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Abstract

With increasing coastal infrastructure and use of novel materials there is a need to investi-

gate the colonisation of assemblages associated with new structures, how these differ to

natural and other artificial habitats and their potential impact on regional biodiversity. The

colonisation of Europe’s first artificial surf reef (ASR) was investigated at Boscombe on the

south coast of England (2009–2014) and compared with assemblages on existing natural

and artificial habitats. The ASR consists of geotextile bags filled with sand located 220m

offshore on a sandy sea bed at a depth of 0-5m. Successional changes in epibiota were

recorded annually on differently orientated surfaces and depths using SCUBA diving and

photography. Mobile faunal assemblages were sampled using Baited Remote Underwater

Video (BRUV). Distinct stages in colonisation were observed, commencing with bryozoans

and green algae which were replaced by red algae, hydroids and ascidians, however there

were significant differences in assemblage structure with depth and orientation. The reef is

being utilised by migratory, spawning and juvenile life-history stages of fish and inverte-

brates. The number of non-native species was larger than on natural reefs and other artificial

habitats and some occupied a significant proportion of the structure. The accumulation of

180 benthic and mobile taxa, recorded to date, appears to have arisen from a locally rich

and mixed pool of native and non-native species. Provided no negative invasive impacts are

detected on nearby protected reefs the creation of novel yet diverse habitats may be consid-

ered a beneficial outcome.

Introduction

With increasing development of coastal infrastructure there is a need to determine the ecologi-

cal impact of artificial structures, how their colonisation compares with natural reef habitats
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and whether developing assemblages are likely to interact with existing biodiversity [1–3]. This

is especially important in the vicinity of protected areas and where new structures consist of

novel materials, are of unique design, unusual location and have multifunctional objectives

that might generate attributes and disturbances not usually observed in the natural environ-

ment. Throughout the colonisation process, the arrival, establishment and replacement of spe-

cies has the potential to interact with natural and other artificial habitats at local and regional

scales. Structures may attract spawning adults, become nursery areas for juveniles [4,5] and

the output of propagules could theoretically have an impact on dispersal between natural and

artificial habitats [6]. A higher regional diversity of species and assemblages resulting from a

wide variation of natural and artificial habitat may be considered beneficial by conferring a

degree of resilience to a wide range of disturbances [7]. Yet of concern is the establishment of

invasive species and the extent to which structures might provide stepping stones for their col-

onisation and spread [8–11], especially to nearby protected sites. This risk might be greater in

the proximity of harbours and ports, which are known hot spots for invasive species [9].

Our aim was to investigate the colonisation and contribution to regional biodiversity of

Boscombe Artificial Surf Reef (ASR), a novel structure deployed in shallow water (0–5 m

Chart Datum) on the south coast of England. In the northern hemisphere, most studies of arti-

ficial reef colonisation have occurred in the Mediterranean, as relatively few Artificial Reefs

(AR) have been constructed in the NE Atlantic and North Sea [12,13]. The concept of ‘succes-

sion’ as a progressive, directional and often predictable change in the colonisation of biological

communities through species replacement over time is well established in ecology [14,15].

However patterns of colonisation and succession in different habitats and contexts vary and

can be dependent on the type and morphological complexity of the substratum [12,16–19] and

the temporal coincidence between availability of propagules and space for settlement [20].

The magnitude of recruitment success and establishment of early colonists may then have an

impact on later-arriving species, depending on the extent to which they are facilitated, toler-

ated or inhibited through interspecific and intraspecific interactions [14,21,22]. The type and

abundance of consumers that may remove early colonists is also influential [20,22,23], as is the

extent of physical disturbances that can create patches of space by removing some or all epi-

biota [24]. This can result in mosaics of different assemblages composed of early and late colo-

nists which vary spatially and temporally; the persistence of early and late colonists following

disturbances may alter the direction of further community development [15].

As the ASR is in very shallow water and the upper section is exposed on low spring tides

we were guided by examples of colonisation and succession from rocky shores in addition

to subtidal natural and artificial reefs. A general view of the colonisation of hard bottom sub-

strata in temperate regions [22,25,26] is that early colonists of bare space, which include dia-

toms and cyanobacteria and opportunistic species such as foliose and filamentous algae, are

later replaced by perennial algae with upright and complex growth forms. In contrast to early

opportunistic species, middle and late colonisers generally have a larger body size and are bet-

ter competitors. However, early colonisation can be highly unpredictable and dependent on

timing and the period of exposure of bare surfaces [27,28]. Understanding how species func-

tional traits vary over the course of succession is weak. However on rocky shores the transition

is generally from opportunistic ephemeral algae with little variation in traits to a more func-

tionally diverse mature community [25].

Narrowneck geotextile artificial reef on the sub-tropical east coast of Australia, which, like

the ASR was not primarily constructed to enhance local biodiversity, had over a three year

period become colonised by macroalgae, mobile invertebrates, sea turtles and fish [29]. How-

ever due to the shallow, exposed and abrasive environment, combined with the novel geotex-

tile substratum of the ASR, it was uncertain how colonisation of the structure would proceed
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and whether this might become functionally diverse and provide ecosystem services such as

enhanced fisheries and benefits to dive tourism and snorkelling.

The complexity of the structure is highly influential in determining the diversity and type of

assemblages [30–33]. At Narrowneck artificial reef this was considered important in limiting

the range of taxa within the colonising assemblage as it is dominated by horizontal surfaces

with few crevices and overhangs; however in a few areas where these features did occur, differ-

ent species were present including soft-corals and bryozoans. On the ASR, variation in com-

plexity is mostly between vertical and horizontal surfaces. Previous work in Australia [34–37]

has shown differences in assemblages on reefs and structures with vertical and horizontal sur-

faces with some species affected more by orientation than location, independent of whether

habitats are natural or artificial. Variation in species and assemblages have also been shown on

differently orientated tiles or blocks [38–40] including substrate specific effects [34,41].

Another important feature of the ASR is its shallow depth and seaward gradient between

0m and 5m below Chart Datum. Variation in temperate subtidal assemblages due to water

depth has been a neglected area of research [42], yet has revealed significant differences in

composition and structure [42,43]. In shallow water the attenuation of surface light available

to macroalgae [44,45] and its consumption by grazers [46,47] is likely to be particularly influ-

ential. So the interaction between depth and surface orientation could confer important varia-

tion in habitat to the ASR.

Concerning the colonisation of the ASR we made the following predictions:

1. As with new surfaces on natural reefs, rocky shores and other artificial substrata, there

would be increasing coverage of epibiota and replacement of early opportunistic colonists

by different functional groups over time.

2. Surface orientation would influence the type of benthic assemblages found on the ASR.

3. There would be significant variation in assemblages with depth.

4. Fish and other mobile consumers with different behaviour or life history traits would be

similarly represented over the summer period and evidence of breeding or territorial behav-

iours would so far be minimal.

There is important debate about the impact and value of artificial reef habitats and struc-

tures, whether communities become comparable with natural reefs in terms of species diver-

sity and if artificial reefs (AR) can be potential mitigation for habitat loss [33,48–51]. Variation

in assemblage structure between natural and artificial reef habitats are frequently attributed to

the age and early successional stages of the structure [19,37,52], differences in substrata [18,53]

topographic and structural complexity [33,48,54], degree of isolation from natural reefs [55]

seasonal movements of predators [56] and differential recruitment patterns [57].

In comparing the ASR to surrounding natural and artificial habitats we predicted signifi-

cant differences in variation of assemblages of major functional groups.

Materials and methods

Study area and Boscombe Artificial Surf Reef

All surveys were carried out with permission of Bournemouth Borough Council.

The main study is centred at Boscombe within Poole Bay near Bournemouth on the central

south coast of England (Fig 1) where there is considerable intertidal and subtidal infrastruc-

ture. However there are very few subtidal rocky reefs in the region, and those present are of

small area in 6-16m water depth and mostly of sandstone or limestone rising 1-4m from the

seabed. Owing to their scarcity and important assemblages, some of these reefs are protected
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areas. Nearby Poole Harbour is a busy port with ferry routes to the continent and has a consid-

erable number of commercial and recreational craft. To the east of Poole Bay is the Isle of

Wight, the Solent estuaries and the industrial ports of Southampton and Portsmouth. The

coast is moderately exposed to south-west winds and annual sea surface temperature range is

7.5–18˚C. The tidal range in Poole Harbour is 1.8m increasing to 3m in the western Solent.

There is a bidirectional tidal flow, with the flood running east and the ebb to the west across

the ASR and natural reefs. Close inshore, the sea bed in Poole Bay is medium sand, with more

mixed sediments in the western Solent. There is a limited amount of trawling and netting for

fish in Poole Bay and western Solent and some potting for cuttlefish (Sepia officinalis), brown

Fig 1. Study region. South coast of England showing location of the Boscombe Artificial Surf Reef (ASR) and other

artificial and natural habitats.

https://doi.org/10.1371/journal.pone.0184100.g001
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crab (Cancer pagurus) and lobster (Hommarus gammarus) around the patch reefs. Recreational

angling from charter vessels is very popular in the region.

Boscombe Artificial Surf Reef (ASR) is the first of its kind to be constructed in Europe. The

original aim of the reef was to increase local tourism by creating better surfing [59–61]. It is

located 220m offshore and 210m east of Boscombe Pier near Bournemouth in Poole Bay

(Fig 1). Not only are purposely constructed artificial reefs relatively uncommon in northern

Europe, the shallow location of the structure in the surf zone and use of novel geotextile mate-

rial is unusual. The structure, which covers approximately 1 ha of the sea bed, is comprised of

two sections consisting of 54 large sand-filled geotextile bags of 1-5m diameter and 15-70m

length [59]. Construction of the bottom section commenced in August 2008 and the reef was

completed in early November 2009. A propeller strike in March 2011 caused one of the bags in

the top section to burst, which was lost and has not been replaced. Other repairs have been car-

ried out following annual surveys. Unfortunately, the performance of the ASR as a surfing

attraction has been very poor and its recreational use is minimal [61]. Details of other artificial

and natural habitats sampled within the study are area shown in Table 1.

Monitoring the ASR colonisation

To test predictions (a), (b) and (c), monitoring the colonisation of the ASR utilised a combina-

tion of photography, underwater video using SCUBA diving and a mini-ROV (Remotely

Operated Vehicle). Between December 2009 and October 2012 photos of epibenthic assem-

blages on horizontal and vertical surfaces were taken on the south-east side of the reef between

0-5m depth using an Olympus Mu digital camera with underwater housing (Table 2). In 2011,

images were also obtained from ‘inclined surfaces’ at a depth of 2.5m. On each sampling occa-

sion photos were taken haphazardly by the same person (KC) using a monopod to ensure a

Table 1. Characteristics of study sites.

Location Artificial/

Natural

Depth (m

CD)

Substrate Type Notes

Artificial Surf Reef Artificial 0–5 Geotextile sand

bags

Completed 2009

Poole Training

Bank

Artificial 0–2 Limestone

blocks

Wall designed to direct the ebb and flow of currents to maintain navigable approach to

Poole Harbour. Originally built in 1860, extended to 1300m in 1876 and 1500m in 1927

[58]

Boscombe Pier Artificial 3–5 Concrete piles Built 1861; reconstructed 1979–81.

Hamstead Ledge

(Solent)

Natural Reef 12–16 Limestone Potting for crab and lobster

Durley Rocks

(Poole Bay)

Natural Reef 6–8 Sandstone Potting for crab and lobster

https://doi.org/10.1371/journal.pone.0184100.t001

Table 2. Number of photographs of the ASR. Photographs (16 x 24 cm) of ASR surface used for the analy-

sis of temporal changes in epifauna and epifloral.

Year Horizontal Vertical Total

16th December 2009 NS NS 49

15th October 2010 33 44 81

16th October 2011 28 28 56

7th October 2012 26 35 61

Total 87 107 247

NS ~ orientation Not Specified.

https://doi.org/10.1371/journal.pone.0184100.t002
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fixed distance from the substratum (field of view 16 x 24 cm) along haphazardly located tran-

sects from the sea bed to the reef surface. The time of each photo was retrieved and matched

with depth and time data collected on dive computers [62]. Images from each photographed

surface were placed in three depth categories 0–1.9m, 2–3.9m and 4–5.9m

Photography was also carried out haphazardly by volunteers in different areas of the ASR

using a variety of camera systems and data was used qualitatively to compare with that

recorded on the south-east side of the reef. A VideoRay Pro 4 ROV with smart-tether system

and sonar was deployed from a boat at the ASR in November 2011 and August 2013 to qualita-

tively compare broad-scale coverage of epibiota from around the reef, to check for large scale

disturbances to epibiota and damage, and the shoreward side that was least accessible by

divers. All field work was carried out with permission of the local authorities.

To validate the identification of assemblages observed in photographs and compile a species

inventory, samples of epibenthos were removed from the reef using a scraper and vacuum

sampler, collected in a net bag and taken back to the laboratory for identification. Fauna sam-

ples were placed in 70% Industrial Methylated Spirit (IMS) and later identified to species level

where possible. Other qualitative observations included the presence of sediments within crev-

ices and the general condition of the sand bags.

Image analysis

Each of the photographs were analysed using ‘Coral Point Count with Excel Extensions’

(CPCe) [63,64]. The percentage cover of benthic epifauna and flora from a broad range of

phyla and functional groups was estimated from each photograph (brown algae, green algae,

red algae, coralline algae, sponge, hydroids, anemones, polychaetes, gastropods, bivalves, bar-

nacles, other crustacea, bryozoans, ascidians). These groups are known to be common or

important occupiers of space within shallow rocky reefs in temperate regions and represent a

variety of functional groups that include primary producers, filter and suspension feeders and

grazers. It was found sufficient for 100 points to be positioned over each image to satisfactorily

estimate percentage cover.

Mobile consumers on the ASR

To test prediction (d) concerning the use of the ASR by mobile consumers, surveys of fish and

invertebrates were undertaken between July and September 2013 using Baited Remote Under-

water Video (BRUV). This is a cost-effective and non-destructive method of sampling suitable

for the detection of a broad range of mobile species and functional groups in reef habitats

[55,65–69]. The BRUV unit consisted of a single GoPro Hero 2 high-definition camera (www.

gopro.com) with underwater housing fixed to a weighted aluminium frame. A plastic bait-

arm, (20mm wide), attached to the base of the frame extended horizontally for 1m in front of

the camera. Bait was retained in a plastic cage (5mm mesh) at the end of the bait arm and con-

sisted of 100g of freshly chopped and crushed mackerel which was replaced for each deploy-

ment. Optimum soak times for estimations of species richness and abundance using BRUV

vary [65,70] and few investigations have been carried out in northern Europe. Species accumu-

lation curves produced from pilot studies at the ASR showed that footage of 20 mins duration

was sufficient to obtain consistent estimates of abundance and species richness. Sampling was

carried out using a single BRUV and necessarily restricted to daylight hours between 06:00–

17:00 GMT. Six, 20 minute deployments were made during three periods in the summer; 2nd

July (Early Summer), 8th and 21st August (Mid-Summer) and 28th August and 2nd September

(Late-Summer). On each sampling day, deployments varied spatially across the reef and at

intervals of approximately 1 hour on both flood and ebbing tides to minimise any bias
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associated with the direction of the bait plume. Videos were examined on a PC using VLC

media player. Fauna was identified to species level and the maximum number of individuals of

each species seen in any frame during the 20 min deployment was recorded (MaxN) [65,67].

For quantitative analysis, only individuals seen within a field of view to a maximum distance

of 1m (end of the bait-arm pole) were included due to variable visibility.

Regional comparison with artificial and natural habitats

The epibiota of the ASR in 2012 was compared with two natural reef habitat sites: Durley

Rocks (Poole Bay) and Hamstead Ledge (Western Solent), and two other artificial habitat sites:

Boscombe Pier and Poole Training Bank (Fig 1). Between 2010 and 2012, using the same cam-

era system described above, photographs were taken haphazardly on both horizontal and verti-

cal surfaces along transects from the sea bed to the reef surface (Table 3). It was not possible to

visit all sites in the same year due to weather and logistical constraints. At Boscombe Pier, pho-

tos were taken on vertical concrete pier legs only as these were the only accessible surfaces. At

Poole Training Bank both horizontal and vertical surfaces were photographed when visited on

foot during an extremely low spring tide.

Data analysis

To test prediction (a), using combined data from all depths and surfaces, differences in the

coverage of main functional groups from 2009 onwards were compared using non-parametric

ANOVA. To test prediction (b), in 2010 and 2012 the coverage of the main functional groups

on vertical and horizontal surfaces was compared separately using a Mann-Whitney U-test. In

2011, data from ‘inclined surfaces’ was also included and species groups were compared using

non-parametric ANOVA. Variation in the overall assemblages present on the different sur-

faces was compared using ANOSIM [71].

To test prediction (c) concerned with differences due to depth variation, assemblages pres-

ent in 2012 were compared using PERMANOVA [72]. ‘Depth’ and surface ‘Orientation’ were

included as fixed factors, with an interaction term.

To test prediction (d), concerning the use of the ASR by mobile fauna, a group of species of

known behaviour and life history traits [73,74] were selected and placed in four categories:

(i) Adult pelagic species: European Sea Bass (Dicentrarchus labrax) and Grey mullet (Liza sp.);

(ii) Adult territorial species: Corkwing wrasse (Symphodus melops) and Two-spotted goby

(Gobiusculus flavescens); (iii) Migratory species: Spiny spider crab (Maja squinado), known to

migrate in to local shallow waters and can form breeding aggregations or pods [75,76] and

Black bream (Spondyliosoma cantharus) which migrates to shallower water in spring to spawn

[77,78] and (iv) Juveniles: Black bream and Bib (Trisopterus luscus). Two-way ANOVA was

Table 3. Number of photographs from other locations. Photographs analysed for benthic organisms on vertical and horizontal surfaces of the ASR and

four reference locations.

Location Date Depth (m) Aspect Horizontal orientation Vertical orientation Total

ASR 7th October 2012 0–5 South-east 26 35 61

Poole Training Bank 8th October 2012 0–2 South -east 14 11 25

Boscombe Pier 16th October 2011 3–5 South and east pilings 0 59 59

Hamstead Ledge 14th August 2012 12–16 Mixed aspect 30 19 49

Durley Rocks 15th September 2010 6–8 Mixed aspect 19 30 49

Total 89 154 273

https://doi.org/10.1371/journal.pone.0184100.t003
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performed on species counts (Max N) grouped by behavioural /life history traits across the

summer period.

Canonical Analysis of Principal Components (CAP) ordination [79] was used to present

variation in main epibenthic functional groups of nearby artificial and natural habitats and fol-

lowed by ANOSIM.

Results

Colonisation of the ASR

From annual surveys between 2009 and 2014, including SCUBA and BRUV sampling, 180

taxa were recorded on the ASR, comprising 132 species of macro-invertebrates and fish and 48

species of algae. A list of species recorded on the ASR is presented in the Appendix. During

2008, prior to completion, diving contractors noted schooling fish over the ASR and green

algae (Ulva spp.) was visible on the reef surface when exposed at extreme low water. The domi-

nance of main algal and functional groups varied during the survey period (Fig 2). Between

December 2009 and October 2010, the coverage of visibly ‘bare’ substratum reduced from 40–

19% and over the same period, mean algal cover combining all surfaces increased from 12–

56%. Differences in the coverage of the main algal groups were not always statistically signifi-

cant (p<0.05) between years, although for brown and red algae these were evident when

Fig 2. Mean cover of main groups of epibiota on the ASR 2009–2012. Data is mean of vertical and

horizontal surfaces. Data from 2009 obtained in December, other years in October. Error bars show +SE.

https://doi.org/10.1371/journal.pone.0184100.g002
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comparing data in 2009 and 2012. Inter-annual differences in the coverage of hydrozoa and

bryozoan were mostly statistically significant, and ascidian coverage increased significantly

between 2009 and 2012.

In December 2009, bryozoans, Electra pilosa, Lissoclinum perforatum and Flustra foliacea
were dominant, yet during 2010 there was an increasing coverage of the brown alga Cladoste-
phus spongiosus, green alga Ulva lactuca and red algae. By October 2010, 92 species of fauna

and 32 algal species had been recorded on the ASR. Amongst these colonists were non-native

species (NNS) including the alga Sargassum muticum and ascidians Styela clava and Corella
eumyota. Eight fish species were recorded in 2010, including wrasse Symphodus melops, S.bail-
loni and pipefish Syngnathus acus (Fig 3) that are rarely recorded over the sandy habitats of

Poole Bay. In 2011 a seasonal increase in red algae was recorded from 31–60% between June

and October, dominated by the asexual (Falkenbergia) phase of the Indo-Pacific species Aspar-
agopsis armata (Fig 3). Finer sediments including silt were evident in crevices between the

sand bags from 2011–12 and the polychaete Sabella pavonina and bivalve Venerupis corrugata
became more frequent in these habitats. Other molluscan fauna at this time was dominated by

the gastropod Rissoa parva, whereas the blue mussel (Mytilus edulis), an important occupier of

space on nearby structures, was uncommon. Apart from spiny spider crab Maja squinado,

larger crustacea including lobster Hommarus gammarus and brown crab Cancer pagurus
remained rare during the whole survey period. Eleven of the total 180 taxa recorded are

thought to be non-native to Britain (~6%). However in 2012, some parts of the ASR, notably

shallow and vertical surfaces had combined coverage of the alga A.armata and ascidian S.clava
in excess of 50%.

Fig 3. The Artificial Surf Reef. (a) South-eastern corner of the Artificial Surf Reef in June 2010. The upper

red alga turf is dominated by non-native alga Asparagopsis armata (Falkenbergia stage). Close to the sea bed

the reef is scoured, with scattered ascidians including Styela clava.; (b) Greater pipefish (Syngnathus acus)

amongst red alga Asparagopsis armata. Photos (c-e) from point on south-east corner: (c) 4/6/2011 with Ulva

lactuca, Cladostephus spongiosus, Halurus flosculosus; (d) 7/9/2012 with Cryptopleura ramosa, filamentous

red algae and bryozoans) (e) 12/9/2013 with Gracilaria gracilis and Asparagopsis armata (Falkenbergia

stage) (All photos KC, except photo (b) S Trewhela).

https://doi.org/10.1371/journal.pone.0184100.g003
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Effect of orientation and depth on the ASR assemblage

Significant differences in coverage of all algal groups and bryozoans were apparent on different

surfaces in 2010 (Fig 4). At middle depth, hydroids and ascidians became more prominent on

the vertical surfaces in 2011 (Fig 5). Upper horizontal surfaces (0–1.9m) were dominated by

red algae, green macroalga Ulva sp., and sand-scour tolerant brown algal species Cladostephus
spongiosus. At middle and lower depths, most coverage was by the non-native red alga A.

armata. The top of the reef lies within the shallow sub-tidal depth range in which non-native

S.muticum became established locally.

Analysis of similarities (ANOSIM) showed a significant difference between horizontal and

vertical assemblages within the 2–3.9m depth band in 2010 (R = 0.55, p = 0.0001). In 2011 a

significant effect of orientation on assemblages within the 2–3.9m depth range was also appar-

ent (R = 0.58, p = 0.0001) with pairwise comparison tests indicating significant differences

(p<0.05) between vertical and both horizontal and inclined surfaces.

In 2012, differences in the coverage of red algae on vertical and horizontal surfaces were

largely maintained at each depth range (Fig 6). Significant differences in coverage of the main

faunal groups were also evident at middle and lower depths. Two-factor PERMANOVA per-

formed on 2012 assemblages indicated significant differences between surface orientation and

depths (Table 4). Pairwise comparison shows that in vertical assemblages, differences are

evident between all depth groups (Table 5). Vertical surfaces from 2–5.9m are characterised

by less macroalgae, increased presence of hydroids, bryozoans, ascidians, sponges and

Fig 4. Epibenthic assemblages present on vertical and horizontal surfaces across all depths (0–5.9m) in 2010.

https://doi.org/10.1371/journal.pone.0184100.g004
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crustaceans. Horizontal assemblages at the two deepest depth ranges (2–3.9m and 4–5.9m) dif-

fer significantly. There is no significant interaction term between the two factors.

Mobile species on the ASR

Adults of pelagic species bass (D.labrax) and mullet (Liza sp.) occurred in low numbers spo-

radically through the summer, which is consistent with anecdotal observations from divers

and anglers. However Two-spotted gobies (G.flavescens) were present on the reef from early

summer and could be seen swimming along the reef sides. Corkwing wrasse (S.melops), which

are also known to exhibit territorial nesting behaviour, were only observed in late summer in

these surveys. The spiny spider crab M.squinado was frequent on the ASR with MaxN of 17

observed in mid-summer, however although larger aggregations were observed around nearby

piers, no ‘pods’ were observed on the ASR. Juvenile Black bream (S.canthrus) were very com-

mon in mid-late summer around the sides of the structure, where they gained shelter.

ANOVA (Table 6) shows significant effects of behavioural/life-history “trait” and period

through summer on species counts, and a significant interaction between the two factors.

Counts showed no difference between species groups in early or late summer, but in mid-sum-

mer counts of juveniles were significantly higher than all other groups (territorial adults:

p = 0.001; pelagic adults: p = 0.0001; migratory: p = 0.003) (Fig 7).

Comparison with regional epibenthic communities

ANOSIM shows significant differences in assemblages between sites (R = 0.468, p< 0.0001),

with significant pairwise differences between all sites. CAP ordination procedure (Fig 8)

Fig 5. Epibenthic assemblages present on vertical, horizontal and inclined surfaces at depth 2–3.9 m in

2011.

https://doi.org/10.1371/journal.pone.0184100.g005
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indicates grouping of samples between each habitat type (trace statistic = 0.0001). Overlaid

Spearman rank species correlations (> 0.4) indicate that assemblages at the natural reefs dif-

fered to the artificial habitats, including the ASR. The natural site in the Solent was character-

ised by higher abundances of sponges and hydroids whereas greater numbers of barnacles,

Fig 6. Epibenthic assemblages present on vertical and horizontal surfaces across the three depth

ranges (0–1.9, 2–3.9, 4–5.9m) in 2012.

https://doi.org/10.1371/journal.pone.0184100.g006
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Table 4. Results of a two-factorial PERMANOVA on 2012 benthic data from the ASR across depths

and types of surface orientation (vertical and horizontal).

Source d.f. S.S. M.S. Pseudo-F p-value

Depth 2 9009.8 4504.9 6.6445 0.0001

Orientation 1 4393.2 4393.2 6.4798 0.0004

Depth*Orientation 2 1737.2 868.58 1.2811 0.2682

Residuals 55 37290 677.99

https://doi.org/10.1371/journal.pone.0184100.t004

Table 5. Results of pairwise comparison of benthic assemblages between surface orientation and

depth ranges on the surf reef in 2012.

Depths Orientation t-statistic p-value

2–3.9m : 0–1.9m Vertical 2.0979 0.0037

4–5.9m : 2–3.9m Vertical 2.5775 0.0009

4–5.9m : 0–1.9m Vertical 3.7007 0.0001

2–3.9m : 0–1.9m Horizontal 1.0483 0.4007

4–5.9m : 2–3.9m Horizontal 1.9922 0.0142

4–5.9m : 0–1.9m Horizontal 1.1032 0.3491

https://doi.org/10.1371/journal.pone.0184100.t005

Table 6. Results of two-way ANOVA performed on species counts grouped by behavioural/life-his-

tory “trait” across each summer period from BRUV data.

Source d.f. S.S. M.S. Pseudo-F p-value

Trait 3 707.7 235.907 8.476 < 0.001

Period 2 230.5 115.257 4.141 < 0.05

Trait*Period 6 485.8 80.970 2.909 < 0.05

Residuals 132 3673.8 27.832

https://doi.org/10.1371/journal.pone.0184100.t006

Fig 7. Mean abundance of species pairs of Pelagic adults (European bass, Grey mullet, Territorial

adults (Corkwing wrasse, 2-spotted goby, Migratory (Black bream and Spiny spider crab) and

Juvenile (Black bream and bib) in early, mid and late summer 2013. Data collected from BRUV surveys.

Error bars show SE.

https://doi.org/10.1371/journal.pone.0184100.g007
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bivalves and algae occurred at Durley Rocks in Poole Bay. The vertical surfaces of Boscombe

Pier differed to the ASR as they were colonised by the kelp Laminaria digitata, barnacles (Bala-
nus crenatus) and mussels (Mytilus edulis). The Poole Training Bank had a much greater cov-

erage of sponges than the ASR, especially Hymeniacidon perleve.

Discussion

Colonisation of the Artificial Surf Reef

Variation in surface depth and orientation provided by different layers of sand bags creates a

measure of complexity which has enabled an increasing coverage of different epibiota and

functional groups over time. Within a metapopulation network, constituent species have

potential to interact with neighbouring habitats and observed taxa indicate that colonisation is

most likely the result of dispersal and recruitment of propagules from local hard substrata.

Although natural reef habitat is sparse and discontinuous in the region, local structures within

Poole Harbour and piers at Boscombe and Bournemouth have source populations that may

have acted as stepping stones for the colonisation of algae, bryozoa and ascidians that have

poor dispersal capabilities [80,81]. Timing of deployment of new substrata can have a signifi-

cant impact on the rate and trajectory of succession due to variation in the availability of prop-

agules in the water column [82,83] and it is most likely that the protracted duration of

construction of the ASR would have resulted in variation in recruitment of taxa in different

parts of the structure as they were completed and exposed.

Predictions that there would be increasing coverage of epibiota and replacement of early

colonists over time were confirmed. Many colonising species overlap others and those lying

Fig 8. CAP ordination showing variability of samples across the different sites and habitats. Overlaid

Spearman rank species correlations (> 0.4) species vectors. Discriminant analysis is based on 4 PCO axes

accounting for 98% variability within the data.

https://doi.org/10.1371/journal.pone.0184100.g008
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directly below the image sampling point were not always identified, so some species coverage

may have been underestimated or unrecorded. The shift from bryozoans to algal and ascidian

dominated assemblages was pronounced and there was an increase in small gastropod con-

sumers (Rissoa parva), amongst the algae and hydroids, which is consistent with Model 6 of

Benedetti-Cecchi [22]. Bare patches observed on the ASR were mainly as a result of sand depo-

sition and abrasion rather than grazing, as urchins and large invertebrate consumers are

uncommon in Poole Bay. Initial colonisation of the ASR occurred during the construction

phase and two years following completion (October 2011), over 55% of the substratum was

covered by epibiota. This compares with 73% on horizontal slabs of cement stabilised pulver-

ised fuel ash (PFA) from the nearby Poole Bay Artificial Reef (10m depth below Chart Datum)

after 12 months (mean of upper and underside, May 1991–1992) [38]; 70% on subtidal con-

crete panels after 18 months in the Aegean Sea [19] and over 74% cover by mussels on new

limestone blocks on low shore in the northern Adriatic over 12 months [84]. Algal communi-

ties can take several years to reach maturity, despite initially colonizing rapidly [85], and the

growth and potential interaction of colonial ascidians and sponges is thought to be responsible

for reductions in bryozoan coverage as the epibiotic community develops [86], as observed on

the ASR.

The sequence of main groups of colonists was not dissimilar to nearby studies at the Poole

Bay Artificial Reef [38,85 87] although its more rapid coverage compared to the ASR may have

been due to a spring-time deployment or propagule supply. Distinct stages in the colonisation

process have also been observed on other reefs [88–91], however across several locations and

substratum types, the similarity of earlier stages have been found to be more random, due per-

haps to varying levels of disturbance, compared to the more deterministic later stages [17,92].

It was not possible to obtain comparable annual detailed species inventories over the four year

period as survey effort by volunteer divers varied between years. However the reef had become

colonised by 71% of epibenthic and mobile species, recorded to date, by the first summer after

completion in October 2010. Between 2011 and 2012, 25% of these species were still recorded

as present however, notwithstanding species replacement during succession, this is likely to be

an underestimate as the later inventories were not as thorough. Additional habitat complexity

and resources afforded by the growth of algal assemblages and increased sedimentation of

finer particles within narrow crevices between the sand bags are likely to have attracted later

colonists.

At the base of the reef, growth of epibiota has been variable due to frequent abrasion by

sand. Over time, natural physical and biological disturbances, varying spatially across habitats,

are thought to be important in locally arresting the successional process in marine environ-

ments, with the resultant mosaic of patches exhibiting different successional stages [92]. At

finer scales this was evident, yet was not quantified across the whole reef. However, from ROV

footage and BRUV deployments, the area of deposited sand on the reef was observed to vary

spatially and temporally across both horizontal and exposed vertical surfaces, where they could

be partially buried. The deposition of sediments and potential sand-scour in mobile and

dynamic habitats can have a profound effect on settlement, recruitment, growth and mortality

of species associated with marine hard-substrata [93,94]. With the uniquely exposed location

of the ASR surrounded by a mobile sandy sea bed, these disturbances are likely to continue to

influence the colonisation of the structure and may determine the successional trajectory.

It has been shown that the influence of substratum type is often ephemeral and mostly

affects the initial stages of colonisation [17,19], yet barnacles, which are normally frequent col-

onists on artificial structures and reefs [95–96] and influential in the establishment of intertidal

communities [64], were notably absent on the ASR surface. Larval supply is unlikely to be lim-

ited as both B. crenatus and Semibalanus balanoides are abundant on local structures and tidal
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models reveal a strong easterly flow across the ASR from Poole Harbour [97]. The microstruc-

tural texture of non-woven geotextile materials can prevent barnacle settlement [98] yet in the

longer term, the influence of the geotextile substratum on assemblages may be of lesser impor-

tance than other factors, such as disturbances and habitat complexity.

Structural complexity of artificial reefs is highly influential in determining type and diver-

sity of benthic and mobile assemblages [33,55,99,100]. The ASR is a relatively simple structure

and habitat complexity is created by variation in depth and surface orientation. Horizontal

surfaces predominate on the ASR and were mainly colonised by red, green and brown algae,

whereas vertical surfaces became dominated by ascidians and bryozoans. Vertical surfaces can

create shade [101] yet may be exposed to more abrasion than other surfaces, depending on the

local hydrodynamic environment. Although macroalgae is often prominent on shallow hori-

zontal surfaces, especially in northern European seas, in other areas it is not always so [35] and

there can be an interaction between light availability and the degree of sedimentation [39],

which can be significant on parts of the ASR. The paucity of deep holes, fissures, and gullies on

the ASR are limiting to larger fauna that require more shelter such as lobsters and crabs. These

species are much more frequently observed at Durley Rocks and other nearby natural reefs

where there are mixed sizes of crevices. Large kelps (e.g. Laminariaceae spp.) on Durley Rocks

and Boscombe Pier can provide additional complex habitat and communities [102] and their

current rarity on the ASR will limit species diversity. Measurement of spatial variation in struc-

tural complexity of the ASR, as has been determined at other sites [103] would have been very

beneficial and assisted greatly with interpretation and analysis of benthic assemblages. Increas-

ing depth has a significant impact on the type of assemblages present, with a reduction in

macroalgae and an increasing prominence of invertebrates on both horizontal and vertical sur-

faces. A reduction in light intensity with depth combined with shaded vertical sides is possibly

responsible [101], yet the effect of sedimentation would be worthy of further investigation, as

would more detailed studies on the influence of inclined surfaces which were most similar to

horizontal habitats at middle depths.

Mobile species assemblages

Fish are particularly attracted to new structures including geotextile reefs [104]. The BRUV

data combined with visual observations revealed an assemblage of mobile invertebrates and

fish composed of species characteristic of both natural reefs, such as wrasse (Symphodus
melops) and bib (Trisopterus luscus), and those associated with the sandy inshore habitat,

including sand goby (Pomatoschistus minutes), hermit crab (Diogenes pugulitor) sand eel

(Ammodytes tobianus) and dragonet (Callionymus reticulatus). These observations are con-

sistent with others from isolated artificial reefs located on sandy habitats [55], which may

present barriers for some species due to predation risk [105]. Although the influence of cur-

rent strength and direction on the bait plume was minimised as far as possible, they can

strongly influence data gathered [67,106], as can the type of bait [107,108], although oily fish,

such as mackerel used in this study are preferred in sampling protocols [67,109]. Feeding

behaviour and species interactions will influence which species do and don’t come to the bait

[67,110] and cryptic or night foraging species may have been excluded. Large numbers of

spider crabs around the bait did visibly attract other species as pieces escaped from the cage

mesh and future studies combining this technique with un-baited cameras and diver visual

census [55] would be beneficial to compare with these observations. A higher frequency of

sampling throughout the spring and summer would have provided more detail on the use of

the reef by mobile species with different behavioural and life history traits. This is particu-

larly relevant to the sporadic records of pelagic species such as bass (D. labrax) and mullet
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(Liza sp.), that are able to traverse longer distances between isolated habitat, although this

transient use and behaviour was confirmed anecdotally by SCUBA and local anglers. Species

breeding territories were not confirmed; corkwing wrasse was seen with nesting material on

the ASR in June 2010, but in 2013 the species was not recorded until after the main breeding

season in September. Although Two-spotted gobies G. flavescenswere prevalent and mostly

likely resident, we could not confirm whether individuals seen and attracted to bait were ter-

ritorial males [111]. The migratory spider crab M.squinado was very common during the

summer, grazing on the vertical sides of the ASR, yet no large aggregations were observed

which can be indicative of breeding, although they were seen elsewhere in the region. The

abundance of juvenile (young of year) black bream (S. cantharus), which were seen in large

numbers apparently gaining shelter around the edges of the ASR away from tidal streams,

was of particular interest. This species which is of international conservation concern [77]

and locally important for recreational anglers, is known to establish nests and territories in

nearby sand and gravel habitats [78], making it vulnerable to exploitation. Spawn of several

invertebrate species were seen attached to the ASR including annelida (Phyllodocidae sp.)

squid (Loligo sp.), nudibranchia (Facelina auriculata) and whelk (Buccinum undatum).

Clearly, future investigations should attempt to confirm use of the structure as a refuge for

marine organisms at different life history stages.

Comparison with other artificial and natural habitats

Subtidal rocky reef assemblages are uncommon in the region and the lack of control or refer-

ence sites can confound comparative studies with artificial reefs [48]. As observed on the ASR

and known in other regions [42], depth variation can have a significant effect on assemblages

of epibiota and fish. Therefore as some sampling locations were distant from the ASR and at

different depths, an exact comparison of assemblages with the ASR cannot be made.

It was not possible to sample all sites in the same year so differences in assemblages could

be due to inter-annual variation in recruitment, growth and disturbance.

In addition to differences in age [19,37,52] and habitat complexity [33,48,54], the location

of artificial reefs and structures relative to natural reefs is a major source of variation in mobile

assemblages, due in part to their isolation from contiguous natural reefs and species-specific

differences in seasonal movements [56] and feeding traits [55]. The natural reefs in this study

area are relatively small and isolated, so an increasing prevalence of new structures in the

coastal environment may continually change the nature of habitat at a regional scale by facili-

tating movement and increasing patch connectivity.

The majority of the seabed within shallow inshore areas of Poole Bay consists of mobile

sandy sediments of relatively low species diversity, so at a local scale (Boscombe), habitat

formed of hard substrata has now increased. Yet all species so far recorded on the ASR are

found in the locality, if not on all structures included in the study. Therefore, these novel struc-

tures may just alter the distribution pattern of locally abundant species rather than increasing

species diversity at regional scales [112]. The youthful age of the ASR is undoubtedly an impor-

tant factor affecting the comparison of benthic and mobile assemblages, and species have been

found to accumulate with time [85,113,114]. With recruitment from the regional species pool

and the influence of slow-growing and habitat-forming species such as sponges and kelps, con-

vergence with natural reef communities may occur.

Of the 180 taxa recorded on the ASR, 11 are non-native, and more were recorded than at

the other habitats, yet all have been previously observed in the region [87,115,116] (author’s

observations). There is a concern that new structures with initially bare surfaces provide a
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spring board for the spread of NNS. The most prevalent NNS on the south coast of the UK is

the slipper limpet Crepidula fornicata, which forms unattached chains on sedimentary sea-

beds and can also attach to hard surfaces. Its presence on the ASR is probably a result of

storm wave action depositing adult chains on the reef rather than larval settlement, as the

geotextile surface is likely to be unsuitable for direct attachment. Vertical surfaces on the surf

reef support extensive coverage of ascidians, typically Ascidiella aspersa with a range of other

species including the non-natives Styela clava and Corella eumyota. The latter was evident in

2010 but subsequently declined, reflecting author observations on an intertidal concrete out-

fall in the Solent. With opportunistic life history strategies, a combination of frequent distur-

bance and the proximity to ports and harbours could maintain high populations of NNS on

the ASR. The structure may be a stepping-stone for dispersal of NNS, as well as native species

associated with hard substrata. However with the prevalent occurrence of NNS in the region,

it will be difficult to assign any negative impacts observed on natural reefs to a particular

location or structure.

Justification for the construction of artificial reefs is often based on evidence that they will

increase or restore local or regional species diversity and ecosystem services such as fisheries

[12]. In northern temperate regions, artificial reefs are uncommon and their ecological and

economic benefit has been rarely evaluated. The prevalence of juvenile S. cantharus, a com-

mercially important species, is to date one of the more tangible benefits of the ASR and mea-

surement of breeding success and temporal variation in abundance relative to other nearby

habitats needs to be continued. Yet how, if at all, the ASR contributes to fish production is

currently unclear. Measurements of fish using stereo-BRUV systems have been advocated to

obtain quantitative data on growth of populations [55], which combined with more detailed

investigations of feeding behaviour, to include Stable-Isotope Analysis, will provide valuable

information on the use of these structures by different growth and life-history stages

[117,118].

Conclusions

Distinct stages in the colonisation of the ASR were observed which over four years has

attracted a diverse and interesting assemblage of flora and fauna. There is variation in assem-

blages with depth and surface orientation that provides a measure of habitat complexity on an

otherwise simple structure. Further experimentation to elucidate possible for reasons for this

variation would be beneficial. Increasing both the depth and complexity of the ASR could be

achieved by the deployment of rocks, bespoke artificial reef blocks or reef balls [119] at the sea-

ward edges of the structure. This will also improve ecological functionality by providing a

greater range of assemblage’s and refugia for different species. These modifications could also

improve the quality of the SCUBA diving experience which may compensate for the poor surf-

ing, thereby benefiting local tourism. It is important to continue to monitor the use of the cur-

rent structure as assemblages develop and establish how it is being utilised by different species.

This would be particularly valuable for breeding and migratory species and those of conserva-

tion concern and/or commercially important. An attempt to measure the wider impact of the

structure on local sport angling and fisheries should also be investigated, as would monitoring

the establishment of NNS on the ASR and nearby protected sites. In addition to significant

assemblage dissimilarity with nearby habitats, the ASR has contributed to regional biodiversity

by increasing the area of subtidal hard substrata and the size of local populations within the

existing mixed pool of native and non-native species. Provided no negative impacts are

detected on natural reefs, this may be considered a beneficial outcome of novel artificial

structures.
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Appendix

Table of Species recorded on Boscombe Artificial Reef (ASR). 2010–2014.

Nomenclature according to Wold Register of Marine Species March 5th 2017.

Species indicated by � are non-native

KINGDOM ANIMALIA

Phylum Porifera

Dysidea fragilis
Halichondria sp.

Leucosolenia sp.

Pachymatisma johnstonia
Polymastia mamilliaris
Suberites pagurorum
Sycon ciliatum
Sycon elegans
Phylum Cnidaria

Actinothoe sphyrodeta
Aglaophenia parvula
Aglaophenia pluma
Amphisbetia operculata
Anemonia viridis
Bougainvillia? britannica
Corymorpha nutans
Coryne eximia
Corynemuscoides
Dynamena pumila
Hydrallmania falcata
Laomedea flexuosa
Obelia dichotoma
Obelia longissima
Plumularia setacea
Rhizostoma pulmo
Sagartia elegans
Sertularia argentea
Sertularia distans
Tubularia sp.

Urticina felina
Phylum Nemertea

Nemertea sp.

Phylum Platyhelminthes

Prostheceraeus vittatus
Phylum Annelida

Ficopomatus enigmaticus�

Harmothoe sp.

Lanice conchilega
Nereididae
Phyllodocidae sp.

Sabella pavonina
Spirobranchus sp.
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Spirobranchus triqueter
Phylum Pycnogonida

Achelia echinata
Ammothea hilgendorfi�

Endeis spinosa
Nymphon sp.

Pycnogonum litorale
Sub Phylum Crustacea

Order Cirripedia

Balanus crenatus
Hesperibalanus fallax
Order Amphipoda

Gammarus sp.

Caprella penantis
Order Decapoda

Hippolytidae sp.

Homarus gammarus
Cancer pagurus
Carcinus maenas
Diogenes pugilator
Inachus sp.

Liocarcinus marmoreus
Macropodia rostrata
Maja squinado
Necora puber
Pagurus bernhardus
Pagurus cuanensis
Pilumnus hirtellus
Pisa tetraodon
Pisidia longicornis
Phylum Mollsuca

Class Gastropoda

Buccinum undatum
Crepidula fornicata�

Doris pseudoargus
Doto millbayana
Eubranchus tricolor
Euspira catena
Facelina auriculata
Lacuna vincta
Nassarius incrassata
Ocenebra erinaceus
Rissoa parva
Tricolia pullus
Trivia monacha
Phylum Mollusca

Class Bivalvia

Mytilus edulis
Spisula solida
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Venerupis corrugata
Phylum Mollusca

Class Cephalopoda

Loligo sp.

Sepia officinalis
Phylum Bryozoa

Amathia lendigera
Amathia citrina
Amathia imbricata
Amathia sp.

Bugulina flabellata
Bugulina turbinata
Chartella papyracea
Crisia sp.

Electra pilosa
Flustra foliacea
Membranipora membranacea
Scrupocellaria scruposa
Tricellaria inopinata�

Phylum Chordata

Subphylum Tunicata

Ascidiella aspersa
Ascidia mentula
Archidistoma aggregatum
Botrylloides sp.

Botryllus schlosseri
Clavelina lepadiformis
Ciona intestinalis
Corella eumyota�

Dendrodoa grossularia
Molgula sp.

Polycarpa scuba
Styela clava�

Didedmnidae sp.

Diplosoma listerianum
Diplosoma? spongiforme
Lissoclinum perforatum
Phylum Chordata

Superclass Pices

Ammodytes tobianus
Belone belone
Callionymus reticulatus
Symphodus bailloni
Symphodus melops
Ctenolabrus rupestris
Dicentrarchus labrax
Gobiusculus flavescens
Labrus bergylta
Liza sp.
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Mullus surmuletus
Parablennius gattorugine
Platichthys flesus
Pollachius pollachius
Pomatoschistus minutus
Pomatoschistus pictus
Pomatoschistus sp.

Spondyliosoma cantharus
Syngnathus acus
Taurulus bubalis
Trisopterus luscus
Trisopterus minutus
KINGDOM PLANTAE

Phylum Chlorophyta

Cladophora pellucida
Codium fragile�

Ulva sp.

Ulva lactuca
Ulva linza
Phylum Rhodophyta

Asparagopsis armata�

Brongniartella byssoides
Calliblepharis ciliata
Ceramium sp.

Chondria sp.

Chondrus crispus
Chylocladia verticillata
Cryptopleura ramosa
Dilsea carnosa
Gastroclonium ovatum
Gracilaria bursa-pastoris
Gracilaria gracilis
Gracilaria sp.

Grateloupia turuturu�

Griffithsia corallinoides
Halurus flosculosus
Heterosiphonia sp.

Hypoglossum hypoglossoides
Lomentaria sp.

Membranoptera alata
Nitphyllum punctatum
Palmaria palmata
Phyllophora crispa
Plocamium cartilagineum
Polysiphonia elongata
Rhodophyllis sp.

Schottera nicaeensis
Sphaerococcus coronopifolius
Spiridia filamentosa
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KINGDOM CHROMISTA

Phylum Ochrophyta

Cladostephus spongiosus
Colpomenia peregrina�

Dictyopteris polypodioides
Dictyota dichotoma
Ectocarpus agg.

Halopteris filicina
Halidrys siliquosa
Laminaria digitata
Saccorhiza polyschides
Sargassum muticum�

Scytosiphon lomentaria
Sphacelaria sp.

Stypocaulon scoparium
Taonia atomaria

Supporting information

S1 File. Available at: https://figshare.com/s/492b7689877e1e5c0e40. This Excel file contains

data on the coverage of the main functional groups of the ASR (2009–2012), the coverage of

main functional groups of other nearby habitats and the BRUV data for 2013.

(XLSX)
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76. Sampedro M-P, González-Gurriarán E. Aggregating behaviour of the spider crab Maja squinado in

shallow waters. J Crust Biol. 2004; 24(1):168–177

77. Russell B, Pollard D, Carpenter KE. Spondyliosoma cantharus. The IUCN Red List of Threatened

Species 2014: e.T170258A1303321. http://dx.doi.org/10.2305/IUCN.UK.2014-3.RLTS.

T170258A1303321.en.

78. Collins KJ, Mallinson JJ. Surveying black bream Spondyliosoma cantharus (L.), nesting sites using

sidescan sonar. Underwater technology. 2012; 30(4): 183–188.

79. Anderson M J, Willis T J. Canonical Analysis of Principal Coordinates: a useful method of constrained

ordination for ecology. Ecology. 2003; 84(2), 511–525.

80. Shanks AL, Grantham BA, Carr M. Propagule dispersal distance and the size and spacing of marine

reserves. Ecol Appl. 2003; 13, 159–169.

81. Shanks AL. Larval Duration and Dispersal Distance Revisited. Biol. Bull. 2009; 216:373–385. https://

doi.org/10.1086/BBLv216n3p373 PMID: 19556601

82. Breitburg DL. Development of a subtidal epibenthic community: factors affecting species composition

and the mechanisms of succession. Oecologia.1985; 65:173–184. https://doi.org/10.1007/

BF00379215 PMID: 28310663

83. Underwood AJ, Chapman MG. Early development of subtidal macrofaunal assemblages: relationships

to period and timing of colonisation. J. Exp. Mar Biol. Ecol. 2006; 330:221–233.

84. Bacchiocchi F, Airoldi L (2003) Distribution and dynamics of epibiota on hard structures for coastal pro-

tection. Estuar Coast Shelf Sci. 2003; 56: 1157–1166.

85. Falace A, Bressan G. Periphyton Colonization: Principles, Criteria and Study Methods. In: Jensen AC,

Collins KJ, Lockwood APM (editors.). Artificial Reefs in European Seas. Kluwer Academic Press,

Cornwall. 2000. p 435–449.

86. Todd CD, Turner SJ. Ecology of intertidal and sublittoral cryptic epifaunal assemblages. II. Nonlethal

overgrowth of encrusting bryozoans by colonial ascidians. J. Exp. Mar. Biol. Ecol. 1988; 115:113–

126.

87. Mallinson JJ, Collins KJ, Jensen AC. Species recorded on artificial and natural reefs, Poole Bay.

1989–1996. Proceedings of the Dorset Natural History and Archaeological Society. 1999; 121:113–

122.

88. Dean RL, Connell JH. Marine invertebrates in an algal succession. I. Variations in abundance and

diversity with succession. J. Exp. Mar. Biol. Ecol. 1987; 109:195–215. Marine invertebrates in an

algal succession. II. Tests of hypotheses to explain changes in diversity with successio-

nAuthor links open the overlay panel. Numbers correspond to the affiliation list which can be exposed

by using the show more link. Opens overlay Richard L. Dean, Opens overlay Joseph H. Connell *

89. Dean RL, Connell JH. Marine invertebrates in an algal succession. II. Marine invertebrates in an algal

succession. II. Tests of hypotheses to explain changes in diversity with successionTests of hypothe-

ses to explain changes in diversity with succession. J. Exp.Mar. Biol. Ecol. 1987; 109:217–247.

90. Dean RL, Connell JH. Marine invertebrates in an algal succession. III. Mechanisms linking habitat

complexity with diversity. Marine invertebrates in an algal succession. II. Tests of hypotheses to

explain changes in diversity with succession. J. Exp. Mar. Biol. Ecol. 1987; 109:249–273.

91. Menge BA. Organization of the New England rocky intertidal community: role of predation, competi-

tion, and environmental heterogeneity. Ecol Monogr. 1976; 46(4): 355–393.

92. Bulleri F, Benedetti-Cecchi L. Mechanisms of recovery and resilience of different components of

mosaics of habitats on shallow rocky reefs. Oecologia. 2006; 149:482–492. https://doi.org/10.1007/

s00442-006-0459-3 PMID: 16896780

93. Airoldi L. The effects of sedimentation on rocky coast assemblages. Oceanography and Marine Biol-

ogy: an Annual Review. 2003; 41:161–236.

94. Ponti M, Fava F, Perlini RA, Giovanardi O, Abbiati A. Benthic assemblages on artificial reefs in the

northwestern Adriatic Sea: Does structure type and age matter. Mar Environ Res. 2015; 104: 10–19.

https://doi.org/10.1016/j.marenvres.2014.12.004 PMID: 25569857

95. Fager EW. Pattern in the development of a marine community. Limnol Oceanogr. 1971; 16:2:241–

253.

Colonisation of Boscombe artificial surf reef

PLOS ONE | https://doi.org/10.1371/journal.pone.0184100 September 19, 2017 27 / 28

http://www.fishbase.org
http://www.fishbase.org
http://dx.doi.org/10.2305/IUCN.UK.2014-3.RLTS.T170258A1303321.en
http://dx.doi.org/10.2305/IUCN.UK.2014-3.RLTS.T170258A1303321.en
https://doi.org/10.1086/BBLv216n3p373
https://doi.org/10.1086/BBLv216n3p373
http://www.ncbi.nlm.nih.gov/pubmed/19556601
https://doi.org/10.1007/BF00379215
https://doi.org/10.1007/BF00379215
http://www.ncbi.nlm.nih.gov/pubmed/28310663
https://doi.org/10.1007/s00442-006-0459-3
https://doi.org/10.1007/s00442-006-0459-3
http://www.ncbi.nlm.nih.gov/pubmed/16896780
https://doi.org/10.1016/j.marenvres.2014.12.004
http://www.ncbi.nlm.nih.gov/pubmed/25569857
https://doi.org/10.1371/journal.pone.0184100


96. Carter JW, Carpenter AL, Foster MS, Jessee WN. Benthic Succession on an Artificial Reef Designed

to Support a Kelp-Reef Community. Bull. Mar Sci. 1985; 37:1:86–113.

97. Herbert RJH, Willis J, Jones E, Ross K, Hubner R, Humphreys J et al. Invasion in tidal zones on com-

plex coastlines: modelling larvae of the non-native Manila clam, Ruditapes philippinarum, in the UK. J

Biogeogr. 2012; 39: 585–599.

98. Wetzel MA, Wiegmann M, Koop JHE. The ecological potential of geotextiles in hydraulic engineering.

Geotextiles and Geomembranes. 2011; 29 (4):440–446.

99. Gratwicke B, Speight MR. The relationship between fish species richness, abundance and habitat

complexity in a range of shallow tropical marine habitats. J Fish Biol. 2005; 66: 650–667.

100. Caddy JF. Marine habitat and cover: their importance for productive coastal fishery resources.

UNESCO Publishing, Paris 253p.2007.

101. Glasby TM. Effects of shading on subtidal epibiotic assemblages. J Exp.Mar. Biol. Ecol; 234: 275–

290.

102. Carter JW, Carpenter AL, Foster MS, Jessee WN. Benthic Succession on an Artificial Reef Designed

to Support a Kelp-Reef Community. Bull. Mar Sci. 1985; 37:1:86–113.

103. Wilding TA, Rose CA, Downie MJ. A novel approach to measuring subtidal habitat complexity. J. Exp.

Mar. Biol. Ecol. 2007; 353: 279–286.

104. Borrero JC, Nelson C. Results of a comprehensive monitoring programme at Prattes Reef. In: Pro-

ceedings of the 3rd International Artificial Surfing Reef Symposium, Raglan, New Zealand, 21–25

June 2003. Black KP, Mead,ST (eds). 83–98.

105. Fernandez TV, D’Anna G, Badalmenti F, Perez-Ruzafa A. Habitat connectivity as a factor affecting

fish assemblages in temperate reefs. Aquat Biol. 2007; 1: 239–248.

106. Heagney EC, Lynch TP, Babcock RC, Suthers IM. Pelagic fish assemblages assessed using mid-

water baited video: standardising fish counts using bait plume size. Mar Ecol Prog Ser. 2007;

350:255–266.

107. Wraith J, Lynch T, Minchinton TE, Broad A, Davis AR. Bait type affects fish assemblages and feeding

guilds observed at baited remote underwater video stations. Mar Ecol Prog Ser. 2013; 477 189–199.

108. Schmid K, Reis-Filho JA, Harvey E, Giarrizzo T. Baited remote underwater video as a promising non-

destructive tool to assess fish assemblages in clear water Amazonian rivers: testing the effect of bait

and habitat type. Hydrobiologia. 2016; 112(1–2):75–85

109. Haggit T, Freeman D, Lily C. Baited Remote Underwater Video Guidelines. Haggit, T., Freeman, D.,

Lily, C. 2014. Baited Remote Underwater Video Guidelines. Department of Conservation Science

Technical Group, New Zealand.82pp.Department of Conservation Science Technical Group, New

Zealand.82pp.

110. Stoner AW. Effects of environmental variables on fish feeding ecology: implications for the perfor-

mance of baited fishing gear and stock assessment. Journal of Fish Biology. 2004; 65: 1445–1471.

111. Utne-Palm AC, Eduard K, Jensen KH, Mayer I, Jakobsen PJ. Size Dependent MaleReproductive Tac-

tic in the Two-Spotted Goby (Gobiusculus flavescens). PLoS ONE.2015; 10(12): e0143487. https://

doi.org/10.1371/journal.pone.0143487 PMID: 26642324

112. Glasby TM. Differences between subtidal epibiota on pier pilings and rocky reefs at marinas in Sydney,

Australia. Estuar Coast Shelf Sci. 1999; 48: 281–290.

113. Relini G, Relini M, Torchia G, Palandri G. Ten years of censuses of fish fauna on the Loano artificial

reef. ICES J Mar Sci. 2002; 59: S132–S137.

114. Ardizonne GD, Gravina MF, Belluscio A. Temporal development of epibenthic communities on artificial

reefs in the central Mediterranean Sea. Bull Mar Sci. 1989; 44 (2): 592–608

115. Collins KJ, Herbert RJH, Mallinson JJ. The Marine Fauna and Flora of Bembridge and St. Helens, Isle

of Wight. Proceedings of the Isle of Wight Natural History and Archaeological Society. 1990; 9:41–85.

116. Arenas FF, Bishop JDD, Carlton JT, Dyrynda PJ, Farnham WF, Gonzalez DJ et al. Alien species and

other notable records from a rapid assessment survey of marinas on the south coast of England. J Mar

Biol Assoc U.K. 2006; 86: 1329–1337.

117. Thomas CJ, Cahoon LB. Stable isotope analyses differentiate between different trophic pathways sup-

porting rocky-reef fishes. Mar Ecol Prog Ser. 1993; 95: 19–19.

118. Cresson P., Ruitton S., Ourgaud M. and Harmelin-Vivien M., 2014. Contrasting perception of fish tro-

phic level from stomach content and stable isotope analyses: a Mediterranean artificial reef experi-

ence. J Exp. Mar. Biol. Ecol. 452: 54–62.

119. Reefball Foundation www.reefball.org.

Colonisation of Boscombe artificial surf reef

PLOS ONE | https://doi.org/10.1371/journal.pone.0184100 September 19, 2017 28 / 28

https://doi.org/10.1371/journal.pone.0143487
https://doi.org/10.1371/journal.pone.0143487
http://www.ncbi.nlm.nih.gov/pubmed/26642324
http://www.reefball.org
https://doi.org/10.1371/journal.pone.0184100

