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Salma Sana 

Invasion and evolutionary history of a generalist fish parasite 

 

Abstract 

The introduction of non-native species can lead to the introduction of non-native 

parasites to their introduced range which can pose significant risk to native biodiversity. 

The cyprinid fish species, Pseudorasbora parva, is a well-studied example of accidental 

introduction to a new range; it has been accidentally introduced from China to Europe. 

Pseudorasbora parva has been hypothesized to have also introduced the generalist fish 

pathogen Sphaerothecum destruens to Europe which has been identified as a potential 

threat to European fish biodiversity. Due to the management implications associated 

with the parasite’s status (native or non-native), this work aimed at determining the S. 

destruens origin and distribution across its native and non-native P. parva populations, 

whilst also developing eDNA detection methods in order to assess the efficacy of P. 

parva eradication as a viable control measure for S. destruens. Due to the unique 

taxonomical position of S. destruens in tree of life, its mitochondrial DNA evolutionary 

history was also investigated to better decipher its phylogenetic position. 

Sphaerothecum destruens presence was confirmed in 90 % of the P. parva sampled 

populations from China, with a maximum prevalence of 10 %. Furthermore, the 

phylogenetic and demographic analysis of both the host and the parasite support the 

hypothesis that S. destruens has been introduced to Europe through the accidental 

introduction of its reservoir host P. parva. The non-native status of S. destruens in 

Europe has important management implications for the parasite. Furthermore, S. 
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destruens was detected in 50 % of the P. parva samples from 7 populations in the UK 

and identified new potential hosts for S. destruens in the wild including chub Squalius 

cephalus, dace leuciscus, roach Rutilus rutilus and brown trout Salmo trutta. The 

environmental DNA method detected S. destruens in water samples from a P. parva 

eradicated site 2 years after its eradication which emphasizes that preventive measures 

against pathogen expansion should be implemented. The phylogenetic tree based on 

mitochondrial derived protein sequences revealed an interesting position for S. 

destruens as a sister group to Filasterea and Choanoflagellate and Metazoa group and it 

has the most derived mitochondrial genome among Choanozoa. 
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In the last two decades there has been an increasing trend toward aquaculture 

production and fish farming which often relies on the introduction of non-native species 

to new environments and geographic areas (Gozlan 2008, Gozlan et al. 2010b, Peeler et 

al. 2011). Non-native species, defined here as species that have been translocated 

outside their natural range irrespective of political borders (Riley 2005), are both 

intentionally and unintentionally introduced for trade, food and resource production, 

ornamental purposes or as bio-control (Gozlan et al. 2010b). Accidental introductions, 

also referred to as biological pollution (Elliott 2003), account for 8 % of non-native 

aquatic species incidences (Gozlan et al. 2010b).   

 

 

 

The introduction of non-native species can adversely impact native species populations, 

the environment and ecosystems through a number of different processes including 

increased predation, competitive exclusion, non-native species dominance and disease 

introduction (Peeler et al. 2011). Introduced species can influence the native species 

through increased predation, as in the case of the introduction of salmonids rainbow 

trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis in Sierra Nevada,USA, 

which resulted in significant declines of the yellow legged frog Rana mucosa 

populations due to increased predation of its tadpoles (Knapp and Matthews 2000). The 

eradication of the two trout species led to the rapid recovery of frog populations 

(Vredenburg 2004). Non-native species can also compete for resources i.e. food and 

space with native species. For example, the red squirrel Sciurus vulgaris has suffered 

population declines in the UK, Ireland and Italy due to competition for food and space 

resources with the introduced North American grey squirrels Sciurus caroliniensis. 

Lower body mass and fecundity was reported in  native S. vulgaris that cohabited with 

S. caroliniensis (Gurnell et al. 2004). 

 

 

 

In addition to competition and predation, non-native species can change their new 

ecosystems, as is the case of grass carp Ctenopharyngodon idella that reduces natural 

aquatic vegetation and common carp Cyprinus carpio that can lead to significant 

increases in water turbidity due to the rooting activity during foraging (Pimentel et al. 

2000). Non-native species can also have severe impacts on the ecosystem by altering the 

community structure, for example, the introduction of the bivalves Potamocorbula 

amurensis and Dreissena polymorpha in North America (Kimmerer et al. 1994, Strayer 
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and Smith 1996). In both cases, the invasive species became significantly dominant at 

the introduced sites, outnumbering the native benthic organisms which can have indirect 

effects on food webs and nutrient dynamics (Ruiz et al. 1997). 

 

 

 

Non-native species can also introduce disease with their harboured parasites posing a 

significant risk to native biodiversity (Murray and Peeler 2005, Crowl et al. 2008, 

Poulin et al. 2011). These parasites can play an important role in invasiveness of the 

non-native species (Prenter et al. 2004) as they can facilitate the non-native species 

establishment and competitiveness (Mordecai 2013). For example, the crayfish plague, 

Aphanomyces astaci, introduced to the UK along with the North American signal 

crayfish, Pacifastacus leniusculus, has had detrimental effects on the native crayfish 

Austropotamobius pallipes which has facilitated a rapid expansion of the non-native P. 

leniusculus (Dunn 2009).  

 

 

 

The introduction of new parasites can lead to disease emergence, facilitated by the 

increase of the parasite’s geographic range and host switching (Peeler et al. 2011). Non-

native parasites can have several biological features which increase their probability of 

successfully being translocated and becoming established into new environments. These 

can include direct life-cycles, generalist nature (i.e. they can infect more than one 

species), tolerant and long-lived environmental infectious propagules and a wide 

temperature tolerance (Andreou et al. 2009, Fisher et al. 2012). Their generalist nature 

facilitates host-switching that can lead to disease emergence in native species. Notable 

examples include the fungi Batrachochytrium dendrobatidis (chytrid fungus) which has 

been introduced across the world through the pet trade can infect 508 host species 

(Fisher et al. 2012). Another fungi Geomyces destructans, the causative agent for the 

White-Nose Syndrome (WNS), has been introduced to North America most probably 

through contaminated caver clothing and has been linked to population declines in 

multiple species of bats in North America (Blehert et al. 2009, Turner et al. 2011). 

Geomyces destructans has also been found colonizing the skin of hibernating bats in 

Europe without any associated deaths (Wibbelt et al. 2010) which suggests that the 

parasite may be native to Europe (Puechmaille et al. 2011). 
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Invasive parasites can also include parasites with indirect life-cycles. For example, the 

parasitic nematode Anguillicola crassus is native to the Japanese eel Anguilla japonica 

and was introduced to Europe through the aquaculture trade (Peters and Hartmann 

1986). Since its introduction it has infected the European eel Anguilla anguilla, 

resulting in high mortalities (Kennedy 2007) to the extent that numerous stocks are 

considered vulnerable or endangered (Costa‐Dias et al. 2010).  

 

 

 

Despite their life-history traits, aquatic non-native parasites are often hard to detect due 

to low visibility and a high turnover of mortalities in this environment (Hudson et al. 

2002, Tompkins et al. 2011, Gozlan 2012). In addition, pathogen introductions through 

fish movements are the driving force for the emergence of aquatic diseases worldwide 

and will continue to have serious consequences for wild fish populations (Perkins et al. 

2008, Peeler et al. 2011). It is thus crucial to have designated monitoring and risk 

assessment procedures that can be used to evaluate the hazard posed by identified non-

native parasites. 

 

 

 

In England and Wales, all identified non-native fish parasites have their risk 

independently assessed by a panel of experts using the risk assessment developed by 

Williams et al. (2013).  Risk is assessed using a range of criteria which combine expert 

opinion on the potential for spread and economic impact of the parasite as well as direct 

evidence of disease pathology in the fish hosts. Parasites that have been identified as 

high risk, as well as ones that have been identified as non-native but have not had their 

risk assessed due to knowledge gaps, are listed on the Environment Agency’s Category 

2 non-native parasite list. Once a parasite has been listed, its movement between water 

bodies is restricted. Monitoring for its presence is achieved through mandatory fish 

health checks of any legally performed fish movements between water bodies. These 

risk assessments determine the disease threats to native populations from the new 

introduced parasites and help in the formulation of rapid management decisions in terms 

of their control.  
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In order to carry out the risk assessments for a particular parasite, it is important to 

determine the invasive status of the parasite which can be challenging due to incomplete 

data on parasite ranges. This is particularly relevant to parasites that are hosted by fish 

of poor economic value that do not have well established parasite profiles in their native 

ranges (Williams et al. 2013). Such is the case of Sphaerothecum destruens, a generalist 

pathogen that has been identified as a high risk to European fish diversity (Andreou and 

Gozlan 2016) and the focus of this PhD thesis. Sphaerothecum destruens has been 

hypothesized to have been introduced to Europe along with its reservoir host, the 

freshwater fish Pseudorasbora parva from China (Gozlan et al. 2005). However, its 

status as a non-native parasite to Europe has yet to be confirmed (Gozlan et al. 2009).  

 

 

 

Pseudorasbora parva represents a well-studied example of accidental introduction to a 

new range. It was introduced at River Danube as a part of trade in Chinese carp, 

Ctenopharyngodon idella and Hypophthalmichthys molitrix, for the development of 

aquaculture in the former Union of Soviet Socialist Republics (USSR) (Van Zon 1977). 

This small fresh water cyprinid fish species has spread through Europe and has reached 

North Africa in less than 50 years (Figure 1.1; Gozlan et al. 2010a). Gozlan et al. (2005) 

discovered that P. parva found in the UK harboured the fungal-like parasite S. destruens 

and could transmit the disease to susceptible fishes without any harm to itself - 

identifying it as a healthy host of S. destruens (Gozlan et al. 2005). Despite the parasite 

being identified as a potential threat, its status in Europe still remains uncertain, i.e. is it 

a native or a non-native parasite.  

 

 

 

1.1 The Healthy Host, Pseudorasbora parva 

In order to determine the potential invasion history of S. destruens in Europe, a good 

understanding of invasion history of its host (P. parva) is required due to the close 

association of the two species. Pseudorasbora parva commonly known as topmouth 

gudgeon, is a small freshwater cyprinid whose native range includes China, Japan and 

Korea (Pinder et al. 2005). In China, P. parva is present to the north and south of the 

River Yangtze (Figure 1.2 A) which marks the boundary of two climatic zones; to its 

north there is a temperate climatic zone whereas to its south there is a tropical climatic 

zone (Domrös and Gongbing 1988). This reflects the wide temperature tolerance of P. 
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parva (Gozlan et al. 2010a). In its native Chinese range, P. parva was accidentally 

transferred, into almost all natural lakes, reservoirs and lower Upper Mekong basin 

(Yunnan province); into the Upper reach of Yellow basin river (Qinghai and Gansu 

province); into inland waters (Inner Mongolia); almost all natural lakes, rivers and 

reservoirs (Xinjiang), along with the movements of Chinese carps from the east of 

China for aquaculture (Gozlan et al. 2010a).  

 

Figure 1.1. Topmouth gudgeon, Pseudorasbora parva, is a small cyprinid species which 

grows to ~8 cm with a life span of approximately four years (Britton et al. 2007). It 

sexually matures by one year of age and can have multiple spawning events annually, 

between the months of April and July (Pinder and Gozlan 2003). 

 

 

 

Pseudorasbora parva was first introduced unintentionally to mainland Europe at River 

Danube in 1960 and within 40 years of its introduction it rapidly inhabited mainland 

Europe from east to west (Pinder et al. 2005). Several known P. parva introductions 

occurred into Hungary, Lithuania, Romania and Ukraine (Gozlan et al. 2010a). Except 

for Lithuania, all these introductions led do the dispersal of P. parva into local 

catchments and connected reservoirs. The P. parva introductions around the Black sea 

led to a westward spread in Europe and to Turkey and Iran. Pseudorasbora parva’s 

introduction into the former Czechoslovakia from Hungary led to the inter-country 

spread of P. parva in central Europe (Gozlan et al. 2010a). Pseudorasbora parva was 

introduced to Germany from Czechoslovakia and from there to Holland, Belgium and 

the UK (Gozlan et al. 2002). Since its first introduction, P. parva has invaded, on 

average, five countries every decade. Its rapid dispersal rate has already indicated signs 

of saturation in the former Czechoslovakia and the Netherlands. The main factors 

attributed to its primary introduction pathways are aquaculture due to P. parva’s 

association with Chinese carp species and common carp C. carpio (65 %), recreation 

fishing (22 %), ornamental fish trade (9 %) and natural dispersal (1 %) that also 

accounts for the main secondary introduction pathway (Gozlan et al. 2010a).  
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The first occurrence of P. parva in England was observed in an ornamental pond in 

Chiltrens, UK (Domaniewski and Wheeler 1996). The only known introduction of this 

species in England has been a contaminated golden orfe Leuciscus idus consignment 

form Germany to Crampmoor fisheries, Hampshire in 1980 (Gozlan et al. 2002). Since 

its introduction into the UK it has been reported from at least 35 sites across England 

and Wales with 23 confirmed sites and 12 suspected sites Figure 1.3A (Britton et al. 

2008b, GBNNSS 2015).  

 

 

 

Pseudorasbora parva’s invasion history has been extensively studied from an 

ecological view in Gozlan et al. (2010a) and a population genetics perspective (Simon et 

al. 2011, Simon et al. 2015, Hardouin et al. submitted). Hardouin et al. performed the 

most extensive population genetics study which involved 27 populations from the 

invasive range (Eurasia) and 30 populations from the species native range (China, Japan 

and Taiwan). Specifically, the analysis using 597 bp of the Cytochrome-b (Cyt-b) gene 

of P. parva has identified four distinct haplogroups (A, B, C and D) with hapolgroups A 

and B being the most prevalent (92 %). These haplogroups can be found across China 

with haplogroup A being most prevalent north of the River Yangtze whilst haplogroup 

B is most prevalent south of the River Yangtze (Figure 1.2). The genetic analysis of P. 

parva’s European invasive range revealed that the two main haplogroups A and B with 

two identified routes of P. parva spread, east to south (Bulgaria, Armenia and Turkey) 

which had only haplogroup B and east to west (from Hungary to the UK) having P. 

parva with a mixture of A and B haplogroups (Figure 1.3 B, Hardouin et al. submitted). 

This result suggests that there was more than one independent accidental introduction of 

P. parva in Europe. 
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Figure 1.2. Phylogenetic analysis of cytochrome-b gene (597 bp) of Pseudorasbora 

parva from its native (A) and invasive (B) range across Eurasia. The prevalent P. parva 

haplogroups at each site are indicated by colour code. Haplogroup A (pink), 

Haplogroup B (blue), Haplogroup C (yellow) and Haplogroup D (green) (Hardouin et 

al. submitted). 

 

 

 

The highly invasive nature of P. parva has been attributed to its favourable life history 

traits of nest guarding, batch spawning, early maturity onset and small size (Gozlan et 

al. 2002). It is also an opportunistic feeder and often feeds on eggs and larvae of native 

fish species such as zander Sander lucioperca, pike Esox lucius and perch Perca 
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fluviatilis (Pinder and Gozlan 2003). In 1992 it was recognized as an international pest 

species (Welcomme 1992). Its discovery as a healthy carrier of S. destruens raised its 

potential threat to native fish biodiversity (Gozlan et al. 2005). 

 

 

 

The sites colonized by P. parva in the UK included lakes, enclosed still waters, 

aquaculture facilities and still water fisheries with a number of these having direct 

connections to rivers. Some of these water bodies pose the risk of rapid fluvial dispersal 

of P. parva to river catchments of high conservation value (Pinder et al. 2005). The 

combined ecological and disease spread risks have resulted to the Environment Agency 

designing an eradication plan to prevent the further spread of P. parva in the UK. 

 

 

 

1.2  Pseudorasbora parva eradication in the UK 

The significant impact on ecosystem function and biodiversity due to the introduction of 

invasive alien species is now well established and accepted by conservation agencies 

and a large number of studies are being carried out in this area (Hulme 2006). 

Resultantly, there is increasing pressure on government bodies, policy makers and 

environmental agencies to address these issues (Hulme 2006). 

 

 

 

The eradication and removal programme of P. parva from the UK water bodies with 

imminent threat of downstream dispersal of P. parva into river networks, was initiated 

in 2005 (Britton and Brazier 2006). Three types of strategies were used in dealing with 

the control and removal of P. parva depending on the risk posed to nearby river and 

lakes. The first strategy of “do-nothing” was applied to sites with low risk of further 

dispersal of P. parva and low fishery and conservation value. The second approach of 

control and suppression involved medium-risk sites and has proven to be 99 % 

successful in reducing P. parva abundance. The third method involved the eradication 

of P. parva from the water bodies assessed as “high risk”. Eradication involved the 

complete removal of P. parva population from the waterbodies by treating it with the  

piscicide rotenone (Britton et al. 2008a).  
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Six P. parva infested lakes were categorized as high risk in England and Wales (Britton 

et al. 2010). Eradication of  P. parva included rotenone application at the sites from 

Cumbria, north Yorkshire, Surrey, Devon and Berkshire and drain-down and 

disinfection which involved the de-watering of the lake, followed by the fish removal 

and destroy, and drying of the lake bed prior to application of disinfectant quick lime at 

the West Midlands site (Britton et al. 2008a, Britton et al. 2010). The technique has 

proven to be successful, as no P. parva have been recorded after the operation (2010). 

As of July 2014, 15 confirmed P. parva sites have been successfully eradicated (Figure 

1.3 B), with the aim to complete removal and eradication of P. parva from England by 

2017 (GBNNSS 2015). Although, the presence and spread of S. destruens has been a 

concern, none of the sites which have been eradicated prior to 2012 had the P. parva 

checked for the presence of S. destruens.  

 

Figure 1.3. Eradication and removal program of Pseudorasbora parva from the UK. (A) 

Pseudorasbora parva infested water sites in the UK in 2004 and (B) Remaining P. 

parva infested sites in 2014 since the initiation of eradication program in 2005. The red 

circles are confirmed and yellow circles were suspected sites for P. parva presence 

(which were found to be negative) (GBNNSS 2015).  
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1.3 The Rosette Agent, Sphaerothecum destruens 

Sphaerothecum destruens previously known as the rosette agent, is an animal fungal-

like obligate intracellular fish parasite, with asexual reproduction (Arkush et al. 2003). 

Sphaerothecum destruens was first discovered as a cause of disease in Chinook salmon 

Oncorhynchus tshawytscha in Washington, USA, where it resulted in over 80 % 

mortality in 3-year-old fish (Harrell et al. 1986). S. destruens was later reported to cause 

chronic mortality in sub-adult Atlantic salmon Salmo salar in a Northern California 

farm (Hedrick et al. 1989). The third reported occurrence for the parasite in the USA 

was in winter-run Chinook salmon O. tshawytscha held at Bodega marine laboratory, 

where 40.1 % fish were found heavily parasitized with S. destruens (Arkush et al. 

1998). 

 

 

Figure 1.4. Atlantic salmon Salmo salar infected with Sphaerothecum destruens 

through intraperitoneal injection. The parasite results in white nodules on the surface of 

the liver (arrow) and haemorrhaging in the pyloric caecae (Paley et al. 2012) 

 

 

 

Sphaerothecum destruens was first recorded in the UK in 2005 following cohabitation 

studies of P. parva and Leucaspius delineatus, during which the later was found to 

emaciate, cease reproduction and shoaling, and cause 67 % mortality (Figure 1.5; 

Gozlan et al. 2005). Histological examination of the emaciated L. delineatus revealed a 

parasite similar to S. destruens and was named the rosette-like agent. A wide range of 

susceptible salmonid and cyprinid fish hosts have been identified for S. destruens 

through experimental infections: chinook salmon Oncorhynchus tshawytscha, coho 
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salmon Oncorhynchus kisutch, rainbow trout Oncorhynchus mykiss, brown trout Salmo 

trutta, and brook trout Salvelinus fontinalis (Arkush et al. 1998), bream Abramis brama, 

carp C. carpio and roach Rutilus rutilus (Andreou et al. 2012). 

 

 

Figure 1.5. Healthy (top) and emaciated (bottom) Leucaspius delineates following 

cohabitation with Pseudorasbora parva. Sphaerothecum destruens was detected in 67 

% of the emaciated fish (Gozlan et al. 2005). 

 

 

 

Phylogenetic studies using the 18S rRNA gene and the ribosomal internal transcribed 

spacer (ITS 1) gene identified the rosette like agent as S. destruens (Gozlan et al. 2009). 

Specifically, using the ITS 1 and 2, the UK and US isolates were identified as 

geographically isolated Figure 1.6 (Gozlan et al. 2009). Due to absence of S. destruens 

samples from P. parva’s native range the source of S. destruens in the UK has yet to be 

confirmed and the isolate has been designated as S. destruens (UK).  

 

Figure 1.6. Phylogenetic tree showing geographically distinct clades of Sphaerothecum 

destruens in Europe and North America (USA) based on ribosomal ITS 1 gene (Ercan 

et al. 2015). RA1-3, RA3-1 – RA3-3 isolates are from US, RA4-1– RA4-3 isolates are 

from the UK and RA-T isolate is from Turkey. 
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Sphaerothecum destruens has also been reported from the Netherlands, where it was 

found with a prevalence of 74 % in P. parva populations without any clinical signs in 

the host (Spikmans et al. 2013), and later in Turkey and France (Charrier et al. 2016),  

where it has been found associated with P. parva and infect endemic freshwater fishes 

in Turkey (Figure 1.6; Ercan et al. 2015). Figure 1.7 summarises the known range of S. 

destruens. The S. destruens isolate from Turkey was determined to be closely related to 

the UK isolate but was not identical (see Figure 1.6; Ercan et al. 2015). Therefore, if S. 

destruens has been introduced to Europe with P. parva, more than one isolate has been 

introduced. 
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Figure 1.7. Sphaerothecum destruens prevalence across the Globe. S. destruens was detected in Oncorhynchus tshawytscha from Washington State 

(Harrell et al. 1986) and in Salmo Salar and Oncorhynchus tshawytscha from California (Hedrick et al. 1989, Arkush et al. 1998), in Leucaspius 

delineatus in the UK (Gozlan et al. 2005), in Pseudorasbora parva from the Netherlands and France and in Centrarchids from Turkey (Spikmans et al. 

2013, Ercan et al. 2015, Charrier et al. 2016) (Abbreviations: US-United states of America, UK-United Kingdom, NL-the Netherlands, FR-France and 

T-Turkey). 

FR 
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1.4 Life history traits of Sphaerothecum destruens  

The life cycle of S. destruens consists of two distinct morphological types of spherical 

intracytoplasmic spore stages that are 2-4 µm and 4-6 µm in diameter Figure 1.8 

(Arkush et al. 2003). Spores replicate asexually through fission and can infect epithelial, 

mesenchymal and hematopoietic cells, eventually causing cell death. Once the spores 

are released they can infect further tissues or be excreted through bodily fluids e.g. bile, 

urine, gut epithelium, and seminal and ovarian fluids (Arkush et al. 2003). Further fish 

infection can occur through either ingestion or gut penetration or through skin and gills 

attachment (Arkush et al. 2003). Incubation in freshwater triggers the release of a 

minimum of 5 motile uniflagellate zoospores per S. destruens spore (Figure 1.8). 

Zoospores have an average body diameter and flagellum length of 2 µm and 10 µm 

respectively (Arkush et al. 2003) and have been shown to have a wide temperature 

tolerance 4 to 30 °C (Andreou et al. 2009). The cell wall of S. destruens is made up of 

three defined layers; an external layer of membranous structure, a central electron dense 

layer and an internal electrolucent layer. The cell cytoplasm consists of peripherally 

oriented mitochondria and both membrane-bound and non-membrane-bound vacuoles 

and a relatively indistinct nucleus (Figure 1.9; Harrell et al. 1986). 

 

 

Figure 1.8. Proposed life cycle of Sphaerothecum destruens adapted from Arkush et al. 

(2003). (A) S. destruens spores infect host cells and divide asexually; (B) spores 

released through cell disruption (C) spores can propagate to zoospores following 

incubation in distilled water (D) released spores can infect new host fish through 

ingestion or gill attachment. Infection through zoospores is proposed but has not been 

demonstrated. (E) the infected host can release spores through bodily fluids. 
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Figure 1.9. Transmission electron microscopy section of sunbleak Leucaspius 

delineatus renal tissue infected with Sphaerothecum destruens. The cell wall of S. 

destruens is comprised of three layers (indicated by arrows) (1) an outer layer with 

membranous structure; (2) a middle electron dense layer and (3) an inner electrolucent 

layer. Scale bar: 0.5 μm (Photo courtesy of Dr. Stephen W. Feist). 

 

 

 

Pathological studies of S. destruens infection in salmonids, O. tshawytscha and S. salar, 

have been carried out by Arkush et al. (1998) and Hedrick et al. (1989), and in the 

cyprinid  L. delineatus by Andreou et al. (2011). Two types of microscopic lesions were 

observed in the parasitized fish, nodular and disseminated (Arkush et al. 1998). In the 

nodular form of the disease the lesions exhibit a stronger host cell response evident 

from the granuloma formation in visceral organs such as kidney, liver and spleen. The 

granulomas contained numerous single parasites or multiple rosettes, replaced the 

normal parenchyma of the testis and the liver and were characterized by cellular debris, 

inflammation and numerous macrophages (Andreou et al. 2011). In the disseminated 

form of disease, the parasite was widely dispersed in host with occurrence in variety of 

cell types: hematopoietic, epithelial and mesenchymal cells and a reduced host cell 

response (Arkush et al. 1998). The two distinct morphotypes of S. destruens, 2-4 µm 

and 4-6 µm in diameter, were found in both types of disease (Arkush et al. 1998). Both 

types of lesions were reported for L. delineatus infection, where only the smaller spore 

morphotype (2 to 4 µm) was observed and S. destruens spores were also present within 

giant cells (Andreou et al. 2011). The ultrastructural characteristics of S. destruens in L. 

delineatus were found similar to those reported in salmonid infections (Arkush et al. 

1998, Andreou et al. 2011). 

 

3 

1 

2 
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The S. destruens spores stained with haematoxylin and eosin (H & E) appear deeply 

eosinophilic (Figure 1.10), where primary dye hemalum stains the chromatin material 

(nuclei) blue and a counter stain eosin dyes the eosinophilic bodies, including cytoplasm 

and extracellular proteins, in various shades of red, pink and orange. The S. destruens is 

Gram-positive and retains the primary crystal-violet stain due to the presence of a thick 

peptidoglycan layer in its cell wall, which appears purple coloured when observed under 

microscope (Figure 1.11; Arkush et al. 2003, Andreou et al. 2011, Paley et al. 2012).  

 

 

 

 

Figure 1.10. Granuloma in the testis of Leucaspius delineatus. The granuloma is 

surrounded by a thin fibroblast layer (white arrow) and numerous rosette agent spores 

are found within (Black arrows). H & E stain, Bar = 50 µm 

 

 

 

 

Figure 1.11. Liver lesion in Salmo salar showing granular Gram positive staining of 

cellular constituents of Sphaerothecum destruens cells. Gram stain, Bar = 50 µm 
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1.5 Classification history of Sphaerothecum destruens 

The rosette agent was classified as Sphaerothecum destruens based on its two 

distinguishing features from its closely related genera Dermocystidium and 

Rhinosporidium: (i) host granulomatous response induced by parasitic spore stages; (ii) 

and differentiation of mature spores into multiple flagellated zoospores (Arkush et al. 

2003). The genera Dermocystidium and Rhinosporidium belong to the 

Rhinosporideacae family within the Mesomycetozoa class which is found at the animal-

fungal boundary (Mendoza et al. 2001). With the advancements in the taxonomical 

information based on ultrastructural and molecular phylogenetic studies, species 

classification in the Rhinosporideacae family has undergone many changes. 

Phylogenetic analyses based on small-subunit rRNA gene sequences, identified a group 

of eukaryotic protists that sits at the basal branch of the Metazoa, named as DRIPs 

clade. The clade was comprised of the Dermocystidium spp, the Rosette Agent, 

Ichthyophonus hoferi and Psorospermium haeckelli (Ragan et al. 1996). With the 

addition of Rhinosporidium seeberi, a human and animal pathogen, the acronym DRIP 

was replaced with the Class Mesomycetozoa to reflect their position within the Eukarya 

(Herr et al. 1999). The class Mesomycetozoa consisted of two orders: Dermocystida and 

Icthyophonida (Cavalier-Smith et al. 1998). Within the Dermocystida, S. destruens, 

Dermocystidium spp. and R. seeberi were grouped in the Rhinosporideaceae family 

(Mendoza et al. 2001). Amphibiocystidium ranae, a frog pathogen was recently added to 

family Rhinosporideaceae (Pereira et al. 2005).  

 

 

 

Under the new proposed classification system for protists, published by the Society of 

Protozoologists, S. destruens stands in the super-group Opisthokonta (Mesomycetozoa: 

Ichthyosporea: Rhinosporideacae) (Adl et al. 2005). More recently, based on 

phylogenomic studies S. destruens was placed in a new clade termed as “teretosporea” 

comprised of Ichthyosporea and Corallochytrium limacisporum and the group was 

found to be the earliest Holozoan divergence followed by Filasterea and 

Choanoflagellatea (Figure 1.12; Torruella et al. 2015).  
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Figure 1.12. Phylogenetic relationships among Opisthokonts (Holozoa and 

Holomycota) based on phylogenomic data using flagellum and chitin synthases 

characters, adapted from Torruella et al. (2015). 

 

 

 

1.6 Current Sphaerothecum destruens detection techniques 

Current detection methods for the parasite S. destruens in its host are performed through 

microscopic examination of the histologic sections of visceral organs (Arkush et al. 

1998) and molecular detection through the amplification of the 18S rRNA gene 

(Mendonca and Arkush 2004). The histological examination of sections can give 

insights into the host pathology and the potential impact of the parasite in the host. 

However, it has a low sensitivity of detection in particular for hosts where the 

disseminated form of the disease is most prevalent. This applied to many parasites and 

as a result detection of the parasite DNA through the use of the Polymerase Chain 

Reaction (PCR) amplification is often used (Tsui et al. 2011). 
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Thus, the designed PCR-based detection is a more powerful diagnostic tool for S. 

destruens detection, especially in sub clinically infected fish such as its reservoir host P. 

parva (Mendonca and Arkush 2004). The molecular detection uses a nested PCR which 

amplifies a 434 bp fragment of the S. destruens 18S rRNA gene, with a reported 

detection limit of 1 pg for purified S. destruens genomic DNA. The method was also 

found to be specific as S. destruens specific primers did not result in amplification for 

the related salmonid parasites Ichthyophonus hoferi and Dermocystidium salmonis of 

the Class Mesomycetozoa, in single-round and nested PCR assays (Mendonca and 

Arkush 2004). However, the PCR detection sensitivity is also affected by the DNA 

extraction efficiency. The S. destruens spores have thick cell wall which is resistant to 

many DNA extraction methods (Mendonca and Arkush 2004), potentially limiting the 

detection of the parasite in lowly infected hosts and increasing the probability of false 

negatives i.e. individuals are falsely identified as not carrier of the parasite. This is 

particularly relevant when using molecular methods for screening P. parva populations 

for the presence of S. destruens. Detection sensitivity in fish tissues could be improved 

by amplifying mitochondrial DNA regions due to the presence of multiple mitochondria 

in the cell compared to a single nucleus (Avise 2000). Furthermore, the rate of 

nucleotide substitution is higher in mitochondrial genes compared to nuclear genes, 

making it a potentially important phylogenetic marker (Brown et al. 1979, Avise 2000). 

In addition, epidemiological studies of the parasite would benefit from an 

environmental DNA detection method which can be used to non-invasively screen 

water bodies identified as ‘at risk’ from the parasite. 

 

 

 

1.7 Environmental DNA as a detection tool  

Environmental DNA (eDNA) is a new emerging technique that involves the study of 

DNA from environmental samples e.g. soil, water and sediments. The DNA source in 

these bodies can be through the release of faeces, saliva, urine, skin cells, and body 

secretions of inhabiting species (Rees et al. 2014). The eDNA technique involves the 

collection of environmental samples (e.g. water or soil), DNA extraction and PCR 

amplification of DNA of the target organism through specific primers. Application of 

eDNA is important in the detection of multiple or single species at a particular location. 

eDNA detection has gained much popularity in the fields of ecology and conservation 

biology (Ficetola et al. 2008), as biodiversity studies, ecological management, and 
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conservation programs all require an efficient detection method for rare, invasive or 

endangered species (Ficetola et al. 2008, Jerde et al. 2011). In addition, eDNA based 

detection are less time consuming and in some cases more sensitive compared to the 

traditional survey methods (Beja‐Pereira et al. 2009). The technique has been 

successfully employed across a variety of habitats from terrestrial and aquatic 

sediments, including ice, soil, fresh water and sea water, with different approaches of 

sample collection methods and volumes, preservation methods and DNA extraction 

methods reviewed in Rees et al. (2014), Thomsen and Willerslev (2015). 

 

 

 

The use of eDNA from water bodies for species detection was first employed to detect 

the American Bullfrog Rana catesbeiana (Ficetola et al. 2008). This is a highly invasive 

species which has spread around the globe (Blaustein and Kiesecker 2002, Kats and 

Ferrer 2003). The technique was efficient in detecting the species at selected positive 

sites from previous surveys (Ficetola et al. 2007a, 2007b) even at very low densities 

(Ficetola et al. 2008). eDNA has since been used to detect a vast range of aquatic 

species including amphibians (Goldberg et al. 2011, Dejean et al. 2012, Pilliod et al. 

2013, 2014), fishes (Dejean et al. 2011, Jerde et al. 2011, Minamoto et al. 2012, Jerde et 

al. 2013, Mahon et al. 2013), arthropods (Thomsen et al. 2012) and gastropods 

(Goldberg et al. 2013). 

 

 

 

eDNA can be a useful tool for detecting and quantifying parasites and their hosts in 

water samples. One of the emerging fungal diseases of amphibians is Chytridiomycosis. 

The causative agent of the disease is Batrachochytrium dendrobatidis, whose infectious 

zoospores affect the epidermis of adult amphibians and mouth parts of anuran larvae 

(Garner et al. 2005). Earlier surveillance strategies of amphibians involved the detection 

of zoosporangia in the host amphibians through microscopic or molecular techniques 

(Berger et al. 1998, Garner et al. 2005). Later, the pathogen was discovered outside its 

host and persisted in the environment for weeks to months (Johnson and Speare 2005), 

raises the need of a parasite detection tool in environment. eDNA has been found as an 

effective tool in B. dendrobatidis detection in environmental samples from Spain. The 

detection of this intracellular parasite outside its host eliminates the need of killing live 

hosts for pathogen detection (Walker et al. 2007). Additional parasites for which eDNA 

detection has been applied include the aetiological agent of crayfish plague 
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Aphanomyces astaci which also releases zoospores in the water (Strand et al. 2014), a 

number of viruses such as Cyprinid Herpesviruses and Rhabdoviruses (Minamoto et al. 

2015) and a trematode Ribeiroia ondatrae (Huver et al. 2015). 

 

 

 

In freshwater ecosystems, short DNA fragments can be detectable up to one month of 

their release in the environment (Dejean et al. 2011). However, experimental studies 

show that DNA degradation increases at high temperatures, high UV-B and neutral pH 

(Strickler et al. 2015). This indicates that eDNA persistence can vary greatly based on 

the environmental conditions of the aquatic habitat (Strickler et al. 2015), increasing the 

probability of false negative results due to low quantities of DNA (Thomsen et al. 

2012). This can be overcome by increasing field samples and multiple PCRs per sample 

(Ficetola et al. 2008). A more reliable method employed is quantitative PCR (qPCR) 

which quantifies the species DNA in real time and a sample is considered positive even 

if one PCR replicate surpasses the fluorescence threshold (Takahara et al. 2013). Other 

factors that can influence the detection include the sample processing techniques and the 

amount of template DNA used. For example, freezing and thawing of the samples prior 

to filtration and larger volume of DNA template solution (5 µl) for the PCR tend to have 

lower detection rates compared to non-frozen samples and smaller starting DNA 

volumes (e.g. 2 µl) (Takahara et al. 2015). eDNA amplification can also be inhibited by 

humic substances co-extracted with eDNA which inhibit the functionality of Taq DNA 

polymerase enzyme (McKee et al. 2015). The post-treatment of the eDNA samples with 

10-fold dilution or spin-column purification are effective in reducing inhibitors effects 

but can also affect the assay sensitivity (McKee et al. 2015). The generation of both 

false negatives and positives can have consequences for the monitoring and 

conservation programmes (Thomsen and Willerslev 2015). Despite the potential 

limitations associated with eDNA detection, an eDNA method for S. destruens detection 

can help in the development of epidemiological maps for the parasite and a quick 

screening of fish consignments before their introduction to different water bodies.  

 

 

 

1.8 Mitochondrial DNA and its evolutionary trends 

Mitochondria are double membrane-bound organelles commonly known as powerhouse 

of the cells whose origin within the eukaryotic cells is an important and still debated 



37 

 

evolutionary event. The widely accepted hypothesis explaining the origin of 

mitochondria in cells is the “endosymbiosis theory” which suggest that approximately 2 

billion years ago mitochondria evolved only once from bacteria that were in an 

endosymbiotic relationship with their unicellular hosts (Gray et al. 1999, Dyall et al. 

2004). Extensive biochemical and phylogenetic studies have demonstrated that  

mitochondria did originate from a single alpha-proteobacterial ancestor (Gray et al. 

1999) from within the order Rickettsiales living inside the host cell (Wang and Wu 

2015). 

 

 

 

Mitochondrial DNA (mtDNA) in multicellular animals is usually described as a small, 

circular molecule with compactly arranged intron-less genes. However, studies carried 

out over the last decade have considerably changed this view. Variations to the standard 

mitochondrial genome (mt-genome) size and content were observed particularly in non-

bilaterian animals. These variations ranged from remarkable diversity in mt-genome 

architecture (single to multiple linear and circular chromosomes), presence of extra 

genes (atp9, polB and tatC), different number of encoded tRNAs (0-25), 

presence/absence of introns to a large range of genome sizes (Lavrov and Pett 2016).  

 

 

 

Mt-genome diversity was observed in samples from Choanoflagellate, Ichthyosporea 

and Filasterea. These close unicellular relatives of Metazoa termed as Choanozoa have 

large mt-genomes (50 kbp-200 kbp), are spacious with long intergenic regions (greater 

than 100 bp) or repeat sequences, and are gene-rich. Unique mt-genome architecture 

was found in these organisms which ranged from single linear-chromosome to multiple 

linear-chromosome and single circular-chromosome (Burger et al. 2003a, Lavrov and 

Lang 2014). These expansionary trends in mt-genomes of protists led to the hypothesis 

of mitochondrial evolution from a common Holozoan (Metazoa and their unicellular 

relatives) ancestor along three different routes (Burger et al. 2003a). First route includes 

(i) the Ichthyosporea lineage (which includes S. destruens). The only currently available 

mt-genome from the Ichthyosporea belongs to Amoebidium parasiticum whose mt-

genome underwent fragmentation and rampant expansion through the accumulation of 

repeat sequences (Burger et al. 2003a). The secondary route involves the expansion of 

mt-genome through the accumulation of long stretches of intergenic regions in 

Choanoflagellate lineage (Monosiga brevicollis). The third metazoan lineage underwent 
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extensive gene-loss coupled with genome contraction (Figure 1.13; Burger et al. 2003a). 

The compaction and gene-loss of the mt-genome was attributed to the two main events 

in animal evolution, the emergence of multicellularity and bilateral symmetry. 

However, there is no evidence if these changes in the mt-genome architecture co-

occurred with the morphological transitions in animals (Figure 1.13; Lavrov 2007). 
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Figure 1.13. Mitochondrial evolution in the Holozoa (Metazoa + Choanozoa). The above figure illustrates the events involved in mtDNA evolution. 

along three main evolutionary routes (Burger et al. 2003a) with respect to the two main transitional events in animal evolution i.e. the emergence of 

cellularity and bilateral symmetry- adapted from Lavrov (2007). Data for Filasterea obtained from Lavrov and Lang (2014). 
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There had been a general assumption that animals have compact mitochondrial genomes 

compared to unicellular protists and fungal mtDNA. This notion was challenged with 

the discovery of large mitochondrial genomes ranging from 32 kbp-43 kbp in the basal 

animal phylum Placozoa (Signorovitch et al. 2007). Based on this discovery, it was 

hypothesized that the ancestral animal mitochondrion was a large, non-compacted 

molecule. Due to the intermediate mt-genome sizes between animals and unicellular 

protists, it was proposed that the mt-genome compaction occurred secondarily after the 

emergence of metazoans. Based on phylogenetic analysis using mitochondrial derived 

amino acid sequences, the phylum Placozoa was determined as the earliest offshoot 

from the metazoan lineage. However, the recent multigene studies have assigned 

Porifera as the earliest Metazoan divergence followed by Placozoa and Cnidaria 

(Torruella et al. 2012, Torruella et al. 2015), which challenges the above hypothesis. 

The phylogenetic relationships in basal animals and their unicellular relatives are 

subject to changes depending on the extensive taxonomic sampling and the set of genes 

studied for the analysis (Ruiz-Trillo et al. 2008, Shalchian-Tabrizi et al. 2008, Torruella 

et al. 2015).  

 

 

 

Sphaerothecum destruens is a unicellular pathogen from Order Dermocystida (Class 

Mesomycetozoa) which sits at the animal-fungal boundary. To date, S. destruens’ 

phylogeny has not been determined based on its mtDNA. The presence of large mt-

genome (> 200 kbp) in A. parasiticum, which is comprised of several of hundreds of 

linear chromosomes (Class Ichthyosporea: Order Icthyophonida) raises the question if 

the same expansionary trends and peculiar mt-genome architecture is spread across the 

Class Ichthyosporea. Moreover, the sequenced mtDNA from Choanozoa is very limited 

with only four sequenced organisms to date. Ichthyosporea is considered as an earliest 

Holozoan divergence (Figure 1.12; Torruella et al. 2015) and mt-DNA genomic data 

from this group can provide valuable insights into the understanding of mitochondrial 

evolution.  

 

 

 

1.9 Aims and objectives 

The increasing occurrence of S. destruens in Europe following its initial record in 2005, 

in addition to its generalist nature, highlight the need to establish the origin of this 
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parasite to Europe (i.e. native or non-native) as this can have important implications for 

its monitoring and management. Thus, this PhD thesis aimed at: 

1. Developing new PCR detection methods with phylogenetically informative DNA 

markers to investigate the phylogenetic relationships of S. destruens from various 

geographic locations (Chapter 2). 

2. Investigating S. destruens’ potential non-native status through the detection of S. 

destruens in P. parva across its native and non-native range (Chapter 3). 

3. Creating a detailed epidemiological map for S. destruens presence in England and 

Wales (Chapter 4). 

4. Developing and applying an eDNA detection technique for S. destruens which can be 

used to assess its presence in freshwater samples as well as act as a prevention tool for 

S. destruens spread between waterbodies. 

5. Investigating S. destruens phylogeny based on its mitochondrial genome and 

analysing its mt-genome architecture. 

 

 

 

1.10 Overview of the chapters 

Chapter 2: Testing the specificity and sensitivity of two new DNA markers for the 

detection of Sphaerothecum destruens in fishes 

In this chapter, two new DNA markers (ribosomal ITS 1 and mt Cyt-b) for improved 

detection of S. destruens in its source host P. parva were tested for their specificity and 

sensitivity. These markers were then used in Chapters 3 and 4. 

Chapter 3: Global distribution of the Sphaerothecum destruens reveals its non-

native status for Europe. 

Chapter 3 investigated the global distribution of S. destruens by screening 21 P. parva 

populations across its native and non-native range in order to determine the parasite’s 

origin in Europe.  

Chapter 4: Epidemiology of Sphaerothecum destruens in Britain 

In this chapter, the first epidemiological map of S. destruens in Britain was created and 

the risk of disease transfer to native fish species was assessed through histopathology 

and molecular detection. 
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Chapter 5: Development and application of environmental DNA detection assay 

for Sphaerothecum destruens  

A fast and cost-effective eDNA detection method for S. destruens was developed and 

applied in this chapter and provided important insights in disease persistence in native 

freshwater communities.  

Chapter 6: Sphaerothecum destruens taxonomy and mitochondrial genome 

organisation 

The phylogenetic position of S. destruens was investigated using its mt-genome data 

with unique insights into the mtDNA genome evolution.  

Chapter 7: Discussion 

This chapter synthesises the main findings and makes recommendation for the 

management of S. destruens in Britain and other European countries. 
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Chapter 2  

Testing the specificity and sensitivity of two new DNA markers for the 

detection of Sphaerothecum destruens in fishes 
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2.1  Introduction 

The polymerase chain reaction (PCR) and other nucleic acid based assays are 

increasingly used for the detection of parasite infections, epidemiology and disease 

prevention (Weiss 1995, Mohammed et al. 2015). Their increasing use is due to the 

techniques being fast and more sensitive and specific compared to conventional 

diagnostic methods such as histology (Andree et al. 1998, Gonzalez et al. 2003). PCR 

can be particularly effective in detecting and classifying intracellular parasites 

(Mendonca and Arkush 2004). In most cases, it is difficult to physically remove 

intracellular parasites from host tissue, resulting in the parasite’s DNA being present in 

a ‘pool’ of host DNA, further diluting its concentration. When infection is low, such as 

in the case of a reservoir host, the parasite DNA concentration can be below the PCR’s 

detection limit, leading to false negatives (Taberlet et al. 1996).  

 

 

 

Prior to using PCR as a detection method, it is important to determine the assay’s 

detection sensitivity (or limit of detection- LoD) and specificity in order to both validate 

the assay and correctly interpret detection results (Burns and Valdivia 2008). Both the 

sensitivity and specificity of the PCR assay depends on a number of factors including 

target genes, primer sequences, type of PCR technique and DNA extraction procedures 

(Yamamoto 2002). PCR sensitivity can be determined through amplification of serial 

dilutions of parasite DNA in the presence and absence of host DNA, whereas PCR 

specificity can be determined by testing for cross amplification of closely related 

parasite species and host DNA.  

 

 

 

In addition to parasite detection, the generated sequences obtained through PCR can 

also be used in phylogenetic studies (Lyubetsky et al. 2014, Patwardhan et al. 2014). 

Phylogenetic studies often use genes such as the nuclear ribosomal genes (16S rRNA, 

18S rRNA and ribosomal ITS) and mitochondrial genes (COI, Cyt-b and control region) 

depending on the level of phylogenetic resolution required (Patwardhan et al. 2014). 

Mitochondrial DNA markers are often used in population level studies due to them 

being haploid, uniparentally inherited, can have regions that are highly variable and 

easily amplified (Hajibabaei et al. 2007, Dupuis et al. 2012).  
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The current detection methods for Sphaerothecum destruens in its hosts involve 

histology and DNA-based methods (PCR) (Mendonca and Arkush 2004). The 

developed 18S rRNA PCR assay can effectively detect low levels (1 pg) of S. destruens 

in its healthy host Pseudorasbora parva but cannot be used in population differentiation 

studies due to low genetic variability (Spikmans et al. 2013, Ercan et al. 2015). 

Phylogenetic studies have been carried out on S. destruens using the  Internal 

Transcribed Spacer (ITS 1) gene (Gozlan et al. 2009) which is a highly polymorphic, 

non-coding region that separates the 18S and 5.8S nuclear ribosomal RNA genes and is 

widely used for phylogenetic and population analysis in fungi (White et al. 1990, 

Schoch et al. 2012). The published ITS 1 assay for S. destruens involved amplification 

of the gene from a single individual of Leucaspius delineatus (a highly susceptible 

host), and its sensitivity and specificity was not determined (Gozlan et al. 2009). 

 

 

 

In order to address the objectives of Chapters 3 and 4 (Section 1.9), there was a need to 

develop detection assays for phylogenetically informative DNA markers that could 

detect S. destruens from its healthy host P. parva. Thus, the objectives for this chapter 

were to: 1) determine the sensitivity and specificity of the ITS 1 marker and redesign 

primers to improve these if necessary; 2) develop a detection assay for the 

mitochondrial DNA fragment spanning the Cytochrome b (Cyt-b) and intergenic region 

between Cyt-b and the cytochrome c oxidase (cox1) gene (hereafter referred to as Cyt-

b) and 3) compare the LoD of the newly developed ITS 1 and Cyt-b detection assay 

with the gold standard for S. destruens DNA detection, the amplification of 18S rRNA 

region (Mendonca and Arkush 2004). 

 

 

 

2.2 Materials and methods 

A 2-step PCR (or nested PCR) is often used to detect low quantities of DNA. In a 2-step 

PCR, the amplified product is subjected to a second round of PCR with a set of nested 

primers located internal to the first PCR’s primer set (Weiss 1995, Taberlet et al. 1996). 

Nested PCR can in some cases improve sensitivity by 1000 times compared to standard 

PCR (Yamamoto 2002). However, this can increase the risk of contamination and 

detection of false positives. It is thus necessary to use separate areas for PCR 
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preparations and amplified products, as well as adding appropriate positive and negative 

PCR controls (Kwok and Higuchi 1989). 

 

 

 

In response to this, all DNA extractions from host tissues were performed in a lab 

dedicated to DNA extraction. PCR assays were performed in a UV-irradiated PCR hood 

and amplified products were handled in an area set out exclusively for gel 

electrophoresis. Appropriate negative controls were used throughout and included:  

1) DNA extraction controls where the DNA extraction protocol was performed in the 

absence of host tissue (these were subjected to PCR amplification to detect any possible 

cross-contamination during DNA extraction);  

2) PCR negative controls, where water instead of DNA was amplified in order to 

determine cross-contamination during the PCR and;  

3) PCR positive controls where 10 ng of pure S. destruens DNA was amplified to 

ensure that the amplification was successful. 

 

 

 

2.2.1 18S ribosomal RNA (rRNA) 

The routine PCR used for S. destruens detection in its host is 18S rRNA (Mendonca and 

Arkush 2004). This already developed PCR was used as a reference PCR to compare 

the newly developed assays. In the 18S rRNA PCR, a 434 bp fragment is amplified 

using nested PCR. The sequence of the forward (Sd-1F) and reverse (Sd-1R) primers 

was 5’- CGA CTT TTC GGA AGG GAT GTA TT- 3’ and 5’-AGT CCC AAA CTC 

GAC GCA CAC T-3’, respectively. The first round of amplification yielded a 550 bp 

long amplicon. The second round assay amplified a 434 bp segment of the 18S rRNA 

gene; using the forward primer (Sd-2F): 5’-CCC TCG GTT TCT TGG TGA TTC ATA 

ATA ACT-3’ and reverse primer (Sd-2R): 5’-CTC GTC GGG GCA AAC ACC TC-3’. 

The reaction conditions for both PCRs were identical except for the starting template. In 

the first round PCR, the starting template DNA concentration was 300 ng; whereas in 

the second round 2 µl of the first PCR product was used. The reaction conditions were 

as follows; a reaction of 30 µl contained 1 X Promega Flexi buffer, 1.5 mM MgCl2, 0.2 

mM dNTPs (Bioline), 0.3 µM forward and reverse primer and 0.5 U Taq polymerase 

(Promega). The cycling conditions included an initial denaturation cycle at 95ºC for 5 
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minutes followed by 35 cycles of 45 seconds at 95 ºC, 45 seconds at 60 ºC and 45 

seconds at 72 ºC. A final elongation step at 72 ºC was performed for 7 minutes. 

 

 

 

2.2.2 Internal transcribed spacer 1 (ITS 1) reaction conditions 

The ITS 1 and ITS 2 markers for S. destruens developed by Gozlan et al. (2009) failed 

to amplify S. destruens ITS 1 and ITS 2 from P. parva due to strong cross-reaction with 

P. parva DNA. Thus, a new detection method was developed. The regions flanking the 

ribosomal internal transcribed spacer 1 (ITS 1) gene are 18S and 5.8S, which serve as 

good positions for primers. In order to develop primers specific to S. destruens, 18S and 

5.8S gene sequences were obtained from GenBank for the fishes Salmo trutta 

(DQ009482), O. mykiss (FJ710873.1), S. salar (AJ427629.1) and C. carpio 

(FJ710826.1). The sequences were manually aligned with 18S and 5.8S rRNA gene 

sequences of deposited S. destruens strains (FN996945.1, AY267345.1, AY267344.1, 

AY388645.1 and FJ440702.1) in BioEdit, and primers for single round and nested PCR 

were carefully designed to avoid similar/conserved regions between fish and S. 

destruens. The designed primers were then tested against whole genomic S. destruens 

and P. parva DNA in PCR tests. 

 

 

 

A list of primer combinations, PCR conditions and their output, that were tested in the 

development of this assay are presented in Table 2.1. The optimized primers for the 2-

step PCR employed for amplification of the ribosomal ITS 1 were the forward primer 

Sdes2F of ss rDNA, (5’-CTT CGG ATT GGC CCT GTA C-3’), coupled with universal 

reverse primer NC 2, (5’-TTA GTT TCT TTT CCT CCG CT-3) in first step-PCR. The 

second round of PCR produced a 700 bp amplicon using the same forward primer 

Sdes2F and a reverse primer SD-ITS R1, 5’- CGATGCACGAGCCAAGAG-3’. 

 

 

 

The reaction conditions were as follows: the reaction volume was 30 µl and 50 µl for 

first and second round of PCR respectively. The PCR reaction constituted of 1 X 

Promega Flexi buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.3 µM forward and reverse 

primer and 0.5 U Taq polymerase (Promega). The optimized cycling conditions were as 

follows; for the first round of PCR, an initial denaturation at 95 ºC for 3 minutes 
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followed by 35 cycles of 30 seconds at 95 ºC, 45 seconds at 60 ºC and 90 seconds at 62 

ºC. A final extension step at 62ºC for 7 minutes. For the second step PCR, an initial 

denaturation at 95 ºC for 5 min followed by 35 cycles of 30 seconds at 95 ºC, 45 

seconds at 59 ºC and 90 seconds at 62 ºC and a final extension step at 62 ºC for 7 

minutes. 

 

 

 

To confirm if the 700 bp amplicon which was present in S. destruens samples spiked 

with P. parva DNA is purely from S. destruens or a mixture of S. destruens and P. 

parva DNA; the 700 bp band was gel extracted and purified (Qiaquick Gel extraction 

kit, Qiagen). The purified bands from both 100 ng and 10 ng S. destruens DNA spiked 

with P. parva DNA were sent for sequencing (Beckman coulter genomics). The BLAST 

tool in the GenBank nucleotide database (NCBI) was used to confirm their identity. 

 

 

 

2.2.3 Cytochrome b (Cyt-b) 

Mitochondrial DNA is considered a suitable option when genetically exploring new 

species in the wild (Galtier et al. 2009). The sequence variation in S. destruens 

mitochondrial DNA is unknown, however, non-coding regions are highly likely to 

produce variable regions (Zuccarello et al. 1999). Accordingly, the Cyt-b-cox1 

intergenic region (IGR) was targeted when designing the mitochondrial DNA assay. A 

cytochrome b sequence was obtained for S. destruens by employing the universal 

primers cobF424 (5’-GGWTAYGTWYTWCCWTGRGGWCARAT) and cobR876 (5’-

GCRTAWGCRAAWARRAARTAYCAYTCWGG) (Burger et al. 2007). 

Sphaerothecum destruens-specific primers were then designed for single round and 

nested PCR. The primers were placed in positions that allowed the amplification of the 

Cyt-b gene fragment and Cyt-b-cox1 IGR. The primers employed for amplification of 

mt Cyt-b gene fragment (630 bp) plus IGR (~60 bp) were Nt-CytB-F1 (5-

ATGAGTTTATGGGGAGCG) coupled with Nt-CytB-R1 (5-

GCTCCAGCCAACACAGGTAAGGATAATAAC) in the first step-PCR. The second 

round PCR produced ~ 700 bp fragment; employing primer Nt-CytB-F2: (5-

GGAGGGTTTAGTGTGGATAATGC) coupled with Nt-CytB-R1: (5-

TCATCGTCAAATCCAACTCACC). 
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The reaction conditions included a reaction volume of 30 µl and 50 µl for first and 

second round of PCR respectively. The PCR reaction constituted of 1 X Promega Flexi 

buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.3 µM forward and reverse primer and 0.5 U 

Taq polymerase (Promega). The optimized cycling conditions were as follows; for first 

round of PCR, For first round of PCR, an initial denaturation at 95 ºC for 2 minutes, 35 

x [95 ºC for 40 seconds, 56 ºC for 40 seconds, 72 ºC for 60 seconds] and a final 

extension step at 72 ºC for 5 min, for the second step PCR, 95 ºC for 2 minutes, 35 

cycles [95 ºC for 40 seconds, 58 ºC for 40 seconds, 72 ºC for 60 seconds] and a final 

extension step at 72 ºC for 5 minutes. 

 

 

 

To confirm if the amplified product was the targeted Cyt-b region, the fragments were 

sent for sequencing (Beckman Coulter genomics). The obtained sequences were blasted 

against GenBank nucleotide database to confirm their identity. 

 

 

 

2.2.4 Determining specificity and sensitivity of the developed Sphaerothecum 

destruens-specific assays for ITS 1 and Cyt-b 

In the current study, improved methods with higher sensitivity and specificity were 

required for improved detection of S. destruens in its healthy host P. parva. The 

specificity of the developed markers was tested by running PCR tests with S. destruens 

DNA and pure host fish P. parva DNA. The assay sensitivity was determined by 

amplifying serial dilutions of pure genomic S. destruens DNA and pure genomic S. 

destruens DNA spiked with P. parva DNA. Specifically, to determine and compare the 

detection limits of S. destruens-specific nested PCR, genomic S. destruens DNA at 50 

ng/µl was serially diluted to 0.005 ng/µl for ITS 1 and 0.00005 ng/µl for Cyt-b marker 

in sterile UV-irradiated water. In the first PCR round, 2 µl of each dilution was used as 

starting template giving a range of 100 ng/µl to 0.01 ng/µl for ITS 1 and 100 ng/µl to 10 

fg/µl for Cyt-b, of pure S. destruens genomic DNA. All amplifications were performed 

in duplicate. Nested PCR was performed both in absence and presence of P. parva 

genomic DNA (300 ng) to detect the specificity of PCR for S. destruens DNA in fish 

tissue. 
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2.2.5 Cross reactivity with other susceptible host fish species 

In order to avoid false positive results (a false positive would mean that PCR yielded a 

positive result in the absence of parasite DNA (Whipps et al. 2006), the specificity of 

the Cyt-b primers was tested by carrying out the Cyt-b PCR using a number of S. 

destruens susceptible host fish species. The fish species tested for cross-amplification 

were carp C. carpio, roach Rutilus rutilus, minnow Pimephales promelas, common 

bream Abramis brama, chub Squalius cephalus and barbel Barbus barbus. PCR tests 

were carried out with pure fish DNA (300 ng). The cycling conditions were as described 

in section 2.2.3. 

 

 

 

2.2.6 Comparison of limit of detection in light of DNA extraction efficiency 

The efficiency of the DNA extraction technique can affect the sensitivity of the PCR 

diagnostic technique (Ghosh and Weiss 2009). The DNA extraction efficiency for S. 

destruens spores in the presence and absence of fish tissue (15 mg C. carpio kidney) 

was determined to be 500 spores and 50 spores respectively using the DNeasy Blood 

and Tissue kit (Qiagen) see Table 2.2 (Andreou 2010). The detection limits of S. 

destruens-specific 18S rRNA PCR were determined to be 10 pg and 1 pg in the 

presence and absence of C. carpio DNA respectively. Accordingly, in the absence of 

fish tissue, 50 S. destruens spores were considered equivalent to 1 pg of genomic DNA 

and likewise in the presence of fish tissue, 500 spores were considered equivalent to 10 

pg of genomic DNA.  
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Table 2.1. List of primers, polymerase chain reaction (PCR) conditions and their output employed in the development of Internal Transcribed Spacer 1 

marker 

Aim Primer combinations PCR conditions Results  

Testing 

conditions 

published in 

Gozlan et al. 

(2009) 

Sdes2F: (5-CTT CGG ATT GGC 

CCT GTA C) 

NC 13R: (5-GCT GCG TTC TTC ATC 

GAT) 

95 ºC -3 min 35x (95 ºC for 30 s, 56 ºC for 45 s, 62 

ºC for 90 s) 62 ºC for 7 min 

No amplification. 

Optimized annealing 

temperature. At 52 ºC 

annealing temperature, 

multiple bands were 

obtained. 

The sequence reads 

indicated mixed 

amplification possibly 

due to cross reaction 

with fish DNA.  

Development of 

nested PCR 

Nested PCR 1-2 Sdes2F /NC13R 

Nested PCR 2-2 Sdes2F/SD-ITS-R1  

SD-ITS-R1:  

(5-CGA TGC ACG AGC CAA GAG-3) 

 

95 ºC -3 min 35x (95 ºC for 30 s, 52 ºC for 45 s, 62 

ºC for 90 s) 62 ºC for 7 min 

95 ºC -3 min 35x (95 ºC for 30 s, 59 ºC for 45 s, 62 

ºC for 90 s) 62 ºC for 7 min 

Amplified S. destruens 

DNA in 

Oxynoemacheilus sp. 

(Ercan et al. 2015) but 

did not produce 

amplification for S. 

destruens in P. parva 

Nested PCR 1-2: SD-ITS-4F/SD-ITS-4R 

 

Nested PCR 2-2: SD-ITS-5F/SD-ITS-RA 

 

95 ºC -5 min 35x (95 ºC for 45 s, 57 ºC for 45 s, 62 

ºC for 45 s) 62 ºC for 7 min 

95 ºC -3 min 35x (95 ºC for 45 s, 56 ºC for 45 s, 62 

ºC for 90 s) 62 ºC for 7 min 

Amplification produced 

but sequencing showed 

mixed read (indicating 

probability of fish DNA 

amplification). 
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Specificity to 

parasite DNA 

Nested PCR 1-2: Sdes2F/ SD-ITS-R1 

Nested PCR 2-2: SD-ITS-5F/ SD-ITS-R1 

SD-ITS-5F:  

(5-AGTGAGGCTGCCGAAAAGTT) 

95 ºC -5 min 35x (95 ºC for 45 s, 59 ºC for 45 s, 62 

ºC for 45 s) 62 ºC for 7 min 

95 ºC -3 min 35x (95 ºC for 45 s, 52 ºC, 54 ºC, 56 ºC, 

58 ºC for 45 s, 62 ºC for 90 s) 62 ºC for 7 min 

Amplification was 

observed for both pure 

P. parva and S. 

destruens DNA at all 

gradient temperatures. 

 Nested PCR 1-2: Sdes2F/ SD-ITS-R1 

Nested PCR 2-2: SD-ITS-4F/ SD-ITS-R1 

SD-ITS-4F: (5-

GATTGGCCCTGTACCGCTG) 

95 ºC -5 min 35x (95 ºC for 45 s, 59 ºC for 45 s, 62 

ºC for 45 s) 62 ºC for 7 min 

95 ºC -3 min 35x (95 ºC for 45 s, 52 ºC, 54 ºC, 56 ºC, 

58 ºC for 45 s, 62 ºC for 90 s) 62 ºC for 7 min 

Amplification was 

observed for both pure 

P. parva and S. 

destruens DNA at all 

gradient temperatures 

 Nested PCR 1-2: Sdes2F/NC2:  

(5-TTA GTT TCT TTT CCT CCG CT) 

Nested PCR 2-2: Sdes2F/SD-ITS-R1 

95 ºC -3 min 35x (95 ºC for 45s, 52 ºC, 54 ºC, 56 ºC, 

58 ºC for 45 s, 62 ºC for 90 s) 62 ºC for 7 min 

95 ºC -5 min 35x (95 ºC for 45 s, 59 ºC for 45 s, 62 

ºC for 45 s) 62 ºC for 7 min 

 

At 60 °C the 

amplification product at 

around 700bp for S. 

destruens DNA and at 

500bp for P. parva 

DNA, indicates cross- 

amplification with P. 

parva DNA 
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2.3 Results 

2.3.1 Development of new detection methods for Sphaerothecum destruens 

Internal Transcribed Spacer 1 

The published ITS 1 conditions (Gozlan et al. 2009) developed for the detection of S. 

destruens DNA in L. delineatus were found to cross-react with P. parva DNA. 

Consequently, the ITS 1 conditions were re-optimized for S. destruens presence in P. 

parva (Table 2.1).  

 

 

 

The primer pair found successful in amplifying S. destruens DNA in its reservoir host 

was Sdes2F coupled with NC2 in the first round of PCR. The second round employed 

Sdes2F and SD-ITS-R1. It was impossible to amplify only S. destruens DNA in the 

presence of fish DNA due to cross amplification with fish DNA. However, using an 

annealing temperature of 60 °C for primer pair Sdes2F and NC2 in the first round, the 

size of amplified products obtained for the ITS 1 gene (in second round) were different 

for S. destruens DNA (700 bp) and P. parva DNA (500 bp) (Figure 2.1), allowing for 

the S. destruens specific amplicon to be gel extracted and sequenced. 

 

 

M    1      2        3     4    5      6      7      8      9     10    11    12    13   14     15   16 
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Figure 2.1. PCR amplification of ITS 1 gene by primer pair Sdes2F and NC2 in first 

round gradient PCR and Sdes2F and SD-ITS-R1 in second round of PCR tested with 

pure Sphaerothecum destruens and Pseudorasbora parva DNA. Second round PCR 

products were migrated on gel. Lane M: 1 Kb DNA ladder, Lane 1, 2, 5, 6, 9, 10, 13, 

14, 17, 18: second round PCR products from S. destruens DNA at 52 ºC, 54 ºC, 56 

°C, 58 ºC and 60 ºC. Lane 3, 4, 7, 8, 11, 12, 15, 16, 19, 20: second round PCR 

products from P. parva DNA at 52 ºC, 54 ºC, 56 °C, 58 ºC and 60 ºC. Duplicate 

samples were loaded sequentially. 

 

 

 

2.3.2 Detection limits of developed markers for S. destruens DNA in presence and 

absence of fish DNA P. parva 

2.3.2.1 Internal Transcribed Spacer 1 

In order to determine and compare the efficiency of S. destruens-specific ITS 1 nested 

PCR, the reaction was performed on 10-fold serial dilution of genomic S. destruens 

DNA in presence and absence of P. parva genomic DNA. Using 10-fold serial dilutions 

of S. destruens genomic DNA, the amplification limit of nested PCR was 1ng of total S. 

destruens DNA. With the addition of 300 ng of total P. parva genomic DNA, no 

inhibition of S. destruens-specific ITS amplification (700 bp) was found. Additionally, 

very light bands appeared at 0.1 ng of S. destruens DNA spiked with P. parva genomic 

DNA (300 ng). Some non-specific amplification was found with P. parva DNA (~500 

M     17   18    19     20 

700bp 
500bp 

 M     1      2      3      4      5     6     7      8      9      10    11   12    13    14    15   16  
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bp long) across several dilutions (Figure 2.2). The 700 bp bands were identified as pure 

S. destruens ITS sequence. 

 

 

 

Figure 2.2. Detection limit of Sphaerothecum destruens-specific nested internal 

transcribed spacer (ITS 1) gene PCR of pure S. destruens genomic DNA and in 

presence of Pseudorasbora parva genomic DNA. Lane M (1 Kb DNA ladder); Lane 1-

10: second round PCR products from 100 ng, 10 ng, 1 ng, 0.1 ng, 0.01 ng spiked with 

300 ng P. parva genomic DNA. Duplicates were loaded next to one another.  Lane 12-

20, second round PCR products from 100 ng, 10 ng, 1 ng, 0.1 ng, 0.01 ng S. destruens 

total genomic DNA. 

 

 

 

2.3.2.2 Cytochrome b 

In order to determine the detection limit of S. destruens-specific Cyt-b marker, the 

reaction was performed in 10-fold serial dilution of S. destruens genomic DNA only in 

the absence of P. parva DNA, as the primers were not found to cross-react with fish 

DNA (Figure 2.5). The detection limit was 0.1 pg of total S. destruens DNA (Fig 2.3). 

The sequences were identified as pure S. destruens mitochondrial Cyt-b fragment. With 

the addition of 300 ng of P. parva genomic DNA, there was no inhibition of S. 

destruens Cyt-b amplification up to 1 pg concentration of S. destruens genomic DNA. 

However, at 0.1 pg there was positive amplification for only one replicate (Figure 2.4).  

   M     1     2    3    4      5     6     7    8    9    10   11   12    13   14    15   16 17   18 19  

700bp 
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Figure 2.3. Detection limit of Sphaerothecum destruens-specific nested Cytochrome b 

(Cyt-b) gene PCR of S. destruens total genomic DNA. Lane M (1 Kb DNA ladder); 

Lane 1-16: second round PCR products from 100 ng, 10 ng, 1 ng, 0.1 ng, 10 pg, 1 pg, 

0.1 pg and 10 fg of S. destruens total genomic DNA. Lane 17: negative PCR control. 

Duplicates were loaded sequentially. 

 

 

 

 

Figure 2.4. Detection limit of Sphaerothecum destruens-specific nested Cytochrome b 

gene PCR in the presence of Pseudorasbora parva genomic DNA. Lane M (1 Kb DNA 

ladder); Lane 1-13: second round PCR products from 100 ng, 10 ng, 1 ng, 0.1 ng, 10 pg, 

1 pg, 0.1 pg of S. destruens total genomic DNA spiked with 300 ng P. parva DNA. 

Lane 15: negative PCR control. Duplicates were loaded next to one another. 

 

 

 

2.3.3 Cross-reactivity with fish DNA 

The Cyt-b primers did not cross-react with any of the tested fish species DNA (Figure 

2.5). The specificity of Cyt-b assay makes it suitable to detect S. destruens from various 

host fish. 

M     1       2     3     4      5      6      7      8      9     10   11    12    13    14   15   16   17 

700bp 

M     1       2      3      4      5       6       7       8      9     10    11     12    13     14    15    
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Figure 2.5. Cross-reactivity of Sphaerothecum destruens-specific nested Cytochrome b 

gene marker with fish DNA. Lane M: 1 Kb DNA ladder; Lane 1-7: second round PCR 

products from carp Cyprinus carpio, chub Squalius cephalus, barbel Barbus barbus, 

roach Rutilus rutilus, minnow Pimephales promelas, bream Abramis brama and 

topmouth gudgeon Pseudorasbora parva. Lane 8: positive PCR control. 

 

 

 

2.3.4 Limit of detection comparison 

The Cyt-b assay had the best LoD, with the assay detecting up to 0.1 pg of DNA in the 

presence of host DNA, followed by the 18S rRNA assay with a LoD of 1 pg and the ITS 

1 with an LoD of 1 ng (Table 2.2).  

 

 

 

 

 

 

 

M           1             2                3           4            5             6            7            8 
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Table 2.2. Comparison of the detection limit (LoD) of the developed markers ITS 1 and 

Cyt-b in comparison with the already developed 18S marker (Mendonca and Arkush 

2004) in the absence and presence of fish DNA. 

S. destruens 

 

Markers detection limit 

 

Whole 

genomic 

DNA 

Spores 

equivalent 

18S

 

ITS 1

 

Cyt-b

 
Absence Presence  Absence Presence  Absence Presence  

1 ng 50,000 ✓ ✓ ✓ ✓ ✓ ✓ 

0.1 ng 5000 ✓ ✓ - - ✓ ✓ 

10 pg 500 ✓ ✓ - - ✓ ✓ 

1 pg 50 ✓ ✓ - - ✓ ✓ 

0.1 pg 5 - - - - ✓ ✓ 

 

 

 

2.4 Discussion 

In this Chapter, two new assays for S. destruens were developed in order to be used in 

Chapters 3 and 4. The Cyt-b was the most sensitive and specific assay with the 

detection of S. destruens DNA at 0.1 pg compared to 1 pg for the 18S rRNA (Mendonca 

and Arkush 2004) and at 1ng for ITS 1 (Table 2.2). As expected the Cyt-b assay was the 

most sensitive and this is most probably due to the presence of multiple copies of 

mitochondria within an S. destruens cell leading to multiple copies of the targeted DNA 

region (Avise 2000). The assay was also highly specific in no cross-reaction with any of 

the fish species DNA tested. The low detection in the ITS 1 assay was most probably 

due to the strong cross-reaction with P. parva DNA. Due to the limited DNA region 

suitable for primer design (100 bp in 18S and 57 bp in 5.8S peripheral regions of ITS 1), 

a limited number of primers could be designed and the described assay was the best that 

could be developed with the available information. The sensitivity of the ITS 1 assay 

from Gozlan et al. (2009) was not determined (due to only DNA from infected host 

being available in that study), and could not be compared with the sensitivity reported 

here. Due to the low detection sensitivity of ITS 1 PCR and the inconsistency of Cyt-b 

PCR amplification at 0.1 pg concentration, a multiple tube approach could be applied 

where each positive sample (through 18S rRNA PCR) can be independently amplified 
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three times for the ITS 1 and Cyt-b region. This increases the probability of 

amplification and is often used in ancient or highly degraded DNA samples (Navidi et 

al. 1992, Taberlet et al. 1996). 

 

 

 

Even though the detection of S. destruens DNA was improved by 10 fold using the Cyt-

b assay (0.1 pg of pure genomic DNA), the detection ability of assay is still limited by 

the extraction efficiency of S. destruens spores which is limited to 500 spores in the 

presence of fish tissue (Andreou 2010). These extraction efficiencies are relatively 

comparable to 100 conidia, which are physiologically similar to S. destruens spores cell 

wall, for fungi Geomyces destructans per 2 mg wing tissue (Lorch et al. 2010) and 

inferior to 10 zoospores for Batrachochytrium dendrobatidis (Annis et al. 2004). 

Mendonca and Arkush (2004) could extract DNA from up to 10 S. destruens spores but 

this value was not consistently reproducible for their own work. The possible 

explanation for this could be the thick cell wall of S. destruens spores that is resistant to 

many DNA extraction methods (Mendonca and Arkush 2004). Resultantly, the number 

of spores that release DNA in the extraction process may account for a fraction of total 

number of spores initially enumerated (Mendonca and Arkush 2004). 

 

 

 

For S. destruens, PCR is still a more sensitive method of detection, especially where 

host infection is in the disseminated form, which involves low numbers of spores with 

no histopathological response by the host decreasing the probability of detection 

through histology. However, the available PCR assays for S. destruens are not as 

sensitive as compared to the detection limits in the similar studies for Microsporidium 

seriolae (0.01 pg), Ichthyophonus hoferi (10-5 parasite spores) and Geomyces 

destructans (5 fg) (Bell et al. 1999, Whipps et al. 2006, Lorch et al. 2010) which limits 

the detection efficiency. Thus, when the assays are used in epidemiological work, it is 

highly likely that the determined prevalence will be an underestimate of the true 

prevalence of the parasite due to false negatives. This is particularly relevant to 

epidemiological studies using reservoir hosts such as P. parva which harbour very low 

infections, increasing the probability of false negatives. This will be problematic for P. 

parva populations, which test as S. destruens negative. In this case, it would be 

advisable to: a) increase the number of fish tested; b) revisit the site at different times, 

as S. destruens infections can  vary seasonally with highest prevalence observed in the 
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spring (Ercan et al. 2015) and; c) if access to live fish is possible, cohabit the P. parva 

individuals with highly susceptible hosts (Gozlan et al. 2005). 

 

 

 

2.5 Summary 

In this study, two novel phylogenetic markers ITS 1 and Cyt-b were developed and 

optimized for the detection of S. destruens in its healthy host P. parva. The Cyt-b 

marker was the most sensitive (0.1 pg) and specific for S. destruens detection compared 

to the already developed 18S rRNA marker (1 pg) by Mendonca and Arkush (2004). 

The ITS 1 marker was improved for its specificity for S. destruens DNA in P. parva but 

its sensitivity was very low (1 ng) compared to the other two markers. The ITS 1 marker 

could be effectively applied for S. destruens detection in highly infected host fish. 
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Chapter 3  

Global distribution of the Sphaerothecum destruens reveals its non-

native status for Europe 
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3.1 Introduction 

The international trade of contaminated animal stocks, environmental changes and 

ecological disturbances have contributed to human-mediated disease outbreaks (Voyles 

et al. 2014). In particular, the trade of domestic, cultured and wild animals has 

translocated thousands of species across the globe that has resulted in a concurrent 

translocation of their pathogens leading to the global emergence of infectious diseases, a 

large proportion of these being caused by fungi and fungus-like organisms (Fisher et al. 

2012). Notable examples include the chytrid fungus that is the causal agent for 

Chytridiomycosis that has led to the decline of over 200 amphibian species (Skerratt et 

al. 2007) and the white-nose syndrome in bats (Blehert et al. 2009). 

 

 

 

Species translocations can introduce novel pathogens to new geographic areas which 

can lead to disease emergence in native species (Daszak et al. 2001). Fishes comprise 

the biggest group among the introduced aquatic animals with an estimated 624 

freshwater fishes established outside their natural range at the end of 20th century 

(Gozlan et al. 2010b) and over one billion ornamental fish from over 100 countries are 

internationally traded each year (Whittington and Chong 2007). In Europe, the rise in 

the introduction of non-native fish species is mainly for aquaculture, recreational fishing 

and the aquarist trade (Peeler et al. 2011). There were at least 38 non-native freshwater 

fishes introduced to England and Wales by 2010 (Britton et al. 2010) 

 

 

 

Non-native fish species introduced to Europe for aquaculture included the Japanese eel 

Anguilla japonicas which led to the introduction of the parasitic nematode 

Anguillicoloides crassus that has contributed to the decline of European eel Anguilla 

anguilla populations (Koops and Hartmann 1989, Kirk 2003). The import of fathead 

minnows Pimephales promelas to France from the USA has resulted in rainbow trout 

Oncorhynchus mykiss suffering from the enteric red mouth disease caused by bacterium 

Yersina ruckeri (Michel et al. 1986). Notably one of the world’s most invasive species 

the topmouth gudgeon, Pseudorasbora parva has been accidentally introduced through 

the trade of Chinese carps (Ctenopharyngodon idella, Hypophthalmichthys molitrix) 

(Gozlan et al. 2002) and has potentially acted as the source of the emergent fish parasite 

Sphaerothecum destruens (Gozlan et al. 2005). 
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Sphaerothecum destruens, commonly known as the Rosette agent, is a novel obligate 

intracellular eukaryotic parasite which sits at animal-fungal boundary. Sphaerothecum 

destruens is a multi-host parasite that has resulted in steady chronic mortalities across 

salmonids (Harrell et al. 1986, Hedrick et al. 1989, Arkush et al. 2003) and centrarchids 

(Ercan et al. 2015).  The first reported discovery of S. destruens was in the USA where 

it was associated with high mortalities in Chinook salmon Oncorhynchus tshawytscha 

(Harrell et al. 1986) and Atlantic salmon Salmo salar (Hedrick et al. 1989). The parasite 

was first reported in UK in 2005, associated with increased mortalities and spawning 

inhibition in the cyprinid sunbleak L. delineatus (Gozlan et al. 2005). Phylogenetic 

analysis of ribosomal Internal Transcribed Spacer 1 (ITS 1) gene identified the UK S. 

destruens isolate as geographically distinct from the USA isolates (Gozlan et al. 2009). 

Since 2005, the parasite has been reported from the Netherlands with a high prevalence 

(74 %) in P. parva (Spikmans et al. 2013) and Turkey where it was detected in P. parva 

and bass Dicentrarchus labrax, and has resulted in high mortalities in centrarchid 

species Squalius fellowesii, Oxynoemacheilus sp. and Petroleuciscus smyrnaeus (Ercan 

et al. 2015). The ITS 1 gene was only sequenced by Ercan et al. (2015) and has 

identified that the Turkish isolate is closely related to and groups with the UK isolate.  

 

 

 

A pathogen’s origin and phylogenetic history can provide valuable information in 

understanding the drivers of disease emergence and can be used to develop effective 

control strategies (Eskew and Todd 2013). Two hypotheses are often proposed for 

explaining a disease outbreak: (i) the novel pathogen hypothesis postulates that the 

disease outbreak is the result of a novel pathogen introduction to new geographic areas 

and (ii) the endemic pathogen hypothesis postulates that  disease emergence is driven by 

environmental changes resulting in increased pathogenicity (Rachowicz et al. 2005). 

Both hypotheses could apply to the case of S. destruens, and in this study the novel 

pathogen hypothesis was tested by screening 21 P. parva populations across its native 

and non-native range for the presence of S. destruens. This was achieved by: (i) testing 

the origin of S. destruens using phylogenetic analysis with three markers; the 18S 

rRNA, ribosomal ITS 1 and mitochondrial Cyt-b gene on S. destruens isolates obtained 

across the globe; (ii) determining potential associations between specific P. parva 

haplotypes and the presence of S. destruens; and (iii) examining the demographic 

changes in S. destruens and its host P. parva populations through mismatch distribution 

analysis. 
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3.2 Material and Methods 

3.2.1 Fish Dissection 

Pseudorasbora parva obtained from different parts of the world were collected in July-

August 2011 and were fixed in 100 % ethanol (Table 3.1). For S. destruens prevalence, 

20 P. parva from each site were dissected and their kidneys were collected and frozen at 

-20 ºC until further testing. The fish were dissected by cutting the skin from anal fin 

along the belly of fish to the operculum, followed by removal of operculum and pectoral 

fin. Skin was cut from above the exposed gills going posteriorly along the side of the 

fish and then down to the anal fin. After the removal of skin, internal organs were 

exposed which were carefully removed and kidney were collected from the back of the 

fish. The dissection tools were sterilized with IMS (Industrial Methylated Spirit) after 

every dissection to avoid any cross-contamination. 

 

 

 

3.2.2 DNA Extraction  

DNA was extracted using the rodent tail protocol of the Qiagen DNeasy 96 Blood and 

tissue kit (Qiagen, Germany). All steps were performed according to manufacturer’s 

guidelines with an overnight incubation at 55 ºC and elution volume of 200 µl. 

Extracted DNA from fish tissue was quantified by Nanodrop 2000 (Thermoscientific). 

Negative DNA extraction controls, where no tissue was added were also included. 

 

 

 

3.2.3 Sphaerothecum destruens detection using PCR 

Sphaerothecum destruens was detected using nested PCR which amplified a segment of 

the 18S rRNA gene of S. destruens using the oligonucleotide primers published in 

Mendonca and Arkush (2004) and as explained in Section 2.2.1. The PCR was 

performed in a PCR cabinet which was decontaminated using UV irradiation for 15 

minutes prior and after each assay preparation. Negative PCR controls were inserted 

during PCR steps to detect cross-contamination. Due to the low detection sensitivities of 

the markers and low concentration of parasite DNA in the reservoir host, three 

independent PCRs were performed for each molecular marker. 
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All S. destruens-positive samples, through 18S rRNA PCR, were also amplified for the 

ITS 1 and Cyt-b regions with PCR and cycling conditions as described in Sections 2.2.3 

and 2.2.4. The products of ITS 1 nested PCR was excised from the agarose gel and 

purified by Qiagen Gel Extraction kit. Purified fragments were cloned using TOPO TA 

cloning kit (Invitrogen, Life Technologies Paisley, United Kingdom) and sequenced 

with M13F and M13R primers (Beckman Coulter genomics). All amplified products 

were run on 1 % agarose gels stained with SYBR® safe DNA gel stain at 70 V for 40 

min. The gel was viewed under UV transilluminator SAFE Imager (Invitrogen). In 

order to confirm that S. destruens-specific DNA was amplified all, amplified products 

were sent for Sanger DNA sequencing (Beckman coulter genomics).  

 

 

 

3.2.4 Amplification of Pseudorasbora parva mitochondrial cytochrome b gene 

PCR amplification of the cytochrome b gene was carried out on P. parva individuals 

that had tested positive for S. destruens using the primers L15267 (5-AAT GAC TTG 

AAG AAC CAC CGT-3’) and H15891Ph (5-GTT TGA TCC CGT TTC GTG TA-3’) 

developed by Briolay et al. (1998), resulted in amplified product of app. 600bp. The 

reaction conditions were as follows: reaction volume of 50 μl consisted of DNA 

template (100 ng), 1 X Promega Flexi buffer, 2 mM MgCl2, 0.2 mM dNTPs, 0.3 μM 

forward and reverse primer and 0.5 U Taq polymerase. The cycling conditions were as 

follows: an initial denaturation at 95 ºC for 15 min followed by 35 cycles of 30 seconds 

at 95 ºC, 90 seconds at 60 ºC and 60 seconds at 72 ºC, with a final elongation step at 72 

ºC for 15 min. All amplified products were sent for Sanger DNA sequencing (Beckman 

coulter genomics). 

 

 

 

3.2.5 Phylogenetic analysis 

The obtained sequences for S. destruens were searched against GenBank nucleotide 

database to confirm their identity using the BLAST tool. All the sequences for the 

different markers (18S rRNA, ribosomal ITS 1 and Cyt-b gene) were aligned using 

Clustal W in BioEdit ver. 5.0.9 (Hall 1999) and examined by eye to eliminate 

ambiguities and to check for polymorphic sites. The haplotype diversity was calculated 

using DnaSP 5.10 (Librado and Rozas 2009) and was mapped by calculating network 
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through median joining by NETWORK (Bandelt et al. 1999); available at 

http://www.fluxus-engineeering.com). 

 

 

 

A phylogenetic tree was drawn for S. destruens using  the ITS 1 marker using Mr Bayes 

(Ronquist et al. 2012) using the sequences generated in the present study and those 

published in Gozlan et al. (2009) and Ercan et al. (2015): FJ440707.1, FJ440708.1, 

FJ440709.1, FJ440702.1, FJ440703.1, FJ440704.1, KT361608.1. jModeltest v 2.1.4 

(Darriba et al. 2012) was used to determine the best model fitting the data.  

 

 

 

The Cyt-b sequences for P. parva that had tested positive for S. destruens were grouped 

together with P. parva Cyt-b sequences across populations in its native range (China) 

and invasive range (Europe) (Simon et al. 2011). These populations included the 

populations tested for S. destruens in this study. The sequences were aligned by Clustal 

W in BioEdit (Hall 1999). Haplotypic diversity was calculated in DnaSP. A 

phylogenetic tree was constructed to identify the P. parva haplotypes associated with 

the presence of S. destruens. The phylogenetic analysis using Maximum likelihood was 

performed using Mr Bayes (Ronquist et al. 2012) and posterior probabilities were 

obtained after 2,500,000 generations with a burn-in of 25 %. The tree was calculated 

using Hasegawa-Kishino-Yano model with Gamma distribution (HKY+G) model 

(Hasegawa et al. 1985) determined with jModeltest v 2.1.4 (Darriba et al. 2012). The 

Cyt-b gene sequences from Ictiobus bubalus (JF799443.1), Hypentelium nigricans 

(JF799441.1), and Danio rerio (JN234356.1) were used as outgroups. 

 

 

 

3.2.6 Population demographic analysis 

To infer the demographic history of S. destruens and its host P. parva populations in 

China, the mismatch distribution analysis was carried on the 18S rRNA gene for S. 

destruens and Cyt-b gene for P. parva. This analysis plots the distribution of nucleotide 

differences between each pair of sequences and compares it to the expected values for a 

model of population expansion. A unimodal distribution is indicative of a population 

expansion in the recent past whereas a bimodal/multimodal distribution indicates a 

population that is at demographic equilibrium (Rogers and Harpending 1992). 
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Demographic changes were analysed by calculating Harpending’s raggedness index 

(Hri) which quantifies the smoothness of the observed mismatch distribution 

(Harpending et al. 1993) and the sum of squared deviations (SSD) between the observed 

and expected mismatch for the nucleotide differences (Schneider and Excoffier 1999) in 

Arlequin version 3.5 (Excoffier and Lischer 2010).  

 

 

 

Three tests were used to test for population expansion of P. parva:  Fu’s Fs test (Fu 

1997), Tajima’s D test (Tajima 1989) and Ramos-Onsins & Rozas’ R2 test (Ramos-

Onsins and Rozas 2002). The latter was performed in DnaSP (Librado and Rozas 2009)  

and Fu’s Fs and Tajima’s D test were carried out in Arlequin version 3.5 (Excoffier and 

Lischer 2010). Only the Tajima’s D test and R2 test were performed for S. destruens, as 

the Fu’s Fs test is not suitable for small sample sizes (Ramos-Onsins and Rozas 2002). 

For Tajima’s D and Fs, P-values were calculated based on a coalescent simulation 

algorithm and for the R2 test the P-values were based on parametric bootstrapping with 

coalescence simulations. 

 

 

 

3.3 Results 

3.3.1 Sphaerothecum destruens detection and its prevalence across the sampled 

populations 

A total of 420 P. parva fish representing 21 populations from across Eurasia (10 in 

China, 8 in Europe, and one population each from Morocco, Iran, and Japan) were 

screened for the presence of S. destruens (Figure 3.1). Out of the 10 Chinese 

populations, 9 were found positive for presence of S. destruens (Table 3.1 and Figure 

3.1). The prevalence of the parasite in the Chinese populations ranged between 0 and 10 

%. The overall prevalence of S. destruens across all sampled Chinese populations was 6 

% (12/200). S. destruens was only found in two European populations; Spain and the 

United Kingdom (Figure 3.1 and Table 3.1), with a prevalence of 5 % in both 

populations. The overall prevalence in Europe was 1.4 % (2/140). S. destruens was not 

detected in samples from Morocco, Iran or Japan.  
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Table 3.1. Sampled populations of Pseudorasbora parva and the distribution of 

Sphaerothecum destruens in P. parva using molecular detection across P. parva’s 

native and non-native range. Tick () indicates positive and hyphen (-) indicates no 

amplification with the particular marker. 

Population Code  Geographical  

Coordinates 

Sample 

size 

Name of 

the 

Positive 

individuals 

Genetic Marker 

amplified 

  X Y   18S Cyt-b ITS 1 

Chinese site 

1 

S1 115.5

6 

37.55 20 S1-15   - 

S1-7  - - 

Chinese site 

2 

S2 117.1

2 

34.81 20 S2-1  - - 

Chinese site 

3 

S3 118.5

9 

33.19 20 S3-16    

Chinese site 

7 

S7 110.3

2 

25.27 20 0    

Chinese site 

9 

S9 113.1

1 

29.15 20 S9-13  - - 

Chinese site 

11 

S11 110.9

9 

34.62 20 S11-20   - 

Chinese site 

12 

S12 117 38.7 20 S12-10   - 

S12-19  - - 

Chinese site 

13 

S13 122.5

2 

40.10 20 S13-16   - 

Chinese site 

14 

S14 124.9

9 

45.03 20 S14-13  - - 

S14-19  - - 

Chinese site 

16 

S16 118.2

7 

40.90 20 S16-19  - - 

Austria A 14.72 48.19 20 0    

Bulgaria BG 43 26 20 0    

France F -1.73 47.10 20 0    

Iran IR 54.78 37.05 20 0    
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Italy IT 10 44 20 0    

Japan JP 139.4

3 

35.67 20 0    

Morocco M 32.11 2.89 20 0    

Spain SE 0.86 40.7 20 SE-7  - - 

Turkey T 30.04 40.91 20 0    

United 

Kingdom 

UK 1 51 20 UK-1   - 

Hungary H 18 46 20 0    

 

 

 

3.3.3 Phylogenetic analysis of Sphaerothecum destruens using the 18S rRNA, ITS 1 

and Cytochrome b sequences 

A 397 bp fragment of 18S rRNA was obtained for 14 S. destruens individuals from 11 

different populations (Table 3.1) and aligned with the published sequences from Arkush 

et al. (2003) and Paley et al. (2012). The overall haplotype diversity was calculated to 

be 0.29 and four haplotypes were identified. Only three individuals, S. salar (USA) and 

two P. parva (China) had different haplotypes (Figure 3.2).  
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Figure 3.1. Pseudorasbora parva sites screened in this study for Sphaerothecum destruens presence in the host’s native range (China) and invasive 

range (Europe, North Africa and the Middle East). The red sites indicated sites with S. destruens positive P. parva and black sites represent sites 

without S. destruens positive individuals using the 18S rRNA detection method. Abbreviations: Europe- A: Austria; BG: Bulgaria; F: France; H: 

Hungary, IT: Italy; SP: Spain; T: Turkey and UK: United Kingdom. North Africa- M: Morocco. Middle east- I: Iran. Asia- China (S1, S2, S3, S7, S9, 

S11, S12, S13, S14, S16); JP: Japan. 
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Figure 3.2. Minimum spanning network based on 18S rRNA segment (397 bp) of 

Sphaerothecum destruens strains from China and Spain together with already deposited 

S. destruens sequences. The colour code indicates S. destruens individuals from 

different locales; the size of the circle represents the number of individuals sharing a 

particular haplotype. Brown: UK (n=2), Green: USA (n=3), Red (n=11): China, Light 

blue: Turkey (n=1), Yellow: Spain (n=1). (Haplotype 1: UK-FN996945.1, USA-

AY267344.1, AY267345.1; Haplotype 2: USA- AY267346.1 and Turkey)  

 

 

 

Due to the low sensitivity of the ITS 1 assay (Section 2.3.2.1), only a single individual 

from the Chinese site 3 had DNA that had amplified with this marker. The 623 bp 

fragment of the ITS 1 region obtained from China was compared with the published 

sequences from Europe (UK and Turkey) and North America (USA) (Figure 3.3; 

(Gozlan et al. 2009, Ercan et al. 2015). Two main clades were present, with all the 

samples from the USA grouping together and samples from Europe grouping with the 

sample from China. Individuals originating from the UK and China clustered together, 

and the Turkish samples were more closely related to the UK and China samples 

compared to the USA samples (Figure 3.3). 
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 The S. destruens Cyt-b was amplified from six populations (5 from China and 1 from 

UK). Interestingly, no variation was found between the Chinese and the UK S. 

destruens samples (Appendix 1). 

 

 

 

Figure 3.3. Phylogenetic tree resulting from maximum likelihood method based on 

Hasegawa-Kishino-Yano model (Hasegawa et al. 1985) analysis of the ribosomal ITS 1 

sequences of Sphaerothecum destruens. Isolate origin and GenBank accession numbers 

are: RA 1-3 (FJ44070.1), RA 3-1 (FJ440708.1), RA 3-2 (FJ440709.1), RA 3-3 

(FJ440710.1), RA 4-1 (FJ440702.1), RA 4-3 (FJ440703.1), RA 4-4 (FJ440704.1), RA-

Turkey (KT361608.1) and RA-China (to be deposited). 

 

 

 

3.3.4 Amplification of Pseudorasbora parva mitochondrial cytochrome b gene 

A total of 91 haplotypes from 949 P. parva individuals were identified in the dataset of 

Cyt-b sequences of P. parva populations (62) across the world. The most abundant 

haplotypes across the world were Hap_1, Hap_2, Hap_3, Hap_4, Hap_5, Hap_6, 

Hap_12 and Hap_17 with occurrence in more than one country (Figure 3.4). Five Cyt-b 

haplotype in P. parva were found associated with the presence of S. destruens (Hap_1, 

Hap_ 4, Hap_6, Hap_7, Hap_12 and Hap_55; Figure 3.4). The highest number of P. 

parva individuals (n=7) found positive for S. destruens had Cyt-b haplotype Hap_6. The 

remaining haplotypes had one P. parva individual positive for S. destruens. 
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Figure 3.4. Molecular phylogenetic analysis of cytochrome b haplotypes of 

Pseudorasbora parva populations across the globe. The tree was inferred from 

maximum likelihood method based on the Hasegawa-Kishino-Yano model (HKY) 

(Hasegawa et al. 1985) with gamma distribution in Mr Bayes (Ronquist et al. 2012). 

The coloured circles indicate the countries that each haplotype has been found in and 

the coloured stars indicate Sphaerothecum destruens positive P. parva haplotypes in 

that country. 
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3.3.5 Demographic analysis of Pseudorasbora parva and Sphaerothecum destruens  

The demographic analysis of the host, P. parva and parasite S. destruens, supported a 

potential recent population expansion. The sum of squared differences (SSD) and 

Harpending’s raggedness index (Hri) were not significant for both species, indicating the 

data is relatively good fit for population expansion (Figure 3.5). Both species also had 

significant negative values for the Tajima’s D, test further supporting population 

expansion. Pseudorasbora parva’s population expansion was further supported by the 

R2 test. The R2 test however was not significant for the S. destruens population which 

was in contrast with the Tajima’s D negative value and the unimodal mismatch 

distribution.  

 

 

 

The observed mismatch distribution for P. parva when all the populations are 

considered (Figure 3.5 B) is bimodal. The bimodality of the mismatch distribution for 

P. parva could be due to the presence of different haplogroups (Maltagliati et al. 2010). 

In China there are two established haplogroups A and B (Figure 3.4) despite the 

statistical tests indicating that the population as a whole has undergone a recent 

population expansion. When the data was split by haplogroups, the mismatch 

distribution was unimodal (Figure 3.5 C, D), further supporting that both haplogroups 

have undergone recent population expansion.  
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Figure 3.5. Frequency distribution of number of pairwise mismatch nucleotide 

differences between: (A) 18S rRNA sequences of Sphaerothecum destruens populations 

in China; (B) cytochrome b sequences of Pseudorasbora parva populations in China; 

(C) P. parva haplogroup A, and (D) P. parva haplogroup B. The solid line is the 

theoretical distribution under the hypothesis of population expansion. Sum of squared 

differences (SSD), Harpending’s raggedness index (Hri), Fu’s Fs, Tajima’s D and 

Ramos-Onsins & Rozas’ R2 statistics are listed next to each dataset. The P-values for 

each statistical test can be found in parenthesis. Significance was set at a P-value of 

0.05 except for Fs which was set at 0.01. 
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3.4 Discussion 

In this study, the novel pathogen hypothesis was investigated for the emergent S. 

destruens parasite that has been closely associated with the invasive non-native P. 

parva.  In the host’s native range, China, S. destruens was detected in 9 out of the 10 

tested P. parva populations with a maximum prevalence of 10 %. In P. parva’s non-

native range of Eurasia, S. destruens was detected in 2 populations out of 11 

populations (in the UK and Spain with a maximum prevalence of 5 %). Further to the 

presence of S. destruens being confirmed in China for the first time, the phylogenetic 

analysis and demographic analysis of both the host and the parasite support the 

hypothesis that S. destruens has been introduced to Europe through the accidental 

introduction of its reservoir host P. parva. 

 

 

 

The phylogenetic analysis using the ITS 1 marker was performed on the only positive 

sample (due to the techniques low detection sensitivity). The P. parva population in 

which the parasite was found (site 3) is located north to the River Yangtze in China. 

Phylogenetic analysis has indicated that in the UK the most prevalent P. parva 

haplotypes are the same as those found north of the River Yangtze which can explain 

the similarity between the Chinese and UK S. destruens isolates. The Turkish S. 

destruens isolate, although more closely related to other European isolates, was still 

different and grouped on its own within the overall European and China clade (Figure 

3.3). This could be explained by the phylogenetic history of the host species, as P. 

parva in Turkey was introduced from Bulgaria and has haplotypes which are often 

found in the south of the River Yangtze (Simon et al. 2011). In Europe, P. parva was 

intially introduced in the River Danube, Romania, and successively to Germany and in 

southern parts of UK, where S. destruens was orginally discovered in the UK (Simon et 

al. 2011, Gozlan et al. 2005).  

 

 

 

The wide distribution of the P. parva populations infected by S. destruens across China 

suggests that the parasite could be coexisting with its P. parva reservoir host. The 

distance between the most southerly and northerly S. destruens positive P. parva 

populations is ~ 18, 000 kilometres which is 7 times greater than the distance between 

its European populations (Turkey to UK;~ 2,500 kilometres). The emergence and 
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association of fungal parasites with reservoir hosts over a long evolutionary history has 

been recently demonstrated for the chytrid fungus Batrachochytrium salamandrivorans 

(Martel et al. 2014). This pathogen has likely originated and coexisted with its reservoir 

hosts for millions of years in Asia before being introduced across the world with the 

trait of its reservoir hosts. Similarly, to B. salamandrivorans, the data presented here 

suggest that S. destruens has been introduced to Europe via the accidental introduction 

of its reservoir host.  

 

 

 

The demographic analyses of P. parva and S. destruens partially suggest that both 

species have undergone a recent population expansion. A recent population expansion 

for P. parva is supported with all tests. However, for S. destruens, this is supported 

using SSD,  Hri values and Tajima’s D test, but not by the R2 test. The partial 

congruence between the demographic history of the two species is suprising especially 

in light of the true generalist nature of S. detruens and its ability to use a number of 

different hosts. Recent work, however, has indicated that following the establishment of 

a generalist parasite in a community, its population dynamics are driven via intra-host 

transmission rather than inter-host transmission (Fenton et al. 2015). This could explain 

the observed similarity in the population demographic history of the two species.  

 

 

 

 The mitochondrial studies on P. parva have identified that Haplogroup A is prevalent 

north of the River Yangtze, an area with a temperate climate. Haplogroup B is mostly 

found to the south with tropical climatic conditions. Most S. detruens positive 

individuals had haplotypes belonging to haplogroup A (Figure 3.5). Studies on S. 

destruens have identified that low temperatures of 4 ºC and 15 ºC are correlated with 

higher spore and zoospore survival compared to higher temperatures of 25 ºC and 30 ºC 

(Andreou et al. 2009), suggesting that the parasite could be more adapted to temperate 

climates.  

 

 

 

Currently, there are 14 known susceptible species to S. destruens, including valuable 

aquaculture species (salmon, carp and bass; (Andreou et al. 2012, Paley et al. 2012, 

Ercan et al. 2015) and endemic fishes to Europe that are of high conservation value 

(Gozlan et al. 2005, Ercan et al. 2015). The close association of the reservoir host, P. 
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parva with aquaculture facilities (due its accidental introduction along with carp from 

China; (Gozlan et al. 2010a) and the predicted ability of the parasite to establish in 

online adjacent freshwater communities within a year of its introduction in an 

aquaculture facility (Al-Shorbaji et al. 2016) increases the risk of disease to native 

fishes.  

 

 

 

This study represents a first screening of native and invasive P. parva populations for 

the presence of S. destruens. It is important to note that the prevalence values recorded 

in positive populations are very likely to be underestimates of the true prevalence of this 

parasite, as only the kidney was sampled. S. destruens infects multiple organs and it 

does so unequally. This lack of infection localisation can lead to an underestimate of its 

prevalence. Thus, populations detected as negative for S. destruens in this study must be 

treated with caution as it cannot be excluded that the parasite might be present in these 

and other populations in the country.  For example, the Turkish population sampled in 

this study was found to be negative for S. destruens whereas the parasite has been 

detected in another P. parva population in Turkey (Ercan et al. 2015). Thus, in countries 

where P. parva is present, an extensive sampling of its established populations would be 

necessary to determine whether S. destruens has been co-introduced.  

 

 

 

In the last 20 years, aquaculture production has increased exponentially to support 

economic growth with its expansion being highly reliant on non-native species (Peeler 

et al. 2011). The introduction of non-native species can be detrimental both to 

ecosystem services and native communities through direct competition and disease 

introduction (Pelicice et al. 2014). Here, we have documented the introduction of an 

emergent generalist pathogen through the accidental introduction of its highly invasive 

host. The potential threats associated with aquaculture production and the resultant fish 

movements highlight the importance of risk assessments to identify emergent parasites. 

Horizon scanning for potential emergent diseases will be critical in informing strict 

biosecurity controls in order to prevent disease introduction. 
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3.5 Summary 

The present study provided the first evidence of the possible introduction of S. 

destruens to Europe through accidental introduction of its host P. parva from Asia. The 

hypothesis was supported from the two nuclear (18S rRNA and ribosomal ITS 1) and 

one mitochondrial (Cyt-b) marker that the two isolates i.e. from UK and China are not 

geographically distinct. It also confirmed the presence of S. destruens in China and 

expanded the confirmed range of S. destruens to more locations in Europe (Spain). The 

demographic analysis showed that S. destruens and its host P. parva populations have 

potentially undergone similar demographic expansion in its native range (China) 

providing support for the hypothesis that these two species have been historically 

closely associated. The evidence of non-native status of S. destruens in Europe will 

have management implications for S. destruens in the UK. 
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Chapter 4  

Epidemiological studies of Sphaerothecum destruens in the UK 
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4.1 Introduction 

The UK is the first European country where S. destruens has been identified in P. parva 

populations (Gozlan et al. 2005). Pseudorasbora parva was first recorded in the UK in 

an aquaculture facility in southern England in 1996 (Domaniewski and Wheeler 1996) 

and has rapidly spread and colonized up to 23 UK water bodies (Britton et al. 2008a). 

Most P. parva populations in the UK have been associated with aquaculture or 

recreational fisheries, with no recorded established populations in wild habitats such as 

streams, rivers or lakes. In response to the potential threats posed by P. parva (Britton et 

al. 2007) a national programme of eradication for P. parva has been designed and 

administered (Britton et al. 2010). The programme aimed at complete eradication of P. 

parva from high risk sites (with high risk sites identified based on the conservation and 

fishery value of the adjacent water body) or containment in case of medium risk sites 

(Britton et al. 2008a). By 2014, 15 out of 23 confirmed P. parva sites had been 

eradicated, with a further 6 sites to be eradicated in England by 2017 (Britton et al. 

2010, GBNNSS 2015). 

 

 

 

Despite P. parva having no wild populations in the UK, a number of sites invaded by P. 

parva have water effluents which flow into wild freshwater habitats. This can have 

important implications for the parasite’s transmission, as epidemiological modelling has 

indicated that S. destruens can spread and establish to connected downstream 

communities through environmental transmission of their infective spores and 

zoospores within one year post introduction of infected P. parva (Al-Shorbaji et al. 

2016). Furthermore, the same work has indicated that S. destruens can establish in new 

hosts and maintain its transmission in the absence of the initial reservoir host - in this 

case P. parva (Al-Shorbaji et al. 2016). As S. destruens is a true generalist, it is thus 

highly probable that adjacent downstream communities to established P. parva 

populations positive for S. destruens have established infections (Andreou and Gozlan 

2016).  

 

 

 

In Chapter 3, China was identified as the origin of S. destruens in Europe and the UK. 

The work indicated that due to the low detection in reservoir hosts because of low S. 
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destruens infection, the prevalence of S. destruens in its European range was most 

probably underestimated. In addition, the lack of histopathological evidence of 

infection, due to the samples being preserved in ethanol, has prevented an evaluation of 

the potential impact of the parasite for the fish host.  

 

 

 

Thus, the objectives of this chapter were to: (i) Determine the distribution and presence 

S. destruens pathology in the UK P. parva populations across a wide geographical 

range. Sphaerothecum destruens epidemiology has never been determined on this scale 

before. The P. parva populations were screened for S. destruens through PCR methods 

(Chapter 2) followed by histopathology; (ii) Assess the risk of disease transfer to 

adjacent native fish communities by sampling fish species that have been in close 

proximity to reservoir host P. parva populations; and (iii) Infer the demographic history 

of S. destruens and its host P. parva through the mismatch distribution analysis and 

check for congruence in order to test the hypothesis that S. destruens has spread through 

the movement of P. parva in the UK. 

 

 

 

4.2 Material and Methods 

4.2.1 Populations screened for Sphaerothecum destruens  

Seven extant P. parva populations were sampled from England and Wales prior to their 

eradication in 2013-2015 by the Environment Agency (Figure 4.1) and were euthanized 

following the Home Office (HO) guidelines. The fish were dissected and liver and 

kidney were sampled, with half the organ fixed in 100 % ethanol for molecular 

detection and the remaining half in 10 % neutral buffered formalin for histopathology. 

The sampled water bodies included six enclosed still water fisheries and two fisheries 

with outlets to streams (Figure 4.1; Table 4.1). Samples from freshwater fishes (Salmo 

trutta, Rutilus rutilus, Squalius cephalus and Leuciscus leuciscus) from the Tadburn 

Lake stream adjacent to Site 1a were also collected by electrofishing and euthanized 

following HO guidelines (Table 4.1). 

  

 



83 

 

 

Figure 4.1. Distribution of sampled Pseudorasbora parva populations across the UK. 

Population 1a is the hypothesised first P. parva population in UK to have been 

introduced in mid-80s (Domaniewski and Wheeler 1996). Details of each sampled 

population can be found in Table 4.1. The red and green numbering for each population 

represents the two genetically different metapopulations of the host P. parva in the UK 

(Blake et al. unpublished). The 18S rRNA haplotypes for S. destruens are represented 

on the left of the circle, the Cyt-b haplotypes are on the right of the circle. The different 

colours represent different haplotypes.  
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Table 4.1. Geographical location and Sphaerothecum destruens prevalence for all fish populations screened using two DNA markers – 18S rRNA and 

Cyt-b. 

P
o
p

u
la

ti
o
n

 Water type Sampling 

year  

Geographical 

Coordinates 

 

Sampled Fish 

species 

Sample 

size 

Positive Fish 

species for S. 

destruens 

Prevalence of 

S. destruens 

(%) 

Genetic marker of S. 

destruens 

18S 

rRNA 

Cyt-b 

1a 

 

 

 

 

 

 

 

 

1b 

 

Disused 

aquaculture 

facility, online 

to river 

 

 

 

 

 

 

2013 

 

 

 

 

 

 

 

 

NGR: SU3822 

S. England 

 

P. parva 30 P. parva 
 

3.33 (1/30)  
(Hap_1) 

 
(Hap_1) 

 
 

 

River adjacent 

to site 1-part B 

(slower flowing 

section of river 

adjacent to site 

1a) 

S. trutta 

S. cephalus 

R. rutilus 

L. leuciscus 

3 

4 

2 

5 

 

 

S. trutta 

 

33.3 (1/3)  
(Hap_1) 

- 

S. cephalus  

 

 

50 (2/4) 

 
(Hap_4) 

 
(Hap_1) 

S. cephalus  

 

 
(Hap_1) 

 
(Hap_1) 

R. rutilus  

 

 

100 (2/2) 

 
(Hap_1) 

 
(Hap_1) 

R. rutilus 

 

 
(Hap_1) 

 
(Hap_3) 

L. leuciscus 

 

 

 

60 (3/5) 

 
(Hap_1) 

- 

L. leuciscus 

 

 
(Hap_6) 

- 

L. leuciscus  
(Hap_5) 

- 
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1c River adjacent 

to site 1-part A 

(high flowing 

stream directly 

linked to site 1a 

S. trutta 30 - 0   

2 Enclosed still 

water fishery 

2013 NGR: SO7657 

Midlands 

 

P. parva 30 - 0   

R. rutilus 5 R. rutilus 20 (1/5)  
(Hap_1) 

 

3 Ornamental 

pond with outlet 

to stream 

2013 NGR: SY0786 

SE England 

R. rutilus 10 - 0   

4 Enclosed still 

water fishery 

2014 NGR: SK7425 

Midlands 

P. parva  

30 

 

P.  parva 
 

 

6.66 (2/30) 

 
(Hap_3) 

 
(Hap_1) 

 
(Hap_1) 

 
(Hap_2) 

5 Reservoir 2014 NGR: SN5104 

S. Wales 

P. parva 30 - 0   

6 Enclosed still 

water fishery-1 

2014 

 

 

 

 

 

NGR: SJ2487 

 

P. parva  

30 

 

P.  parva 

 

6.66 (2/30) 

 
(Hap_1) 

- 

 
(Hap_1) 

- 

Enclosed still 

water fishery-2 

2015 P. parva 30 - 0   

7 Enclosed still 

water fishery 

2014 NGR:SU3922 

 

P. parva 30 - 0   
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4.2.2  Sphaerothecum destruens detection through PCR and histopathology  

Kidney and liver DNA was extracted from freshwater fishes to investigate the presence 

of S. destruens in those tissues, as the parasite is usually in high prevalence in these 

organs (Andreou et al. 2011). The liver and kidney samples of each fish were pooled 

together prior to DNA extraction using the rodent tail protocol of the Qiagen DNeasy 

Blood and tissue kit (Qiagen, Germany). All steps were performed according to 

manufacturer’s guidelines. Extracted DNA from fish tissue was quantified by Nanodrop 

2000 (Thermoscientific) and 300 ng DNA were used in subsequent PCR analysis. The 

extracted DNA was stored at -20 °C until further testing. 

 

 

 

The S. destruens-specific nested PCR was performed for the amplification of a segment 

of 18S rRNA using specific primers published in Mendonca and Arkush (2004), as 

described in Section 2.2.1. In order to carry out phylogenetic analysis, all the positive 

samples for 18S rRNA, were also amplified for the ITS 1 and Cyt-b regions with PCR 

and cycling conditions as described in Sections 2.2.2 and 2.2.3. There was a lag time of 

6 months between the application of 18S rRNA and Cyt-b marker on the DNA samples. 

 

 

 

All S. destruens positive fish samples were investigated using histopathological 

analysis. Tissue (kidney and liver) were fixed in 10 % neutral buffered formalin (NBF) 

for 24 hours before transferring to 70 % industrial methylated spirit (IMS). Samples 

were infiltrated with paraffin under vacuum using standard protocols (Bancroft et al. 

1996). Sections were cut to a thickness of 3-5 μm, mounted onto glass slides, and 

stained with haematoxylin and eosin (H&E) or Gram’s stain. Five transverse stained 

sections were analysed by light microscopy (Nikon Eclipse E800); digital images and 

measurements were obtained using the Lucia™ Screen Measurement System (Nikon, 

UK). 

 

 

 

4.2.3 Amplification of Pseudorasbora parva mitochondrial cytochrome b gene 

PCR amplification of the Cyt-b gene of P. parva individuals tested positive for S. 

destruens was carried out as explained in Section 3.2.6.  
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4.2.4 Phylogenetic analysis 

The sequences generated for 18S rRNA and Cyt-b gene for S. destruens were aligned 

using Clustal W in BioEdit ver. 5.0.9 (Hall 1999) and visually checked to eliminate 

ambiguities and identify polymorphic sites. A phylogenetic network was generated 

using DnaSP version 5.10 (Librado and Rozas 2009) and Network Publisher (Bandelt et 

al. 1999); available at http://www.fluxus-engineeering.com). The sequences used are the 

ones generated in the present study and from Chapter 3, as well as all the published 

sequences available for the 18S rRNA marker (AY267344.1, AY267345.1, 

AY267346.1, FN996945.1 (Arkush et al. 2003, Paley et al. 2012). 

 

 

 

The Cyt-b sequences obtained for P. parva were aligned with the sequences obtained 

for P. parva populations in the UK (Blake et al. unpublished), using Clustal W in 

BioEdit ver. 5.0.9 (Hall 1999). A phylogenetic tree was constructed to identify the 

haplotypes of P. parva individuals positive for S. destruens. The phylogenetic analysis 

using maximum likelihood was performed in MEGA 7 (Kumar et al. 2016). The tree 

was calculated using Hasegawa-Kishino-Yano model (Hasegawa et al. 1985) with 

10,000 bootstraps. The Cyt-b gene sequences from Ictiobus bubalus (JF799443.1), 

Hypentelium nigricans (JF799441.1) and Danio rerio (JN234356.1) were used as 

outgroups. 

 

 

 

To analyse the demographic history of S. destruens and P. parva populations in the UK, 

the mismatch distribution analysis was carried out for the 18S rRNA and Cyt-b genes as 

described in Section 3.2.6. The expected values for a model of population expansion 

were calculated and plotted against the observed values. Demographic changes were 

analysed by calculating Harpending’s raggedness index (Hri) (Harpending et al. 1993) 

and the sum of squared deviations (SSD) (Schneider and Excoffier 1999), carried out in 

Arlequin version 3.5 (Excoffier and Lischer 2010). To test for the hypothesis of 

population expansion in S. destruens and its host P. parva, only Ramos-Onsins & 

Rozas’ R2 test (Ramos-Onsins and Rozas 2002), which is a powerful test for small 

sample sizes, was performed for S. destruens. For P. parva, three tests: Fu’s (Fu 1997) 

Fs, and Tajima’s D (Tajima 1989) test by Arlequin and Ramos-Onsins & Rozas’ R2 test 

(Ramos-Onsins and Rozas 2002) by DnaSP (Librado and Rozas 2009) were conducted. 
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For the Tajima’s D and Fs tests, P-values were calculated based on the coalescent 

simulation algorithm. The R2 test P-values were based on parametric bootstrapping (10, 

000) with coalescence simulations. 

 

 

 

4.3 Results 

4.3.1 Sphaerothecum destruens prevalence in UK water bodies 

Sphaerothecum destruens was detected using molecular tools in 14 individuals out of 

the 269 sampled across 7 locations (Table 4.1, Fig 4.1). Fifty percent of the P. parva 

sites tested positive for S. destruens with the prevalence ranging from 3 to 6 %. Two of 

the 3 populations were from enclosed still water fisheries (populations 4 and 6, with 6.7 

% prevalence (Figure 4.1). The third S. destruens positive P. parva population was 1a 

which represented the first accidental P. parva introduction in 1996 and tested positive 

for S. destruens with a prevalence of 3 % (Figure 4.1). This population was from a 

disused aquaculture facility whose effluents are discharged in the adjacent Tadburn lake 

stream (populations 1b and c) which connects with the River Test in Hampshire. A 

number of native species were sampled from this stream (Table 4.1) and tested positive 

for S. destruens. These included chub Squalius cephalus, dace Leuciscus leuciscus, 

brown trout Salmo trutta and roach Rutilus rutilus (population 1b) with an overall 

prevalence across all species of 57 %. In population 2, both P. parva and R. rutilus were 

sampled with S. destruens being present in R. rutilus with a prevalence of 20 %. 

 

The histopathology of the fish samples tested positive for S. destruens through PCR did 

not show any signs of disease. 

 

 

 

4.3.2 Phylogenetic analysis of Sphaerothecum destruens using the 18S rRNA and 

cytochrome b sequences 

Five S. destruens haplotypes were detected for the 18S rRNA gene in 14 individuals 

from 5 UK water bodies. Nine variable sites were recorded on the 18S rRNA Haplotype 

1 (Figure 4.2 A) that was also the most abundant with 10 individuals from this study 

and 3 individuals from previous studies having this haplotype (Arkush et al. 2003, Paley 

et al. 2012). All of the isolates obtained from the UK water bodies grouped with the 



89 

 

already deposited 18S rRNA sequences except for four isolates. Haplotype 3 was found 

in P. parva from site 4, Haplotype 4 was found in S. cephalus and Haplotype 5, 6 were 

found in L. leuciscus all from site 1b (Figure 4.1). 

 

 

Figure 4.2. Minimum spanning network based on 18S rRNA sequences (397 bp) of 

Sphaerothecum destruens isolated from (A) UK water bodies (n=14); (B) across world; 

n= 14 (Chapter 3) and UK water bodies n= 14 (this Chapter), together with S. destruens 

sequences (Haplotype 1: UK-FN996945.1, USA-AY267344.1, AY267345.1; Haplotype 

2: USA- AY267346.1 and Turkey). 

A 

B 
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In the sequence alignment of S. destruens isolates from this study together with the 

sequences obtained across P. parva’s native and invasive range (Chapter 3), 12 variable 

sites were recorded with one parsimony site. Apart from Haplotype 1, none of the 18S 

rRNA haplotypes in the samples from UK were shared with samples from China 

(Figure 4.2B). 

 

 

 

None of the 18S rRNA S. destruens positive individuals amplified with S. destruens-

specific ITS 1 PCR. Seven out of 14 18S rRNA S. destruens positive individuals were 

amplified for the Cyt-b. The Cyt-b PCR was performed 6 months after the 18S rRNA 

PCR with the extracted DNA having been stored at -20 °C. This could explain the 

discrepancy in amplification success using the Cyt-b gene despite both the 18S rRNA 

and Cyt-b markers having similar detection efficiencies (Chapter 2). Three haplotypes 

were detected for Cyt-b (700 bp) in six individuals with a total of 22 variable sites 

(Figure 4.3). The S. destruens Cyt-b sequences obtained from Chinese P. parva 

populations showed no DNA polymorphism. These sequences were identical to the ones 

found in UK water bodies (site 1a, 1c and site 4) except for two isolates from P. parva 

at site 4 and from R. rutilus site 1b. 

 

 

Figure 4.3. Minimum spanning network based on mitochondrial cytochrome b 

sequences of Sphaerothecum destruens obtained from Pseudorasbora parva (China; 

n=5 and UK water bodies; n=8). 

 

 

 

4.3.3 Amplification of Pseudorasbora parva mitochondrial cytochrome b gene 

The genotyping of P. parva host populations in the UK identified a total of 4 haplotypes 

(Haplotype 1, 3, 4 and 6; Figure 4.5). The P. parva populations from the UK grouped 

with populations across its native and invasive range (Chapter 3; Hardouin et al. 

submitted) and clustered with P. parva Haplotypes 1, 3, 4 and 6 (Figure 4.4), with 
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Haplotype 4 and 6 being positive for S. destruens presence. The highest number of P. 

parva individuals positive for S. destruens had P. parva Cyt-b Haplotype 4. 

Interestingly, this haplotype is present across samples from Europe and Japan but absent 

in samples from China. Moreover, this haplotype is positive for S. destruens in samples 

across two European countries UK and Spain. This indicates that the P. parva sampling 

in China failed to capture P. parva population(s) with Cyt-b Haplotype 4 which is the 

most common in the species invasive range. Another interesting observation is the 

unique Cyt-b Haplotype 2 for S. destruens from the UK site 4 (Figure 4.3) which was 

also obtained from a P. parva population with Cyt-b Haplotype 4. 

 

 

 

4.3.4 Demographic analysis of Pseudorasbora parva and Sphaerothecum destruens  

The mismatch distributions for the S. destruens 18S rRNA and Cyt-b haplotypes were 

multimodal (Figure 4.6), which can indicate that the population is either at demographic 

equilibrium or experiencing decreasing population sizes (Rogers and Harpending 1992). 

The observed distribution deviated significantly from the expected distribution curve for 

both 18S rRNA and Cyt-b gene. For the Cyt-b sequences two distinct peaks were 

observed (Figure 4.4). The Tajima’s D non-significant positive value for 18S rRNA and 

Ramos-Onsins & Rozas’ R2 non-significant value for Cyt-b indicate that there was no 

demographic expansion in the UK S. destruens population. 

 

 

 

The mismatch distribution plot for the P. parva UK populations also had a multimodal 

distribution (Figure 4.4 C) which can be interpreted as a signature of populations at 

demographic equilibrium or decline. The SSD and raggedness index values were 

statistically significant, indicating the data does not fit the model of population 

expansion. The Tajima’s D positive value suggests that either balancing selection or 

decrease in population size could have occurred (Pichler 2002) but was statistically not-

significant. The Fs and R2 values were also statistically not-significant rejecting the 

demographic expansion hypothesis and supporting that the population is at demographic 

equilibrium. 
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Figure 4.4. Molecular phylogenetic analysis Cyt-b haplotypes of Pseudorasbora parva 

populations across the species’ native and non-native range. The tree was build using 

the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model 

(Hasegawa et al. 1985) with Gamma distribution in Mr Bayes (Ronquist et al. 2012). 

The coloured circles indicate the countries that each haplotype has been found in and 

the coloured stars indicate Sphaerothecum destruens positive haplotypes in that country. 
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Figure 4.5. Cyt-b Haplotypes of Pseudorasbora parva across sampled UK sites (Blake et al. unpublished). The tree was built using the 

Maximum Likelihood method based on the Hasegawa-Kishino-Yano model (Hasegawa et al. 1985) with Gamma distribution analysis of 

mitochondria mitochondrial cytochrome b gene of Pseudorasbora parva in MEGA 7 (Kumar et al. 2016). Danio rerio (JN234356.1), 

Ictiobus bubalus (JF799443.1) and Hypentelium nigricans (JF799441.1) were used as outgroups. Within the circles, the proportion of each 

haplotype is indicated for each population. The number of asterisks on each site specifies the number of P. parva individuals positive for 

Sphaerothecum destruens. All S. destruens positive P. parva had Cyt-b haplotypes 1 and 2. 
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Figure 4.6. Frequency distributions of the number of pairwise nucleotide differences 

(mismatch) between (A) 18S rRNA and (B) Cyt-b sequences of Sphaerothecum 

destruens in the UK, and (C) Cyt-b sequences of Pseudorasbora parva populations in 

the UK. The solid line is the theoretical distribution under the hypothesis of population 

expansion. The values for Sum of squared differences (SSD), Harpending’s raggedness 

index (Hri), Fu’s Fs, Tajima’s D and Ramos-Onsins & Rozas’ R2 statistics are listed 

next to each dataset. The P-values for each statistical test are presented in the 

parenthesis and significance was set at P <0.05 except for Fs P<0.01. 
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4.4 Discussion 

In this study, the first epidemiological survey for S. destruens in the UK was carried out 

through the screening of its reservoir host populations of P. parva. Sphaerothecum 

destruens was detected in 50 % of the 7 P. parva populations sampled, with a wide 

geographical distribution with similar prevalence per population as in China (5-10 %).  

This finding provides additional support to the hypothesis that P. parva can act as a 

reservoir host of S. destruens. This is the first confirmed record of S. destruens in P. 

parva from the UK. Concomitant work suggests that there were at least two 

independent P. parva introductions to the UK (Blake et al. unpublished), with the tested 

populations in this study spanning populations for both fish sources (Group 1: sites 1, 3, 

4, 6 and 7; Group 2: sites 2, 5). Populations from both introduction groups have been 

found positive for S. destruens.  

 

 

 

In addition to determining the epidemiology of S. destruens, this study also aimed at 

determining whether disease transfer has occurred to native fishes in adjacent 

communities. This was achieved by monitoring the adjacent river communities to the 

first recorded introduction of P. parva to the UK (Site 1 Figure 4.1). The work has 

indicated that S. destruens was present in a number of native fish species adjacent to site 

1 and these included salmonids (S. trutta) and cyprinids (R. rutilus, S. cephalus and L. 

leuciscus). This finding supports the concerns raised by Al-Shorbaji et al. (2016) and 

Andreou and Gozlan (2016) regarding the potential of parasite transfer to adjacent 

communities. The 18S rRNA and Cyt-b analysis of the S. destruens positive fishes at 

site 1 suggest the potential of a radiation of the parasite to new hosts. S. cephalus and L. 

leuciscus have 3 new haplotypes for the 18S rRNA gene (Haplotype 6, 7 and 8) and 

new Cyt-b haplotype (Haplotype 3) for R. rutilus. The Fenton et al. (2015) study on 

generalist parasites has indicated that once transmission to a new host occurs, parasite 

dynamics would be driven through intra-species transmission rather than inter-species 

transmission. This was independently shown for S. destruens through disease modelling 

which has indicated that S. destruens dynamics were driven through intra-species 

transmission following an initial inter-species transmission (Al-Shorbaji et al. 2016).  

Thus, the new S. destruens haplotypes associated with these new host species could be 

the result of co-evolution with new hosts. However, equally they could represent the 

original S. destruens diversity in the P. parva population in site 1. P. parva was 
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eradicated from Site 1 in July 2015 (personal communication Dr Rob Britton), and 

future work should include revisiting these native populations and testing for the 

presence of S. destruens in order to confirm that they can indeed sustain S. destruens in 

the absence of P. parva. 

 

 

 

The phylogenetic analysis between S. destruens obtained across its native and invasive 

range and UK water bodies identified 8 unique haplotypes of 18S rRNA gene in 27 

individuals. Haplotype 1 was the most abundant with 11 individual from China, 1 

individual from Spain and Turkey, 10 individuals from UK waterbodies (this study) and 

3 individuals from previous studies (Arkush et al. 2003, Paley et al. 2012).  

 

 

 

This work was also able to test the mt Cyt-b marker developed for S. destruens (Chapter 

2) for its phylogenetic resolution. The comparison of the Cyt-b sequences of the two 

unique haplotypes of S. destruens isolates (Haplotype 1 and 2) showed twenty-two 

nucleotide differences in 689 bp region. This suggests that the marker can be 

phylogenetic informative at the population level. However, this can only be confirmed 

by testing this marker with S. destruens strains from North America and Turkey. 

 

 

 

 

The 18S rRNA and Cyt-b markers were more diverse in the UK compared to China 

(Chapter 3). This is despite the geographical distance between the most northerly and 

southerly positive P. parva populations in China being approximately 18,000 km 

compared to the UK sites 1b and 4 (~257 km apart) which showed the highest variation 

in 18S rRNA and Cyt-b sequences. Most of the variation could be driven by different 

hosts of S. destruens at UK site 3 and 8 but could also be the result of a high mixing of 

P. parva that has occurred in its continental European range prior to its introduction to 

the UK from Germany (Gozlan et al. 2010a). In addition, since the P. parva sampling 

was not exhaustive, the UK S. destruens diversity would suggest that not all the 

potential sources of P. parva to Europe were captured (as also supported by the P. parva 

Cyt-b haplotype data). However, the lack of amplification of the ITS 1 gene of S. 

destruens isolates obtained in the present study limits these conclusions as this is the 
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only gene that has been used previously to indicate geographical isolation of the S. 

destruens isolates (Gozlan et al. 2009). 

 

 

 

In the UK, no population expansion was observed for S. destruens and its host P. parva 

whereas in its native range, China, the P. parva showed evidence of population 

expansion (Chapter 3). Mismatch analysis showed a multimodal distribution for both 

18S rRNA and Cyt-b genes for S. destruens and for its healthy host P. parva 

populations in the UK. Multimodal/bimodal distributions could be due to: a) recent 

population declines, which suggest that S. destruens initially had a bigger population 

that suddenly contracted or b) balancing selection equally acting on two distinct S. 

destruens isolates resulting in bimodal distribution (Figure 4.4 B). The introduced P. 

parva populations in the UK had a multimodal distribution suggesting the UK P. parva 

population is either at long term stability or has gone through population bottleneck 

(Rogers and Harpending 1992). A positive Tajima’s D value indicates a decrease in 

population size (Pichler 2002), but for the UK P. parva populations it is statistically 

non-significant, suggesting that the population is at equilibrium. When populations are 

at equilibrium, the theoretical curves are free of waves as in Figure 4.4 (Rogers and 

Harpending 1992). The Fs and R2 values were also statistically non-significant which is 

consistent with the suggestion that population is at demographic equilibrium. 

 

 

 

S. destruens associated histopathology was not detected in any of the S. destruens 

positive fishes (through molecular detection). Thus, there was no evidence that the 

presence of the parasite has any detrimental effects for the infected fishes. However, it 

is important to note that histopathology is a far less sensitive detection method as it only 

looks at a small proportion of the whole organ. For parasites such as S. destruens that 

can infect multiple organs this can lead to limited detection. As the study by Ercan et al. 

(2015) has indicated, the best method by which a population impact can be detected is 

through close monitoring of population site coupled with disease testing in affected 

populations. This is due to the chronic pattern of mortality associated with S. destruens 

which is difficult to detect with single point sampling (Andreou et al. 2011)  
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The increasing number of hosts identified in the wild confirms the ability of S. 

destruens to use a broader phylogenetic range of hosts and resultantly maximise its 

survival and range expansion even in the absence of its reservoir host (Krasnov et al. 

2008, Andreou and Gozlan 2016). Fish populations with low prevalence of S. destruens 

can become reservoirs for infection themselves (Peeler et al. 2011) and can result in the 

re-emergence of the disease if multiple reservoir host populations cross the epidemic 

threshold – i.e. the level above which S. destruens can spread significantly and cause an 

epidemic. The results from the present study provide valuable insights into the 

distribution of S. destruens in UK waters that can contribute in formulating management 

options for the parasite. It is evident that multiple P. parva populations must be sampled 

to determine the presence of S. destruens and that native fish communities associated 

with any P. parva populations must be monitored for the presence of S. destruens. This 

is particularly relevant to multiple European countries where P. parva has spread to 

river catchments such as Romania, Hungary, Ukraine, Slovakia, Germany, Austria and 

France (Gozlan et al. 2010a). Monitoring needs to include host population estimates 

coupled with S. destruens prevalence on a yearly basis as in Ercan et al. (2015).  

 

 

 

4.5 Summary 

The present study has provided valuable insights into the distribution of S. destruens in 

the UK with important management implications. The detection of S. destruens in P. 

parva populations emphasizes the monitoring of the adjacent native fish communities. 

Furthermore, the work has identified new potential fish hosts for S. destruens in the 

wild. The transfer of the parasite to new hosts stresses the implementation of effective 

measures to control S. destruens’ further spread in the UK. The Cyt-b marker analysis 

identified two distinct haplotypes for S. destruens, with one haplotype similar to S. 

destruens from China and the other one unique to the UK. The demographic analysis 

showed that both S. destruens and its host P. parva populations are at demographic 

equilibrium in UK. This congruence between S. destruens and its host further supports 

the hypothesis that P. parva act as S. destruens reservoir host in the UK. 
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Chapter 5  

Environmental DNA detection of Sphaerothecum destruens using real-

time PCR 
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5.1 Introduction 

Parasite detection using environmental DNA (eDNA) is a powerful tool in disease 

ecology and epidemiology as it allows fast detection (Walker et al. 2007, Huver et al. 

2015). It is particularly powerful when monitoring intracellular parasites, where 

traditional detection techniques involve the sacrifice of the host. Sphaerothecum 

destruens is an intracellular parasite that has been identified as a potential threat to 

freshwater fish biodiversity (Gozlan et al. 2005), with the recommendation that its 

prevalence should be closely monitored (Andreou and Gozlan 2016). Furthermore, the 

parasite has been identified as a non-native parasite to Europe (Chapter 3), having been 

introduced with the highly invasive fish Pseudorasbora parva, potentially increasing its 

impact to naïve fish communities (Chapter 4). An extensive eradication program for P. 

parva has been designed and executed since 2005 in the UK (Britton and Brazier 2006). 

 

 

 

Theoretical work has indicated that eradication of the host, in this case P. parva, does 

not prevent the establishment of S. destruens in adjacent fish communities (Al-Shorbaji 

et al. 2016) due to the environmental transmission of the parasite. S. destruens’ spores 

infect host cells in which they multiply asexually, eventually causing cell death in the 

host. Following cell death, the spores can infect new cells and/or be released in the 

environment through bodily fluids such as urine, bile or reproductive fluids (Arkush et 

al. 2003). In the environment, S. destruens spores divide, releasing up to 5 flagellated 

zoospores per spore (Arkush et al. 2003). The ability of this parasite to persist in the 

environment (Andreou et al. 2009) and its indirect transmission through contact with 

spores or zoospores present in its surroundings, increases the probability of transmission 

to new geographic areas (as indicated in Chapter 4). In order to reduce the risk of 

disease spread, it is thus important to create epidemiological maps of S. destruens (see 

Chapter 4; Figure 4.1 for the epidemiological map for the UK) and fish movements 

should be screened for the presence of S. destruens.  

 

 

 

eDNA detection offers a versatile detection tool that can be used to construct 

epidemiological maps for the parasite, as well as to establish presence/absence in fish 

consignments. For example, all water bodies where S. destruens is detected through 
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eDNA will have to be confirmed as positive using the traditional method of detection 

which involves DNA-based detection and microscopic examination of host tissue 

(Andreou et al. 2011). Here, an eDNA tool was developed and validated in order to 

monitor S. destruens’ presence in both the wild and in fish consignments. The specific 

objectives were to: (i) develop and validate an eDNA detection assay for S. destruens, 

using a controlled experimental set-up and environmental samples; and (ii) use the 

eDNA detection assay to monitor the effectiveness of the P. parva eradication 

programme in also eradicating S. destruens. This was achieved using the original site of 

introduction of P. parva and S. destruens in the UK.  

 

 

 

5.2 Material and methods 

5.2.1 Spore collection 

The S. destruens isolate used in this study was originally isolated from sunbleak L. 

delineatus (Paley et al. 2012). Sphaerothecum destruens was cultured in Epithelioma 

papulosum cyprini (EPC) cells incubated at 15 °C in minimal essential medium eagle 

(MEM)  with sodium bicarbonate supplemented with 10 % foetal bovine serum (FBS), 

penicillin 100 IU/ml, streptomycin 100 µg/ml, gentamycin 50 µg/ml and 2 mM L-

glutamine (Paley et al. 2012).  

 

 

 

Twenty days following the last passage cell associated spores were collected from the 

infected cell monolayer. Prior to collection, the cell monolayer was washed with 5 ml 

MEM medium to remove any cell free spores. The infected cell layer was scraped with 

a cell scraper and suspended in 10 ml of MEM and transferred to 50 ml sterile tubes. 

The cells were centrifuged at 1,200 x g for 10 minutes and the supernatant was 

decanted. The cells were re-suspended in 10ml autoclaved distilled water and vortexed 

vigorously to release spores from host cells. The released spores were washed twice 

with sterile water and centrifuged at 1,200 x g for 5 minutes between each wash step. 

The supernatant was discarded between steps and the spore pellet was suspended in 

sterile water. The spores were enumerated using haemocytometer (Sigma). Cell 

associated spores were prepared in sterile distilled water at concentrations of 9.28 x 105 

spores/ml and 9.28 x 104 spores/ml and were used for subsequent spiking experiments. 
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5.2.1.1 Experimental Design 

To determine the detection limit for S. destruens, three spore concentrations 

representing High (1,500 spores/ml), Medium (150 spores/ml) and Low (50 spores/ml) 

were spiked in two water conditions - distilled water and turbid water. The turbid water 

treatment was created to represent natural conditions and included 10 g of un-

autoclaved soil, 200 ml of aquarium water in 1,800 ml of distilled water. The 

experiment was set in 3 L plastic tubs which were covered with cling film with holes for 

air circulation. Each treatment was triplicated and both water treatments were 

maintained at 18 °C for 20 days. Untreated controls consisted of distilled water and 

were include for each sampling point. 

 

 

 

5.2.1.2 Water collection and filtration in the experimental setup 

Water was sampled from both water treatments at three time points: 6, 13 and 20 days 

post incubation. At each sampling point, 100 ml of water was collected (Figure 5.1) and 

was filtered through a 0.45 µm cellulose nitrate filter membrane (WhatmanTM). Prior to 

the sample collection, water was disturbed (to disperse the spores) with a glass pipette 

moved five times lengthways and sideways with water samples being collected from the 

centre of the tub. The centre of each tub was marked on the outside of each tub.  

 

 

 

5.2.1.3 Disinfection procedure for filter housing 

Sodium hypochlorite (NaOCl) is an effective disinfectant and can denature nucleic 

acids. After every filtration, the filtration setup was immersed in 0.5 % sodium 

hypochlorite solution for 5 minutes. All components were then washed and flushed with 

tap water followed by two washes with distilled water. Controls which included distilled 

water were used between dilutions and were run through the filtration system to detect 

cross-contamination. The filter papers were then removed using sterile forceps and were 

subjected to DNA extraction. 
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Figure 5.1. An overview of environmental DNA (eDNA) workflow for Sphaerothecum 

destruens detection in the laboratory setting. 

 

 

 

5.2.1.4 DNA extraction  

The DNA was extracted from filter papers using Power Water DNA Isolation Kit (MO 

BIO, Inc). Following filtration, each filter membrane was placed into a power bead tube 

(Figure 5.1). All the steps were performed according to manufacturer’s guidelines and 

DNA was eluted in 100 µl elution buffer. DNA was stored at -20 °C until further use.  

 

 

 

The extracted DNA was screened for S. destruens’ DNA presence using the real-time 

PCR developed in this study. As a control, all experimental samples were also amplified 
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using the standard nested PCR for the detection of S. destruens (Section 2.2.1; 

Mendonca and Arkush 2004) as the amplified product from this PCR can be sequenced 

to confirm the parasite identity.  

 

 

 

5.2.2 Real-time PCR 

5.2.2.1 Design of real-time PCR primers and probe 

Sequences from 18S rRNA gene of S. destruens (AY267344.1, AY267345.1, 

AY267346.1, and FN996945.1) and of fish species Salmo trutta (DQ009482.1), R. 

rutilus (AY770580.1), Oncorhynchus mykiss (FJ710874.1) and C. carpio (FJ710827.1) 

were retrieved from the GenBank sequence database and were aligned with Clustal W 

in BioEdit (Hall 1999). The primers and probe specific to S. destruens 18S rRNA gene 

segment were designed with the Primer Express 2.0 software (Applied Biosystems). 

The Taqman MGB probe was labelled with the fluorescent reporter dye FAM at the 5′-

end and a non-fluorescent quencher MGBNFQ at the 3′-end. The unlabelled PCR 

primers and Taqman probe were purchased from Applied Biosystems. 

Table 5.1. Real time PCR primers and probe. 

 

 

 

 

5.2.2.2 Real-time PCR reaction conditions 

The TaqMan® Gene Expression Master Mix-UDG was used for this assay (Invitrogen). 

The reaction conditions consisted of 20 µl reaction volumes containing 10 µl TaqMan® 

Gene Expression Master Mix-UDG, 1 µl assay mix (primers and probe) and 2 µl of 

DNA template (undiluted). All reactions were performed in the StepOne real time PCR 

machine (Applied Biosystems) and analysed by StepOne software v 2.0. In all the 

analysis, the software defined baseline was automatically set to 0.02, and ROX was 

Primer 

/probe 

Sequence (5′→3′) Melting 

temperature (°C) 

Forward 

primer 

ACTTTGCGAATCGTATGACATTTTGTC 62.11 

Reverse 

primer 

CCACTACCTTACCATCGAAAGTTGA 61.68 

Probe ACGATGATTCATTCAAATTTC 72.31 
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selected as a passive reference. Cycling conditions consisted of a holding stage at 50 °C 

for 2 min to allow UDG enzymatic activity and initial denaturation at 95 °C for 10 min 

followed by 40 cycles of denaturation at 95 °C for 15 seconds and annealing at 60 °C 

for 1 min. The extraction blank controls from the DNA extraction were included along 

with the no DNA template PCR controls. 

 

 

 

5.2.2.3 Limits of detection  

In order to quantify the genomic S. destruens DNA in samples and to determine the 

sensitivity of the assay, a calibration curve was generated using genomic DNA extracted 

from S. destruens spores. The curve was obtained by plotting DNA concentration 

(ng/µl) against cycle threshold (Ct) values. A ten-fold serial dilution of S. destruens 

genomic DNA was prepared in UV-irradiated sterile water to give a template 

concentration of 10 ng/µl to 1 fg/µl. The standards were run in triplicate in order to test 

the repeatability of the quantification using the real-time PCR assay. Negative controls 

used in this assay consisted of sterile water. The detection limit was defined as the 

lowest genomic S. destruens DNA concentration detected at least 95 % of the times by 

the RT-PCR assay. 

 

 

 

5.2.2.4 Real-time PCR assay specificity 

The S. destruens-specific 18S rRNA assay was tested for cross-reactivity with pure fish 

DNA. The fish species tested for cross-reactivity were carp Cyprinus carpio, roach 

Rutilus rutilus, minnow Pimephales promelas, common bream Abramis brama, chub 

Squalius cephalus, barbel Barbus barbus and topmouth gudgeon Pseudorasbora parva. 

The real-time PCR primers specificity was also tested using a PCR amplified 

Dermocystidium salmonis 18S rDNA section inserted pGEM® –T (Promega) provided 

by Dr Richard Paley (CEFAS laboratory, Weymouth, UK). A serial dilution of all the 

tested fishes DNA and D. salmonis DNA was created in sterile UV irradiated water 

ranging from 5 ng/ µl to 0.0005 ng/µl. Two microliter of each dilution was used as a 

starting material for real time PCR giving a total genomic DNA range of 10 ng to 0.01 

ng. 
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5.2.3 Assessment of the eDNA detection technique in the field 

For the detection of S. destruens in environmental samples, three independent water 

bodies in the UK were targeted (Table 5.2): (a) a decommissioned ornamental fish farm 

(referred as section 1a, SU3862) where P. parva has been present since mid-1980s, and 

S. destruens has been detected in sampled fish (Chapter 4); (b) the stream above the 

decommissioned fish farm (referred as ‘section 1d’) as well as the stream below the 

decommissioned fish farm (referred to as ‘section 1b’ and  ‘Section 1c” and where S. 

destruens positive fish have been detected; Figure 5.2) (c) the Bourne stream (SZ0679) 

and (d) the River Teme (SO8335, SO7237). 

 

 

 

(a, b) Sampling the decommissioned ornamental fish farm and the adjacent stream 

P. parva was first recorded in the UK in the outflow stream of this ornamental fish farm 

in 1996 (Domaniewski and Wheeler 1996). The site was considered as a high-risk site 

based on the conservation and fishery value of the adjacent waters and complete 

eradication of P. parva was initiated in summer 2014. Following rotenone application, 

the eradication programme was completed in March 2015 (personal communication Dr 

Rob Britton). The ornamental fish farm consists of numerous artificial ponds that were 

used to breed golden orfe Leuciscus idus. The fishery has an outflow into the Tadburn 

Lake stream which flows into the River Test approximately 6 km downstream of the 

fishery. Water sampling at this location occurred prior and post P. parva’s eradication. 

The P. parva sampled from this fish farm (section 1a) and native fish species (Chub 

Squalius cephalus, Dace leuciscus leuciscus, brown trout Salmo trutta and Roach 

Rutilus rutilus) from the adjacent streams (section 1b and 1c; Figure 5.2) in 2013 

confirmed S. destruens presence (Chapter 4, Table 4.1). 

 

 

 

(i) Sampling of the decommissioned ornamental fish farm pre-P. parva 

eradication  

The site was first sampled in 2013, whilst P. parva was present in the fishery. Within 

the ornamental fish farm section 1a, two ponds Pond 12 (P 12) and Pond 14 (P 14) and 

the overflow pond (OF) were sampled (Figure 5.2). All ponds were populated with P. 
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parva at varying densities Table 5.2. Six 1 L samples were collected from each pond 

(P12, P14, OF), from sampling points spread equidistantly around the pond edge 

(approximately 15 m apart in P12 and P14, and 20 m apart in OF).  

 

 

 

(ii) Sampling of the decommissioned ornamental fish farm post P. parva 

eradication 

In order to monitor the effectiveness of the eradication programme in controlling S. 

destruens, water samples were collected in 2016 from multiple locations associated with 

the decommissioned ornamental fish farm. These included the stream feeding the 

ornamental fish farm (section 1d, Figure 5.2); the fishery (Pond 1, section 1a, Figure 

5.2) and the Tadburn Lake stream (sections 1b and 1c, Figure 5.2). Details on the water 

sampled are in Table 5.2. One litre water samples were collected from section 1c and 

section 1d at three sampling points and from section 1b at six sampling points (see 

Table 5.2). The water samples were immediately stored on ice and were filtered within 

24 hours.  

 

 

 

 (c, d) Sampling the Bourne stream and River Teme 

In order to test the specificity of the technique for S. destruens detection in natural 

conditions, water samples were collected from Bourne stream and River Teme (Table 

5.2). These two water bodies have no known introduction or sighting of S. destruens’ 

healthy host P. parva. One litre water samples were collected from the Bourne stream at 

three points approximately 356 m apart and were stored on ice and filtered within 24 

hours. One litre water samples were also collected from two locations at Knightwick 

and below Powick weir in River Teme (Table 5.2) and were stored on ice and filtered 

within 24 hours.  

 

 

 

(iii) Fish sampling from downstream of decommissioned ornamental fish 

farm. 

The native fish species sampled from these downstream sections in 2013 pre-P. parva 

eradication were found positive for S. destruens through PCR (Chapter 4). Electric 



108 

 

fishing, using a back-mounted Smith-Root LR-24 Backpack, was performed post P. 

parva eradication in 2016 to sample fish from downstream of the fish farm referred as 

“section 1b” and “section 1c” respectively. The fish sampled were stone loach 

Noemacheilus barbatulus, bullhead Cottus gobio and sticklebacks Gasterosteus 

aculeatus (Table 5.2). All the brown trout were returned to the water without processing 

due to permission restriction by the Environment Agency. The sampled fish were 

euthanized through anaesthetic overdose on site following Home Office guidelines and 

were transferred to the laboratory on ice. 

 

 

 

In the laboratory, all the fish were preserved in 100 % ethanol until further processing. 

The fish were dissected and kidneys were collected as explained in Section 3.2.1. The 

DNA extraction was performed using Qiagen DNeasy Blood and tissue kit (Qiagen) and 

screened for S. destruens presence through nested Cyt-b PCR as presented in Section 

2.2.3. 

 

 

 

5.2.3.1 Collection and filtering of environmental samples 

The water samples were collected in 1 L sterile plastic bottles attached to rods and the 

bottles were submerged in a way that a vertical column of water was collected. The 

sampling equipment was changed between each sampling point and disposable gloves 

were used for every site. Two negative controls were inserted during field sampling 

(one at the start and one at the end). Field negative samples consisted of 1 L sterile 

plastic bottles filled with sterile water which were treated in the field in the exact 

manner as sample collection bottles. In the lab, the water was pre-filtered using a 200 

µm filter to remove coarse material. An 80-500 ml subsample was further filtered using 

a 0.45 µm cellulose nitrate filter membrane (WhatmanTM) which was then subjected to 

DNA extraction (Section 5.2.2.3) and RT-PCR (Section 5.2.3.2). 
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Table 5.2. Field sampling for the validation of the environmental DNA (eDNA) technique for Sphaerothecum destruens. 

Site  

 

 

Ponds 

/stream 

Sampling points Geographical 

coordinates 

Fish composition Volume 

of water 

filtered 

(ml) 

Fish sampled 

(number) 

Decommissioned ornamental fish farm 

 

(i) Pre-eradication of P. 

parva (2013) 

Section 1a  

Pond 12 

(52 m x 7 m) 

Six 1 L samples 

(12-1–12-6) 

around the pond 

edge app. 15 m 

apart 

 

 Low density of P. 

parva 

  

Section 1a 

Pond 14 

(52 m x 7 m) 

Six 1 L samples 

(14-7 –14-12) 

around the pond 

edge app. 15 m 

apart 

 

 

SU3862 

 

High density of P. 

parva, Stickleback  

Gasterosteus 

aculeatus and Signal 

Crayfish 

Pacifastacus 

leniusculus. 

 

 

80 

- 

 

Section 1a Over 

Flow Pond (pond 

running east-west, to 

south of fishery pond 

row). 

(65 m x 15 m)  Intermediate density of P. parva, C. cyprio, L. idus, T. tinca, G. aculeatus and Signal Crayfish 

 

Five 1 L samples 

(OF-13-OF17) 

around the pond 

edge app. 20 m 

apart 

 

Intermediate density 

of P. parva, C. 

cyprio, L. idus, T. 

tinca, G. aculeatus 

and P. leniusculus. 

- 
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(ii) Water sampling post-

eradication of   P. parva 

(2016) 

Section 1d 

(60 m stretch to inlet to 

fishery) 

Three 1 L samples 

app. 20 m apart 

SU3932   

 

 

 

 

 

 

500 

 

 

- 

Section 1a  

Pond 1  

(52 m x 7 m) 

 

Two 1 L samples 

(1a-1b) from two 

extremes of the 

pond. 

SU3862 Carp (Cyprinus 

carpio) 

- 

 

Section 1b- 

(122 m downstream of 

fishery) SU3862 

 

Three 1 L samples 

(1b1- 1b3 along the 

stream stretch app. 

40 m apart 

 

SU3862 

- 

 

 

 

 

 

Section 1b 

(360 m downstream of 

fishery) SU3848 

 

Three 1 L samples 

(1b4-1b6) along the 

stretch app. 50 m 

apart 

 

SU3848 

 

Stone loach 

Noemacheilus 

barbatulus, bullhead 

Cottus gobio, 

stickleback G. 

aculeatus, Signal 

crayfish, sea lamprey 

Petromyzon marinus  

 

Stone loach 

Noemacheilus 

barbatulus (3), 

bullhead Cottus 

gobio (5), 

stickleback G. 

aculeatus (9) 

 

Section 1c  

(500 m downstream of 

fishery)       SU3842 

 

Three 1 L samples 

(1c1-1c3) 

 

SU3842 

  

Bullhead C. 

gobio (2) 

Bourne stream 

 

Site 1 (stagnant water)  

 Usually Rudd, Carp, Minnow, Sticklebacks and Chub 

 

 

 

1 L water samples 

at each site 

 

 

 

SZ0689 

 

 

 

Rudd Scardinius 

erythrophthalmus, C. 

carpio, Minnow 

 

 

 

 

1000 

- 

Site 2  

(Fast flowing water) 

 

- 

 

Site 3 (this site 
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 was further 

downstream to site 1 & 

site 2) 

SZ0679 Phoxinus phoxinus, 

G. aculeatus and S. 

cephalus 

- 

River Teme Powick below SO8335 1 L water samples SO8335 S. cephalus, barbel 

Barbus barbus, shad 

Alosa fallax, P. 

marinus 

1000  - 

Knightwick SO7237 - 
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Figure 5.2. An overview of the decommissioned ornamental fish farm ponds (section 1a) and Tadburn Lake stream (blue). Water samples were 

collected from four ponds from Section 1a; picture insert- Pond 1 (P1), Pond 12 (P12), Pond 14 (P14) and Overflow pond (OF). After the eradication 

of P. parva from this fish farm, water samples were collected from the Tadburn Lake stream section feeding into the farm referred as “Section 1d”, and 

the Tadburn Lake stream section receiving the facility’s outflow termed as “Section 1b” and 500 m after the facility towards the Tadburn Lake 

stream’s end “Section 1c”. Blue arrows (→) indicate flow direction. The red lines represent connection between the Tadburn Lake stream and the 

decommissioned ornamental fish farm with continuous lines (▬) representing above ground connections and discontinuous lines (---) representing 

below ground connections.  
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5.3 Results 

5.3.1 Validation of the eDNA detection method of Sphaerothecum destruens using 

real-time PCR.  

Using ten-fold serial dilution of S. destruens genomic DNA, the limit of detection of 

Taqman assay was 1 pg/µl (Table 5.3). The Ct-values with standard genomic DNA 

dilutions in the late cycle (> 36) which corresponded to 0.1 pg/µl were unreliable as the 

probability of detection was < 95 % (Burns and Valdivia 2008). Therefore, the Ct-

values >36.55 were scored as negative or below the detection limit, in line with other 

studies in development of eDNA method for parasite detection (Kirshtein et al. 2007, 

Huver et al. 2015). In the assay, PCR negatives had no Ct readings. The RT-PCR was 

also highly specific to S. destruens with all tested fishes and D. salmonis yielding no Ct 

values following amplification with the RT-PCR primers.  

 

 

 

In the experimental validation set-up, S. destruens-specific DNA was detected by real-

time PCR in both natural and turbid water conditions until 6, 13 and 20 days across all 

spore concentrations (Table 5.4). The real-time assay was further checked by 

amplifying all the samples in the experimental validation experiment with the S. 

destruens nested PCR (Mendonca and Arkush 2004). The real-time assay detected S. 

destruens-specific DNA at day 20 in the low spore concentrations whereas the nested 

PCR only detected S. destruens DNA in the lowest concentration treatment at day 6 

(Table 5.5; and Appendix 2). 
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Table 5.3. Ct values and percentage (%) detection for the ten-fold serial dilution of 

Sphaerothecum destruens DNA using the real-time PCR assay 

Standards 

/dilutions a 

Mean Ct-

values (n=3) b 

% detection c DNA (ng/µl) d ng DNA (2 µl) 

in RT-PCR e 

1/10 20.67 100       5       10 

2/10-1 23.7 100 5x 10-1       1 

3/10-2 27.30 100 5x 10-2 1x 10-1 

4/10-3 31.53 100 5x 10-3 1x 10-2 

5/10-4 36.55 100 5x 10-4 1x 10-3 

6/10-5 38.34 66.6 5x 10-5 1x 10-4 

7/10-6 38.43 33.3 5x 10-6 1x 10-5 

8/10-7 Undetected  0 5x10-7 1x10-6 

a A total of 7 diluted standards were made from a ten-fold dilution series of DNA stock 

with a measured concentration of 5 ng genomic DNA/µl. 
b Mean Ct-values are based on the RT-PCR replicates of each standard. 
c The percentage of RT-PCR replicates yielding positive replicates (detection) for each 

standard. 
d Theoretical content of DNA in ng/µl for each standard calculated from concentration 

assigned to the DNA stock (5 ng/µl). 
e Quantity of template DNA in each RT-PCR replicate. 

 

 

 

Table 5.4. Detection limit of Sphaerothecum destruens DNA in distilled and turbid 

water over 20 days using real-time PCR. Results are displayed as number of positive 

replicate/total number of replicates for each treatment. 

Spore count 

 

1,500,000/L 

(High) 

150,000/L 

(Medium) 

50,000/L 

(Low) 

Incubation 

point 

Sterile 

water 

Turbidity  Sterile 

water 

Turbidity Sterile 

water 

Turbidity 

Day 6 3/3 3/3 3/3 3/3 2/3 3/3 

Day 13 2/3 1/3 2/3 1/3 3/3 1/3 

Day 20 3/3 1/3 3/3 1/3 3/3 2/3 
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Table 5.5. Comparison of detection limit of Sphaerothecum destruens DNA in distilled 

and turbid water over the course of 20 days by conventional and real-time PCR.  Black 

and red arrows indicate conventional and real-time PCR respectively. 

Spore 

count 

1,500,000/L 

(High) 

150,000/L 

(Medium) 

50,000/L 

(Low) 

Incubation 

point 

Sterile 

water 

Turbidity Sterile 

water 

Turbidity Sterile 

water 

Turbidity 

Day 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Day 13 ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ 

Day 20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ 

 

 

 

5.3.2 Assessment of the eDNA technique using environmental samples 

(i) Decommissioned ornamental fish farm 

 A) Sampling of the decommissioned ornamental fish farm pre-P. parva 

eradication  

Three ponds with varying densities of P. parva were investigated for S. destruens 

presence. Sphaerothecum destruens was not detected in extractions of water samples 

from Pond 12. However, S. destruens was amplified from water samples collected in 

Pond 14 and the overflow pond. Pond 14 had low Ct-values with comparatively higher 

Ct-values for the overflow pond which corresponds to high and low levels of S. 

destruens presence respectively (Table 5.6; Figure 5.3).  
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Figure 5.3. Amplification plots of DNA extractions from the decommissioned 

ornamental fish farm pre-Pseudorasbora parva eradication (2013). Change in 

fluorescence (ΔRn) is plotted against cycle threshold number (Ct-values). The 

Sphaerothecum destruens DNA standards (10 ng, 1 ng, 0.1 ng, 10 pg and 1 pg) are 

labelled on the graph (please note each DNA standard was duplicated).  Extractions 

corresponding to positive samples from Pond 14 (green) and the overflow pond (blue) 

and negative samples from Pond 12 (red) are displayed. 

 

 

 

B) Sampling of the decommissioned ornamental fish farm post P. parva 

eradication  

S. destruens DNA was amplified from the upstream section of the Tadburn Lake stream 

(section 1d- Figure 5.2) with high Ct-values ranging from 34.3 to 36.5 that indicates S. 

destruens presence at low concentrations (Table 5.6, Figure 5.4).  
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Figure 5.4. Amplification plots of DNA extractions from decommissioned ornamental 

fish farm post Pseudorasbora parva eradication (2016), Section 1a-1d. Change in 

fluorescence (ΔRn) is plotted against cycle threshold number (Ct-values). The 

Sphaerothecum destruens DNA standards (10 ng, 1ng, 0.1 ng, 10 pg and 1 pg) are 

labelled on the graph (please note each DNA standard was duplicated). The negative 

control (FN, filtration negative; EN, extraction negative)- red and extractions 

corresponding to water samples from section 1d (1d 1-3)- blue, section 1b (1b 1-3)-

mustard, section 1b (1b 4-6)- purple and section 1c (1c 1-3)- brown are displayed. 

 

 

 

The Ct-values for the samples obtained from outflow of the decommissioned ornamental 

fish farm into Tadburn Lake stream (section 1b-Figure 5.2) indicated the presence of S. 

destruens DNA. Specifically, Ct-values ranged from 35.3 to 36.7 for sampling points 1-

3 (closest to the decommissioned fishery) and 33.11 to 33.4 at sampling points 4-6 

(approximately 360 m away from the decommissioned fishery) (Table 5.6). S. destruens 

DNA was also detected in 2 out of 3 samples from section 1c (500 m away from the 

decommissioned Fishery-Figure 5.2) with Ct values 33.2 to 34.4.   
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 C) Fish sampling from downstream of decommissioned ornamental fish 

farm. 

None of the fish samples screened for S. destruens presence tested positive with nested 

Cyt-b PCR (Table 5.6). 
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Table 5.6. Validation of the eDNA technique for Sphaerothecum destruens using 

environmental samples. 

Site  Pond  Samples Mean Ct-

values 

(n=2) 

RT-PCR 

S. 

destruens 

status 

S. destruens 

status 

Cyt-b 

Decommissioned 

ornamental fish 

farm 

 (i) pre-eradication 

of P. parva  

     

   

 

Section 1a 

Pond 12 

 

P12-1 to 

12-6 

 

Undetected  

 

- 

 

Section 1a 

Pond 14 

P14-7 31.21 ✓  

P14-8 31.01 ✓  

P14-9 31.37 ✓  

P14-10 31.52 ✓  

P14-11 29.12 ✓  

P14-12 31.03 ✓  

Section 1a 

Overflow 

Pond 

OF-13 34.34 ✓  

OF-14 32.82 ✓  

OF-15 34.43 ✓  

OF-16 34.84 ✓  

OF-17 34.19 ✓  

(ii) post-

eradication of P. 

parva 

Section 1a 

Pond 1 

P1a Undetected -  

P1b 35.8 ✓  

Section 1d 1d-1 35.95 ✓  

1d-2 34.3 ✓  

1d-3 36.2 ✓  

Section 1b  1b-1 36.71 -  

 

- 

(0/17) 

1b-2 36.6 - 

1b-3 35.3 ✓ 

1b-4 33.4 ✓ 

1b-5 33.5 ✓ 

1b-6 33.11 ✓ 

Section 1c 1c-1 34.4 ✓ - 

 (0/2) 1c-2 38.46 - 

1c-3 33.2 ✓ 

Bourne  

stream 

Site 1 S1-1 Undetected  -  

S1-2 37.15 -  

Site 2 S2-1 37.25 -  

S2-2 Undetected  -  

Site 3 S3-1 37.39 -  

S3-2 Undetected  -  

River Teme Knightwick  K Undetected  -  

Powick 

below 

PB Undetected  -  
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(ii) Bourne Stream and River Teme 

No amplification for S. destruens DNA was detected in the Bourne stream and River 

Teme as the mean Ct-values were >36.5 (Table 5.6 and Figure 5.5).  

 

 

 

 

Figure 5.5. Amplification plots of DNA extractions from Bourne stream and River 

Teme. Change in fluorescence (ΔRn) is plotted against cycle threshold number (Ct-

values). The Sphaerothecum destruens DNA standards (10 ng, 1 ng, 0.1 ng, 10 pg and 1 

pg) are labelled, the negative control (NTC) and extractions corresponding to a positive 

sample (PS) for S. destruens from decommissioned ornamental fish farm (P14-11- 

purple) and negative samples (NS) from the Bourne stream (S1-1- S1-3) and River 

Teme (Knightwick- blue and Powick below-green). The multiple curves indicate 

duplicates for standards. 

 

 (iii) Negative controls 

All the negative controls used during field sampling, filtration, DNA extraction and 

PCR were negative for S. destruens DNA (Ct-value = undetected), indicating that there 

was no S. destruens carry-over at any step of the process. 

 

 

 



121 

 

5.4 Discussion 

In this study, an eDNA detection method for S. destruens was successfully developed 

and validated both in the laboratory and in the field. In the lab, S. destruens DNA could 

be detected using the real-time assay post inoculation both in the presence of sterile 

water and turbid water conditions across S. destruens concentrations from 1,500 

spores/ml to 50 spores/ml. In the turbid water conditions, S. destruens DNA was not 

detected in all replicates as eDNA can get adsorbed to soil particles as it settles where it 

is subjected to slow degradation processes affecting its detectability (Turner et al. 2015). 

In addition ultraviolet irradiation levels and pH levels can influence the speed of DNA 

degradation (Pilliod et al. 2014, Strickler et al. 2015) reducing its detectability in natural 

systems.  

 

 

 

The real-time PCR assay had a detection limit of 1 pg (equivalent to 500 spores, 

explained in Section 2.3.4, Table 2.2) which was slightly inferior to efficiencies 

reported for qPCR for chytrid fungus Batrachochytrium dendrobatidis (0.1 zoospore) 

and trematode Ribeiroia ondatrae (14 fg) (Walker et al. 2007, Huver et al. 2015). The 

assay was specific to S. destruens as it did not cross-react with any of the tested fishes 

and the closely related D. salmonis. In addition, water from water bodies where both S. 

destruens and its reservoir host P. parva have never been reported (e.g. the Bourne 

stream and River Teme) tested negative for S. destruens DNA. In contrast, S. destruens 

DNA was detected from the decommissioned ornamental fish farm where it was 

detected in P. parva tissues (Chapter 4 Table 4.1).  

 

 

 

Water samples were collected from the decommissioned ornamental fish farm prior to 

the eradication of P. parva and 2 years post its eradication. Whilst P. parva was present, 

S. destruens DNA was detected from ponds with medium and high P. parva densities 

and was not detected in the pond with low P. parva density. The S. destruens 

prevalence in P. parva in the facility was approximately 3 % (referred to as UK site 1a 

in Chapter 4; Table 4.1). Transmission of S. destruens can be density dependent, with 

higher transmission rates and prevalence in denser populations (Al-Shorbaji et al. 2015), 

which can explain the detection and lower Ct-values in the high P. parva density ponds. 
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Sphaerothecum destruens DNA was detected in water samples from the Tadburn Lake 

stream both upstream and downstream of the decommissioned ornamental fish farm two 

years post P. parva eradication. Whilst the facility was active, water was diverted form 

upstream through the facility. Fish movement between the facility and the upstream was 

not possible due to the flow and the restriction of the fishery fishes in ponds. The 

presence of S. destruens in the upstream could thus be potentially due to otter’s 

movement between the fishery and the stream for their food or movement of brown 

trout Salmo trutta from lower stretches of the Tadburn Lake stream. Interestingly, the S. 

destruens DNA was in higher concentration in water samples collected downstream of 

the fishery. In particular, S. destruens DNA concentration was highest in the samples 

further downstream (section 1b, samples 1b4- 1b6) versus the samples collected closer 

to the fishery (section 1b, samples 1b1- 1b3). This could be due to higher abundance of 

fish in downstream stretch (section 1b; 1b4- 1b6) and in section 1c (sample 1c; 1-3). 

Additionally, the native fishes S. trutta, S. cephalus, R. rutilus, and L. leuciscus sampled 

from section 1b in 2013 showed high prevalence (33-100 %) of S. destruens in the fish 

tissue (referred as UK site 1b in Chapter 4; Table 4.1). Sampling in 2016 was 

unsuccessful in capturing S. cephalus, R. rutilus, and L. leuciscus in the Tadburn Lake 

stream. Although present S. trutta could not be sampled due to permission restriction set 

by the Environment Agency. Additional potential host species sampled (Stone loach N. 

barbatulus, bullhead C. gobio, and stickleback G. aculeatus) were all negative when 

tested for the presence of S destruens using nested PCR. Therefore, future work should 

include a comprehensive survey of the stream, including invertebrates, in order to 

determine the potential reservoirs for S. destruens.  

 

 

 

The detection of S. destruens DNA two years post P. parva eradication suggests that the 

parasite has established in the fish community of Tadburn stream, as it is highly 

unlikely that S. destruens spore DNA would persist for 2 years in the environment in the 

absence of its reservoir host P. parva. Sphaerothecum destruens spores zoosporulate in 

the presence of freshwater with a maximum survival of  7 days (Andreou et al. 2009). In 

natural field conditions, zoospores are more prone to cell disruption and ultimately 

DNA degradation (Strickler et al. 2015). In the experimental setup, the S. destruens 

eDNA persistence was up to 20 days which is within the established eDNA persistence 

rate of 14-60 days in freshwater ecosystems (Goldberg et al. 2015).  It should be noted 

that these figures are for macroorganisms (Dejean et al. 2011, Pilliod et al. 2013) which 
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have higher abundances and can shed more DNA into waterbodies compared to 

microbes (Thomsen et al. 2012, Pilliod et al. 2013). The present results could support 

the theoretical prediction that the parasite can maintain transmission in other fish 

species even in the absence of its reservoir host, P. parva (Al-Shorbaji et al. 2016). 

 

 

 

The majority of eDNA studies carried out involve aquatic vertebrates or macro 

organisms, with a little focus on microscopic parasites (Bass et al. 2015). The eDNA 

detection tool for S. destruens fills this gap and can be used to screen fish consignments 

both from within UK movements and fish imports by simply testing for the presence of 

S. destruens DNA in the water. Where S. destruens DNA is detected, further tests 

should include histopathological investigation of a subsample of fishes coupled with 

molecular detection in fish tissues (Huver et al. 2015). Species detection through eDNA 

is often verified with independent detection methods (Hyman and Collins 2012, 

Thomsen et al. 2012). 

 

 

 

The eDNA tool can be combined with site occupancy models (Schmidt et al. 2013) to 

develop epidemiological maps for S. destruens across its suspected range. This is 

particularly important as the parasite can spread through water transfer including 

contaminated angling equipment. This raises the need of a wider survey for the parasite 

prevalence especially in the waters adjacent to the decommissioned ornamental fish 

farm and the waterbodies where P. parva is or has been present (Britton et al. 2010). To 

increase probability of detection, sampling should occur during the spring as S. 

destruens infections highest during the spring season (Ercan et al. 2015). It is important 

to note that the use of this tool is not limited to the UK, as Chapter 3 has shown that the 

parasite is present in at least 3 more European countries (Spain, Netherlands and 

Turkey). Thus, a cheap and quick detection method is now available for a pan-European 

survey for S. destruens which would inform the future management of this non-native 

parasite. 
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5.5 Summary 

A new eDNA method was developed for the detection of S. destruens in the wild in the 

present study. The method successfully detected S. destruens DNA where expected 

(decomissioned ornamental fishfarm and its associated Tadburn Lake stream). 

Compared to the traditional survey methods, eDNA method is fast (S. destruens status 

can be determined in 2 days) and non-invasive (no fish killing involved). The eDNA 

method can be effectively employed in the development of epidemiological maps for S. 

destruens across its suspected range. This study has demonstrated that despite the 

eradication of source host P. parva, it is impossible to eradicate the environmentally 

transmitted propagule (S. destruens spores), once it has established in the community. 

This emphasizes that preventive measures against pathogen expansion should be 

implemented, as reactive measures such as eradication would not be effective. The 

relevant measures such as, early detection of S. destruens can be achieved using the new 

eDNA method to initiate rapid actions to prevent its further dispersal. The newly 

developed eDNA method will also serve as a rapid detection tool for a pan-European 

survey for S. destruens which would inform the future management of this non-native 

parasite. In case of positive detection with the eDNA method, it is highly recommended 

to couple it with fish dissection to reliably ascertain the parasite’s distribution and its 

impact on fish hosts in the suspected waters.  
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Chapter 6  

Sphaerothecum destruens taxonomy and mitochondrial genome 

organisation 
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6.1 Introduction 

Mitochondria are double membrane organelles ubiquitous to eukaryotes with a few 

exceptions (Burger et al. 2003a). In addition to their primary role in energy production 

through the electron transport chain coupled with oxidative phosphorylation, 

mitochondria also play role in translation, transcription, RNA processing and protein 

import and maturation (Gray 2012). A broad spectrum of biochemical and phylogenetic 

studies have supported that the mitochondria originated from a single alpha-

proteobacterial ancestor from within the order Rickettsiales (Wang and Wu 2015). 

Animal mtDNA are usually small, circular with invariable gene content and usually 

range in size from 13 to 19 kbp, are compactly arranged without intergenic regions 

(only a few bp in some cases) and are intron-less (with a few exceptions where 

mitochondrial group I introns were found in some Cnidaria and Placozoa (Lavrov 

2007). Relatively large mtDNAs (20 to 43 kbp) have been found in some Cnidaria, 

Demospongiae and Placozoa (Lavrov 2007). In animals, the standard set of mtDNA 

genes encode for 12-13 proteins involved in the electron transport chain and oxidative 

phosphorylation and 24-25 structural RNAs, including small and large subunit rRNA 

and tRNAs (Anderson et al. 1981, Bibb et al. 1981, Anderson et al. 1982).  

 

 

 

Mitochondrial DNA organization varies in the unicellular relatives of animals 

(Choanozoa) and provides insights into the mtDNA evolution. They have additional 

mtDNA proteins: the extra respiratory proteins and ribosomal proteins (Gray et al. 

1999). A great diversity was observed in the mitochondrial genome size and topology of 

the Choanozoa, ranges from single-chromosome circular mitochondria in Monosiga 

brevicollis, to linear single-chromosome mitochondria in Ministeria vibrans and 

Capsaspora owczarzaki and linear multiple-chromosome mitochondria has been 

identified for Amoebidium parasiticum with variable genome sizes range 76 kbp to > 

200 kbp (Burger et al. 2003a, Lavrov and Lang 2014).  

 

 

 

Previous studies on the animal mtDNA and their comparisons with early diverging 

animals (sponges) and unicellular relatives (Choanoflagellate and Ichthyosporea) have 

highlighted that mtDNA has undergone tremendous transitions from large, spacious 
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mtDNA to compactly arrayed. The comparison of mtDNA genomes of bilateral and 

radially symmetrical animals has identified variations in the size and gene content. 

Usually, mitochondrial evolution is correlated with two main events in animal evolution 

i.e. the origin of multicellularity and the origin of Bilateria (Lavrov 2007).  

 

 

 

The origin of multicellularity is usually linked with the loss of multiple genes and 

reduction of non-coding mtDNA, as evident from the large mt-genomes in the 

unicellular relatives of animal with either long repeat sequences or non-coding regions 

in Choanoflagellate, Filasterea and Ichthyosporea (Burger et al. 2003a, Lavrov and 

Lang 2014). The emergence of Bilateria is usually correlated with multiple changes in 

genetic code associated with loss of tRNA genes, increased rate of sequence evolution 

and emergence of several genetic novelties, such as highly modified structures of 

ribosomal and transfer RNAs and the presence of single noncoding “control region” in 

mtDNA (Wolstenholme 1992). However, it is not fully established whether these 

changes have happened simultaneously with the morphological transitions or if mtDNA 

evolved independently in different lineages (Lavrov 2007).  

 

 

 

The findings from the mtDNA studies of M. brevicollis and A. parasiticum led to the 

hypothesis that the last common ancestor of Holozoa (multicellular animals and their 

closest unicellular relatives) had gene-rich mtDNA. Mitochondrial DNA in the Holozoa 

(animals and their unicellular relatives) has been hypothesized to evolve from its 

common ancestor, which is assumed to have possessed a large and non-compact 

mtDNA, along three main routes: the Ichthyosporea lineage (accumulation of repeat 

sequences), the Choanoflagellate lineage (amplified intergenic region) and the 

Metazoan lineage (extensive gene loss with size contraction) (Burger et al. 2003a, 

Signorovitch et al. 2007). However, this hypothesis is based on limited taxonomic 

sampling for mitochondrial analysis with one organism from both Ichthyosporea and 

Choanoflagellate lineages.  

 

 

 

Sphaerothecum destruens is an obligate intracellular organism sitting at the animal-

fungal boundary. A recent phylogenomic study based on the flagellar and chitin 

synthase characters has placed S. destruens in a group termed the “Teretospores” which 
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is comprised of the Ichthyosporea and Corallochytrium limacisporum and is designated 

as the earliest Holozoan divergence (Torruella et al. 2015). This group is interesting in 

that they are phylogenetically located where animals first diverged from the fungi and 

can provide important clues into the origin of higher organisms and mtDNA evolution. 

The extant organisms from this group are not always easily available and 

experimentally amenable. 

 

 

 

To date, the S. destruens phylogeny has not been evaluated based on the mt-genome. 

Sphaerothecum destruens and A. parasiticum belong to the same Class Ichthyosporea, 

within Orders Dermocystida and Icthyophonida respectively. The presence of peculiar 

mt-genome architecture in A. parasiticum, which shows a rampant expansion and 

fragmentation of its mt-genome, raises the question whether a similar trend is also 

present for S. destruens. Thus, the aims of this study were (i) to investigate the 

mitochondrial genome organization and content of S. destruens through its mtDNA 

amplification by Long Range PCR and subsequent DNA sequencing (Primer walk); (ii) 

to better decipher its taxonomic position, reconstruction of the phylogenetic tree based 

on amino acid sequences derived from the mtDNA encoded genes and (iii) critically 

evaluate how the S. destruens mtDNA structure and organization contributes to 

knowledge about mitochondrial evolution in unicellular animals. 

 

 

 

6.2 Material and methods   

6.2.1 DNA extraction of Sphaerothecum destruens spores  

Sphaerothecum destruens whole DNA was extracted from its spores using DNeasy 

Blood and tissue kit (Qiagen). All the steps were performed according to manufacturer’s 

guidelines and DNA was eluted in 100 µl elution buffer and quantified using the 

Nanodrop (Thermofisher). 
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6.2.2 Amplification of ‘anchor regions’ of mitochondrial DNA (mtDNA) 

A number of universal mtDNA primers for Metazoa and degenerate primers specific for 

Cnidarians were used to amplify short gene fragments of S. destruens mtDNA. The 

primers tested and their outputs are listed in Table 6.1. 

 

 

 

6.2.3 Designing of Sphaerothecum destruens-specific long PCR primers 

The sequences obtained from the mtDNA gene fragments cox1, cob and nad5 were used 

to manually design long PCR primers specific to S. destruens. Primers had a length of 

26-30 nt, a GC content of 40 %-60 % and were checked for primer dimer and hairpin 

formation using OligoAnalyzer 3.1 (https://www.idtdna.com/calc/analyzer). Various 

combinations of long-PCR primers were tested as it was uncertain which primers face 

each other on the genome and if they were separated by an appropriate distance. 

 

 

 

6.2.3.1  Long-PCR based genome sequencing protocol 

The mitochondrial fragments spanning the cob-cox1 and cox1-nad5 were amplified by 

using two long PCR kits; Long range PCR kit (Thermofisher) and LA PCR kit 

(TAKARA, Clontech). The successful primer combinations for each fragment, PCR 

cycling conditions and their output are presented in Table 6.2. 

 

 

 

6.2.3.2 Step-out long PCR 

The peripheral regions of the mitochondrial genome were amplified with an alternative 

approach “modified step-out approach” (Burger et al. 2007) The step-out primers (Table 

6.1) were coupled with species-specific primers LR-cob-R2 and LR-nad5-R4 to amplify 

the peripheral regions. The successful step-out primers that produced an amplified 

product with species-specific primer are listed in Table 6.4. The PCR cycling conditions 

were as follows: 94 °C-1 min, 1 x (94 °C for 20 s; 30 °C for 2 min; 68 °C for 8 min), 

Pause to add specie-specific primers, 16 x (94 °C for 20 s; 65 °C (decrement= 0.3 °C 

per cycle) for 20 s; 68 °C for 8 min), 19 x [94 °C for 20 s, 60 °C for 20 s, 68 °C for 8 

min (increment= 15 s per cycle)] ,68 °C 12 min. 
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6.2.3.3  Gel electrophoresis and sequencing 

The amplified products were run on 1 % agarose gel stained with SYBR safe DNA gel 

stain at 80 V for 1 hour. The products were sent off for direct sequencing for small 

fragments up to 1,500 bp. The long fragments which were 12,986 bp and 7,048 bp in 

length were sequenced by primer walk service (Beckman coulter genomics).  

 

 

 

Primer walk is a sequencing technique to sequence long DNA fragments which cannot 

be sequenced in a single sequence read using the chain termination method. The set of 

primer pairs were initially used to amplify the PCR product, and were also used to 

sequence approximately 1,000 bp from the two extremities of the amplified fragment. 

This generated sequence was then used to design new set of primers pair (20 bp in 

length) and sequenced further into the amplified fragment. The process was continued 

until the sequences met in the middle. The short sequence fragments generated were 

then assembled to generate a consensus sequence of the long amplified fragment. 

 

 

 

6.2.4 Gene annotation and phylogenetic analysis 

Gene annotation of mitochondrial genome of S. destruens was performed using the 

automated annotation tool MFannot (http://megasun.bch.umontreal.ca/cgi-

bin/mfannot/mfannotInterface.pl), followed by manual inspection. The 22 tRNA genes 

were further scanned and secondary structures were generated with the tRNA scan-SE 

program (Lowe and Eddy 1997). The predicted secondary structures of small (rns) and 

large (rnl) subunits ribosomal RNA of S. destruens mtDNA were generated in the RNA 

fold program of Vienna RNA package (Gruber et al. 2008). 

 

http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl
http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl
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Table 6.1. Universal primers for animal and Cnidarians mitochondrial DNA used in this study. The primer sequences and their output for 

Sphaerothecum destruens are listed. 

mt DNA genes and respective primers (5′→3′) Amplification Sequence Species DNA 

amplified 

Reference  

 

cox1 HCO: TAAACTTCAGGGTGACCAAAAAATCA   

LCO: GGTCAACAAATCATAAAGATATTGG 

✓ ✓ 

(410 bp) 
S. destruens  (Folmer et al. 

1994) 

cob CobF424: GGWTAYGTWYTWCCWTGRGGWCARAT 

CobR876: GCRTAWGCRAAWARRAARTAYCAYTCWGG 

✓ ✓ 
(440 bp) 

S. destruens  (Boore and 

Brown 2000) 

rnl 16Sar: CGCCTGTTTATCAAAAACAT 

16Sbr: CCGGTCTGAACTCAGATCACGT 

✓ ✓ Fish  (Palumbi 

1996) 

rns 

 

12Sai: AAACTAGGATTAGATACCCTATTAT 

12Sb: GAGGGTGACGGGCGGTGTGT 

✓ ✓ Fish  (Kocher et al. 

1989) 

cox2 Cox2F1: AAGCWAATWGGNCATCARTGRTATTG 

Cox2R1: CTCCRCATATTTCNGARCATTGNCC 

✓ ✓ Fish  (Burger et al. 

2007) 

cox3 Cox3F: TGGTGGCGAGATGTKKTNCGNGA 

Cox3R: ACWACGTCKACGAAGTGTCARTATCA 

Multiple bands 

obtained 

- - (Burger et al. 

2007) 

nad4 Nad4F: CCKAARGCYCAYGTKGARGCYCC 

Nad4R: GARGAWCAKAWWCCRTGAGCAATYAT 

-   (Shao et al. 

2006) 

nad5 Nad5F: TWYTATTAGGKTGAGATGGKYTNGG 

Nad5R: TARAAKCCWGMTARAAAWGGKAWWCC 

✓ ✓ Mixed read 

contaminated 

(Lavrov et al. 

2004) 

rnl 16S 1471: CCTGTTTANCAAAAACAT 

16S1472: AGATAGAAACCAACCTGG 

✓ ✓ Fish  (Schubart et 

al. 1998) 

Universal mt DNA primers for Cnidarians 

cox2 diplo-cox2-f1: AAGCWATWGGRCATCARTGRTATTG 

diplo-cox2-r1: CWATWGGCATAAANGARTGATTNGC 

   (Lavrov et al. 

2008) 

rnl diplo-rnl-f1: TCGACTGTTTACCAAAAACATAGC 

diplo-rnl-r1: AATTCAACATCGAGGTSGGAAAC 

✓ ✓ Fish  (Lavrov et al. 

2008) 
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 nad1 spong-nad1-r1: AATGGTRCTCKATTNGTTTCNGC 

sponge-nad1-f1: CTATTMGRGCAGCRGCHCAAATG 

Multiple bands which  

faint at after 52°C 

(Lavrov et al. 

2008) 

nad2 sponge-nad2-f1: TGRGCNCCAGATGTNTATGADGG 

sponge-nad2-r1: TTACTTAAAAAYCCNGCTAARGG 

Very faint multiple bands (Lavrov et al. 

2008) 

nad4 diplo-nad4-f1: TATTTGARGGNRTATTRATHCCANTG 

diplo-nad4-r1: CCATRTGNGCCACHGAAGAATARGC 

             - (Lavrov et al. 

2008) 

nad5 sponge-nad5-f1: TGGGAGGGWGTWGGNTTATGTTC 

sponge-nad5-r1: ACTGGTGTNGGNCCTTCCATWGC 

✓ ✓ 

(320 bp) 
S. destruens  (Lavrov et al. 

2008) 
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Table 6.2. Step-out primers employed in “modified step-out approach” to amplify the 

peripheral regions of the Sphaerothecum destruens mitochondrial genome. 

Primer  Sequence (5′→3′) 

Step-out 1 GTCAGTCAGANNNNAGA 

Step-out 2 TCAGGAACGATCGTNNNNTCA 

Step-out 3 AACAAGCCCACCAAAATTTNNNATA 

Step-out 4 TTGTTCGGGTGGTTTTAAANNNTAT 

 

 

 

Table 6.3. Sphaerothecum destruens-specific long range Polymerase Chain Reaction 

(PCR) primers, PCR conditions and the size of their amplified fragment. 

 

 

Table 6.4. Modified Step-out approach for the amplification of peripheral regions of 

Sphaerothecum destruens mitochondrial DNA. 

Gene 

fragment 

Primer combination 

(5′→3′) 

Amplified 

product 

(bp) 

cob-ccmF LR-COB-R2 

TCA ACA TGC CCT AAC ATA TTC GGA 

AC 

Step-out3: 

AAC AAG CCC ACC AAA ATT TNN NAT 

A 

7,048 

nad5-trnL LR-nad5-R4: 

TGG GGC AAG ATC CTC ATT TGT 

Step-out 3 

AAC AAG CCC ACC AAA ATT TNN NAT 

A 

3,128 

Gene 

fragment 

Primer combination 

(5′→3′) 

Cycling conditions Amplified 

product 

(bp) 

cob-cox1 LR-COB-F 

ATG AGG AGG GTT 

TAG TGT GGA TAA TGC 

LR-COX1-R 

GCT CCA GCC AAC 

AGG TAA GGA TAA 

TAA C 

94 °C-2 min, 10 x (94 °C for 

20 s, 58 °C for 30 s, 68 °C for 

7 min), 25 x (94 °C for 20 s, 

58 °C for 30 s, 68 °C for 7 

min (increment 5 s/cycle) 68 

°C for 10 min 

1,200 

cox1-nad5 LR-COX1-R3 

GTT ATT ATC CTT ACC 

TGT GTT GGC TGG AGC 

LR-NAD5-R1 

CCA TTG CAT CTG GCA 

ATC AGG TAT GC 

94 °C-1 min, 16 x (94 °C for 

20 s, 60 °C for 20 s, 68 °C 

for 8 min) 19 x (94 °C for 20 

s, 60 °C, for 20 s, 68 °C for 8 

min) 68 °C for 12 min 

12,986 
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6.2.5 Phylogenetic analysis 

Due to S. destruens being an earliest off-shoot from Holozoa, a higher species 

representation was chosen of basal organisms from Holozoa (animals and their 

unicellular relatives) and Holomycota (Fungi and their unicellular relatives). For the 

phylogenetic analysis, 23 species were used in order to have representatives from 

Proteobacteria, Jakobid, Fungi, Nucleariidae, Stramenopiles, Rhodophyta, 

Choanoflagellate, Filasterea, Ichthyosporea and Metazoa (Table 6.5). A bacterial 

outgroup Rickettsia from α-Proteobacteria that represents the closest ancestor to 

mitochondria. The eight most conserved protein coding genes cox1-3, cob, nad3, nad4l, 

nad5 and atp6 were used in the alignment. The genes nad1, 2, 4 and 6 were excluded as 

they have not been completely sequenced for A. parasiticum and are not available 

online (Burger et al. 2003a).  

 

 

 

Nucleotide sequences for each of eight protein coding genes of S. destruens were 

translated into amino acids using the Mold, Protozoan mitochondrial translation genetic 

code. The resulting amino acid sequences were then aligned for each gene using Clustal 

W with default options (Gap open cost: 15 and Gap extend cost: 6.66). Due to the wide 

taxonomic range of species, the Clustal W multiple alignment programs cannot 

guarantee uniform results due to sequence length variation, sequence divergence and 

rate variation among lineages. To avoid these problems, the most conserved sequence 

regions of 8 aligned genes were selected for phylogenetic analysis using the web-based 

Gblocks program with default options of “medium” stringent selection (Castresana 

2000). The final dataset consisted of 1875 aligned amino acid positions from eight 

conserved proteins. 

 

 

 

Phylogenetic analysis of the concatenated dataset of conserved amino acid sequences 

were performed using Bayesian inference approach with LG+I+G+F model for amino 

acid substitution. The best model for our data was calculated by ProtTest v 3.4.2 

(Darriba et al. 2011). The Bayesian analysis was run in Mr Bayes (Ronquist et al. 2012) 

and posterior probabilities were obtained after 2,500,000 generations with a burn-in of 

25 %.  
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Table 6.5. The species, taxonomy and GenBank accession numbers for the species used 

in the phylogenetic analysis. 

Species  Taxonomic group GenBank accession no. 

Rickettsia prowazekii Proteobacteria NC_000963 

Reclinomonas americana Jakobida AF007261 

Sphaerothecum destruens  Ichthyosporea To be deposited 

Amoebidium parasiticum Ichthyosporea 

 

AF538043-45, AF538047-49, 

AF538051-52 

Ministeria vibrans  Ministeria/Filasterea KC573040 

Capsaspora owczarzaki Filasterea KC573038 

Monosiga brevicollis Choanoflagellida AF538053 

Tethya actinia Porifera  NC_006991 

Oscarella carmela Porifera EF081250 

Geodia neptuni Porifera NC_006990 

Iphiteon panicea Porifera EF537576 

Sympagella nux Porifera EF537577 

Trichoplax adhaerens Placozoa NC_008151 

Sarcophyton glaucum Cnidaria AF064823, AF063191 

Metridium senile Cnidaria NC_000933 

Porphyra purpurea Rhodophyta NC_002007 

Chondrus crispus Rhodophyta NC_001677 

Chrysodidymus synuroideus Stramenopiles NC_002174 

Allomyces macrogynus Fungi NC_001715 

Podospora anserina Fungi NC_001329 

Schizophyllum commune Fungi NC_003049 

Rhizopus oryzae Fungi NC_006836 

Nuclearia simplex Nucleariidae NC_020369 

 

 

 

6.3 Results 

6.3.1 Amplification of Sphaerothecum destruens mitochondrial DNA 

The three universal primers for cox1, cob and nad5 genes successfully amplified S. 

destruens mitochondrial gene fragments (referred as anchor regions). The sequenced 
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fragments of cox1, cob and nad5 gene were 410 bp, 440 bp and 320 bp in length 

respectively. These anchor sequences served for the design of long-PCR primers 

specific to S. destruens. The whole mitochondrion was amplified in four overlapping 

fragments spanning ccmF-cob (7,048 bp), cob-cox1 (1,200 bp), cox1-nad5 (12,986 bp) 

and nad5-trnL (3,127 bp) Table 6.3 and 6.4. 

 

 

 

6.3.2  Gene content and organization 

The mitochondrial genome of S. destruens was 23,939 bp in size, circular, with an 

overall A+T content of 71.2 %, starting with the ccmF gene. A list of gene order, gene 

length, and intergenic spacer regions of S. destruens mtDNA is given in Figure 6.1 

Table 6.6. The nucleotide composition of the entire S. destruens mtDNA sequences is 

40.8 % Thymine, 31 % Adenine, 19.7 % Guanine and 8.5 % Cytosine (detailed 

nucleotide composition is listed in Table 6.7). It consisted of a total of 47 genes 

including protein-coding genes (21), rRNA (2) and tRNA (22) and two unidentified 

Open Reading Frames (ORFs), with all genes encoded by the same strand in the same 

transcriptional orientation (Figure 6.1).  

 

 

 

The standard proteins encoded by mitochondria include 13 energy pathway proteins, 

including subunits 6, 8 and 9 of ATP synthase (atp6, 8 and 9), three subunits of 

cytochrome oxidase (cox1-3), NADH dehydrogenase subunits 1-6 and 4L (nad1-6 and 

4L), apocytochrome b (cob), small and large subunit rRNAs (rns and rnl). The S. 

destruens mtDNA included genes that are usually absent from standard animal and 

fungal mtDNAs, such as four ribosomal proteins (small subunit rps13 and 14; large 

subunit rpl2 and 16), tatC (twin-arginine translocase component C), ccmC and ccmF 

(cytochrome c maturation protein CcmC and heme lyase). The mitochondrial genome of 

S. destruens was intron-less and compact with a few intergenic regions, a maximum of 

357 bp between tatC and nad2 and several neighbouring genes overlapping by 1-31 

nucleotides (Table 6.6, Figure 6.1). Table 6.8 provides an overview of the S. destruens 

mitochondrial genes and their biological function.  
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Figure 6.1. The complete mitochondrial genome for Sphaerothecum destruens. All 

genes are encoded in the same transcriptional orientation. 22 tRNA genes (pink), 2 

rRNA genes (red), 19 protein coding genes (yellow) and 2 open reading frames (ORFs) 

(orange) are labelled. 22 transfer RNA genes are designated with single-letter amino 

acid code; A-alanine, C-cysteine, D-aspartic acid, E-glutamic acid, G-Glycine, H-

histidine, I-isoleucine, K-Lysine, L-leucine, M-methionine, N-asparagine, P-proline, R-

Arginine, S-Serine, T-threonine, V-valine, W-tryptophan and Y-tyrosine. Three 

methionine (M) and two serine (S) and arginine (R) tRNA genes are labelled along with 

their anticodon sequence. 
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Table 6.6. The mitochondrial genome organization of Sphaerothecum destruens. 

Gene Position 

 

Size 

 

Codons 

 

Intergenic 

sequence 

(bp) Start Finish No. of 

nt  

No. of aa Initiatio

n 

Termination 

 ccmF 1 1,080 1,080 359 GTG TAG 55 

 rps13 1,136 1,459 324 107 GTG TAA 3 

orf144 1,463 1,897 435    4 

trnS2  1,902 1,974 73 - - - 1 

trnR1 1,976 2,046 71 - - - 0 

trnS1 2,047 2,126 80 - - - 6 

nad3 2,133 2,486 354 117 ATG TAG -31 

tatC 2,456 3,115 660 219 GTG TAG 357 

nad2 3,473 4,909 1,437 478 ATG TAG 0 

nad6 4,910 5,500 591 196 GTG TAA 13 

atp9 5,514 5,738 225 74 ATG TAA 7 

trnV 5,746 5,817 72 - - - 3 

orf167 5,821 6,324 504    -1 

cob 6,324 7,466 1,143 380 ATG TAG 60 

cox1 7,527 9,119 1,593 530 ATG TAA 1 

cox2 9,121 9,870 750 249 ATG TTA -1 

trnY 9,870 9,944 75 - - - 45 

ccmC 9,990 10,622 633 210 ATG TAA 4 

rpl16 10,627 11,067 441 146 ATG TAG -11 

rpl2 11,057 11,806 750 249 TTG TAA -1 

nad4 11,806 13,236 1,431 476 ATG TAG 0 

trnW 13,237 13,308 72 - - - 2 

trnN 13,311 13,382 72 - - - -46 

rnl 13,337 15,828 2,317 - - - -4 

trnR2 15,825 15,897 73 - - - 1 

trnM3 15,899 15,969 71 - - - 28 

trnL 15,998 16,069 72 - - - 1 

trnA 16,071 16,142 72 - - - 25 

rns 16,168 17,536 1,222 - - - -4 

trnH 17,533 17,606 74 - - - 0 

trnD 17,607 17,679 73 - - - 3 

trnM2 17,683 17,754 71 - - - 0 

trnM 17,754 17,824 71 - - - 1 

trnE 17,826 17,898 73 - - - 6 

nad1 17,905 18,912 1,008 335 TTG TAG 3 

trnT 18,916 18,987 72 - - - 22 

cox3 19,010 19,801 792 264 ATG TAA 2 

trnG 19,804 19,877 74 - - - 7 

trnP 19,885 19,956 72 - - - 1 

rps14 19,958 20,200 243 80 ATG TAA -7 

nad4L 20,194 20,493 300 99 ATG TAA 0 
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nad5 20,494 22,458 1,965 654 GTG TAG -1 

trnK 22,458 22,530 73 - - - 1 

atp8 22,532 22,867 336 111 ATG TAA 45 

atp6 22,913 23,659 747 248 ATG TAA 6 

trnC 23,666 23,738 73 - - - 12 

trnL 23,751 23,822 72 - - - 117 

*Stop codon not included in AA sequence, nt = nucleotides, aa = amino acid.  

 

 

 

Table 6.7. Nucleotide composition of mitochondrial genome of Sphaerothecum 

destruens. 

Nucleotide 
Length 

(bp) 

A 

 (%) 

C  

(%) 

T 

(%) 

G 

 (%) 

A+T 

(%) 

G+C 

(%) 

Entire sequence 23,939 31 8.5 40.8 19.7 71.8 28.2 

Protein coding sequences 17,691 28.8 8.0 43.2 20 72 28 

rRNA genes sequences 3,539 37.9 9.9 33.2 19.0 71.1 28.9 

Transfer RNA gene sequences 1,601 33.4 11.3 36.2 19.1 69.5 30.5 

Non-coding regions 964 38.3 7.3 36.2 18.2 74.5 25.5 

    NCR 1 357 35.9 11.7 30.8 21.6 66.7 33.3 

    NCR 2 117 33.3 8.5 35.1 23.1 68.4 31.6 

 

 

 

6.3.3 Protein coding genes and codon usage 

A total of 21 protein coding genes were identified in the S. destruens mt-genome. 

Fourteen of these genes (nad1-6, 4L, cox1-3, cob, atp6, 8, and 9) encode for proteins 

involved in respiration and oxidative phosphorylation. Four ribosomal genes encode for 

small and large ribosomal subunits (rps13, rps14, rpl2 and 16). The longest gene 

fragment encodes for nad5 which was comparable to the size of nad5 genes of A. 

parasiticum, M. vibrans and C. owczarzaki. Three unusual proteins to Opisthokonts 

were encoded in S. destruens mt-genome: tatC, ccmF and ccmC.  

 

 

 

The tatC gene (also known as mttB and ymf16) is present in M. brevicollis 

(Choanoflagellate) and also reported in only one other animal mt genome that of 

Oscarella carmela (Homoscleromorph) (Burger et al. 2003a, Wang and Lavrov 2007). 

This protein, a component of twin-arginine translocase (Tat) pathway, is involved in the 
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transport of fully folded proteins and enzyme complexes across lipid membrane bilayers 

and is usually present in prokaryotes, chloroplasts and some mitochondria (Lee et al. 

2006). The tatC gene in S. destruens is 660 bp in length and utilizes GTG as its 

initiation codon. The derived amino acid sequence of S. destruens TatC is most similar 

to M. brevicollis TatC- 21.4 % (Choanoflagellate) followed by Reclinomonas 

americana- 19.2 % (Jakobid) and O. carmela-15.9 % (Porifera). 

 

 

 

The CcmF protein also known as yejR is involved in Heme c maturation (protein 

maturation) and CcmC (also known as yejU) plays role in heme delivery (protein 

import). The genes for both proteins have been reported in all Jakobids studied to date 

(Burger et al. 2013), only R. americana is compared here, C. owczarzaki and Rickettsia 

prowazekii. Among the reported organisms the ccmF in S. destruens was shortest (1,080 

bp) compared to C. owczarzaki (2,547 bp), R. prowazekii (2,013 bp) and R. americana 

(1,914 bp). The derived amino acid sequence of S. destruens ccmF gene was 14.9 %, 

16.1 % and 18.7 %, identical with those of C. owczarzaki, R. prowazekii, and R. 

americana respectively. The ccmC gene fragment was of comparable length with those 

of the aforementioned species. The inferred amino acid sequence of ccmC of S. 

destruens was 25.1 %, 26.9 % and 22.9 % identical to those of C. owczarzaki, R. 

prowazekii and R. americana respectively. 

 

 

 

Among 21 protein coding gene, 14 genes (atp6, 8, 9, cob, cox1-3, nad2-4, nad4l, rps14, 

rpl16 and ccmC) were inferred to use ATG as initiation codon, 5 genes (nad5-6, ccmF, 

tatC and rps13) used GTG as a start codon and the remaining rpl2 was initiated with 

TTG. Eleven proteins were terminated with the stop codon TAA (atp6, 8, 9, cox1, cox3, 

nad6, ccmC, rps 13-14), nine genes used the stop codon TAG (nad1-5, cob, tatC, ccmF 

and rpl16) and TTA was used in the termination of cox2. 
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Table 6.8. Genes in Sphaerothecum destruens mitochondrial DNA and their function 

Sr No. Functions Genes 

1 Electron transport and oxidative phosphorylation  

     Complex I (NADH: ubiquinone oxidoreductase) nad1-6, 4L 

     Complex III (ubiquinone: cytochrome c oxidoreductase) cob 

     Complex IV (cytochrome c:02 reductase) cox1-3 

     Complex V (F1F0 ATP synthase) atp6, 8, 9 

2 Translation  

 Ribosomal RNAs rnl, rns 

 Ribosomal proteins      

     Small subunit (SSU) rps13, 14 

     Large subunit (LSU) rpl2, 16 

 Transfer RNAs trnA, C-E, G-

I, K-N, P, R1, 

R2, S1, S2, T, 

V, W, Y  

3 Protein import  

     Heme delivery ccmC 

     Sec-independent transporter tatC 

4 Protein maturation  

     Heme c maturation ccmF 

 

 

 

6.3.4 Ribosomal RNA and transfer RNA genes 

Genes for the small and large subunits for mitochondrial rRNAs (rns and rnl, 

respectively) were present. Both genes were separated by four tRNA genes (rnl-trnR2-

trnM-trnI-trnA-rns). The rns and rnl (1,369 and 2,449 bp) had sizes approximately 

similar to those in M. brevicollis (1,596 and 2,878 bp) and A. parasiticum (1,385 and 

3,053 bp). These sizes were comparable to their eubacterial homologs (1,542 and 2,904 

bp in Escherichia coli). The predicted secondary structures of small (rns) and large (rnl) 

subunits ribosomal RNA of S. destruens mtDNA are presented in Figure 6.2. 

 

 

 

Twenty-two tRNA genes, ranging in size from 71-80 bp, were identified in S. destruens 

mtDNA and their predicted secondary structures had a cloverleaf-like shape (Figure 

6.3). Three copies of tRNA M (Methionine CAT) of the same length (71 bp) with 

overall 6-nt differences were identified. The tRNA M1 was at a distance of 1,713 bp 

from tRNA M2, whereas tRNA M2 and M3 were adjacent (Figure 6.1). Additionally, 

there were duplicated genes for tRNA S (Serine) and tRNA R (Arginine). The 2 copies, 

tRNA S1 (gct) and tRNA S2 (tga) were of 80 bp and 73 bp in length respectively and 
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were 73 % identical. The tRNA R1 (acg) and tRNA R2 (tct) were approximately same 

length with 60 % similarity. The tRNA gene duplication, tRNAM, tRNAS and tRNAR, 

is also present in A. parasiticum, M. brevicollis, C. owczarzaki and M. vibrans except 

for only two copies instead of 3 for tRNA M in M. vibrans.  

 

 

 

All the tRNAs secondary structures had a dihydrouridine (DHU) arm, a pseudouridin 

(TΨC) arm and an anticodon stem except for tRNA S1(gct) that had an additional short 

variable loop. The TΨC and D-loop is comprised of 7 and 7-10 nucleotides respectively. 

Similar to M. brevicollis and A. parasiticum none of the mitochondrial tRNA in S. 

destruens had a truncated D or T loop structure, a feature that is widespread in animal 

mitochondrial tRNAs. 

 

 

 

6.3.5 Non-coding region 

The total length of the non-coding region was 842 bp and was comprised of 32 

intergenic sequences ranging in size from 1-357 bp. Only two intergenic regions had 

lengths greater than 100 bp: a) the non-coding region 1 NCR 1- 357 bp which was 

between the tatC and nad2 genes and b) the non-coding region 2 NCR 2- 117 bp which 

was found towards the periphery between the trnL and ccmF genes (Figure 6.1). 
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Figure 6.2. Predicted secondary structures of mitochondrial small and large subunit ribosomal RNA (a) rns and (b) rnl of Sphaerothecum destruens. 

The secondary structures were predicted using the online tool RNA fold in the Vienna RNA package (Gruber et al. 2008). 

B 
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Figure 6.3. The predicted secondary structures of 22 tRNAs of Sphaerothecum destruens mitochondrial DNA generated in tRNAscan-SE (Lowe and 

Eddy 1997). 
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6.3.6 Phylogenetic position of Sphaerothecum destruens based on mitochondrial 

protein sequences 

Phylogenetic analysis using the concatenated amino acid sequences from eight protein 

coding genes revealed a conventional tree for eukaryotic relationships especially for 

Holomycota and Metazoa with strong support for almost all inferred clades (Figure 6.4). 

The tree supports the sister group association of Choanoflagellate (M. brevicollis) with 

the Metazoa. In the tree C. owczarzaki and M. vibrans strongly grouped together within 

the Filasterea. Interestingly, S. destruens has come up as a sister group to the 

Choanoflagellate and the Metazoa group along with the Filasterea with strong bootstrap 

posterior probability (BPP; 1.00).  S. destruens and A. parasiticum have not grouped 

together in the same class Ichthyosporea, with A. parasiticum being placed as an earliest 

Holozoan divergence with strong branch support (BPP; 1).  
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Figure 6.4. Phylogeny of Sphaerothecum destruens inferred from 1,875 aligned amino acid positions from 8 concatenated mitochondrial 

genes (cob, cox1-3, nad3, nad4l, nad5 and atp6) using LG+I+G model of protein evolution in Mr Bayes (Ronquist et al. 2012). The branch 

support values for each node are shown as Bayesian posterior probability (BPP). Rickettsia prowazekii was used as an out-group. 
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6.3.7 Comparison of mitochondrial genomes of two members of the Class 

Ichthyosporea 

S. destruens and A. parasiticum are members of the order Dermocystida and 

Icthyophonida respectively within the Class Ichthyosporea. The mitochondrial genome 

of A. parasiticum was investigated by Burger et al. (2003a).  A. parasiticum mt-genome 

is very peculiar compared to its close relatives, as it is larger than >200 kbp and consists 

of several hundred linear chromosomes. To date, 65 % of the mt-genome has been 

sequenced. Compared to A. parasiticum, S. destruens mt-genome is 8 times smaller 

(23,939 bp) with all the genes encoded by a single circular strand in the same 

transcriptional orientation. 

 

 

 

There is a remarkable difference in the coding portion of the genomes of both species 

with only 20 % of the A. parasiticum mitochondrial genome coding for proteins 

whereas 93 % of the S. destruens mitochondrial genome codes for proteins. A. 

parasiticum genome is very spacious, gene-rich and is comprised of long regions of 

repeat sequences whereas in S. destruens mt-genome is very compact, with very little 

intergenic regions, no repeat sequences and even gene-overlap is evident. The S. 

destruens mt-genome is made up of 47 intron-less genes (including two ORFs) while 

the A. parasiticum genome is gene rich comprising of altogether 87 genes out of which 

44 genes have been identified (includes approximately 24 ORFs) and is very intron-rich 

Burger et al. (2003a). 

 

 

 

The above comparison illustrates that mitochondrial genome architecture and content is 

very different in both closely related species which could be a possible explanation as to 

why the two species did not group together in the phylogenetic tree (Figure 6.4). 

However, a few features shared by their mtDNA confirm their close phylogenetic 

relationship as evident from the phylogenetic tree constructed from their derived amino 

acid sequences (Figure 6.4). Both organism use mitochondrial UGA (“stop”) codon to 

specify tryptophan. Several tRNA genes are duplicated with a maximum of four copies 

as for tRNAM in A. parasiticum mt-genome. Unusual structural similarity in tRNAS of 

A. parasiticum and M. brevicollis was observed. Similar to that, in S. destruens 

nucleotide 8 that connects aminoacyl and D stems of tRNAS is missing, and in position 
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26 there is pyrimidine (Uracil) instead of purine. However, unlike A. parasiticum the 

second nucleotide in D-loop of S. destruens is Adenine (A) instead of Uracil. 
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6.4 Discussion 

Due to unique taxonomical position of S. destruens, its mt-genome was investigated to 

better decipher its phylogeny and investigate if S. destruens shares same mt-genome 

features with other unicellular relatives of animals (Choanozoa) which will help in 

better understating of mtDNA evolution in this important group of eukaryotes. The 

overall coding portion (including two ORFs) of S. destruens mitochondrial genome is 

96.4 % and represents the highest amongst the unicellular protists (M. brevicollis (46.9 

%), M. vibrans (80.0 %), C. owczarzaki (28.6 %) and A. parasiticum (20 %) and even 

greater than the protozoan Jakoba bahamiensis (93.0 %) that has had the most primitive 

mitochondrial genome and highest gene content reported to date (Burger et al. 2003a, 

Burger et al. 2013, Lavrov and Lang 2014).  

 

 

 

S. destruens mtDNA is considerably compact with overlapping genes of up to 31 nt 

(between nad3 and tatC), a feature (distinct compaction) that is usually ascribed to more 

evolved mtDNA (Metazoan) and to the emergence of a multicellular body plan (Lavrov 

2007). The S. destruens mitochondrial genome is three times smaller than M. brevicollis 

(76 kbp), two times smaller than M. vibrans (55.9 kbp), and approximately eight times 

smaller than its closely related organism A. parasiticum (> 200 kbp) from the sister 

group Icthyophonida and C. owczarzaki (200 kbp). Sphaerothecum destruens had 

extensive gene loss especially for ribosomal proteins compared to Filasterea (M. vibrans 

and C. owczarzaki) and Choanoflagellate (M. brevicollis), with only four ribosomal 

genes left in its mitochondrial genome. Amoebidium parasiticum cannot be compared at 

this moment as its whole mitochondria have not been sequenced yet (Burger et al. 

2003a). The number of tRNAs in S. destruens is reduced to 22 which is the lowest 

among the unicellular protists studied so far. The reduced number of 22 tRNAs as 

evident in bilaterian animals is usually associated with genetic code changes to utilize a 

fewer number of mitochondrial tRNAs compared to the translation under the standard 

genetic code (Marck and Grosjean 2002). 

 

 

 

The remarkable differences in mitochondrial genome of S. destruens from its related 

unicellular protists could also be attributed to their different lifestyles. For example, 

parasite genes tend to evolve faster compared to their free-living relatives (Baldauf et al. 
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2013). The mt-genomes of organisms studied so far from the Choanozoa include M. 

brevicollis (Choanoflagellate); a unicellular free-living heterotroph, A. parasiticum 

(Icthyophonida); a symbiont present in external exoskeleton of insects, C. owczarzaki – 

an endosymbiont of tropical freshwater snail where it acts as a parasite of Schistosoma 

mansoni and M. vibrans- a free-living protist (Baldauf et al. 2013). Mt-genomes studies 

of parasites have shown development of great diversity of gene content, organization 

and expression machineries (Feagin 2000). The parasitic lifestyle of S. destruens could 

have contributed to the observed accelerated mtDNA evolution but accelerated growth 

rates have also been proposed as a possible explanation for highly derived mtDNAs 

(Burger et al. 2003b). S. destruens divides within cells asexually and can reach high 

numbers in less than 20 days in cell cultures within the lab. Therefore, these accelerated 

growth rates could also have contributed to the observed accelerated mtDNA evolution. 

 

 

 

The phylogenetic analysis revealed conventional relationships for the Metazoa and the 

Holomycota, however it revealed new interrelationships of early branching Metazoans. 

The phylogeny of S. destruens based on mitochondrial data revealed the interesting 

grouping of S. destruens with the Filasterea and the Metazoa in one clade with a strong 

BPP value. However, this is in contradiction to a previous multi-gene study that has 

identified S. destruens as one of the earliest Holozoan divergence after Corallochytrium 

limacisporum (Torruella et al. 2015). This contradiction could be due to the different set 

of genes studied which can be under different evolutionary pressures and could result in 

more evolved genes for mitochondria compared to flagellar and chitin synthase genes 

(which were used by (Torruella et al. 2015). Moreover, the highly derived 

mitochondrial genome content and the architecture of S. destruens mtDNA compared to 

A. parasiticum could be a possible explanation for the non-grouping of both organisms 

into a monophyletic group and the association of S. destruens with the Filasterea, the 

Choanoflagellate and the Metazoa group. It is also noteworthy to point out that most of 

the multi-gene phylogenetic studies (except for Torruella et al. 2015), did not include S. 

destruens as a representative of the Ichthyosporea (Lang et al. 2002, Shalchian-Tabrizi 

et al. 2008, Torruella et al. 2012). 

 

 

 

Based on the mt-genome expansion trends in the unicellular relatives of animals (M. 

brevicollis and A. parasiticum), due to the accumulation of repeat sequences and 
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increased size of intergenic regions, it was proposed that mtDNA reorganization 

occurred recently in the Metazoan evolutionary history and was linked with the 

emergence of multicellular body plans (Burger et al. 2003a, Signorovitch et al. 2007). 

Sphaerothecum destruens mtDNA in comparison with its unicellular relatives A. 

parasiticum, M. vibrans, C. owczarzaki and M. brevicollis is very compact and without 

any repeat sequences or large non-coding regions. Although a few unusual genes 

(ccmC, ccmF and tatC) are present, it has a comparatively low gene-content; in 

particular, there is evidence of loss of larger number of ribosomal genes compared to 

other member of the Choanozoa. The S. destruens mtDNA indicates that the distinctive 

mtDNA compaction has already started in the unicellular organisms as opposed to the 

findings in M. brevicollis and A. parasiticum (Burger et al. 2003a). This highlights the 

need to increase the quantity of mt-genome of unicellular organisms sequenced, 

particularly those of the closest relatives of animals (Holozoa) to better understand the 

evolution of mitochondrial DNA in this group of eukaryotes. 

 

 

 

In conclusion, the study of S. destruens mtDNA has challenged the conventional 

assumption about the presence of big mt-genomes in the unicellular relatives of animals 

(Choanozoa). The absence of long intergenic regions and even a few genes overlaps 

indicates that the mtDNA compaction feature is not strongly linked with the 

multicellularity of animal lineage as generally assumed. The presence of comparatively 

evolved mtDNA in one of the earliest Holozoan organism supports the hypothesis that 

evolution of mtDNA occurs in parallel trajectories. 

 

 

 

6.5 Summary 

The present study has provided novel data on mtDNA evolution by providing first 

evidence that distinctive mtDNA compaction has already occurred before the 

emergence of a multicellular body plan in the animal lineage as previously 

hypothesized. The presence of a compact mt-genome in the Ichthyosporea supports the 

parallel evolution hypothesis for mtDNA. The compact, intron-less and reduced gene-

content of the S. destruens mt-genome is very unique for the species phylogenetic 

position. Based on mitochondrial data, S. destruens has a sister group relationship to the 

Filasterea, the Choanoflagellate and the Metazoa group.  
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Chapter 7  

Discussion and Conclusion 



157 

 

7.1 Synthesis of principal results  

Sphaerothecum destruens was identified as a potential novel parasite in 2005 after its 

discovery in the invasive fish species Pseudorasbora parva (Gozlan et al. 2005). Since 

its first record in Europe, the parasite’s presence has been confirmed in P. parva 

populations from the Netherlands, Turkey and France (Spikmans et al. 2013, Ercan et 

al. 2015, Charrier et al. 2016), with declines in endemic freshwater species in the later 

(Ercan et al. 2015). Due to the management implications associated with this parasite’s 

status (i.e. native or non-native parasite) this work aimed at determining S. destruens 

origin and distribution across native and non-native P. parva populations (Chapter 3); 

investigating its distribution and potential impact in the UK (Chapter 4) whilst also 

developing eDNA detection methods in order to assess the efficacy of P. parva 

eradication as a viable control measure for S. destruens (Chapter 5). In order to achieve 

the aims in Chapters 3 and 4 a new phylogenetic marker, the mitochondrial Cyt-b, was 

developed and a nuclear ITS marker was optimized (Chapter 2). The global distribution 

of S. destruens (Chapter 3) was determined through the examination of its reservoir host 

P. parva. The work expanded the confirmed range of S. destruens to more locations in 

Europe and is the first study to determine its presence in China (Figure 7.1). This study 

provided the first evidence to support the novel pathogen hypothesis i.e. that S. 

destruens had been introduced into Europe via the accidental introduction of its 

reservoir host P. parva. Therefore, S. destruens is a non-native parasite to the UK and 

continental Europe and should be managed as such.  

 

 

 

In addition to this parasite potentially being an important pathogen for fishes, it also has 

a unique taxonomical position, where animals first diverged from fungi in the tree of 

life. Most studies which look at the deep roots of the tree are often limited by the 

inability to culture these organisms and thus do not have good quality DNA to 

investigate these relationships using genetic markers. Sphaerothecum destruens is the 

only member of the Dermocystida that has been successfully cultured in the lab and 

thus this represented a strong opportunity to both understand its mitochondrial evolution 

and better decipher its taxonomic position in the tree of life. In Chapter 6, the complete 

mitochondrial genome for S. destruens was sequenced and used to reconstruct 

phylogenetic tree based on mitochondrial derived protein sequences which revealed an 

interesting position for S. destruens as a sister group to the Filasterea, the 
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Choanoflagellate and the Metazoa group (which is contrast to other studies - (Torruella 

et al. 2015). The sequencing of the mitochondrial DNA has however yielded novel 

results in terms of the species’ mitochondrial organisation which showed extreme 

compaction and relatively low gene content of it mitochondrial DNA compared to its 

only sequenced close relative, Amoebidium parasiticum.  
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Figure 7.1. Global distribution of Sphaerothecum destruens. The sites labelled red are from previous reported studies (Harrell et al. 1986, Hedrick et al. 

1989, Arkush et al. 1998, Spikmans et al. 2013, Ercan et al. 2015, Charrier et al. 2016) and blue are this thesis’s (Chapter 3) contribution. The sites 

detected positive for S. destruens in its reservoir host Pseudorasbora parva in this study are multiple sites across China, from Spain and the UK. 

(Abbreviations: US-United states of America, UK-United Kingdom, SP-Spain, NL-the Netherlands, FR- France and T-Turkey). 
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In the UK, the risk of all non-native parasites is assessed and their inclusion on the 

Environment Agency’s Category 2 and the non-native parasite list is determined and 

reviewed by a panel of experts using a number of criteria including the evidence for 

histopathological impacts on the infected fish. It was thus important to investigate the 

distribution and potential threat of S. destruens through histopathology in the UK 

(Chapter 4). The epidemiological map (Figure 4.1) developed for S. destruens’ 

prevalence in the UK indicated that S. destruens was present in 50 % of the sampled 

sites. Histopathology of native fishes which were detected positive for S. destruens 

through molecular analysis (i.e. PCR) revealed that chub, dace, roach and brown trout 

displayed no signs of S. destruens related histopathology (Chapter 4). However, the 

study confirmed the increased range of S. destruens including new potential hosts in the 

wild. These fish hosts with low S. destruens prevalence can become reservoirs of 

infection themselves and can result in the emergence of the disease.  

 

 

 

The phylogeographical analysis using the mt Cyt-b indicated the presence of two unique 

S. destruens haplotypes in the UK; one of which was similar to Chinese haplotype 

(Chapter 3) and the other was unique to UK. The presence of a unique S. destruens 

haplotype in UK could indicate that P. parva sampling in China was not exhaustive and 

that not all possible sources of P. parva introduction into Europe were captured. This is 

also confirmed by the presence of P. parva Cyt-b haplotype that is unique to Europe 

and has not been captured in the sampled Chinese native populations. Despite the lack 

of histopathology, it is highly recommended that S. destruens should be considered for 

listing on the Environment Agency’s Category 2 and novel parasites list due to its 

association with chronic host mortalities (Gozlan et al. 2005, Andreou et al. 2011, Ercan 

et al. 2015).  

 

 

 

The eDNA detection method developed in Chapter 5 could be used to inform health 

checks if the parasite is listed on the Environment Agency’s Category 2 non-native 

parasite list. The technique has been successfully used to confirm the presence of S. 

destruens’ eDNA in the decommissioned ornamental fish farm and Tadburn lake stream 

which is a tributary of River Test and has confirmed that despite the eradication of 

reservoir host P. parva, it is practically impossible to eradicate the pathogen S. 

destruens once it has established in the community (Al-Shorbaji et al. 2016). The 
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Tadburn Lake stream which runs into River Test, increases the risk of S. destruens 

expansion. This raises the need of effective measures to be taken to minimize S. 

destruens further spread. These relevant measures include its monitoring in suspected 

waters and its detection during fish health checks undertaken before the fish movements 

are carried out (Figure 7.2).  

 

 

 

In England and NRW, fish movements and introductions are regulated by the 

Environment Agency. During fish health checks, the Environment Agency requires a 

minimum of 30 fish to be examined. This sample size is considered sufficient for the 

detection of most of the pathogens. The sampled fishes are dissected and are examined 

for Category 2 non-native parasites. The fish movements are carried out depending on 

the absence/ presence of the non-native parasites. In order to monitor S. destruens 

presence it is worthwhile to sample water from the inspected site and check for S. 

destruens through the eDNA method. Positive water samples can be further confirmed 

through the detection of the parasite in fish tissues (Figure 7.2). 

 

 

Figure 7.2. A proposed lay-out for the inclusion of Sphaerothecum destruens screening 

during fish health checks. 
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The mitochondrial DNA study of S. destruens revealed unexpected features of its mt-

genome when compared to other organisms that are phylogenetically related. Compared 

to its close relatives (Amoebidium parasiticum, Ministeria vibrans, Capsaspora 

owczarzaki and Monosiga brevicollis), S. destruens mtDNA is the smallest. This small-

size of its genome is due to the scarcity of intergenic nucleotides which accounts for 

only 3.5 % of its genome, loss of greater number of ribosomal protein genes and 

complete absence of introns from its mt-genome. The S. destruens mtDNA encodes the 

same set of proteins involved in oxidative phosphorylation, as other members of 

Choanozoa. The extra genes carried by its genome are present in other members such as 

tatC in M. brevicollis, ccmC and ccmF in C. owczarzaki. S. destruens mtDNA has the 

lowest number of ribosomal protein genes and tRNA genes compared to other holozoan 

protists and is the most derived among the mt-genomes from the Choanozoa reported to 

date. 

 

 

 

This is the first study where S. destruens phylogenetic position was investigated based 

on the mt-genome. The phylogenetic analysis based on the 8 most conserved mtDNA 

protein sequences (cox1-3, cob, nad3, nad4l, nad5 and atp6) revealed an interesting 

position for S. destruens as a sister group to Filasterea and Choanoflagellate and 

Metazoa group. This was in contrast to the previous studies where S. destruens was 

designated as one of the earliest holozoan divergence (Torruella et al. 2015).  
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Table 7.1. Risk assessment to determine the hazard risk associated with Sphaerothecum destruens based on findings from previous studies and this 

thesis. The risk assessment follows the guidelines by Williams et al. (2013). 

Risk query Score Rationale 

Knowledge from previous reports Thesis contribution 

A. Value/susceptibility of native resources    

1. What is the economic value of susceptible 

host(s) to freshwater fisheries? 

4 Sphaerothecum destruens is a generalist 

parasite with a broad range of hosts of high 

economic and ecologic value (Arkush et al. 

2003, Andreou et al. 2011, Ercan et al. 

2015).  

 

New potential hosts of S. destruens 

identified in the wild are dace 

leuciscus leuciscus, chub Squalius 

cephalus, roach Rutilus rutilus and 

brown trout Salmo trutta (Chapter 4). 

2. What is the ecological value of susceptible 

host(s) to freshwater fisheries? 

3  

3. Does the parasite infect a host that is 

endangered, vulnerable or threatened (yes/no)? 

1 None of these fish species are threatened or 

endangered in England and Wales. It is 

scored 1 based on the high susceptibility of 

L. delineatus which is listed as endangered 

species in Europe 

 

B. Colonisation potential    

4. Based upon climatic conditions of source and 

recipient localities (including those expected 

through climate change), what is the likelihood that 

the parasite will become established? 

3 The colonisation potential for S. destruens is 

high based on its wide range of hosts and 

direct life cycle. Broad range of host- S. 

salar, O. tshawytscha, S. trutta, O. mykiss 

(Hedrick et al. 1989, Arkush et al. 1998), A. 

brama, C. carpio, L. delineatus (Andreou et 

al. 2012). The presence of life stages (spores, 

zoospore) with wider temperature tolerance 

and long environmental persistence 

(Andreou et al. 2009) increases its 

Detection of S. destruens in P. parva 

in decommissioned ornamental fish 

farm and in native fish species in its 

adjacent waters “Tadburn Lake 

stream” in 2013 (Chapter 4) and later 

in 2016 through eDNA method 

(Chapter 5) indicated the colonization 

success for the parasite and its spread 

through its environmentally 

transmitted infectious spores. 

5. Based upon life-cycle development and host 

specificity of the parasite, what is the likelihood of 

successful colonisation and spread? 

4 
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colonisation potential. 

 

6. How many legal fish movements take place 

annually within risk assessment area comprising 

susceptible hosts? (0–10 = v. low, 10–50 = low, 

50–250 = medium, 250–500 = high, >500 v. high) 

 

3 

 

Fish movements are considered high risk for the spread of S. destruens. There are 

approximately 450 movements for A. brama recorded annually in England and Wales 

(Williams et al. 2013). 

C. Potential disease risk    

7. What is the likely pathogenicity of the parasite to 

fish populations based on disease occurrence in 

other geographical regions? 

3 Fish losses have been reported in O. tshawytscha and S. salar (Harrell et al. 1986, 

Hedrick et al. 1989). Population declines have been reported in centrarchid species in 

Turkey (Ercan et al. 2015). 

8. What is the likely pathogenic importance of the 

parasite to fisheries based on pathological 

descriptions and host level changes 

1 Previous studies have reported pathology in 

both salmonids and cyprinids (Arkush et al. 

1998, Andreou et al. 2011, Ercan et al. 

2015).  

However, it is scored 1 due to no signs 

of disease in the histopathology of fish 

samples detected positive for S. 

destruens through PCR. (Chapter 4). 

9. What is the potential disease risk based on the 

pathogenicity of congeners of the parasite? 

3 Amphibiocystidium ranae, a close relative that has caused high mortalities in frogs 

(Pascolini et al. 2003). 

Total 25   
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Figure 7.3. Assessment of the management options to control the spread of 

Sphaerothecum destruens based on hazard identification (Table 7.1). Rationale 

supporting the decisions made at each step. 1. S. destruens has been identified as non-

native parasite to Europe (Chapter 3) and as high risk based on Hazard score 25. 2. S. 

destruens is not covered by any legislation in the UK. 3. S. destruens can infect Salmo 

salar, Abramis brama and Cyprinus carpio. The movement of these species is not 

restricted under the national exotic fish legislation (Andreou and Gozlan 2016). 4. The 

P. parva eradication was not found effective in terms of control of S. destruens (Chapter 

5). 5. The parasite can be detected through histology and molecular methods (Andreou 

et al. 2011). eDNA method was found effective in S. destruens detection outside its host 

(Chapter 5). 6. Fish movement restriction could be the only effective method to control 

the further spread of S. destruens to wild freshwater habitats. The decision diagram has 

been adapted from Williams et al. (2013). 
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7.2 Future work 

The present work demonstrated the introduction of S. destruens to continental Europe 

and the UK along with its reservoir host P. parva. The epidemiology of S. destruens in 

the continental Europe needs to be further investigated in countries especially where P. 

parva has spread and colonised river catchments (Gozlan et al. 2010a). Due to low 

infection levels in the reservoir host P. parva, the detection is usually difficult. 

Therefore, the native fish communities living in the vicinity of P. parva populations 

must also be examined. The eDNA method developed in the present work (Chapter 5) 

can be used for the initial survey of S. destruens presence in continental Europe. In case 

of positive detection with eDNA method, it should be coupled with fish examination. 

The mt Cyt-b marker (Chapter 2) can be effectively employed on S. destruens isolates 

from Europe to further confirm the invasive status of S. destruens. 

 

 

 

Sphaerothecum destruens was detected in native fish species at high prevalence (57 %) 

living in the Tadburn Lake stream, which receives effluents from a decommissioned 

ornamental fish farm which carried P. parva, after one year of P. parva eradication 

from the facility. The fact that S. destruens has persisted in the stream in absence of its 

source host exhibits the ineffectiveness of the eradication programs in terms of control 

and spread of the environmentally transmitted propagules i.e. S. destruens’ spores and 

zoospores. This emphasizes that all the P. parva eradicated waterbodies across the UK 

with direct connections to the freshwater habitats should be monitored for S. destruens 

presence. This necessitates that further work should be carried out to examine all the 

native fish species that have been in proximity of P. parva populations across the UK. A 

minimum of 30 fish should be examined through molecular means (i.e. PCR) and in 

case of positive detection histopathology should be carried out. 

 

 

 

The eDNA method can be employed as an initial survey tool for S. destruens presence 

in the suspected waters. The outputs of S. destruens detection surveys can be largely 

dependent on the timing of the year they are carried out. The empirical studies have 

identified S. destruens infections to be highest during spring season (Ercan et al. 2015), 

that could be the ideal time for water sampling with maximal number of zoospores 
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released in inhabiting environment. But it is also important to note that zoospore have 

higher survival rates at lower temperatures (Andreou et al. 2009) .  

 

 

 

The detection limit of real-time PCR assay was 1 pg/µl for S. destruens DNA which 

was slightly inferior to the detection assays for other organisms (Walker et al. 2007, 

Huver et al. 2015). The detection limit can be improved further by targeting the region 

of mitochondrial DNA of S. destruens, due to presence of multiple copies per cell 

(Avise 2000) and also its whole mtDNA sequence is available now (Chapter 6).  

 

 

 

Comparison of the mitochondrial genomes of the unicellular organisms from the 

Choanozoa group revealed a rich diversity of mtDNA organization in comparison to a 

relatively small number of organisms with complete mt-genomes (n=5). In order to 

better understand the mitochondrial evolution in the unicellular relatives of animals, 

additional mitochondrial genomes should be obtained from this important group of 

eukaryotes. 

 

 

 

7.3 Conclusions 

This thesis has provided new information on S. destruens invasive status in Europe and 

its epidemiology in the UK. Novel findings include the introduction of S. destruens to 

Europe from China along with its reservoir host P. parva which has important 

implications in term of its management as a non-native parasite in the UK (Chapter 3). 

Identification of new potential hosts of S. destruens in the wild and the development of 

epidemiological map for S. destruens in the UK (Chapter 4) can play significant role in 

its monitoring and to minimize its further spread to adjacent waters with fisheries of 

high economic and conservation values. The development of eDNA method served as a 

fast detection tool for S. destruens presence in the suspected waterbodies and for 

monitoring the effectiveness of P. parva eradication programs in terms of S. destruens 

control (Chapter 5). The mitochondrial genome study of S. destruens, led to the 

development of a new phylogenetic informative marker Cyt-b (Chapter 2), and revealed 

a new phylogenetic position of S. destruens in the tree of life (Chapter 6). The features 

of S. destruens mtDNA- compaction, intron-less genes, gene-loss particularly of 
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ribosomal protein genes had supported the parallel evolutionary hypothesis of mtDNA 

evolution (Chapter 6). Lastly, the risk of S. destruens (Table 7.1, Figure 7.3) in the UK 

was re-evaluated based on the findings from Chapter 4 and 5. 
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Appendix 1 

 

Figure 1: Cytochrome b sequences of Sphaerothecum destruens isolates from two 

European samples (UK 1: FN996945 and UK-2: RA isolate from this study) and 5 

samples across China (sites S1, S3, S11, S12 and S13). The sequences showed no DNA 

polymorphism. 

Appendix 2 

Minimum detection threshold for Sphaerothecum destruens using nested PCR 

Day6 

S. destruens DNA was detected in all spore concentrations in distilled water. In turbid 

water, all three replicates produced amplification at High spore concentration and two 
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replicates were detected positive at medium and low spore concentration (Figure 2.1 

Table 2.1). 

 

Figure 2.1: Detection limit of conventional nested PCR for Sphaerothecum destruens 

spores in turbid and natural water at Day 6 incubation period. Lane 1-3, 7-9, 13-15: 

second round PCR products from turbid water spiked with 100K spores/2L, 300K 

spores/2L and 3M spores/2L. Lane 4-6, 10-12, 16-18: PCR products from natural water 

spiked with 100K spores/2L, 300K spores/2L and 3M spores/2L. Lane 19, 20, 21, 22: 

negative controls. Lane 23: PCR +ve control, Lane M: 1Kb DNA ladder. 

Day13 

At Day 13, S. destruens-specific DNA was detected in presence of distilled water in all 

3 replicates at High spore concentration and 2/3 for medium spore concentration and 3/3 

for low spore concentration of which amplification was very low for one replicate. In 

turbid water S. destruens-specific DNA was detected in only High spore concentration 

in 2/3 replicates (Figure 2.2 Table 2.1). 

 

M      1       2       3     4        5     6                 7    8     9     10      11     12  

M      13      14     15   16    17     18             19    20               21    22           23      
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Figure 2.2: Detection limit of conventional nested PCR for Sphaerothecum destruens 

spores in turbid and natural water at Day 13 incubation period. Lane M: 1Kb DNA 

ladder, Lane 1-3, 7-9, 13-15: second round PCR products from turbid water spiked with 

100K spores/2L, 300K spores/2L and 3M spores/2L. Lane 4-6, 10-12, 16-18: PCR 

products from natural water spiked with 100K spores/2L, 300K spores/2L and 3M 

spores/2L. Lane 19-23: negative controls. Lane 24: PCR +ve control. 

Day20 

For distilled water, all the replicates at all the spore concentrations were detected 

positive for S. destruens-specific DNA. In the turbidity conditions two replicates were 

positive at high spore concentration and one replicate at medium spore concentration. 

No S. destruens DNA was detected at low spore concentration in any replicate Figure 

5.3. An overview of S. destruens DNA detection by conventional PCR over the course 

of 20 days is summarised in Table 5.1. No positive amplifications were obtained from 

extractions of filter papers used in filtration equipment post-disinfection, indicating that 

there was no carry-over of S. destruens DNA. 

 

M       1        2      3        4       5        6        7        8      9       10       11    12  

  M     13      14     15       16     17      18      19    20       21      22     23       24 
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Figure 2.3: Detection limit of conventional nested PCR for Sphaerothecum destruens 

spores in turbid and natural water at Day 20 incubation period. Lane 1-3, 7-9, 13-15: 

second round PCR products from turbid water spiked with 100K spores/2L, 300K 

spores/2L and 3M spores/2L. Lane 4-6, 10-12, 16-18: PCR products from natural water 

spiked with 100K spores/2L, 300K spores/2L and 3M spores/2L. Lane 19, 20, 22, 23: 

negative controls. Lane 21: PCR +ve control, Lane M: 1Kb DNA ladder. 

Table 2.1: Detection limit of Sphaerothecum destruens DNA in distilled and turbid 

water over the course of 20 days by conventional PCR. Results are presented as the 

number of positive replicate/total number of replicates for each treatment. 

 

Spore count 

 

1,500,000/L 

(High) 

 

150,000/L 

(Medium) 

 

50,000/L 

(Low) 

 

Estimated 

spores filtered 

(150,000 spores) (15,000 spores) (5000 spores) 

 

 

Incubation 

point 

  Sterile 

water 

Turbidity  Sterile 

water 

Turbidity Sterile 

water 

Turbidity 

Day 6  3/3 3/3 3/3 3/3 3/3 2/3 

Day 13  3/3 2/3 2/3 0/3 3/3 0/3 

Day 20  3/3 2/3 3/3 1/3 3/3 0/3 

 

 

     M      13     14       15      16        17      18                19      20       21      22       23 

M        1        2         3        4        5        6        7        8        9         10     11       12  
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Appendix 3 

Sphaerothecum destruens mtDNA sequence 

10 20 30 40 50 60 70 80 90 100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTGGGGCTTGTTATTTTAACAAGCCCCCCCAAAATTTGGGATATTGGCGTTGGTTCTTTGTGGCTGTTAAGGAGTTGTGAGTTATATGTACTGAGTGGGA

110 120 130 140 150 160 170 180 190 200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATTTTTAATTATTAGTATATCGTTAGGGAGCGTTTGAGGGGTGAGTGAGTTGGGGTGAGGCGGTTTTTGATTTTGGGATCCTGTAGAGTTTATTTCTTT

210 220 230 240 250 260 270 280 290 300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTACATTTGTTTGGTTATTTATATTATATACATTTGACAAAGAGTCGAATAGATGATTTATCCATTAGTTTAGTTTTATTGATATTATGTTTTTTAGTA

310 320 330 340 350 360 370 380 390 400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTACTTTGTATTTATATTGTGAGGTGTGGTTTTTTGGGAGGTGTTCATGTGTTTGTTTCAAAGATAGATTGGTGGGTTTTTAGCATAATATTATTATATT

410 420 430 440 450 460 470 480 490 500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTATAATAGGGTTGTGTTTGATGTTCAGGTTTTGGAGATATGTGTTAATTAATAGATTATTAGTGAGTAAAGTTTATTTATTATTTTTTGGTGGAGTTTA

510 520 530 540 550 560 570 580 590 600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTATTGATTTATTGGTTGTTGTTTTATTTAATTGTGTTTAAAGTTAACTTAGCGGAGTATTGTTTTATAAATTTGTTTTTTATTTTAGGGTTTCTGGCT

610 620 630 640 650 660 670 680 690 700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTGTTGTATCTTTTTGTTAATAATAGTTTTAATGATTTAATACATTTGTATGTGTTTTTATTGATTTTAATTTTATTGTATAGGTATGATCTAGGGTGAG

710 720 730 740 750 760 770 780 790 800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATGTTTGTTTAAGTTTGGAGTGTTTAAGTGTTATTAGTAACATGTATGTGAAGGTATGTTTGTTGAAATTGGATGTATATGAGAATTGTGGAAAATTGGT

810 820 830 840 850 860 870 880 890 900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTTAATAGTAATATAGGAGTGTGCTTTAATGAAATTTTTCAAGATATAATAGGGTTAGAGTATCAATTTTATATTGGTGTAACTAAATTAAAACCTATG

910 920 930 940 950 960 970 980 990 1000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTGATAGTGTTACTGAATGGTTTTGTATTAGTGTCTTTTATAGTAGAGGAAATAGGAAGTCATTTTATAAGATTTGATTTAGTAGTCTCTTTTTTGGTCT

1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTGGTTATGATTAATAACATTTTTTCTTGTGTTTTTAGATGAGTTTATATGAATTAAGAGTTGCGATGTGAGTTTATAGGTTTGTATTATTATATTTAA

1110 1120 1130 1140 1150 1160 1170 1180 1190 1200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAGAGTTCTGGCTATTTTTAGTTAAGTGTATTTTGGTGTATAGAAAAGGAGATTATTTTGATAAGTTTAAAGGTGTTGGTATTAATAAAGTAAGATTAAT

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAAGGACGAATTAGGTTTAAATAGGAAATTTTGAGATAGAGATGTGGTTGAAAGAGAGGTTTTAGAATATATAGATTACTTTATGTTAGGTAGAAAAGAT

1310 1320 1330 1340 1350 1360 1370 1380 1390 1400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTAATGAGTGATTAGATATGGAAATAAGTAAAAATATTTCTAAAAAAGTGAAGATTAAAAGTTATCAAGGTATTAGGTATTCAAAAGGTTATCCTATTT

1410 1420 1430 1440 1450 1460 1470 1480 1490 1500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTGTCAAAATGTGAGGAATAATGGGATAATAGCGAAAAAGTTAAATAATATAAAATAAGATATGAGAATAAAAGGTTTAAATAAGTTAGCAGTAGGAAA

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATAAGATGTAGTAGAAATAAATATAATGTGAGAAGTTTAATAGTGACCAAGAATCAAGGTGAGGATTTAAAAGTTAGAGATTTTTTCTATCCTGTTACT

1610 1620 1630 1640 1650 1660 1670 1680 1690 1700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGAAGATGATTAATGACTTCAGCGAACGTAGCTTGAACTAAATGTTTAAGGTGATATTTATTCAAGGACTTGGAGTTTGTAAGCTTGCGTCAATGTGATA

1710 1720 1730 1740 1750 1760 1770 1780 1790 1800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATGTGTTACAAAGTGGAAGAGTACAGGTGAATGGTATAGTAGTTAAATCACCTTATCATGAATGTAAAATAGGTGATTATGTTTGAGTGGGTCATAGTCG

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TCCGTCAATGAATCTTGGGAAATATGAATACTTTTTCAAGCACAATTATGTTGGGGTTAAAGAGATAAATGGTTATGGTTTTTACATAGCTATTTAACCT  
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1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGGAAAAGTGTCTGAATGGCTAAGGTGTGTATTTTGAAAATACATTTTTATAGGTTCAAATCCTATTTTTTCCGAGTGTCTTTAGTTAAATGGTATAATA

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTATTGTACGAAGATAGAGTTATAAGTTCGAGTCTTATTAGACACTGGAAATATGACAGAAAGGTTATGTGTTGATTTGCTAAATCAAGATTAATTTCGA

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATAGGTTCGAATCCTATTTTTTCCGAGTTGTATGGTAAATTATAGTCAAATTTGTTTTTATCTATTTATAGCAATGGTTGTTTCAGTTATTTTGGTGAT

2210 2220 2230 2240 2250 2260 2270 2280 2290 2300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTTATCTAAATTTTTATCTGTTAAAGAATTAAATTTAGAGAAAGTAGGAGTATATGAGTGCGGGTTTGATCCTTTTGACGATTGTAGACGTCCCTTTAGC

2310 2320 2330 2340 2350 2360 2370 2380 2390 2400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATAAGATTTTTTTTAATAGGAATATTATTTATAGTGTTTGATTTAGAAGTTTTATTTTTGTTCCCGTGGTCTATAATATTAAATATTATAAGTTGAGAAG

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GATACATAGCTATGTTTGTGTTTTTAATATTGTTAATTATAGGTTTAGTATATGAGTGAGTAAAAGGAGGTTTAGAATGGTTATAGATTACTTCTTTAAA

2510 2520 2530 2540 2550 2560 2570 2580 2590 2600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GAGTTAATATGAAGATTGAAATATGTTTTAGGGTATTGGTTTGTGTTATTTATTTTGTCTTTTTGGTATATTGATGTTTGATTATATTGGGTGTTTAATT

2610 2620 2630 2640 2650 2660 2670 2680 2690 2700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CTTGTGATGTTTCGTTTATTCTTTTAGGGATTGAAAAAGGTACCTTTTTTAATGTCTTTTTTAGTTTATTAAATTCTTTATTATGATCAATGTGGTATTT

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTTTTTCAAATTTTTTTAATGGTAAGGGGTGGGTTTTATAGAGAAGAAATGTCAACCGAGATTTTTATTATAGTAGAGATATTGATAGCGATTTTTAGT

2810 2820 2830 2840 2850 2860 2870 2880 2890 2900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTATATGTATTCACTAAGGGTGCACAATGGGTTATCGTTAATTTACATTTAAATAATACCAATTCTTTAATAGAAAGAGTGGTGTGTATTTGAGATTTGG

2910 2920 2930 2940 2950 2960 2970 2980 2990 3000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TACAATATTTGTATTTGTTTTTAATTTTGTTTCATATTTTGATTTTATTTGCAGTATACAGTTCAAATTTTATAAAATCTAGGAAGTTTATATATTTAGT

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATTGGTTTGTTTATGGTCACTTTTATGGTTTGCGATTGAATTGTTTGATTCTTTATTTATATTAGTTTATTTTTTTTTTTGGAGATTATTTATTTTTTA

3110 3120 3130 3140 3150 3160 3170 3180 3190 3200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGATGTTTAATTTAGCAATAGTTTGTACCGGTATTAGACTAAATTCTAATACAAAAGATAAGTCAAGCCTAGTAAAAAATTACATTTATGTGATTTTCTT

3210 3220 3230 3240 3250 3260 3270 3280 3290 3300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ACGGTGAAGGCTGAGTGCGGGGATCCGGCTAGCCTCAAGAATAAGTATAACTAAGTAAAGAGATCAGGTAATATTTTTTTCAAGGATCTAGAAGTTTTGT

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATGAGGCTCTGGAAGAGTACTTCGTACTCTGTAAAACGAAATAGAAAACTCTACGATCCTGGGCTAAATAGGAATCTAGTTAGGTCTTTAAAGGGGACAA

3410 3420 3430 3440 3450 3460 3470 3480 3490 3500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTAATAAGTGAAGGTTAAAAGTTTTCAGTTATAAGGCTTTAATAGGGAATGATTAATATAAGATTTATTGATATGATTTTAATGTTGCCTGAGTTGTACT

3510 3520 3530 3540 3550 3560 3570 3580 3590 3600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAGGTTTTGTAGTTGTTGTGTTTTTGTTTTGGTACGCTTTATTTCAAATTTTTAGTCAAGATAAACACCATAGGAGGATATTTATAAACATATTTCATAT

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ACTATTCATGGTTTATTTATATTGTCAAAGTAATCTATTAGGTAGTTGACAAGAGCAGTTAATATTTGGTAATTTGTTTTTTATTTCTGATCTATTGACA

3710 3720 3730 3740 3750 3760 3770 3780 3790 3800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|  
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TTATTTAAATTTATGCTAGGTGGTTTATTGTATGTGTTATTGCTTTTATTTACTTTTGAGATTGTAAAAATCGAAGAGTGAATATTAGTAGTTATATCTT

3810 3820 3830 3840 3850 3860 3870 3880 3890 3900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTTAGGGTATTTGATTGCTTTAAGTAGTAATAATTTATTGGTGTTATTTTTAGGTTGAGAACTGGCTTCTATGAGTTTTTATGTATTGGTTACTAATAA

3910 3920 3930 3940 3950 3960 3970 3980 3990 4000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAGATTTAATATATACAGTATTGAGGCTGGTTTAAAATATTTTTTATATGGTGCTTTTTCATCGGGTTTATTCTTGTTAGGTTTATCTTATTTATATGGA

4010 4020 4030 4040 4050 4060 4070 4080 4090 4100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTTCAGGTATGATAGGGTTAAGAGAAATAGGTGTATATATTCAATTTAGTAGCGATATATCTATATCTTTATTGTTAATATTAGTATCTTTTATGATAA

4110 4120 4130 4140 4150 4160 4170 4180 4190 4200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAATAGGTTTATTTCCTTTTCATTATTGAGTTCCAGATGTTTATGAAGGGACTAGTTCATTTATAGTAGGTTTATTGTCTATATTTAGTAAGGTTGTATA

4210 4220 4230 4240 4250 4260 4270 4280 4290 4300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CTTAATGTTGTTGATCTTTGTGTTTTATTTAAAATTGGGTGTGTTTTTAAATTGAATTGTAATCTATATGTTATGAACGGTGGTCTTTACTGTATTTGTA

4310 4320 4330 4340 4350 4360 4370 4380 4390 4400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGAATAATTGGTGGCTTTTTACAAGTAAATTTGTATAGGATAGTAGCTTTTAGTGGGTTTGTCCACTTAGGTTTTATGTTAAGTTCCTTTGTATTGTGTA

4410 4420 4430 4440 4450 4460 4470 4480 4490 4500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGGAGGATGGTTTACAGGTGTTATTGTTTTACATGGCTGTTTATGTTGTGATGATGGTTAATTTTATAGGAATATTAAAATTGATTAGACAGCAATCCCT

4510 4520 4530 4540 4550 4560 4570 4580 4590 4600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TACGATAATCAAGTTTTTAGGGTTATGGGATTCTAATAGGTATTTATGTGTATCTTTAATTGTTTTGTTGTTTTCGTTGGTAGGAATACCTCCTTTATTA

4610 4620 4630 4640 4650 4660 4670 4680 4690 4700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGGTTTGTGAGTAAATTATTCGTACTAAGATCCTTGCTAGAAAATAGTTACTATATATTAAGTATTTATTTGATATCTTTTTCGGTAATTGGTAGTTTAT

4710 4720 4730 4740 4750 4760 4770 4780 4790 4800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTATCTACGTATAATAGTGGTTATGTTTTTTATAGATAACTATGTTAAGTTTGCATATGCCAGGTTAGTTAGAATTGTGTTGGTAAATTACAAGATAGA

4810 4820 4830 4840 4850 4860 4870 4880 4890 4900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTGAGTAGCTTCACATGTTATTTCTGTTACTTTTTGATTAATTGTTACTTCTATTATGTTTTCAGACAAATTGTGATTAAGTTTGTTCATTTTAGTAAAT

4910 4920 4930 4940 4950 4960 4970 4980 4990 5000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGGTTATAGGTGCTTCTTTTATTAGATTTATTTTTTGTATTTAATACGTTGTTGGCTTCTTTAATGGTCATTTTAGTTGGAAATCCTGTTTATTCTGTGT

5010 5020 5030 5040 5050 5060 5070 5080 5090 5100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATATTTAATATTGTGTTTTTTGAATGTTAGTTGTTTGTTTTTTATATTAGGATTAGAATTTGTGAGTATTATGATGCTTATAGTTTATGTGGGTGCAAT

5110 5120 5130 5140 5150 5160 5170 5180 5190 5200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGCTGTTTTATTTTTGTTTGTGATTATGATGTTAGATATTAGATTAGGTGAATTAGAGGATAACTTGTTTAGATTTTTACCTGTGGGGTTGTTGTTTGGA

5210 5220 5230 5240 5250 5260 5270 5280 5290 5300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTTTGTTTTTTGTGGTTATATATGTTTTATTGTTTAGTAGTTTATTGCCTATTAGTAAAGTGCTTACTCAATTTGTTGTCTGATTAGATCTATTAATAG

5310 5320 5330 5340 5350 5360 5370 5380 5390 5400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTTAGATAATGTTTCGTTATTAGGTTTGTATTTGTTTAATATGTATTGGTTTGTATTTATAGGTTTAGGGTATTTATTAATGGTTGCTATTATAGGTGT

5410 5420 5430 5440 5450 5460 5470 5480 5490 5500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATCATTTTATGTATTGTAAAAATAGGTAAATTACGTAAACAAGATATATATTTTCAAGTAATAAAGGGTTTAAAGACTTCAATTAAAGTGTTGTATTAA

5510 5520 5530 5540 5550 5560 5570 5580 5590 5600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATAATAAAGAATATGTTACAAAGTTCAAAAATGATAGGGGCAGGTTTAGCTACTATAGGTTTAGGTGGTGCAGGAATAGGTGTGGGTCTAGTATTTGCT

5610 5620 5630 5640 5650 5660 5670 5680 5690 5700  



196 

 

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TCTTTGATTAGTTCAACAGCCAGAAATCCATCCTTAAAGTCACAATTATTTTCTTATGCTATTTTAGGTTTTAGTATCACAGAGGCTGTGGGATTATTTG

5710 5720 5730 5740 5750 5760 5770 5780 5790 5800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CATTAATGATGGCTTTTTTAATTTTATATGCTTTTTAATTAATAAAGGTGTGTAATTTAATGGTAAAATGTTACTTTTACAAAGTATGAATTAAGGGTTC

5810 5820 5830 5840 5850 5860 5870 5880 5890 5900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GAATCCCTTCACATCTATATATGTTGTATTTAATGGTTATAGAGTTTTTAGGTAAAAAGGGTTCGATTTGGTGTGTGATAATGTATAGTATCTTTTTATA

5910 5920 5930 5940 5950 5960 5970 5980 5990 6000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTGCTAGAAATAATAGAGTGGAGATTAGGCGATAGCATATTTGTATGAGAAGTAGGAGGTTTATTTGGGGCTTATCAAGTGTTTAATATAGATAGAGTA

6010 6020 6030 6040 6050 6060 6070 6080 6090 6100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGTAAATATAAAAGTGGAATATACTTTAGGATTATTTATTCATGGTTATTTAAGTGTTTTATGTTGTTAATTTATTTAGGAATGTTTATGTTAATTTGTA

6110 6120 6130 6140 6150 6160 6170 6180 6190 6200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGGTTTGAATAAAAGGAGTATTAGGTTTTTATTTGTTATGATTAGGGGGTTTATGGGGTATAAATGTTATAGTAAAGAGCGAATTTCTAAGATATATTTT

6210 6220 6230 6240 6250 6260 6270 6280 6290 6300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGTCCTTTTTTATTTAGTACTAGTCTTATATTTTTTAATATTAGGTAAGGATATTGCATTTTTATTAAGTTTGATTACATATTTGTTATTATTCTGGAGT

6310 6320 6330 6340 6350 6360 6370 6380 6390 6400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTATATATTGAGGTTGGATTTAATGAGATTTGTAAAAAGTAATCAAGTATTGCAAGGTTTAAGTGGAGTGTTGTTAGAGTATCCTTGTCCCGTGAATAT

6410 6420 6430 6440 6450 6460 6470 6480 6490 6500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATCGTACATGTGAAACTTTGGTTCTTTGTTGGGGATTGTATTAATGGTTCAGTTATTAACAGGAATATTTTTAGCAATGCATTATGTGCCTAACATAGAA

6510 6520 6530 6540 6550 6560 6570 6580 6590 6600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTAGCGTTTTTTTCAGTGGAGCATATAATGAGGGATGTTTTAAATGGGTGAATATTAAGATACTTTCATGCGAATGGTGCTTCTATGTTTTTCATTCTAG

6610 6620 6630 6640 6650 6660 6670 6680 6690 6700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATATTTGCATATAGGTAGGGGTTTGTATTATGGTTCTTATTTAGCACCTAGAATTTTACCGTGATTTATAGGTGTTGTTATATTCTTAGTAATGATGAT

6710 6720 6730 6740 6750 6760 6770 6780 6790 6800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CACAGCATTTTTAGGTTATGTCTTGCCTTGAGGTCAGATGAGTTTATGGGGAGCGACAGTTATAACCAATTTAGTATCGGCAATTCCTGGAATAGGGACT

6810 6820 6830 6840 6850 6860 6870 6880 6890 6900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GATATAGTAATATGATTATGAGGAGGGTTTAGTGTGGATAATGCAACTTTAAACAGGTTTTTTGTATTACATTTTTTGTTACCTTTTTTATTGATTGTTT

6910 6920 6930 6940 6950 6960 6970 6980 6990 7000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAGTTGTTTTTCATATAATCTTTTTGCATGATGTTAGAGCAAATAACCCGGTGGGTGTAGAGTCTAATATAGACAATTTGAGATTTAATCCTTATTTTGT

7010 7020 7030 7040 7050 7060 7070 7080 7090 7100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATAAAAGATTCAATTAGTTTTTTTATATTTTTTATATTTTTTAGTTATTTTGTATTTTTTGTTCCGAATATGTTAGGGCATGTTGATAATTATATAGAA

7110 7120 7130 7140 7150 7160 7170 7180 7190 7200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GCCAACAGTTTAGTGACTCCTGTTCATATTCAGCCTGAATGATATTTCCTGTTTGCGTATGCAATATTAAGATCAATTCCAGATAAGTTATTGGGTGTTT

7210 7220 7230 7240 7250 7260 7270 7280 7290 7300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGGCTTTACTGTTTAGTGTTTTGATTTTGTTTGTACTACCTTTTATTCATAATATAGAATTAAGAAGTACAAGCTTCAGACCTGTTTATAGAGTTCTTTT

7310 7320 7330 7340 7350 7360 7370 7380 7390 7400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTGGTTTTTTGTGTGGAATTTTTTTTTATTAACATGATTGGGTGCAAAGCCGATACAAGAACCTTACATTATAGTTTCTCAATTATCCGGTTTGTTTTAT

7410 7420 7430 7440 7450 7460 7470 7480 7490 7500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTTTATATTTTTTATTTTTCATGCCTTTTATTGGTTATTTTGAAAAGATATTATTGCAAATCTAGTTTTGAGTATTTATTTTTGTATTTACTTAATATA
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7510 7520 7530 7540 7550 7560 7570 7580 7590 7600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGTAAATTTTTATTTATTTAGTTTCTATGGTGAGTTGGATTTGACGATGATTTTATTCAACGAATCATAAAGATATAGGGATTTTGTATTTTTTGTTGGG

7610 7620 7630 7640 7650 7660 7670 7680 7690 7700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGGATTTTCGGCGATGATAGGAACTGCTTTTTCTGTAATGATTAGATTAGAATTAATGGGACCTGGAGTACAATTTTTTGGAGGAGATATGCAAGCATAT

7710 7720 7730 7740 7750 7760 7770 7780 7790 7800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATGTTACTATAACTGCTCATGGAATTATAATGATCTTTTTTTTTGTTATGCCTATATTAATAGGTTCTTTTGGAAACTATTTTGTTCCTTTGATTATTG

7810 7820 7830 7840 7850 7860 7870 7880 7890 7900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GAGCTCCTGATATGGCTTTTCCTAGATTAAATAATTTATCTTTTTGGTTATTGCCACCTTCTTTAATTCTTGTGGTTGTATCTTCATTAGTAGAAGGAGG

7910 7920 7930 7940 7950 7960 7970 7980 7990 8000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGTAGGTACAGGATGAACATTGTATCCTCCTCTATCTTCTATTCAAGGTCATTCAGGTGGTAGTGTGGACTTAGCAATATTTTCTTTACATTTAGCAGGT

8010 8020 8030 8040 8050 8060 8070 8080 8090 8100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTTCTTCGTTATTAGGGGCTATTAATTTTATAGTTACTATTTTAAATATGAGGATACCAGGCATGTCAATGCATCATTTACCTTTGTATGCTTGAGCAA

8110 8120 8130 8140 8150 8160 8170 8180 8190 8200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGTTTATTACAGCTTTTTTGTTGTTATTATCCTTACCTGTGTTGGCTGGAGCAATAACTATGTTATTATTGGATAGGAATATAAATACTTCTTTTTTTGA

8210 8220 8230 8240 8250 8260 8270 8280 8290 8300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TCCTGCAGGAGGGGGAGATCCTGTTTTATTTCAGCATTTGTTTTGATTTTTCGGTCATCCAGAAGTATATATATTAATCATACCAGGGTTTGGAATCGTT

8310 8320 8330 8340 8350 8360 8370 8380 8390 8400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TCACATATAATGGCCAAGTTTTCTAATAAACCTGTATTTGGTACGATAGGAATGGTGTATGCTATGTTAAGTATAGGTGTATTAGGATTTTTAGTGTGAG

8410 8420 8430 8440 8450 8460 8470 8480 8490 8500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CTCATCATATGTATACTGTCGGGATGGATGTAGATTCAAGGGCTTATTTCACTGCAGCAACTATGATTATTGCAATTCCTACGGGTGTTAAGATATTTAG

8510 8520 8530 8540 8550 8560 8570 8580 8590 8600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTGATGTGCAACGATGTATGGAGGTAGTTTGAAATTAGTGACTCCTATGCTATATGCTATAGGGTTTATTTTTTTGTTTACAATAGGAGGAGTAACTGGA

8610 8620 8630 8640 8650 8660 8670 8680 8690 8700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTTATGTTATCTAGTGGAAGTTTAGATATAGGTTTACATGATACATATTACGTAATTGGACATTTTCATTCAGTATTGTCTTTAGGTGCAGTCTTTGCTG

8710 8720 8730 8740 8750 8760 8770 8780 8790 8800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTCTAGGAGGGGTATATTTTTGGATTGGAAAAATGTCAGGTTATGGGTATGATGAGTATTTAGGTCAAGTTCAGTTTTGATCTATGTTTGTAGGAGTTAA

8810 8820 8830 8840 8850 8860 8870 8880 8890 8900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTGACATTTATGCCTCATCATTTTTTAGGTTTGTCAGGTTTTCCTCGTAGATATCCAGATTACGCGGATGCGTATTTAGGTTGAAATTTAGTTTCTTCT

8910 8920 8930 8940 8950 8960 8970 8980 8990 9000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTGGGTTCTATGATAACAATAGTTTCAATGTTTTTATTTTTGTATATTTTATACATAATGGTAGTTAGAAAAGAATCTTTATTGGGAGATTATTGAGGTG

9010 9020 9030 9040 9050 9060 9070 9080 9090 9100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAAAGGAGTTTTATTCAGTAGGAGAAGAAAGAATTAATATATGTTTGAGTTGGATACAAAATAGTCCACCTGTGTTTCATACTTATGAAGAATTACCTTA

9110 9120 9130 9140 9150 9160 9170 9180 9190 9200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTAAAAGTAATTAAGTAAAATGATAATAAGAGATATAGGCGAAGTGTGACAATTAGGATTTCAAGATCCTGCGTCTTGAATAATGTTAAATATGATTTT

9210 9220 9230 9240 9250 9260 9270 9280 9290 9300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTACATGATAAGATTTTTTTTTATATGATAGTGATTTTGACAGGTGTTTTTTGAATATTATCTAGAATTTTGATGAGATTTAGGTCTTCTGTGAGATTG

9310 9320 9330 9340 9350 9360 9370 9380 9390 9400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTTCACATAGATATTTAAATCATGGTACTATGGTAGAAATGGTTTGAACTGTGTTACCAGTGTTAGTTTTAGTAATAATGGCATTTCCCTCTTTTAAGT  
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9410 9420 9430 9440 9450 9460 9470 9480 9490 9500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATTATATTTAATGGATGAGATAGTTGAGCCAGGGTTAACAGTGAAAGTAATAGGGAGACAATGATATTGGGTCTATGAATATTCGGATTATGTAAATAA

9510 9520 9530 9540 9550 9560 9570 9580 9590 9600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGGAGGTGAATCCTTAGCTTTTGATTCTTATATGATTCCTGTAGAGGATTTGGGATTAGGTGATTTTAGATTAATGGAGGTGGACAATAGCTTAGTTGTG

9610 9620 9630 9640 9650 9660 9670 9680 9690 9700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CCAAGGAATGTGCAAATAAGGTTGGTTGTTACAGCAAGTGATGTGATCCATAGTTGAGCAGTTCCTTCTTTAGGGATAAAATTAGATGCAATTCCAGGTA

9710 9720 9730 9740 9750 9760 9770 9780 9790 9800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GATTAAATCAAGTAGGTATGTTGATACCTAGGTTAGGGTTATATTATGGTCTTTGTTCGGAGATATGTGGAACTGGTCATTCTTCTATGCCTATTGTGGT

9810 9820 9830 9840 9850 9860 9870 9880 9890 9900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAAGGTAGAAACTATGGAAAATTATGTATCTTGGGTTTCAAATATGATGGAGGAGTTAGATCAGGATTAGGTTTAGTGGCAGAGTGGTTATTGCGTGATA

9910 9920 9930 9940 9950 9960 9970 9980 9990 10000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTGTAAATATTATATTGTTGAGAGTTCGATTCTTTCCTAAATCATTTGTAGCCTTGTAGGATTAGTTAAGAATGTGGGTTAAATTTAAGATGATTTTAAG

10010 10020 10030 10040 10050 10060 10070 10080 10090 10100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGAATTAAGTGTTTTAGATAGTTATATGTGATTGTTTTTTTTCTTTATGTTTGTCTATTTACAATATATATTAGATGTGAATAATATGTTTCAAGGGAAT

10110 10120 10130 10140 10150 10160 10170 10180 10190 10200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATATGAGATTATTGTTTGTCCATGTACCTTTAGTGTGATTATCTTTGTTGTTTTATTTATTGTTATTGGCAGGATCTTTTTTTATGATAATTTATAGTT

10210 10220 10230 10240 10250 10260 10270 10280 10290 10300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTATCTATTGTATTTAATAAATATTGTTTTATCTCTTTTGTACGTAATTGTAACTTTTGTTTCTATATTAACTGGGAGTATATGAGGCTATGTTGCCTG

10310 10320 10330 10340 10350 10360 10370 10380 10390 10400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGGTTCTTATTTTGAAATGGATCTAAGGTTAATTACAATGATGGTGATGAATATTAGTGTTTTGTTATATTTATTTTTGTTGTATTTAGGGCAAATTAGA

10410 10420 10430 10440 10450 10460 10470 10480 10490 10500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTGGGGGGTTATTATATGATTTTTATCGGGATAAATTTAATTGTGATCAAGTATTGTATGTATTGATTTTCTAGTATTCATCAGTTTTCTAGTGTTAATA

10510 10520 10530 10540 10550 10560 10570 10580 10590 10600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAGTTGGTAGCTCTGTTTATTATAGTTATTTATATGTTTTATTTATATCTTTTATTTATTTCATTTGATGTTTAGTTTGGTTATTTAGGTTAATTGTAAA

10610 10620 10630 10640 10650 10660 10670 10680 10690 10700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGAGGTAATGGTTGGTAGTTAAGAGTATGTTAAATATAAGTGAGTGAAAGTATCAAAAGATGCACAGAGTTAAAAATAAAGGTGGTAATGGTTTAATAGA

10710 10720 10730 10740 10750 10760 10770 10780 10790 10800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTGTTTAAATTGGGGAATCGTAGGAATATATAGTAAAGGTATGGGTGTGTTGACTTATAGACAAATAAATTGTATTAAGTTTATTATTGATAAAGAATTA

10810 10820 10830 10840 10850 10860 10870 10880 10890 10900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGAAAAGATATAAAGTTATGGTTTAGGGTGACACCTAATGAGTCAGTAACTAAGAAACCTGCAGGATTGCGAATGGGTAAAGGAAAGGGTAAAATAGAAA

10910 10920 10930 10940 10950 10960 10970 10980 10990 11000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CCTGGCAGGTCAGAATAAGTAAGGGTGTTTTGATATTTGAGTTAGATAGGCAAGGCCCTATTATGGAAGAAAGTTTATTTTATTCAAAGGTAGAAACTAT

11010 11020 11030 11040 11050 11060 11070 11080 11090 11100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTTAAGAATAATAAATTCCAAGTTAGGTATTGAATTGGGTGTGAAAAGATATGAAATTGAATTATAGTGGAGGTAGAAATAACAGTGGGAAAATTACAGT

11110 11120 11130 11140 11150 11160 11170 11180 11190 11200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ACGAGGTAAAGGAGGAAGGCAAAAAAGATTGTATAGACAATTACATAAAAACATTATAGGTATTTTTGAGTTGAAGGAGTTTATGTACCATGCATATGTA

11210 11220 11230 11240 11250 11260 11270 11280 11290 11300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|  
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AACTGTTTTGTGGTTAAGATAAAAAAGGTAGGTGTTATAGATTTATCTAATAGAAATGTATTGTCTGCTAAGGGTGTTCAAATAAAAGATAGAAGTGTTT

11310 11320 11330 11340 11350 11360 11370 11380 11390 11400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATGATAGGGGTGAATTGAGGCTAAAAGAGATAAAGACAGGTGATAGAATTTTAGTCCAAAGTTTACGAATGGGAACGTGAGTATCAAATATTGAGAATGT

11410 11420 11430 11440 11450 11460 11470 11480 11490 11500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TCCTTTTGATGGAGGAGTTTATTGTAGGTCTGCGGGAACATATGGAGTGATTTTGGGAGATAGACAAAATAAGGTTAGGATTTATATGATAAGGACAAAG

11510 11520 11530 11540 11550 11560 11570 11580 11590 11600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATGGTTATATCGGTAAATAAGAATAGTATTTGTACGGTAGGTGTAATGTCTAATGAGGGTTTAGAGAACATGAAATTTAGTAAGGCTGGTGATAAGAGGA

11610 11620 11630 11640 11650 11660 11670 11680 11690 11700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GAATAGGAATTCGTCCATTAGTAAGGGGAGAAGCAATGAATGCAGTAGATCATCCTCATGGAGGTGCAACCAGGGGAGGTAAGGAATTACGAACTAAGTG

11710 11720 11730 11740 11750 11760 11770 11780 11790 11800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGGTAAGTTAGCTAAATTTAAAAGTACTTCTAATCAAAAAAAGTATAGTGATGGTGCTTTAAAATCGTATATATTTAAGGACAATTTAGATGTGTTTATT

11810 11820 11830 11840 11850 11860 11870 11880 11890 11900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATTAATGGATAAAATATTAGCATTTATTTTTATAGTTCCTTTAATAGGGGCTGTACACGTGTTTTTATTACAAAAAAAAGTGTTAATTAAATTAGTAGG

11910 11920 11930 11940 11950 11960 11970 11980 11990 12000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTGTTATATAGTATATTGAGTAGTTTCACTGTGATCATATTAGTATATCAATTTGATTTTTTAGGAACAGGTTTTCAGTTTCTTTGAAGGTTTAGTTTG

12010 12020 12030 12040 12050 12060 12070 12080 12090 12100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTAGACAAATTCGGTTTAACTTGTATATTCGGTATTGATGGATTATCTTTATTATTTTTAGTTTTGACGACATTATTGGTTCCTTTATGTTTAGTTTCTA

12110 12120 12130 12140 12150 12160 12170 12180 12190 12200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTTGAGAAAGTATAAAAAAGTATGAAAAACTTTATGTTATATTGTATTTATTAATGGAGTTTATGTTATATATTGTATTTACAAGTTTAGATTTAATAAT

12210 12220 12230 12240 12250 12260 12270 12280 12290 12300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTTTATGTTTTTTATGAAAGTATATTGATACCAATGTTTTTAATTATTGGTATTTGAGGTTTAAGAGAGAATAAAGTTAGTGCAAGTTATTATTTTTTT

12310 12320 12330 12340 12350 12360 12370 12380 12390 12400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTTATACTTTGGTAGGGTCTGTAATGATGCTTTTAGCAATATTGTATATTTATAGTTTGACAGGCTATACTGATATTATTTCATTATTAAATTGTCATT

12410 12420 12430 12440 12450 12460 12470 12480 12490 12500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATCTTCTGATATTCAATTTTGATTGTGATTAGGGTTTTTCATATCCTTATCCGTGAAGGTTCCTATGTTTCCTTTTCATCTGTGATTGCCTCAGGCGCA

12510 12520 12530 12540 12550 12560 12570 12580 12590 12600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGTGGAAGCACCTGTAGGAGGTTCAGTTATGTTGGCCGGGGTTTTATTAAAAATGGGTGGTTATGGGTTTATTCGGTTTATTCTGTTACTATTTCCTGAA

12610 12620 12630 12640 12650 12660 12670 12680 12690 12700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GCTTCGCTCTATTTTAGTCCTTTTATCTATATGTTATCTCTGTTAGGAATATTGTATTGTTCCTTGGTTGTTATTAGACAAATTGATTTGAAAAGAATAG

12710 12720 12730 12740 12750 12760 12770 12780 12790 12800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGGCTTATTCTTCAGTAGCACATATGTCTTTAGTGATGTTAGGGTTATTTTCATTTAGAAGTGAGGGATTAATTGGTTCTATTTATCTTATGTTTAGTCA

12810 12820 12830 12840 12850 12860 12870 12880 12890 12900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGGGATTGTTAGTTCTGGTTTATTTATATTGGTTTCTGTCCTATATGACAGATATCACACTAGATTATTAAAATATTATAGAGGTTTATCTTTATTTATG

12910 12920 12930 12940 12950 12960 12970 12980 12990 13000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CCTATTTATTCTTCTATTTTTTTGATTTTTTCTCTAGCAAATATGTCAATGCCTTTAAGTAGTAGTTTTGTTGGGGAAATTTGTATATTTTTATCTTTGT

13010 13020 13030 13040 13050 13060 13070 13080 13090 13100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGAATAAGAGTTTTGCTGTGTTATTATTTTCATTGTTAAGTATGGTGTTTTCAGGAGGATACTCAATATTTTTATACGGGAGAATGTGTATGGGTTCGGT

13110 13120 13130 13140 13150 13160 13170 13180 13190 13200 
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....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAGTGTTTGATTAAAGGTAAAGGGTTTAAGAGATATGAGTAGAAAAGAGTTTGTGGTCATATTACCTTTATTAGTGCTTGTAATAATGTTAGGGGTTTAT

13210 13220 13230 13240 13250 13260 13270 13280 13290 13300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CCTAGGTTGGTCTTTATGTTTTTAATTGGATATTAGGAGAAAGTAGCTCAAAGGTAGAGTATTAGTTTTCAAAACTACAAAGTATAGGTTCAAATCCTTT

13310 13320 13330 13340 13350 13360 13370 13380 13390 13400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTTCTTGTGTTTTTTATAGCTTAAAGGTAAAAGCGGTTAGCTGTTAACTAAAAGATATAGGTTCAATTCCTATTAAGAAAGAATTTCAGGATAAGATTA

13410 13420 13430 13440 13450 13460 13470 13480 13490 13500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTAAAAAATTTCATTTTGTGGAAAGATTGCATTTTTTGATTTTGGACGTTGAAATTAACGAAATTATTTAAATATTAAATAAATTCCTTAAGGAAACTTT

13510 13520 13530 13540 13550 13560 13570 13580 13590 13600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAATAAATAGTGTGAAATGAAACATCTGAGTAGCACGAAAATAAATCAATAGAGATTAGGTAAGTAATGGTGAGTGAACATCTAGTAGATTCAGATATAT

13610 13620 13630 13640 13650 13660 13670 13680 13690 13700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTGAAAATTCATAGAAAGTTAAACTTGTAGCATATTATAATTAAAAAGTATATGTTATACATAAAATATGGGTGTTATATCCAAATCTAAATTAAAAAAA

13710 13720 13730 13740 13750 13760 13770 13780 13790 13800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATAGCGATAGTGAAAAGTACCGTGAGGGAAAATTAATTTAATAAGGAAATTAGATTGATAAAACAGAATGGAAAAAGCAAATTAAGTATTTTTTAAATAT

13810 13820 13830 13840 13850 13860 13870 13880 13890 13900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAAATTGTACCTTTTGTATAATGGGCCAGTGAGTTAAATTGTATGGTTAGTTTAATTTAATAAAGTAGACTGAGGAAACTGGAAAAATCATATAATTTAA

13910 13920 13930 13940 13950 13960 13970 13980 13990 14000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ACTCGAAATCAGTCGATCTTACCATGAACAATTTGAAAAGATATAATATATTCTTGGAGGAATGTACTGTTGATTGTAGCAATAATCTCAGATGATTTGT

14010 14020 14030 14040 14050 14060 14070 14080 14090 14100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGTAAGGAGTGAAAGGCTAATCTAGGCTGATGATAGCTAGTTTTCTGTGAAAGTTATTTAAGTAATGCGTTATTATTTAGTTTAAAAAAGGTAGAGCTCT

14110 14120 14130 14140 14150 14160 14170 14180 14190 14200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGTTATGAAAACAGTTTAGTTACTGTTTATAAATAATTAAACTTATGAATTGGTTTAACTAAAGTAATAGTAAGACATAGGGCGTTAAGGTTCTATGTCA

14210 14220 14230 14240 14250 14260 14270 14280 14290 14300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAAGGATAAGAGTCCAGATTATAAGTTAAAGTTGTTAATTAGGTAATTAAGTGCGTAAAAATGTTTTTTTGTGTCTAAGTTTATGAAGTAGGCTTGGAAG

14310 14320 14330 14340 14350 14360 14370 14380 14390 14400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CAGCCTTCTTTTAAAGAAAGAGTAATATCTCAGTAAACTAATAGAAAAGTATTGAAAATTTATGCAACTAAAATCTTAAACTGAAACTGTAGATAGGGAT

14410 14420 14430 14440 14450 14460 14470 14480 14490 14500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGTGGTAACAGAATATTCTTAAGTTTAAGAAGAAATTATGCTGGCATGAGTAATAAAAGAAAATATAAATATTTCTGGTTAAAAACTGAAGGTTTTCTAT

14510 14520 14530 14540 14550 14560 14570 14580 14590 14600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATATTATGAAAAATATAAGAGTATGTGGTCTCTAAGTTAGTTGTAGAACTATGCTGTAATGTTAAATGATGAGATATAGTTTGAAACAGAGATGTATAAT

14610 14620 14630 14640 14650 14660 14670 14680 14690 14700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CTTGCAAGAAAAAGAACTGCGAATTAACCACACTAAAACTAACTCAAGTAGGTAAATATAGAATATTAAAACTAAGATTAAATAACACTTAAGGAACTCG

14710 14720 14730 14740 14750 14760 14770 14780 14790 14800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GCAAATTGTTTTTGTAAGTTCGCGATAAAAAAAGCCTGTAAGGTTTAAGATAACAGGAGGTTCCAACTGTCCACCAGGAACACAGTATTCTGCAAACTTG

14810 14820 14830 14840 14850 14860 14870 14880 14890 14900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAAAAGGAAGTATAGGATATGAAGCTTGCCCAATGATAGGGAATAATAAATTATAATAATTTAAAAATACTAATTAAATGGCTGCAGTAACCATAACTGT

14910 14920 14930 14940 14950 14960 14970 14980 14990 15000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ACAAAGGTAGCAAAATGCCTTGGCTACTAATTATAGTCTTGCATGAATAGCTTAATGAGAGCCTCGCTGTCTCAAGTGTTATATCTATGAAATTGAATTT
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15010 15020 15030 15040 15050 15060 15070 15080 15090 15100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GCAGTGAAGATGCTGTATAATTATAGGTAGACGAGAAGACCCTATGCACCTTGACTATAGGTTGTTATTGTGTAAAGTTCGCTTAATTTATAGAATAGAT

15110 15120 15130 15140 15150 15160 15170 15180 15190 15200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATAAATTATTGGTAATTGAAATTGTAATATTATTACTAGGTTAAAATTACACTAAGGTAGTTTAAATTGAAAGTGACAATCGGGTAGTTTGGCTGGGGT

15210 15220 15230 15240 15250 15260 15270 15280 15290 15300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGCCCTCCTTTAAATGGTAACAAGGAGATTCTTAAGGTTAACAAAATTAACAAGATGTTAGTTGATATCATAATAGATAAAGTTAGCTTAAAAGATGGAA

15310 15320 15330 15340 15350 15360 15370 15380 15390 15400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATACATTTCTATCTTGTACGAAAGTATGATATAGTGATCGAGTTTTTAATTAATAATTTAGACTCATCAATGAATAAAAGGTACGCTAGGGATAACAGGC

15410 15420 15430 15440 15450 15460 15470 15480 15490 15500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTATAAATATTGAGAGTTCATATCGACATATTTGTTTGGCACCTCGATGTCGACTTGCTTCATCCTCTTGGTGAAATAATTGAGAAGGGTTAGACTGTTC

15510 15520 15530 15540 15550 15560 15570 15580 15590 15600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTCTATTAAAGAAGTACATGAGTTGGGTTAATTACGTTGTAAGACAGTAAGGATTCTATCTCCTATGATATAATTATCTAAGTTTTTGTTTTTGTTTAGT

15610 15620 15630 15640 15650 15660 15670 15680 15690 15700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ACGAAAGGACCAATGAGAATAAGTCTCTGGTACTTCAGTTGTTTTAAAGCATAGCTGAGTAGCTACACTTAATTAGTTAACTATTGAAATCAATTTAAAT

15710 15720 15730 15740 15750 15760 15770 15780 15790 15800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGGAAACTAGGAAAATTAAGGTAAAAATTAACAAACAATAGATGATTGTTTTTTAGTTATAAATGTAAGTTTAGTAATAAATTTAGTTATATAATATAAT

15810 15820 15830 15840 15850 15860 15870 15880 15890 15900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAATTTAAGGACTAGTTTTATGATACAGCATTAGCTCAAAGGATAGAGCCATATTCTTCTAAAATATAGGTTAAAAGTTCGAATCTTTTATGTTGTTATG

15910 15920 15930 15940 15950 15960 15970 15980 15990 16000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAATATAGACTAACGGAAAGTCATTAGGCTCATAATCTAAAGATACGGGTTCAAGTCCTGTTATTACGAAGTTAATATAAAAATTTTAATTAATAATCAA

16010 16020 16030 16040 16050 16060 16070 16080 16090 16100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTATAGCTCAAAGGATAGAGCCCGCCGGTGATATTGGTTAGATATAGGTTCGAATCCTGTTAAATTGAAGGGGGACTAGTATAAGGGTAGAATATTTAT

16110 16120 16130 16140 16150 16160 16170 16180 16190 16200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTGCAAATAAAAGGTATCAGGTTCAAGTCCTGTGTTCTCCAGTAATTTATATTGAAAAGATATAAAAATGGGATGAGTTTAATTTTGGCTCAGAAAGAA

16210 16220 16230 16240 16250 16260 16270 16280 16290 16300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGCGTGAATTTGGTCTTATACATGTAAATTTAAATTTTAGTATGAAAATTGGTGTGCGGGTGCGTAGTATATTATGGTAAATTATCTTATGAGTAATTAA

16310 16320 16330 16340 16350 16360 16370 16380 16390 16400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTAATTGAAGATAAATAAATAAATAGGTGATTAGGTATTAAGTTTTTAGCCAAAGATCATTAACTGGTTTTTTAGGATGTATGGTCACATTTGCAATTA

16410 16420 16430 16440 16450 16460 16470 16480 16490 16500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAGAAGGGCAAGACTCTTTTAGGAGAGGCAGCAGTATAGAATCTTGAACAATGAATGAAAATTTGATTCAGTTAAATTTGTGTGTGTAATATGGGATATT

16510 16520 16530 16540 16550 16560 16570 16580 16590 16600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CTCAATAAATCATAAGAAGTTTATTTATAGTGAAAATAAATTAAGAAAGGGCTGACAAAGATCAGTGCCAGAAGTCTCGGTTATACTGACAGCCTGAGTC

16610 16620 16630 16640 16650 16660 16670 16680 16690 16700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATTTCAGTATTACTAGGTGTAAAGGATGTGTAAATCAGTTAAAATTATATAACACAATTTTAAATTAGAATTTTAAGAGTGAATATAATTTTATCTTTG

16710 16720 16730 16740 16750 16760 16770 16780 16790 16800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGTATTTAAAGAATTAATAGAATATTAAAAGAAGTGATAGAATATTATAATATTTAGTAGAATTTCACAAGCGAAGGCAATTAATTGTTAAATAACTGAC

16810 16820 16830 16840 16850 16860 16870 16880 16890 16900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTGAGAACATGAAAGATAAGGTAGCGATATGGATTAGATACCCATGTAGTCTTATCTGTAAACAATGACTAAGAAATATATAGTAGATTTTTAAGATAA  
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16910 16920 16930 16940 16950 16960 16970 16980 16990 17000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CTTATTATTAGTTCACCTGAAGAGTAAGATCGCAAGGTTTAAATTCAAGAAATTAGGCTGTATATTGTCCTACTAGTGGATTATGTGGATTAATTAGACA

17010 17020 17030 17040 17050 17060 17070 17080 17090 17100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATACACTCAAAATCTTACTTATATTTGTATTTAGAGCAAAAACAGGTGTTGCATGGCTGACTTCAATTAGTGTCGTGAGATGTTTGATTAATTTCAATAA

17110 17120 17130 17140 17150 17160 17170 17180 17190 17200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CTAATGAGATTCTAGGTTTTATTTAGGTGTATAGAATTACTGAGAGTTATAAACTCTAGGAAGATTAGAATAAAGTCAAGTCCTTATAACCCTTATATAT

17210 17220 17230 17240 17250 17260 17270 17280 17290 17300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAGGCCTCACATGTAATACAGTGATTAATAGAAAAGAAAACGGTTAAGTAATTAACTGTAAAAGATGTATTTAGTCTAGGTATGGATAAGTTTCTGTAAC

17310 17320 17330 17340 17350 17360 17370 17380 17390 17400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TCGGAATTTTGAAGAAGGAATTAGTAGTAATTTAGAATTATCAAGTCTAGGTGAAAATGGCTCCAATGTAAGTACTTATTGCCCGTCAAGTCAGGAAAGG

17410 17420 17430 17440 17450 17460 17470 17480 17490 17500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGACCTTCATATAAGTATAAATAAATAAAGTATAAAAGTTATTAACTTTATTGTAAGTATAAAATTGAAAAGAACAATTCTGATTAAGTCGTAACAAAGT

17510 17520 17530 17540 17550 17560 17570 17580 17590 17600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGTCTTATGGGAACATGAGGCAGGATGATTATGGTAATTATAGTTTAAAAGGTAAAACTTTAATGTGTGATGTTAATAATTAAAGGTTCAAATCCTTTTG

17610 17620 17630 17640 17650 17660 17670 17680 17690 17700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTACCGGGATATTAGTTTAAATGGGAGAGTATTGATCTGTCTAATCAAAAGTTGCAGGTTCGAATCCTGTATATCTCGATAGGATCAATAACTTAAAGG

17710 17720 17730 17740 17750 17760 17770 17780 17790 17800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAAAGTATACAGCTCATAATTGTTTAATATAAGTTCGATTCTTGTTTGATCTAGATATTATAGTTTAAAGGTAGAATATCAAGCTCATAATTTGAAGATA

17810 17820 17830 17840 17850 17860 17870 17880 17890 17900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CAGGTTCAATTCCTATTAATATTAAGTCTTTATAATTTAAGAGGTTAGAATATTTGATTTTCATTCAAAATATGCTGGTTCAAGTCCAGTTAAGGATAAA

17910 17920 17930 17940 17950 17960 17970 17980 17990 18000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATGTTGTTATTAAATAGTTTATGAGATATTTTTTTTAATTTAATTAAAGTATTGTATTTAGTTGTTCCTTTAATTTTATCAATTGCTTTTTTAACTTTG

18010 18020 18030 18040 18050 18060 18070 18080 18090 18100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GCTGAAAGAAAATTGTTAGGTTCTATTCAAATTAGAAAGGGGCCTAATGTGGTAGGTGTTTATGGGATTTTGCAACCTATAATTGATGGTTTAAAACTGT

18110 18120 18130 18140 18150 18160 18170 18180 18190 18200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGTTAAAAGAAGTGATTGTGCCTGTTCAAGCTAATTTTTTTGTATTTTTTATTTCTCCTATTGTTTGTTTTATGTTAGCTTTAGGAAGTTGGGCAGTGAT

18210 18220 18230 18240 18250 18260 18270 18280 18290 18300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TCCTTTTGGGGAAGGGTTAATATTATCTGATATTAATATAGGAGTGTTATATGTGTTTGCTATTTCGTCTTTAAGTATATATTCAGTATTATGTTCAGGG

18310 18320 18330 18340 18350 18360 18370 18380 18390 18400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGATCAAGTAATTCAAAATATGCATTTTTAGGTTCTTTAAGATCTACTGCTCAAATGATAAGTTATGAAGTTTCAATAGGTTTAGTTTTTATATCAGTTA

18410 18420 18430 18440 18450 18460 18470 18480 18490 18500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTTAATGAGTGGGTCTTTTAATCTTTTGGTGATAGTCGGGAGTCAAAAATTAGTATGATATATTGTACCCTTATTTCCTAGTTATTTAATGTTTTTCGT

18510 18520 18530 18540 18550 18560 18570 18580 18590 18600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATCTGCATTAGCAGAAACAAATAGAGCTCCTTTTGATTTACCAGAATCTGAATCTGAGCTGGTTTCAGGTTATAATGTTGAGTATTCGAGTATGATGTTT

18610 18620 18630 18640 18650 18660 18670 18680 18690 18700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GCTATGTTTTTTTTAGGTGAATATTGTCATATTATATTTATGTCTTTCTTTATTAGTTTGGTGTTTTTAGGCGGATGATTAAGTCCTTTTGAGGATTTGT

18710 18720 18730 18740 18750 18760 18770 18780 18790 18800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|  
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GTTTGATTGGTATTCCTGGGGTTATATGGTTAGTTTTAAAATGTTTGTGTAATTTATTTTTATTTATTTGAATCAGAGCGATTGTACCTCGTATGAGGTT

18810 18820 18830 18840 18850 18860 18870 18880 18890 18900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGATCAATTGATGTATTTGTGTTGAAAATCATTTTTACCTTTAAGTTTGTCTTATGTTATTGGTTTGTCCGGAGTTATCTGGTTTTTTGATTGGTTCCCA

18910 18920 18930 18940 18950 18960 18970 18980 18990 19000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTGTCGGTATAGCCTGCCTTAATAGCTTAGAGGTAAAGTATATATTTTGTAAATATAAGAATATTGGTTCAATTCCAATTTAAGGCTTAGCCTAAGGGAG

19010 19020 19030 19040 19050 19060 19070 19080 19090 19100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGAAATAAAATGTATAATAAATATCATGTATACCATTTAGTAAATCCTTCTCCTTGACCTATATTGGTAGGTTTATCTTTATTAACAAGTGCTGTGGGAG

19110 19120 19130 19140 19150 19160 19170 19180 19190 19200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGGCTTTGTGGTTTAATTTTTATGAGTTTGGAGAAAATGTTGTTATTTTAGGTTTAGGTTTTAATTTGTTTTGTGTTATATTATGGTGAAGGGATATTAT

19210 19220 19230 19240 19250 19260 19270 19280 19290 19300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAGAGAAGGTACTTTTCAGGGACACCATACTAAGGTGGTTCAAAAAGGTTTAGTTTTAGGAATGGTTTTGTTTATAGTTTCTGAAGTTTGTTTGTTTGTT

19310 19320 19330 19340 19350 19360 19370 19380 19390 19400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TCTTTTTTTTGGACTTATTTTCACGTAAGTTTAATTCCTAGTATTGAAATAGGAGGTGTATGACCTCCTATAGGAATACAGGTGTTTGATCCCTTAAATA

19410 19420 19430 19440 19450 19460 19470 19480 19490 19500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TACCCTTATTAAATACGTTAATATTATTAATGTCAGGATGTTCTGTAACTTGAAGTCATAATGAAATAGTGTTAGGGAATAAGCGTGGTACAATTATAAG

19510 19520 19530 19540 19550 19560 19570 19580 19590 19600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTATTGTTAACTTTATTGTTAGGTGTGTTATTTTCATTATGTCAACTATATGAGTATATAGAGGCTACTTATACTATAGCAGATTCTATATATGGATCA

19610 19620 19630 19640 19650 19660 19670 19680 19690 19700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTTTTTTATTTAATAACAGGGTTTCATGGATTACATGTTATAGTTGGGACTTTATTTTTAAGTGTTAGTTTTGTAAGAATAATTAACTATCATTTTACAA

19710 19720 19730 19740 19750 19760 19770 19780 19790 19800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAAAGCATCATTTTGGTTTTGAGGCGGCTATATGATATTGACATTTTGTTGATGTAGTATGGTTATTTGTGTATGTATTTTTATATTGATGAGTATTTTA

19810 19820 19830 19840 19850 19860 19870 19880 19890 19900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATGTATATATAGTTTAATAGGTTAGAACATTTATCTTCCAAATAGAATGTTGTGAGTTCGATTCTCATTATATACAAGTGTTTCAGAAAGTAGTTCAAA

19910 19920 19930 19940 19950 19960 19970 19980 19990 20000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGTAGAACAATTAATTTGGAGTTAAGAGGTTGTAGGTTCGAATCCTATCTTTTTGATATGAAAATCATAAAAGAACTAAATTATAAAAAATTTAAGTATT

20010 20020 20030 20040 20050 20060 20070 20080 20090 20100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TCTTCTATTCTACAGATCTTTCTTTAAATTATAGGTACAATTTAAGATTAAAGTTAGAAAGTATGAATAATTTTAAAAGATATTGTAATTTGACAAAAAG

20110 20120 20130 20140 20150 20160 20170 20180 20190 20200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAAAAGAGGGTTATGTTTTAATTCTTCTTTAAATAGGTTAACATTAAAATCTTTGATTAATAAAGGTTTTACGCCTGGAATAAGTATGTCAAAATGATAA

20210 20220 20230 20240 20250 20260 20270 20280 20290 20300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATAATTATTTAATTTTAGGATTATCTGTATTTGTAATAAGTATAATTGGAATATTGCTTAATAGAAAAAATTTAATAATAATGTTAATGTCCCTTGAATT

20310 20320 20330 20340 20350 20360 20370 20380 20390 20400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AATGTTATTGGCTATCAATTGTAATTTTTTAAGTTTTTCTGTAATAATAGAAGATATTTTAGGTCAAGTGTTTAGTGTATTCATATTAACTGTTGCAGCT

20410 20420 20430 20440 20450 20460 20470 20480 20490 20500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GCAGAGTCTGCAATAGGTTTATCTTTAATGATAGTTTATTTTAGAATAACAGGTAACATTTCAATTTTATTTATTGATCTCTTGAAGGGATAAGTGTATT

20510 20520 20530 20540 20550 20560 20570 20580 20590 20600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATTATTAATTAGTATTCCTTTAATATGTGCTTTTGGAGTTTTATTTTTTGGGAGATTTTTAGGTCATTTAGGTGTTATAAGATTTAGTATAATTTTAAT

20610 20620 20630 20640 20650 20660 20670 20680 20690 20700 
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....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGGGTTAGATATGTTATTAAGTTATTTTGTGTTTTATGAAGTAGGAATTAACCAAGTGCCTGTGTTTTTAAATGTGTTAGATTGAATAAGCTTTGATATG

20710 20720 20730 20740 20750 20760 20770 20780 20790 20800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATAATTGTTCAGTGATCTTTACAGTTCGATAGTTTATCTGTCAGTATGTTAATAATAATAATAACAATTTCTTTTTTTGTTCATTTATATTCTGTTGAAT

20810 20820 20830 20840 20850 20860 20870 20880 20890 20900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATATGGGGCAAGATCCTCATTTGTCTAGGTTTATGGCTTATTTATCGTTGTTTACTTTTTTCATGGTGTTATTAGTAGTTTCGGATAATTATGTGCAATT

20910 20920 20930 20940 20950 20960 20970 20980 20990 21000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTTTGTTGGTTGAGAAGGTGTAGGTTTATGTTCTTATTTGTTAATTAATTTTTGATACACAAGGTTACAAGCTAATAAAGCGGCTATAAAAGCTATGGTA

21010 21020 21030 21040 21050 21060 21070 21080 21090 21100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATGAATAGAATAGGTGATATAGGTTTAGCTTTAGCTATATTTATGGTGTATGAGTATTATGGTTCTTTAAATTTTTCAGTTTTAATGGTTATAGTAGAAT

21110 21120 21130 21140 21150 21160 21170 21180 21190 21200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CATTAAATAATAATGATATATGTGATATTAGTCAGATAGCTGTTATAGTAATTTGTTTATTGGTAGGTGCTTTAGGGAAATCTGCTCAATTTGGTTTGCA

21210 21220 21230 21240 21250 21260 21270 21280 21290 21300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TACCTGATTGCCAGATGCAATGGAGGGGCCTACCCCTGTGTCAGCCTTAATTCATGCTGCTACTATGGTGACTGCAGGTATTTTTTTAATGATAAGATCT

21310 21320 21330 21340 21350 21360 21370 21380 21390 21400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGTATGTTTATTATAAATAGTAAATTAGGGTTATTTGTAATCACATTACTAGGAGCATTAACTGCATTATTCGGTGCTACAATAGGAATTGTACAAAATG

21410 21420 21430 21440 21450 21460 21470 21480 21490 21500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTTAAAGAAGGTAATAGCTTATTCTACATGTTCACAAGTAGGGTATATGTTGTTTTCTTGTGGGCTCGATGAATTTAATGTATCTTTGTTTCATTTAAT

21510 21520 21530 21540 21550 21560 21570 21580 21590 21600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GAATCATGCGTTTTTTAAGGGGTTGTTATTTTTAAGTGCAGGTTCTATAATTCATGCGGTAATCGATGAGCAAGATATTAGAAAAATGGGTGGTTTAATA

21610 21620 21630 21640 21650 21660 21670 21680 21690 21700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTAGTATTACCTTATACTTACAGTGTAATGTTGATAGGTTCGTTATCGTTAATGGGATTTCCCTATTTATCTGGTTTCTTTTCTAAAGATATGATTCTAG

21710 21720 21730 21740 21750 21760 21770 21780 21790 21800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGTTATCTTATGCACATTATGTGTGTGAGAGTTTGTTTTCATATTGATTAGGAGTAGTTTCAGCGAGTATTACTGCTTTTTATTCAATAAGATTATTAAT

21810 21820 21830 21840 21850 21860 21870 21880 21890 21900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAGAGTGTTTTTTTTCAATCCTAATATGTGTTTTAGTAAATTCAAAAAAGTTCAAGAAAATAATTATATAATATTTTTTGTTTTATTTGTTTTAAGTATG

21910 21920 21930 21940 21950 21960 21970 21980 21990 22000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTTAGCGTATTTTCCGGTTATTTTCTTAAAGATATGTTAGTTGGGTTTGGGTCTGGGTTTTTTAACGGATCTTTACGAAGTATTAAATATATTTCAGTAA

22010 22020 22030 22040 22050 22060 22070 22080 22090 22100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ACACTGATGTAGAGTTTTTACCATTATATATAAAATTATTTCCTGTTATATTTAGTTTATTGGGTGCAAGTATTGCATTAGTGGTATATTCTGGGATTGA

22110 22120 22130 22140 22150 22160 22170 22180 22190 22200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AGAGATAGGATTTAAAGTAAGATCTTCTTCTCTTGGAATTATAATATTTAAATTTTTATCAAATAGATGATATATAGATTTTATTTATAATTNTTATTTA

22210 22220 22230 22240 22250 22260 22270 22280 22290 22300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TATCAATTATTGTTCGTAACACATAATTATTTATATAAATTAGTAGATAGAGGTGTATTAGAACTATGAGGTCCGACAGGTATGGTTAATTTGTTGCGAA

22310 22320 22330 22340 22350 22360 22370 22380 22390 22400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GATATTCTTCTGTGTTAAGTATAATGCAGTCAGGATTTATCTATCATTATGTTCTGTTTATCTTAGTGGGTGTTTCTTACATTATTTTATGGGAGTTTTT

22410 22420 22430 22440 22450 22460 22470 22480 22490 22500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ACAATTGAATGTTTTTTTAATAGTTATATATTTGTTAACAGTGTTAGCAGGGTTATAGGGATTGTAGCTTAATTGGTAGAGCTAATAACTTTTAATTATT
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22510 22520 22530 22540 22550 22560 22570 22580 22590 22600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAAATAAAGGTTCAAATCCTTTCAATCCCAAATGCCACAAATTGATATATTAACTTATTTTCCGCAATTTTTTTGATTTATTTTTTCTATGTGTGTTTTG

22610 22620 22630 22640 22650 22660 22670 22680 22690 22700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GTAAATTATATGTTTAACAAGTTTTTACCAAAGATTTCCAAAATATGATATTTTAGAAAGCGTGCTTATAGAAAAGAACTTAAATACAGTAAGTCTTATA

22710 22720 22730 22740 22750 22760 22770 22780 22790 22800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTATTGCAAAAATAAAATTTAAAAGAAGTTTTGAATTGCAAGTGCTAAATATGAGGTATAGAGGTATGCCTGTTTCTATGAAGTTTGATTTGCCTAATTC

22810 22820 22830 22840 22850 22860 22870 22880 22890 22900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TGATGAATTGTACTTAAATTATGATAATGTTTGATTAAGTTCAAGATTGAACTTGATTGATGTTTAAGTAAGATTAAAAATATATAGAATCTAANATAGT

22910 22920 22930 22940 22950 22960 22970 22980 22990 23000
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAGATAAATAAAATGTTTTTATTTTCTCCTTTAGAACAGTTTCAAATAATTAAGCTAGTTGAAATAAATGTGTTAGGTTTGATGGACATTTCAATATCTA

23010 23020 23030 23040 23050 23060 23070 23080 23090 23100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ATTCTTCTTTTTATGTTTTATTAATTTTAATGTGATTTAAATTGATTGAATTATATGTAACTTATACTATTATTCCTACTAAATGACAGAGTGTAATTGA

23110 23120 23130 23140 23150 23160 23170 23180 23190 23200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GCATTTTGTTAATGAAATATTAAAATTATCTAAAGATAACTTAGGTAATAGTTTTCATTTATATTTTCCATTAATATTTAGTTTATTTTTATTAATATTA

23210 23220 23230 23240 23250 23260 23270 23280 23290 23300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

ACTTTGAACTTGGTTGGAATGATTCCTTATTCATTGGCTGTTACTTCCCATATTGTGGTTACTTTTGGAGTAGCATTGTCATTATTTATTTCAATAACTA

23310 23320 23330 23340 23350 23360 23370 23380 23390 23400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TAATAGGGTTTAGAAATATGGTGTTAATTTTTTTAGTATGTTTATGCCTCAAGGAGCTCCTTTTAGTGTTAGGTCCTTTATTAGTGTTTATTGAGATATT

23410 23420 23430 23440 23450 23460 23470 23480 23490 23500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AAGTTATTTGGCCAGACCTATATCTTTGGGAGTTAGATTAGCTGCAAATATGACTGCAGGTCATATATTATTAGCTATTATTTCAGGGTTTATTTGATCG

23510 23520 23530 23540 23550 23560 23570 23580 23590 23600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

TTAGCTAAATCAGGGTTGATGGGAATTATAATTAGTGTATTTCCTTTTGTGGTTTTAATTTTAATTATTATGCTAGAATTAGCTGTTTCTTTTATTCAAG

23610 23620 23630 23640 23650 23660 23670 23680 23690 23700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CTTATGTATTTACATTATTAGTAACTATATTTTTAAATGATTCTATTCATTTACATTAAGATATAGGTATAGTAACATAAAAGGTTAATGCGACTATTTG

23710 23720 23730 23740 23750 23760 23770 23780 23790 23800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

CAAAATAGTAAATGTAGGTTCGAGGCCTATTTATACCTAACATATAAAATAGAAGTGTGATGAAAAGGTAGACATAATAATGTTAGATATTATTTATATG

23810 23820 23830 23840 23850 23860 23870 23880 23890 23900
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

GGTTCAATTCCCATCATTTCTATGAAATAAGTTGTGAGAATTATAAAAATCACAATTGAAATTGTGATCCTGTTCAAGTATAAGTAGTTGGCCGGGGTTT

23910 23920 23930
....|....|....|....|....|....|....|....

TATTAAAAATGGGTGGTTATGGGTTAATCCCAAATTTTG

 

 


