time(s)</td>
<td>3.637 + 0.028</td>
<td>1.07 + 0.028</td>
<td>3.34</td>
</tr>
<tr>
<td>Igea</td>
<td>Time(s)</td>
<td>10.916 + 0.048</td>
<td>3.019 + 0.048</td>
<td>3.35</td>
</tr>
<tr>
<td>Armadillo</td>
<td>Time(s)</td>
<td>9.863 + 0.046</td>
<td>2.982 + 0.046</td>
<td>3.32</td>
</tr>
<tr>
<td>Pulley</td>
<td>Time(s)</td>
<td>23.917 + 0.115</td>
<td>5.345 + 0.115</td>
<td>4.40</td>
</tr>
<tr>
<td>Rocker arm</td>
<td>Time(s)</td>
<td>32.012 + 0.091</td>
<td>6.985 + 0.091</td>
<td>4.54</td>
</tr>
<tr>
<td>Asian dragon</td>
<td>Time(s)</td>
<td>110.083 + 0.255</td>
<td>20.281 + 0.255</td>
<td>3.37</td>
</tr>
<tr>
<td>Isidore Horse</td>
<td>Time(s)</td>
<td>89.538 + 0.211</td>
<td>21.229 + 0.211</td>
<td>4.17</td>
</tr>
<tr>
<td>Happy buddha</td>
<td>Time(s)</td>
<td>482.715 + 1.291</td>
<td>58.946 + 1.291</td>
<td>8.04</td>
</tr>
<tr>
<td>Neptune</td>
<td>Time(s)</td>
<td>832.83 + 0.784</td>
<td>96.843 + 0.784</td>
<td>8.54</td>
</tr>
</tbody>
</table>

Table 1: Performance comparison with [LCT11]. The results are shown in an addition manner as: “geodesic computation” + “Voronoi construction”.

6.1. Comparison with [LCT11]

Overall Performance According to [LCT11], geodesic-metric-based Voronoi diagram construction is performed as follows.

- **Stage 1.** Compute geodesic distance fields on meshes, as shown in [LCT11]. Fig. 1.
- **Stage 2.** Extract the valid triangles within Voronoi cells’ boundaries. March them to track and store the edges of Voronoi cells’ by linking the interior edges of M.

Figure 14: Examples of Voronoi diagrams on meshes. The faces of the models are: Bunny (5K faces), Cow (F: 4,008K), Pulley (F: 392K), Armadillo (F: 345K), Neptune (F: 4,008K).

The mean and standard deviation of performance ratios are calculated between MMP, FWP-MMP (the latest implementation of
the MMP algorithm [XWL+15]) and the proposed window-VTP algorithm. The details are shown in Table 2. It can be seen that window-VTP on average runs 4 times as fast as MMP and comparable to FWP-MMP (1.2 times faster). The window-VTP algorithm on average uses 95.29% less memory than MMP and FWP-MMP. Furthermore, the window-VTP algorithm stores 97.96% less windows than MMP and FWP-MMP algorithms after propagation, which shows that it removes redundant windows effectively. Note that the proposed window-VTP algorithm is impressive since it resolves the memory bottleneck of Voronoi diagram oriented computation.

As illustrated in Figure 15, the time ratios increase within the range of source number at [1,100] and drop within the range at [100,1000]. This inconsistency is caused by RWR and the VTP wavefront propagation. When the number of sources increases,

- RWR is invoked less times. This is because the more triangles the Voronoi boundary occupies, the fewer the redundant windows.
- The performance of VTP wavefront propagation depends on the scale of the models, i.e., VTP performs better than the others on large scale meshes [QHY+16]. Herein, the size of Voronoi cells becomes smaller when the number of sources increases. VTP has to work within each cell, that is, the models’ size becomes smaller for VTP.

The time ratio in Fig. 15 shows that in the range of [1,100], reducing RWR dominantly causes the time ratio increasing. In the range of [100,1000], the size of Voronoi cells becomes smaller, which leads to the performance of VTP decreasing. The low performance of VTP dominantly causes the time ratio decreasing at that time.

However, the memory ratio in Fig. 15 shows that the memory cost is close to that of FWP-MMP with an increasing number of sources. Nevertheless, the proposed algorithm still runs faster than the FWP-MMP based Voronoi diagram construction algorithm and uses more than 3 times less memory for 1000 sources.

Table 3: Performance comparison between MMP, FWP-MMP and ours on five representative models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Performance</th>
<th>Algorithms</th>
<th>Time(s)</th>
<th>Memory(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunny (F:144K)</td>
<td>MMP</td>
<td>FWP-MMP</td>
<td>3.637</td>
<td>187.00</td>
</tr>
<tr>
<td></td>
<td>VTP</td>
<td>FWP-MMP</td>
<td>2.451.104</td>
<td>187.00</td>
</tr>
<tr>
<td>Rocker Arm (F:482K)</td>
<td>MMP</td>
<td>FWP-MMP</td>
<td>3.2912</td>
<td>13,282,080</td>
</tr>
<tr>
<td></td>
<td>VTP</td>
<td>FWP-MMP</td>
<td>13,282,139</td>
<td>13,282,139</td>
</tr>
<tr>
<td>Asian Dragon (F:1,409K)</td>
<td>MMP</td>
<td>FWP-MMP</td>
<td>1013.34</td>
<td>2770.83</td>
</tr>
<tr>
<td></td>
<td>VTP</td>
<td>FWP-MMP</td>
<td>2770.83</td>
<td>1013.35</td>
</tr>
<tr>
<td>Neptune (F:4,008K)</td>
<td>MMP</td>
<td>FWP-MMP</td>
<td>832.83</td>
<td>171,319,203</td>
</tr>
<tr>
<td></td>
<td>VTP</td>
<td>FWP-MMP</td>
<td>171,319,203</td>
<td>171,334,203</td>
</tr>
<tr>
<td>Lucy (F:14,446K)</td>
<td>MMP</td>
<td>FWP-MMP</td>
<td>13070.70</td>
<td>13074.80</td>
</tr>
<tr>
<td></td>
<td>VTP</td>
<td>FWP-MMP</td>
<td>13074.80</td>
<td>13074.80</td>
</tr>
</tbody>
</table>

Figure 15: Performance comparison between FWP-MMP based Voronoi diagram construction algorithm and ours on the number of sources. The x-axis represents the number of sources in logarithmic scale, and the y-axis represents the performance (time, memory) ratio.

Figure 16: Comparison of running times of four common components in Voronoi diagram construction on two models. The comparison is performed on three versions of the solution: (1) the original method in [LCT11]; (2) the FWP-MMP version which replaces the MMP algorithm used in [LCT11] with the FWP-MMP algorithm [XWL+15]; (3) Our version which replaces the MMP algorithm used in [LCT11] with the proposed window-VTP algorithm.

The performance of VTP wavefront propagation depends on the scale of the models, i.e., VTP performs better than the others on large scale meshes [QHY+16]. Herein, the size of Voronoi cells becomes smaller when the number of sources increases. VTP has to work within each cell, that is, the models’ size becomes smaller for VTP.

The time ratio in Fig. 15 shows that in the range of [1,100], reducing RWR dominantly causes the time ratio increasing. In the range of [100,1000], the size of Voronoi cells becomes smaller, which leads to the performance of VTP decreasing. The low performance of VTP dominantly causes the time ratio decreasing at that time.

However, the memory ratio in Fig. 15 shows that the memory cost is close to that of FWP-MMP with an increasing number of sources. Nevertheless, the proposed algorithm still runs faster than the FWP-MMP based Voronoi diagram construction algorithm and uses more than 3 times less memory for 1000 sources.

Figure 16: Comparison of running times of four common components in Voronoi diagram construction on two models. The comparison is performed on three versions of the solution: (1) the original method in [LCT11]; (2) the FWP-MMP version which replaces the MMP algorithm used in [LCT11] with the FWP-MMP algorithm [XWL+15]; (3) Our version which replaces the MMP algorithm used in [LCT11] with the proposed window-VTP algorithm.

The geodesic computation component can be further subdivided into three components [QHY+16]:

- **Window propagation** This component performs window propagations across the faces of a mesh.
- **Window redundancy reduction** This component identifies the redundant windows and removes them during propagation, including the window trimming and RWR processes.
- **Window management** This component manages the window propagations in order, which makes the window management component more effective. In the proposed window management framework [QHY16], vertex lists and remove the redundant vertices/faces instead of O(n²) windows in [ZGW14], where n is the number of vertices on the mesh.

The running times of these four individual components algorithms are profiled on ten models in Table 1.

Scalability First, three test models (Cow, Shark, and Knot) are chosen, and each of them has six different resolutions.

Comparison of robustness against anisotropic triangulation (Memory). The x-axis represents the degree of anisotropy, and the y-axis represents peak memory.

The curves in Fig. 18 and Fig. 19 show how the running times and peak memories change with increasing anisotropy (g) respectively. Note that the peak memories of Liu et al.'s method ([LCT11]) and its FWP-MMP based version are almost the same since both of them store all propagated windows on edges. The proposed window-VTP algorithm is the most robust among all algorithms since its running time and peak memory does not obviously increase when the input mesh has a much larger anisotropy.

6.2. Comparison with [XLS+14]

As Xu et al. have used the MMP algorithm to compute geodesics [XLS+14], its performance has already been compared in the preceding section and thus not discussed here.

Xu et al. proposed another method to reduce the memory cost of Voronoi diagram construction rather than the proposed RWR technique [XLS+14]. The main deficiency in their method is the inefficiency of the redundancy check. In their method, the redundancy check is performed on all unlabelled triangles rather than...
just the ones in the inactive region (Proposition 3.1). Thus, windows on many triangles are repeatedly checked since they are not inactive and will be updated by later propagated windows. In addition, since the cost of their redundancy check is large, performing it frequently is time-consuming. Thus, their method suffers from the trade-off between running time and memory-cost. In more details, they perform one redundancy check with every \(cn \) window propagations, where \(n \) is the face number of the mesh and \(c \) is a user-defined parameter to balance the performance. A smaller \(c \) means that the redundancy check is performed more frequently, reducing memory cost but sacrificing the running time.

On the contrary, the proposed RWr technique performs the redundancy check efficiently in the inactive region every \(t_{\text{itex}} \) is popped from the priority queue. To make a fair comparison, we compare our algorithm with an improved version of \(\text{VTP}^{*} \) which uses the proposed window-VTP for geodesic construction but still employs their redundancy reduction method rather than RWR (Table 4). In the experiments, we set the parameter \(\alpha \) to a balanced performance. It can be seen that our algorithm forms \(\text{VTP}^{*} \) in both running time and peak memory.

6.3. Comparison with [QHY] 16

The original VTP algorithm does not retain windows, a revised version keeps partial windows. Compared to the VTP, this experiment shows how the change influences \(t_{\text{itex}} \) management.

As [QHY] 16, in this experiment, we compare the performance of the proposed window-VTP with the original VTP the single-source discrete geodesic problem, with the first vertex set as the source on the mesh. As Table 5 shows, our method runs approximately two times slower than VTP. The main reason is that the window-VTP has to strictly sort windows on edges by binary insertion. However, Voronoi diagrams are usually more sparse than meshes and there is no distinct decline in performance.

6.4. Application to Remeshing

Due to that the Delaunay triangulation of a point set \(S \) is the dual of its Voronoi diagram, the proposed algorithm can be applied to remesh the dense models reconstructed from range data. In this context, the number of sources is usually fairly large and reaches the order of hundreds. Fig. 20 shows the remeshing result of the Neptune model with 4K randomly selected sources.

![Figure 20: Illustration of remeshing with the proposed algorithm.](image)

To show the performance of our method, we compare it with the
FWP-MMP version of [LCT11] on six dense models selected from the dataset of [QHY14], whose numbers of faces range from 1.4M to 6.4M. For each model, we randomly select 2K sources if its number of faces is less than 2M; otherwise, 4K sources are selected. As Table 6 shows, our method runs faster and uses much less memory than the FWP-MMP version of [LCT11] in the remeshing problem.

<table>
<thead>
<tr>
<th>Model</th>
<th>Performance</th>
<th>FWP-MMP version</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>Time(s)</td>
<td>14.07</td>
<td>11.18</td>
</tr>
<tr>
<td>(F: 1,400K)</td>
<td>Peak memory(MB)</td>
<td>863.93</td>
<td>170.65</td>
</tr>
<tr>
<td>Pensatore</td>
<td>Time(s)</td>
<td>25.02</td>
<td>17.24</td>
</tr>
<tr>
<td>(F: 1,990K)</td>
<td>Peak memory(MB)</td>
<td>1503.96</td>
<td>251.48</td>
</tr>
<tr>
<td>Seahorse</td>
<td>Time(s)</td>
<td>23.24</td>
<td>17.26</td>
</tr>
<tr>
<td>(F: 2,014K)</td>
<td>Peak memory(MB)</td>
<td>1455.77</td>
<td>230.63</td>
</tr>
</tbody>
</table>

Table 6: Performance comparison with the FWP-MMP version of [LCT11] on remeshing.

7. Conclusion

In this paper, the RWR procedure is presented to reduce the memory cost of constructing the geodesic-metric-based Voronoi diagrams, in which windows on edges are grouped within the inactive regions so that they can be removed together in time. The proposed window-VTP algorithm incorporates the RWR procedure in the vertex-oriented wavefront propagation framework. As a result, the window-VTP algorithm effectively resolves the memory bottleneck of the Voronoi diagram construction while not sacrificing the speed. In terms of experiments, our algorithm runs 3-8 times faster than Li et al.’s method [LCT11], 1.2 times faster than its FWP-MMP variant and more importantly uses 10-70 times less memory than both of them.

In addition, the proposed method may be extended to compute other distances (e.g. anisotropic geodesic distances) on surfaces. All the Dijkstra-like approaches depend on the monotonicity of distance propagation. Thus, if the monotonicity is required, our method can work well.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments. This work was partially supported by the Royal Society Newton Mobility (Ref. IE151018) and EU H2020 RISE project-AniAge (Ref. 691215).
Appendix A: Lemma A.1

Lemma A.1 Given a triangle whose three edges’ lengths are a, b and c respectively. Let l be the length of a line segment in the middle of the triangle. Then, l cannot be longer than the largest edge of the triangle.

Proof Let f be a face satisfying $d_{\min}(f) + \theta_{\max} \leq d_{\min}(w_0)$ and q is the point determining $d_{\min}(f)$, i.e. $d_{\min}(f) = d(q) = d(q)$ (Fig. 22). Let r be an arbitrary point in any window on the edges of f, construct a path to r by linking q and r with a line segment. Then, the geodesic distance $d(r)$ of r must not be larger than the length of the constructed path, i.e. $d(r) \leq d_{\min}(f) + qr$. Since $qr \leq \theta_{\max}$ (Lemma A.1),

\[
d(r) \leq d_{\min}(f) + qr \leq d_{\min}(f) + \theta_{\max}
\]

Knowing that f satisfies $d_{\min}(f) + \theta_{\max} \leq d_{\min}(w_0)$, then

\[
d(r) \leq d_{\min}(w_0).
\]

Thus, $d(r)$ cannot be updated by w_0 since w_0 cannot provide a shorter distance to r. Let w_0 be any other window on the propagation wavefront that $d_{\min}(w_0) \leq d_{\min}(w_0)$. Then, according to the monotonicity of window propagations,

\[
d_{\min}(w_r) \leq d_{\min}(w_0)
\]

Thus, $d(r)$ cannot be updated by all later window propagations. Since r is arbitrarily selected, all windows on f’s edges will not be updated. □