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Abstract 
 

Geodesic based Voronoi diagrams play an important role in many applications  of computer graphics. Constructing such Voronoi 
diagrams usually resorts to exact geodesics. However, exact geodesic computation  always consumes lots of time and memory, 
which has become the bottleneck of constructing geodesic based Voronoi diagrams. In this paper, we propose the window-VTP 
algorithm, which can effectively reduce redundant computation  and save memory. As a result, constructing Voronoi diagrams 
using the proposed window-VTP algorithm  runs 3-8 times faster than Liu et al.’s method [LCT11], 1.2 times faster than its 
FWP-MMP variant and more importantly uses 10-70 times less memory than both of them. 

 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object 
Modeling—Curve, surface, solid, and object representations 

 
 
 

1. Introduction 
 

Computing  geodesic-metric-based Voronoi diagrams on triangle 
meshes works as a foundation   for various applications in com- 
puter graphics, including remeshing [PC06,LCT11], surface recon- 
struction [PM15] and point pattern analysis [LCT11], etc. In these 
applications,  geodesics are used  as the distance metric because 
they reflect the intrinsic properties of surfaces and are invariant  to 
isometric deformations. To construct accurate Voronoi diagrams, 
Liu et al. [LCT11] employed the MMP algorithm [SSK∗05] to it. 

 Compared to other exact geodesic algorithms  (e.g. ICH [XW09], 
VTP [QHY∗16]), the MMP algorithm  has a unique feature: all the 
propagated windows  are stored and trimmed  on edges. The distinct 
advantage is to bring necessary geodesic information to edges for 
Voronoi diagram construction. However, as the MMP algorithm al- 
ways consumes lots of time and memory, it has become the bottle- 

most of the windows  are redundant in constructing Voronoi dia- 
grams. 

neck of constructing  geodesic based Voronoi diagrams. Recently, 
Xu et al. [XWL∗15] proposed the FWP-MMP algorithm as an ac- 
celerated version of the MMP algorithm. But it still occupies too 
much memory to be applied to large scale models. 
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The main deficiency of the MMP algorithm is to propagate all 

windows to edges, which results in lots of computation on redun- 
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dant windows, and even invalid ones. To speed up geodesic compu- 
tation and save memory, we propose to use the Vertex-sorted Trian- 
gle Propagation (VTP) exact geodesic algorithm [QHY∗16], which 
can identify  and remove the maximum invalid windows. Moreover 
for the Voronoi diagram over a mesh,  the boundaries of Voronoi 
cells only occupy a small number of triangles on it (Fig. 1). Thus, 

Figure 1: Our algorithm outperforms Liu et al.’s method [LCT11] 
in both running time and peak memory. The upper figure shows the 
Voronoi diagram on the Rocker Arm model (25K faces). The lower 
charts compare the performance of Liu et al.’s method and ours on 
two Rocker Arm models (25K and 482K faces). 
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This paper aims to reduce redundant computation  so as to save 

time and memory  as shown in Fig. 1. To this end, the Redundant 
Window Removal (RWR) process is proposed to remove redun- 
dant windows during the construction of a Voronoi diagram, and 
is involved in our window-VTP algorithm by selectively retaining 
windows on edges. The key point is to detect and remove redundant 
windows simultaneously with the geodesic wavefront propagation. 

In summary, the contributions of this paper are: 
• A novel Redundant Window  Removal (RWR) method to remove 

redundant windows during the Voronoi diagram construction. 
• The high efficiency of  Voronoi diagram construction.  Our 

method runs 3-8 times faster than Liu et al.’s method [LCT11], 
1.2 times faster than its FWP-MMP variant and more impor- 
tantly uses 10-70 times less memory than both of them, which 
is ideal for large scale models. 

 

 
2. Related Work 

 

Discrete  Geodesic Computation.   Mitchell et al. first formu- 
lated the computation of geodesic distances on triangle  meshes as 
the Discrete Geodesic Problem (DGP) [MMP87]. To solve DGP 
quickly,  PDE-based approximation  algorithms have been proposed 
[KS98, CWW13]. However, these algorithms  are sensitive to mesh 
quality and may produce potentially  large errors [LCT11]. Thus, 
we prefer the exact geodesic algorithms  as used in this paper. 

 
The window propagation framework is employed by all the state- 

of-the-art  exact geodesic algorithms  [SSK∗05, XW09, XWL∗15, 
QHY∗16]. In this framework,  geodesics are encoded in a geomet- 
ric data structure called window  and propagated from the source 
over the mesh surface. To improve its performance, windows are 
sorted by a priority queue and propagated according  to their dis- 
tances in a continuous-Dijkstra  style. During propagation, effec- 
tive rules are applied to remove the redundant windows that can- 
not define  geodesics, e.g. the window pruning rule [QHY∗16]. 

 Among these algorithms,  the ICH algorithm [XW09], the FWP- 
CH algorithm [XWL∗15] and the VTP algorithm [QHY∗16] aim 
to compute geodesic distances of vertices. Thus, propagated win- 
dows are not stored on edges in these algorithms.  On the other 
hand, the MMP algorithm [SSK∗05] and the FWP-MMP algo- 
rithm [XWL∗15] retain all propagated windows on edges and trim 
them into non-overlapping  ones. Hence, the geodesic distance of a 
point within one triangle can be computed. 

Voronoi Diagram Construction. The construction of Voronoi di- 
agrams is studied in various metric spaces like Euclidean  space 
[CM07, HR08] and Non-Euclidean  spaces, e.g. spheres [NLC02], 
hyperbolic spaces [OT95], and Riemannian manifolds [OI03]. Re- 
fer to [Aur91] for a detailed survey. 

In computer graphics, geodesic-metric-based Voronoi  diagrams 
usually lie on top of triangular  meshes. Kimmel and Sethian pro- 
posed the fast marching method [KS98] to compute such Voronoi 
diagrams [KS99]. However, since it is based on PDE, potentially 
large errors may occur on bad triangulated  meshes. To compute 
Voronoi diagrams accurately, Liu et al. [LCT11] used the MMP al- 
gorithm for exact geodesic distance computation. Their method is 
extended by [XLS∗14] to compute polyline-sourced Voronoi dia- 
grams. 

3. Redundant Window Removal (RWR) 
 

Since the boundaries of Voronoi cells only cross a minority of the 
meshes’ triangles, most of the windows  stored on edges are redun- 
dant. Thus, this section aims to remove such windows  which oc- 
cupy a large amount of memory during the Voronoi diagram con- 
struction. 
 
 
3.1. Preliminaries 
 

For a triangular  mesh M, its Voronoi diagram is a set of Voronoi 
cells partitioning M. As Fig. 2 shows, the boundaries separating 
Voronoi  cells are closed curves spread over a small number of tri- 
angles. The definitions of Voronoi cells and their boundaries are 
presented as follows: 
 

 
 
 
Figure 2: Voronoi diagram on the Buste model (3K faces). Left: 
Voronoi diagram on the rendered model. Right: Voronoi diagram on 
the wireframe model. The green points are sources. The red curves 
are the boundaries of Voronoi cells. 
 
 
Voronoi Cell Definition [LCT11]. For a given set of source points 
s0 , s1 , ..., sn  on mesh M, let Dsi ( p) be the geodesic distance from 
source si  to point p on M. Consequently, the Voronoi cell (VC) of 
each source point is defined as: 

V C(si ) = {p|Dsi ( p) ≤ Ds j ( p), i /= j, p ∈ M} 
 
Voronoi Boundary Definition. With the Voronoi cell definition 
above, the boundaries of Voronoi cells are formed by the collec- 
tion of points q satisfying: 

∃i, j and ∀k such that Dsi (q) = Ds j (q) ≤ Dsk (q), i /= j /= k   
(3.1) 

 
In this paper, geodesics on edges are encoded in “windows”, 

which are used  as  the primitives  for wavefront  propagation in 
the state-of-the-art  exact geodesic algorithms  [SSK∗05, XW09, 
XWL∗15, QHY∗16]. The definition of a window is presented  as 
follows: 
 
Window Definition. As Fig. 3 shows,  a window w is located on 
edge AB, all the geodesic paths in w are from the same source si or 
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tion points. That is, a valid triangle contains windows propagated 
from different sources. Otherwise, this triangle is invalid. In terms 
of windows, the redundant primitives on a mesh are defined as be- 
low. 
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�  �  •  Redundant window. A window is redundant if it resides on a 
redundant edge. 

𝑑0  𝑎0 
𝑤

 
��1  ��1      

�

 
tion of the window structure. 

 
 
 

the same triangle strip. Therefore, w is 
a1 p d0 d1 σ si ), where ∆ABC  stands 

AB is the edge where w resides. Two 
1 , mark the two endpoints of w, which 
window w is created by the source ver- 
hich must be a saddle vertex. Here, p 
the pseudo source on the plane deter- 
are the distances from a0 a1 to p re- 

eodesic distance from the pseudo source 
 
 
nition. As Fig. 4 shows, suppose q is the 

and a Voronoi boundary. Then, q must 
and is shared by two adjacent windows 

rent sources respectively. The triangles 
oundaries always contain such intersec- 

 
 
 

��𝑗 

In other words, the geodesic distances of points in some inactive 
region have already determined. To depict the inactive region, it 
is necessary to first briefly address the monotonicity of window 

𝑞  propagations.

 

𝑠
 

etween mesh edges and 
cell (in blue) is from 

rom source s j . The red 
m. Point q is the inter- 
nd s j  respectively that 

wo configurations of the 
 

 

puted geodesics, the re- 

undant if all the windows 
urce. 
nt if both adjacent trian- 

95 
 
 
 
��𝑖 

𝜎
 

𝑝 
 
 

Figure 3: Illustra 
 
 
 

pseudo-source p and share 
defined  as w = (∆ABC, a0 ,   ,  ,   ,   ,  , 
for the triangle it enters and 
scalar parameters, a0 and a 
lies on the edge AB. Every 
tex si  or a pseudo source, w 
represents the projection  of 
mined by ∆ABC, and d0 , d1 , 
spectively. σ denotes the g 
to the source vertex si . 

 

Redundant Window Defi 
intersection point of an edge 
satisfy the condition Eq.3.1 
originating from two diffe 
occupied by the Voronoi b 

��� 𝑠� 
Figure 5: Illustration of redundant primitives, including redundant 
triangles (yellow) and redundant edges (green). 
 
 
 
3.2. Redundant Windows Removal (RWR) 
 

Definition  3.1 can be directly used to identify redundant windows 
after the termination of geodesic computation  on a mesh. However, 
too much memory have been consumed. To avoid it, the redundant 
windows  must be identified  and removed as early as possible dur- 
ing the geodesic computation. To this end, we define the inactive 
region as follows: 
 

Definition 3.2 An inactive region is a region behind the geodesic 
wavefront, in which all the windows will be no longer updated. 
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Definition  3.1 Given a mesh M with com 
dundant primitives on M are (Fig. 5): 

•  Redundant triangle. A triangle is red 
on its three edges are from the same so 

•  Redundant  edge. An edge is redunda 
gles are redundant triangles. 

Figure 6: Illustration of the monotonicity for window propaga- 
tions. Point r (blue) resides in the window w  propagated from w, 
segment pr intersects edge AB at point q (purple). 
 
 
Monotonicity. Mitchell et al. [MMP87] proposed the “continuous 
Dijkstra” technique to organize geodesic wavefront  propagation 
from near to far monotonically.  Herein, the wavefront consists of 
all the windows to be propagated and these windows  are managed 
by a priority queue. In the priority queue, the priority of a window 
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organized  as the wavefront and propagated from near to far. Let wn 
be the nearest window  on the wavefront.  It can be inferred with the 
monotonicity  that the geodesic distance of a point p is determined 
if it is shorter than dmin (wn ). To apply this to forming the inac- 
tive region, the upper bound of points’ distances within a triangle 
is estimated  as dmin ( f ) +  emax  , where dmin ( f ) is the minimum 
distance of face  f , emax is f ’s longest edge. Then, all the triangles 
f satisfying dmin ( f ) +  emax  ≤ dmin (wn ) form the inactive region 
(see Fig. 7). This process is summarized as Proposition  3.1 and its 
proof is shown in the Appendix. 
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time with geodesic wavefront propagations. Thus, the memory cost 
is effectively reduced. 
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w is defined  as −dmin (w), i.e. the negative minimum  distance of a 
window. As Fig. 6 shows, if w is a child window  propagated from 
w, we have: 

dmin (w ) = min (σ +  pr ) ≥ min (σ +  pq ) ≥ dmin (w) 

That is, the minimum  distances of windows popped from the prior- 
ity queue are monotonously increasing. 

 

Inactive Region Formation. To compute geodesics, windows  are 

Procedure 1 Redundant Windows Removal (RWR) 
Input:  f - Face; 

d - Distance of the nearest window  on the wavefront; 
Output: f  - The face after redundancy removal; 
1: procedure RWR( f , d ) 
2: Let emax be the longest edge of f ; 
3: if dmin ( f ) +  emax   ≤ d then 
4: Check f ’s redundancy; 
5: if f is redundant then 
6: for each edge ei ∈ f do 
7: Let fi be the face sharing edge ei with f ; 
8: if fi is redundant then 
9: Empty the windows on ei ; 

10: end if 
11: end for 
12: end if 
13: end if 
14: end procedure 

 
 
 

Wavefront 
 
 

Inactive Region 
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Inactive Region 

 
 
Voronoi diagram construction: with and without RWR. The tests 
are performed on ten models selected from the model set. 
 

Fig. 8 shows the results on two models (Armadillo and Asian 
Dragon) and the rest of the results have been included  in the sup- 
plementary materials. It can be seen that applying RWR dramat- 
ically reduces the memory cost of Voronoi diagram construction. 
Specifically, methods without RWR ( e.g. [LCT11]) store all prop- 

Figure 7: Illustration of an inactive region. Left: the segments in 
red denote the propagation wavefront w f and the green shadowed 
area is the Inactive Region. Right: dmin ( f ) is the length of the or- 
ange path, emax is the longest edge of face f , dmin (wn ) is the length 
of the blue path. 

agated windows  on edges of the mesh and their memory costs are 
cumulative. On the contrary, RWR removes redundant windows in 
 
 
 

With RWR  Without RWR  With RWR  Without RWR 
 

Proposition 3.1 The inactive region is formed by all triangles sat- 
isfying dmin ( f ) +  emax   ≤ dmin (wn ) and none of the windows in 
it can be updated by later window propagations. 
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Proof See Appendix B. Nearest Distance d (w ) Nearest Distance d (w ) min     n min      n 

Redundant Windows Removal (RWR) Redundant windows al- 
ways appear within inactive regions. Thus, RWR works on inactive 

Armadillo (F: 345K) Asian Dragon (F: 1.4M) 

regions. Let f be a redundant triangle for removal, d = dmin (wn ) be 
the distance of the nearest window on the propagation wavefront. 
Then, RWR is performed in two steps: 

 

Step 1. Judge if f is in the inactive region with Proposition 3.1. If 
so, continue to Step 2; else, finish. 
Step 2. Check  f ’s redundancy with Definition 3.1. If f is redundant, 
also check if its edges are redundant and remove all windows on the 
redundant edges. 

 

This process is summarized in Procedure 1. 
 
 

3.3. Performance Verification 
 

To verify that the proposed RWR procedure effectively reduces 
memory cost, this section compares memory  costs against near- 
est distance dmin (wn ) of the wavefront  between two scenarios of 

 

Figure 8: Performance verification  on RWR. The x-axis represents 
the distance of the nearest window on the wavefront during propa- 
gation, i.e. dmin (wn ). The y-axis represents real-time memory cost 
during propagation. 
 
 
 
4. Applying RWR in Geodesic Computation 
 

To construct geodesic-metric-based Voronoi  diagrams, we propose 
the window-VTP algorithm by revising the original VTP algorithm 
[QHY∗16]. The overall workflow is shown in Fig. 9. Our algorithm 
is essentially a multi-source  geodesic algorithm  and takes triangles 
as the primitive for distance propagation. For each source, all vis- 
ited triangles form its own traversed area. We define the boundary 
of the traversed area as the propagation  wavefront. 
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tex is involved in Q in terms of the propagation distance of the 
wavefront. When a vertex is popped from the priority queue Q, the 

be the triangles satisfying Proposition 3.1. Then, I is expanded 
by involving ∆I in I. When a triangle  is added into I, the win- 
dows on it are removed by performing procedure RW R(). 
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the unvisited triangles in v’s 1-ring neighbourhood. Then, R is 
expanded by involving ∆R into R, and the wavefront  is also up- 
dated accordingly. Then, the windows on the previous wavefront 
(e.g. vE and vB in Fig. 11) are propagated through ∆R and R ei- 
ther till they reach the wavefront, or are eliminated during prop- 
agation. To manage windows on the wavefront for the Voronoi 
diagram construction, the propagated windows are trimmed on 
edges using the windows trimming and binary insertion methods 
proposed by the MMP algorithm [SSK∗05]. 

• Expanding Inactive region I. As Fig. 10 (b) shows, the expan- 
sion of I is limited inside R. In the region between I and R, let ∆I 

 
 

Redundant windows removal 
(Expand inactive region I) 

� � � 
 

 
Stop 

 
 

Figure 9: window-VTP algorithm workflow. 
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For simplicity, consider the one source scenario here. Our al 
rithm expands its traversed area R and inactive region I at the sa 
time (Fig. 10). Note that the inactive region I is a proper  subset 
the traversed area R, i.e. I ⊂ R, and the windows  in I will not 
updated. Both R and I are expanded in continuous Dijkstra st 
and gradually involving unvisited triangles abutting the wavefr 
First, the proposed algorithm  creates the initial windows of e 
source within its 1-ring  neighbourhood  and pushes all the adjac 
vertices of each source into a priority queue Q. Note that we o 
define one priority queue Q for all traversed areas since every v 

 
 

Figure 11: Vertex-sorted Triangle Propagation [QHY∗16]. 
 
 

The outline of our algorithm is shown in Algorithm 2. 

Two challenges are rising as below. 

1. How to deal with the collision of the wavefronts? Note that it 
may be a self-intersection  of one wavefront or meeting of two 
wavefronts. 

2. How to define the priorities for triangles and vertices in Qi and 
Q properly (in Step 4, 5)? 
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4.1. Wavefront Collision 
 

Proposition 4.1 The proposed window-VTP  algorithm automati- 
cally handles the wavefront collisions  and requires no extra opera- 
tions. 

As Fig. 12 shows, the propagation wavefront  consists of differ- 
ent parts corresponding to different  sources. When different  parts 
of the wavefront collide with each other, we simply let the win- 
dows propagate through the wavefront and enter the interior of the 

(�) (�)

 

Figure 10: Illustration of the triangle-oriented region expansion 
scheme. (a) Expansion of the traversed area R. (b) Expansion of 
the inactive region I. 

 

 
proposed window-VTP  algorithm performs the following: 
• Expanding traversed area R. As Fig 10 (a) shows, let ∆R be 
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traversed areas. The propagations  of these windows  will stop when 
they reach the updated wavefront  or be eliminated by the retained 
windows on edges in the traversed areas using the windows  trim- 
ming rule [SSK∗05]. Thus, no extra operation is required. For ex- 
ample in Fig. 12, the wavefront collides when ∆ABC is added to 
the traversed areas. Then, the windows  on edges AB, AC, BC are 
propagated into the interior of R1 , R2 and R3 (the dashed arrows in 
Fig. 12). These propagations will stop upon reaching the updated 
wavefront (the bold red, green, blue line segments in Fig. 12) or be 
eliminated  on the interior  edges (the grey line segments in Fig. 12). 
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Figure 12: The collision of the propagation wavefront. The wave- 
front consists of three parts from three different sources, S1 , S2 and 
S3 (red, blue and green line segments). 
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Algorithm 2 window-VTP algorithm 
Input: M - Mesh; 

S - Source set; 
Output: M  - Mesh with sufficient geodesic information  for 

Voronoi diagram constructions; 
1: procedure window-VTP(M, S) 
2:       Step 0. Perform  Initialization. 

• For each source Si , create a single window  for every 
posite edge of Si in its 1-ring neighborhood (bold blue l 
around Si in Fig. 11). 
• Push all adjacent vertices of Si into a priority queue Q 
• Define a priority queue Qi , which is used to organize 
expansion of the inactive regions; 

3:       while !Q.em pty() do 
4:             Step 1. Pop a vertex v from Q; 
5:             Step 2. Update the wavefront  and traversed areas; 
6:             Step 3. Expanding  the traversed areas. 

• Push the windows  on edges of the wavefront inci 
to v into FIFO queue W ; 

7:             while !W.em pty() do 
8:                   • Pop a window  w from W ; 

• Propagate w across a triangle; 
• Retain and trim the propagated windows; 
• Push the propagate windows  into W if they 
vives the trimming and haven’t  reached the wa 
front; 

9:             end while 
10:             Step 4. Expanding  the inactive  regions. 
11:             while !Qi .em pty() do 
12:                   • Let f be Qi . f ront(); 

• Perform RW R() on f to check if f is in the i 
tive regions; If so, remove the redundant wind 
on it; else, break the loop; 

13:             end while 
14:             Step 5. Update vertices’  and triangles’ priorities; 
15: Step 6. Push the faces newly added to the traversed 

eas into Qi ; 
16:       end while 
17: end procedure 

 
 

4.2. Priorities Definition 
 

The key point of performing the procedure RW R() during wave- 
front propagation  is to form the inactive  region,  which resort 
to two priorities: the face’s priority and the vertex’s. Recall that 
the inequality of dmin ( f ) + emax    ≤ dmin (wn ) is used to identify 
whether  a face  f is in the inactive region (Proposition 3.1). In our 
algorithm, the priorities are defined as follows: 

 
Face’s Priority. A face  f ’s priority in the priority queue Qi is de- 
fined as −(dmin ( f ) + emax   ). 

 

Vertex’s Priority. A vertex v’s priority in the priority queue Q is 
defined as the negative minimum  of the current shortest distances 
to v’s incident  edges on the wavefront. For example in Fig. 13, 
−dmin (A) = − min{dmin (AB), dmin (AC)}. In addition, if wn is on 
AB or AC, −dmin (A) = −dmin (wn ). 

Note that the two defined priorities are just the left and right sides 
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Figure 13: Illustration of the vertex’s priority definition. The prop- 
agation wavefront are the black and red line segments. wn is the 
nearest window on the wavefront. 
 
 
 
of inequality dmin ( f ) + emax    ≤ dmin (wn ) (Proposition 3.1), and 
thus they can be directly  used when performing  procedure RW R(). 
 
 
5. Complexity Analysis 
 
This section focuses on the complexity of geodesic computation 
since it is the dominant part of the Voronoi diagram construction 
[LCT11]. 
 

Let n be the number of vertices on a mesh. It is easy to verify that 
the proposed window-VTP algorithm is an improved version of the 
original MMP algorithm [MMP87]. In the worst case, the number 
of windows  generated in the geodesic computation  part is O(n2 ) 
and the time complexity of geodesic computation is O(n2 log n). 
For the redundant windows removal (RWR) part, the checking and 
deletion  processes are performed on each window and thus ac- 
counts for O(n2 ) time. In addition, the expansion of the inactive 
region is triangle-oriented  and thus costs O(n log n) time for O(n) 
triangles. 
 

In summary, the time complexity of window-VTP is bounded by 
O(n2 log n + n2 + n log n) = O(n2 log n). Since the redundant win- 
dows removal process does not consume extra memory,  the space 
complexity of the proposed algorithms is bounded by O(n2 ). 
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10K faces), Dancingchil-        
“Voronoi diagram construction”. 

 
Since the geodesic computation part is the bottleneck of Voronoi 

diagram construction,  a more comprehensive comparison on it is 
performed  as follows. 

 

Performance  Comparison  on Geodesic Computation   To evalu- 
oposed algorithm,  experi-     ate the performance of the geodesic part, three measures are used: 

models. Specifically, the running time, total number of windows  stored after propagation 
et proposed in [QHY∗16],         and peak memory usage. Algorithms in this comparison have been 

ade objects. The resolution        tested on all 55 models in the model set. For better reading experi- 
from 10K to 14M. All the        ence, some of the testing results are shown here and the others are 
Workstation with an Intel         given in the supplementary materials. 
B memory. Unless speci- 
0 vertices  as the sources 
4 shows the constructed 

hes. 
 

 
 
 

CT11], constructing the 
onsists of two stages, 

 
elds on edges of mesh M. 

hich contain Voronoi cells’ 
econstruct the boundaries 
ections between them and 

 
The overall performance of the proposed algorithm is evaluated 

by two measures on the two stages: running time and peak mem- 
ory usage respectively.  As Table 1 shows, the geodesic computa- 
tion part consumes the majority of time and memory in both Liu 
et al.’s ( [LCT11]) method and ours. However, when replacing the 
MMP algorithm  used in [LCT11] by the proposed window-VTP al- 
gorithm for geodesic computation, the Voronoi diagram construc- 
tion runs 3-8 times faster and uses 10-70 times less memory. 

 
 

Model  Performance   Liu et al. (2011)  Ours  Ratio 
Horse 

(F: 96K) 
Bunny 

(F: 144K) 
Igea 

(F: 268K) 
Armadillo 
(F: 345K) 

Pulley 
(F: 392K) 

Rocker arm 
(F: 482K) 

Asian dragon 

Time(s)  1.966 + 0.015  0.66 + 0.015     2.93 
Peak memory(MB)  109.40 + 0.035  9.98 + 0.035    10.93 

Time(s)  3.637 + 0.028  1.07 + 0.028     3.34 
Peak memory(MB)  187.00 + 0.046  14.86 + 0.046   12.55 

Time(s)  10.916 + 0.048  3.019 + 0.048    3.57 
Peak memory(MB)  478.06 + 0.065  26.50 + 0.065   18.00 

Time(s)  9.863 + 0.046  2.982 + 0.046    3.27 
Peak memory(MB)  440.33 + 0.066  21.09 + 0.066   20.81 

Time(s)  23.917 + 0.115  5.345 + 0.115    4.40 
Peak memory(MB)  792.08 + 0.086  39.69 + 0.086   19.91 

Time(s)  32.012 + 0.091  6.985 + 0.091    4.54 
Peak memory(MB)      1013.34 + 0.099  41.50 + 0.099   24.36 

Time(s)  110.083 + 0.255     20.281 + 0.255   5.37 
(F: 1,400K)   Peak memory(MB)      2770.81 + 0.143  76.75 + 0.144   36.04 
IsidoreHorse Time(s)  89.538 + 0.211  21.229 + 0.211   4.17 
(F: 2,209K)   Peak memory(MB)      2574.06 + 0.189  46.79 + 0.189   54.79 

Happy buddha Time(s)  482.715 + 1.291     58.946 + 1.291   8.04 
(F: 2,583K)   Peak memory(MB)      8218.60 + 0.406     161.98 + 0.406  50.61 

Neptune Time(s)  832.83 + 0.784  96.843 + 0.784   8.54 
(F: 4,008K)   Peak memory(MB)     13070.70 + 0.262    176.30 + 0.262  74.03 

 
 
 

Figure 14: Examples of Voronoi  diagrams  on meshes. The faces of 
the models are: Bunny (5K faces), Cow ( 
dren (20K faces). 

 
 
 

6. Experimental Results 
 

To evaluate the performance of the pr 
ments have been conducted on a variety of 
test models are selected from the model s 
including  sculptures, animals and manm 
of these models (number of faces) ranges 
algorithms  are tested using a HP Z420 
Xeon E5-1650 3.20GHz CPU and 32G 
fied, the experiments randomly  select 3 
on meshes, as shown  in [LCT11]. Fig. 1 
Voronoi diagrams on some example mes 

 
 

6.1. Comparison with [LCT11] 
 

Overall Performance According to [L 
geodesic-metric-based Voronoi  diagram c 

• Stage 1. Compute geodesic distance fi 
• Stage 2. Extract the valid triangles w 

boundaries. March them to track and r 
of Voronoi cells’ by linking the inters 
edges of M. 

Table 1: Performance comparison with [LCT11]. The results are 
shown in an addition manner as: “geodesic computation” + 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 MMP vs. window-VTP FWP-MMP vs. window-VTP 

Time 3.98/1.55 1.21/0.18 
# windows stored 48.96/38.98 48.96/38.99 

Peak Memory 21.24/15.16 21.24/15.16 
 
Table 2: The mean and standard deviation of the performance ra- 
tios between other algorithms  and the proposed window-VTP  al- 
gorithm on running time, the number of windows stored and peak 
memory usage. The table value is shown in "mean / standard devi- 
ation" format. 
 
 

The mean and standard deviation of performance ratios are cal- 
culated between MMP, FWP-MMP  (the latest implementation of 
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tation of geodesics, whilst not sacrificing  the speed. For example, 
it uses 95.29% less memory than FWP-MMP  while still being 1.2 
times as fast. Detailed results on 5 representative testing models are 
shown in Table 3. 

range from 1 to 1000. Then, the ratios between the running time, 
peak memory of FWP-MMP based Voronoi diagram construction 
algorithm and that of ours on all source sets are calculated.  The ex- 
periments are designed to show how the ratios change with chang- 
ing number of sources. 

Performance Profiling This section profiles the running time of 
different components in the Voronoi diagram construction, show- 
ing how it is accelerated. As proposed in [LCT11], the Voronoi di- 

Model Performance Algorithms 
MMP FWP-MMP window-VTP 

Bunny 
(F:144K) 

Time(s) 3.637 1.27 1.07 
# windows stored 2,451,104 2,451,105 85,959 

Peak Memory(MB) 187.00 187.00 14.86 

Rocker Arm 
(F:482K) 

Time(s) 32.012 9.088 6.985 
# windows stored 13,282,080 13,282,139 271,040 

Peak Memory(MB) 1013.34 1013.35 41.50 
Asian 

Dragon 
(F:1,400K) 

Time(s) 110.083 28.247 20.281 
# windows stored 36,317,620 36,317,847 346,142 

Peak Memory(MB) 2770.81 2770.83 76.75 

Neptune 
(F:4,008K) 

Time(s) 832.83 173.055 96.843 
# windows stored 171,319,703 171,374,203 857,068 

Peak Memory(MB) 13070.70 13074.80 176.30 

Lucy 
(F:14,464K) 

Time(s)  
Out of memory 

 
Out of memory 

806.118 
# windows stored 12,071,796 

Peak Memory(MB) 921.005 
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the MMP algorithm [XWL∗15]) and the proposed window-VTP 
algorithm. The details are shown in Table 2. It can be seen that 
window-VTP on average runs 4 times  as fast as MMP and com- 
parable to FWP-MMP (1.2 times faster). The window-VTP  algo- 
rithm on average uses 95.29% less memory than MMP and FWP- 
MMP. Furthermore, the window-VTP algorithm stores 97.96% less 
windows than MMP and FWP-MMP  algorithms after propagation, 
which shows that it removes redundant windows effectively.  Note 
that the proposed window-VTP  algorithm is impressive since it re- 
solves the memory bottleneck of Voronoi diagram oriented compu- 

As illustrated in Figure 15, the time ratios increase within the 
range of source number at [1,100] and drop within the range at 
(100,1000]. This inconsistency is caused by RWR and the VTP 
wavefront propagation. When the number of sources increases, 

• RWR  is invoked  less times. This is because the more triangles the 
Voronoi boundary occupies, the fewer the redundant windows. 

• The performance of VTP wavefront  propagation depends on the 
scale of the models, i.e. VTP performs better than the others on 
large scale meshes [QHY∗16]. Herein, the size of Voronoi cells 
becomes smaller when the number of sources increases. VTP 
has to work within each cell, that is, the models’ size becomes 
smaller for VTP. 
The time ratio in Fig. 15 shows that in the range of [1,100], re- 

ducing RWR dominantly  causes the time ratio increasing. In the 
range of (100,1000], the size of Voronoi cells becomes smaller, 
which leads to the performance of VTP decreasing. The low perfor- 
mance of VTP dominantly causes the time ratio decreasing at that 
time. 

However, the memory ratio in Fig. 15 shows that the memory 
cost is close to that of FWP-MMP with an increasing number of 
sources. Nevertheless, the proposed algorithm  still runs faster than 
the FWP-MMP based Voronoi diagram construction algorithm and 
uses more than 3 times less memory for 1000 sources. 

 

 
 
 
 

Table 3: Performance comparison between MMP, FWP-MMP and 
ours on five representative models. 

 
 

Number of Sources This section studies how the proposed algo- 
rithm performs with varying number of sources. First, three test 
models (Maxplanck, Angel, RedCircularBox) are chosen. For each 
model,  eleven sets of sources are chosen randomly  whose sizes 

Voronoi diagram construction 
Window management 
Window redundancy reduction 
Window propagation 
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Liu et al. 
(2011) 
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Version 

Ours Liu et al. 
(2011) 
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Version 

Ours 

Armadillo (F: 345K) Asian Dragon (F: 1.4M) 
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Figure 16: Comparison of running times of four common compo- 
nents in Voronoi diagram construction on two models. The compar- 
ison is performed on three versions of the solution: (1) the origi- 
nal method in [LCT11]; (2) the FWP-MMP version which replaces 
the MMP algorithm  used in [LCT11] with the FWP-MMP algo- 
rithm [XWL∗15]; (3) Our version which replaces the MMP algo- 
rithm used in [LCT11] with the proposed window-VTP algorithm. 
 

 
agram construction contains two components: the computation of 
geodesics and the construction  of a Voronoi  diagram. In addition, 
the geodesic computation component can be further subdivided into 
three components [QHY∗16]: 

Figure 15: Performance comparison  between FWP-MMP  based 
Voronoi diagram construction algorithm and ours on the number of 
sources. The x-axis represents the number of sources in logarithmic 
scale, and the y-axis represents the performance (time, memory) 
ratio. 

• Window propagation This component performs window prop- 
agations across the faces of a mesh. 

• Window redundancy reduction  This component identifies the 
redundant windows  and removes them during propagation, in- 
cluding the window trimming and RWR processes. 
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sen. Let each of them have six different resolutions through subdi- 
vision. The number of faces ranges from 0.1M to 2M in these subdi- 
vided models. For each model, its ratios between the running time, 

dow redundancy re-         with 800K faces and Hand with 200K faces) are created respec- 
 

roposed algorithm, tively. Here, g(M) = Σ f ∈F gt ( f )  is also used to measure the degree 
ed to propagate the  |F | PH 
nes (RWR) accord-        of anisotropy of a mesh M, where g ( f ) = 2   3S and P, H , S are the √ 

f half-perimeter,  longest edge length and area of respectively. All by sorting vertices 
he MMP and FWP- these meshes with varied degrees of anisotropy are generated using 

roposed algorithm the method in [ZGW∗13]. 
ad by sorting O(n) 
the priority queue, 
sh. 

mponents in all par- 
selected from the 

 

 
rmadillo and Asian 
uded in the supple- 
omputation compo- 
uction is extremely 

utation components, 
ly reduces the win- 
onstruction by sort- 
than windows. Fur- 

dded in our method, 
eduction component 

small compared to 
indows trimming). 

and Knot) are cho- 
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Figure 18: Comparison of robustness against anisotropic triangu- 
lation (Time). The x-axis represents the degree of anisotropy, and 
the y-axis represents running time. 
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• Window management  This component  manages the window 

propagations in order, which makes the win 
 duction component more effective. In the p 

the VTP framework [QHY∗16] is employ 
window lists and remove the redundant o 
ing to their distances, which is implemented 
and faces in priority queues. Compared to t 
MMP [SSK∗05, XWL∗15] algorithms, the p 
achieves low window management overhe 

of anisotropy but a fixed resolution on two testing models (Fertility 

vertices/faces instead of O(n2 ) windows in 
where n is the number of vertices on the me 

 

The running times of these four individual co 
ticipating algorithms are profiled on ten models 
model set. 

Liu et al. (2011) 
Ours 
12 
10 
8 
6 
4 
2 

FWP-MMP version Liu et al. (2011)     FWP-MMP version 
Ours 
120 
100 
80 
60 
40 
20 

0
 

Fig. 16 shows the results on two models, A 
Dragon (the rest of the results have been incl 
mentary materials). Compared to the geodesic c 
nents, the time cost of Voronoi diagram constr 
small and can be neglected. For geodesic comp 
it can be seen that the VTP framework effective 
dow management cost of the Voronoi diagram c 
ing vertices or faces in the priority queue rather 
thermore, although an extra RWR process is a 
the running time of the window redundancy r 
is not dramatically  increased as its time cost is 
other computations (e.g. binary insertion and w 

Scalability  First, three test models (Cow, Shark 
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Figure 19: Comparison of robustness against anisotropic triangu- 
lation (Memory).  The x-axis represents the degree of anisotropy, 
and the y-axis represents peak memory. 

0.00  1.00  2.00 
#Faces (millions) 

0.00  
#Fac 

The curves in Fig. 18 and Fig. 19 show how the running times 
and peak memories  change with increasing  anisotropy  (g) re- 
spectively. Note that the peak memories  of Liu et al.’s  method 
( [LCT11]) and its FWP-MMP based version are almost the same 

Figure 17: Comparison of scalability against 
Voronoi diagram construction algorithm. The x 
mesh resolution, and the y-axis represents ru 
memory cost ratio. 

 
 

peak memory of FWP-MMP based Voronoi  di 
algorithm and that of ours on all six resolutions 
experiments are designed to show how the rati 
changing resolution. As illustrated in Fig. 17, b 
and memory cost ratios increase with an incre 
shown, the rate of increase in performance for t 
rithm is proportional to the size of the models. 

Robustness  This section further validates 
algorithm is robust to mesh triangulation  q 
[XWL∗15], a sequence  of meshes (eight) with 

since both of them store all propagated windows on edges. The pro- 
posed window-VTP algorithm is the most robust among all algo- 
rithms since its running time and peak memory does not obviously 
increase when the input mesh has a much larger anisotropy. 
 
6.2. Comparison with [XLS∗14] 
 

As Xu et al. have used the MMP algorithm to compute geodesics 
[XLS∗14], its performance has already been compared in the pre- 
ceding section and thus not discussed here. 
 

Xu et al. proposed another method to reduce the memory cost 
of Voronoi diagram construction  rather than the proposed RWR 
technique [XLS∗14]. The main deficiency in their method is the 
inefficiency of the redundancy check. In their method, the redun- 
dancy check is performed on all unlabelled triangles rather than 
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m outper- 

 
 
 
 
while the 

original 
he perfor- 

 
 
rformance 

to solve 
rst vertex 

 

Model 
 

Performance 
 

VTP 
 

Ours 

Horse Time(s) 0.64 1.13 
(F: 96K) Peak memory(MB) 1.25 5.67 
Bunny Time(s) 0.88 1.50 

(F: 144K) Peak memory(MB) 1.08 4.56 
Igea Time(s) 2.04 4.11 

(F: 268K) Peak memory(MB) 2.00 9.10 
Armadillo Time(s) 1.68 2.68 
(F: 345K) Peak memory(MB) 1.31 5.62 

Pulley Time(s) 3.97 8.71 
(F: 392K) Peak memory(MB) 4.53 18.58 

Rocker arm Time(s) 4.26 9.32 
(F: 482K) Peak memory(MB) 3.26 14.32 

Asian dragon Time(s) 9.74 20.95 
(F: 1,400K) Peak memory(MB) 3.72 16.77 
IsidoreHorse Time(s) 10.41 17.72 
(F: 2,209K) Peak memory(MB) 2.76 12.19 

Happy buddha Time(s) 31.44 68.75 
(F: 2,583K) Peak memory(MB) 8.44 40.46 

Neptune Time(s) 51.62 91.14 
(F: 4,008K) Peak memory(MB) 14.42 37.26 

 

Ours 

 

Model  Performance   window-VTP + Xu et al. (2014) 
(𝐜 = ��) 

Horse 
(F: 96K) 
Bunny 

(F: 144K) 

Igea 
(F: 268K) 
Armadillo 
(F: 345K) 

Pulley 
(F: 392K) 

Rocker arm 
(F: 482K) 

Asian dragon 
(F: 1,400K) 
IsidoreHorse 
(F: 2,209K) 

Happy buddha 
(F: 2,583K) 

Neptune 
(F: 4,008K) 

Time(s)  1.16  0.68 
Peak memory(MB)  13.38  10.01 

Time(s)  1.93  1.10 
Peak memory(MB)  19.95  14.90 

Time(s)  5.42  3.07 
Peak memory(MB)  35.97  26.56 

Time(s)  5.04  3.03 
Peak memory(MB)  33.75  21.16 

Time(s)  12.60  5.46 
Peak memory(MB)  58.17  39.78 

Time(s)  12.41  7.08 
Peak memory(MB)  63.53  41.60 

Time(s)  42.17  20.54 
Peak memory(MB)  132.99  76.90 

Time(s)  29.73  21.51 
Peak memory(MB)  128.62  46.98 

Time(s)  160.47  60.24 
Peak memory(MB)  493.70  162.39 

Time(s)  195.45  97.63 
Peak memory(MB)  514.98  176.56 

 
Table 4: Performance comparison with [XLS∗14]. 

 
 
 

just the ones in the inactive region (Proposition 3.1). Thus, win- 
dows on many triangles are repeatedly checked since they are not 
inactive and will be updated by later propagated windows. In addi- 
tion, since the cost of their redundancy check is large, performing it 
frequently is time-consuming. Thus, their method suffers from the 
trade-off  between running time and memory-cost. In more details, 
they perform one redundancy check with every cn window prop- 
agations, where n is the face number of the mesh and c is a user- 
defined parameter to balance the performance. A smaller c means 
that the redundancy check is performed more frequently, reducing 
memory cost but sacrificing the running time. 

 

On the contrary, the proposed RWR technique performs the re- 
dundancy check efficiently  in the inactive region every t 
tex is popped from the priority queue. To make a fair co 
we compare our algorithm with an improved version of [ 
which uses the proposed window-VTP  for geodesic co 
but still employs their redundancy reduction method rather 
RWR (Table 4). In the experiments, we set the parameter 
a balanced performance.  It can be seen that our algorith 
forms [XLS∗14] in both running time and peak memory. 

 
6.3. Comparison with [QHY∗16] 

 

The original VTP algorithm  does not retain windows, 
revised version keeps partial windows. Compared to the 
VTP, this experiment shows how the change influences t 
mance. 

As [QHY∗16], in this experiment,  we compare the pe 
using the proposed window-VTP  with the original VTP 
the single-source discrete geodesic problem, with the fi 
set as the source on the mesh. As Table 5 shows, our method runs 
approximately two times slower than VTP. The main reason is that 
the window-VTP  has to strictly sort windows on edges by binary 
insertion. However, Voronoi diagrams are usually  more sparse than 
meshes and there is no distinct decline in performance. 

Table 5: Performance comparison with VTP [QHY∗16]. 
 
 
 
6.4. Application to Remeshing 
 

Due to that the Delaunay triangulation  of a point set S is the dual 
of its Voronoi diagram, the proposed algorithm  can be applied to 
remesh the dense models  reconstructed  from range data. In this 
context, the number of sources is usually fairly large and reaches 
the order of hundreds. Fig. 20 shows the remeshing result of the 
Neptune model with 4K randomly selected sources. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Illustration of remeshing with the proposed algorithm. 
 
 

To show the performance of our method, we compare it with the 
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 FWP-MMP version of [LCT11] on six dense models selected from 

the dataset of [QHY∗16], whose numbers of faces range from 1.4M 
to 6.4M. For each model, we randomly  select 2K sources if its num- 
ber of faces is less than 2M; otherwise, 4K sources are selected. As 
Table 6 shows, our method runs faster and uses much less memory 
than the FWP-MMP  version of [LCT11] in the remeshing problem. 

 
 

# Samples: 2000 
 

Model  P erformance  F WP-MMP vers ion   Ours 
Asian dragon Time(s) 14.07 11.18 

   (F: 1,400K)       Peak memory(MB)                    863.93                   170.65    
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Vase lion Time(s) 111.381 72.22 

(F: 6,370K) Peak memory(MB) 5567.37 673.80 
 
 

Table 6: Performance comparison with the FWP-MMP  version of 
[LCT11] on remeshing. 

 
 
 

7. Conclusion 
 

In this paper, the RWR procedure is presented to reduce the mem- 
ory cost of constructing the geodesic-metric-based Voronoi dia- 
grams, in which windows on edges are grouped within the inac- 
tive regions so that they can be removed together in time. The pro- 
posed window-VTP  algorithm incorporates the RWR procedure in 
the vertex-oriented wavefront propagation framework. As a result, 
the window-VTP algorithm effectively resolves the memory bottle- 
neck of the Voronoi diagram construction while not sacrificing the 
speed. In terms of experiments, our algorithm runs 3-8 times faster 
than Liu et al.’s method [LCT11], 1.2 times faster than its FWP- 
MMP variant and more importantly  uses 10-70 times less memory 
than both of them. 

In addition,  the proposed method may be extended to compute 
other distances (e.g. anisotropic  geodesic distances) on surfaces. 
All  the Dijkstra-like approaches depend on the monotonicity of 
distance propagation.  Thus, if the monotonicity is required, our 
method can work well. 
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triangle. Then, l ≤ max(a b c). 
Proof As Fig. 21 shows, let pq be a line segment in ∆DE F that 
pq  = l. If either of p and q is not on the edges of ∆DE F , ex- 

tend pq as GH so that both its endpoints are on the edges and 
pq  ≤  GH . Fix one endpoint of GH , e.g. G. It is known that the 

Pythagoras’s theorem that  GH ≤  DF  : 

GH  2 =  GI 2 + F I  2 ≤  DI  2 + F I  2 =  DF  2 (A.1) 

Summarizing the above inequalities, we have l =  pq  ≤  GH  ≤ 
GH ≤  DF   that  DF   is an edge of the triangle. Thus, pq 

cannot be longer than the largest edge of ∆DE F . 
 

 
Appendix B: Proof of Proposition 3.1 

 
Appendix A: Lemma A.1 

 

Lemma A.1 Given a triangle  whose three edges’ lengths are a, 
b and c respectively. Let l be the length of a line segment in the 
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Figure 21: Illustration of Lemma A.1. 

 
 

distance function  over a line segment from G reaches extrema at the 
endpoints of the triangle edges, i.e. triangle vertices. Put H at any of 
such endpoints (e.g. F in Fig. 21) as H  and thus GH  ≤  GH  . 
Let I be a point on DE and F I⊥DE . Consider vertex D ∈ {D, E } 
that D and G are on the same side of F I. It can be derived from the 

Knowing that f satisfies dmin ( f ) + emax    ≤ dmin (wn ), then 

d(r) ≤ dmin (wn ). 

Thus, d(r) cannot be updated by wn since wn cannot provide  a 
shorter distance to r. 
Let wo be any other window on the propagation wavefront  that 
dmin (wn ) ≤ dmin (wo ). Then, according to the monotonicity of win- 
dow propagations, 

dmin (wn ) ≤ dmin (wn ) 

dmin (wo ) ≤ dmin (wo ) 
 

where wn and wo are child windows  propagated from wn and wo 
respectively. Then, it can be derived that, 

d(r) ≤ dmin (wn ) ≤ dmin (wn ) 

d(r) ≤ dmin (wn ) ≤ dmin (wo ) ≤ dmin (wo ) 

Thus, d(r) cannot be updated by all later window propagations. 
Since r is arbitrarily  selected, all windows on f ’s edges will not be 
updated. 
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Figure 22: Illustration of Proposition 3.1. 
 

Proof Let f be a face satisfying dmin ( f ) + emax    ≤ dmin (wn ) and 
q is the point determining dmin ( f ), i.e. dmin ( f ) = δ + pq  = d(q) 
(Fig. 22). 
Let r be an arbitrary  point in any window on the edges of f , con- 
struct a path to r by linking q and r with a line segment. Then, the 
geodesic distance d(r) of r must not be larger than the length of the 
constructed path, i.e. d(r) ≤ dmin ( f ) + qr . Since qr  ≤  emax 
(Lemma A.1), 

d(r) ≤ dmin ( f ) + qr 

≤ dmin ( f ) + emax 


