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As conservationists we need to predict how biological systems will respond to 13 

environmental change, and how such responses may be affected by conservation 14 

interventions (Clark et al., 2001). Environmental change can create novel 15 

environmental conditions; for example, climate change has generated new extremes 16 

in patterns of temperature and precipitation, whilst the human-assisted spread of 17 

exotic species has created novel species assemblages and interactions. 18 

Conservation organisations may also intervene to alter environmental conditions 19 

experienced by animals; for example at the Wildfowl & Wetland Trust we have 20 

created a network of reserves to provide undisturbed feeding and roosting areas for 21 

waterbirds (Rees & Bowler, 1996). Currently, many approaches to prediction are 22 

based on observed relationships between a biological property of conservation 23 

interest (e.g. species distribution) and one or more environmental variables 24 

(reviewed in Sutherland, 2006). However, such relationships, typically measured for 25 

a narrow range of environmental conditions, may not hold as conditions change, 26 

especially given the complex, non-linear responses shown by ecological systems 27 

(Stillman et al., 2015a). 28 

Calls for conservation to become more predictive (Clark et al., 2001; Sutherland, 29 

2006; Pennekamp et al., in press) have led to the development of models that base 30 

predictions on fitness maximization decision-rules, including individual-based 31 

models, dynamic energy budget models, and mechanistic species distribution 32 

models (Kearney & Porter, 2009; Sousa et al., 2010; Stillman et al., 2015a). Such 33 

models allow us to predict key conservation outcomes including the numbers and 34 

distributions of animals, their physiological state, demographic rates, and interactions 35 

between individuals and species (Grimm & Railsback, 2005). The decision rules of 36 

fitness-maximizing models are based on adaptive behaviour and so are not expected 37 
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to change even if the environment changes, and are thus more likely to maintain 38 

their predictive power as environmental conditions change than are the empirical 39 

relationships of traditional correlative methods (Sutherland & Norris, 2002; Stillman 40 

et al., 2015a). This basis for prediction enables such models to produce accurate, 41 

robust predictions outside of the range of environmental conditions for which they 42 

were parameterized (Wood, Stillman & Goss-Custard, 2015).  43 

As conservation practitioners we have used predictive models to inform our 44 

responses to a range of conservation problems. For example, we recently used a 45 

fitness-maximizing model to predict how the carrying capacity of a key stopover site 46 

for migratory waterbirds would be affected by projected sea level rises, changes in 47 

food resources, and increased anthropogenic disturbance (Stillman et al., 2015b). 48 

Predictive models typically require both the specialist computational skills of 49 

scientists, as well as the practitioners’ detailed knowledge of the system being 50 

modelled (Wood, Stillman & Goss-Custard, 2015). Hence, conservation practitioners 51 

and scientists need to collaborate and communicate effectively to develop predictive 52 

models (Cartwright et al., 2016).  53 

Pennekamp et al. (in press) found that low data availability limited the use of 54 

predictive models in conservation, as such models need relatively large amounts of 55 

data to run and test. When developing our own models, we have found that such 56 

data are often not available in the literature, and may not always be practical to 57 

collect in the field. As practitioners, we need scientists to make better use of existing 58 

data, as well as greater use of our expert knowledge. For example, model parameter 59 

values and their uncertainty can be estimated using Bayesian approaches informed 60 

by pooled expert knowledge of conservation practitioners (Martin et al., 2012). 61 

Approaches that increase the speed and spatial scale of data collection, including 62 
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remote sensing and citizen science, can aid model development (Janssen & Ostrom, 63 

2006; Robinson et al., 2007). Better synthesis of available data (e.g. Roberts et al., 64 

2016), and archiving of such data where it can be searched for and accessed, would 65 

enable more efficient estimation of parameter values from incomplete data. 66 

Allometric scaling methods have proven useful for estimating species- and system-67 

specific values for parameters for which data are not available or measurable. 68 

Additionally, missing parameter values can be estimated from model simulations in a 69 

calibration process, with starting values informed by practitioners’ knowledge (Grimm 70 

& Railsback, 2005).  71 

Due to the difficulty of measuring lifetime reproductive success directly, proxies such 72 

as energy-maximization have been used to implement the fitness-maximization 73 

decision-rules in predictive models (Grimm & Railsback, 2005). However, the identity 74 

of the most appropriate proxy is often unclear. The development of a wider suite of 75 

decision-rules and model currencies, and understanding the systems for which each 76 

is most applicable, would allow predictive models to be implemented for a broader 77 

range of conservation issues (McLane et al., 2011). For example, for some 78 

herbivores nitrogen or predator avoidance may be more important than energy, due 79 

to the relatively low N content of vegetation and higher predation risk of herbivores, 80 

respectively (Inger et al., 2006). To incorporate budgets based on alternative 81 

currencies, including macronutrients such as nitrogen, we need physiological 82 

information including the rates of gain and loss of such currencies. The availability of 83 

such information is currently limited for model currencies other than energy. 84 

Conservation scientists and practitioners can co-create predictive models; for 85 

example the expert knowledge of practitioners can inform the ranges of parameter 86 

values used to build and test models using Bayesian or traditional calibration 87 
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approaches. Scientists can also create tools to allow practitioners to use models 88 

directly. Generalized software that minimizes system-and species-specific 89 

assumptions (e.g. MORPH; Stillman, 2008) can allow the development of models 90 

without having to start from scratch. These packages provide a software “shell” 91 

containing only general processes (e.g. food consumption), but no system-specific 92 

parameters or processes. Instead, parameters and equations are contained in 93 

parameter files external to the software itself, allowing detailed models of wide-94 

ranging systems to be developed without the time cost of programming new 95 

software. Furthermore, general modelling software, such as NetLogo 96 

(http://ccl.northwestern.edu/netlogo/), allows the development of complex models 97 

more rapidly with little programming experience. 98 

Predictive models can take many years to develop, yet as practitioners we need to 99 

address conservation problems urgently (Stillman et al., 2015a). Our article 100 

highlights the need of practitioners for the insights of predictive models, and how 101 

conservation scientists can work with practitioners to overcome obstacles that can 102 

prevent their implementation. Without the concerted efforts of scientists and 103 

practitioners to implement these steps, predictive models will not fulfil their potential. 104 
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