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Abstract

Pitch is a perceptual correlate of sound periodicity elicited by vibrating bodies; it plays a
crucial role in music and speech. Although perceptual phenomenology of pitch has been
studied for centuries, a detailed understanding of its underlying neural mechanisms is still
lacking. Early theories suggesting that pitch is decoded in the peripheral auditory sys-
tem fail to explain the perception of complex stimuli. More recent mechanistic models,
focused on how subcortical structures process periodic discharges of the auditory nerve ac-
tivity, are unable to explain fully key aspects of the processing dynamics observed during
electrophysiological recordings. In this thesis, we propose a novel theory describing how
subcortical representations of pitch-related information are integrated in cortex and how
this integratory process gives rise to the dynamics observed in magnetoencephalographic
(MEG) experimental recordings.

Auditory evoked fields recorded with MEG reveal a systematic deflection around 100 ms
after stimulus’ onset known as the N100m. This deflection consists of several components
reflecting the onset of different perceptual dimensions of auditory stimuli such as pitch,
timbre and loudness. The exact latency of the component elicited by pitch onset, known
as the pitch onset response (POR), shows a strong linear relationship with the pitch of
the stimulus. Our theory links the POR latency with processing time and explains, in a
quantitative manner, the substrate of the relationship between processing time and pitch.

Cortical integration is described using a model of neural ensembles located in two adja-
cent areas, putatively located along the lateral portion of Heschl’s Gyrus in human auditory
cortex. Cortical areas are hierarchically structured and communicate with each other in a
top-down fashion. Pitch processing is modelled as a multi-attractor system whose dynamics
are driven by subcortical input. After tone onset, the system evolves from an initial equi-
librium position to a new equilibrium state that represents the pitch elicited by the tone.
A computational implementation of the model shows that: 1) the transient dynamics be-
tween equilibrium points explains the POR; 2) the latency of the transient is directly linked
with the time required to reach the new equilibrium state; and 3) that such processing time
depends linearly on the pitch of the stimuli.

Our theory also addresses the problem of how tones with several simultaneous pitch
values are processed in cortex. In Western music, dyads comprising tones with different
pitch values are judged as more consonant or more dissonant depending on the ratio of the
periods of the involved sounds. The latency of the POR evoked by such dyads also presents
a strong correlation with the perceived consonance: dissonant dyads generate later PORs
than consonant dyads. Our theory of pitch processing describes consonance (dissonance) as a
direct effect of harmonic collaboration (competition) during the cortical integration process:
the cortical model shows that harmonic collaboration facilitates convergence, explaining
why dissonant dyads require longer processing times and evoke later PORs than consonant
dyads.
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Chapter 1

Introduction

Human sensory systems generate perceptual experiences by processing physical properties
of the surrounding environment. For instance, the visual sensory system enables the human
visual cortex to perceive brightness and colour, two perceptual entities respectively corre-
lated with two physical properties of the incident electromagnetic radiation measured by the
photoreceptors in the retina: amplitude and frequency [3].

Auditory entities like speech or music present complex structures that, like the com-
ponents of visual stimuli, can be described as a conjunction of the physical properties of
the auditory stimuli. Sound sensations correlate to the movement induced in the tympanic
membrane by incident oscillatory variations in the air pressure originated in the vibrating
body of the source of the sound [3]. As in the visual system, auditory sensations are char-
acterised by different quantities that reflect fundamental properties of its physical sources.
Loudness, like brightness, correlates with the amplitude of the oscillations [4]; pitch, like
colour, correlates with its frequency [4].

Understanding the physiological mechanisms underlying perception is fundamental to
comprehend how humans form an image of the world. Physiological studies investigating
the peripheral organs responsible for gathering sensory information such as the eye, the
ear, or the cochlea, revealed that key aspects of the sensory input are computed in the
periphery; for instance, a large number of retinal cells are tuned to respond preferably to
different electromagnetic wavelengths, effectively decoding colours from the incident light [3].

Similarly, the average firing rate of the hair cells in the cochlea is directly correlated with
perceived loudness [5]. However, as we will discuss during this thesis, the computation per-
formed by peripheral organs is not sufficient in order to explain how pitch is extracted from
the oscillations of the tympanic membrane, indicating that the brain plays a fundamental
role in pitch processing [5].

Pitch perception is indeed one of the fundamental open problems in auditory neuroscience
[6]. Understanding pitch is essential to explain higher cognitive phenomena such as music
or speech perception. Moreover, several auditory disorders like tinnitus [5] or a large part of
the auditory processing disorder spectrum [7] arise from brain processing dysfunctionalities
that cannot be studied without a comprehensive understanding of how the brain processes
pitch.

This thesis addresses the study of the neural mechanisms underlying pitch perception,
responsible for mapping oscillatory modes in the tympanic membrane into tonal sensations.
We will argue that pitch is not single-handedly decoded in a specific part of the brain, but
that pitch processing is a rather distributed computation implemented across several stages
along the auditory pathway. Specifically, we will show that theories suggesting that pitch is
integrally decoded in subcortical areas are incomplete, and we will introduce a novel theory
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1.1. Contextual framework

Figure 1.1: Representative sound waveforms illustrating the differences between
loudness, pitch, and timbre. In each column, only the target dimension of the stimuli has
been changed; for instance, the two waveforms in the third column show identical amplitude
and repetition period and thus they elicit the same pitch and loudness perception but a
different timbre.

of cortical pitch processing filling important gaps in the existing literature.
Our theory presents a comprehensive explanation of how pitch is processed in the au-

ditory system and accounts, in a quantitative fashion, for electrophysiological observations
that have intrigued auditory neuroscientists for several decades. Moreover, we will argue that
the introduced pitch processing mechanisms can single-handedly provide for a parsimonious
understanding of the origin of the higher order sensations of consonance and dissonance
elicited by dyads comprising two simultaneous pitch values.

Contextual framework

Psychoacoustics

In psychoacoustics, the perception of tones is often considered as the result of combing
three orthogonal components of the auditory sensation: loudness, pitch, and timbre [5]. In
short, loudness is the perceptual correlate of the sound’s waveform mean square amplitude,
although it also depends on duration when the sounds are shorter than 200 ms [8]. Simi-
larly, pitch is the perceptual correlate of the period of the fundamental oscillatory modes
of the sound, if any: sounds whose waveforms present no periodicities at all do not elicit a
pitch sensation [5]. The third dimension, timbre, is the perceptual correlate of the wave-
form’s shape within a repetition period (see Figure 1.1). Timbre plays a crucial role in
speech perception (for instance, vowels are uniquely characterise by their timbre) and in the
identification of musical instruments [9].

In this work, we will use the term single tone1 to describe any sound that can be uniquely
characterised by its loudness, timbre and pitch. Under this definition, a dyad is a complex
stimulus consisting of two simultaneous single tones and a melody is a succession of two or
more single tones.

One of the main challenges in pitch modelling is that timbre and loudness are, up to
certain extent, independent of pitch: very dissimilar waveforms can elicit the exact same
pitch sensation [5]. In other words, the mechanisms underlying pitch perception should be
blind to variations of loudness and timbre. Early studies in pitch perception carried out
by Ohm and Helmholtz identified pitch with peaks in the Fourier spectrum of the sound’s
waveform [4] in a beautiful theory describing pitch as a linear phenomenon. This theory was

1This definition is chosen instead of the common simple tone to avoid a potential source of confusion
with the term pure tone, used by some authors as a synonym of the former.
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Chapter 1. Introduction

a natural evolution of the attributively Pythagorean model associating the pitch elicited by
a vibrating string with the length of the string [10].

Physiological studies at the time discovered that different locations of basilar membrane,
a structure in the cochlea that transforms mechanical vibrational modes into neural im-
pulses, respond exclusively to specific oscillatory frequencies performing a sort of mechani-
cal Fourier transform of the incoming sound waveforms [10]. However, further developments
in psychoacoustics showed that pitch cannot simply explained via linear relationships be-
tween the oscillatory modes present in the stimulus. For instance, vibrating strings like the
Pythagorean monochord are known to display several simultaneous oscillatory modes (elic-
iting several peaks in the Fourier spectra) but generally elicit a single pitch sensation [5].
Even more challenging, synthetic stimuli, such as the iterated rippled noises, elicit a very
clear pitch sensation while presenting uniform Fourier spectra [11,12].

The auditory pathway

Before pitch is processed in the brain, a first analysis of the incoming vibrational waves is
performed by the peripheral auditory system. Peripheral processing can be regarded as a
series of transformations mapping the sound’s waveform into neural activity that propagates
to the brain through the auditory nerve [5]. Neural activity at the auditory nerve is phase-
locked to the sound’s waveform, preserving the periodicities of the original waveform [10,13].

The auditory pathway consists of all the neural areas directly or indirectly connected to
the auditory nerve, comprising regions located in several hierarchical levels of subcortical
and cortical regions [14]. Neural complexes along the auditory pathway are thus respon-
sible for mapping the incoming phase-locked neural activity into a neural representation
encapsulating our perception of pitch.

Subcortical structures present temporal properties that allow the auditory system to
faithfully transmit phase-locked activity [15], whilst cortical regions are characterised by
longer time constants. As a result, electrophysiological recordings reveal that phase-locked
activity over ∼200 Hz is not observed in auditory cortex (AC) [16], indicating that periodic-
ities in the neural activity of the auditory nerve are analysed along the subcortical pathway.
This hypothesis is further supported by several studies identifying different candidate struc-
tures along the subcortical pathway that show selective activation to specific frequencies in
the presence of periodic neural patterns [17,18].

Thus, there seems to be mounting evidence that the analysis of periodicity, the physical
property characterising pitch, is processed subcortically. However, functional data in human
AC suggest that cortical regions play an active role in pitch processing: functional MRI stud-
ies found that only neural activity in AC correlates with the strength of the perceived pitch,
suggesting that pitch salience is processed cortically [19]. Accordingly, several modelling
studies conclude that AC performs some sort of integration of the subcortical processing,
and that the longer time constants characterising cortical processing are crucial to derive a
distinct pitch percept from subcortical representations [20,21]. However, the specific neural
basis of these processes are still unclear.

Cortical pitch processing

Magnetoencephalography (MEG), is a mesoscopic technique that measures the magnetic
field variations elicited by collective post-synaptic potentials in cortical regions with a high
temporal resolution. MEG recordings in human auditory cortex during pitch processing
suggest a linear relationship between processing time and perceived pitch; specifically, time
processing scales with 4T , where T is the characteristic period of the elicited pitch [22,23].
Periodicity detectors in subcortical areas require a whole repetition cycle in order to detect a
given periodicity in the stimulus implying a linear relationship between processing time and
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pitch value, but suggesting a factor 1 rather than 4 in such dependency [17]; such divergence
in processing time seems to indicate that cortex plays an active role in pitch processing.

MEG data successfully captures collective cortical dynamics with a relatively coarse spa-
tial resolution, ignoring possible lower-scale phenomena that might be important to describe
pitch processing [24]. Recordings using local field potentials (LFP), an intracranial version
of electroencephalography (EEG), display a greater signal-to-noise ratio and a higher spatial
resolution than MEG [25]. LFP studies reveal that several subdivisions of AC collaborate
with each other during pitch processing, implying that cortical pitch processing is carried out
by a distributed network of cortical areas within Heschl’s gyrus and planum temporale [26].

fMRI, E/MEG and LFPs describe neural activity in a mesoscopic scale. Higher resolu-
tion methods exploring microscopic neural dynamics require invasive interventions and are
extremely rare in humans. However, several studies have found a certain degree of func-
tional similarities between human AC and the cortical counterparts in other mammals [14],
suggesting that some results from animal research are general enough to be applied in the
human domain. intracranial data in Marmosets [27] indicates that distinct pitch values are
encoded in the activity of groups of at least 10 neurons in cortex, implying that collective
rather than individual neural behaviour is responsible for pitch coding. This result suggests
that the appropriate scale to characterise cortical pitch processing is the mesoscopic scale,
supporting the use of MEG data in our investigation.

Research objectives addressed in this thesis

The main objective of this thesis is to develop a theoretical model describing the neural
mechanisms responsible for cortical pitch processing in human auditory cortex. This model
should be able to explain multiple neuroscientific questions regarding the nature and func-
tioning of auditory cortex, and account for the experimental results shown above. This
general objective can be subdivided in several research objectives that are detailed in the
following paragraphs.

1. Description of the neural representation of pitch along the multiple stages
of the auditory pathway. A neural representation is the specific neural code mapping
a piece of information in a neural complex [28]. For instance, at the very beginning of
the auditory pathway, the spectral properties of the sound relevant for pitch extraction are
encoded in the phase-locked activity of the auditory nerve elicited by the peripheral auditory
system [5].

Hierarchical theories of neural organisation suggest that sensory systems are structured
in a hierarchy of neural levels, each of them responsible for transforming the output of the
previous level into a more abstract representations [29]. The auditory pathway is believed
to follow a hierarchical structure of this kind, comprising multiple stages from the begin-
ning of the auditory nerve up to auditory cortex [14]. Understanding the representation of
pitch at each stage of this hierarchy is an important pre-requisite to reveal the mechanisms
responsible for cortical pitch processing.

2. Elucidation of the neural mesoscopic mechanisms underlying cortical pitch
processing. Following the hierarchical scheme outlined above, we can define cortical pitch
processing as the transformation between the neural representation of pitch in the last sub-
cortical relay in the auditory pathway and the more abstract cortical counterpart. This
question addresses the problem of how neural complexes in cortex perform such transfor-
mations. Based on the hypothesis that pitch processing is a collective phenomenon, we will
approach this problem from a mesoscopic rather than a microscopic scale, describing cortical
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regions as concentrations of populations of neurons and ignoring the dynamics of individual
cells inside each neural ensemble [30].

3. Explanation of how cortical pitch processing gives rise to the observed dy-
namics in MEG recordings. MEG recordings show that regions in human auditory
cortex exhibit specific and stereotypical dynamics during pitch processing. These evoked
fields are elicited by the aggregated dynamics at the population level in cortex [24]. Our
objective is to use our model to understand the origin of the elicited fields, and to use the
experimental data in order to test and validate our model.

In order to solve this problem, we will first study how trends observed in the MEG data
can be generated by the neural populations drawn in the cortical model of our theory. After-
wards, we will try to quantitatively explain relevant properties of the data .Specifically, our
aim is to explain the observed correlation between the latency of MEG transient responses
to pitch onset and perceived pitch.

4. Illustration of the role of the different anatomical regions in human auditory
cortex. The auditory cortex is defined as the set of cortical regions that receive direct input
from subcortical regions of the auditory pathway. Source localisation in MEG data [22] and
LFP studies [26] further identify several parts of AC that selectively activate during pitch
processing. Using our model, we aim to explain the functional structure of those pitch-
related cortical areas and establish their hierarchical organisation; i.e, to study whether the
specific cortical regions belong at the same hierarchical level and, in case a hierarchy exists,
to discern whether the information is simply transmitted from the lower to the higher level
in a bottom-up fashion or whether they also display top-down interactions [31].

5. Extension of the model to consider the processing of sounds eliciting multiple
simultaneous pitch sensations. Single tones with different characteristic pitch values
show complex interactions when processed simultaneously, giving rise to a new perceptual
dimension often described as consonance and dissonance [4]. Our last research question
addresses the origin of such interactions by combining novel experimental data in dyads
with our theory of cortical pitch processing. Our aim is to investigate if pitch processing in
dyads is processed in a linear way; i.e, if it can be described as two parallel, independent
processes. If that is the case, consonance and dissonance perception might be the result of
a later process carried out at a higher level of the auditory pathway. On the contrary, if
singlets interact in a non-linear fashion during pitch processing, it would be interesting to
test if the dissonance and consonance percepts are a consequence of such interaction.

Structure of the thesis

This thesis is structured as follows. Chapter 2 summarises our literature review in auditory
experimental neuroscience providing for context, restrictions, and clues for the development
of the cortical model.

Chapter 3 shows the state of the art in models of pitch processing both in subcortical
and cortical areas. In this chapter, we will argue that auditory cortex plays an essential
role in pitch processing, and that top-down interactions between different cortical areas are
essential to explain perceptual and neuromagnetic results on the processing of complex stim-
uli. Moreover, we will show that previous models of pitch processing were not biophysically
specific enough in order to understand the underlying mechanisms of pitch processing in
auditory cortex.
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1.3. Structure of the thesis

Chapter 4 introduces a general model of pitch processing involving several cortical ar-
eas and describing the hierarchical structure of the pitch-related auditory pathway. The
proposed mechanisms explain the dynamics of crucial components of the evoked fields.

Chapter 5 expands our previous results to the study of dyads and the processing of
consonance and dissonance in human auditory cortex.

Finally, Chapter 6 comprises the concluding remarks, a recapitulation our results, final
conclusions, and the explicit evaluation of the research questions detailed above.
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Chapter 2

The puzzle of auditory process-
ing

State of the art knowledge on auditory processing consists of a collection of psychoacoustic
phenomena, brain-imaging and electrophysiological data, that complement each other re-
vealing key aspects of the mechanisms underlying the phenomenon of pitch. However, the
relationship between neural, anatomical and functional brain-imaging responses and psy-
choacoustics have been puzzling researchers for decades. In this chapter, we will review and
contextualise the most relevant findings in order to establish an experimental framework for
our cortical theory.

Anatomy of the auditory system

The auditory system anatomy is almost identically replicated in right and left hemispheres
[3]. All the structures described in this section are thus implemented twice: mammals
present two peripheral systems, two inferior colliculi, two auditory cortices, etc.; although
lateral specialisation has been found in high-level cognitive processes such as music or speech
perception in cortex [1, 32–35], structures in the subcortical pathway seem to be essentially
symmetric.

Peripheral auditory system

Anatomy of the peripheral system

The peripheral auditory system transforms the mechanical oscillations carrying the sound
frequencies into a neural representation. It consists of three main structures: the outer, the
middle and the inner ear [5]. The most important element in the outer ear is the tympanic
membrane, a thin cone-shaped membrane that oscillates in synchrony with the local pressure
variations carrying the sound’s waveform [5]. Oscillatory modes at the tympanic membrane
are filtered and transmitted by a set of three ossicles located in the middle ear to the oval
window in the cochlea (see Figure 2.1A) [5], that adapt the low impedance of air to the
impedance of the inner fluid in the cochlea, approximately 4000 times higher [36].

Cochlear temporal processing and phase locking

The cochlea is located in the inner ear and presents a spiral-like coiled formation consisting
in two fluid-filled chambers separated by the basilar membrane (BM, see Figure 2.1) [5].
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2.1. Anatomy of the auditory system

Figure 2.1: Schematics of the anatomy of the peripheral auditory system
at different levels of detail. a) Outer, middle, and inner ear, (adapted from [37],
Fig. 1); b) Structure of the cochlea (adapted from an illustration in the public do-
main); c) Detail of the Organ of Corti (adapted from an original illustration by com-
mons.wikimedia.org/wiki/User:Madhero88); d) Detail of the sound propagation along the
cochlea and the basilar membrane (adapted from an illustration in the public domain).

Auditory vibrations are transmitted from the oval window in the outermost part of the
cochlea or base to the basilar membrane through the fluid-filled chambers [5]. The BM is
in contact with the organ of Corti, populated by hair cells that activate in synchrony with
the mechanical movement of the membrane [5]. Hair cells are endowed with a series of
stereocillia whose displacement provokes a short neural pulse known as spike [3].

Stereocillia of different lengths and threshold populate the organ of Corti, ensuring a
dynamic response to the deflections of the BM [3]. Generally, a strong burst of activity
is observed during the instants of maximum depression of the membrane, whilst low levels
of activation are displayed during the remaining of the oscillatory cycle (see Figure 2.2).
Neural activity at this point is thus phase locked to the stimulus’ waveform, preserving
all the spectral information necessary to decode pitch [5]. Moreover, since louder sounds
provoke larger displacements of the BM, hair cells firing rates also reflect the intensity of
the stimulus [5, 38].

Robust phase-locked activity in the mammal auditory nerve has been experimentally
measured up to 3 kHz–6 kHz, depending on the species [13]. Over the phase-locked limit,
neurons are unable to recover from the previous spike before the next phase occurs, which
results in a gradual degradation of transmission fidelity [5]. The actual phase-locked limit in
humans can only be measured with invasive techniques and is still unknown [40]; although
some studies argue that it might be as high as 5000 Hz [41], more conservative estimations
establish the limit at around 2000 Hz [42].

Cochlear spectral processing and tonotopy

As shown in Figure 2.2, not all the hair cells along the basilar membrane respond equally
to a given stimulus. In fact, as consequence of a stiffness gradient presented along the
basilar membrane, different locations along the membrane respond preferably to certain
frequencies [43]. The edge of the BM closest to the termination of the ossicles or base
responds preferably to high frequencies; whilst the innermost edge, located at the centre of
the coil and termed apex, is tuned to favour low frequencies [43] (see Figure 2.1). Nerves
coming from hair cells located at different positions along the basilar membrane are typically
referred to as cochlear channels. Since the propagation speed within the cochlea is finite,
cochlear channels at the base, encoding high frequencies, respond up to 11 ms earlier than
the innermost cochlear channels at the apex [5].
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Figure 2.2: Raster plot of the neural cochlear spike trains generated by a pure
tone. Top panel shows the stimulus’ waveform, a pure sinusoid with a 200 Hz frequency;
bottom panel shows the spikes elicited in different hair cells along the basilar membrane by
the stimulus. Spikes trains were simulated using a recent model of the auditory periphery
[39].

Neural activity in the early auditory nerve consist of a set of phase-locked spike trains
transmitted through different cochlear channels [5]. Spectral information at this stage is
said to be represented in two coexisting neural codes: a temporal code, consisting of the
fine-grain temporal information of the independent spike trains, and a place code, in the
mean activity of the different cochlear channels. Place code is found in several stages along
the auditory pathway; this arrangement is known as tonotopy, meaning tonal topology.

Although not explicitly noticeable in the raster plot in Figure 2.2 due to the overlapping
of spikes during the phase-locked bursts of activity, both, place and time codes, could be
indistinctly used to extract pitch of pure tones. However, experiments with more complex
stimuli show that tonotopic information by itself is not enough to infer the elicited pitch
(e.g. [44]), whilst phase-locked information preserves pitch-related information in a more
robust, timbre-independent, fashion (see Figure 2.3).

Subcortical pathway

The subcortical auditory pathway is a complex comprising a vast number of bodies and
substructures receiving direct or indirect input from the cochlear hair cells [14].

Essential bodies of the subcortical pathway

Microscopic functional imaging of the brain requires invasive techniques, and the anatomical
structures along the auditory subcortical pathway display a relatively large similarity across
mammals [14]. Most of the results listed below derive from animal studies.

The subcortical auditory pathway consists of a series of relays organised in a hierar-
chical way. In ascending order, the most significant bodies for our investigation are (see
Figure 2.4A): 1) the cochlear nucleus complex (CN), 2) the superior olivary nucleus (SOC),
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Figure 2.3: Raster plot of the neural cochlear spike trains generated by a har-
monic complex tone and an iterated rippled noise. a) Stimulus was a harmonic
complex tone with two harmonics and a fundamental frequency of 200 Hz. b) Stimulus was
an iterated rippled noise with a delay of 5 ms and 16 iterations; cochlear responses were
simulated using a model of the auditory periphery [39].
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Figure 2.4: Anatomical schematics of the auditory brain. a) The ascending auditory
pathway. Figure adapted from the Ear Anatomy series by Robert Jackler and Christine
Gralapp. b) Schematic view of the human auditory cortex in Tailarach coordinates. Schema
adapted from [45], Fig. 9.

3) the inferior colliculus (IC), and 4) the medial geniculate body (MGB) [14] . The specific
functional role of each of these complexes is not fully understood.

Neural connectivity along the subcortical pathway

Hair cell activity is first transmitted to the cochlear nucleus. The CN is connected to the
olivary nuclei, which connects with the inferior colliculus; the later connects with the medial
geniculate body, that outputs to auditory cortex [14]. Besides these bottom-up connections, a
descending pathway also connects these bodies in a top-down manner. Bottom-up processes
transmit the auditory cochlear inputs to higher stages of the auditory pathway holding more
abstract representations [14]; top-down processes operate in the reverse way, modulating way
in which the lower processing centres transform the information [5]. For instance, top-down
afferents are known to modulate the amplification of the hair cells in the organ of Corti [14].

The arrangement of the auditory nerve along the subcortical pathway preserves cochlear
tonotopy [14, 46] (see Figure 2.5); moreover, primary subcortical cells present temporal
properties ensuring a high fidelity transmission of the phase-locked incoming spike trains [15].

Evidence of subcortical spectral processing in mammals

The IC is mainly populated by a type of disc-shaped principal cells arranged in such a way
that their terminations form a series of sheets presenting a double spectral organisation [47]:
one dimension spans the tonotopic arrangement as discussed before; a second intra-laminae
structure follows an isofrequency contour with a periodotopic shape; i.e, a period-based
topology [15], reflecting spectral properties of the phase-locked spike trains generated at the
cochlea [47]. Lateral inhibition across the first, tonotopic dimension, sharpens the responses
to specific frequencies [15].

Although this tonotopic-periodotopic laminar organisation seems to be common to all
mammals, the distribution of frequencies is different across species [47], suggesting that the
organisation of IC reflects the spectral resolution of the auditory system. For instance, one
third of the IC of the moustache bat is specialised in frequencies around 60 kHz, which are
essential in echo-location [47].
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Cells at the medial geniculate body receive ascending input from both, the inferior col-
liculus and the cochlear nucleus, and outputs to the primary auditory cortex [48]. There is
evidence for two different tonotopic fields in the MGB, the first field spans a large frequency
range from 7 Hz up to 16 kHz; the second presents sharper tuning curves and seems to reflect
the tonotopic organisation of the IC [48].

Evidence of subcortical spectral processing in humans

Functional magnetic resonance imaging (fMRI) is a popular, non-invasive brain imaging
technique, that measures the amount of oxygenated blood in brain tissues in order to detect
functional centres of activation in time [49]. fMRI techniques present a very poor temporal
resolution, with refreshing times of the order of a few seconds, but a reasonably good spatial
3-dimensional resolution, of the order of the cubic millimetre [49], that can be exploited to
find mesoscopic areas active during pitch processing.

fMRI data recorded during pitch processing in human subjects shows that overall activa-
tion at the cochlear nucleus and the inferior colliculus correlates with the degree of regularity
of the sound, presenting higher levels of activation for sounds eliciting stronger pitch sensa-
tions [50]. However, these results were not replicated in later study [19]. None of the studies
reported a significant correlation between activation of the MGB and pitch strength [19,50].

Tonotopicity in the human MGB was confirmed by recent high-resolution fMRI data [51].
Although highly likely, the tonotopic arrangement of the human IC and CN has still not been
reported due to the small size of these structures relative to the resolution of the current
fMRI technology.

Auditory cortex

Auditory cortex (AC) is defined as the area of the temporal lobe receiving inputs from
the medial geniculate body [52]. The human AC is subdivided in primary and secondary
auditory cortices. Primary auditory cortex (A1) occupies the Heschl’s gyrus (HG) [16] and
extends up to regions of planum temporale (PT) [53]. Secondary auditory cortex (A2)
is located next to A1 and also comprises adjacent areas of planum polare and planum
temporale [16] (see Figure 2.4B).

Auditory cortex outputs to higher cortical stages located in frontal and temporal lobes
[52], related with higher order cognitive functions and cross-sensory integration [54].

Structure of the auditory cortex in humans and mammals

Tripartite organisation of auditory cortex. Mammals show a tripartite auditory cor-
tex consisting of a core, a belt, and a parabelt ; these substructures putatively show an
increasingly abstract representation of the auditory stimuli [52]. The core presents a tono-
topic arrangement [52,55] and a strong phase-locked activity to low-frequency stimuli up to
300 Hz [55–58]. Cortical neurons responding preferably to specific stimulus’ frequencies are
predominantly common in the core-belt complex in marmosets [15,56].

The human AC presents a similar organisation. The Heschl’s gyrus, enclosing most
of A1, is divided in its posteromedial (pmHG) and anterolateral (alHG) sections, which
present similar properties as the core and the belt, respectively [15, 16]. Similarly, A2 is
related to the mammal parabelt [52]. An intracranial study in humans [16] showed that
whilst posteriomedial Heschl’s gyrus presents reliable phase-locked activity up to 50 Hz,
its fidelity gradually faints over 50 Hz and completely vanishes over 200 Hz. This pattern
parallels the behaviour of marmoset’s cortical neurons that present a faithful phase-locked
response up to 100 Hz and a gradual decay up to the limit of 300 Hz [56]. The human alHG
does not show phase-locked activity at any frequency range [16].
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Figure 2.5: Tonotopy along the auditory system. a) Tonotopic arrangement of the
ascending auditory pathway. b) Anatomic detail of the two adjacent tonotopic maps found
in auditory cortex. Figures were adapted from [46], Fig. 1 and 2.

Functional connectivity within A1. Adjacent areas of HG show strong bottom-up and
top-down nerve afferents that seem to indicate a close collaboration between nearby areas
during stimulus processing [52]. Accordingly, top-down and bottom-up functional connec-
tions have been found between pmHG and alHG during pitch processing in intracranial
recordings of local field potentials (LFP) [26].

Secondary auditory cortex and higher order processing. fMRI studies suggest that
A2 is specialised in high-order cognitive tasks such as music or speech processing [50]. Unlike
previous auditory structures, A2 shows lateralisation effects: most subjects show a larger
activation in the right A2 during music processing and a larger activation in the left A2
during speech processing [32,33,50].

Top-down connections between primary and secondary auditory areas have also been
reported in fMRI studies, that show A2 engagement during low-level cognitive processes
carried out in A1 [19].

Spectral representations in auditory cortex

Tonotopy in cortex. Although intracranial recordings in humans failed to find a tono-
topic neural arrangement in human AC [16], larger scale fMRI studies have systematically
found two contiguous tonotopic maps in HG and the adjacent rostral field [46, 54] (see
Figure 2.5). Some sections of the tonotopic map in A1 show lateral inhibition effectively
sharpening the frequency contours of the maps in cortex [59].

Periodotopy in cortex. Cortical periodotopic arrangements as observed in IC have only
been found in cats’ AC core [57]. However, since phase-locked activity in auditory cortex
vanishes over 200–300 Hz [16,56–58], temporal information must be encoded in some sort of
rate code like the cat’s periodotopic field in other mammals in order to explain to explain
how complex stimuli elicit a pitch percept that cannot be accounted for by the tonotopic
code alone [60].

Moreover, tonotopy and periodotopy might have been confounded in traditional fMRI
setups that use as stimuli pure sinusoids eliciting identical tonotopic and periodotopic maps,
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both of them matching the evoked pitch [46]. fMRI studies using stimuli with more complex
spectra found high correlations between periodotopic maps elicited by natural sounds and
tonotopic maps elicited by sinusoids in cortex [54].

Harmonic representations High resolution fMRI studies have found that selective parts
of the regions responding preferably to a given frequency f0 co-activate as well when pre-
senting stimuli with harmonically related fundamental frequencies (e.g. 2f0 or f0/2) [59,61].
Harmonic co-activation of frequency-tuned neurons has been largely reported as well in other
mammals [62].

Are both, place- and time-codes, necessary for cortical pitch processing? Fre-
quency tuning of neurons in the human auditory cortex shows a much higher resolution, up
to an eighth of an octave, than the spectral resolution of the basilar membrane [63]; this
suggests that the time-code rather than the place-code is responsible for cortical spectral
analysis. However, intracranial studies in marmosets [64] and psychoacoustic experiments
in humans [41, 60] indicate that neural activation correlates with resolvability properties of
the place-code. Thus, evidence seems to imply that both representations play an important
role in pitch processing.

Evidence for cortical pitch processing

Pitch-selective activation is found in early areas of the subcortical auditory pathway [50],
suggesting that pitch is processed between the cochlear nucleus and the inferior colliculus.
However, subcortical activation in fMRI studies does not vary when presenting sounds with
different pitch strengths [19]. Correlation with pitch strength is however found in alHG [19],
indicating that pitch is partially processed in AC.

Pitch-selective neural populations have been consistently reported in a region overlap-
ping the low-frequency tonotopic region of the human alHG [19, 50, 54, 65]. This aggregate
of pitch-selective neurons has been labelled as the cortical pitch centre [57], a neural ensem-
ble hypothetically responsible for cortical pitch processing. Intra-cranial studies in awake
marmosets also found a localised set of pitch-selective neurons in regions analogous to alHG
using stimuli with different spectral envelopes [27, 66], supporting the idea of a pitch pro-
cessing centre in the mammal auditory cortex. Further results in MEG and EEG studies
also converge on the idea of a putative pitch centre in alHG–PT (see §2.3).

On the contrary, some studies argue that cortical pitch processing might be timbre-
dependent, suggesting that different centres across the AC could be responsible for pitch
processing, depending on the sound’s spectral shape [15]. Accordingly, a study in the ferret
auditory cortex reported that pitch-selective neurons were scattered along five different areas
of AC and that they did not only reflect pitch preference, but also responded selectively to
timbre and localisation of sounds [67]. However, the identification of pitch-selective neurons
in animal intracranial data is a highly challenging task; for instance, neurons responding to
the animal choice derived from the evoked sensation could be indistinguishable form neurons
holding or processing the pitch itself [68]. More generally, pitch-responsive neurons are not
necessarily involved in pitch processing.

Another common argument against the idea of a generalised processing carried out by
a single putative pitch centre in human AC is the divergence on its exact location across
different studies, ranging from alHG to adjacent areas of planum temporale [53]. Cortical
tonotopic maps themselves show a large subject-to-subject variability, indicating that loca-
tions within AC are difficult to compare across subjects [46]. Nevertheless, a key study in
fMRI [65] shows that measuring the tonotopic map in a subject-like fashion leads to a consis-
tent anatomical location of the pitch-selective cortical centre, indicating that the variability
of the results might rely on inter-subject, rather than inter-stimuli, variations.
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Psychoacoustics

Psychoacoustics is the branch of psychology studying the phenomenology of hearing [5]. In
this section, we will introduce some basic results on the psychoacoustics of single tones,
defined as sounds that can be uniquely characterised by three approximately independent
properties: loudness, timbre, and pitch.

Loudness

Loudness is the perceptual correlate of sounds’ intensity and, for stimuli longer than 200 ms
[8], it scales linearly with the logarithm of the square amplitude of the sound’s waveform [38].
As such, loudness is most likely encoded in the time-integrated overall firing rate of the hair
cells at the organ of Corti [5].

Loudness is commonly measured in decibels (sound pressure level), or dB SPL, defined
as s = 10 log10 I/I0 where I0 is the average threshold under which sounds are no longer
audible. Intensity levels over 90 dB SPL can lead to long-term hearing loses; 140 dB SPL is
consider as the threshold of pain [5].

Timbre

Timbre is the perceptual correlate of the shape of the sounds’ waveform and it encompasses
temporal aspects of the stimulus not related to its fundamental period [9]. Rescaling a given
spectral shape towards higher or lower frequencies produces a change in pitch, but not in
timbre. Timbre is used to characterise the sound of musical instruments [9]; vowels are also
characterised by their elicited timbre [9].

Timbre can be resolved in sounds as short as 2 ms [69], indicating a much faster processing
than pitch [70] (that usually take around 4 times the period of the waveform, e.g. ∼10 ms
for a 250 Hz tone).

Pitch

Pitch is the perceptual correlate of the period of the stimulus’ waveform; i.e, the fundamental
frequency f0 of the present oscillatory modes [43]. Waveforms showing no periodic elements
do not evoke a pitch sensation; waveforms with less defined periodic modes elicit weaker
pitch sensations [43].

Harmonic complexes

The simplest periodic waveform is the sinusoid or pure tone (PT). A pure tone evokes
a pitch corresponding to its frequency of oscillation [4]. Pure tones are synthesised in
laboratories and are often used in hearing research, but they are not common in nature.
Rather, natural sounds present a more complex spectral shape, often consisting on several
overlapping sinusoids.

When all the overlapping sinusoids in a complex are harmonically related, i.e, the fre-
quencies of all the overlapping oscillation modes are multiple of a common ground frequency
f0, the complex is called a harmonic complex tone (HCT) [5]. Vibrating strings like the
monochord’s generate waveforms belonging to this category [4]. HCTs elicit the same pitch
sensation as a sinusoid with frequency f0, although attending experienced listeners have
reported to be able to perceive several simultaneous pitch values associated to the different
harmonics comprised in the complex [4].
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The strength of the pitch sensation evoked by HCTs increases with the number of har-
monics present in the complex [71], and decreases dramatically when the higher order har-
monics span high-frequency ranges where the basilar membrane presents a lower spectral
resolution, and are thus not independently resolved by separated cochlear channels [72].

A click train is a limit case of an HCT when all harmonics of the harmonic series are
present in the stimulus [73], also eliciting a strong pitch sensation equivalent to f0 . Click
trains can equivalently be described as a succession of Dirac’s deltas or clicks separated by a
constant t = 1/f0. Random perturbations in the inter-click intervals can be used to decrease
the strength of the evoked pitch [74].

Virtual pitch

Harmonic complex tones evoke the pitch percept of its fundamental frequency f0 even if the
fundamental itself does not form part of the complex [60]; this phenomenon is known as
virtual pitch, and has been observed in other mammals such as monkeys, marmosets [64] or
cats [57].

Although virtual pitch has been suggested to be a side effect of non-linear interactions
at the basilar membrane eliciting activation at cochlear channels characterising f0, this
hypothesis was disproved by introducing a masking element shunting elicited activation
around those cochlear channels [5]. Moreover, a short sequential display of the independent
harmonics, in such a way that they are separately present in the cochlea, also elicits a virtual
pitch sensation [75].

Waveforms of HCTs with a missing fundamental are still periodic in f0, supporting the
hypothesis that pitch is decoded using a time-code. To test this theory, a study [60] used
alternated-phase HCTs (ALT HCTs), where the phase of the odd-numbered harmonics is
reversed with respect to the phase of the even-numbered ones. ALT HCTs show identical
long-term Fourier spectra as their phase-aligned counterparts, but their waveform is periodic
in 2 f0 rather than in f0 [60]. Results of the study showed that, when harmonics in the ALT
HCT are resolved in separated cochlear channels, the stimulus elicits a pitch equivalent to
f0; when the harmonics are not separately solved in the basilar membrane, the complex
evokes a 2 f0 pitch [60]. Consistent effects have been observed in marmosets [64].

Iterated rippled noises

Iterated rippled noises (IRN) [11,12] are a kind of auditory stimulus consisting of the aggre-
gation of a series of repetitions of a given sampled white noise iteratively delayed by a fixed
period δt. Although IRNs present flat long-term Fourier spectra, they elicit a pitch sensa-
tion equivalent to f0 = 1/δt [11]; the strength of the sensation scales up with the number of
recursively delayed repetitions [12]. IRNs can elicit a pitch even if they consist of only two
iterations delivered separately in different ears [43], and elicit a varying pitch percept when
the delay δt is varied smoothly [76].

Thresholds

Periodic sounds with fundamental frequencies between 30 Hz [77] and 4–5 kHz [41] elicit a
sensation of pitch in humans, although pitch discrimination seems largely reduced above
3–4 kHz [43]. Pitch sensations can be elicited by tones as short as two of their oscillatory
periods, but durations of over four cycles are necessary for robust pitch discrimination [43].

Subject-specific phenomena

Pitch perception presents a large inter-subject variability. Discrimination thresholds follow
similar shapes in different subjects, but the magnitudes can vary widely depending in genetic

16



Chapter 2. The puzzle of auditory processing

factors, age, and experience [10].

Absolute pitch. Subjects with absolute pitch are able to label the pitch of a sound
without using a reference tone [78]. In contrast, most of the listeners need to match target
sounds with a sample tone to assign it a pitch label; i.e, they perceive pitch as a relative,
rather than absolute, property [5]. Evidence suggests that absolute pitch cannot be learned
nor trained [5, 78].

Spectral and fundamental listeners. Another subject-specific is observed when con-
sidering some intervals of HCTs with a missing fundamental. If the lowest harmonic of
one of the complexes presents a higher frequency than the lowest harmonic of the second
tone, but the fundamental frequency of the first tone is lower than the fundamental of the
second (see Figure 2.6A) [4]. Some subjects, called spectral listeners (fSP), are more likely
to judge the pitch difference between the two tone according to the frequency of the lowest
present harmonics, whilst other subjects, called fundamental listeners (f0), often judge the
pitch change accordingly to the f0 of the HCTs (see Figure 2.6B) [4, 5]. Intriguingly, fSP
/ f0 preference is correlated with the relative size of the lateral portion of Heschl’s Gyrus,
suggesting a hemispherial lateralisation effect in pitch interval judgements [45].

Figure 2.6: Fundamental and spectral listeners. a) Schematic representation of the
stimuli. b) Distribution of subjects (of a sample of 420) across the continuous line between
pure-f0 and pure-fSP listeners. Figure taken from [45], Fig 1.

Electrophysiology

Most neural communication is conveyed by means of short electrical impulses, called action
potentials or spikes, that propagate along the source cell axon towards the target neuron [3].
Aggregations of nearby spiking neurons with similarly oriented axons generate a net electric
current that is strong enough to have a noticeable effect on the electromagnetic fields at the
scalp [79]. Electroencephalography (EEG) and magnetoencephalography (MEG) measure
such elicited fields in order to infer mesoscopic neural activity in the brain in a non invasive
fashion. Due to its exquisite temporal resolution, E/MEG imaging plays a crucial role in
auditory neuroscientific research.
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The physiological basis of E/MEG

Equivalent dipoles

Action potentials propagate along an axon following a succession of ion exchanges between
the neural body and its extracellular fluid [80]. Ionic currents elicit local electric and mag-
netic fields [80] that propagate through the cortical tissues all the way to the scalp. Although
field variations provoked by a single neuron dissipate on the large ocean of brain electric
activity, aggregated fields elicited by the collective activation of a neural ensemble are strong
enough to display relatively large signal to noise ratios in the scalp [80].

When the distance between the axons carrying the electric current is much smaller than
the distance from the axons to the electromagnetic sensors, the aggregated source of the
fields can be approximated by an equivalent magnetic dipole d, represented as a vector with
the direction of the electric flow (from source to sink) and the magnitude of the electric
current [81]. Equivalent dipoles are good approximations of the fields elicited by a neural
population when the source-to-sink distance is finite and smaller than a few millimetres [82].

The human cerebral cortex is a thin, folded, tissue, anatomically organised in six consec-
utive layers, I (near the scalp) to VI (closer to thalamus). Cortical regions are often studied
as vertical columns encompassing these six layers [3]. Intra-neural currents flow in parallel
to those columns, eliciting an equivalent dipole orthogonal to the cortical surface [82].

A fold or ridge in the folded cortical tissue is called a gyrus, and a groove a sulcus [3] (see
Figure 2.7a). Auditory cortex, located in Heschl’s gyrus, elicits both, radial and tangential
dipoles [82] (see Figure 2.7b). EEG is sensitive to both of them, but MEG is blind to radial
dipoles and it only measures tangential sources [24].

Nearby dipoles (i.e, dipoles much closer to each other than to the sensor) aggregate
into equivalent dipoles summarising the overall elicit field according to the superposition
principle [81] (see Figure 2.7c).

Figure 2.7: Equivalent dipole orientations in Cortex. a) Schematic view of gyri and
sulci in the folded cortical tissue (Figure from the public domain). b) Dipole orientations
across a cortical sulcus (Figure adapted from [82], Fig. 1). c) Example of how nearby dipoles
aggregate into an equivalent single source (Figure adapted from [82], Fig. 6).

Dipole fitting

Given a certain magnetic dipole result of the spiking activity of a neural population, the
electromagnetic fields elicited in the scalp surface are calculated using the Poisson equation
and an anatomic model of the head [82]. The solution to this problem is unique and its
precision is only bounded by the exactitude of the head model [24].

On the contrary, the inverse problem of inferring the location and strength of an equiva-
lent dipole given the scalp fields, does not generally have an unique solution [24] (i.e, different
dipole arrangements could lead to similar fields at the scalp). State of the art methods use a
combined spatio-temporal analysis of the fields and a set of physiological constraints to find
accurate and robust solutions [83]; those methods are divided in two families: parametric
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and imaging techniques [83]. Imaging techniques place equivalent dipoles all along the cor-
tical grid with different fixed locations and orientations, and then they adjust each dipole
magnitude at each time instant in order to maximise the similarity between the measured
fields and the fields that such configuration would elicit in the scalp [83]. Dipole fits derived
using imaging reconstruct the observed fields with a greater accuracy but, in exchange, their
results can be difficult to interpret [83].

Parametric techniques simultaneously fit the position, orientation and magnitude of a
much more reduced number of dipoles [83]. Parametric methods require to specify the
number of dipoles, as well as their prior location and orientation, but the results offer a
more direct physiological interpretation of the field sources.

In auditory experiments, dipole fitting is generally performed over the averaged elicited
fields across 100-200 trials using a parametric approach assuming a single dipole in each
hemisphere. In these cases, the solution is usually unique and numerically stable [83]; the
dipole model is generally accepted if it can explain more than 90% of the variance of the
data. Multi-dipole analyses, placing 2–3 dipoles in each hemisphere, are less common but
also frequent in auditory experiments.

Differences between EEG and MEG

Evoked fields at the human scalp are typically of the order of 10−12 Tesla; in comparison,
the earth magnetic field intensity is of about 10−5 T. MEG sensors, called SQUID, are
based on Josephson junctions that exploit the properties of superconductivity in order to
detect subtle changes in the magnetic field at the scalp [24]. SQUID sensors are held
in a cryogenic storage dewar filled with liquid helium that keeps the sensors within the
superconductivity temperature regime at around 4 K. Moreover, the MEG machinery needs
to be electromagnetically isolated in order to avoid interferences from electric devices nearby
[24]. These constraints make MEG facilities rare and expensive.

In comparison, EEG is extremely cheap: a reasonably good EEG equipment can be
purchased for less than £3000 in the market. In addition, electric fields in the scalp are
relatively strong and thus recordings can be taken in a non-shielded room [84].

However, MEG is better suited for auditory experimentation for a number of reasons:
1) MEG preparation times are around 30 minutes, whilst EEG requires manually placing
the electrodes on the subject; 2) MEG state of the art machines present up to 306 SQUID
sensors, offering a much larger resolution than typical 32/64 channels EEG sets (modern
equipments can reach up to 264 channels, but price and preparation times for those sets
are prohibitive) [83]; 3) MEG sensors are blind to radial fields [24], which naturally filters
out activity originated in adjacent regions of auditory cortex that are not relevant to pitch-
related experiments; 4) the scalp is transparent to magnetic fields but not to electric fields,
which allows MEG to provide a better signal-to-noise ratio than EEG in response to cortical
activity [82]; 5) EEG auditory responses are only prominent along the mid-line electrodes,
failing to detect hemispheric asymmetries [83]; 6) EEG electrodes are phase dependent,
which affects dipole source modelling decreasing the accuracy the dipole localisation [82].

However, magnetic fields elicited by subcortical activity vanish at the scalp, and only
EEG techniques can be used to investigate activity at this level. Moreover, EEG is essential
to capture potentially important radial sources from auditory cortex and neighbouring areas
[85], although EEG experiments show that such radial sources do not seem to correlate with
perceptual features [85]. In any case, EEG and MEG are not mutually exclusive, and
some experimental sets combine EEG with MEG to simultaneously record subcortical and
cortical activity from different areas in order to investigate functional communications along
the auditory pathway [85].
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Auditory evoked fields/potentials

The averaged gradient of the magnetic field elicited in human auditory cortex after the pre-
sentation of an auditory stimulus, called auditory evoked field (AEF), displays a stereotypical
trend consisting of set of consecutive onset transients followed by a sustained response that
lasts until the stimulus’ offset [83] (see Figure 2.8). The electric averaged fields are known
as auditory evoked potentials (AEP) and show a similar stereotypical trend. In this section,
we will discuss mainly MEG results.

The frequency following response

The frequency following response (FFR) is an auditory evoked potential elicited in brain-
stem that, as a result of the phase-locking of the neural activity in the early stages of the
auditory nerve, preserves the spectral content of the stimulus’ waveform [86, 87]. Since
MEG recordings are blind to subcortical sources, the FFR is typically measured using EEG
sensors [87].

A cortical equivalent of the FFR has been reported in a recent MEG study using low-
frequency speech-related stimuli [88].

Cortical dynamics of the evoked fields

The first transient is elicited around 19 ms after stimulus’ onset and peaks at ∼30 ms [89];
it is called P30 1. The P30 is followed by a slightly larger transient known as the P50.
Depending on the number of averaged trials, these two early components are not always
independently resolved.

Figure 2.8: Typical notation in auditory evoked fields. This particular field is the
dipole moment elicited in alHG by a succession of 20 ramped sinuoids, averaged across 27
subjects and 120 trials [1].

Around 100 ms after tone onset, the fields show a third large deflection called N100,
followed by a last positive transient, termed P200 [83]. After the P200, the field asymptoti-
cally converges to a negative steady state, known as the sustained field, that is held until the
offset of the tone, when the polarity of the field rises again up to the original baseline [83]
(see Figure 2.8).

The different transients and the sustained field are observed in general locations of Hes-
chl’s gyrus and planum temporale, but the exact location of the dipole sources around each
of the peaks is slightly different [83]. Moreover, the properties of each transient (i.e, exact
latency and depth) are sensitive to different parameters of the stimuli, indicating that each
of them reflects a different stage of cortical auditory processing [83].

1This is standard electrophysiological notation: P stands for positive (negative transients are termed N-)
and 30 stands for the typical latency. Sometimes, MEG transients have an m suffix to differentiate them
from their EEG counterparts.
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The P50 complex

The P50 complex consists of three transients known as N19, P30 and P50. The N19 is
the earliest response elicited in auditory cortex after stimulus onset and shows a higher
amplitude for high-frequency than for low-frequency sounds [90]. The P30 and the N19
seem to be elicited in the same area of the auditory cortex, but the P50 dipole is located in
a separate location near the generators of the N100 and the sustained field [90].

Experiments using up-chirps, frequency modulated stimuli that compensate for the rel-
ative delay observed in the basilar membrane when processing low tones with respect to
high tones, revealed that the P19-P30 generator might be responsible for integrating inputs
incoming from different cochlear channels [89].

The P50 latency directly scales with the period of the stimulus, in accordance with
temporal shifts observed as well in lower subcortical structures [91].

The different sources of the N100

The N100 typically peaks at around ∼80–130 ms after stimulus onset [92]. Unlike earlier
components of the AEF, the N100 is the result of several aggregated transients sourced at
different locations of auditory cortex showing different integration times [93]. Although EEG
experiments spotted up to 6 independent sources of the N100 [92], MEG recordings filter our
the radial generators and typically reveal only 2–3 tangential sources [22,94]. Interestingly,
the properties of each of the tangential sources are strongly correlated with one of the three
perceptual dimensions of single tones: pitch [22], loudness [95], and timbre [94].

Unlike earlier transients, the N100 amplitude shows a certain adaptation to stimuli:
repetitions of the same tone elicit lower amplitudes in consecutive repetitions [96, 97]. In
melodic contexts, a shift of the N100 generator towards more anterior locations is observed
together with the attenuation effect, indicating that the adaptation might be partially caused
by modulatory effects from higher cognitive areas [96].

Moreover, the N100 depth seems to be moderately affected by attention processes [98].

The energy onset response. Early studies in EEG already show a strong dependence
on the N100 amplitude and latency with stimulus intensity [95] (see Figure 2.9). This
correlation seems to be an effect of cortical integration: louder stimuli elicit a stronger
response at the hair cells that is reflected in the cortical activity. Moreover, since stronger
signals show a larger signal-to-noise ratio, evidence is accumulated faster, explaining the
latency dependence. This hypothesis is further supported by the correlation found between
the N100 amplitude and the stimulus duration in short tones [93].

More detailed MEG experimental paradigms found that only one of the N100 tangential
sources, termed energy onset response (EOR), shows sensitivity to loudness [22]. The EOR
can be isolated from the other subcomponents of the N100 by using stimuli not eliciting a
specific pitch, such as white noises [22]. Experiments with noises located the EOR source
in planum temporale, adjacent to Heschl’s gyrus [22].

The pitch onset response. Early experiments show that the N100 latency and depth
also show a certain sensitivity to the perceived pitch: lower frequencies elicit an N100 with
a larger amplitude [91] and later latency than higher pitched tones [22,23,91,99]. Moreover,
sounds eliciting a stronger pitch sensation also elicit a deeper N100 [22], in agreement with
the correlation between salience and activation in HG observed in fMRI studies [19].

A more detailed study of the N100 behaviour reveals that only one of the subcomponents
of the N100, termed pitch onset response (POR) in analogy to the energy onset response,
shows sensitivity to pitch. The POR source is located in the anterolateral section of HG
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(alHG) [22, 23], in agreement with fMRI and anatomical results that found pitch-selective
activation in the this same area of auditory cortex [19,50,54,65] (see Figure 2.11).

Since the EOR and the POR dipoles are too close to each other to be simultaneously
resolved using two different dipoles, the two subcomponents are separately studied using
iterated rippled noises preceded by a white noise with the same power spectrum [22]. The
noise onset first triggers an EOR, systematically peaking at 100 ms after onset; afterwards,
if the transition between the noise and the IRN is smooth, the onset of the IRN elicits
an isolated POR [22]. IRN parameters (the number of iterations, which controls the pitch
strength; and the delay, that controls the pitch value) can be modified to study the behaviour
of the POR (see Figure 2.10). The depth of the POR depends on the strength of the elicited
pitch, as shown in Figure 2.10b; the latency of the component depends linearly with the
period T of the elicited pitch with factor four: Lat = 120 ms + 4T [22], see Figure 2.10c.
This dependence is four times greater than the factor of the relationship found in the P30’s
latency [91].

Figure 2.9: Correlation between the N100 depth and latency with the perceived
loudness. Depth is portrayed in the left as the N100-P200 peak-to-peak distance; latency is
displayed in the right panel. The specific latency and amplitude dependence with frequency
described as cycles per second (c/s) in the figure has not been experimentally replicated.
Figure from [95], Fig. 4.

Figure 2.10: N100’s latency and depth dependence with pitch. Dipole moments
of the POR and EOR elicited using white noises and iterated rippled noises. a) Waveforms
around the transition (2 seconds after the onset of the white noise) for IRNs with different
delays. b) POR depth dependence with the number of iterations of the IRN. c) POR latency
dependence with the delay of the IRN. Figure adapted from [22], Fig. 4.
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Timbre. In parallel with the EOR and POR, a third subcomponent of the N100, termed
here the timbre onset response (TOR), can be studied using an experimental paradigm
analogous to the noise-to-IRN setup. An isolated TOR can be triggered by concatenating
two tones with identical pitch and loudness but eliciting different timbre sensations [94].
The TOR generator was found to be located in planum temporale [83,94].

Spectral complexity can also affect the N100 latency: for instance, HCTs elicit later
latencies than pure tones [91]. Whether this effect is related with timbre processing or a
result of pitch processing mechanisms is, however, still unclear [91].

The P200

The P200, peaking at ∼150–250 ms, is the latest transient observed in the AEF before
the sustained field [100]. The P200 overall generator is located in planum temporale [22],
although at least two separate sources have been reported in the literature [100].

The P200 latency and amplitude are also sensitive to the stimulus’ properties, mimicking
the behaviour of the N100: later latencies for low tones, stronger and earlier P200s for louder
sounds [100]. This tendency, together with the larger time constant of the transient, seems
to indicate that the P200 is elicited by mechanisms at a higher stage of auditory processing
and receiving input from the N100 generator [93,101].

Accordingly, the P200 amplitude is sensitive to musical phrasing context [101] and even to
the harmonic context in which the tone is presented [102]. Moreover, the P200’s amplitude,
but not the N100’s [103], is modulated by the musical training and cultural background of
the listeners [104].

Sustained field

The sustained field follows the P200 and starts with a negative inflection around 300 ms after
tone onset that builds up slowly to a saturation point reached at ∼400 ms after stimulus’
onset [83,105].

Attention, which plays a higher-order cognitive function, has a much larger effect on the
depth of the sustained field than it has in the N100 dynamics [98], suggesting that the SF
is elicited by processing streams in a higher hierarchical level than the sources of the earlier
(P30–50 and N100) transients [91].

Pitch- and Energy- sustained fields. The magnetic SF is generated by two separated
sources analogous to the EOR and the POR: a posterior source, located in planum temporale
and sensitive to loudness, here called the energy-related sustained field (ESF); and a more
anterior source, located in Heschl’s gyrus, that arises only when the stimulus elicits a pitch
sensation [105], here called the pitch-related sustained field (PSF) (see Figure 2.11).

The reset of the AEFs and the offset delay. The sustained field is interrupted when a
drastic change is introduced in the auditory input. If the new stimulus has the same energy
but different pitch as the previous one, new POR and P200 transients are elicited and a new
pitch-related sustained field arises [107]. If the new stimulus presents different loudness, it
also triggers new P30, P50 and EOR transients.

The sustained field is also interrupted when the auditory input stops leading to a period
of silence. After the silence onset, the SF holds during a short time called offset delay that,
in the case of the pitch-related SF, is roughly equal to twice the period of the perceived
pitch [105]. If the same stimulus is presented within the offset delay, the early transients are
not triggered and the sustained field continues with no sudden interruptions [107]. If the
period of silence exceeds the offset delay, the onset transients are triggered once again [107],
indicating that the SF is performing a sort of integrative process triggered by the N100-P200
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Figure 2.11: Cortical location of the POR, EOR and their associated sustained
fields. Figure adapted from [106], Fig. 4.

complex [107]. Accordingly, listeners report an unique stimulus with a silent gap when the
silence lasts less than the delay offset, and two separate stimuli separated by a silence when
the silence is larger than the delay offset [107].

Global effects

Intensity. Some phenomena affect most of the constituents of the auditory evoked fields
in a similar fashion. For instance, an increased sound intensity results in generally stronger
fields [95]; this property is often exploited to increase the signal-to-noise ratio in MEG
experiments, where stimuli are typically delivered at around 70–80 dB (SPL).

Habituation. Habituation, a progressive decay in the intensity of the responses observed
in successive repetitions of the stimuli, is also generally observed in the N100-P200 complex
[100]. Short term adaptation is observed in the N100-P200 amplitudes for inter-stimuli
intervals (ISI) shorter than 10 s, but rather than being a progressive decay, it seems to affect
only the second repetition of the stimulus [97].

Long-term habituation has a slower effect, which reaches its maximum around 30 minutes
after the beginning of the experiment [108]. In order to avoid potential biasing effects
produced by long-term habituation, different conditions of the stimuli are often uniformly
distributed along the experimentation.

Lateralisation. Effects discussed so far in this section are observed in both cortical hemi-
spheres. However, high order auditory functions seem to show a certain hemispheric special-
isation: right hemisphere responses are typically stronger during music processing, whilst
left hemisphere responses are generally stronger during speech perception [32].

The asymmetric sampling in time (AST) theory [33] explains this phenomenon as a
hemispheric specialisation in temporal scales: the right hemisphere is suggested to respond
preferably to processes requiring longer time scales, whilst the left hemisphere responds
preferably to short modulations [33].
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Hemispheric asymmetry is also observed in the N100 and the sustained field during the
processing of rapidly modulated stimuli [1].

Musical training. FFR elicited by musicians seems to preserve the stimulus spectra with
a greater fidelity than the FFR elicited by non-musicians. Subjects with musical experience
also present a Heschl’s gyrus twice as big as the average listener [109]. This size difference
is reflected in a significant increase of the P30’s amplitude, but not in later responses such
as the N100 [109], although larger P200 responses in musicians have been reported in the
literature [110]. Moreover, the N100-to-P200 peak response to a given stimulus increases
when the subject is specifically trained to recognise such stimuli [111].

Discussion

The phenomenology of pitch perception

Pitch is elicited in human listeners by periodic stimuli with fundamental oscillatory frequen-
cies between 30 Hz [77] and 4000–5000 Hz [41]. These limits are in line with those of the
estimated phase-locked activity in the auditory nerve [40].

A pitch sensation can be triggered by almost any stimuli holding a periodic element,
no matter its spectral shape: pure tones, harmonic complexes, iterated rippled noises, click
trains; they all elicit a clear pitch sensation [5]. Variations in loudness and timbre have no
effects over the perceived pitch value [70], although pitch comparison performances can be
affected by strong timbre differences across stimuli [112].

Generally, the pitch sensation elicited by a tone with a fundamental oscillatory frequency
f0 is equivalent to the pitch elicited by a sinusoid with frequency f = f0 [5], but alternated-
phase harmonic complex tones with a missing fundamental can elicit a 2 f0 if its harmonics
are not independently resolved in the cochlea [60].

Neural representation of pitch along the auditory pathway

The neural representation of pitch varies along the stages of the ascending auditory pathway.
At the auditory nerve, pitch-relevant information is coded in the phase-locked activity of the
different cochlear channels of the auditory nerve [43]. Two different representations coexist
at this stage: a time-code, represented in the temporal structure of the neural activity in
the cochlear channels; and a place-code, represented in the overall firing rate of each of the
cochlear channels [43].

In the inferior colliculus, we can still observe the tonotopic spectral arrangement [14,46]
and the fine temporal structure of the phase-locked neural activity generated in the cochlea
[15]. A third, periodotopic, representation, reflecting a spectral analysis of the phase-locked
activity at each channel, arises at some intermediate stage between cochlear nucleus and the
inferior colliculus [19,50] and is widely present in the latter [15,47].

In primary auditory cortex, phase-locked activity vanishes over 50–200 Hz [16]. Tonotopy
[54, 59], and probably periodotopy [46, 57], are observed in Heschl’s gyrus and the rostral
section of AC.

Moreover, a set of neurons in the low-frequency tonotopic region of HG respond selec-
tively to pitch [19, 50, 54, 65]. This region is often identified as the pitch centre of auditory
cortex [57]. The internal organisation of the region has not been explored in humans, but
mammal studies seem to indicate that groups of more than 10 neurons are collectively se-
lective to different pitch values [68].
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Mechanisms underlying the transformations between neural repre-
sentations

The temporal representation of pitch-relevant information in the early auditory nerve is a
consequence of the synchronisation between the basilar membrane and the stimulus wave-
form, that give rise to the phase-locked neural activity observed along the subcortical audi-
tory pathway [5, 15].

The spectral tonotopic representation found in the subcortical pathway and in primary
auditory cortex is a consequence of the stiffness gradient along the basilar membrane that
enforces different locations of the membrane to respond selectively to different spectral
ranges [5, 43].

The rate-code representation of temporal information found in inferior colliculus (i.e,
periodotopy) and putatively in A1, seems to arise between the cochlear nucleus and the
IC [19]. Although the specific mechanisms underlying this transformation are still unclear,
some theories of how this processing is carried out will be explored in the next chapter.

How the pitch-selective representation observed in the putative pitch centre in HG arises
is still unknown; this problem will be addressed later on in this thesis.

Evoked field dynamics during cortical pitch processing

Among the plethora described above, only two components of the auditory evoked fields
above seem to reflect pitch processing in cortex: the POR component of the N100 [22,91,99],
and the pitch-related sustained field [105–107]. Cortical generators of the POR and the PSF
are located in distinct but adjacent places of anterolateral Heschl’s gyrus [22, 105], near
to the location of the putative pitch centre reported in fMRI studies [19, 50, 54, 65] (see
Figure 2.11).

The POR latency scales with four times the period of the stimuli, indicating that cor-
tical generators need to integrate at least four cycles of the stimulus’ periodic structure to
robustly extract the elicited pitch value [22]. Accordingly, psychophysical experiments using
short tones report that robust pitch identification is only possible for durations of over four
repetition cycles [43].

Similarly, the delay observed between the stimulus’ offset and the pitch-related sustained
field offset shows a dependency on twice the period of the stimulus [105], indicating that the
PSF cortical generators need to wait for two repetition cycles to confirm that the stimulus
is no longer present. Accordingly, psychophysics show that silent gaps under two repetition
cycles are identified as a stimulus imperfections, whilst silent gaps over two repetition cycles
are identified as a silence period separating two distinct instances of the stimulus [105].

Functional organisation of human auditory cortex

Generators of the EOR and ESF are located in adjacent areas of planum temporale [22,105];
the POR and the PSF are located in more anterior positions in alHG [22, 105]; and the
timbre onset response is located in a distinct area of planum temporale. This topological
arrangement seems to indicate that there are at least three distinct cortical mechanisms
underlying the perception of each of the three auditory dimensions.

A more subtle topological organisation seems to underlie processing within each percep-
tual dimension, as suggested by the spatial separation between the sustained fields and the
onset responses [105]. Accordingly, attention has different effects over the fields evoked in
different sections of auditory cortex: it has no effect on the activity at pmHG (equivalent of
the core in mammals), a subtle effect on the N100 elicited in alHG (equivalent of the belt in
mammals), and a strong effect on the sustained field, elicited near the N100 generator [98].
In addition to the bottom-up/top-down active connections found between the two sections
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of HG during pitch processing [26], these findings suggests that pitch is extracted by a hi-
erarchy of cortical processing centres [52]. Together with higher level cognitive areas, this
hierarchical organisation might play a crucial role in the contextual processing of auditory
objects.
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Chapter 3

Subcortical processing and abstract
cortical models

The different processing stages of the auditory system are complex, highly non-linear sys-
tems, whose behaviour escapes analytical formulations. Thus, auditory theories rather rely
on models designed to approximately simulate specific aspects of auditory processing. In
this chapter, we will review the most relevant theories of pitch processing, from the auditory
periphery to central levels, introducing crucial results, which will be used to contextualise
our cortical model, and arguing the need for yet another specimen within the heterogeneous
zoo of auditory models.

The auditory periphery

Pressure waves arriving in the ear undergo through a series of non-linear transformations
along the outer, middle, and inner ear, that are usually modelled separately. A compre-
hensive model of the periphery typically presents up to five consecutive transformations
accounting for: 1) the acoustic effects of the ear canal; 2) the transmission of the tympanic
vibration through the middle ear ossicles to the cochlea; 3) the induction of vibrations in the
basilar membrane in response to the ossicle movement; 4) the activation of the hair cells in
the organ of Corti; and 5) the phase-locked spike trains evoked in the auditory nerve [36] (see
Figure 2.1). In this section, we will overview the classical modelling approaches of each one
of this stages. Models can be roughly divided in two main families [36]: phenomenological
models, that describe the transformations as a set of filtering operations; and detailed phys-
iological models, that model the biophysical mechanics underlying such transformations.
Phenomenological models are computationally inexpensive and are often used to reproduce
different behaviours of the peripheral system; by contrast, biophysical models can be com-
putationally costly, but they are necessary to study the biological function of the detailed
features of the the peripheral anatomy [36].

In this section, we will overview the state of the art in phenomenological approaches;
see [36] for a comprehensive review, including biophysical models.

Outer and middle ear

The geometry of the ear canal has a modulatory effect on the incoming waveforms that
can be modelled as a cascade of linear filters [36]. Filtering is usually performed in the
spectral domain through a transfer function known as the head-related transfer function
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3.1. The auditory periphery

(HRTF) [36]. Filter parameters are adjusted according to the acoustic transformations
observed after placing a microphone inside the ear canal [36]. HRTF parameters vary across
subjects, specially for frequencies above 4 kH, and between the right and left ear [36].

The middle ear ossicles transmit the pressure variations elicited in the tympanic mem-
brane all the way to the oval window in the cochlea [5]. This transformation is approximately
linear for sound levels under 130 dB (SPL) [36]. Classical phenomenological approaches to
describe the effect of the ossicle transmission consist on analogical electric circuits displaying
a linear behaviour, whilst modern approaches use a continuous transfer function modelled
as a cascade of digital filters [36,113].

Inner ear and the basilar membrane

The inner ear tranforms the basilar membrane motion into to pressure variations in the oval
window [36]. Although cochlear responses are linear when analysed post-mortem, non-linear
active effects are found in vivo [36].

The frequency-selective behaviour of the different locations of the basilar membrane (see
§2.1.1.3) are usually modelled as a bank of overlapping bandpass filters with a monotonically
increasing centre frequency [114]. Early versions like the gammatone used symmetric and
linear bandpass filters; however, the actual behaviour of the cochlear is neither symmetric
nor linear: the best frequency of a cochlear channel (i.e, the stimulation frequency at which
the channel shows the largest activation) is lower than the average frequency of the response
curve, and the bandwidths depend on the intensity level. This complex behaviour was
implemented in the gammachirp [115], which consisted of an asymmetric filterbank followed
by a cascade of level dependent high- and low- pass filters accounting for non-linear effects
[36].

Composite models use a symmetric gammatone-like filterbank in parallel with a sec-
ond, control path, that modulates the time constant of the bandpass filters according to
the sound’s intensity level [36]. The time constant of the filters regulates their gain and
bandwidth, thus reproducing active cochlear effects [36].

The dual-resonance non-linear filter (DRNL) uses two parallel asymmetric filterbanks
to reproduce the non-linear and asymmetric response of the BM [116]. The first filterbank
presents a narrow bandwidth and non-linear responses; the second one presents a broad
bandwidth and linear responses and shifted centre frequencies with respect to the first
bank [116]. The model’s output accounts for active processing by continuously weighting
the contributions of the two filterbanks according to the sound’s intensity: the first bank is
most prominently active under the low-level regime, the second one dominates the dynamics
in the high-level regime [116].

A recent model by Zilany and colleagues [39, 113, 117] combines the techniques of com-
posite models and the DRNL in order to reproduce the behaviour of the BM in a more
precise way. The model presents a similar structure as that of the DRNL, but the first, wide
filterbank, is here modulated by a parallel control path similar to that of the composite
models (see Figure 3.1).

Organ of Corti and hair cells

Hair cells in the organ of Corti transduce the mechanical displacement of the BM into
electric potentials, that release neurotransmitters ultimately responsible for the auditory
nerve activity [113]. Hair cells respond only to one direction of the BM displacement and
thus are often modelled as half-wave rectifiers [36].

Besides the frequency-following spike trains, the hair cells present a DC component
attributed to the resistor-capacitance properties of the hair cells membrane that deteriorates
the phase-locked fidelity of the neural activity [36]. The DC-to-AC ratio increases with the
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Figure 3.1: Simplified scheme of Zilani’s model of the auditory periphery. Figure
adapted from [117], Fig. 2.

oscillation frequency, explaining the loss of phase-locking over a certain limit frequency [36]
(see Sect. 2.1.1.2). The overall effect is often modelled as a lowpass filter applied after the
half-wave rectification [36].

In Zilani’s model, different hair-cell transduction processes are applied over the wide-
and narrow- filterbank outputs; the DC component is only applied over the high-frequency
channels of the wide gammachirp [113].

Auditory nerve activity

Hair cell’s electric potentials release glutamate into the synaptic interface between the hair
cell body and the auditory nerve dendrites, generating the earliest neural activity signal in
the ascending auditory pathway [3]. Glutamate release is modelled as a stochastic process,
whose instantaneous probability is related to the hair cell potential by means of a monoton-
ically increasing function known as the synaptic gain [117]. Synaptic gain parameters can
depend on the centre frequency of each cochlear channel [117].

The release probability is also constrained by the availability of the neurotransmitter in
the presynaptic area [36]. After a series of intensive release events, the reservoir of glutamate
drops off, causing a decrease in the spike rate at the auditory nerve; this phenomenon is
known as adaptation [36]. Up to three different adaptation time constants have been ob-
served in the auditory nerve [36]. Adaptation is modelled using a cascade of three reservoirs
of neurotransmitters feeding each other in a hierarchical way, and presenting different replen-
ishing time constants [36]. Besides the exponential adaptation resulting from the reservoir
dynamics, further short- and long-term adaptation effects, following power-law dynamics,
are observed in the auditory nerve [117]. Zilany’s model considers power-law adaptation in
a phenomenological way, on top of the reservoir effects [39,117] .

After spiking, neurons show a relaxation time of ∼ 330 ms during which a second spike
cannot be triggered: this is known as the absolute refractory period of the cell [13]. More
realistic models of the auditory nerve include the effect of refractory periods for greater
accuracy [36].

Top-down efferents

Several components of the peripheral system can be actively modulated by top-down effer-
ents originated in the auditory pathway [36]. Although these kind of modulatory effects are
poorly understood, a model incorporating top-down modulation of the cochlea showed that
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the efferent system can regulate the firing rate of selective tonotopic regions of the auditory
nerve [118].

Subcortical models of pitch processing

Models of pitch processing have been traditionally divided in two families: spectral models,
that use the spectral code of the cochlear channels to predict the perceived pitch value; and
temporal models, that use the temporal code of the phase-locked activity in the auditory
nerve instead [5, 119]. These, perhaps ad-hoc, simplifications are, however, under close
review [120]. Dual theories suggest that both, spectral and temporal codes, are used during
pitch decoding [5, 119]. In this section, we will first briefly introduce the spectral models,
to then focus on temporal models combining phase-locked activity across different cochlear
channels in order to extract a robust subcortical representation of pitch.

Spectral models

Pitch phenomenology is traditionally described on the basis of two different pitch percepts:
spectral or periodicity pitch, evoked by the periodic components of pure tones and harmonic
complex tones whose harmonics are distinctly resolved in the cochlea; and residue pitch,
encompassing the remaining effects, ranging from iterated rippled noises to the pitch evoked
by HCTs with unresolved harmonics and missing fundamentals [121] (see §2.2.3.1). Spec-
tral theories aim to explain the mechanisms underlying periodicity pitch, suggesting that a
different process is responsible for residue pitch.

Whilst PTs elicit a higher activation in the cochlear channels with centre frequencies
near the frequency of the tone, HCTs elicit activation across several cochlear channels (see
Figures 2.3A and B). Modern spectral models propose that a set of harmonic templates map
different activation patterns into a single pitch representation [119]. A biologically plausible
model of the early stages of the auditory system suggest that connectivity patterns resulting
in such harmonic templates would naturally arise in the plastic human brain after a long
exposure to different kinds of sounds [121].

Harmonic templates can successfully predict the perceived periodicity pitch in single
tones [119]. Spectral models extend the harmonic templates to composite tones evoking
different simultaneous pitch values using harmonic sieves, comprised in a phenomenological
model proposing that single-pitch templates are matched one after another against the
cochlear spectral input in an iterative way by a connected neural network [122]. After finding
a template matching part of the spectral input, the model decodes the corresponding pitch
value, subtracts the template from the input, and repeats the matching procedure until the
input is exhausted [119].

Autocorrelation models

Pitch as an autocorrelation

Temporal models assume that periodicity and residue pitch are elicited by an unique mech-
anism, proposing a more general definition of pitch: given a single tone’s sound waveform
x, its pitch is equivalent to the pitch evoked by a sinusoid with period T , where T > 0
is the minimum finite repetition time that maximises the autocorrelation function of the
waveform; see Equation (3.1).

T = min
T>0

(
arg max

T
(r(T ))

)
, r(t) =

∫
dt x(t)x(t− T ) (3.1)
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This definition predicts the pitch value evoked by most stimuli (an exception is the family
of alternated-phase harmonic complex tones, that we will discuss shortly) and will be useful
to link phenomenology to pitch modelling, as shown below.

General formulation of the autocorrelation models

The autocorrelation models of pitch are a family of models suggesting that the auditory
system exploits the principles of Equation (3.1) in order to extract the pitch value from
phase-locked activity in the auditory nerve [17, 21, 123–125]. The first formulation of the
autocorrelation models by Licklider [123] introduced a mechanism based on two operations,
delay and multiply, subsequently applied over the phase-locked activity of each cochlear
channel.

Delay refers to a systematic delay of the spike trains (since spiking activity in the AN
is stochastic, models often use the instantaneous probability of spiking pk(t) rather than
the actual spike trains) in each cochlear channel k by a series of delays δtl, representing
candidate pitch values Tl [17, 123, 124]. Multiply is a second operation that compares each
of the delayed spike trains pk(t− δtl) with the original activity pk(t) [17,123,124].

Results of the delay-and-multiply operation are further integrated using a time constant
τA ' 2.5 ms [123]. A later reformulation of autocorrelation by Meddis and colleagues [124]
suggested that contributions from the analysis across different cochlear channels should be
aggregated into a final representation Al(t), termed the summary autocorrelation function
(SACF); see Equation (3.2).

τAȦl(t) = −Al(t) +
∑
k

pk(t) pk(t− δtl) (3.2)

The SACF of the neural activity elicited by a single tone with fundamental periodicity
T = 1/f0 presents a series of maxima at δtl = 0, and at successive multiples of the tone’s
period δtl = T, 2T, 3T, ...; Figure 3.2 depicts the SACF associated to several example tones.

Pitch values and SACF representations

According to Equation (3.1), the evoked pitch corresponds to the smallest non-zero lag δtl
where the SACF presents a maximum; and the strength of the evoked pitch is often related
to the activation of the peaks relative to the baseline in the SACF. Selecting this value in
the SACF presents, however, several challenges [126]. Placing a heuristic towards low values
of the period leads to the peak at T = 0, but avoiding the neighbourhood of such a peak
would neglect higher pitch values that might be represented in that region [119].

Considering a higher limit of 1600 Hz in the models’ frequency range and a bias towards
low periods is generally enough to explain the pitch of a wide set of stimuli; however,
these heuristics do not work with simultaneous pitch values from composite tones [126]. An
alternative strategy is to compute the SACF in non-overlapping groups of cochlear channels,
according to their dynamical properties. Using this approach, Balaguer and colleagues [126]
accounted for perceptually segregated simultaneous pitches in a phenomenological fashion.

Raw SACF patterns have been successfully used to predict frequency discrimination
thresholds [17], indicating that they might be the final representation of pitch in auditory
cortex. Under this framework, simultaneous pitch values could be simply represented as
overlapping SACF patterns. However, SACF patterns alone cannot be used to explain how
listeners judge if a pitch value is higher or lower than another [119].

33



3.2. Subcortical models of pitch processing

Figure 3.2: Averaged SACF associated to different stimuli. The plots picture the
averaged SACF (between 100 ms and 200 ms) of the neural activity simulated for different
sounds by Zilany’s peripheral model [39]. Stimuli are: a) Pure tones with different loudness
and frequency. b) Harmonic complexes with different fundamental frequencies and spectral
envelopes. c) Iterated rippled noises with different delays d = 1/f0 and number of iterations.
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Physiological basis of autocorrelation

The delay operation of the first autocorrelation models required a set of delay lines intro-
ducing lags up to 33 ms in the auditory nerve activity. These delay lines have not been
experimentally observed and lack solid physiological basis [119].

An alternative mechanism, involving chopper neurons in ventral cochlear nucleus and
coincidence detectors in inferior colliculus, has been shown to respond in a similar way as the
autocorrelation function [17,127]. The alternative model exploits synchronisation properties
between the units at CN and IC, that respond selectively to certain periods regulated by
the recovery time constant of potassium ions in the chopper neurons [17]. Chopper neurons
satisfying the model requirements have been found in CN, making the mechanism much
more plausible than its predecessor. Moreover, this idea is coherent with fMRI findings
reporting pitch-selective activity arising in CN and IC during pitch processing [19].

The role of cochlear spectral decomposition

Applying the autocorrelation function over each of the cochlear channels is crucial to ex-
plain the pitch elicited by the ALT HCTs with a missing fundamental: when the harmonics
are individually resolved in different cochlear channels, the autocorrelation function at each
channel peaks for lags δtl = 1/f0, 2/f0, 3/f0, ...; thus, the lowest period T maximising the
autocorrelation function is T = 1/f0, corresponding to the fundamental frequency of the
complex. However, if the harmonics are not independently resolved in the cochlea, the entire
waveform, that is approximately periodic in T = 2/f0 (see Figures 3.3A and B), is repre-
sented in a single channel whose autocorrelation function peaks at δtl = 2/f0, 4/f0, 6/f0, ...;
thus predicting a pitch of T = 2/f0, according to the psychophysical observations. Averaged
SACF for both cases are depicted in Figures 3.3E and F.

Understanding the role of cochlear spectral decomposition leads us to a more accurate
definition of pitch: the most repeatedly found period T , as defined in Equation (3.1), across
the different spectral bands of the cochlear channels.

Models based on spike coincidences across cochlear channels

Although the autocorrelation models are based on spectral analysis of the phase-locked ac-
tivity in each separate cochlear channel, the SACF, final output of the model, reports peri-
odicities systematically found across several channels [17]. An alternative neurophysiological
implementation of such principles could be based on computing spike coincidences [18] or
finding systematic phase-shifts [44] across cochlear channels, and then performing a spectral
analysis over the resulting spike trains.

Phase sensitivity in autocorrelation

A major disadvantage of the earlier autocorrelation models of pitch is that they are insensible
to the relative phase of the sound’s components that are resolved in different cochlear chan-
nels [119]. This insensibility is crucial to explain why ALT HCTs with resolved harmonics
elicit the same pitch than HCTs with other phase arrangements, but phase interactions are
necessary to explain subtle shifts in the perceived pitch values in experiments with shifted
HCTs [21, 128]. Although extensions of the autocorrelation models can explain these shifts
in a phenomenological way [21], they lack biophysical realism. Approaches considering co-
incidences across cochlear channels allow for across-channel interactions, which allows them
to account for such derived phase effects with a greater biophysical realism [18,129].
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Figure 3.3: Averaged SACF derived for two ALT HCTs with missing fundamen-
tals and same f0 = 250 Hz but eliciting different pitch vales. Top) 50 ms segment of
the stimulus waveforms, orange segments comprise a single repetition cycle; a) an ALT HCT
with the first six harmonics, b) an ALT HCT with harmonics 15th to 25th. Middle) ACF of
each of the 40 cochlear channels considered in the peripheral system [39]: c) harmonics are
independently solved across different channels, d) harmonics collude in the high-frequency
channels. Bottom) SACF for both stimuli, derived by adding up the individual cochlear
contributions, and averaged between 100 ms and 200 ms after stimulus’ onset: e) SACF pat-
tern corresponds to a perceived pitch of T = 4 ms = 1/f0; f) SACF pattern corresponds to
a perceived pitch of T = 2 ms = 1/2 f0.
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STDP-based coincidence detectors

One of the models, developed by Erfanian and colleagues [129], suggests that auditory
nerve activity from different cochlear channels is analysed by a network of stereotypical neu-
rons whose connections are dynamically adjusted following spike-time-dependent plasticity
(STDP)1. The neural network receives inputs from a phenomenological model of the audi-
tory periphery, and adjust the neural connections according to STDP rules. After ∼ 5000
seconds of learning, the network is tuned to find synchronous activity across cochlear chan-
nels, whose inter-spike interval is predictive of the elicited pitch in pure tones and harmonic
complex tones with and without missing fundamentals [129].

Slope coincidence detectors

A very recent biophysical model by Huang and Rinzel [18] introduced a more sophisticated
neuron receiving phase-locked activity from different cochlear channels [18]. Huang’s neu-
ron acts as a slope detector, that activates.14159265359Qq in phase with coincident spikes
received across several cochlear channels [18]. As in the previous model, the inter-spike
interval of the output reflects the elicited pitch in pure tones and HCTs, but also in click
trains and iterated rippled noises [18]. More importantly, the output activity is loudness-
and timbre- independent [18], and the neuronal model shows a great biophysical detail.

Neural representations

Huang suggests that the temporal structure of the output of these kind of models might
conform the final representation of pitch [18]. Phase-locked spike trains can be used to
perform comparisons across tones, and test which of two tones presents a higher pitch
value [18].

However, the lack of phase-locked activity in cortex over 200 Hz shows that pitch cannot
be represented as a temporal code in auditory cortex [16]. Thus, these models need a later
step, also implemented subcortically, transforming the inter-spike-intervals from the spike
trains into a rate-place representation.

This process can be carried out by finely tuned oscillators or chopper neurons in cochlear
nucleus as those of the autocorrelation models [18]. In any of the two cases, the output of the
transformation would yield a similar trend as the SACF patterns: a first peak of activation
corresponding to the period of the elicited pitch δtl = T , and subsequent peaks on periods
characterising the lower harmonics δtl = 2T, 3T, 4T, . . . .

Cortical models and adaptive strategies

In this section, we will review three families of models that will help us to contextualise
our contribution. Two of those families are based on adaptive pitch processing and present
subcortical and cortical stages; the third family describes the mesoscopic dynamics of cortical
processing in a general way, not specific to pitch processing.

Adaptive models based on the SACF

Although the SACF itself displays low sensitivity to across-channels phase interactions, stim-
ulus’ features affecting pitch strength are also present in fast variations of the SACF that

1STPD is a learning framework considering phenomenological rules, first introduced in their modern
form to explain sound localisation, that have been widely used since to explain plastic processes in a general
way [130]
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can be measured using short integration windows [1, 21]. However, longer integration win-
dows are necessary to extract a stable representation of the autocorrelation output elicited
by low-frequency tones.

A partial solution is to consider that the integration τA in Equation (3.2) is lag-dependent;
i.e, that each delay line δtl is integrated with a different time constant τA → τl = 1.25 δtl,
with a minimum value of τl ≤ 2.5 ms [125, 131]. In addition, this lag-dependent integration
introduces a natural bias towards smaller periods δtl that accentuates the first peak in the
autocorrelation pattern, allowing us to identify the perceived pitch with the largest peak
of activation [21, 125]. Some of these models further present a cascade of processes using
different temporal integration mechanisms [21,125,132].

The generative pitch model and pitch change

The generative pitch model (GPM) addresses the problem of balance between integration and
resolution in pitch processing. GPM presents a cascade of integrators that communicate with
each other in a bottom-up and top-down manner [21], in agreement with LFP observations
about the hierarchical organisation of Heschl’s gyrus [26]. GPM is focus on change detection
in pitch sequences and pitch gaps, but it is also able to extract, in a phenomenological way,
the pitch value of a wide range of challenging stimuli [21].

Top-down efferents allow GPM to dynamically tune the integration constants along the
cortical cascade, in order to selectively capture short- or long- term temporal structures
in the stimulus’ input [21]. The integrators described in this model follow formal neural
ensemble dynamics and are plausible in terms of modelling principles [21]. The adaptation
of the integration windows in GPM can also be explained in terms of interacting neural
ensemble models, but the criteria underlying the adaptive integration was chosen ad-hoc
and lacks biological realism [21].

Nevertheless, GPM’s adaptive top-down mechanism has been connected with physiolog-
ical elements of the N100, relating the mean firing rate of the populations encoding the
pitch value with the amplitude of the neuromagnetic transient elicited by a wide range of
stimuli [1, 21]. The smoothed derivative of the activity at this population has also been
found predictive for the POR latency in iterated rippled noises [21].

However, the connection between the GPM activity and the derived fields also lack of
biological realism: we would expect the whole mass of neural ensembles to be responsible for
the evoked fields [133, 134], rather than a single population whose selection depends on the
elicited pitch of the stimulus [21]. Thus, these two correlations seem to reflect phenomeno-
logical aspects rather than the actual neural mechanisms underlying pitch processing.

For instance, the peak of the response of the model at the population encoding the
stimulus pitch value shows a dependence with pitch strength sourced in the shape of the
SACF input [21]. Since the POR depth depends linearly on pitch strength [1, 22], it seems
likely that the correlation between the GPM activity and the MEG signal is sourced in this
common correlation [1].

The auditory image model

The Auditory Image Model (AIM) introduced by Patterson and colleagues [128,132,135] uses
a phase-sensitive variation of the autocorrelation function during the subcortical processing
known as strobed temporal integration (STI). In STI, the autocorrelation processes in each
cochlear channel is substituted by a crosscorrelation between the auditory nerve activity and
a train of strobe pulses, consisting of a leaky aggregation of the phase-locked spike trains
between peaks of activation [135]. Sensitivity to several times scales is achieved by dynamic
tuning of the pulse detector threshold [135].
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The stabilised auditory image (SAI) is the cortical representation of the STI, designed
to simulate a highly idealised neural representation of the auditory stimuli, and assumed to
underlie the first conscious awareness of a sound [132]. SAI’s pitch representation resembles
that of the autocorrelation patterns: the characteristic period of the first peak after the
zero pole corresponds to the predicted pitch value, whilst the ridge height of the peak is
predictive of the perceived pitch strength [136].

Although pulse trains showing similar properties as the strobe pulses of AIM have been
observed in alive octopuses [119], this model is often regarded as highly idealised. For
instance, there is no physiological candidate mechanism able to implement the adaptive
tune of the strobing threshold [135].

MEG studies have qualitatively connected different components of the AEFs with AIM-
related processes [89, 108, 137]: the sustained field has been connected with activity in the
SAI and the N100 with its derivative [108]. However, these parallelisms reflect an abstract
correspondence rather than a functional one: AIM does not attempt to explain how these
processes arise in biophysical terms and it fails to perform quantitative predictions of their
properties [1].

Dynamic causal modelling

Generative models and DCM

Dynamic causal modelling (DCM) [138–141] is a formal modelling framework designed
to analyse mesoscopic (e.g. fMRI, local field potentials, or E/MEG) cortical recordings.
DCM assumes that the observed data can be explained by means of mesoscopic interac-
tions between a finite number of cortical regions, receiving stereotypical idealised thalamic
inputs [141]. Neural parameters characterising the dynamics of and interaction between
cortical regions are tuned using Bayesian optimisation [141].

DCM is often regarded as a generative modelling framework [138]. For instance, In the
E/MEG domain, DCM tests candidate configurations by deriving the electromagnetic fields
that the candidate dynamics would have elicited [133]. Bayesian optimisation is used to ad-
just the parameters of the cortical network in order to maximise the fit between the observed
and generated fields [133]. Prior positions and orientations of the cortical generators are of-
ten calculated via parametric dipole fitting analysis. More sophisticated DCM formulations
consider the whole cortical tissue as a continuous neural field [142].

Cortical columns in DCM

DCM cortical networks consist of a number of interconnected cortical columns. Columns
are modelled as blocks with three neural ensembles representing: 1) pyramidal excitatory
neurons (PE), 2) spiny stellate neurons (SS), and 3) inhibitory interneurons (II) [141]. Each
ensemble reflects properties of neurons located in different cortical layers.

Thalamic input is fed directly to the SS ensemble, which further communicates with the
II and PE populations [141]. E/MEG fields are derived from the activity of the pyramidal
excitatory neurons [133]; the activity of the II and PE ensembles are considered as hidden
factors in the model.

DCM cortical columns are organised in larger hierarchical networks. Connections be-
tween columns are considered bottom-up if they connect a presynaptic PE ensemble with
a postsynaptic SS populations and top-down if they target PE or II ensembles [143]. The
specific number of columns considered in a DCM is a prior parameter of the model.

Within a column, each neural population is modelled according to neural ensemble the-
ory. Population dynamics are based on results from statistical mechanics, deriving the
evolution of statistical descriptors of the neural population (e.g. the spiking probability
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distribution) in aggregations of neurons. Dynamics describing the PE, SS and II ensemble
evolutions are often structurally similar, but display different parameters [141].

The Laplace assumption

Parameter fitting in generative models is computationally expensive, since network dynam-
ics have to be simulated in each iteration of the optimisation process. DCMs alleviate
the computational cost by adopting the Laplace assumption, based on the hypothesis that
the spiking probability distribution of the neurons within an ensemble follows a Gaussian
distribution [144]. The Laplace assumption simplifies several dynamic properties of the en-
sembles, making them analytically tractable and notably reducing the computational cost
of the simulations [144,145].

Similarly, synaptic inputs are modelled as either Gaussian processes or as constant values,
which further simplifies the network dynamics [145].

Limitations making DCM unfit for our investigation

Although DCM is a powerful tool to establish the hierarchical role of different cortical regions
during neural processing, its limitations make it unfitted for our purposes.

A first limitation is grounded in the spatial resolution of E/MEG: spatial scales are too
large to represent pitch-selective regions responding to different pitch values in the human
audible range. In a study using intracranial LFP [26], which presents a higher signal-to-noise
ratio than E/MEG and thus a finer spatial resolution [24], a DCM analysis divided Heschl’s
gyrus into three regions.

In contrast, a mechanistic explanation of cortical pitch processing would require us to
distinctly model the behaviour of pitch-selective populations within alHG, which requires
a resolution two orders of magnitude higher [21]. MEG recordings during pitch processing
could be modelled considering a single observable, generated using the aggregated activation
in alHG, and regarding the dynamics of the individual pitch-selective ensembles as hidden
factors. However, DCM considers one observable for each separate cortical column [141].

Moreover, the dependence of the features of the evoked fields with the stimulus’ pitch
cannot be modelled using DCM, due to the simplicity of the thalamic input considered in
this framework. Complex input structures, that would increase the computational cost of
the Bayesian optimisation up to intractable levels, are necessary to model the dependency
of the observed fields with the stimulus’ features.

A case study on cortical processing of pitch strength

In this Section, we will introduce a case study on pitch strength prediction combining mod-
elling and MEG recordings using abstract pitch perception models. These results were
extended and published recently by the authors of this thesis [1].

Introduction

Auditory stimuli that display different attack (onset) and decay (offset) times, are said
to be temporally asymmetric [135]. Ramped and damped stimuli, consisting of a sinusoid
multiplied either by a periodically rising (ramped) or decaying (damped) exponential function
[114,135] (see Fig 3.4), enable us to study temporal asymmetry in a systematic fashion.

In this case study, we used a family of 10 different stimuli, consisting of concatenations
of 20 repetitions of either a ramped or a damped sinusoid, modulated with five rise/damp
exponentials with different half life times: 0.5 ms, 1 ms, 4 ms, 16 ms, and 32 ms [135]. The
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Chapter 3. Subcortical processing and abstract cortical models

Figure 3.4: Waveforms of ramped and damped sinusoids. Ramped (left) and
damped (right) sinusoidal waves with half-life times (T1/2) of 0.5, 1, 4, 16, and 32 ms used in
the experiment. Note the two periodicities present in the stimuli corresponding to the car-
rier (1000 Hz) and the repetition period (20 Hz) of the ramped/damped modulation. Figure
taken from [1], Fig 1.

concatenations always elicit the pitch of the carrier, set to 1000 Hz in this experiment [135];
however, whilst ramped sounds are perceived as continuous tones, damped sinusoids are
perceived as a drumming sound with a lower pitch strength [135].

Ramped and damped sinusoids present identical long-term Fourier spectra; hence, au-
tocorrelation models cannot fully explain such perceptual differences [135]. Here, we will
use two models incorporating stimulus-dependent adaptive processing of the auditory nerve
activity, the generative pitch model (GPM; see §3.3.2) and the auditory image model (AIM;
see §3.3.3, to investigate the perceptual differences between these two families of stimuli [1].

Moreover, we will show that the N100 morphology of the auditory evoked field elicited
in anterolateral HG reflects processing of temporal asymmetry in auditory cortex, and that
the GPM dynamics are able to account for such dependence [1].

Experimental procedures and modelling approach

Psychoacoustic measurements

We performed psychoacoustic measurements of the pitch strength elicited by each of the 10
different stimuli described above. Modulated sinusoids were presented in a single block of
consisting of all possible combinations of pairs of non-identical stimuli (a total of 45 pairs, 90
trials) [1]. In each trial, listeners had to indicate in a two-alternative task without feedback
which sound of the pair was perceived as more tonal. After a training session, the block was
presented just once. A scale for the relative pitch salience was derived from the results of
the paired comparison experiment, using the Bradley-Terry-Luce (BTL) method [146].
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3.4. A case study on cortical processing of pitch strength

Neuromagnetic data

Auditory evoked fields were measured by our experimental colleagues in Heidelberg Univer-
sity. Fields were averaged over an epoch from -500 ms to 1400 ms. A two-dipole model was
fitted based on the pooled 16 ms and 32 ms ramped and damped conditions, assuming that
the N100 response evoked by all stimuli had the same generators in auditory cortex. Dipole
sources were localised in lateral Heschl’s gyrus [1].

GPM-derived evoked fields

The first derivative of the GPM output has been shown to be correlated with available
neuroimaging data associated to the perception of Iterated Ripple Noises [21]. In the present
study, we used a similar approach to compare the dynamics of these predictive units with
the morphology of the N100 response evoked by the each of the ramped and damped stimuli.

For each of the 10 stimuli, we matched the response of the model’s top layer at the pitch
value prediction to the amplitude of the evoked response within a time window of 50 ms
surrounding the N100 peak [1]. To fit the peak, we proposed a linear relationship between
the amplitude of the model and the amplitude of the MEG signal (see e.g. [142]).

The linear fit was cross-validated across subjects as follows: first, we performed an
individual linear fitting for each of the N = 27 subjects in the experimentation [1]. Then,
parameters of the linear fits were fixed and tested using the evoked fields of the remaining
N − 1 subjects, yielding to a total of N(N − 1) = 702 cross-validation folds per stimuli [1].

Results

Figure 3.5 summarises the main results of the case-study: Figure 3.5A shows perceived pitch
strength; Figure 3.5B shows the pitch strength predicted by AIM as the mean ridge height
of the SAI at the value of the perceived pitch; Figure 3.5C shows the N100 amplitudes;
and Figure 3.5D shows the N100 amplitudes predicted by GPM as the maximum of the
soft-derivative in a 50 ms window surrounding the N100 peak latency [1].

Pitch strength. Pitch strength increased with modulation half life time values T1/2 for
both, ramped and damped sounds; moreover, the pitch of the ramped tones was generally
judged as more salient than the pitch of their damped counterparts. This difference reached
significance for the critical value T1/2 = 4 ms (p = 0.0077, n = 13) and for T1/2 = 1 ms
(p < 0.001, n = 13) [1].

N100 amplitude. N100 peak amplitude increased with the T1/2 of the stimuli for all
conditions and was significant for the transition from T1/2 = 1 ms to higher half-life values
(ramped: p = 0.0003, n = 837; damped: p = 0.0039, n = 837) and the transition from T1/2 =
4 ms to higher half life times in the damped case (p = 0.0146, n = 837) [1]. Consistently with
perceptual results, ramped tones evoked larger N100 than damped ones, with a maximal
difference at the critical value of T1/2 = 4 ms (p = 0.0008, n = 837) [1].

We found a high correlation between the magnitudes of N100 and the relative perceived
carrier salience for ramped (R = −0.9597, p = 0.0097) and damped (R = −0.9867, p =
0.0018) stimuli [1].

AIM predictions. Although the trends in Figure 3.5B seem to diverge from the percep-
tual results in Figure 3.5A, there is a high correlation between the AIM predictions and the
measured perceptual trends (ramped: R = 0.978, p < 0.05; damped R = 0.978, p < 0.05) [1].
The divergence between the absolute values of the trends for ramped and damped sounds
can be attributed to non-linearities in the transference function mapping the height of the
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Figure 3.5: Comparison of the perceived salience, N100 magnitude, and the pre-
diction of the two models of pitch. a) Perceived salience estimated by the BTL method
and averaged across subjects (N = 13). b) SAI mean ridge height at the frequency of the
carrier (1 kHz). Ridge height was used to predict the perceived salience of the stimuli [132].
c) Magnitude of the N100 component averaged across subjects. d) Top-down modulated
model’s predictions for the amplitude of the N100m peak, computed as a linear transform
of the derivative of the activation of the top layer population evaluated at the frequency
corresponding to the stronger model response. Significant correlations were found between
perceived saliency 3.5a) and N100m magnitude (3.5c); between the perceptual observations
3.5a AIM responses (3.5b) and between the N100m magnitude 3.5c) and GPM predictions
(3.5d). Error bars represent SME. Figure adapted from [1], Fig 4.

SAI ridge to the perceived pitch strength: although this function has been described as
monotonically increasing [136], the exact shape has not been studied in the literature.

Nevertheless, the observed correlation suggest that the strobed integration process effec-
tively extracts the temporal asymmetries responsible for the differences in sensation from
the auditory nerve activity [1].

GPM predictions. Differences between model simulations for the N100 amplitude of
ramped and damped stimuli were highly significant for a T1/2 = 4 ms stimulus (p <
0.0001, n = 702), consistent with the psychoacoustic and neuromagnetic results [1]. More-
over, modelling predictions show a strong linear correlation with the experimental N100
magnitude for both, ramped (R = 0.9972, p = 0.0002) and damped (R = 0.9899, p = 0.012)
stimuli [1].

Conclusions

Results of this case study, succinctly summarised here, confirm that the alHG sources of the
N100 are related to pitch decoding, as frequently reported in the literature (see §2.3.2.4).
More importantly, we found that rapid stimulus-adaptive processing is a key element to
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understand the perception of asymmetric sounds and the observed differences in the N100
morphology [1].

Spectral analysis on the basilar membrane and the neural transduction process enhance
temporal asymmetry to a certain extent [147]; however, this enhancement is not sufficient
to explain perceptual effects [147]. Classical autocorrelation models [17, 124, 125], although
successful in pitch extraction, are unable to extract a faithful representation of temporal
asymmetry in the auditory nerve [1]. In contrast, the two idealised adaptive models con-
sidered here, successfully amplified this temporal asymmetry and predicted the perceived
differences between ramped and damped stimuli.

Furthermore, GPM accurately predicted the magnitude of the evoked N100, suggesting
that temporal asymmetry encoding might be mediated by a hierarchical process with top-
down driven stimulus-specific integration windows [1].

In summary, our results provide for evidence of the N100 magnitude indicating the
presence of a neurophysiological mechanism encoding pitch strength in auditory temporal
asymmetry, and suggests that pitch salience asymmetry can only be explained by means of
adaptive windows of temporal integration [1].

Although AIM and GPM allow us to understand key aspects of temporal pitch pro-
cessing, we need to consider a greater level of biological detail in order to unravel the
neurophysiological underpinnings of the pitch-related auditory evoked fields.

Discussion

Subcortical mechanisms of spectral processing

Temporal models present a larger prediction power than the spectral counterparts. Although
spectral models equipped with harmonic templates and sieves can account for the perception
of periodicity pitch, temporal models like the SACF and AIM do not distinguish between
periodicity and residue pitch, explaining both phenomena as two expression of a general
processing mechanism [119]. However, it should be noted that temporal models do not make
use of temporal information alone; on the contrary, the spectral decomposition performed by
the cochlea and the propagation of tonotopy along the subcortical pathway plays a crucial
role on the processing of complex stimuli (see §3.2.2.5).

Within the temporal models, both autocorrelation and AIM are good candidate mech-
anisms transforming the phase-locked temporal code into a place representation, akin to
the periodotopic arrangement found in inferior colliculus (see §2.4.2). However, the thresh-
old adaptation mechanism of the strobed integration in AIM lacks biological realism [135],
whilst autocorrelation is blind to fast changes in the stimulus’ waveform and across-channel
phase interactions that can affect the perceived pitch strength and provoke subtle pitch value
shifts [21]. Moreover, both the SACF and AIM outputs vary with loudness [17,135].

Loudness dependence can be fixed normalising the SACF representation [148]. Sensitivity
to fast changes in the SACF can be addressed in later cortical steps [21], but cortical models
describing how this sensitivity is achieved do not attempt to provide a biophysically realistic
description of the decoding process.

Huang’s slope coincidence detectors provide a mechanistic model to correct for loudness
and timbre dependence during the transformation, and further increase the sensitivity to
phase interactions [18]. However, this model does not explain how the temporal code is
transformed into a periodotopic representation as observed in inferior colliculus or expected
in cortex. An autocorrelation-like transformation of the temporal code generated by Huang’s
neurons would yield a reliable periodotopic code invariant to loudness and timbre; however, a
biophysically plausible mechanism in charge of such transformation has yet not been devised.
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Neural representation of pitch in the subcortical pathway

Although the underlying mechanisms vary, temporal models described above coincide in the
shape of the final representation of pitch derived form the spectral analysis of the phase-
locked activity across cochlear channels. The final representation follows a place rate code,
in the sense that pitch is conveyed by the firing rate (rather than the inter-spike intervals)
of different fibres in the auditory nerve.

In the aforementioned models, subcortical afferents are characterised by a characteristic
period δtl, and show a maximum activation when the auditory nerve phase-locked activity
presents a periodicity T = δtl. A given pitch value f0 is represented by a harmonic pattern
showing peaks of activation at all multiples of its fundamental periodicity, δtl = n/f0, n =
0, 1, 2, 3, . . . ; see Figure 3.2. Accordingly, an EEG study exploiting habituation effects found
that the neural representations of the pitch sensations evoked by harmonically related IRNs
are more similar than the neural representations of non-harmonically related tones [149].

Although harmonic patterns of activation in inferior colliculus’s periodotopic axis have
not been robustly reported in the literature, harmonic co-activation in frequency-tuned
neurons has been observed in a large number of mammal intracranial [62] and human fMRI
[59] recordings in cortex.

Pitch models and the auditory evoked fields

POR amplitude The correlation between the POR depth and the perceived pitch strength
resembles the correlation between pitch strength and the relative activation of the SACF
and SAI peaks with respect to the baseline activity [1, 21, 136]. Thus, the enlargement of
the POR amplitude with tonal salience can be explained as a consequence of the increase of
the signal-to-noise-ratio in the SACF and the SAI with pitch strength.

POR latency Temporal dynamics of subcortical systems do not explain the dependence
of the POR with four times the stimulus’s period (see §2.3.2.4). Integration constants
in autocorrelation models suggest that enough information to extract a pitch value from
inter-spike intervals is gathered after ∼1.25 cycles of the periodic stimulus’s. Thus, current
subcortical theories of pitch processing are unable to explain the observed dependence.

Cortical models essentially integrate the subcortical input, and they do not introduce
additional pitch-dependent delays that could account for the extra ∼2.75 cycles. Moreover,
GPM and AIM perform dynamic tunings of the integration time constants, which depend on
timbre and loudness variations [21, 135]; thus, they cannot explain why the POR dynamics
are exclusively modulated by pitch properties.

Sustained field Although it has been suggested that the sustained field might reflect
integrative processes modelled by AIM [108], the SF is elicited around 200–300 ms after
tone’s onset, whilst AIM starts integrating only a few milliseconds after tone’s onset. Cortical
models based on autocorrelation are equally unable to explain the late onset of the SF.

Potential mechanisms of cortical pitch processing

Despite the success of temporal models of pitch in explaining psychophysical phenomena, the
models reviewed in this chapter fail to explain the specific neural and synaptic mechanisms
underlying cortical pitch processing, and how they elicit the associated cortical responses in
Heschl’s gyrus.

Candidate mechanisms of cortical pitch processing could be based on the transforma-
tions mapping the subcortical representation of pitch, here assumed to consist of harmonic
patterns of activation as described above, into a receptive-field-like representation where
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a single neural ensembles activates in response to each of the pitch values represented in
cortex.

This transformation echoes the earlier harmonic templates of the spectral models, where
cochlear patterns of activation are mapped to single pitch values. However, template match-
ing operating on the subcortical representations considered above presents two advantages:
first, unlike in the cochlear template matching, representations evoking a given pitch value
present similar shapes [17]; second, the frequency resolution of the SACF for complex stimuli
is much narrower than that of the cochlea [119].

The idea of template matching in cortex is also be compatible with the dependence of the
POR’s latency, and the necessary tone’s duration for robust pitch labelling, with the pitch
value: integration across several period cycles is necessary to evoke a sufficient number of
peaks in the subcortical representation as to make the pattern unequivocally recognisable.

This idea will be explored in the next chapter, where we introduce a novel theory of
cortical pitch processing accounting for the onset and sustained dynamics observed in MEG
recordings.
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Chapter 4

Neural dynamics of cortical pitch
processing

Introduction

Biologically realistic theories of pitch often focus on the peripheral processing of input
sounds, whilst the specific role that auditory cortex plays in the processing pathway re-
mains a challenge. Models addressing cortical processing (e.g. [21,132]) often lack sufficient
mechanicistic detail. However, a physiological understanding of cortical processing might
be crucial to explain the origin of the cortical representation of pitch and the dynamics of
the elicited evoked fields.

In this chapter, we will introduce a novel theory of cortical pitch processing describing the
mechanisms mapping subcortical harmonic patterns of activation (see §3.5.2) into a stable
cortical pitch representation (see §2.4.2). Our candidate mechanism describes the rise of the
POR and the pitch-related sustained field, quantitatively predicts the POR’s morphology
and latency dependence on the tone’s elicited pitch, and explains the late onset and offset
dynamics of the pitch-related sustained field (see §2.4.4); for the first time to our knowledge.

Our cortical theory is embedded in a comprehensive model comprising peripheral, sub-
cortical and cortical processing.

The model

Overview

The model consists of several processing stages representing different hierarchical levels along
the auditory pathway. First, a subcortical array of idealised periodicity detector units, based
on the principles of autocorrelation (e.g., [17]), processes the spike trains generated by a state
of the art peripheral model [39]. The output of the periodicity detectors is then normalised
and used as the cortical model’s input as explained below.

The cortical model presents two processing layers, termed here the decoder and the sus-
tainer. These two networks are putatively located in adjacent locations of antero-lateral Hes-
chl’s Gyrus, each one consisting of a population of balanced E/I ensembles (see Figure 4.1).
The decoder effectively extracts the pitch value from the subcortical representation, whilst
the sustainer integrates the decoder’s representation and modulates its functioning through
top-down cortico-cortical efferents. This cortical arrangement is reminiscent of the network
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dynamics observed in other cognitive systems, where perceptual decisions propagate toward
higher cortical levels that further modulate the lower-level dynamics [150]).

Patterns of activation generated at the subcortical level present harmonic shapes that
peak at frequency values encoding the pitch of the stimuli and all their lower harmonics (see
bottom plots in Figure 4.1; more examples are plotted in Figure 3.2; a detailed discussion
on the origin of these patterns is provided in §3.5.2).

Each of the two cortical stages consists of a network of microcolumns (see §3.3.4.2) with

Figure 4.1: Basic schematics of the model. a) Cortical representation after the decod-
ing of the autocorrelation patterns depicted in (c). b) Model diagram. The model consist of
two networks, each with N = 250 columns (grey rectangles) modelled using one excitatory
(triangles) and one inhibitory (circles) ensemble. Each block represents a given pitch value
with periods ranging from 0.5 ms to 33 ms. The bottom network is the decoder, and the top
network is the sustainer. Excitatory (e) and inhibitory i populations are characterised by
their instantaneous average activity He,i(t, x); hat notation is used to represent variables in
the sustainer. Population activity depends on the total synaptic input of each population
x; see details in §4.2.5.1. c) Average autocorrelation patterns for three IRNs with different
pitch values.
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preferred frequencies ranging from 0.5 ms (2000 Hz) [21,125] to 33 ms (30 Hz) [77]. Columns
are modelled with two neural ensembles (see Figure 4.1): one excitatory, aggregating the
properties of the spiny stellate and pyramidal excitatory populations [141] (see §3.3.4.2);
and one inhibitory, comprising only inhibitory interneurons [141,150].

Together, decoder and sustainer effectively transform the subcortical input into a stable
firing-rate representation, reminiscent of a receptive field [57, 68, 120] (see top plots in Fig-
ure 4.1A). The transformation is mediated by a specific structure of connectivity patterns
of the cortical ensembles in the decoder layer (see Figure 4.2). Such a structure is designed
to facilitate the inhibition of lower harmonics during the integration and is inspired by har-
monic patterns of connectivity frequently reported in intracranial recordings of mammal
auditory cortex (see [62] for a review).

Figure 4.2: Connectivity weights. Matrices depict connectivity weights C∗∗αβ ∈ [0, 1]
between a presynaptic ensemble α (x-axis) and a postsynaptic ensemble β (y-axis). Matrices
in the top correspond to connections Cei (a), Cie (b), Cee (c), and Cii(d), between ensembles
in the decoder; bottom diagonal matrices, shown for completion, correspond to connections
Ĉee (e), Ĉei (f), Ĉie (g), and Ĉii (h), in the sustainer. Superindices i and e are respectively
used to denote inhibitory and excitatory ensembles.

The characteristic period of the column with the largest activity in the inhibitory en-
sembles in the decoder is predictive of the perceived pitch (but see §4.4.1). Pitch is as well
coded in the inhibitory and excitatory activity at the sustainer, as will be further discussed.
The equivalent dipole moment elicited in each of the two cortical networks is computed as
the aggregated activity of the pyramidal excitatory cells [133].

The following sections describe the model in detail, explaining the functioning and pre-
dictive power of the different components of the processing system. Although some of the
parameters of the model are specified in the text (specially for the subcortical system),
values for the cortical parameters are all provided in Table 4.1 for the reader’s convenience.
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Peripheral and subcortical processing

Cortical input is generated according to the summary autocorrelation function [21,125] (see
§ 3.2.2.2 for more details), which is here assumed to yield the neural representation of pitch
at subcortical stages.

Auditory nerve activity

Auditory nerve activity is generated using Zilany’s model of the auditory periphery [39,117],
a phenomenological model considering the non-linear response of the basilar membrane, the
asymmetry of the cochlear channel bandwidths, and two distinct adaptation mechanisms (see
Figure 3.1 and §3.1). Zilany’s model presents a very efficient computational implementation
that speeds up the simulations considerably; however, we do not expect significant differences
at the cortical level when using similarly sophisticated peripheral models such as the Meddis
comprehensive MAP [36] (see also §3.1).

Model parameters are set to consider 40 cochlear channels with centre frequencies be-
tween 125 Hz and 10 kHz, in agreement with the standard configuration used in previous
autocorrelation models that are able to account for the elicited pitch of a wide range of
stimuli [17].

Autocorrelation

Zilany’s model returns the probability of spiking pk(t) at each instant t and cochlear chan-
nel k in response to a given stimulus. The SACF A(t) associated to these spike trains is
calculated following Equation (3.2):

τnȦn(t) = −An(t) +
∑
k

pk(t) pk(t− δtn)

where n = 1 . . . N indexes the characteristic period δtn of the autocorrelation output. Inte-
gration constants τn = 1.25 δtn, with τn ≤ 2.5 ms (see §3.3.1 and [125,131]).

The model considers N = 250 linearly distributed delays δtn ranging from δt1 = 0.5 ms,
a conservative estimation of the phase-locking limit of the auditory nerve [64] (chosen here
to avoid interference with the zero lag of the SACF [119]; see §3.2.2.3 for more details) to
δtN = 33 ms, near the lower limit of pitch fmin ∼ 30 Hz [77].

As widely discussed in § 3.2.2.2 and §3.5.2, the SACF formulation yields prominent peaks
of activation An(t) at the delays characterising the harmonics of the period T characterising
the stimulus’ pitch; i.e, δtn = k T, k = 0, 1, 2, . . . . Classical patterns of activation are
depicted in Figure 3.2.

Regularisation

Integration dynamics of the cortical model are sensitive to the absolute amplitude of the
subcortical input: values under a certain threshold would fail to provoke a cortical reaction
at all, whilst activity exceeding the range of operability triggers extreme responses that
destabilise the model’s response.

However, due to its lack of biological realisms, the SACF amplitude depends strongly
on factors independent of pitch such as the spectral envelope and loudness of the stimuli,
potentially inducing changes in the cortical dynamics that are not observed in the experi-
mental data. The cortical model presented here focuses on the lemniscal ascending pathway,
and hence elements of the auditory sensation such as loudness are not modelled. More im-
portantly, the SACF is a highly idealized simplification of early representations of pitch and
hence only provides an approximate input to auditory cortex. Thus, we suggest that only

50



Chapter 4. Neural dynamics of cortical pitch processing

the relative height of the SAFC peaks, and not their absolute value, provides information
about the input stimulus [124].

Thus, we introduced a regularisation procedure with two main targets. First, to remove
the dependence of the absolute amplitude of the SACF peaks on the stimulus’ loudness
and timbre, guaranteeing that the cortical model response is only shaped by the relative
differences (rather than the absolute value) of the SACF harmonic patterns of activation.
Second, to reduce the variations induced by timbre in the signal-to-noise ratio of the SACF,
also removing spurious activation as the one elicited by white noises without pitch. After
this process, the regularised SACF is used as direct input for the cortical model.

SACF regularisation is carried out in three sequential steps: first, an adaptive multiplica-
tive normalisation adjusts the overall heigh of the SACF peaks so that all SACFs show the
same value at δt = 0; second, a fixed additive term effectively subtracts the SACF baseline,
attenuating signal-to-noise differences observed in SACFs elicited by sounds with different
timbres; third, the corrected SACF is rescaled by a multiplicative factor that transforms the
unit-less normalised SACF into units of firing rate (i.e, Hz). These three steps and their
biological substrate are discussed below.

Active normalisation. Since the subcortical input is provided in an idealised fashion ac-
cording to the principles of the SACF, the specific mechanisms underlying the normalisation
of the thalamic input were not modelled. Instead, we took a phenomenological approach
and divided the overall SACF response by a normalisation factor Z(t) [148], chosen as the
amplitude of the SACF peak at a hypothetical δt0 = 0. The activity of Z(t) is driven by
the same dynamics as the SACF:

τZŻ(t) = −Z(t) +
∑
k

pk(t)2 (4.1)

where τZ = 2.5 ms is the time constant corresponding to a zero lag [131]. Noisy stimuli
like iterated rippled noises yield rapidly changing normalisation factors Z(t) that affect the
stability of the regularised SACF. To overcome this problem, both SACF and Z(t) are
further lowpass filtered by a leaky integrator [125].

The time constant of the lowpass filter was set to τ = 20 ms in order to effectively smooth
out phase-locked oscillations over 50 Hz that could have been induced in the cortical model
through the SACF input. The frequency bound was set in agreement with electrophysiolog-
ical results in humans reporting a decrease of phase-locking fidelity in auditory cortex over
50 Hz [16].

Baseline removal. Baseline removal is performed by subtracting a fixed b0 = 0.35 of the
normalised SACF:

An(t)→ Alow
n (t)

Z low(t)
− b0

Baseline b0 was chosen in such a way that a white noise elicits a negligible activation in
the subcortical representation, according to fMRI results reporting pitch selective activation
in cochlear nucleus and inferior colliculus [19,50].

Rescaling. The normalised baseline-corrected SACF is then rescaled using a constant
multiplicative factor A0/(1− b0), chosen such that the height of the zero-pole of the SACF
(and thus the maximum possible value in the subcortical representation) equals A0. Ac-
cording to a previous model of cortical perceptual integration [151], the rescaling parameter
A0 = 75 Hz, yielding typical firing rates of ∼ 60 Hz.
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Figure 4.3: Effect of the regularisation procedure over the SACF. The figure com-
pares several raw (An(t), in blue) and regularised (Ân(t), in black) firing rates of the neurons
hypothetically carrying the SACF representations. a) Pure tones (f0 = 500 Hz) at differ-
ent intensity levels. b) Harmonic complex tones with the first six harmonics and different
fundamental frequencies. c) Harmonic complex tones eliciting virtual pitch (missing funda-
mental) with different spectral shapes; harmonics in the last panel are not independently
resolved in the cochlea. d) Alternate-phase HCTs (f0 = 500 Hz, see §2.4.1 and §3.2.2.5) with
resolved and unresolved harmonics. e) Click trains with different fundamental frequencies.
f) Iterated rippled noises with different number of iterations (delay d = 4 ms, equivalent
to f0 = 250 Hz); first panel shows a white noise (equivalent to 0 iterations). g) Bandpass
filtered IRNs (f0 = 250 Hz, 32 iterations) with different filtering configurations). When not
specified, loudness was set to 80 dB (SPL). Non-regularised SACF was scaled with a factor
0.03 in all panels for visualisation purposes.
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The regularised SACF Ân(t) is then defined as follows:

An(t)→ Ân(t) =
A0

1− b0

(
Alow
n (t)

Z low(t)
− b0

)
(4.2)

where Alow
n (t) and Z low(t) are the lowpass filtered SACF and normalisation factor.

Biophysical biological substrate of the regularisation process. The operations in-
volved in the regularisation process introduced above can be interpreted as instances of neu-
ronal normalisation, a canonical operation underlying neural computation widely present in
multiple neural systems [148]. Adaptive normalisation is typically exerted through global
inhibition modulated by the overall activity in the network [148]. At a subcortical level, this
inhibition could be driven by afferents from the nucleus reticularis thalami, a thin inhibitory
layer covering the thalamus [152].

Baseline removal is a simple non-adaptive linear operation that could be accounted for
by considering the input offset (I0 in Equation 4.4 and Figure 4.5) of subcortical neurons
integrating the ACF activity. The rescaling operation is used to transform the normalised
values of the SACF into a quantity with a physical meaning, and it should be understood
as a simple unit conversion.

The decoder

Decoder’s architecture

The decoder consists of N = 250 interconnected cortical microcolumns, each one modelled
as a circuit of two interacting neural ensembles: one excitatory (e), characterised by the
average firing rate He

n of the excitatory neurons in the column n; and one inhibitory (i),
characterised by Hi

n (see Figure 4.1B). Each excitatory ensemble n receives selective input
from the corresponding subcortical channel Ân(t). A large activation in a column n is
associated with a perceived pitch of δtn [21].

Excitatory ensembles in the decoder do not connect with other excitatory ensembles in
the network other than themselves, whilst inhibitory ensembles connect globally with other
excitatory populations as shown in (Figure 4.1).

Connectivity is characterised by stronger inhibitory-to-excitatory connections from a
population encoding the period δtn with populations encoding any of the lower harmonics
of such period (i.e, k δtn, k = 1, 2 . . . ; see full connectivity matrices in Figure 4.2). This
connectivity architecture is inspired in harmonic connectivity patterns found in mammal
auditory cortex [62, 153] and enables the system to facilitate the inhibition of the lower
harmonics elicited during the peripheral processing.

Excitatory populations encoding δtn connect to inhibitory populations encoding several
higher harmonics δtn/k, k = 1, 2, . . . Inhibitory ensembles present uniform connections to-
wards inhibitory ensembles in other blocks that shunt spurious and noisy inhibitory activity
induced by their multiple excitatory inputs (see Figure 4.2).

Decoding process

The decoding process is summarised in Figure 4.4 for a stimulus with f0 = 250 Hz, equivalent
to T = 4 ms. First, the autocorrelation function extracts periodicities in the auditory nerve
activity. A SACF channel becomes active (Ân(t) > 0) after t = 1.25 δtn. Thus, the first
peak of activation arises in the SACF only after t = 5 ms (see Figure 4.4A) and propagates
to the decoder layer, eliciting activation in the excitatory population He

n, characterised
by δtn = 4 ms (see Figure 4.4B). 5 ms later, the SACF presents another peak at n′, with
δtn′ = 8 ms, which in turn activates the excitatory population He

n′ (see Figures 4.4A and B).
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4.2. The model

After the third peak appears at An′′ and propagates to the decoder, the overall input
from populations He

n, He
n′ , and He

n′′ towards their common inhibitory target Hi
n is large

enough to elicit a strong activation of such inhibitory ensemble (see Figure 4.4C). In turn,
Hi
n strongly inhibits the excitatory ensembles of characteristic frequencies corresponding

to its lower harmonics. Thus, the increased activation of Hi
n results in the inhibition of

excitatory populations at n′, n′′, and successive low harmonics (see Figure 4.4B), effectively
transforming the harmonic patterns of the SACF into a single-peak representation.
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Figure 4.4: Illustration of the decoding process during the processing of an IRN.
Plots show the evolution of the key variables of the model during the processing of the first
200 ms of an IRN eliciting a pitch f0 = 250 Hz, equivalent to a period T = 4 ms. a)–e) Show
the evolution of cortical and subcortical populations encoding characteristic delays between
0.5 ms and 15 ms. a) Shows the activity of subcortical populations Ân(t). b) and c) show the
excitatory He

n(t) and inhibitory Hi
n(t) activities at the decoder, respectively. d) and e) show

the excitatory Ĥe
n(t) and inhibitory Ĥi

n(t) activities at the sustainer. f) Shows the activity
evolution at the ensembles encoding the pitch value, characterised by a delay d = 4 ms. g)
Shows the aggregated activity across all excitatory ensembles of the decoder; this quantity
is monotonically related to the elicited auditory fields (see §4.2.7.1).

Decoding onset

The decoding process is designed to progressively build up evidence of SACF-like harmonic
patterns characterising different pitch values. Requiring typically three peaks of the har-
monic series is a reasonable balance between efficiency (the resolution of each additional
peak takes around one extra period) and robustness (for instance, requiring only two peaks
would yield spurious activations in common higher harmonics in dyads, as will be shown in
Chapter 5). Moreover, resolving three peaks in the subcortical system takes around four
periods of the stimulus (the integration time constant of a subcortical population encoding
a delay δtn is 1.25 δtn [131]), which explains why tone’s durations of four times the period
are necessary for robust pitch discrimination [43] and why the pitch onset response latency
scales with four times the tone’s period [22].
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Chapter 4. Neural dynamics of cortical pitch processing

The sustainer

The functional role of the sustainer

As explained above, the decoding process is based on the inhibition of the activity at the
lower harmonics present in the subcortical representation, n′, n′′, . . . . Inhibition towards
those peaks is driven by the inhibitory population Hi

n, which in turn is fed-forward by the
excitatory inputs n′ and n′′ (see Figure 4.1B); i.e, precisely the ones that are being inhibited.
Thus, right after the decoding process is triggered, these excitatory ensembles are no longer
active and Hi

n quickly loses its driving input, causing the inhibition to decrease back to
baseline levels. Without the action of the inhibition, the harmonic peaks propagating from
the subcortical input would rise again in the cortical representation, ultimately triggering a
new decoding process. This happens even when the subcortical input does not present any
obvious discontinuity.

If cortical pitch processing would rely on a decoder of this kind, pitch would be extracted
from the subcortical representation over and over during the tone’s duration, eliciting a
rather discontinued sensation. However, pitch of continuous tones is experience as a con-
tinuous sensation [43], and the auditory evoked fields show a single pitch onset response in
cortex [105,107].

The role of the sustainer network is to maintain a stable pitch representation in the
decoder once it has been extracted from the subcortical representation. The sustainer re-
inforces the input at the inhibitory population n characterising the pitch, by replacing the
input from the inhibited excitatory populations at the lower harmonics n′ and n′′ through
an inter-layer recurrent process described below.

Sustainer’s architecture

Like the decoder, the sustainer consists of N = 250 microcolumns modelled as a circuit
with an excitatory ensemble, characterised by its average firing rate Ĥe

n, and a inhibitory
ensemble, characterised by Ĥi

n (see Figure 4.1B). Unlike the decoder, sustainer columns
do not communicate with each other: ensembles only connect to ensembles in their same
column (see Figure 4.2)

Ensembles at the sustainer receive direct input from their counterparts at the decoder:
excitatory populations at the decoder He

n connect with excitatory populations at the sus-
tainer Ĥe

n, and inhibitory populations at the decoder Hi
n connect with inhibitory populations

at the sustainer Ĥi
n (see Figure 4.1B). Moreover, sustainer’s inhibitory and excitatory en-

sembles receive a constant background input form other cortical areas Isus0 .

Sustaining process

In the absence of external input, the sustainer network rests at equilibrium with a steady
activation in the inhibitory populations and no excitatory activity (see Figure 4.4D and E).
Then, combined excitatory and inhibitory input from a given column n in the decoder
decreases the activity in the inhibitory ensemble Ĥi

n of the sustainer (see Figure 4.4E) and
enhances the activity of the excitatory population Ĥe

n at the sustainer layer (Figure 4.4D).
Top-down efferents connect each excitatory population Ĥe

n at the sustainer to its in-
hibitory counterpart at the decoder layer Hi

n. Thus, the activity propagated to the sus-
tainer effectively results in a net top-down input towards the inhibitory population Hi

n, that
replaces the input formerly received from the shunted lower harmonics n′ and n′′ (note the
slight increase in the inhibitory activity in Figure 4.4F right after the rise of the sustainer’s
excitatory activity, caused by the short overlap between the decoder’s and sustainer’s inputs,
and how the inhibitory ensemble is kept active even after the higher harmonics have been
completely shunted from the decoder representation).
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4.2. The model

In summary, the sustainer maintains the already elicited inhibition at the decoder, effec-
tively holding a continuous representation of the decoded pitch, in agreement with physio-
logical recordings and perceptual observations.

Dynamic equations

Rate dynamics of the neural populations

Ensembles are modelled according to a mean-field approximation, which assumes that neu-
rons at a given population have similar neural properties and they all receive the same
input [30, 154]. Under this assumption, the average spiking rate H(t) of the neurons in an
ensemble evolves as the spiking rate of an average neuron whose parameters are the average
of the parameters of the neurons across the population [30,154].

We used a neural rate model derived from a leaky integrate-and-fire (LIF) neuronal
model [154]. The model describes the evolution of the average firing rate H(t) as a leaky
integration of a transfer function φ(I) that maps the total input current to the response firing
rate of the neuron at equilibrium. The transfer functions used here were derived empirically
by Wong and Wang [151,155] using simulations of a spiking network of LIF excitatory and
inhibitory neurons.

The temporal evolution of the firing rates He
n(t) (excitatory) and Hi

n(t) (inhibitory)
follows the dynamics of a canonical leaky integrator:

τpop Ḣe,i
n (t) = −He,i

n (t) + φe,i(Ie,in (t)) (4.3)

with transfer functions φe,i(Ie,in (t)) [151] (see also Figure 4.5):

φe,i(I) =
ae,iI − be,i

1− e−de,i(ae,iI−be,i)
(4.4)

Parameters of the excitatory and inhibitory transfer functions (ae, be and de for the
excitatory; ai, bi and di for the inhibitory) were taken from the original study by Wong and
Wang [151]. The total synaptic inputs Ien(t) and Iin(t) are defined bellow in §4.2.5.3.

Dynamics of excitatory and inhibitory ensembles at the decoder and sustainer followed
the same formulation. Equations above are thus valid for both the decoder (He,i

n (t)) and
the sustained (Ĥe,i

n (t)) populations, using the appropriate synaptic input (Ie,in (t) for the
decoder, Îe,in (t) for the sustainer) in each case.

Dynamics were numerically simulated using Euler’s method with a time-step of 0.1 ms.

Adaptive time constants. Classical rate models are based on filters that approximate
the population response to a given input [154,156], but fail to capture how the neural activity
shapes the dynamics of the response to the input. Ostojic and Brunel [156] developed an
adaptive rate model based on the exponential integrate and fire (EIF) neural model [157,158],
where the filter is shaped according to the ensemble’s activity through an adaptation of the
effective integration time constant τpop:

τpop(H(t)) = τpop0 ∆T
φ′(I(t))

H(t)
(4.5)

where ∆T is the sharpness of the action potential initiation in the EIF model and φ′(I(t))
is the slope of the transfer function (see Equation (4.4)) at the current synaptic input I(t).

Although our population dynamics are based on a slightly different neural model, we use
their derivation as an approximation, based on the general observation that populations
of neurons are more sensitive to input variations when they present a large firing rate
[30, 156]. Their derivation is easily transferable to our model by considering that time
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constants are equivalent in rate models and membrane potential models [159], and using a
small ∆T � 1 = 0.05 mV reflecting that, unlike the EIF, the LIF model approximates the
action action potential initiation as instantaneous [157].

Synapse dynamics

Neural communication is mediated through synapses. Synaptic gates open at the arrival of
an action potential from the pre-synaptic neuron, releasing neurotransmitters that increase
or decrease the membrane potential in the post-synaptic neurons. Here, we consider three
kinds of neurotransmitters widely linked to cortical processes and perceptual integration
[151, 155, 160, 161]: two excitatory, NMDA and AMPA; and one inhibitory, GABA. We
model synaptic dynamics according to Brunel and Wang’s classical derivation [160].

Synaptic gates driven by AMPA SAMPA
n (t) and GABA SGABA

n (t) neurotransmitters
present fast dynamics and are modelled as leaky integrators with instantaneous rising
times [160] and different decay times τAMPA = 2 ms and τGABA = 5 ms [160]. Synaptic
gates are triggered by the activity in excitatory and inhibitory populations, respectively:

ṠAMPA
n (t) = −S

AMPA
n (t)

τAMPA
+He

n(t) + σνAMPA
n (t) (4.6)

ṠGABA
n (t) = −S

GABA
n (t)

τGABA
+Hi

n(t) + σνGABA
n (t) (4.7)

Additive noise is introduced in the system as a Gaussian process νn(t) independently
sampled for each synapse and instant t. Noise weight was set to σ = 0.0007 nA, according
to the specifications of the original population model [151].

NMDA-driven synapses present slow dynamics and a finite rising time [160]:

ṠNMDA
n (t) = −S

NMDA
n (t)

τNMDA
+ γ (1− SNMDA(t))He

n(t) + σνn(t) (4.8)

NMDA time constant was set to τNMDA = 30 ms and the coupling parameter γ = 0.641
was taken from the literature [151,160].

As in the previous section, equations driving the gating dynamics are the same in the
decoder (SNMDA

n (t), SAMPA
n (t), and SGABA

n (t), with He,i
n (t)) and the sustainer (ŜNMDA

n (t),
ŜAMPA
n (t), and ŜGABA

n (t), with Ĥe,i
n (t)).

Synaptic inputs

Total synaptic inputs to populations at the decoder Ii,en (t) and the sustainer Îi,en (t) convey
all the synaptic drive of the neurons, here divided for convenience in three separate contri-
butions: internal input Iint, comprising inputs from populations within the same network;
external input Iext, exerted by sources from other networks; and a constant input drive I0:

Ii,en (t) = Ii,en,int(t) + Ii,en,ext(t) + Ii,en,0(t) (4.9)

Îi,en (t) = Îi,en,int(t) + Îi,en,ext(t) + Îi,en,0(t) (4.10)

Internal inputs. Internal inputs are defined as the sum of all synaptic outputs from
the populations placed in the same network as the postsynaptic ensemble. Weights of
the synaptic conductivity between two ensembles are encoded in the connectivity matrices
Cee, Cei, Cie, Cii in the decoder network and Ĉee, Ĉei, Ĉie, Ĉii in the sustainer network.
Connectivity weights C∗∗αβ ∈ [0, 1] are plotted in Figure 4.2 (as above, stars are used as
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wildcards for excitatory e or inhibitory i). Using these definitions, the following equations
describe the explicit internal inputs Iint(t):

Ien,int(t) =
∑
k

Ceenk
(
JeeNMDA S

NMDA
k (t) + JeeAMPA S

AMPA
k (t)

)
−
∑
k

CienkJ
ie
GABA S

GABA
k (t) (4.11)

Iin,int(t) =
∑
k

Ceink
(
J ieNMDA S

NMDA
k (t) + JeiAMPA S

AMPA
k (t)

)
−
∑
k

CiinkJ
ii
GABA S

GABA
k (t) (4.12)

Îen,int(t) =
∑
k

Ĉeenk

(
ĴeeNMDA Ŝ

NMDA
k (t) + ĴeeAMPA Ŝ

AMPA
k (t)

)
−
∑
k

CienkĴ
ie
GABA Ŝ

GABA
k (t) (4.13)

Îin,int(t) =
∑
k

Ĉeink

(
ĴeiNMDA Ŝ

NMDA
k (t) + ĴeiAMPA Ŝ

AMPA
k (t)

)
−
∑
k

CiinkĴ
ii
GABA Ŝ

GABA
k (t) (4.14)

Conductivities J∗∗NMDA, J∗∗AMPA, J∗∗GABA, Ĵ∗∗NMDA, Ĵ∗∗AMPA, and Ĵ∗∗GABA, were initialised
to typical values in the literature J ' 0.15 nA [151] and fine-tuned to ensure the model
displayed the desired dynamics (parameter fitting is thoroughly described in Appendix A).

External inputs. External input received by excitatory ensembles at the decoder consists
of the thalamic input provided by the regularised SACF (as described in §4.2.2.3) imple-
mented subcortically. Thalamic input is transmitted to cortex by means of AMPA-driven
synapses, according to previous studies in perceptual integration [151]:

Ien,ext(t) = J thAMPA S
th,AMPA
n (t) (4.15)

The conductivity J thAMPA was adjusted to ensure a smooth propagation of the subcortical
input to the cortical populations (see §A). The thalamic AMPA gating variables Sth,AMPA

n (t)
followed the dynamics described in Equation (4.6), using the firing rate of the regularised
SACF output Ân(t) as the driver for the AMPA release:

Ṡth,AMPA
n (t) = −S

th,AMPA
n (t)

τAMPA
+An(t) (4.16)

Inhibitory ensembles at the decoder receive external input from the top-down efferents
coming from the sustainer. Top-down excitatory processes in cortex are often linked to
NMDA dynamics [162], so GABAergic synapses were not considered here:

Iin,ext(t) = JeNMDA Ŝ
th,NMDA
n (t) (4.17)

The efferent conductivity JeNMDA was adjusted to make the top-down reinforcement of
the inhibitory ensembles at the decoder strong enough to replace the excitatory input from
the shunted lower harmonics after the decoding process (once again, see §A).

Sustainer’s external inputs are bottom-up afferents sourced in the decoder network,
driven by GABAergic (inhibitory) and AMPAergic (excitatory) synapses [151,162]:
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Îen,ext(t) = ĴaAMPA S
AMPA
n (t) (4.18)

Îin,ext(t) = ĴaGABA S
GABA
n (t) (4.19)

Afferent conductivities ĴaAMPA, GABA were set to make the sustainer both sensitive to
decoded decisions and robust to spurious activations (see §A).

Constant input drive. Constant inputs in the decoder Ien,0(t) = Ie0 and Iin,0(t) = Ii0 were
chosen to make the system reactive to the subcortical input, without eliciting spontaneous
activity in the network (see Figure 4.5).

An additional constant drive Isus0 = 0.24 nA was applied to the populations at the sus-
tainer (see §4.2.4.2): Îe,in,0(t) = Ie,i0 + Isus0 .
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Figure 4.5: Transfer functions φ(I) and constant input currents I0. The miniature
in the top is a detail of the non-linear rise of the transfer functions. Analytical formulation
of the transfer functions is shown in Equation 4.4.

Adaptation

All cortical ensembles present an adaptation term taking into account short-term habitua-
tion, effectively regulating the maximum firing rate a population can reach. Adaptation is
modelled in a phenomenological fashion, as a negative input current added to the synaptic
drive of each ensemble In(t). Adaptation Iadapn(t) effective currents evolve as a canonical
leaky integrator fed by the population’s activity [154]:

İadap(t)n = −I
adap(t)
n

τadap
+ αHn(t) (4.20)

with adaptation time constant τadap = 100 ms [154] and adaptation strength α = 3× 10−6.
Same equations and parameters drive the adaptation dynamics of excitatory and inhibitory
ensembles at the sustainer and the decoder.

Connectivity matrices

Connectivity matrices were designed to facilitate the detection of SACF-like patterns of
activation and the further inhibition of the higher harmonics, but they present a few tunable
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parameters. The formulation of the matrices is shown bellow, actual values of the model
are provided in Figure 4.2. Harmonic connectivity patterns were inspired by findings in
intracranial recordings, reporting strong connections between frequency selective neurons
whose frequencies were harmonically related (see [62] for a review).

Connectivity weights at the decoder Excitatory ensembles at the decoder layer carry
the subcortical representation of the stimulus. In order to keep this representation as faith-
ful as possible, excitatory populations do not excite other excitatory ensembles within the
decoding network other than themselves; thus, the ee connectivities at the decoder are only
recurrent and can be expressed as a Kronecker delta:

Ceeαβ = δαβ (4.21)

Excitatory ensembles at the decoder excite inhibitory ensembles characterising higher
harmonics (i.e, at columns n′, n′′, . . . characterising periods δtn′ = δtn/2, δtn′′ = δtn/3, . . . ;
see §4.2.3.1 and §4.2.3.2):

Ceiαβ =

{
1 if δtα

δtβ
= k, k = 1, 2, . . . ,Kei

0 otherwise.
(4.22)

where Kei − 1 = 2 is the number of higher harmonics each excitatory ensemble targets.
Inhibitory ensembles shunt excitatory populations encoding lower harmonics (i.e, at

columns n′, n′′, . . . characterising periods δtn′ = 2δtn, δtn′′ = 3δtn, . . . ):

Cieαβ =

{
1 if δtα

δtβ
= k, k = 2, 3, . . . ,Kie

cie0 otherwise.
(4.23)

where Kie = 66 is the number of lower harmonics each inhibitory ensemble targets. The
number was chosen so that the population encoding the shortest period δt1 = 0.5 ms would
inhibit all its lower harmonics up to the longest considered period δtN = 33 ms. Excitatory
ensembles not encoding harmonics of the presynaptic inhibitory ensemble also receive a
subtle inhibition cie0 � 1 that is taken as a free parameter of the model (cie0 tuning criteria
are provided in §A).

Inhibitory to inhibitory recurrent weights are chosen as to avoid self-inhibition:

Ciiαβ = 1− δαβ (4.24)

Connectivity weights at the sustainer Sustainer’s connections were essentially local:
ensembles communicate only with ensembles in their same column. Thus,

Ĉeeαβ = Ĉeiαβ = Ĉieαβ = Ĉiiαβ = δαβ (4.25)

Derivation of the evoked fields

Elicited equivalent dipole moments

Assuming that all microcolumns within each of the two cortical networks present similar
orientations, the total dipolar moment representing the neuromagnetic field elicited by each
network is proportional to the aggregated excitatory activity along the network [133, 134].
In the decoder:

m(t) =
∑
n

He
n(t+ ∆tsubcort) (4.26)
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The subcortical delay ∆tsubcort accounts for the time elapsed from tone onset until the
signal first arrives in primary auditory cortex and was fixed to ∆tsubcort = 70 ms using the
latency of the POR elicited by an IRN with a delay of 8 ms as reference (see §4.3.2.1). To
account for trial to trial variability, we further averaged the predicted dipole moment across
several runs M(t) = 〈m(t)〉runs. Dipole moments at the sustainer were represented by m̂(t)
and M̂(t).

Decoder elicited field

The aggregated response at the decoder shows a large transient, peaking around ∼ 100 ms,
after which the field stabilises to a low activity level. The build up of the peak is a conse-
quence of the different harmonics of the SACF propagating into the decoder network. After
enough information (i.e, a sufficient number of peaks) is available to decode the pitch value
from the SACF representation, inhibitory ensembles begin to effectively shunt the lower
harmonics. The transient peaks at the instant where inhibition overcomes the subcortical
input; the equilibrium state is achieved when all the lower harmonics have been inhibited
(see Figure 4.4 and the associated generated field in the subpanel F). We identified these
onset dynamics with the pitch onset response in anterolateral Heschl’s gyrus (see §2.3.2.4).
A comparison between the decoder’s derived field and the observed equivalent magnetic
dipole elicited in alHG by an IRN is shown in Figure 4.6.
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Figure 4.6: Comparison of the model’s simulated fields and the POR dynamics
in an MEG recording for an IRN.. Stimulus consisted of an IRN with 32 iterations
and a delay d = 4 ms. Data corresponds to the equivalent dipole moment m(t) (see Equa-
tion (4.26)) elicited in the POR generator as a response to an IRN eliciting the same pitch;
the equivalent fields were scaled by a negative linear factor accounting for the monotonic
relationship between m(t) and the elicited fields that was fitted for this particular example.

Sustainer elicited field

The build up at the sustainer begins much later, right after the inhibitory onset in the
decoding network, and holds steady until its decay, which starts a few milliseconds after
stimulus’ offset. Due to this late onset and the observed offset delay, we identified the
neuromagnetic field elicited by the sustainer with the pitch-related sustained field of the
auditory evoked fields (see examples in Figures 4.16 and 4.17), whose generator is typically
found adjacent to the POR generator [107,108] (see also §2.3.2.6).

Parameter selection

After fixing the structure of the connectivity weight matrices and the normalisation param-
eters of the subcortical input, the dynamics of the cortical model still depend on 36 different
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parameters. 17 of those parameters were fixed according to the literature; the remaining
parameteres were adjusted using a five-stage procedure described in Appendix A. Table 4.1
lists the final parameter values and the stage where they were tuned; tuning criteria are
provided in the appendix.

Results

Psychophysics

The model’s perceptual predictions were evaluated for a wide range of stimuli encompassing
pure tones, harmonic complex tones, click trains, and iterated rippled noises. Stimuli were
generated using our own scripts, which are included in the model’s libraries. Sample rate
was set to 100 kHz; onset and offset were smoothed using a τ = 2.5 ms Hamming window [5].

Model’s perceptual output is provided by the temporal average of the inhibitory activity
in the most salient column in the decoder layer after the decoding process (e.g. Figure 4.7).
Perceived pitch is robustly encoded in the inhibitory ensembles of the decoder layer, and
hence in the excitatory and inhibitory populations in the sustainer layer, as discussed above.
Thus, the model’s readout can be indistinctly set to any of these three populations. In-
hibitory neurons at the decoder show a faster response; excitatory neurons at the sustainer,
although responding a few milliseconds later, show excitatory activity that can be easily
transmitted to higher centres in the auditory hierarchy.

An average was taken from t0 = 150 ms to t1 = 250 ms to make explicit the robustness
of the extracted pitch representation, although plotting the raw model’s responses at any
time after the end of the decoding process yields similar results. Results for the populations
of the sustainer are precisely correlated to the activity of the inhibitory populations at the
decoder and are thus generally not reported to avoid redundancy.

Stimuli modalities were tested for 31 different pitch values ranging from 66 Hz to 1614 Hz
in a piecewise asymptotic scale (i.e, piecewise linear in the space of the periods). The highest
tested pitch frequency corresponds to the characteristic frequency of the last functional
population of the model. The lower tested frequency was chosen 35 Hz, well below the limit
of optimal operability of the model corresponding to ∼ 100 Hz (i.e. the minimum frequency
at which three harmonics δt = 10 ms, δt′ = 20 ms and δt′′ = 30 ms are present in the SACF
representation) to test its behaviour in suboptimal conditions.

Pure tones

Figure 4.7 shows the response at subcortical and cortical populations of the model averaged
between t0 = 150 ms and t1 = 250 ms. Each row of the heat maps shows the response
in different columns to a certain stimulus. Activity in both, the decoder’s and sustainer’s
ensembles, shows a unimodal distribution for each stimulus centred on the populations that
encode the characteristic period corresponding to the period of the sinusoid. Perceptual
predictions are particularly robust for the inhibitory populations of the decoder and excita-
tory and inhibitory populations of the sustainer, which are in full agreement with classical
perceptual results in pure tones [5] for frequencies over ∼ 125 Hz. The lack of responses
under ∼ 125 Hz is due to the lower frequency limit of the peripheral model [163].

As discussed earlier (see §4.2.4.3), responses in the sustainer are precisely correlated to
the responses of the decoder’s inhibitory ensembles. However, excitatory populations at the
decoder still preserve aspects of the spectral representation of the regularised SACF. This
is partly due to the loss of precision introduced by the discretisation of the period space:
when decoding the pitch value T of the stimulus, inhibitory ensembles characterising the
period δt closest to the actual stimulus period T become active, introducing a small error
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parameter value fittin stage / source

J thAMPA 2.5 nA stage 1
JeNMDA 0.45 nA stage 4

ĴaGABA 0.45 nA stage 3

ĴaAMPA 0.35 nA stage 4
JeeNMDA 0.14 nA stage 1
JeeAMPA 9.9× 10−4 nA [151]
JeiNMDA 0.19 nA stage 2
JeiAMPA 6.5× 10−5 nA [151]
J ieGABA 0.66 nA stage 2
J iiGABA 0.11 nA stage 2

ĴeeNMDA 0.25 nA stage 3

ĴeeAMPA 9.9× 10−4 nA [151]

ĴeiNMDA 0.00 nA stage 3

ĴeiAMPA 9.9× 10−4 nA [151]

Ĵ ieGABA 0.80 nA stage 3

Ĵ iiGABA 0.00 nA stage 3
cie0 0.1 stage 4
γ 0.641 [160]
ae 310 (VnC)−1 [151]
be 125 Hz [151]
de 0.16 s [151]
ai 615 (VnC)−1 [151]
bi 177 Hz [151]
di 0.087 s [151]
Ie0 0.315 nA stage 1
Ii0 0.15 nA stage 2

Îe0 0.26 nA stage 3

Îi0 0.18 nA stage 3
τAMPA 2 ms [160]
τGABA 5 ms [160]
τNMDA 30 ms ad-hoc
τpop 10 ms [156]
∆T 0.05 mV ad-hoc
σ 0.007 nA [151]

τadap 100 ms [154]
α 3× 10−6 nA stage 1

Table 4.1: Values for the parameters used in the cortical model. Last column
specifies whether if the parameter was fitted (and, in that case, at which step of the fitting
process was it fixed; see Appendix A) or if the value was selected ad-hoc (and, if the value
was taken from the literature, the specific source that was used).
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4.3. Results

Figure 4.7: Perceptual predictions for pure tones. Heat maps represent different
stages of the model (subcortical and decoder’s excitatory ensembles at the top, decoder’s
inhibitory and sustainer’s ensembles at the bottom). Each row shows the average activity
〈H(t)〉t∈(150,250)ms elicited by each given stimulus. The piece-wise linear pattern observed
for the maximum activation peaks is to the equally piece-wise linear distribution of pitch
values chosen for the experimentation.

in the decoded pitch ∆ = ‖δt − T‖. The most active inhibitory ensemble represents the
decoded pitch with a relatively high precision. However, this error escalates linearly when
considering the inhibitory connections towards the excitatory ensembles characterising the
lower harmonics of T ; specifically, the inhibition of the nth harmonic shows a deviation
∆n = ‖nδt − nT‖ = n∆. This effect is specially prominent in tones with high pitch values
(see top rows in the decoder excitatory ensembles of the heat map in Figure 4.7). A similar
effect is observed for low pitched tones (Figure 4.7) due to the outstanding thickness of
the harmonic peaks elicited by pure tones in the SACF representation. Note that the
discretisation error would not be present in an actual system shown a continuous pitch
representation.

Despite these effects, the model provides a robust representation of the decoded pitch
values at all times after the short transient of the decoding process.

Harmonic complex tones, click trains, and iterated rippled noises

Figure 4.8 shows the perceptual output of the model to harmonic complex tones with and
without missing fundamentals, and both with resolved and unresolved harmonics. Results
show consistent pitch predictions, fully in line with classic perceptual results [5]. Like in the
results corresponding to pure tones, decoder excitatory ensembles show some characteristics
of the SACF representations, partly due to the discretisation error described above. A new
effect is shown in the excitatory activity elicited by unresolved harmonics in the decoder
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layer (see Figure 4.8C), where frequencies not corresponding to the harmonic series, and
thus not inhibited by the decoding mechanism, are present in the cortical representation
(see the parallel lines surrounding the main harmonic peaks in the SACF).

Note that, since in this case higher harmonics are represented in the cochlea, the model
does decode pitch values under the lower limit of the peripheral system.

Figure 4.9 shows the perceptual output of the model to iterated rippled noises with dif-
ferent configurations. Results show consistent pitch predictions, fully in line with classic
perceptual results (e.g, [5, 11]). Bandpass filtering removes short-time correlations that are
crucial to characterise IRNs with short delays, resulting in the observed degradation of the
SACF representations for the higher pitched IRNs (see Figures 4.9B and 4.9C).

Alternating-phase harmonic complex tones

Next, we tried to predict the perceived pitch evoked by alternating-phase harmonic complex
tones with missing fundamentals. These stimuli elicit a pitch sensation equivalent to their
fundamental frequency when its harmonics are independently resolved in the cochlea, but
a sensation equivalent to twice their fundamental frequency when its harmonics are not
independently resolved (see §2.2.3.2 and §3.2.2.5).

Perceptual results for ALT-HCTs were similar than those displayed in Figure 4.8, and
did not show significant differences when their harmonics were resolved or unresolved in
the cochlea, failing to reproduce perceptual observations reported in the literature for the
unresolved condition [5].

We identified the cause of this problem in the large baseline value (i.e, activity common
to all delays) observed in the regularised SACF (see Figure 4.10, left panels). A possible
solution to this caveat is to adjust the SACF baseline parameter b0 in order to increase the
relative salience of the peaks (see justification in §4.2.2.3).

Figure 4.10 illustrates the effect of the baseline adjustment; the figure shows the corre-
sponding perceptual results when running the model using b0 → b̂0 = 2 b0. Here, complexes
comprising harmonics 11 to 14 present a clear shift from the fundamental frequency to the
first higher harmonic for frequencies over 200 Hz. This shift is due to the presence of the
secondary peaks in the regularised SACF (see rows corresponding to stimuli with periods
1–5 ms in Figure 4.10). Under the 200 Hz limit, the smaller peaks in the SACF character-
ising the higher harmonics lie below the increased baseline limit set before and the model
prediction fails, predicting instead an elicited pitch corresponding to the fundamental fre-
quency of the HTCs (see the broken line on the top left corner of the rightmost panels in
Figure 4.10B).

Thus, a dynamic adjustment of the baseline removal parameter b0 is necessary in order
to fully predict the pitch elicited by alternating phase HCTs.

Shifted HCTs

Lastly, we computed the perceptual predictions of the model to shifted HCTs, a set of stimuli
consisting of a harmonic complex (f0, 2f0, 3f0, . . . ) in which the frequency of each harmonic
is shifted by a fixed amount ∆: (f0 + ∆, 2f0 + ∆, 3f0 + ∆, . . . ). Paradoxically, shifted HCTs
elicit a pitch percept close to their fundamental frequency f0 with a pitch deviation that is
much smaller than the shifted quantity ∆ [164].

In order to test the performance of the model on these stimuli we computed 20 shifted
HCTs with the same fundamental frequency f0 = 100 Hz and 20 linearly distributed shifts
∆ ranging from 0 to 100 Hz. Results are shown in Figure 4.11.

The model showed a good agreement with the perceptual data for small deviations
∆ ∼ 0–30 Hz and ∆ ∼ 70–100 Hz. Stimuli with shifts ∆ ∼ 30–70 Hz result in an octave shift
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Figure 4.8: Perceptual predictions for harmonic complex tones. Heat maps repre-
sent different stages/ensembles of the model (sustainer’s responses, precisely correlated with
the decoder’s inhibitory responses, were omitted for simplicity). a) HCTs with the funda-
mental frequency f0 and subsequent five harmonics. b) HCTs with a missing fundamental,
consisting on harmonics f1 to f5. c) HCTs with a missing fundamental and harmonics
not independently resolved in the cochlea, generated as an HCT with 50 harmonics further
bandpass filtered between 3.2 kHz and 5 kHz. Note that, since the activity at the decoder in-
hibitory populations is equivalent for HCTs with and without the fundamental, the readout
of the model cannot be use to perform judgements on pitch salience (see also §6.2.3.2).
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Figure 4.9: Perceptual predictions for iterated rippled noises. a) IRNs with 4
iterations. b) IRNs with 8 iterations, bandpass filtered between 125 Hz and 2 kHz; configu-
ration was chosen according to the specifications of IRN dyads used in §5.2. c) IRNs with
16 iterations, bandpass filtered between 0.8 kHz and 3.2 kHz; filter parameters were chosen
according to [22]. D) IRNs with 32 iterations.
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Figure 4.10: Perceptual predictions for alternated-phase HCTs. a) Complexes
comprising harmonics f1 to f4. b) Complexes comprising harmonics eleven to fourteen,
out of the range of cochlear resolvability. Simulations were performed using an alternative
baseline for the SACF b̂0 = 0.70 (see §4.2.2.3).

(note that the ratios in that range are close to 1/3 and 1/2 of the fundamental frequency)
that is not reported in the perceptual data [164]; however, it should be noted that available
data corresponds to a single subject study that might have overlook an otherwise apparent
octave shift.

POR dynamics

POR morphology dependence with pitch in IRNs

The association of the decoder’s aggregated excitatory activity with the dipole moment
at the generator of the pitch onset response in alHG (see §4.2.7.2) allows us to perform
qualitative predictions on the POR morphology.

Figure 4.12A shows the IRN latency predictions of our model for a series of IRNs with 16
iterations bandpassed between 0.8 kHz and 3 kHz, in comparison with the observed latency
values of the POR evoked by the same stimuli [22]. Despite the large variability shown
by the model predictions due to cortical noise and subcortical trial-to-trial variability, the
prediction values are fully in line with the experimental observations.

The observed POR latency correlation with pitch is a consequence of the dependence of
the build up of inhibitory activity in the decoder network with the stimulus fundamental
period. Inhibition of the population encoding the period of the perceived pitch is typically
triggered after the third peak in the harmonic series is represented in cortex (see §4.2.3.3).

Next, we computed the model’s latency predictions for five IRNs with different number of
iterations but eliciting the same pitch value T = 16ms. Comparison between the simulations
and experimental data are shown in Figure 4.12B. IRN latency predictions show that the
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Figure 4.11: Perceptual predictions for shifted HCTs. a) Heat maps show the
model responses for each of the applied shifts. b) Ratio predicted/perceived pitch and
the pitch corresponding to the fundamental f0 = 100. Predicted pitch was computed as
the characteristic period of the decoder’s inhibitory population with the largest activation.
Perceived pitch corresponds to the elicited pitch reported by a single subject for the same
set of stimuli; perceptual data from [164], Fig 1.

pitch strength of the IRNs does not significantly affect the POR’s latency, in full agreement
with experimental observations. The not-significant but noticeable trend observed in the
simulations is a reflection of the slight increase in processing time provoked by the decrease
in the signal-to-noise ratio in the SACF representations associated with a low number of
iterations.

POR morphology dependence with the number of iterations in IRNs

The number of iterations of an IRN is correlated with its elicited pitch strength; both
quantities are reflected in the POR’s amplitude [22]. IRNs with a with a large number of
iterations evoke larger transients than IRNs with a low number of iterations. Moreover,
when fixing the number of iterations, the PORs amplitude does not seem to be affected by
its elicited pitch [22]. Experimental data is shown in black in Figure 4.14.

Although pitch strength is out of the scope of our study, it is worth to test the capacity
of the model to perform predictions of the POR amplitude. IRNs with a large number of
iterations result in robust harmonic SACF representations, where each peak of the series
presents a similar height. In contrast, IRNs with a low number of iterations elicit a degraded
harmonic series with a prominent first peak and lower activity levels in the subsequent
peaks of their SACF representation (see Figure 3.2C). Since the POR amplitude depends
on the aggregated activity at the second and third peaks of the SACF, the differences
in the subcortical representation might explain the POR amplitude dependence with this
parameter.

The aggregated excitatory activity at the decoder is monotonically related to the equiva-
lent dipole moment that would have been elicited by a neural implementation of the decoder’s
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Figure 4.12: POR morphology dependence on pitch value in IRNs. a) POR
latency predictions for IRNs eliciting different pitch values in comparison with experimental
observations. b) POR latency predictions for IRNS with different number of iterations
in comparison with experimental observations. Experimental data was taken from [22]
(Figure 4). Predictions were averaged across 5 runs of the model; error bars are standard
errors. Experimental data was taken from [22] (Figure 4).

network in cortex (see S4.2.7.1); although the exact relationship between one and the other
is unknown, qualitative predictions of the POR’s amplitude can be performed on this basis.
Thus, we compared the overall activity in the decoder’s excitatory populations at the simu-
lated POR’s peak elicited by a series of IRNs with the POR’s amplitude elicited by the same
stimuli; see Figure 4.14. In agreement with the available experimental data, the simulated
field was only significantly affected by the IRNs number of iterations (see Figure 4.14B), but
not by their elicited pitch (see Figure 4.14A).

POR and N100 latency in pure tones

Next, we tested the model capacity to predict the POR latency of pure tones. Latency
predictions are shown in Figure 4.15A, in comparison with experimental data for the same
set of stimuli [91].

Since the POR and EOR elicited by stimuli other than IRN cannot be experimentally
disentangled from each other, the validation of our latency predictions for such stimuli is
challenging: our model predicts the POR behaviour whilst MEG studies report the latency
of the N100 [91]. We addressed this problem by expressing the N100 latency as an average
between the POR’s and the EOR’s respective latencies. This simple model allowed us
to correct our POR predictions by assuming that both transient had similar weights in
the average (e.g. they both have the same amplitude and their generators are equally
distant from the N100 dipole) and an EOR latency of 95 ms. Corrected values are shown in
Figure 4.15B, in full agreement with experimental observations.

Sustained field dynamics

To conclude, Figures 4.16 and 4.17 show the average activity at the sustainer during the
processing of several stimuli eliciting different pitch sensations. Each figure compares the
aggregated dynamics of the sustainer with the aggregated activity at the decoder (which
provided the feedforward input to the sustainer) and the aggregated cortical input (which
provided the input to the decoder). Comparison with experimental data is challenging
because current MEG techniques do not allow for a complete separation of the adjacent
dipoles of the POR and the sustained field.
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Figure 4.13: Evolution of the system during pitch processing for several IRNs.
Plots show an example of the explicit evolution of the activity of several populations during
the decoding of the pitch of IRN stimuli eliciting different pitch sensations T . Dark blue,
red, and yellow lines show the evolution of the decoder’s excitatory, decoder’s inhibitory,
and subcortical populations encoding the pitch of the stimulus δtl = T ; purple and green
show the evolution of the decoder’s excitatory, and subcortical populations encoding the
third peak of the harmonic series δtl = 3T ; clear blue shows the averaged excitatory activity
in the decoder (i.e, the predicted elicited field associated to the decoder network). Stimuli
were generated using the same parameters as in Figure 4.12.

Whilst the decoder’s response to an increase of activity in the subcortical input is almost
immediate (see steep increase in Figure 4.16), the sustainer’s onset is only observed after
the arrival of POR’s peak; i.e, shortly after the perceptual decision has been performed at
the decoder, around 50–100 ms after the rise of the decoder’s field, depending on the pitch
of the stimulus.

The sustainer’s field shows as well a significant delay in comparison with the offset of the
cortical input. This delay is provoked by the inertia of the recurrent inhibitory-to-inhibitory
connections between the decoder and the sustainer. The delay is approximately constant
and roughly equal to δ ∼ 50 ms. This could quantitatively explain the offset delay observed
by Gutschalk and colleagues [107] in the pitch-related sustained field (see §2.3.2.6). However,
our simulations show a linear dependence with the stimulus’ period of the subcortical offset
with a factor one, whilst Gutschalk observations seem to set the dependence of the SF’s
offset delay on twice the period of the stimulus.
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Figure 4.14: PORs amplitude dependence on the number of iterations of IRNs.
Decoder’s aggregated excitatory activity at the POR’s peak in comparison with experimental
observations on the POR’s amplitude for a series of IRNs. a) IRNs with 16 iterations eliciting
different pitch values. b) IRNS with different number of iterations and same delay d =
16 ms, eliciting the same pitch percept. Experimental data was taken from [22] (Figure 4).
Predictions were computed across 5 runs of the model; error bars are standard errors. Stimuli
were the same as in Figure 4.12.

Figure 4.15: Predicted latencies for pure tones. a) Simulated POR latency values
(black error bars) in comparison with N100 latency observations (blue error bars); the two
experimental curves correspond to latency values observed in the right and left hemispheres.
The large gap between both quantities is caused by the systematic bias introduced by the
energy onset response in the N100 latency. b) Comparison of the corrected model predictions
with the same experimental data. Predictions were averaged along 5 runs of the model; error
bars are standard deviations. Experimental data was taken from [91], Fig 2.

.

Discussion

Cortical representations of pitch

Our cortical theory of pitch processing devises two separate networks holding subtly different
representations of pitch: the decoder, located in the cortical generator of the POR; and
the sustainer, located in the cortical generator of the pitch related SF. Both networks are
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Figure 4.16: Sustained field morphology prediction for IRNs. Panels compare the
average excitatory activity at the cortical input, the decoder layer, and at the sustainer
layer. The three responses were normalised to an average activity of ∼ 1 to improve the
visualisation of the dynamics. The decoder’s and sustainer’s activity can be related to
the POR’s and SF’s dipole moments (see §4.2.7.3), respectively. Note that, whilst the
POR’s dynamic respond rapidly to variations in the cortical input, an onset and offset delay
characterise the SF’s responses. Stimuli were IRNs with the same specifications as in §4.3.2.
Simulations were carried out without cortical noise in this figure, in order to obtain a more
accurate representation of the field dynamics.

putatively placed towards the lateral and anterior portion of the human Heschl’s gyrus.
Inhibitory ensembles at the decoder layer activate only when there is enough informa-

tion for pitch extraction available in cortex, and hence provide a robust pitch representation:
a column n only becomes significantly active if the stimulus evokes the pitch correspond-
ing to the of the characteristic period of the column. In contrast, excitatory ensembles at
the decoder hold the subcortical representation during the first ∼50 ms, and only after the
decoding they present a robust pitch-rate representation of the evoked pitch. Pitch informa-
tion in the decoder might be thus transmitted to higher cortical areas through feedforward
inhibition [165], or through a combination of excitatory and inhibitory signals.

Responses at the sustainer layer are fully correlated with the perceived pitch; in ex-
change, they show a small delay with respect to the responses at the decoder. Whilst
excitatory ensembles are pitch selective, inhibitory ensembles show the opposite behaviour:
a population n only becomes inactive when the network encodes a pitch value T = δtn. This
reversed inhibitory representation might have a role in top-down modulation of subcortical
areas [150] or in subcortical sensory integration [166], processes which are typically driven
by selective inhibition. The representation at the sustainer’s excitatory ensembles might be
transmitted to higher cortical areas through feedforward excitatory signals. However, the
sustainer’s representation might be too slow to explain how can we experience an absence
of pitch during short silence gaps that do not alter the sustained field (see §4.3.3).
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Figure 4.17: Sustained field morphology prediction for click trains. Plots compare
the average excitatory activity in the cortical input, the decoder, and the sustainer. Stimuli
were click trains with different inter-click intervals. Simulations were carried out without
cortical noise in order to obtain a more accurate representation of the field dynamics.

A third neural representation, consisting of the harmonic patterns of activation associated
to the regularised SACF, might be present in earlier cortical regions of the pitch processing
hierarchy. So far, we have systematically identified this representation with subcortical
processing, but there are several arguments in favour of a stable harmonic code permanently
present in primary auditory cortex. First, harmonic co-activation of pitch-selective neurons
is observed in cortex even after the tone’s onset response [62,153], suggesting that the decoder
is not the only cortical region holding the subcortical harmonic representation. Moreover,
the coexistence of a pitch-rate representation and a stable representation of the spectral
features of the SACF in cortex might explain the paradox of the spectral and fundamental
listeners. This idea is explored later in §6.3.2.

The decoder and winner-take-all dynamics

The decoder model dynamics are reminiscent of the winner-take-all strategies typically used
to represent neural processes in perceptual decision making [150, 151, 155]. Winner-take-all
models typically consist of two (or more) competing excitatory populations, characterising
the different possible outcomes of the perceptual decision, and a common inhibitory ensem-
ble (see Figure 4.18). The strength of the thalamic input applied to each of the excitatory
ensembles represents the amount of evidence available for each of the different perceptual
outcomes. During the decision making procedure the excitatory ensembles are activated ac-
cording to their relative likelihood; this activity then propagates to the inhibitory ensemble,
which inhibits both excitatory populations equally acting as a mediator [155]. The deci-
sion making process eventually converges to a state in which one of the ensembles is totally
shunted and the other one, representing the final decision of the system, remains active.
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Figure 4.18: Schematic architecture of a winner-take-all system. Excitatory ensem-
bles encode confronted perceptual outputs; the inhibitory ensemble mediates the decision.
Figure adapted from [151], Fig 1.

Our system presents a behaviour of this kind, but on a much larger scale and with several
added constraints. First, competition between ensembles is selective rather than global: only
ensembles representing harmonically related frequencies compete with each other. Selective
competition is encoded in the excitatory-to-inhibitory (directed towards higher harmon-
ics) and inhibitory-to-excitatory (directed towards lower harmonics) connectivity weights
(see §4.2.6). The common inhibitory ensemble arbitrating each competition is the inhibitory
population corresponding to the higher common harmonic (i.e, the evoked pitch). This
connectivity pattern might be the result of repeated co-activation of harmonically-related
ensembles due to the structure of the SACF-like thalamic input.

Second, competition is biased towards the excitatory population located in the column of
the inhibitory ensemble mediating the competition. This bias stems from the inhibitory-to-
excitatory connectivity weights: excitatory ensembles in their same column are only weakly
inhibited (see §4.2.6).

Neural competition at the decoder network mediates a template matching transforma-
tion and allows for concurrent pitch representations (see §5.3): simultaneous competitions
from different harmonic shapes do not shunt each other, allowing for multiple pitch values
being jointly represented in cortex. A side effect of the biased competition process is that a
combination of two octaves (i.e, two tones with harmonically related fundamental frequen-
cies) elicits a single pitch value, corresponding to the pitch of the higher note. Thus, our
model provides a mechanistic explanation of the pitch of harmonic complex tones based on
selectivity cortical dynamics.

Cortical dynamics of pitch processing

Decoding layer dynamics

Equations of the decoding network listed in §4.2.5 define a dynamical system with three
variables per each excitatory ensemble (He, SAMPA, and SNMDA) and two per each inhibitory
ensemble (Hi and SGABA); i.e, a total of 5N = 1000 dynamic variables termed here for
simplicity ~x.

Dynamic variables span a dynamical system whose behaviour characterises the model’s
dynamics. In absence of thalamic drive, the system presents a single state of stable equilib-
rium around the origin (~x = ~x0 ' 0).

Non-zero thalamic inputs change the stability properties of the system. An excitatory
thalamic input moves the state of equilibrium towards a new attractor state termed here
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Figure 4.19: Attractor dynamics underlying pitch processing. Each dot represents
the state of the system in an instant t, colours were used to characterise the different stages
of the dynamics: open blue circles represent the absence of input (points are too close to
each other to be distinguished); red dots represent states within the time window spanning
from the stimulus onset to the convergence of the model to a specific pitch value (at about
100 ms after tone’s onset); yellow dots represent states within temporal windows spanning
from the convergence of the system to the tone’s offset; purple dots show states in the time
window corresponding to the the relaxation dynamics (see main text), spanning form the
offset of the tone up to 200 ms after tone’s offset. a) View of the most relevant dimensions
of the decoder ~x during the processing of an IRN; dimensions were reduced using principal
component analysis. The trajectory in the reduced space reveals key aspects of the onset
and relaxation dynamics. The transition from ~x0 to ~xpitch characterises the POR. b) View
of the two dimensions of the subsystem characterising the decoded pitch n in the sustainer
network. Note that the relaxation dynamics of the sustainer, corresponding to the transition
from ~̂xnpitch to ~̂xn0 , are much slower than the relaxation dynamics of the decoder; this is
characteristic of the sustained field offset delay (see text).

~xinput, where the excitatory populations represent the input activity (see Figure 4.19A). If
the input presents a harmonic structure, a second equilibrium state we termed ~xpitch (see
Figure 4.19A), characterised by excitatory and inhibitory activation at the column encoding
the pitch, arises in the system. Model dynamics transit from the initial state ~x0, to the
input state ~xinput, and then oscillate between this last state and ~xpitch.

We identify the POR as the neuromagnetic fingerprint of this two-stage transition: the
build up of the transient corresponds to the transition ~x0 → ~xinput; the POR peaks shortly
after the onset of the decoding process, characterised by the transition ~xinput → ~xpitch
(see Figure 4.19A). This identification allows us to connect the POR latency with the time
necessary to trigger the ~xinput → ~xpitch transition; thus, the POR latency reflects pitch
processing time.

Sustainer layer dynamics

The role of the sustainer network is to modulate the dynamic properties of the decoder
in order to prevent the reversed transition ~xpitch → ~xinput and subsequent oscillations
(see §4.2.4.1).

The sustainer’s dynamics are much simpler than the decoder’s and can be subdivided in
N = 250 independent dynamical systems, one per column, with 5 variables each x̂n. At rest,
the decoder’s columns lie in equilibrium states ~̂xn = ~̂x0 characterised by a strong activation
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at the inhibitory population and null activation at the excitatory ensemble.
Under combined excitatory and inhibitory input from the decoder at a given subsystem

~̂xn, inhibition drops and excitation rises, switching to a new state ~̂xsus termed here sustained
state (see Figure 4.19B). Top-down efferents from the sustainer then lock the selective dy-
namics of the layer decoder, strengthening the attractor properties of the state ~xpitch and
turning it to a state of stable equilibrium (see Figure 4.19B).

Thus, we identify the pitch related sustained field as the fingerprint of the sustaining
activation: the PSF activates when the sustained state of a sustainer subsystem is switched
on, and deactivates whenever it is switched off. The dynamics explains the late onset of the
field and the corresponding offset delay.

Relaxation dynamics

When the thalamic input is switched off, excitatory activity in the decoder drops, removing
the excitatory input at the sustainer column ~̂xn, which returns to its resting state ~̂x0. As
a result, the sustainer column stops modulating the dynamics at the decoder and the state
~xpitch becomes, once again, unstable. Thus, the decoder state slowly relaxes back to the
origin state ~x0.

If, after a period of silence, the same tone is played once again, the decoding process
is re-triggered only if the duration of the gap is large enough as to allow the decoder to
leave the state ~xpitch. Otherwise, the residual inhibition at the decoder prevents the peaks
of the higher harmonics to rise again and keeps the inhibition at the sustainer column low,
allowing it to transit back to the sustaining state.

Pitch transitions

A similar process drives the transition dynamics between pitch representations in sequences
of consecutive notes eliciting different pitch sensations. A change in the harmonic structure
of the cortical input induces a reaction in the cortical system, that triggers a new decoding
process (see Figure 4.20).

Pitch changes can be understood as a reconfiguration in the attractor dynamics that
drives the decoder from ~xpitch to a new state ~xpitch’ (see Figure 4.21A). Since sustainer
columns are independent of each other, dynamics are not altered by previous or posterior
pitch representations (see Figures 4.19B and C). See also Appendix B for a more detailed
discussion.

Conclusion

In this Chapter we have introduced a novel theory of cortical pitch processing based on selec-
tive neural competition. Our model fills the gap between the harmonic representations pos-
tulated by the temporal models of pitch perception (see §3.2.2 and §3.2.3) and the receptive-
field-like representation reported in intracranial recordings in mammals (see §2.1.3.3); more-
over, our theory postulates that the evoked field associated with the POR is a result of the
transformation between these two representations.

The model describes cortical pitch decoding as a discrete event triggered by a sudden
change in the subcortical input. Once a pitch value has been extracted from the subcortical
representation, the decoded value is simply sustained (rather than being repeatedly decoded)
until a new change in the subcortical input triggers a new decoding process. The model
postulates that the pitch-related sustained field is associated to the sustaining process.

The sustaining strategy is reminiscent of predictive coding [162, 168] and reversed hier-
archical strategies [21, 31], where top-down efferents transmit expectations about the input
(in our model, expectations about the harmonic structure of the input), whereas bottom-up
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Figure 4.20: System’s reaction to pitch changes. Response of the cortical system to
pitch changes. Stimuli were IRNs with the same specifications as in §4.3.2.1; first tone had
a fundamental frequency f0 = 200 Hz, second tone was its perfect fifth, with f0 = 300 Hz.
Transition occurs 300 ms after the onset of the first tone (see arrow in the figure).

afferents carry prediction error (in our model, connections from the decoder network rein-
force the corresponding sustainer column as long as the sustainer’s expectations coincide
with the decoder’s input) [21,169].

Expectations based on prior knowledge or experience could be used to modulate the
decoding dynamics by reducing the inhibition at the sustainer column characterising the ex-
pected pitch, which facilitates the sustainer read-out and favours the selected pitch through
the top-down excitation-to-inhibition efferents.

Decoding dynamics of the model quantitatively explain the dependence of the POR
latency with four times the period of the stimuli: the cortical model needs three peaks
of the harmonic series in order to robustly identify the harmonic pattern with the elicited
pitch value. Although previous studies in pitch perception had postulated before that pitch
processing requires several period cycles in order to make a perceptual decision [22,43,107],
the mechanism of such integration was still unclear. Moreover, although MEG recordings
(e.g [22]) show that the first physiological response integrating along several repetitions
cycles is located in cortex, phase-locked activity is not robustly present above 50–200 Hz
in Heschl’s Gyrus [16]; thus, evidence for a periodic behaviour at several different cycles
of the fundamental period of the stimuli should be transmitted to cortex from subcortical
regions in order to explain the perception of pitch in medium and high frequency tones.
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Figure 4.21: Attractor dynamics under pitch transitions. As in Figure 4.21, each
dot represent the state of the system in an instant t. Two colours were added to represent
the new stages in the system’s evolution. Purple now represents the dynamics from the
second stimulus onset to the new state of convergence, defined here as the state achieved
100 ms after the onset; green represents states between 100 ms and the second stimulus’
offset; and light blue represent the states during the relaxation dynamics after offset. a)
View of the most relevant dimensions of the decoder ~x during the processing of a sequence
of two IRNs; dimensions were reduced using principal component analysis. Note that the
transition from ~xpitch to ~xpitch’ elicits a new POR, corresponding to the second stimulus.
b) and c) View of the two dimensions of the sustainer columns characterising the first (b)

and second (c) decoded pitch values. The first column relaxes back to the state ~̂xn0 after the
pitch transition; similarly, the second column does not respond to the first tone, and only
abandons the state ~̂xn

′

0 after the transition. Stimulation was the same as in Figure 4.20.

The harmonic representations provided by SACF-like models proposes an elegant solution
for this problem.

Sustaining dynamics may explain several puzzling aspects of the sustained field be-
haviour. The late onset of the component is a consequence of the functional role of the
sustainer, which only affects the processing dynamics after pitch has been extracted from
the subcortical representation. The delay offset of the SF is a consequence of the sustainer’s
inertia, driven by the relaxation time constants of the sustainer’s columns circuits; this in-
ertia is crucial to prevent the system from constantly re-decoding the stimulus under noisy
inputs [107].
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Chapter 5

Consonance perception in verti-
cal pitch interactions

The perception of music rests on synergistic interactions that produce new auditory objects
whose identity is not simply provided by the sum of its parts. Interactions in the pitch
dimension are of special interest in music, since they are responsible for the emergence of
melody and harmony.

Pitch interactions are often studied on the basis of two orthogonal dimensions: consecu-
tive tones in a melodic sequence are said to interact horizontally, whilst simultaneous tones
in a chord or a dyad interact vertically [170]. As revealed by a landmark study in a subject
with bilateral lesions in auditory cortex [171], horizontal interactions are mediated by plastic
cortical areas responsible for high-level cognitive processing, and seem to be associated with
a systematic exposure to certain musical intervals [172,173].

In contrast, the substrate of vertical interaction might rely, at least partially, on intrinsic
properties of pitch processing mechanisms located at different stages of the auditory pathway
[171,174–177].

This chapter explores the neurophysiological substrate of vertical pitch interaction; specif-
ically, we will investigate the emergence of the sensations of consonance and dissonance from
a pitch processing perspective.

The sensations of consonance and dissonance

Chromatic intervals

Chroma and pitch classes Harmonically related tones evoke different pitch sensations
that are judged as similar by the listeners. When the tones are presented together, the
resulting harmonic complex tone elicits the pitch of the tone with the lowest frequency (see
§2.2.3.1). Harmonically related tones are said to share the same pitch class or chroma [5].

The chromatic scale The chromatic scale identifies 12 different pitch classes within the
frequency range spanned from a given f0 to the next superior harmonic 2f0 [4]. Pitch
classes are defined by considering increasingly complex frequency ratios, which often elicit
increasingly unpleasant sensations when interacting vertically forming dyads [4].

The simplest of such ratios defines the 7th pitch class or perfect fifth, characterised by
f7 = 3/2 f0. Dyads comprising a fundamental f0 and its perfect fifth f7 are generally judged
as consonant, pleasant, sounds [4]. The most complex ratio considered in the Western scale
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5.1. The sensations of consonance and dissonance

Figure 5.1: Chromatic scale and standard Western intervals. a) Chromatic scale
beginning in C. b) First 13 standard Western intervals with baseline C and frequency ratios
according to the natural tuning.

is the first pitch class or minor second ; dyads comprising a fundamental f0 and its minor
second f1 are often judged as dissonant, unpleasant sounds [4]. Figure 5.1B lists the first 13
intervals of the chromatic scale (f0, fn) sorted by ascending pitch value.

In Western music, it is common to use letters to denominate the different pitch classes
and generate the chromatic scale starting with a baseline frequency f0 near 440 Hz, denoted
as A [4]. Subsequent frequencies in the chromatic scale are denoted by the symbols: A#,
B, C, C#, D, D#, E, F, F#, G, and G#, after which the scale reaches the first harmonic of the
series and its once again labelled as A. Numbers can be used to differentiate tones with the
same pitch class along different octaves: A3 often characterises f0 = 440 Hz, A4 represents
f0 = 880 Hz, etc. In music notation, the chromatic scale is written using ascending figures
in a staff; for instance, Figure 5.1A shows a chromatic scale beginning at C.

Tuning systems There are several different tuning systems spanning a chromatic scale
starting at a given f0. Figure 5.1B shows the standard frequency ratios described by the pure
intonation. Whilst this tuning schema ensues strong consonant sensations within the same
octave, it fails to preserve harmonicity across different octaves for pitch classes different than
the baseline of the tuning (e.g. in an intonation tuned to A4, the frequency fC4 characterising
C4 deviates from fC5 ≡ 2fC4 by a factor 80:81). The equal tempered intonation subdivides
the chromatic scale in 12 segments according to the formula fn = f0 ∗2n/12 [4], guaranteeing
that notes belonging to a given pitch class are perfect harmonics of each other across several
octaves.

The sensation of consonance and dissonance

Dyads consisting of tones with different pitch classes elicit a new emergent sensation known
as tint [178], commonly described as some degree of consonance or dissonance. Although
consonance is often defined as a pleasant sensation and dissonance as an unpleasant one, we
will argue that a clear distinction should be drawn between consonance and pleasantness.

The degree of consonance elicited by a tonal dyad depends mostly on the chroma rela-
tionship between the two tones, although it can be modulated by their pitch value [179];
for instance, although a perfect fifth is always more consonant than a minor second, perfect
fifths are considered as more consonant in pitch regions over 440 Hz, whilst minor seconds
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Figure 5.2: Typical consonance and dissonance judgements in dyads of harmonic
complex tones. Consonance was calculated as the normalised averaged judgement across
eight different studies (see Figure 6 in [180]).

are considered more dissonant in the pitch region spanning from 220 Hz to 7 kHz. Sounds’
timbre and loudness do not significantly influence relative consonance judgements between
intervals [179].

Consonance seems to be related to the simplicity of the integer frequency ratios of the
tones comprising the dyads [172]; see Figure 5.2. This relationship leads to the classical
relationship of consonance with fusion, hypothesising that dyads are more consonant the
more they resemble a single tone [178].

Neural representations of consonance and dissonance

Frequency following responses elicited by dyads in human thalamus (see §2.3.2.1) show
that neural activity in brainstem is phase-locked to the two tones present in the dyads,
and that the robustness of the synchronisation was stronger in consonant combinations
[174,176,181,182].

EEG recordings report influences of consonance and dissonance over onset transient re-
sponses in auditory cortex [177], including the P30 complex [183], the N100 [175, 183, 184],
and the P200 [184]. Moreover, Bidelman an colleagues. [175] found that the POR depth
(see §2.3.2.4) is significantly modulated by consonance, indicating that consonance and dis-
sonance are, at least partially, processed by cortical pitch-related mechanisms. Accordingly,
a subject with amusia due to localised bilateral lesions in auditory cortex, able to capture
the modal mood of musical excerpts, was unable to distinguish consonant from dissonant
dyads [171].

Consonance is further represented in cortical regions typically associated with higher level
cognitive functions such as superior temporal gyrus [171] and sections of frontal cortex [183].
The difference between the response to consonant and dissonant dyads in frontal areas is
stronger in the right hemisphere [183].
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The effect of musical training and cultural background

The role of neural plasticity on the perception of consonance and dissonance is still under
debate: some authors argue that the sensation emerges naturally from the neurophysiol-
ogy the auditory pathway, whilst other authors maintain that consonance perception is an
acquired skill developed by cultural exposure [185]. We will argue that this controversy
may be partly sourced in the erroneous equivalence between pleasantness and consonance
sometimes drawn in the literature [172, 186], suggesting that tint is elicited by a general,
culture-independent mechanism [172,174,187].

The influence of culture on perceptual judgements Cross-cultural experiments seem
to indicate a general agreement in the judgement of consonance and dissonance in dyads.
For instance, a study using subjects from USA, Germany and Japan, involving several
generations, ages, and musical background, failed to find significant differences between the
judgements drawn by different groups [185]. Similar conclusions were reported in another
study comparing perceptual judgements from experts and naive subjects from Japanese and
American backgrounds [187].

These results have been generalised to English, Farsi, Mandarin and Tamil speakers in
a theoretical analysis considering the occurrence distribution of frequency ratios within the
oral expressions of each language [180]. Occurrence maxima and minima were consistent
along the four languages, and predictive of the chromatic scale’s consonance and dissonance
ratios in the natural tuning [180].

Consonance and pleasantness Some authors argue that a difference should be drawn
between the concept of consonance and its associated pleasantness [172, 186]. An experi-
ment comparing these two sensations in musicians and non-musicians found that, although
non-musician subjects seem to judge consonant dyads as pleasant and dissonant dyads as
unpleasant, there was a much smaller correlation between the pleasantness and consonance
reported by experienced musicians [172]. Whilst pleasantness was judged differently by the
two groups, the reported consonance was common to musicians and non-musicians [172].

Moreover, the pleasantness sensation elicited by consonant pitch combinations seems to
depend strongly on cultural background: a recent study using subjects from the Tsimane’,
a society with minimal exposure to Western culture, showed no significant preference to
consonant over dissonant dyads [186]. Although consonance preference had been previously
established in 2- and 4-month-old infants [188], these results have been shown to reflect pref-
erences built over a short-time familiarity rather than an intrinsic preference for consonant
tone combinations [189].

Whilst pleasantness has an aesthetic connotation and presents large variances across
subjects, depending on style and individual taste, there seems to be a general across-subject
agreement on the relative consonance elicited by different intervals [178].

These studies seem to converge in the idea that consonant dyads are not universally
perceived as pleasant or unpleasant, but that such association emerges by cultural exposure
to determined musical styles. Reversely, the universality of the perception of consonance
and dissonance across cultures suggest that tint is not a product of musical training, but a
rather general biological phenomenon [172,187].

Electrophysiological effects Although the phase-locking reliability of brainstem’s FFR
responses is stronger in subjects with musical experience, differences between the responses
to consonant and dissonant dyads are not significantly modulated by training [174].

At the cortical level, responses depend on musical experience. However, the effects are
much more robust in transients typically associated with higher-level cognitive functions,
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along the 300-800 ms latency band [177], than in the early onset transients elicited in auditory
cortex, where differences are inconsistently reported across studies [173,177,184].

In summary, evidence converges in that, although cultural background and musical ex-
perience can enhance the sensation of consonance, its neurophysiological basis seems to be
universal when controlling for pleasantness [176,190].

Linear theories of consonance

In contrast to single tone’s pitch, loudness, and timbre, the physical correlate of consonance
in dyads is unclear. A general agreement exists that consonant dyads are characterised
by simple frequency ratios [4], but this notion is far from producing robust systematic
predictions of the level of consonance elicited by different sounds. For instance, dyads in
lower frequency ranges generally produce smoother consonance/dissonance sensations than
dyads in medium frequency ranges [172].

In this and the following section, we will review several families of consonance theories,
to conclude that consonance is closely related to pitch processing.

Roughness theory

Early theories of consonance are based on the concept of roughness, described first by Helm-
holtz as a rapid beating sensation produced by dissonant tone combinations [4]. Helmholtz’s
theory suggests that dissonance results from the interaction between higher harmonics gen-
erally present in the tones comprising the chord [4]. Tone combinations derived from simple
frequency ratios result in well-spaced higher harmonics that do not produce strong beating
sensations.

A more recent reformulation introduced an abstract notion of roughness, as produced
by interactions within a set of virtual tones called difference tones, arising from recursive
additive operations between then tones comprising the chord [191]. Consistently, dissonant
dyads elicited phase-locked activity synchronised with the frequency of the first order differ-
ence tone in monkey’s primary auditory cortex [192]. Similar findings have been reported
in auditory evoked potentials in human’s Heschl’s gyrus [192].

Although these findings could be consistent with a temporal theory of consonance, such
theory is unable to explain why dyads with difference tone’s frequencies over the cortical
phase-locked limit elicit a consonance percept [192]. Moreover, roughness theory fails to
explain why intervals beyond the octave are judged as consonant or dissonant as their
within-octave counterparts [192].

The critical bandwidth theory

Dyads of pure tones are perceived as consonant when the tones’ frequency separation ex-
ceeds a certain critical bandwidth, roughly equal to three semitones around the frequency of
the fundamental tone [172], and dissonant otherwise [172]. The critical bandwidth theory
suggests that dissonance is the result of such interactions between pure tones comprising
the harmonic complexes typically observed in natural sounds. Theory’s predictions show a
good agreement with experimental data in dyads [193] and chords [179,194] within the same
octave.

The critical band theory is consistent with the roughness theory: dissonant intervals
within the critical bandwidth produce rapid beating sensations, in agreement with Helm-
holtz’s description of dissonance [172]. In fact, Helmholtz predicted that roughness was a
consequence of the interaction between the partials of the harmonic complexes, although he
assumed a fixed critical bandwidth of interaction [4].
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Pitch processing theories of consonance

Evidence against the critical band theory

Early experiments testing the critical band theory intentionally omitted tritone and fourths
because they were recognisable intervals and thus cultural background could affect conso-
nance judgements [185]. This constraint severely limits the evaluation of the theory with
pure tones, since most of the dyads over the three semitones are consonant, except for the
tritone and the minor seventh.

Another important point of conflict is the dissonance percept elicited by dyads made of
iterated rippled noises [175]. IRNs cannot be expressed as sums of pure tones and thus,
according to the critical band theory, IRN dyads should not elicit a dissonant sensation
at all. However, IRN dyads are judged as consonant or dissonant depending on the same
fundamental frequency ratios as harmonic complex tones [175].

Consonance and pitch processing

A key study addressed the problem of consonance and roughness by systematically analysing
the responses or 250 subjects to different dyads through three different dimensions: pref-
erence to consonant over dissonant dyads, preference to dyads eliciting a rough or beating
sensation, and preference to dyads whose spectral shapes matched in greater or less degree a
harmonic series [190]. The study revealed that, whilst listeners generally showed preference
for both dyads not eliciting a beating or rough sensation and dyads whose spectra were
closest to a harmonic series; only the spectral criterion was consistently correlated with a
preference for consonant over dissonant dyads [190]. This important result suggests that
the physical correlate of consonance and dissonance relies on harmonic relationships rather
than on the elicited roughness [190].

Accordingly, subjects with impaired pitch perception have been shown to be unable
to discriminate between consonant and dissonant dyads, even though they were sensitive
to beating and roughness [185, 195], suggesting that pitch processing plays a crucial role in
consonance and dissonance perception. The hypothesis is further supported by EEG cortical
recordings using noise-to-IRN stimulation, which show that the POR elicited by IRN dyads
and located in the anterolateral portion of Heschl’s gyrus was significantly modulated by
the perceived consonance [175].

Consonance and the SACF

A last link between consonance and pitch processing is provided by the fact that, whilst
consonant dyads such as the fourth or the fifth are associated with periodic autocorrelation
functions, dissonant dyads produce aperiodic SACF representations [185]. Consonance seems
to be closely correlated with regularities in the temporal structure of the subcortical activity
elicited by the sound at the same temporal scale of pitch processing [185,196].

A series of studies in FFR by Bidelman and colleagues [176, 181, 182] compared the
autocorrelation function of the brainstem frequency following responses elicited in human
subjects by consonant and dissonant dyads. ACFs associated to consonant sounds had
a larger degree of similarity with periodic templates than ACFs associated to dissonant
sounds [176,181,182].

Discussion

The universality of consonance The universality of a particular preference for conso-
nant or dissonant chords is still under debate: subjects from a large diversity of cultural
backgrounds and different degrees of musical expertise seem to share a common preference
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for consonant combinations [180,185,187], but tribal groups with no exposure to Western cul-
ture [186] and 2–4-months-old infants show no particular preference for one or another [189].
However, the difference between the sensations of consonance and dissonance do seem to
be of an universal nature [172, 174, 178, 180, 185, 187, 189], in the same way that loudness,
timbre and pitch variations are universally perceived as intrinsic properties of single tones.

Consonance and the SACF Although the physical correlate of consonance is still a
matter of controversy, the theory relating consonance to the regularity of the SACF of
brainstem responses associated to a given pitch combination is the most compelling option
among the current competing hypotheses [176, 181, 182, 185]. This theory links consonance
perception to the classical notion of consonance as a result of fusion [196], that identified
consonant chords as those most resembling a single tone [178].

In §3.5.2, we argued that the regularised SACF can approximate the subcortical repre-
sentation of pitch, by processing the temporal structure of the auditory nerve activity in the
temporal scales typically characterising pitch perception. Thus, we suggest here that the
sensations of consonance and dissonance are characterised by these same temporal scales in
pre-cortical stages.

Consonance and pitch processing Previous studies have shown that cortical pitch
processing is an essential prerequisite in order to differentiate consonant from dissonant
dyads [185,195]. Consonance could be processed after cortical pitch extraction: pitch values
could be transformed into a chromatic representation and then compared through a neural
network using some sort of consonance and dissonance template matching mechanism.

However, unlike pitch, that can be used to determine the size of the sound source or to
disassociate sounds coming from different sources, consonance and dissonance do not seem
to present a clear functionality justifying the existence of a dedicated decoding mechanism.
Moreover, EEG recordings report a strong correlation between POR amplitude and the
degree of perceived consonance, emphasising the role of the putative pitch centre on conso-
nance processing [175]. Taken together, these observations suggest that consonance might
be a collateral effect of pitch processing.

In the next sections, we will explore this last hypothesis combining novel MEG recordings
on IRN dyads and the cortical model of pitch processing developed in Chapter 4. Our results
provide further evidence suggesting a causal link between cortical pitch processing and the
emergence of consonance and dissonance sensations.

AEF dynamics during consonance processing

Previous studies considering the POR dynamics

Using a noise-to-IRN paradigm in an EEG experimental set, Bidelman and Grall [175]
measured the POR associated to the onset of dyads eliciting different degrees of consonance
and dissonance. They found a significant positive correlation between reported consonance
and the POR’s depth, and a subtle non-significant negative correlation between consonance
and the POR’s latency [175].

Although Bidelman’s results are highly revealing, their experimental conditions were de-
signed to investigate the hierarchical organisation of consonance perception rather than the
dynamics of consonance processing within auditory cortex. As a consequence, the experi-
mental conditions could be improved in order to understand further the behaviour of the
cortical dynamics associated to the onset of dyads.

First, an MEG rather than EEG paradigm could offer a greater spatial resolution and an
increased signal-to-noise ratio of fields sourced in anterolateral Heschl’s gyrus (see §2.3.1.3).
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Moreover, in Bildelman’s experimental setup, each note of the dyad was delivered to a
different ear in order to avoid possible cochlear beating during the stimulation [175]. Binaural
stimulation has been shown to produce stronger perceptual and physiological differences
between the responses to consonant and dissonant dyads [197].

Experimental methodology

We designed an experimental setup in order to investigate the dynamics of POR for dyads
in auditory cortex. Experimental conditions were here optimised to further investigate the
dependence of the POR’s latency with consonance, already hinted in Bidelman’s study.
Specifically, the study aimed to find a significant correlation between dissonance and the
POR’s latency, and measure the size of the effect in musicians and non-musicians. The
study was carried out by Sebold, Andermann, and Rupp at the Department of Neurology,
Heidelberg University, Germany.

Details on the stimuli Dyads consisted of two simultaneous 8-iteration IRNs sampled
from the same white noise (Bidelman’s IRNs were generated with 64 iterations, eliciting a
stronger pitch sensation). The ground note in the dyads was set to f0 = 160Hz (Bildeman’s
ground IRN presented a higher pitch value, with f0 = 250 Hz). Stimuli were presented
diotically (Bidelman’s study used dichotic dyads) and were preceded by a Gaussian noise
in order to disentangle the POR from the energy onset response (see §2.3.2.4). Noise and
dyad durations were set to 750 ms and the transition was mediated by a 10 ms Hamming
window. We chose a lower number of iterations than Bidelman and diotic stimuli in order to
maximise the effect of tint over pitch in the POR. A lower overall pitch was chosen in order
to increase the latency of the onset response and boost the statistical power of potential
latency differences.

Experimental paradigm and AEF recording Auditory evoked fields were recorded
using a Neuromag 122 MEG system on 37 subjects. In comparison, Bidelman’s study used
a 64-channel EEG equipment and 9 subjects [175]. 250 trials were recorded per dyad; trials
were pseudorandomised and separated by 1000 ms inter-stimulus-intervals.

Recording the responses to each dyad requires 250× (1500+1000) ms = 10.4 minutes. In
order to guarantee that the subject was vigilant during the whole experiment, duration was
constrained to approximately one hour, corresponding to six different stimulus conditions:
three consonant (unison, third, and perfect fifth) and three dissonant dyads (minor second,
tritone, and minor seventh); see Figure 5.4B. Bidelman’s study recorded the responses to
all 13 possible chromatic dyads.

Data analysis and preprocessing Data was preprocessed using standard MEG proce-
dures (see, for instance, Methods in [1]). Equivalent dipoles were fitted for the POR and
the sustained field for each subject and hemisphere over the pooled six conditions, based on
the assumption that the field sources were the same in all dyads.

Experimental results

Grand averaged dipole moments at the pitch onset response and sustained field generators
for each of the stimulus conditions are shown in Figure 5.3.

POR latency and depth dependence with consonance In agreement with Bidelman
and Grall’s study [175], consonant dyads elicited a larger (p < .0001; see Figure 5.4A)
and earlier POR response (p < .0001; Figure 5.4B). In contrast with Bidelman’s EEG
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Chapter 5. Consonance perception in vertical pitch interactions

Figure 5.3: Averaged evoked fields elicited by consonant and dissonant dyads.
a) Temporal waveform of the grand averaged dipole moment of the POR generator for
each of the six dyads considered in the experiment. b) Detail of the POR triggered by the
transition between the white noise and the IRN dyad. c) Grand averaged dipole moment at
the sustained field generator.
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Figure 5.4: Comparison between the POR and SF properties and perceived
consonance in IRN Dyads. a) Averaged POR amplitude. b) Averaged POR latency.
c) Averaged depth of the sustained field. Error bars are standard errors; perceptual results
were taken from [175], Fig. 2.

results, the latency of the magnetic POR showed a highly significant dependence with elicited
consonance.

Sustained field magnitude dependence with consonance The magnitude of the
elicited sustained field was smaller for the pooled consonant than for the pooled dissonant
dyads (p < .0001). However, depth ordering did not generally mirror consonance judgements
(see Figure 5.3c).

Lateralisation of the responses No significant differences were observed between the left
and the right hemisphere on the POR morphology (latency: p = .320; amplitude: p = .029),
on the SF amplitude (p = .011), nor between the responses to consonant or dissonant dyads
(POR latency: p = .489; POR amplitude: p = .334, SF amplitude: p = .417). Significance
analysis in this section were perfomed by M. Andermann using the bootstrap method [198].
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5.3. Pitch processing during consonant and dissonant interactions

Effects of musical training Individual musical aptitude of each subject was assessed
using the Advanced Measures of Music Audition (AMMA); a standardized test that measures
musical aptitude independently of expertise [199]). The median AMMA score of the 37
subjects was used to divide the sample into a low-AMMA group and a high-AMMA group.

No significant difference was found between the POR amplitude elicited by subjects in
the high- and low-AMMA groups, however, the POR latency of was significantly shorter for
the high-AMMA group (p = .003). Furthermore, the elicited sustained field was found to
be significantly larger for the high-AMMA group (p = .003).

However, the difference between the responses to consonant or dissonant dyads did not
vary between high- and low-AMMA listeners (latency: p = .152; amplitude: p = .479). No
significant interactions were neither found between high- or low-AMMA scores and hemi-
sphere activity (latency: p = .012; amplitude: p = .358).

Discussion

Experimental results show that the degree of consonance elicited by different pitch combi-
nations has a direct and significant influence on the temporal dynamics of the pitch onset
response.

Previous studies had already shown that pitch processing was an essential prerequisite
for the emergence of the sensations of consonance and dissonance [185, 195]. Bidelman
and Grall’s study revealed that the magnitude of the POR was significantly modulated by
consonance [175], although this effect might just reflect a decay in the robustness of phase-
locking observed in the FFR in human brainstem for dissonant dyads [174,176,181,182].

On the contrary, the effect of consonance on the POR’s latency cannot be explained as
a consequence of the FFR’s fidelity decrease; for instance, the number of iterations in an
IRN, although affecting the salience of the SACF representation of the tone and the elicited
POR’s amplitude, do not have an effect on the POR temporal dynamics [22]. The effect can
neither be accounted for as a result of the POR’s latency dependence with pitch typically
reported in the literature; for instance, the latency shift expected between f0 = 160 Hz and
its minor second f0 ∼ 170 Hz is of ∼ 2 ms, whilst a ∼ 36 ms latency gap is observed between
the unison and the minor second dyads.

Thus, a more fundamental phenomenon seems to underlie the strong latency correlation
found with perceived consonance. In the next section, we will investigate the neural substrate
of such correlation using the cortical theory of pitch processing developed in Chapter 4.

Pitch processing during consonant and dissonant inter-
actions

In this section, we will investigate the behaviour of pitch processing mechanisms presented
in Chapter 4 when the input stimuli consists of consonant and dissonant dyads. Our results
suggest that the POR latency dependence with consonance reported above (see §5.2.3) can
be explained as a consequence of harmonic collaboration between the SACF subcortical
patterns during the pitch decoding procedure. Moreover, we will argue that this process
might be the underlying mechanism behind the emergence of the sensations of consonance
and dissonance.

Subcortical processing of IRN dyads

The same procedure as in §4.2.2 was used to calculate the regularised SACF associated to the
different dyads considered during the experimentation. Dyads consisted of two simultaneous
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Chapter 5. Consonance perception in vertical pitch interactions

Figure 5.5: Averaged regularised SACF elicited by IRN dyads. Blue triangles
point to the actual periods of the tones comprising the dyads. Note that SACF patterns
associated to consonant dyads like the perfect fifth show a more periodic pattern that SACF
associated to dissonant dyads like the minor second. Stimuli were IRN dyads as described
in §5.2.2; plots show the regularised SACF according to the compensated rescaling factor
µ0 = 150 Hz.

IRN tones with 8 iterations, generated from the same Gaussian sample, and bandpassed
between 125 Hz and 2 kHz. We used the same parameters as in the MEG experimentation
described in §5.2.2 in order to reproduce the behaviour of the cortical mechanisms operating
during the recordings in as much detail as possible.

We considered 13 dyads, corresponding to each of the notes of the chromatic scale
(see §5.1.1), with the same ground tone f0 = 160 Hz as in the MEG experimentation.
Averaged regularised SACF for each dyad are shown in Figure 5.5. The resulting SACFs
showed harmonic series with a remarkably lower signal-no-noise ratio than their single-pitch
counterparts. The degradation of the SACF peaks is a consequence of the auditory nerve
activity being simultaneously phase-locked to two different fundamental periods, effectively
degrading the robustness of the phase-lock associated to each independent pitch.

In order to compensate for this effect, we doubled the rescaling factor µ0 → 2µ0 =
150Hz, which yielded peaks of activation of ∼ 60 Hz, comparable to the activity elicited
by simple IRNs. In §6.2.2.2 we will argue that an adaptive integrative mechanism might be
responsible for an effecitive rescaling modulation of this kind.

Extracting simultaneous pitch values

Adjustment of the parametrisation

Next, we tested the cortical model described in §4.2 using the regularised SACF associated
to the different dyads as subcortical inputs. At this stage, it was necessary to perform a
fine tune of several parameters of the cortical model in order to allow for concurrent pitch
representations in the decoder’s readout. Prior to this tuning, the model failed to converge
to any of the pitch percepts present in most of the dyads except for the minor second, where
the model converged to an average of the pitch of the two IRNs.
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5.3. Pitch processing during consonant and dissonant interactions

Figure 5.6: Perceptual predictions of the model for IRN dyads. Average responses
of the activity of different model’s populations elicited by IRN dyads; fundamental frequency
of the lower note was f0 = 160 Hz. Responses were averaged in time (as in Figures 4.7–4.11)
and across five runs of the model to investigate trial-to-trial variability. As in § 4.3, each
row shows the responses to each stimuli (in this case, to each dyad); note that, except for
the unison, all dyads elicit the activation of two different pitch-selective populations, one
corresponding to the pitch of the ground tone f0 = 160 Hz and one corresponding to the
note of the chromatic scale characterising the dyad.

We tuned the thalamic conductivity J thAMPA, decoders’ conductivities targeting inhibitory

ensembles JeiNDMA and J iiGABA, afferent conductivities ĴaAMPA and ĴaGABA, and the efferent

conductivity ĴeNMDA. Parameters were adjusted to ensure that the model was able to decode
both pitch values from the subcortical inputs of 6 representative dyads (see §A). The extrac-
tion of the two tones in the minor second was specially challenging because of the overlap
of the peaks corresponding to their fundamental frequency in the SACF representation (see
Figure 5.5B; see also §6.1.1.2A).

Parameters variation after tuning did not exceed more than 10% of the original value of
the constants, and the final parametrisation of the model was consistent with all previous
results. Parameters reported in Table 4.1; all results and Figures reported in §4.3–4.4 were
produced using this last parametrisation.

Perceptual results

Model’s representation of the IRN dyads after the decoding is shown in Figure 5.6A. Simul-
taneous tones were successfully extracted from the SACF representations in all tested dyads
with ground fundamental frequency f0 = 160 Hz.

Using the entire SACF pattern for pitch extraction is crucial to explain the perception
of dyads of tones with similar fundamental frequencies. Consider for instance the minor
second: the first two peaks of the harmonic series corresponding to the fundamental f0 and
its minor second overlap in a single peak corresponding to the mean characteristic lag of
each of the two notes (see second raw of the left panel in Figure 5.6). The series are only
independently resolved when looking at the subsequent harmonics. Note that the overlap of
the peaks is still evident in the excitatory populations at the decoder layer, whilst the peaks
are clearly resolved independently in the representation held by the decoder’s inhibitory
populations.

Decreasing the fundamental frequency of the lower tone in the dyad yields similar per-
ceptual results (see Figure 5.7A). However, the tones of dyads starting at frequencies above
∼ 250 Hz are not always resolved by the cortical model (see the perceptual predictions for
the sevenths in Figure 5.7B). This is due to the overlap of the first peaks of the harmonic
series corresponding to each of the IRNs comprised in the dyads in the SACF representation.
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Chapter 5. Consonance perception in vertical pitch interactions

Figure 5.7: Perceptual predictions of the model for higher and lower-pitched
IRN dyads. a) Average responses of the activity of different model’s populations elicited
by IRN dyads with lower fundamental frequency f0 = 100 Hz. b) Responses for IRN dyads
with lower fundamental frequency f0 = 250 Hz. Note that, in this last case, some lines char-
acterising the extracted pitch in the inhibitory ensembles are missing or under-represented.
Methodology of the simulation was the same as in Figure 5.6.

A solution to this issue would be to allow for the model to integrate along a higher number
of harmonics when the first three peaks of the series are not enough to perform a reliable
perceptual decision (see §6.2.3.1).

The model was further tested using dyads based on HCTs and click trains. Percep-
tual results were not significantly different from the results obtained with IRN dyads (see
Figure 5.8).

Decoding dynamics and evoked fields

Neuromagnetic fields elicited by the decoder network

Since the cortical model was able to extract a reliable representation of simultaneous pitch
values in IRN dyads, next we inspected the derived evoked fields at the POR generator
(see §4.2.7.2). A systematic 25 ms delay between the prediction and observed neuromagnetic
trends was observed in all conditions; the delay was corrected by adjusting the cortical delay
∆ → ∆dyads = ∆ + 25 ms = 95 ms. This systematic increase of the cortical delay might be
connected to the correction factor of the SACF: a decrease in the signal-to-noise ratio of the
subcortical input typically yields an increase of the necessary processing time.

Figure 5.9 shows a comparison of the grand average of the equivalent dipole moment
elicited by each dyad at the POR generator (same as in Figure 5.4A), in comparison with
a single-trial field predictions of the model for the same stimuli after the adjustment of
the cortical delay. Fairly good agreements with the morphology of the recorded fields are
observed for all conditions, with the exception of the unison where the amplitude of the
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5.3. Pitch processing during consonant and dissonant interactions

Figure 5.8: Perceptual predictions of the model for HCT and click train dyads.
a) Average responses of the activity of different model’s populations elicited by HCT dyads
with a ground fundamental frequency of f0 = 160 Hz. b) Responses for click train dyads
with an inter-click interval equivalent to f0 = 160 Hz. Methodology of the simulation was
the same as in Figure 5.8.

POR transient was underestimated by the model.

POR’s latency dependence with consonance

Next, we tested if the model was able to replicate the POR latency observations robustly
across trials. Figure 5.10A compares the predicted POR latency with the MEG observa-
tions. A strong agreement between experimental and modelling results are observed for all
conditions. Moreover, we found a strong correlation between perceived consonance and the
predicted POR latency for the rest of the dyads, as shown in Figure 5.10B.

Our model explains the correlation between POR’s latency and consonance through
harmonic facilitation. Pairs of tones resulting in consonant combinations show obvious
similarities in their SACF-like harmonic series: the SACFs associated to an f0 = 200 Hz
tone and its perfect fifth, an f0 = 300 Hz tone, share one in three peaks in the harmonic
series; in contrast, the SACFs associated to a f0 = 200 Hz tone and its minor second do not
share any peak in the entire range of the SACF under the frequency limits considered in our
model. These coincidences effectively facilitate pitch processing and speed it up: common
harmonics contribute to the build up of both tones, explaining why the perfect fifth or the
fourth dyads are extracted considerably faster than dissonant dyads. This explanation is
fully in line with the observation that consonant dyads produce more periodic, harmonic
like, patterns (see also §5.1.6.3).

A second phenomenon, having a more subtle but also noticeable effect, is the slightly
larger degradation of the signal-to-noise ratio observed in dissonant dyads. These differences
are responsible for the more subtle differences observed between dissonant dyads.
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Chapter 5. Consonance perception in vertical pitch interactions

Figure 5.9: Comparison of the model’s simulated fields and the POR dynamics
for dyads. Plots compare the measured dipole moment (blue, shadows are standard errors;
same as in Figure 5.3) with the average activity of the model’s excitatory populations at
the decoder (black), predictive of the POR neuromagnetic field. A very good agreement
between both quantities is observed for all dyads except for the unison, where there is
a significant difference between the measured and predicted amplitude of the POR. This
divergence is due to a fundamental limitation of our model: the POR is computed as the
aggregated activity across excitatory populations, which depends on the amount and shape
of the peaks emerging in the SACF representation. Dyads with several pitch values elicit
a longer number of harmonic peaks, eliciting a larger activity in the decoder’s excitatory
ensembles.

In order to corroborate the robustness of the correlation between the PORs latency and
perceived consonance we computed the latency predictions for two extra families of dyads.
Latency predictions for dyads of harmonic complex tones are displayed in Figure 5.11A;
latency predictions for IRN dyads starting at a ground pitch f0 = 100 Hz are shown in
Figure 5.11B. Predictions for both families show consistent correlations with consonance.

Discussion

Modelling results suggest that the observed differences between the latency of the POR’s
elicited by consonant and dissonant dyads is caused by the collaborative interaction in cortex
between the processed harmonic series characterising each of the two notes. This process is
combined with the competitive interaction between populations described in the previous
chapter; coalescing in the emergence of the consonance sensation. Thus, pitch processing of
each one of the notes is not only a prerequisite, but it enables auditory cortex to elicit the
perception of consonance.
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5.3. Pitch processing during consonant and dissonant interactions

Figure 5.10: POR latency predictions for IRN dyads. a) Comparison between
the predicted and observed latencies of the POR elicited by six IRN dyads. b) Extended
prediction for the 13 dyads of the chromatic scale, in comparison with the consonance
sensation typically reported for the same dyads. Stimuli consisted of the 13 IRN dyads with
a fundamental frequency of f0 = 160 Hz as described in §5.2.2. Predictions were averaged
across five runs of the model, error bars of the predictions are standard deviations; notice
the relatively large trial-to-trial variability of the minor second data, caused by the effect of
cortical noise strengthen by the low signal-to-noise ratio of the second and third harmonic
peaks of the SACF associated to that particular dyad (see Figure 5.5). Perceptual results
were taken from [175], Fig. 2.

Figure 5.11: POR latency predictions for other dyads. Prediction for the 13 dyads
of the chromatic scale, in comparison with the consonance sensation typically reported for
IRN dyads. a) Dyads of harmonic complex tones; lower tone’s fundamental frequency was
set to f0 = 160 Hz. b) IRN dyads, with a lower tone’s fundamental frequency f0 = 100 Hz.
Perceptual results were taken from [175], Fig. 2.

Previous studies have linked the regularity of the SACF pattern elicited by dyads to
their evoked consonance and dissonance percepts [176, 185, 196]. However, such studies did
not provide for a mechanistic explanation of this relationship, and neither did they showed
that harmonic collaboration has a direct effect on processing time.

Our model does not consider the influence of attention, cultural background, or musical
training; it is designed to explain passive cortical pitch processing in the most possibly
general fashion. Predictions on the POR latency are solely based on harmonic competition-
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Chapter 5. Consonance perception in vertical pitch interactions

collaboration in cortex and the decrease of the signal-to-noise ratio of the SACF due to the
interaction between phase-locked activity in the auditory nerve characterising each tone.
Thus, our model predicts that the correlation of consonance and dissonance with processing
time may be largely a consequence of the pitch processing mechanisms in anterolateral
portions of Heschl’s gyrus, rather than a result of consonance preference or cultural exposure
to consonant sounds.

On the other hand, our model does not perform any predictions over the cognitive pref-
erence for consonance widely reported in the literature. It could be argued that cognitive
systems might show an innate preference for sounds that are processed faster, and thus re-
quire a smaller amount of resources, but we have seen that low-pitched tones are processed
faster than high-pitched tones and humans do not show a particular preference for one or
the other.

Thus, in the light of our modelling results, we propose that the emergence of the sen-
sations of consonance and dissonance (but not the preference for one or the other) are
universal, and that they are mainly sourced in pitch interactions during the generation of
the SACF patterns and subsequent processing in alHG.

Conclusion

Vertical pitch interactions have several effects on the processing dynamics that can be re-
garded as non-linear, in the sense that the processing of a tone with two interacting pitch
values cannot be simply expressed as the sum of the independent processing of the two tones.

The most outstanding of the non-linear effects is produced by vertical pitch interactions,
resulting in the emergence of the sensations of consonance and dissonance [4, 172, 178]. A
number of theories have been suggested during the last two centuries to account for this phe-
nomenon. Early theories proposed that the sensation reflected the beating effect produced by
the aggregation of sinusoidal waveforms with different frequencies [4,172,179,191,193,194];
however, these theories were challenged by vast experimental evidence, suggesting that con-
sonance is rather related to pitch processing [175,185].

In agreement with these findings, our model introduces a new interpretation of conso-
nance based on non-linear effects taking place at the pitch processing centre in auditory
cortex. Vertical interactions essentially alter the time required for pitch perceptual decision
making: dyads eliciting two simultaneous pitch values are processed slower than single-
pitched tones [175] (see also §5.3.3.2). The exact difference in processing time is strongly
correlated with the consonance/dissonance percept elicited by each tonal combination: con-
sonant dyads are processed faster than dissonant dyads.

Previous studies have reported the correlation between the regularity of the SACF elicited
by dyads to their evoked consonance and dissonance perception [176,181,182,185,196]. Here,
we provide a mechanistic explanation of this effect. Harmonic facilitation during pitch pro-
cessing occurs as a consequence of the interaction of the overlapping SACF patterns char-
acterising consonant pitch combinations. Hence, only pitch processing models considering
several peaks of the SACF representation are able to account for the effect (see §4.2.3.2).

Differences in pitch processing time might underlie the emergence of the sensations of
consonance or dissonance (§5.3.3.2). Processing time is, however, only relevant during the
onset of the decoding mechanisms in alHG; yet consonance is not an onset percept, but
rather a continuous sensation present during the whole stimulation. Moreover, a mechanism
measuring convergence time would be necessary to explain how processing time can be
translated into an acoustic percept. Thus, further elements located at higher stages of the
auditory processing hierarchy are necessary in order to explain how onset differences can
give rise to a the continuous sensation characteristic of tint.
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5.4. Conclusion

Although vertical interactions alter the signal-to-noise ratio of the harmonic series char-
acterising each tonal component in the SACF representation (§5.1.6.3), they do not alter
the final shape of the pitch rate cortical representation. Harmonic integration allows for the
cortical system to successfully disentangle the non-linear interactions at the SACF and give
rise to a linear cortical representation.

Although musical training enhances consonance and dissonance perception, and cultural
background seems to be largely responsible for the association between consonance and
pleasantness (§5.1.4), our experimental (§5.2.3) and theoretical (§5.3.4) results seem to in-
dicate that non-linear effects are intrinsic to the cortical mechanisms of pitch processing,
rather than the result of higher-level cognitive functions.
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Chapter 6

Discussion

Conclusion

This thesis investigates the processing mechanisms underlying pitch perception in human
auditory cortex at a mesoscopic scale. The main result is a theory describing cortical pitch
processing as a competitive-cooperative process between balanced E/I ensembles, whose
connectivity is specifically structured in a harmonic fashion. The theory introduces a cortical
system that receives harmonic patterns of activation from subcortical areas and transforms
them into a pitch rate representation, held in anterolateral Heschl’s gyrus [27, 66, 68] and
adjacent areas of planum temporale [53].

Our theory is embedded on a comprehensive model that presents some strong assump-
tions and rough idealisations of the underlying neuronal processes. However, it accounts
for a wide range of psychoacoustical and electrophysiological data associated with pitch in
a mechanistic fashion, for the first time to our current best knowledge. In addition, it in-
troduced novel theoretical ideas linking the emergence of the sensations of consonance and
dissonance with mechanisms underlying cortical pitch processing.

In this section we will summarise the most important conceptual results of our inves-
tigation, following the lines of the research questions formulated at the beginning of our
investigation (see §1.2).

Neural representations of pitch along the multiple stages of the au-
ditory pathway

A large part of this thesis has been dedicated to the identification of the different neural
representations holding pitch-related information at different stages of the auditory pathway.
Four relevant neural codes were identified during our investigation.

Temporal coding in the auditory nerve

Temporal coding, originated in the phase-locked responses of the auditory nerve to peri-
odic stimuli (§2.1.1.2 and §3.1.3), may be perhaps the less controversial among the neural
representations of pitch information often discussed in the literature. Evidence for the
propagation of phase-locked activity to subcortical areas has been repeatedly reported in
intracranial studies in mammals [15, 68] and in studies analysing brainstem responses in
human subjects (§2.3.2.1).

It has been suggested [18] that spike trains with regular inter-spike-intervals could be used
to perform comparisons between different pitch values, rendering it a plausible representation
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6.1. Conclusion

of pitch in cortex. Although phase-locking to low frequencies has been reported in human
[16,88] and mammal [68] auditory cortex, there is no experimental evidence of cortical phase-
locking above ∼ 200 Hz. Moreover, it seems difficult to argue how subjects with perfect pitch
could use such code to perform absolute perceptual judgements (see §6.3.1).

Therefore, evidence seems to indicate that, although crucial during subcortical process-
ing, phase-locked activity is not used as a representation of pitch in cortical areas (see
also §3.2.3.4). Our theoretical ideas suggests that phase-locking is only relevant to convey
pitch information prior to subcortical spectral analysis.

Spectro-temporal coding of the autocorrelation process

The SACF-like patterns described in §3.5.2 inevitably result from the inter-spike-interval
analysis of the temporal representation described above, as originally established by the
autocorrelations models [17, 123, 124], but also by more recent models of pitch [18]. Here,
we suggest that such spectro-temporal representation holds pitch information at subcortico-
cortical relays of the auditory pathway, and that it coexists with a pitch rate representation
in auditory cortex.

Early versions of the autocorrelation model postulated the existence of delay lines, exten-
sively criticised by their lack of a solid physiological basis [119] (see also §3.2.2.4). However,
period-selectivity at neuronal complexes in cochlear nucleus and inferior colliculus have been
shown to yield similar activation patterns in response to periodic spike trains in a physio-
logically sound manner [17,127].

Experimental evidence for the presence of a spectro-temporal code in the mammal brain
is relatively scarce, but spectral periodotopic arrangements have been found in the inferior
colliculus of mammals (§2.1.2.3), and harmonic co-activation has been repeatedly reported
in the mammal cortex [57,62,153] and in an fMRI study in humans [59,61].

We showed earlier that the extra peaks at the lower harmonics grant a higher frequency
resolution to the spectro-temporal representation (see §5.3.2.2). Moreover, the harmonic
structure of the SACF might underlie the chromatic organisation of pitch [61, 119], and
explain how spectral listeners perform their characteristic perceptual judgements (see §6.3.2).

Pitch-rate code

We use the term pitch-rate code to denominate the final pitch representation proposed in our
model, where each neural block represents a single, determined pitch value. Pitch-selective
neurons responding preferably to specific pitch values have been consistently reported in
intracranial recording in the mammal brain [27,66–68].

Our results suggest that a pitch rate code is held in anterolateral Heschl’s gyrus, consis-
tent with the position of equivalent dipoles active during pitch processing in MEG record-
ings [22, 91, 99] and with the location of pitch-selective neurons reported in fMRI record-
ings [19,50,54,65].

There is little evidence for a consistent periodotopic organisation in human auditory
cortex [46,59,61], suggesting that the pitch-rate code might not be topologically arranged in
cortex (see §2.1.3.2). Although our model does present a fixed arrangement of the cortical
populations conforming the pitch rate representation, model dynamics do not depend on the
relative location of the neural ensembles; thus, our results are compatible with any specific
topology.

Pitch rate coding is fundamental to explain the perception of subjects with perfect pitch
[119], and might play an essential role in how absolute listeners judge tone intervals based
on the pitch values of the two tones (see §6.3.2.)
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Chapter 6. Discussion

Tonotopic code

Our model does not consider the tonotopic arrangements observed in Heschl’s gyrus as an
explicit representation of pitch in cortex. Pitch selective neurons are located only at the
low-frequency edge of the tonotopic axis [19, 50, 54, 65] (see also §2.1.3.3) indicating that,
although tonotopy plays an important role during the spectral analysis of the auditory nerve
activity, it does not hold an explicit representation of pitch.

This hypothesis might be challenged when assessing the perception of pure tones. It
has been suggested before that pure sinusoids do not share the same neural representation
of pitch than stimuli with more complex spectral envelopes [149]. Although perceptual
predictions of our model for pure tones are in line with psychoacoustic observations, pure
tone dyads result in different consonance percepts than HCT or IRN dyads of harmonic
complexes or iterated rippled noises [175,185,193]; an effect that cannot be explained by our
model. A separate mechanism relying on tonotopy might underlie the perception of pure
tones.

Neural mechanisms underlying cortical pitch processing in antero-
lateral Heschl’s gyrus

This thesis introduced the hypothesis that neurons in anterolateral Heschl’s gyrus are re-
sponsible for transforming the spectro-temporal code extracted in subcortical areas into a
pitch-rate code. The neural mechanisms underlying this transformation conform a hier-
archical structure consisting of two networks of neural ensembles, each characterised by a
different effective time constant and presenting a different level of abstraction.

The first network, called decoder, reacts almost instantly to variations in the subcortical in-
put and effectively computes the transformation between the two representations (§4.2.3.2).
The second network, called sustainer, reacts only after the transformation process has con-
verged and essentially modulates the decoder dynamics to avoid a continuous decoding when
the subcortical input does not vary, presenting a higher inertia against changes than the lower
network (§4.2.4.3). This architecture is stereotypical of systems of perceptual integration,
where the decision propagates to higher-level systems with a larger inertia [150].

A similar structures has been introduced by previous studies modelling cortical inte-
gration of the autocorrelation output. Balaguer-Ballester and colleagues [125] introduced
a cascade of two integrators performing successive integrations of the SACF with different
time constants. In a later study [21], the authors introduced a top-down modulatory process
that shaped the integration of the SACF according to the expectations of the incoming input
(see also the details on the GPM model in §3.3.2).

The sustainer network uses the current extracted pitch value as expected pitch; a premise
that was already present in Balaguer-Ballester’s GPM [21]. However, whilst GPM considers
the expectations as a pitch value, corresponding to the most likely outcome, the architecture
of the new model encodes the likelihood of each pitch value separately along the columns of
the sustainer, effectively allowing for complex expectation distributions encompassing several
pitch values. This extension provides not only for the possibility of holding simultaneous
pitch values in the cortical representation, but also allows for the introduction of complex
priors from higher cognitive areas through the decrease of inhibitory drive in target columns
at the sustainer (see §6.3.3).

The decoder network can be understood as a bank of interacting winner-takes-all in-
tegrators confronting harmonically related pitch values against each other (§4.4.2). The
winner-takes-all architecture is a prototypical model describing the dynamics of systems in
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charge of perceptual decisions under ambiguous inputs ( [150, 151]). Our system is an ex-
tension of those architectures allowing simultaneous pitch extraction processes to interact
with each other. The transformation effectively performs a biologically sound harmonic
sieve [119,122], mapping harmonic patterns of activation into single-valued representations.

These neural mechanisms underlying harmonic inhibition are ultimately hardcoded in
the connectivity strengths between excitatory and inhibitory ensembles in the decoder’s
network. These connectivity patterns could have been developed by early exposure to natural
sounds during early stages of cortical formation [121]. Models using STDP have shown that
harmonic connectivity patterns as the ones described in the model could naturally arise by
a systematic exposure to harmonic patterns of activation [129], that might be systematically
produced in subcortical areas in response to periodic sounds, widely present in nature.

Cortical pitch processing and the dynamics of the elicited auditory
evoked fields

Collective activity in cortical ensembles can be indirectly measured through their elicited
electromagnetic fields [24,80]. Neural activity derived from our cortical model during pitch
processing results in field predictions that quantitatively account for the equivalent dipole
moments measured in anterolateral Heschl’s gyrus reported by MEG studies (§4.3.2,§4.3.3).
This predictive capability allows us to study in detail the origin of the field morphology, and
the specific neural processing associated to several components of the auditory evoked field

Decoding dynamics and the POR

Decoder dynamics match the morphology of the pitch onset response (§4.2.7.2), describing
this transient as the neuromagnetic fingerprint of cortical pitch extraction. The POR is
typically elicited on pitch onset or pitch changes [22, 23, 91, 99, 105, 105], fully in line with
the behaviour of the decoder, whose functioning is only triggered under changes in the sub-
cortical input (§4.4.3.1 ,§4.4.3.4). The large depression characterising the POR morphology
is a consequence of the aggregation of spectral evidence in the excitatory ensembles of the
decoder (§4.2.3.2), gradually propagated from thalamus to cortex as a series of harmonically
related peaks describing the pitch-related content of the auditory nerve activity.

After enough evidence in favour of a particular pitch value is present in the decoder, the
decoding mechanisms is triggered by the action of inhibitory ensembles that effectively shunt
cortical activity corresponding to harmonic peaks that do not correspond to the target pitch
value (§4.2.3.2). This inhibitory action is responsible for the deflection of the POR transient,
that peaks at the instant in which the inhibition begins to overcome the subcortical input
(§4.2.3.3).

Thus, the mechanics of the model associate the POR peak latency with the convergence
time of the decoding process: stimuli eliciting later PORs require more time for cortex to
aggregate enough information before triggering the inhibitory action (§4.2.3.3). Our model
sets the information limen to the resolution of the first three peaks of the harmonic series
of the target period T up to a certain signal-to-noise ratio. The time required by the
subcortical system to resolve the third peak of the harmonic series is ∼ 4T , explaining the
POR latency dependence with four times the perceived pitch typically reported in MEG
experiments [22,23,91,99].

Onset responses of other models of cortical pitch processing have been previously linked
with the onset neuromagnetic fields. The derivative of the stabilised auditory image in
AIM [128,132,135] has been related to the pitch onset response [108], although AIM did not
succeed to perform quantitative predictions on the latency of the transient.
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The POR has also been linked to the derivative of the activity at the integrator corre-
sponding to the pitch value in the top-down modulated model [1, 21]. Although GPM did
perform quantitative predictions on the latency and amplitude of the POR for IRNs [21]
and ramped and damped sinusoids [1] (see also §3.4), these results are difficult to interpret.

First, the model associates the neuromagnetic responses to the activity at the population
encoding the perceived pitch, whilst all cortical populations in the model should contribute
similarly to the evoked fields [24,80]. Moreover, Balaguer-Ballester’s model does not provide
for a mechanistic explanation of the source or behaviour of the transient. Our model extends
previous results by explaining in detail the neural mechanisms underlying the rise of the
POR.

Sustaining dynamics and the SF

The sustaining process exhibits similar dynamic properties as the sustained field, explaining
the steady state of the neuromagnetic fields as the neuromagnetic fingerprint of pitch value
short-term storing (§4.2.7.3). The sustained field is elicited during the last stage of pitch
extraction, when the activity peaks corresponding to higher harmonics are being shunted
(§4.2.4.3), explaining the paradoxical difference between the SF and the POR onset dynamics
typically reported in MEG recordings [105,107].

The sustainer network considers larger effective times of integration than the decoder
network, due to the recurrent connections between inhibitory ensembles at each of the two
cortical layers. This grants the sustainer a certain level or inertia, crucial to keep a steady
pitch representation even in the presence of noise. Sustainer’s recurrent connectivity provides
for a mechanistic explanation for the offset delay observed in the pitch-related sustained field
in MEG recordings [107].

The sustained field has been associated to the overall activity of the stabilised auditory
image in AIM [108]. Although the SAI presents temporal properties explaining the offset
delay of the SF [108, 132], the SAI onset is much faster than the onset of the sustainer,
failing to explain the late rise of the response.

The role of the different regions of auditory cortex in pitch process-
ing

Anatomical subdivisions of Heschl’s gyrus

Despite evidence suggesting that the posteromedial section of Heschl’s gyrus also plays an
active role during pitch processing (see [200] for a review), MEG recordings locate the
sources of the pitch-related onset and sustained responses in its anterolateral counterpart
[22, 23, 105, 107, 108]. Our model, driven by MEG observations, suggests that cortical pitch
processing is essentially carried out by two adjacent networks of neural ensembles located in
alHG, corresponding to the cortical generators of the POR (§4.2.7.2) and the PSF (§4.2.7.2).

Intracranial recordings in human auditory cortex seem to indicate that the anterolateral
section of HG is at a higher hierarchical level of the auditory pathway than the posteromedial
section [26], and that only the later shows phase-locked responses [16,55,57,58], suggesting
that each anatomical subdivision might hold a different pitch representation [15,16].

A plausible hypothesis is that pmHG acts as a relay between thalamus and the processing
points in alHG, effectively low-passing the subcortical input before feeding it to the decoder
(see Alow in §4.2.2.3). This would explain why phase-locking over 200 Hz vanishes only at this
stage [16], why the tonotopic map is replicated twice in Heschl’s gyrus [46,54], and provide
for a stable SACF-like spectral representation of pitch in cortex as described above (§6.1.1.2).
More detailed experimental observations on the dynamics and structure of cortical activity
in pmHG will be necessary before drawing more definitive conclusions.
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Distributed processing and the pitch centre

One of the largest open controversies in current auditory neuroscience is the existence of
a pitch centre: a neural conglomerate located in auditory cortex, generally extracting the
perceived pitch elicited by different stimuli independently of their timbre or loudness [15,27,
53,57,66,68] (see also §2.1.3.3. Alternatively, cortex could extract pitch using a distributed
processing network [26, 52], or there might be a collection of relays specialised in different
types of spectral shapes, extracting pitch from stimuli with different timbres [15].

Our results show that there exists a biologically plausible mechanism able to extract
a single pitch representation from a wide range of stimuli with different spectral contents,
supporting the hypothesis of a general pitch centre in auditory cortex. However, the archi-
tecture of the pitch centre as introduced in our model is distributed in two adjacent cortical
conglomerates (§4.2.1), and potentially includes regions beyond alHG holding lower level,
timbre-dependent, representations of pitch, as detailed above in §6.1.4.1.

Cortical dynamics of pitch processing during consonance and disso-
nance perception

Subcortical representations of simultaneous pitch values

All three neural codes described in this work (see §6.1.1 above) are able to hold information
characterising multiple simultaneous pitch values. In dyads, auditory nerve activity is phase-
locked to the fundamental frequency of both tones (§5.1.3), and the derived SACF presents
peaks of activation corresponding to the harmonic series of the two frequencies [174, 176,
181,182].

Pitch interaction in the auditory nerve results in a decrease in the fidelity of the phase-
locked responses when the fundamental frequencies of the tones in the dyad are not harmon-
ically related [174, 176, 181, 182]. The effect further propagates to further neural represen-
tations, decreasing the signal-to-noise ratio of the associated SACF [174, 176]. The fidelity
decrease is slightly stronger for dissonant than consonant tonal combinations, which results
in subtle but significant variations in the hight of the peaks of the SACF representations
associated to consonant and dissonant dyads [185, 196]. These differences are, however,
strongly attenuated in the pitch-rate representation, where multiple pitch values can coexist
without significant interferences (§5.3.2.2).

The emergence of the sensations of consonance and dissonance

Our results suggest that non-linear effects in multiple pitch extraction during cortical pro-
cessing might be responsible for the emergence of the sensations of consonance and disso-
nance in dyads (§5.3.3.2). SACF-like spectral representations associated to consonant tone
combinations show partially overlapping harmonic structures, that facilitate the extraction
of the participating pitch values [185, 196]. Dissonant combinations result in uncorrelated
harmonic series that are independently extracted, resulting in a slower decoding onset than
their consonant counterparts [185, 196]. Although our cortical theory does not explicitly
introduce a general representation of consonance in cortex, we hypothesise here that these
sensations might be a subproduct of such time processing differences (§5.3.4).

Previous models on consonance perception have used the regularity of the SACF [196]
or the signal-to-noise ratio of the represented harmonic series [176] to predict perceived
consonance. However, these models do not provide for a mechanistic explanation of this
relationship.
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Although the association between pleasantness and consonance is not universal, this asso-
ciation is extraordinary common to many cultures [172,180,186,187]. A possible explanation
for the spread of consonance preference might be the wide dissemination of Indoeuropean
languages, whose phonetic content primes consonant tonal combinations over their dissonant
counterparts [180]. Alternatively, the human brain might show a biased, but not decisive,
preference towards periodic SACF-like representation, as a result to the continuous exposure
to single-pitched tones present in the nature. This preference might be established at later
stages of cortical development, explaining why infants do not show a particular preference
towards consonant combinations [189].

Limitations of the cortical model and future extensions

The main contribution of this thesis is the introduction of a novel model of cortical pitch
processing based on the integration across several harmonics of a subcortical SACF-like
spectral representation. This section summarises the range of applicability of the model and
its limitations, introducing further extensions that will be developed on future work.

Limitations introduced by the computational implementation

The dynamics of the cortical model are too complex to be analytically tractable; thus, all
model predictions were obtained through numerical simulations that introduced several lim-
itations in the range of applicability of the model. Those limitations are, however, not
intrinsic to the proposed mechanisms, but rather a consequence of this particular computa-
tional implementation.

Loss of inhibitory accuracy in the high-frequency range

An important limitation is introduced by the discretisation of the space of the periods in the
SACF and the pitch representations of the cortical model. The discretisation is responsible
for a noticeable loss of accuracy, specially pronounced in some stimuli, in the resolution of
pitch values within the high-frequency range f0 & 500 Hz (see Figure 4.7 and §4.3.1.1).

The implementation of the model used in this thesis considers a discretisation of the
period space in N = 250 different segments, ranging from δt0 = 0.5 ms to δtN = 33 ms.
This configurations results in a maximum standard error of ∆ = 0.065 ms, that scales up
to a 4 ms error in the inhibition of the farther lower harmonics (see §4.3.1.1 for details).
This systematic error can be reduced by considering a lower range of periods or a larger
number of chunks in the period space; current parameters were chosen as a trade off between
resolution, range of applicability, and computational time complexity.

Since discretisation is necessary to construct a computational implementation of the
model, further developments should address this issue by increasing the resolution of the
discretisation so that the expected derived errors lie over the actual limits of pitch measured
in psychoacoustic experiments [5, 41,201].

Lower limit of pitch set to 100 Hz

A second limitation is introduced by the lower bound in the period space δtn ≥ 33 ms. The
cortical model integrates over three harmonic peaks of the SACF representation in order to
perform a perceptual decision. Our implementation is thus only able to fully account for
the integratory process of pitch values corresponding to T > 11 ms.

Stable perceptual predictions for most stimulus types can be robustly extracted using
only two harmonic peaks, for periods up to T ∼ 16 ms; however, the dynamics associated
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with the extraction process in those cases are not fully reliable. This lower limit of applica-
bility could be easily extended to the actual lower limit of pitch by considering periods up
to δtN = 10 ms [77], at the cost of a large increase in the number of variables of the model
or a decrease in the resolution of the period space.

Limitations introduced by the formulation of the subcortical pro-
cessing

The across-stimulus variability of the SACF peak amplitude has a noticeable effect on the
dynamics of the cortical model, that would not be expected in a more idealised representation
of the input. Amplitude variations are vastly reduced through the regularisation procedure,
but perceptual results indicate that a more adaptive regularisation procedure might be
necessary in order to extend our results to a larger range of stimuli, as detailed next.

Baseline removal

Despite the wide success of the model to explain perceptual data in single and multiple pitch
values, the perception of alternated-phase HCTs (§4.3.1.3) requires an adaptive, stimulus-
dependent, SACF baseline removal parameters b0 (see §4.2.2.3). Adaptive baseline removal
could be implemented through global inhibition triggered by the total activity at the SACF
[148, 152]; however, most stimuli types (pure tones, HCTs, click train, filtered IRNs, and
even dyads) yield satisfactory perceptual results with the same baseline b0 = 0.35 (§4.3.1),
despite the fact that they present very different overall regularised SACF activities (see
Figure 4.3).

A more sophisticated mechanism, probably involving a top-down control from the de-
coder network, might hence underlie SACF baseline removal. Future work should address
this issue introducing cortico-thalamic efferents regulating subcortical processing according
to the signal-to-noise ratio arriving in the cortical network. Baseline removal might be per-
formed globally, over the whole SACF representation, or selectively, operating only on key
cochlear channels.

Rescaling gain

Similarly, an adaptive SACF rescaling gain A0 seems necessary in order to explain the
compatibility of the cortical model with both, single tones and dyads (see 5.3.1). We suggest
that this might be mediated by an intermediate mechanism, integrating the regularised
SACF in order to increase the signal to noise ratio of the representation until the activity
values are large enough as to trigger a significant response in the decoder network; explaining
as well why a systematic delay of 25 ms was found between the latency predictions associated
with dyads and single tones.

However, long integration time constant at the intermediate level would frustrate the
responsiveness of the cortical model to input changes. Future work should address this
problem by the use of adaptive integration time constants regulated by the decoder layer,
following the formulation of the top-down modulated model [21]. The use of adaptive inte-
gration constants might also extend the psychoacoustic results of the current formulation to
the wide set of stimuli explained by the top-down model [21]. How this adaptive behaviour
could be implemented in a biophysically sound manner is, however, still unclear.

Future work should also evaluate the impact of using the subcortical slope coincidence
detectors by Huang and Rinzel [18] prior to the spectral analysis. Huang’s model has been
shown to reduce the impact of timbre and loudness on the regular spike trains of the time
code at the auditory nerve, potentially facilitating the regularisation process.
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Limitations intrinsic to the formulation of the model

Frequency resolution in dyads

The minimum separation between the two pitch values comprising a dyad required for the
cortical model to independently resolve both tones (see Figure 5.7B) is much restrictive
than the limits described by psychophysical data [4]. This limitation is a consequence of the
architecture of the decoder rather than a side effect of discretisation.

The decoder is designed to integrate activity across the first three peaks of the SACF
harmonic series representing the pitch of the stimulus (§4.2.3.2). However, these peaks are
sometimes too broad to be independently resolved when two overlapping harmonic series
are represented in the SACF.

The width of the peaks does not depend on the discretisation of the period space, but on
the spectral properties of the auditory nerve activity [124]; compare, for instance, the top-
left panels of Figures 3.2A and 3.2C, corresponding to the SACF harmonic peaks associated
with pure tones and IRNs, respectively. The peaks associated with pure tones are much
thicker than the peaks associated with IRNs, although the resolution of the period space is
the same in both cases.

When the first peaks of two harmonic series overlap in the SACF representation, ag-
gregating information across the second and third peaks allows the cortical model to inde-
pendently resolve the pitch values corresponding to each of the series (§5.3.2.2). This is,
however, not possible when the frequency separation between the two pitch values is so small
than the second and third peaks of the series overlap in the SACF representation.

This limitation could be addressed by increasing the number of considered harmonic
peaks during cortical integration. This strategy would, however, require processing times
that might scale up to six or seven harmonics, much longer than the time constants observed
in MEG recordings [22,23].

Future research should address this issue by using a generative approach [29, 168] to
regulate the number of harmonic peaks taken into consideration during processing, in re-
semblance with GPM, which also used a generative approach to regulate the size of the
temporal window of integration during pitch processing [21].

A generative version of our model could use the predictions performed using the first three
harmonics of the series as a first approximation of the extracted pitch. SACF harmonic series
corresponding to the provisional pitch could then be generated downwards and compared
against the actual subcortical input. This comparison is already performed by the inhibitory
ensembles in the decoder by means of selective inhibition (§4.2.3.2). Prediction error could
then be used to refine the extracted pitch using the non-inhibited peaks at the excitatory
populations at the decoder.

The behaviour of the generative system should be modelled according to psychophysical
data detailing: 1) the actual minimum pitch distance required to independently perceive the
two tones comprising a dyad, as a function of the fundamental frequency of the lower tone;
and 2) the minimum number of period cycles necessary for a listener to robustly resolve the
pitch of the two tones in each dyad. This data could be acquired in a perceptual experiment
presenting dyads with different frequency combinations to listeners that must report whether
they perceive a single pitch percept or two concurrent tones.

Cortical representation of pitch strength

Decoding dynamics introduced in our model seem to be only weakly affected by pitch
strength (see Figure 4.12B), and the cortical pitch-rate representation is widely unaffected
by this property. However, the effect of pitch strength on the POR amplitude [1, 22] and
the PSF depth [1, 108] seems to indicate that this sensation might be sourced in the same
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processing centres as the pitch value.

The indifference of our model to pitch strength is mostly due to this quality being
is correlated to the spectral contour (rather than to the fundamental frequency) of the
stimulus waveform. Pitch strength variations are not reflected in the characteristic periods
of the peaks of the SACF fall but in the relative height of the SACF harmonic series, which
do not affect the mechanisms of pitch extraction described in our model.

Pitch strenght information is still present in the subcortical representation after the
regularisation process, which preserves the overall structure of the SACF and only affects
its absolute and the average activity. Future work should address this effect and determine if
the cortical mechanisms described in this thesis can be extended to hold a representation of
pitch strength; or if, on the contrary, pitch strength is reflected in a distinct representation
(i.e, in the spectro-temporal code, see §6.1.1.2).

Open problems and open theories

Despite the relative success of our model in explaining many perceptual and electrophysio-
logical results in pitch perception, there are still a large number of open problems, generally
concerned with inter-subject differences or the perception of higher cognitive auditory ob-
jects, that were not addressed in our investigation. This section explores, in a speculative
and qualitative manner, how some of these problems might be tackled in future work.

Absolute pitch

Although the typical listener is able to perform judgements about the relative pitch value
of two or more tones, few human subjects are able to label the pitch of a sound without
using a reference. Such rare ability is commonly called perfect or absolute pitch [78]. The
neural substrate of perfect pitch is one of the most intriguing open questions in auditory
neuroscience [5]. Here, we attempt to provide a potential heuristic explanation of this
phenomenon in terms of neural connectivity and consciousness.

The integrated information theory of consciousness (ITT), first introduced by Tononi
[202], postulates that conscious systems are characterised by their integrated information;
i.e, the amount of information that would be lost when subdividing the system in smaller
unconnected subsystems. ITT determines the inclusion of a unit connected to a system as
part of the conscious system depending on the connectivity pattern linking the two bodies.
Strong and complex connections usually yield inclusion, whilst units linked by simple feed-
forward-like connections do not form part of the conscious body (see Figure 6.1A).

Relative pitch judgements could be performed by a neural system comparing the pitch
representation of the prove and reference tone [203] (see also Figure 6.2A). In the ITT
framework, relative pitch listeners’ conscious network would include the output of the system
comparing the pitch representations of the two tones, but it would not have access to the
units holding the pitch representation themselves (see Figure 6.1B). On the contrary, subjects
with perfect pitch would present an integrated architecture, where the units at the sustainer,
holding the pitch-rate representation, would be part of the conscious body (see Figure 6.1C).

Accordingly, subjects with absolute pitch show higher white matter connectivity and
track volume in posterior superior and middle temporal gyri, with a specially prominent
hyperconnectivity in the left hemisphere [204], and an increased volume and activity levels
during pitch processing in the left Heschl’s gyrus [205].
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Spectral and fundamental pitch listeners

The concepts of spectral (fSP) and fundamental listeners (f0) were introduced earlier in
§2.2.3.5. The difference between both types of subjects is explicit when they evaluate the
relative pitch values of two HCTs with missing fundamentals: fSP listeners judge these
intervals according to spectral clues (i.e, the the lower harmonic present in each tone),
whilst f0 listeners judge these intervals according to the actual pitch value of the tones (i.e,
the fundamental frequency of the HCTs) [4, 45]. Their evaluations differ when the HCT
with the lower fundamental frequency has a higher lower harmonic than the HCT with the
higher fundamental frequency (see Figure 2.6A).

Most listeners do not show a consistent fSP/f0 perceptual mode, but rather a preferred
tendency towards one or the other that can be measured in a continuous scale ranging from
absolute fSP to absolute f0. Our cortical model suggests that two different representations
of pitch coexists in cortex: a spectral representation, that could be used to identify the
lowest harmonic of the HCTs as long as they are independently resolved in the cochlea (see
Figure 4.3C for an example), and a pitch-rate representation, that can be used to perform
f0-like perceptual judgements.

Relative pitch evaluations could be modelled as the resolution of a decision system re-
ceiving weighted inputs from two subsystems judging pitch differences according to each of
the two representations available in cortex (see Figure 6.2). A biophysically plausible neu-
ral system performing interval judgements using a pitch-rate representation was introduced
recently by Huang and colleagues [203].

Figure 6.1: ITT and schematics for absolute pitch. a) Two system decomposed into
a conscious entity and external units not being part of the conscious system. b) Schematic
architecture associated to a candidate relative pitch listener; feed-forward connections be-
tween units holding the pitch-rate representation and the interval judgement system do not
convey enough integrated information as to include the units in the conscious system. c)
Schematic architecture associated to a candidate absolute pitch listener; increased connec-
tivity complexity make the units be part of the conscious body. Panel A adapted from [202],
Fig 4.
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In this framework, fSP/f0 preference could be modelled as the relative weight of each of
the two perceptual subsystems: an absolute f0 listener would rely only in the judgements
taken by the subsystem using the pitch-rate representation, whilst absolute fSP listeners
would rely only in the spectral representations.

Spectral/fundamental mode tendency is strongly correlated with the relative volume
between the hemispheric replications of lateral Heschl’s gyrus: f0 listeners show a larger
left than right lHG, whilst fSP show an increased right lHG [45]. This correlation might be
a result of a hemispheric specialisation in each of the two representations, pitch-rate being
more prominent in the left hemisphere, and spectral representations being more prominent in
the right hemisphere; explaining the perceptual differences and their anatomical correlations.
Accordingly, subjects with absolute pitch (see above) enhanced left Heschl’s gyrus [205].

Focused attention

Most sensory processing is carried out in a passive fashion. In order to reproduce the condi-
tions of such passive processing, typical MEG experiments (e.g. [1,22,99,108]) are designed
to deviate the attention of the subjects from the auditory stimuli during the measurements.
Accordingly, our model was devised to consider automatic, passive, cortical pitch processing.

However, focused attention plays a crucial role in sensory processing, and most psychoa-
coustic experiments are performed on attending subjects [5]. Although a detailed description
of the cortical dynamics of pitch processing in attentional states is out of the scope of this
thesis, here we will briefly describe in a heuristic manner how top-down attentional mecha-
nisms might be incorporated to our cortical model in future work.

Focused attention is crucial to filter out selective inputs from a noisy, distracting envi-
ronment [206], and can modify pitch perception in several ways. For instance, attending
subjects are able to independently resolve up to five different harmonics of a HCT [4, 5].

Figure 6.2: Hypothetical architecture of a dual system for interval judgements.
a) Architecture of the system: subsystem receive inputs from a pitch-rate/spectral represen-
tation of the two consecutive notes. The integrator at the bottom aggregates the decision of
the two systems to perform the final perceptual decision. b) Suggested architecture charac-
terising fundamental listeners: the subsystem using the pitch-rate representation has a larger
weight in the decision process. c) Suggested architecture characterising spectral listeners.
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Moreover, focused attention can speed up auditory processing and, when the attention is
selective to certain frequency ranges, reduce the detection threshold for sounds in the tar-
get frequencies [207]. Similarly, attention has been shown to affect the N100 latency [208],
to mildly modulate the N100 amplitude [98], and to severely increase the sustained field
depth [98].

Focused attention is conveyed by top-down cortical efferents sourced in higher-level cog-
nitive areas and targeting cortical and subcortical systems [206, 209]. Future work could
attempt to describe top-down attention in the cortico-cortical modality as localised selec-
tively inhibition towards target ensembles in the sustainer network (see §4.4.4).

For instance, the resolution of multiple peaks of a HCT could be achieved by selec-
tively inhibiting inhibitory neurons at the sustainer characterising the frequency range of
the harmonics to be resolved, allowing multiple harmonically related peaks of activation to
temporarily coexist in the cortical representation. A similar mechanisms would also allow to
decrease the detection thresholds in certain frequency domains, effectively blocking potential
distractors in noisy or acoustically-crowded environments.

An attention mechanism based on selective inhibition towards sustainer’s inhibitory en-
sembles could also explain the increase in the sustained field observed in attentive states [98].

Closing remarks

Results shown in this thesis suggest that the pitch-related neuromagnetic fields observed
in the anterolateral section of Heschl’s gyrus during pitch processing might reflect pitch
extraction from a spectral representation of pitch-related information similar to that of the
autocorrelation models. During our investigation, we have developed a cortical model to
implement such a pitch extraction procedure, and showed that the derived mechanisms
reproduce the dynamics of the pitch onset response and the pitch related sustained field.

Our model fills the gap between the pitch-rate representation typically reported in in-
tracranial cortical studies (e.g, [27, 66–68]) and the spectral representation characteristic of
autocorrelation models (e.g. [17,124]) and other theoretical models of pitch processing [18].
Previous studies addressing this transformation in cortex typically focus on isolating the
first peak of the SACF whilst avoiding the read-out of the peak corresponding to the self-
correlation of the stimulus [10,125].

These and other more biologically based models have successfully explained the per-
ception of a wide set of stimuli, and mirror several aspects of neuromagnetic data [1, 21].
However they do not provide an detailed enough mechanistic explanation in terms of realistic
networks of the emergence and behaviour of the auditory evoked fields.

Our model explains the emergence of the pitch onset response as the cortical accumu-
lation of evidence towards a determined perceptual decision, followed by a filtering of the
non-necessary information after pitch extraction (§4.2.7.2). This link provides a theoretical
association of the latency of the pitch onset response with processing time.

An additional limitation of models focused on the enhancement of the first peak of the
autocorrelation function is that they are unable to account for the perception of simultaneous
pitch values [119]. Harmonic sieve strategies address this issue by mapping harmonic series
to their corresponding pitch values, allowing for the extraction of multiple pitches from a
single SACF representation [119,122]. Cortical mechanisms at the decoder can be described
as a biologically sound and detailed implementation of a harmonic sieve process.

Our implementation predicts several non-linear effects resulting from the interaction of
the decoded tonal components. Specifically, we showed that processing time is dramatically
affected by the frequency relationship between the two pitch values, and that processing
time was strongly correlated with the reported consonance and dissonance of each tone
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combination (§5.3.3.2). This is in full agreement with experimental observations on the
dependence of the POR latency with consonance [175] (§5.2.3).

Despite the relatively large success of the model to explain perceptual effects as the emer-
gence of consonance and dissonance, and neuromagnetic results as the dependence of the
POR’s latency with pitch, our formulation is still far from capturing the behaviour of corti-
cal pitch processing in a comprehensive manner. Stimuli presenting more complex temporal
structure require more sophisticated mechanisms that are not yet present in our model.
More importantly, our model is unable to account for context-dependent effects on pitch
processing [41], or how pitch processing affects the formation of higher order auditory ob-
jects [210]. Further modelling developments should attempt to explain how adaptive and
context-specific behaviours arise in auditory cortex, rendering the vast richness of the audi-
tory experience.

112



Bibliography

[1] A. Tabas, A. Siebert, S. Supek, D. Pressnitzer, E. Balaguer-Ballester, and A. Rupp,
“Insights on the Neuromagnetic Representation of Temporal Asymmetry in Human
Auditory Cortex,” PLoS One, vol. 11, no. 4, p. e0153947, 2016.

[2] A. Tabas, A. Rupp, and E. Balaguer-Ballester, “Competition Between Cortical Ensem-
bles Explains Pitch-Related Dynamics of Auditory Evoked Fields,” in International
Conference on Artificial Neural Networks, pp. 9886:314–321, 2016.

[3] B. Kolb and I. Q. Whishaw, An Introduction to Brain and Behavior. Worth Publishers,
third edit ed., 2005.

[4] H. L. F. Helmholtz and A. J. Ellis, On the Sensations of Tone as a Physiological Basis
for the Theory of Music. Dover Publications, 2009.

[5] B. C. J. Moore, An Introduction to the Psychology of Hearing. Academic Press, fifth
edit ed., 2003.

[6] J. Schnupp, I. Nelken, and A. King, Auditory Neuroscience: Making sense of sound.
MIT Press, first edit ed., 2011.

[7] A. A. Ludwig, M. Fuchs, E. Kruse, B. Uhlig, S. A. Kotz, and R. Rübsamen, “Auditory
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[24] M. Hämäläinen, R. Hari, and R. Ilmoniemi, “Magnetoencephalography—theory, in-
strumentation, and applications to noninvasive studies of the working human brain,”
Reviews of Modern Physics, vol. 65, no. 2, pp. 414–497, 1993.

[25] H. Lindén, T. Tetzlaff, T. C. Potjans, K. H. Pettersen, S. Grün, M. Diesmann, and
G. T. Einevoll, “Modeling the spatial reach of the LFP,” Neuron, vol. 72, pp. 859–872,
dec 2011.

[26] S. Kumar, W. Sedley, K. V. Nourski, H. Kawasaki, H. Oya, R. D. Patterson, M. A. H.
III, K. J. Friston, and T. D. Griffiths, “Predictive Coding and Pitch Processing in the
Auditory Cortex.,” Joural of Cognitive Neuroscience, vol. 23, no. 10, pp. 3084–3094,
2011.

[27] J. K. Bizley, K. M. M. Walker, A. J. King, and J. W. H. Schnupp, “Neural ensem-
ble codes for stimulus periodicity in auditory cortex.,” The Journal of Neuroscience,
vol. 30, no. 14, pp. 5078–5091, 2010.

114



Bibliography

[28] P. Dayan and L. Abbott, Theoretical Neuroscience: Computational And Mathematical
Modeling of Neural Systems. Computational Neuroscience, Massachusetts Institute of
Technology Press, sixth edit ed., 2005.

[29] K. Friston, “Learning and inference in the brain.,” Neural Networks, vol. 16, pp. 1325–
52, nov 2003.

[30] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics. Cam-
bridge University Press, 1st ed., 2014.

[31] S. Hochstein and M. Ahissar, “View from the Top: Hierarchies and Reverse Hierarchies
Review,” Neuron, vol. 36, no. 5, pp. 791–804, 2002.

[32] P. Belin, M. Zilbovicius, S. Crozier, L. Thivard, A. Fontaine, M.-C. Masure, and
Y. Samson, “Lateralization of speech and auditory temporal processing,” Journal of
Cognitive Neuroscience, vol. 10, no. 4, pp. 536–540, 1998.

[33] D. Poeppel, “The analysis of speech in different temporal integration windows: Cere-
bral lateralization as ’asymmetric sampling in time’,” Speech Communication, vol. 41,
no. 1, pp. 245–255, 2003.

[34] R. J. Zatorre and P. Belin, “Spectral and temporal processing in human auditory
cortex.,” Cerebral Cortex, vol. 11, pp. 946–53, oct 2001.

[35] R. J. Zatorre, P. Belin, and V. B. Penhune, “Structure and function of auditory cortex:
music and speech.,” Trends in Cognitive Sciences, vol. 6, pp. 37–46, jan 2002.

[36] R. Meddis and E. a. Lopez-poveda, “Computational Models of the Auditory System,”
in Computational Models of the Auditory System (R. Meddis, E. A. Lopez-Poveda,
R. R. Fay, and A. N. Popper, eds.), vol. 35, ch. 2, pp. 7–39, Springer Science+Business
Media, 2010.

[37] L. Chittka and A. Brockmann, “Perception space - The final frontier,” PLoS Biology,
vol. 3, no. 4, pp. 0564–0568, 2005.

[38] W. P. Shofner and G. Selas, “Pitch strength and Stevens’s power law,” Perception &
Psychophysics, vol. 64, pp. 437–450, apr 2002.

[39] M. S. a. Zilany, I. C. Bruce, and L. H. Carney, “Updated parameters and expanded
simulation options for a model of the auditory periphery,” The Journal of the Acous-
tical Society of America, vol. 135, no. 1, pp. 283–286, 2014.

[40] A. J. Oxenham, “Pitch perception,” The Journal of Neuroscience, vol. 32, pp. 13335–8,
sep 2012.

[41] A. J. Oxenham, C. Micheyl, M. V. Keebler, A. Loper, and S. Santurette, “Pitch per-
ception beyond the traditional existence region of pitch.,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 108, pp. 7629–34, may 2011.

[42] J. Burkard, R., Don, M., Eggermont, Auditory Evoked Potentials: Basic Principles
and Clinical Application. Point (Lippincott Williams and Wilkins) Series, Lippincott
Williams & Wilkins, 2007.

[43] A. de Cheveigné, “Pitch Perception,” in Oxford Handbook of Auditory Science: Hear-
ing (C. J. Plack, ed.), pp. 71–104, Oxford University Press, 2010.

115



Bibliography

[44] L. Cedolin and B. Delgutte, “Spatiotemporal Representation of the Pitch of Har-
monic Complex Tones in the Auditory Nerve,” The Journal of Neuroscience, vol. 30,
pp. 12712–12724, sep 2010.

[45] P. Schneider, V. Sluming, N. Roberts, M. Scherg, R. Goebel, H. J. Specht, H. G.
Dosch, S. Bleeck, C. Stippich, and A. Rupp, “Structural and functional asymmetry
of lateral Heschl’s gyrus reflects pitch perception preference.,” Nature Neuroscience,
vol. 8, pp. 1241–7, sep 2005.

[46] M. Saenz and D. R. M. Langers, “Tonotopic mapping of human auditory cortex,”
Hearing Research, vol. 307, pp. 42–52, 2014.

[47] G. D. Pollak, J. X. Gittelman, N. Li, and R. Xie, “Inhibitory projections from the
ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create direc-
tional selectivity of frequency modulations in the inferior colliculus: a comparison of
bats with other mammals.,” Hearing Research, vol. 273, pp. 134–44, mar 2011.

[48] J. A. Winer, “The human medial geniculate body,” Hearing Research, vol. 15, no. 3,
pp. 225–280, 1984.

[49] R. B. Buxton, Introduction to Functional Magnetic Resonance Imaging: Principles
and Techniques. Cambridge University Press, 2002.

[50] T. D. Griffiths, S. Uppenkamp, I. Johnsrude, O. Josephs, and R. D. Patterson, “En-
coding of the temporal regularity of sound in the human brainstem.,” Nature Neuro-
science, vol. 4, pp. 633–7, jun 2001.
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Appendix A

Tuning procedure for the param-
eters of the cortical model

After fixing the structure of the connectivity weight matrices and the normalisation param-
eters of the subcortical input, the dynamics of the cortical model still depend on 35 different
parameters. Parameters values were chosen following a five-stages procedure. This appendix
details the criteria used to fix the value of those parameters at each of the states (see also
Table 4.1).

Fixed parameters 17 cortical parameters were fixed ad-hoc using the values from the
literature, without any further tuning.

Parameters of the transfer functions φ(I), a, b and d (see Equation 4.4) for excitatory
and inhibitory ensembles, and the AMPA conductivities J∗∗AMPA and Ĵ∗∗AMPA, were all taken
from the original publication by Wong and Wang describing the ensemble rate model [151]

GABA and AMPA synaptic time constants, τGABA and τAMPA, and the NMDA coupling
constant γ, were all taken from the original publication by Brunel and Wang describing the
synaptic gating models [160]. The NMDA decay was set ad-hoc to τNDMA = 20 ms, within
the typical range of this constant [162].

The adaptation time constant was set to τadap = 100 ms, according to the literature [154].

Stage 1: decoder’s sensitivity to input The rest of the constants were initialised to
zero and progressively tuned using subcortical input generated with iterated rippled noises
along five consecutive stages. At each stage, we focused on a particular set of parameters,
keeping the values of the already tuned parameters fixed and the values of the parameters
to be tuned during consequent stages equal to zero.

First, we used the normalised SACF of two different IRNs with 16 iterations and delays
d = 8 ms and d = 5 ms to adjust the sensitivity of the decoder to subcortical input by tuning
the thalamic conductivity J thAMPA, the NMDA self-excitation JeeNDMA, the ground population
time constant τ0pop, and the baseline excitatory input Ie0 .

Parameters were first set to baseline values from the literature [151] and then tuned to
make the decoder excitatory ensembles sensitive enough as to capture the peaks of the SACF
input, but robust enough as to ignore spurious noisy activity in the subcortical input.

Then, we tuned the adaptation strength α so that populations could not reach firing
rates above He ∼200-300 Hz.
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Stage 2: inhibitory build up at the decoder Next, we adjusted the inhibitory build
up in response to the excitatory activity in the decoder, using the same stimuli. In this
stage we fixed the conductivities towards inhibitory ensembles JeiNDMA and J iiGABA, and the
inhibitory baseline input Ii0. As in stage 1, we first initialised the values according to the
literature [151], and then tuned the values to maximise the speed of the inhibitory build up
at the populations encoding the pitch value, whilst minimising spurious activation at other
inhibitory ensembles.

Stage 3: representation build up at the sustainer Then, we set the sustainer’s
parameters to allow the propagation of the pitch representation towards the higher-level
network. First, we adjusted the baseline in put Isus0 and the connectivities at the sustainer
ĴeeNMDA, ĴeiNMDA, Ĵ ieGABA and Ĵ iiGABA, to ensure that the inhibitory ensembles were dominant,
effectively shutting down any activation in the excitatory populations in absence of afferent
input. For simplicity, conductivities targeting inhibitory ensembles, Ĵei and Ĵ ii, were set to
zero.

Next, we fixed the afferent conductivities ĴaAMPA and ĴaGABA, and fine tuned the previous
sustainer’s conductivities, in order to guarantee that a joint excitatory and inhibitory activa-
tion at a given column at the decoder elicits a robust activation at the analogous excitatory
ensemble at the sustainer.

Stage 4: decoding and sustainer replacement The next step was to adjust the
inhibitory-to-excitatory conductivity J ieGABA at the decoder to the minimum value guar-
anteeing the inhibition of the peaks at the lower harmonics in the excitatory ensembles.
The baseline inhibition weight cie0 was then adjusted using the dyads to ensure that non-
harmonically related peaks could coexist in the excitatory representation at the decoder.

Afterwards, we set the efferent NMDA connectivity JeNMDA so that the top-down input
to the inhibitory ensembles in the decoder would replace the excitatory input coming from
the lower harmonics after their inhibition.

Fine tuning Non ad-hoc parameters were further fine tuned using a wider array of stimuli,
comprising 8 different IRNs with delays ranging from d = 1 ms to d = 8 ms, and 6 different
IRN dyads (minor second, third, fourth, tritone, fifth, and seventh) with a ground delay
d = 8 ms (see also §5.3.2.1). In this last stage we ensured that, after the decoding, both
decoder and sustainer show one (two) prominent peak(s) of activation corresponding to the
pitch value(s) evoked by each stimulus.

Most of the fitted parameters accepted moderate perturbations of a 10%–20% of their
final values without substantially compromising the dynamics of the model.

Parameter validation Parameters were validated using freshly sampled IRNs with 8,
16 and 32 iterations, harmonic complex tones with and without missing fundamentals, and
pure tones. A range of pitch values between 200 Hz and 1000 Hz was considered for all
stimulus types. After a transient state of around 100 − 150 ms, the activity in the decoder
systematically converged to a state of equilibrium consisting on a unimodal distribution
centred on the population corresponding to the pitch typically elicited by each class of
stimulus (see Figure 4.4), in line with predictions of abstract pitch perception models [21].
Perceptual results for the different stimuli are shown in §4.3.1.

128



Appendix B

Horizontal pitch interactions

Despite the large evidence of melodic content and interval recognition being processed by
higher cognitive centres in the ascending auditory pathway [171–173,211], it is worth testing
the effect of horizontal interactions on processing time. In this section, we will see that
there are interactions between the harmonic series of different pitch values that can interact
horizontally, affecting processing time in a noticeable way.

Pitch onset and offset in tone intervals

First, we studied if the timings of pitch processing were affected by the presence of a previous
pitch value in the cortical representation. First, we run a series of simulations considering
IRN intervals consisting on a fundamental tone f0 = 160 transitioning to different notes
within the chromatic scale. IRN tone shifts were mediated by 5 ms Hanning windows to
ensure a smooth transition without changes in the power spectrum of the stimulation.

Dynamics of the inhibitory ensembles at the decoder during the transition were compared
with the dynamics during the onset of the second tone (see Figure B.1) and the offset of the
first tone. The onset was systematically delayed between 5 ms and 10 ms when the tone was
preceded by another tone with respect to the silence-to-tone condition (see Figure B.2B).
Offset of the previous tone was hastened between 25 ms and 30 ms for all transitions except
the octave when the tone was followed by a second tone with respect to the tone-to-silence
condition (see Figure B.2A).

Induced delay onsets and offsets were contrasted with the perceived consonance/dissonance
sensation elicited by dyads comprising the notes of the intervals. Weak correlations were
found between the two quantities.

Pitch transitions revisited

In §?? we described the transition dynamics of the model in response to pitch changes in
the stimulus as a reconfiguration of the attractor state and the associated transition of the
cortical dynamics to the new basis of attraction. A mechanistic analysis of such transition
reveals that the transient dynamics do depend on the harmonic relationship between the
fundamental frequencies of the transitioning tones, as evidenced in Figure B.2.

Consider an arbitrary transition induced by a pitch change T → T ′ in the stimulation.
The system first lies in an equilibrium state characterised by a high activation in the pop-
ulations n characterising the first pitch value δtn = T . After the transition the system will
rest in a new equilibrium state with a large activity in populations n′ such that δtn′ = T ′.
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B.2. Pitch transitions revisited

Figure B.1: Transition dynamics during pitch change for different chromatic
intervals. Each panel compares the transition dynamics of the inhibitory ensembles at the
decoder during pitch change with the onset (i.e. transition from silence) of the second tone.
Note that the onset of the second note is, in general, delayed around 10 ms when preceded
by another tone. The first tone was set to f0 = 160Hz and the second tone corresponds
to each of the notes of the chromatic scale according to the tempered tuning (see §5.1.1).
Stimulus onset/transition was set to t = 0ms. Stimuli were 16 iterations IRNs, bandpass
filtered between 0.8 kHz and 3.2 kHz. Transitions were mediated by a 5 ms Hanning window.
Simulations were performed without cortical noise in order to obtain a more robust measure
of the effect.
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Appendix B. Horizontal pitch interactions

Figure B.2: Onset and offset delay induced by horizontal interactions. Plots
quantitatively measure the delay induced by pitch interactions in the onset/offset of the
neural representation in the inhibitory ensembles at the decoder. Perceptual measurements
of the corresponding dyads are shown for reference. A) Offset delay: negative values indicate
that the offset was faster when the tone was followed by a second tone than when the tone
was followed by silence. B) Onset delay: positive values indicate that the onset was delayed
when preceded by a previous tone than when preceded by silence. Measurements were taken
from simulations shown in Figure B.1.

The transition dynamics between both states depend on the harmonic relationship be-
tween T and T ′. If the fundamental periods are not harmonically related, the new sub-
cortical input does not elicit activation in the decoder’s excitatory ensemble encoding the
previous pitch n, whose activity decreases rapidly. The inhibitory ensemble n, in the other
hand, presents a larger inertia due to the reinforcement of the sustainer, and stays active
for a longer period. However, the new elicited activity in the excitatory populations at the
decoder will trigger a new decoding process, effectively activating the inhibitory ensemble
n′. Due to the non-zero connections between inhibitory ensembles in the decoder (see Fig-
ure 4.2D), the activation of the inhibitory ensemble n′ will accelerate the shunting of the
inhibitory ensemble n, effectively accelerating the offset of the previous pitch representation
(see Figure B.2B).

Moreover, since the inhibitory ensemble n is still active right after the pitch change has
been reflected upon the subcortical input, global inhibition will slow down the build up of
the new SACF representation in the decoders’ excitatory populations, effectively delaying
the onset of the decoding process. Due to the increased inhibition of n toward populations
encoding lower harmonics, this effect is larger when T ′ shares any lower harmonic with T ,
as in the case of the perfect fifth (see Figure B.2B).

If the fundamental periods of the two tones in the transition are harmonically related,
the dynamics change subtly. When T < T ′, the excitatory input characterising the new
pitch value T ′ reinforces the excitatory ensemble n at the decoder, which thus effectively
reinforces the activity of the inhibitory ensemble n slowing down its shunting process (see
the octave in Figure B.2A). Since the excitatory input at n is already active on the onset of
the new tone, it effectively contributes to the build up of the inhibitory ensemble at n′, and
the decoding process is triggered earlier (see the octave in Figure B.2B).

When T > T ′, the situation is reversed (see Figure B.3). The active inhibitory ensemble
at n effectively inhibits the excitation at n′, slowing down the excitatory build up of the
new tone and thus increasing the onset delay. Due to the slow rise of the inhibitory activity
at n′, the offset speed is not substantially altered. In this last case, the transitions result in
a less salient response, consistent with EEG recordings reporting an increased adaptation
effect when transitioning between harmonically related IRNs [149].
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B.3. Conclusion

Figure B.3: Transition dynamics of octave shifts. Heatmaps show the transition
dynamics of the inhibitory ensembles at the decoder during a pitch change between f0 =
160 Hz and its first harmonic f1 = 2 f0. A) Descending (f1 to f0) interval. B) Descending
(f0 to f1) interval. Note the slower build up and the comparatively increased offset delay in
the descending condition. Simulation methodology was the same as in Figure B.1.

Conclusion

Horizontal interactions can effect the onset and offset timings of the tones involved. Tran-
sitions between tones are generally reflected in faster responses of the cortical system than
when transitioning from or to silence.

Transitions between harmonically related tones present an asymmetric behaviour, re-
flecting the asymmetry of the harmonic inhibition in the populations at the decoder (see
Figures 4.2A and B): transitioning to a higher octave results in a faster onset and slower
offset of the previous tone; transitioning to a lower octave results in a slower, less salient
transition.

Subtle timing differences are observed between transitions to different tones. There is a
weak correlation between the onset/offset delays and the consonance percept elicited by a
dyad comprising the tones of the interval, but it seems to reflect the harmonic structure of
the tones rather than fundamental aspects of the perception of the transitions.

The effects described in this section are based on our model predictions; empirical testing
should be addressed in future work using both, behavioural and MEG approaches. If the
differential response to intervals comprising tones with different harmonic relations is em-
pirically confirmed, its potential influence on the processing of interval judgements should
be consider carefully.
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Common abbreviations

A1/A2 primary/secondary auditory cortex
AC auditory cortex
AEF auditory evoked fields (MEG) (§2.3)
AEP auditory evoked potentials (EEG) (§2.3)
AIM auditory image model (§3.3.3)
alHG anterolateral section of Heschl’s gyrus (§2.1.3.1)
ALT HCT alternated phase harmonic complex tones (§2.2.3.2)
AN auditory nerve
BM basilar membrane (§2.1.1.2)
CN cochlear nucleus (§2.1.2.1)
CT click train (§2.2.3.1)
DCM dynamic causal model(ling) (§3.3.4)
E/I excitation/inhibition
EIF exponential (leaky) integrate and fire (§4.2.5.1)
EEG electroencephalography
EOR energy onset response (§2.3.2.4)
ESF energy-related sustained field (§2.3.2.6)
FFR frequency-following response (§2.3.2.1)
fMRI functional magnetic resonance imaging
GPM generative pitch model (§3.3.2)
HCT harmonic complex tone (§2.2.3.1)
HG Heschl’s gyrus (§2.1.3.1)
IC inferior colliculus (§2.1.2.1)
IRN iterated rippled noise (§2.2.3.3)
LIF linear (leaky) integrate and fire (§4.2.5.1)
LFP local field potentials
MEG magnetoencephalography (§2.1.3.1)
MGB medial geniculate body (§2.1.2.1)
PET positron emission tomography
pmHG posteromedial section of Heschl’s gyrus (§2.1.3.1)
POR pitch onset response (§2.3.2.4)
PSF pitch-related sustained field (§2.3.2.6)
PT pure tone (§2.2.3.1)
SACF summary autocorrelation function (§3.2.2.2)
STDP spike-time-dependent plasticity (§3.2.3.2)
STI strobed temporal integration (§3.3.3)
SF sustained field (§2.3.2.6)
VCN ventral cochlear nucleus (§2.1.2.1)
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