Human motion data refinement unitizing structural
sparsity and spatial-temporal information
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Abstract—Human motion capture techniques (MOCAP) are
widely applied in many areas such as computer vision, computer
animation, digital effect and virtual reality. Even with profession-
al MOCAP system, the acquired motion data still always contains
noise and outliers, which highlights the need for the essential
motion refinement methods. In recent years, many approaches for
motion refinement have been developed, including signal process-
ing based methods, sparse coding based methods and low-rank
matrix completion based methods. However, motion refinement
is still a challenging task due to the complexity and diversity of
human motion. In this paper, we propose a data-driven-based
human motion refinement approach by exploiting the structural
sparsity and spatio-temporal information embedded in motion
data. First of all, a human partial model is applied to replace the
entire pose model for a better feature representation to exploit the
abundant local body posture. Then, a dictionary learning which
is for special task of motion refinement is designed and applied in
parallel. Meanwhile, the objective function is derived by taking
the statistical and locality property of motion data into account.
Compared with several state-of-art motion refine methods, the
experimental result demonstrates that our approach outperforms
the competitors.
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Human motion capture (MOCAP) data is now widely used
in many areas such as computer animation, digital effect, gam-
ing, physical training, virtual reality and medical rehabilitation.
For the film industry, the high quality motion data have been
applied to generate the character animation, facial animation
and special digital effects in the recent fantastic films e.g.
Avatar, The Avengers, Transformers, Captain America, and
Warcraft. The great success demonstrates the importance of
MOCAP techniques and data.

These MOCAP data based approaches require high quality
raw data as input. Currently, the most popular commercial
MOCAP systems are optical-based, such as Vicon ' and
Motion Analysis 2. However, even with these professional
systems, the acquired raw data still suffers from missing
marker problems. For example, the markers may become
invisible when they are occluded by other body parts or
objects, which could lead to missing data problem. A piece
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Fig. 1: Examples of MOCAP equipments: (1) optical based
(upper left), (2) wearable sensors (upper right) and (3) depth
sensors (bottom)

of recorded motion by Motion Analysis MOCAP system is
shown in Fig 2, where the blanks on the time line denote the
occurring of missing marker problem. The process of capturing
human motion is usually both expensive and time consuming.
Hence, it is essential to refine the captured raw motion data to
meet the quality requirement rather than tedious reshooting. In
practice, some post-processing tools for cleaning motion data,
e.g. filling missing value and removing noise, are provided in
the commercial MOCAP systems. However, such tools usually
require user to correct the outliers and noise of recorded
motion sequence frame-by-frame, which could lead error-
prone, tedious and time consuming. In addition, the most often



Fig. 2: Examples of MOCAP result recorded by Motion Analysis System

used refinement methods used in these commercial MOCAP
systems are linear/spline interpolation, which is only effective
for simple motion e.g. walking and running. The refinement
may fail while dealing with the complex motion. Moreover, the
spatio-temporal patterns have been ignored by those methods,
which could cause distortion and unrealistic in refinement
result. Additionally, the fast developing low-cost depth sensors
(e.g. Microsoft Kinect, Google Project Tango), which are
able to acquire a depth stream with acceptable accuracy, can
provide new opportunities for accessible motion capture. The
motion data derived from the depth stream contains even more
noise than the result from current MOCAP system. Although
many work have been done on this topic [1]-[3], improving
the quality of motion data is still a long uphill journey.

To refine the imperfect motion, a lot of methods have
been developed in the literature. The rising of novel motion
capture systems and technologies brings explosive growth of
motion data in recent years. The data-driven based motion
processing methods have attracted many attentions [4]-[8],
and achieved many successes for motion denoising. However,
in the existing work for filling missing markers, such as
Lou et.al. [4] and Xiao et.al. [9], the spatial temporal and
kinematic information of human motion haven’t been well
exploited while training the motion dictionaries. The artifact
e.g. dithering could occur in the recovered motion sequence.
Therefore, in order to overcome these problems, we propose a
novel motion refinement method deriving from sparse coding
and dictionary learning in this paper, which focus on solving
missing marker problem. The major contributions of our work
are

o taking the distribution information of missing marker
in motion data into account for deriving the dictionary
learning.

« selecting a compact correlated subset of motion bases for
the clean motion reconstruction.

« exploiting the spatial-temporal information while learning
the motion dictionary to achieve stable and realistic result.

o taking the smooth constraint into account for the motion
recovery for ensuring the smooth result. A smooth graph
constraint on the sparse representation coefficients matrix
is employed in our objective function

I. RELATED WORK

The purpose of human motion refinement is to remove the
noise and fill the missing value while preserving the embedded
spatio-temporal patterns of motion. Due to the complexity and
diversity of MOCAP data, motion refinement is a challenging
task, where much effort has been expended on this topic.
Generally, the existing approaches of MOCAP data refinement
could be divided into three categories: signal processing meth-
ods, data-driven methods and matrix completion methods.

A. Signal processing methods

In early studies, the classical signal denoising methods such
as Gaussian low-pass filter, wavelet transformation, discrete
cosine transform (DCT) and Fourier transform have been
applied to denoise the motion data [10]. For instance, Hsieh
and Kuo have proposed a B-spline wavelet-based method to
remove the impulsive noise of body motion data [10]. Another
way is to apply linear time-invariant filters (LTI) to refine the
noisy motion data [11], [12]. As an improvement, the dynamic
system-based methods (DSB) such as Kalman filter and linear
dynamic system (LDS) are employed for motion refinement
[13], [14]

Dimension reduction (DR) methods have also been applied
to motion signal for refinement [15]-[17]. For example, prin-
ciple component analysis (PCA) can be used to eliminate non-
informative components of the motion data by accounting
the variance of motion data on some orthogonal directions
[15]. Independent component analysis (ICA) is another good
choice to reveal the independent latent factors that contribute
to generating different kinds of motion [18]. Inspired by the
great success of manifold learning on computer vision areas
[19], such kind of methods have also been applied to motion
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Fig. 3: Partial model for CMU motion data. The markers 1, 2, 7, and 14 are the root, the right and left femur markers, and
the upper neck marker, respectively., which are used for local coordinate translation. For the grouping operation, with a given
S frames sequences and size M window, it will generate N =S — M + 1 overlapping clips.

denoising [16] which could also be regarded as a special kind
of DR method.

Signal processing methods usually do not require much
computational cost and are effective while dealing with simple
and short-term motion. However,this kind of methods process
each joint degree of freedom (DOF) independently, where
the underlying structure correlation between human joints
are usually ignored. Hence, the of refining result of signal
processing methods on complex motion may be notS sufficient
to satisfy the quality requirement .

B. Data-driven methods

The rising of novel motion capture systems and technologies
brings explosive growth of motion data in recent years, which
facilitate the development of data-driven based methods. [4]—
[6], [8], [9], [20]. For example, Lou and Chai [4] have
proposed an example based approach to learn a series of
spatial-temporal filter bases from pre-captured motion data
and use them along with robust statistics techniques to fill
in the missing values of motion capture data. In Xiao et al’s
work [6], [9], they have formulated the predicting missing
marker problem as finding spare representation of imperfect
pose. They succussed in introducing ¢; sparse representation
to solve predicting missing marker of motion data. Hou et
al. [20] have provided a method to recover corrupted motion
capture data through trajectory-based sparse representation.

The performance of data-driven methods is heavily rely on
the training data selection. In addition, many existing data
driven methods didn’t consider kinematic characteristics and
smooth property of human motion in their dictionary learning
and pose reconstruction process, which could cause artifact
in the recovery result. Additionally, data-driven methods often
meet out-of-sample problem, where they are unable to handle
the new coming motion sequence when there are no similar
motion in the training dataset.

C. Matrix completion methods

Another typical motion refinement method is matrix com-
pletion based, which formulates the human motion refinement
into a low-rank matrix optimization task [21]-[25]. Lait et
al. [21] have noticed the low-rank property of motion matrix
has not been exploited explicitly. They reformulate the human
motion refinement into a low-rank matrix optimization where
singular value thresholding (SVT) is applied to solve the
objective function. After that, Feng et al. [22] have proposed a
motion data refinement via a matrix completion method using
both the low-rank structure and temporal stability properties
of the motion data. Liu et al. [23] have presented a MOCAP
data denoising approach via filtered subspace clustering and
low rank matrix approximation. Recently, Burke and Lasenby
[26] have tried to combine the smoothing and low-rank matrix
completion by projecting markers into a lower dimensional
space learned from the motion sequence, performing Kalman
smoothing in this space using and then returning to the original
space, using correlated markers to reduce the average error in
each marker position estimate.

Matrix completion methods do not require the pre-training,
which means that there is no out-of-sample problem. This is
the biggest advantage of such kind of methods. However, the
matrix completion method may fail when many data entries
are badly corrupted,e.g. large amount of missing markers.

Arguably, the human motion refinement is still an difficult
problem due to the diversity and complexity of motion data.
Inspired by the great success of data driven based methods in
computer vision and computer graphic area, we aim to propose
a novel human motion refinement method based on sparse
representation to overcome the existing the missing marker
filling issue.

II. METHODOLOGY
A. Data preprocessing

1) Normalization and Coordinate translation: MOCAP da-
ta is usually recorded under the real world global coordination.



Even visual-similar motion could have dramatically numerical
diversity due to the pose translation and rotation. Therefore,
a local coordinate transformation would be applied to the
raw data which aims to remove the effect of pose translation
and rotation. In addition, we noticed that in various kinds
of motion, the torso is usually a rigid part. Hence, we will
translate each pose to the local coordinate representation
respect to the root marker, i.e. marker 1 for CMU motion data.
Then, the local pose frames will be rotated to ensure that the
rigid plane, which is consisting of 3 markers, i.e.markers 2
(right femur), 7 (left femur), and 14 (upper neck) for CMU
motion data, parallels to the XY plane.

2) Human partial model and grouping: Human motion data
intrinsically countains hierarchical spatial-temporal informa-
tion. In order to better exploit the spatial-temporal relation-
ship, many researches have applied the partial human model
while processing motion data [5], [6], [25], [27], [28] and
achieved expressive performance. Instead of using whole body
model [8], [9], We choose partial human model in this work
and divide the whole body into 5 parts [5], [6], which is
Torso(TO), Left Arm (LA), Right Arm (RA), Left Leg(LL) and
Right Arm(RL). On one hand, the partial model could facilitate
exploring the hierarchical spatial correlations among the joints.
On the other hand, it is helpful for improving the model’s
generalization ability.

In addition, we chooses using short clips of motion rather
than processing the refinement frame by frame, which aims
to obtain embedded spatialtemporal patterns and guarantee
smoothness for the result motion sequence.

Therefore, for a given motion sequence X =
{X1,Xs,...,Xg} contains S pose frames, the submatrix X?
will be derived from X to represent each partial motion se-
quence, as X' = {X{ X5 ... XL} € R¥"*S i=1,2,...,5.
With a M length window, it will then generate N = S—M+1
overlapping motion clips for each partial motion sequence
. that is X(M); = [X(j-1)xar+1.7+,Xjxm]). In each
clip, we reshape the M frames into one vector Y/, ie.
RA:xM _y R(A)X1 - qi — M x d;. Thus, we finally get the
groups of partial motion matrixes Y = {Y{,Y7,..., Y} } €
RN N=§_-M+1,i=1,2,...,5.

B. Motion dictionary learning

Assume that Y' = [Y{ Y5 --- Y5 € RN =
1,2,---,5. stand for the partial motion group set generated
from clean motion clips via the pre-processing operation
mentioned in section II-A. A conversation dictionary learning
is to solve the following problem to extract the most suitable

dictionary D! € RT*E" for the sparse representation of
training partial motion group Y.

i | Iz
st Wy =W, . Wil [Willo <t 1<j<N (D
D' =[Di, ..., D], IDi ]2 <1,1<m <K'

In equation 1, W is the sparse coefficient, t, is the target
sparsity, D" is the motion dictionary corresponding to the 5

kinds of human padrtial motion. Equation 1 is a non-convex
problem and could be solved by some existing methods,e.g.
K-SVD [29]. However, the equation 1 is a least square error
function which is not stable to the noise and missing value.
We will enhance the robustness of equation 1 for dealing with
motion data.

The acquired human motion data usually contains only a
few of missing markers after post processing. The distribution
information of missing markers in motion data will be taken
into account for deriving the dictionary learning to improve
the objective function. The missing markers are mainly caused
by the occlusion and usually last several continuous frames,
which are structural sparse. Let’s assume that the binary matrix
Q; € {0,134 >N j = 1,2,...5 denotes the missing feature
(i.e. 1 for corresponding marker miss) of a given partial motion
clips Y. Hence, the missing part could be denoted as Q' oY
while the observable part is Q' oYl

We relax £y pseudo-norm in equation 1 to a #; minimization.
The objective function is then reformulated and the idea dic-
tionary would provide the sparse representation via satisfying

arg min 2 oY — Q' o D'W2 + AW

st oY — QY2 <o @
D' =[Dj,..., Di],|Dills < 1,1 <m < K*

where Y = DIV’ is the reconstructed result and the con-
straint [|Q% o Y — Q7Y||2, aims to minimize the difference of
the invisible part between the clean motion and reconstructed
result.

Equation 2 is actually a nonconvex problem with respect
to D' and W* jointly, which is difficult to find the glob-
al minimum. However, equation 2 is convex with the two
variables separately. Hence, the variables D* and WW* would
be optimized alternatively until the convergence is achieved.
Finally, five motion dictionaries D?,i = 1,--- , 5 can be gotten
in the training phase via the proposed dictionary learning
algorithm.

C. Motion recovery

1) Trust Data Detection: As mentioned in the previous
paragraph, apart from the dictionaries D and parameter A, our
approach also need to specify the missing marker €2 while
processing the motion data. Here, we employ a trust data
detection (TDD) method [22] to identify the missing data
entries.

Q = TDD(X, ¢)

3

st =1[Q,...,Q6] €{0,1} )

where X is the given noisy motion sequence, {2 is the

corresponding marker and ¢ is the threshold value which is

set as 6¢m in this work. The detail of TDD implementation

is omitted due to paragraph limitation, which is available in
[22].



2) Objective function: For a given input imperfect motion
sequence, we will firstly take the operations mentioned in
section II-A to generate the five partial-group motion matrices,
which denoted as {Y® € d’ x N,i = 1,2,---,5}. The
corresponding missing mark 2 would be detected via TDD
and also be translated to {Q, -, Q°} via similar operations.
In order to simplify the problem, the basis number K°
for each partial motion dictionary is all set as K, that is
{D" € d" x K,i = 1,2,---,5}. With the pre-trained five
dictionary matrices {D?,---, D%}, the reconstructed result
groups {Y? i =1,2,--- 5} could be calculated by solving a
¢1 — norm minimization framework:

argmin [0 V'~ 00 DWIE + AW )

Since the /; —norm penalty in equation 4 on the coefficient
W' is not able to promise the smoothness of reconstructed
result, a locality-constrained linear (LLC) coding method [30]
is used. Hence, we reformulate the objective function as

arg min 2 oV — Q' o D'W2 + A|G o Wiy (5)

where G' € RE*N js the locality adaptor that each column
gives the different freedom for each basis vector proportional
to its similarity to the input descriptor Y:fj, j=12--- N.
Specifically,

dist(ff:fj, DY)
) ©
Yi=Q'oY'! D'=Q o D'W'

G, = exp(

where dist(Y';, D') = [dist(Y,";, D! ), dist(Y,";, D), - -,
dist(Y’;, Di )", and dist(Y!;, D! ) is the Buclidean dis-
tance between Y.'; and D! . Each column of G* is normalized
to be between (0,1]. Note that the LLC code in equation 5
is not sparse in the sense of ¢y norm, but is sparse in the
sense that the solution only has few significant values [30]. In
practice, a threshold is applied to make those small coefficients
be zero.

Solving the ¢; — norm problem like equation 4 usually
requires optimization procedures, e.g. Feature Sign algorithms
[31], which is time consuming. Unlike equation 4, the solution
of equation 5 can be derived analytically by:

Wi, = (Cj + X diag(G*)) \ 1
i _ i 1T
Wi =W/ E W,

.

(7

where Ct = (D' — Y 1T)T (D' — Y1,1T) denotes the data
covariance matrix. Additionally,when the large size dictionary
D' € R¥*K s used, a fast approximated method could be
achieved by first performing a k-nearest neighbor (k < d* <
K) search and then solving a small constrained least square
fitting problem, bearing computational complexity of O(K +
k?) [30].

Algorithm 1 Sparse based motion refinement

Input: motion dictionary matrix D?; the input imperfect mo-
tion sequence Xgiopq1; the length of moving window for
grouping M; the regulation parameter \; the threshold
value ¢.

Qutput: the refined motion sequence X global

1: Trust data detection
generate the missing marker matric 2 via the TDD
method shown in equation 3

2: Pre-processing
The unperfect motion sequence X gopq; is translated into
the local coordinate representation Xj,..;;generate par-
tial motion group {Y% i = 1,2,---,5} with Xjpeal
and given window size M generate the corresponding
{Q',--- 05} via similar operations.

3: Motion refinement
With the trained motion dictionaries D?, calculate G*
according Eq 6, solve Eq 5 via Eq 7 to get the sparse
representation W and rebuild the refined Y.

4: Decompose groups and reconstruct the refined pose
decompose the partial groups Y and reconstruct the local
pose frames X} .

5: Reconstruct motion sequence and translate back to

world coordinate X

form the refined local motion sequence Xj,.,; and trans-
late it back into world coordinate representation motion
sequence X global

i,

(S
T
ER

Fig. 4: Results of filling missing value: Original (green),
Imperfact (yellow) and Refinement result (red)
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III. RESULTS AND DISCUSSION
A. Experimental setup

Four representative kinds of actions, i.e., run, dance, box-
ing and basketball, are chosen from CMU human motion
database’ to evaluate the performance of proposed method.

Two motion sequences from each category are randomly
selected as testing set while others are used for training. Most

3http://mocap.cs.cmu.edu/

of CMU motion data are very clear and would be directly used
as the training data for our method. For the testing data, we
synthesised the noise with missing ratio from 10% to 30% with
10% interval. The size of the moving window M for grouping
operation is tuned from {2,4,8,16,30}. The parameter X is
tuned from {1072,1072,1071,1,10} and finally set as 10.
Finally M is set as 30 and dictionary size K is set as 1024
due to the trade off between the effectiveness and efficiency.

Three methods are implemented as comparison: Dynammo
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[24], [32], a linear dynamic system(LDS) based method;
SRMMP [9], a sparse coding based method for predicting
missing markers; SVT [21], a matrix completion based method.
In order to make a fair comparison, the parameters for each
algorithm are tuned by cross validation.

Additionally, in order to further evaluate the proposed
model, we have also taken another experiment on 8 other
kinds of actions that not contained in the training data, which
are walk, gymnastics, jump, punch, score, taichi, varied and
acrobatics.

B. Experimental Results

Following the work [5], [6], [9], [32], [33], the Root Mean
Squared Error (RMSE) measurement is adopted to qualify the
refined results:

. 1 S
rmse(X;, X;) = TTHXZ — Xi|? @®)

where X is the original pose frame and X; is the recovered
one, n. is the total number of missing markers in X;. Due
to the limited space here, only one motion sequence of each
kind of motion is presented, the detail of the refined motion
is shown in the demo video.

As shown in Fig 5, our proposed method generally outper-
forms the competitors in most cases, especially for complex
motion. The LTI method Dynammo is only effective for the
simple motion, e.g. running, while it works not well for
the complex motion that contains heterogeneous behaviors.
Moreover, the detail result shown in Fig 6 has shown that the
recovered result of our proposed method is more stable than
the competitors. An example is also shown in the demo video.

C. Discussion

a) Computational complexity analysis.: The computa-
tional cost of the proposed method are mainly from two
steps operations: Learning dictionaries D? and the calculation
of sparse coefficient W As we know that the dictionary

learning just need to be implemented for once time. Hence,
the computational cost for refining a motion sequence mainly
comes from the sparse coefficient calculation, which is about
O(K + k?) (k nearest neighbor searching, k < d' < K)
by using a fast LLC method [30]. In addition, the processing
of each partial motion groups is independent, which means
that both training and refining could be applied in parallel to
increase the time efficiency.

b) Denoising: In this paper, we just focus on solving the
missing marker problem. However, the realworld MOCAP data
may also contains the noise, e.g. Gaussian noise. To solve this
problem, we could follow the strategy in Xiao et al.’s work [6],
where the /5 denoising and missing filling could be combined
together. In other words, to refine a piece of imperfect motion
data sequence, the missing value will be filled, then the /o
normalization could be applied to remove the Gaussian noise.

c) Limitations and future work.: The first limitation of
our proposed method is that it needs clean motion for training.
Hence, both the distribution of missing marker and noise
should be considered for dictionary training in the future work
to handling the uncleaned training data. Besides, we need an
additional optimization step for an f5 normalization to deal
with common gaussian noise. Thus, a new refining objective
function will be designed to combine the noise filtering and
missing filling. Moreover, our method heavily depends on the
missing mask detection. The TDD method we used is based
on the assumption that the motion is smooth in the feature
space,which may not work well in some extreme cases.

IV. CONCLUSION

To sum up, human motion refinement is an essential step
for MOCAP data based applications. A locality sparse coding
based motion refinement method is proposed in this paper.
Both hierarchical characteristics and spatial temporal infor-
mation of motion data are considered while designing the
objective function. The LLC coding and grouping operation
ensure the smooth property of the recovered result. In addition,



the partial model makes our method more robust to the out-
of-sample problem. The experimental result shows that our
method outperforms the state-of-art method in most cases.
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