ESTIMATING POPULATION PARAMETERS OF EARLY VILLAGES IN THE PRE-POTTERY NEOLITHIC CENTRAL AND SOUTHERN LEVANT

Shannon Birch-Chapman

Submitted for the degree of Doctor of Philosophy

April 2017

Supervisors: Dr Emma Jenkins, Prof. Mark Maltby and Dr Fiona Coward

Faculty of Science & Technology Bournemouth University

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

Keywords

Central and southern Levant, Pre-Pottery Neolithic, population estimates, dwelling unit size and composition, population density, Bayesian chronological modelling, structural contemporaneity, site type classification, allometric growth formulae

Abstract

An understanding of population dynamics is essential for reconstructing the trajectories of central and southern Levantine Pre-Pottery Neolithic (PPN) villages during the Neolithic Demographic Transition (NDT). Whilst pre-existing population estimates of PPN villages have made a valuable contribution to our understanding of the Neolithic, these are based on limited methodological and theoretical frameworks, reducing the efficacy of these estimates for exploring the relationship between demographic parameters and socio-cultural development during this period.

The aim of this investigation is to derive more empirically and statistically robust absolute demographic data than currently exist and to produce a more precise chronology of population size, density and growth of these early villages. Several methodologies are explored, including those based on dwelling unit size and dwelling number; residential floor area per person; population density; and allometric growth formulae. The newly devised storage provisions formulae, based on the space available for sleeping individuals within structures, was found to be the most robust and viable method. A major contribution of this research is the production of precise structural contemporaneity values derived from building use-life and phase length estimates based on a combination of archaeological, ethnographic and experimental research, and Bayesian chronological modelling of radiocarbon dates.

From the results of micro-level analysis of 15 villages/village phases, a site type classification system and constants for several variables are developed for systematic application of methodologies to reconstruct population parameters of a large database of central and southern Levantine PPN villages (n = 106). Based on the final population estimate ranges, new allometric growth formulae are proposed for estimating PPN village populations in future from an assigned site type and total site extent.

This research has major implications for current theory relating to PPN village population density. In particular, the commonly utilised ethnographically derived population density coefficients are found to be too low to accurately estimate the population of central and southern Levantine PPN villages. In addition, the notion that nuclear families formed the predominant dwelling unit type within these villages is dismissed in favour of more variable dwelling unit composition. Finally, the population estimates produced in this investigation were assessed against the archaeological evidence to evaluate the suitability of previously hypothesised group size thresholds and to propose additional thresholds for this period relating to changing subsistence practices, the introduction of mechanisms for reducing scalar stress and the emergence of social complexity.

ii

Contents

C	opyr	ight Statement	i
K	eyw	ords	i
A	ostra	act	ii
C	onte	nts	. iii
Li	st o	f Tables	.ix
Li	st o	f Figures	xiii
A	ckno	wledgements	xix
ΔΙ	hre	viations and Definitions	xx
4	1		4
1	Intr	oduction	1
	1.1	Aims and objectives	4
	1.2	Thesis structure	6
2	The	e Geographical and Environmental Background	8
	2.1	The study area	8
	2.2	Current geographical and environmental background	9
	2.3	Palaeoenvironmental reconstruction	16
		2.3.1 End of the Last Glacial Maximum c. 20,000 cal BC	16
		2.3.2 Bølling-Allerød Würm Interstadial c. 13,000-11,000 cal BC	17
		2.3.3 Younger Dryas c. 11,000-9,600 cal BC	17
		2.3.4 The Holocene c. 9,600 cal BC - present	17
	2.4	Summary	19
3	The	e Archaeological Background	24
	3.1	The chronology	24
	3.2	Pre-Pottery Neolithic A	25
	3.3	Early Pre-Pottery Neolithic B	30
	3.4	Middle Pre-Pottery Neolithic B	33
	3.5	Late Pre-Pottery Neolithic B	37
	3.6	Pre-Pottery Neolithic C	41
	3.7	Summary of major developments	45
4	Est	imating Early Village Population Parameters	47
	4.1	Methodologies for estimating early village populations	48
		4.1.1 Housing unit method (HUM)	49
		4.1.2 Residential area density coefficient method (RADC)	54
		4.1.3 Settlement population density coefficient method (SPDC)	כן 12
			01

	4.2	Major methodological considerations 4.2.1 Site extent estimates	65 65
		4.2.2 Representativeness and structural density	00
		4.2.3 Identification of residential area, dwellings and potential sleeping area	67
		4.2.4 Structural contemporaneity and Bayesian chronological modelling	07
		4.2.5 Sile contemporaneity	70
	4.3	Existing estimates for PPN central and southern Levantine villages	70
		4.3.1 Population size	70
		4.3.2 Population density	73
		4.3.3 Population dynamics	75
	4.4	Limitations of existing methodologies and estimates	76
	4.5	New method: the storage provisions formulae (SPF)	77
	4.6	Group size and cultural evolution	79
	4.7	Summary	87
5	Mot	thodology	88
5	INICI		00
	5.1	Data selection and preparation	88
		5.1.1 The PPN village database	88
		5.1.2 Estimates of total site extent.	89
		5.1.3 Selection of sites for micro-level analysis	93
		5.1.4 Criteria for identification of (potential) dwellings and residential area	93
		5.1.5 Transcription of site plans	94
	5.2	Micro-level estimates	95
		5.2.1 Methodological considerations and assumptions	95
		5.2.2 Calculating upper storey floor area	97
		5.2.3 Estimating structural contemporaneity: building use-life analysis and Bayesia	n o ,
		chronological modelling	97
		5.2.4 Housing unit method (HUM)	.101
		5.2.5 Residential area density coefficient method (RADC)	.103
		5.2.6 Storage provisions formulae (SPF)	.105
		5.2.7 Allometric growth formulae (AGF)	100
		5.2.8 Settlement population density coefficient method (SPDC)	. 109
	5.3	Systematic estimates	.110
		5.3.1 Regional population density coefficient method (RPDC)	.111
		5.3.2 Residential built area proportions method (RBAP)	.112
		5.3.3 Residential floor area proportions method (RFAP)	.113
		5.3.4 Storage provisions formulae (SPF)	.114
		5.3.5 Settlement population density coefficient method (SPDC)	.115
		5.3.6 Allometric growth formulae (AGF)	.116
	5.4	Summary	.118
6	Mic	ro-Level Estimates – Part I: Beidha, Southern Jordan	119
	6.1	Site description	.119
		6.1.1 Phase A (Subphases A1 and A2)	.120
		6.1.2 Phase B (Subphase B2)	.121
		6.1.3 Phase C (Subphase C2)	.122
		6.1.4 Societal conditions, processes and developments	.123

		6.1.5 Estimating structural contemporaneity	128
	6.2	Population estimates - Subphase A1	146
	6.3	Population estimates - Subphase A2	160
	6.4	Population estimates - Subphase B2	169
	6.5	Population estimates - Subphase C2	178
	66	Analysis of methods and results	187
	0.0	6.6.1 Housing unit method (HUM)	
		6.6.2 Residential area density coefficient method (RADC)	188
		6.6.3 Storage provisions formulae (SPF)	189
		6.6.4 Allometric growth formulae (AGF)	191
		6.6.5 Settlement population density coefficient method (SPDC)	195
	6.7	Summary of estimates	199
		6.7.1 Total population	199
		6.7.2 Population growth	200
		6.7.3 People per dwelling	201
		6.7.4 Residential floor area per person	202
		6.7.5 People per hectare	203
		6.7.6 Initial growth indices for the allometric growth formulae	206
		6.7.7 Area proportions	206
	6.8	Summary	207
7	Mic	ro-Level Estimates – Part II	
	71	Micro-level analyses	210
	1.1	7.1.1 Nahal Oren	
		7.1.2 Gilgal I	
		7.1.3 Netiv Haadud	
		7.1.4 El-Hemmeh (PPNA)	230
		7.1.5 Shkārat Msaied	236
		7.1.6 Ghwair I	
		7.1.7 Wadi Hamarash I	254
		7.1.8 'Ain Abu Nekheileh	266
		7.1.9 EI-Hemmeh (LPPNB)	273
		7.1.10Basta	279
		7.1.11Ba'ja	292
	7.2	Summary of micro-level estimates	
		7.2.1 People per dwelling	
		7.2.2 Residential floor area per person	303
		7.2.3 People per hectare	304
		7.2.4 Initial growth indices for the allometric growth formulae	307
		7.2.5 Area proportions	308
	7.3	Summary	312
8	Mic	ro-Level Estimates – Statistical Analysis	
	8.1	- Hypothesised site type classification systems	315
	8.2	Methodological issues and considerations	316
	8.2 8.3	Tests for normality and homogeneity of variance	

	8.4	Discriminant function analysis	.320 je 321
		(4) with rectificed at the form (2) or very large (2)	222
		84.3 Two types (size): small (1) or large (2)	322
		8.4.4 Two types (architecture): curvilinear (1) or rectilinear (2)	322
		8.4.5 Final selection of classification system	323
			.020
	8.5	Analysis of variance (ANOVA): one-way ANOVA and Kruskal-Wallis	.336
	8.6	Effect size (ETA squared/eta ²)	. 338
	8.7	Proposed site type classification system	. 339
	8.8	Proposed site type and universal constants	. 339
	8.9	Summary	.341
9	Est	imates of PPN Central and Southern Levantine Villages	342
-	0.1		212
	9.1	9.1.1. Site frequency	342
		912 Site extent	344
		913 Predominant architectural form	.344
		914 Site type	345
			.040
	9.2	Assessment of systematic methodologies for inclusion in final estimates	.348
		9.2.1 Statistical analysis	.352
		9.2.2 Assessment of estimate ranges	.354
	9.3	Population estimates and group size thresholds per period	.358
		9.3.1 Pre-Pottery Neolithic A	.358
		9.3.2 Early Pre-Pottery Neolithic B	.364
		9.3.3 Middle Pre-Pottery Neolithic B	. 369
		9.3.4 Late Pre-Pottery Neolithic B	.375
		9.3.5 Pre-Pottery Neolithic C	. 381
	9.4	Summary of population density per period and site type	.391
		9.4.1 People per dwelling	. 391
		9.4.2 Residential floor area per person	. 392
		9.4.3 People per hectare	. 392
	9.5	Annual population growth rates	. 393
	9.6	Comparison with pre-existing estimates	. 397
	9.7	Proposed formulae for estimating PPN village populations	.400
	9.8	Summary	.403
10) The	oretical and Methodological Implications	405
	40.4		400
	10.1	Re-evaluation of theory relating to PPN village population density	.406
		10.1.1 Dweiling unit size and composition	.406
		utilised density values	.410
	10.0	Major methodological contributions	14 E
	10.2	IVIAJOF MEMODOIOGICAL CONTRIDUTIONS	.415
		10.2.2 Powerian ehronological modelling of radioacthan datas for reconstructing	.410
			110
		structural contemporaneity values	.418

10.2.3The proposed classification system	422
10.2.4The new formulae for estimating PPN village population size	423
10.3 Group size thresholds	
10.3.1 Changing subsistence practices	
10.3.3Emerging social complexity	
10.4 Summary	435
11 Conclusion	
11.1 Further work	439
11.2 Concluding statement	443
References	
Appendix A: Data used to construct storage provisions formulae.	472
Appendix B.1: Beidha site data and micro-level estimates	473
Subphase A1	473
Subphase A2	
Subphase B2	478
Subphase C2	482
Appendix B.2: Beidha micro-level estimate database	
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23.	ltby, M., 2017. Neolithic , southern 490
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23	Itby, M., 2017. Neolithic , southern 490 491
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23 Appendix C.1: Site data and micro-level estimates	Itby, M., 2017. Neolithic , southern 490 491
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23 Appendix C.1: Site data and micro-level estimates Nahal Oren	Itby, M., 2017. Neolithic , southern
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23 Appendix C.1: Site data and micro-level estimates Nahal Oren Gilgal I	Itby, M., 2017. Neolithic , southern
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23. Appendix C.1: Site data and micro-level estimates. Nahal Oren. Gilgal I. Netiv Hagdud EI-Hemmeh (PPNA).	Itby, M., 2017. Neolithic , southern
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23. Appendix C.1: Site data and micro-level estimates. Nahal Oren. Gilgal I. Netiv Hagdud EI-Hemmeh (PPNA). Shkārat Msaied	Itby, M., 2017. Neolithic , southern
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23. Appendix C.1: Site data and micro-level estimates. Nahal Oren. Gilgal I. Netiv Hagdud El-Hemmeh (PPNA). Shkārat Msaied . Ghwair I.	Itby, M., 2017. Neolithic , southern
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23 Appendix C.1: Site data and micro-level estimates Nahal Oren Gilgal I Netiv Hagdud EI-Hemmeh (PPNA) Shkārat Msaied Ghwair I Wadi Hamarash I	Itby, M., 2017. Neolithic , southern 490 491 491 498 505 512 519 526 533
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23 Appendix C.1: Site data and micro-level estimates Nahal Oren Gilgal I Netiv Hagdud EI-Hemmeh (PPNA) Shkārat Msaied Ghwair I Wadi Hamarash I 'Ain Abu Nekheileh	Itby, M., 2017. Neolithic , southern 490 491 491 491 498 505 512 519 526 533 533
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23 Appendix C.1: Site data and micro-level estimates Nahal Oren Gilgal I Netiv Hagdud EI-Hemmeh (PPNA) Shkārat Msaied Ghwair I Wadi Hamarash I 'Ain Abu Nekheileh EI-Hemmeh (LPPNB)	Itby, M., 2017. Neolithic , southern 490 491 491 491 493 505 512 519 526 533 540 540
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23 Appendix C.1: Site data and micro-level estimates Nahal Oren Gilgal I Netiv Hagdud El-Hemmeh (PPNA) Shkārat Msaied Ghwair I Wadi Hamarash I 'Ain Abu Nekheileh El-Hemmeh (LPPNB) Basta	Itby, M., 2017. Neolithic , southern 490 491 491 498 505 512 519 526 533 540 547
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. <i>Levant</i> , 49(1), 1-23 Appendix C.1: Site data and micro-level estimates Nahal Oren Gilgal I Netiv Hagdud El-Hemmeh (PPNA) Shkārat Msaied Ghwair I Wadi Hamarash I 'Ain Abu Nekheileh El-Hemmeh (LPPNB) Basta Ba'ja	Itby, M., 2017. Neolithic , southern 490 491 491 498 505 512 512 519 526 533 540 547 554
Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Ma Estimating population size, density and dynamics of Pre-Pottery N villages in the central and southern Levant: an analysis of Beidha Jordan. Levant, 49(1), 1-23. Appendix C.1: Site data and micro-level estimates. Nahal Oren. Gilgal I. Netiv Hagdud El-Hemmeh (PPNA) Shkārat Msaied Ghwair I. 'Ain Abu Nekheileh. El-Hemmeh (LPPNB) Basta Ba'ja	Itby, M., 2017. Neolithic , southern 490 491 491 498 505 512 519 526 533 540 547 554 554 585

Discriminant function analysis60	4
Tests for normality, homogeneity of variance and analysis of variance (ANOVA and Kuskal- Wallis)60	6
Effect size (ETA squared/eta ²) test60	7
Appendix E.1: The central and southern Levantine PPN village database60	8
Appendix E.2: Data produced from systematic methodologies61	1
Regional population density coefficient method (RPDC)61	1
Residential built area proportions method (RBAP)61	5
Residential floor area proportions method (RFAP)61	9
Storage provisions formulae (SPF)62	3
Settlement population density coefficient method (SPDC)62	7
Naroll's (1962) allometric growth formula (AGF1)62	9
Wiessner's (1974) allometric growth formula (AGF2)63	3
Appendix E.3: Statistical tests for systematic methodologies	5
Paired-samples t test and Wilcoxon signed-rank test63	5
Regression analysis (Pearson's correlation coefficient)63	5
Appendix E.4: Data used to derive potential group size thresholds63	6
Pre-Pottery Neolithic A (PPNA)63	6
Early Pre-Pottery Neolithic B (EPPNB)63	8
Middle Pre-Pottery Neolithic B (MPPNB)64	0
Late Pre-Pottery Neolithic B (LPPNB)64	4
Pre-Pottery Neolithic C (PPNC)64	8
Appendix E.5: Population and density estimates for all central and southern Levantine PPN villages	0

List of Tables

 Table 3.1. Chronology of the Pre-Pottery Neolithic (PPN) in the central and southern Levant based on Kuijt and Goring-Morris (2002, p.366). Dates calibrated into Cal BP and Cal BC in OxCal v4.2.4 (IntCal13; based on mean 95% probability values) (Bronk Ramsey 2005; Reimer <i>et al.</i> 2013).
Table 4.1. Dwelling unit sizes derived from ethnographic and archaeological analysis
Table 4.2. Residential area density coefficients (RADC) derived from ethnographic and archaeological analysis
Table 4.3. Settlement population density coefficients (SPDC: people per hectare) derived from ethnographic and archaeological analysis
Table 4.4. Categorised and period-based PPN Levantine site sizes
Table 4.5. Minimum and maximum PPN period-based proportions of built area in site extent derived from the ratio of built to open area (based on values proposed by Kuijt 2008a, p.294)
Table 4.6. Building use-life estimates
Table 4.7. Dwelling unit size estimates for PPN central and southern Levantine villages
Table 4.8. Hypothesised group size thresholds relevant to PPN villages
Table 5.1. Reduced and moderated site extents
Table 5.2. Site extents per period and architectural form. 90
Table 5.3. Suggested site extents for sites of unknown size. 91
Table 5.4. Explanation of shapefiles and their use in micro-level methodologies
Table 5.5. Micro-level methodologies: outputs and data required
Table 5.6. Beidha Subphase C2 structures assessed to determine the proportion to deduct from upper storey interior area to calculate potential upper storey floor area. 97
Table 5.7. Building use-life estimates based on archaeological, ethnographic and experimental research. 98
Table 5.8. Storage provisions formulae (based on data from Hemsley 2008)
Table 5.9. Systematic methodologies: outputs and data required 111
Table 6.1. Beidha PPN building information (Byrd 2005a) and suggested use-life based on archaeological, ethnographic and experimental research of comparable structures 129
Table 6.2. Beidha PPN occupation span, subphase length and building use-life estimates based on Byrd 2005a and archaeological, ethnographic and experimental research. 130
Table 6.3. Contextual information for Beidha PPN radiocarbon dates ($n = 23$) and justificationfor exclusion from analysis. Dates in descending chronological order of the earliest 95%probability distribution of radiocarbon dates (cal BC). Dates highlighted in grey areexcluded
Table 6.4. Results of Chi-squared tests (χ^2) on combined Beidha PPN radiocarbon dates 133
Table 6.5. Modelled boundary (start/end) dates for Beidha PPN occupation based on posterior density estimates of calibrated dates (cal BC) by order of subphase and in descending chronological order: 1 st (19 dates) and 2 nd (14 dates) run. Dates with poor agreement (A ≤ 60%) highlighted in grey and removed from 2 nd run
Table 6.6. Archaeological evidence for and suggested minimum length of Subphases B1 and C1
Table 6.7. Modelled boundary (start/transition/end) dates for Beidha PPN occupation and subphases, and span (years) estimates based on posterior density estimates of calibrated dates (cal BC) by order of subphase and building in descending chronological order. Date with poor agreement highlighted in grey

Table 6.8. Radiocarbon dates (cal BC), phase/subphase span and building use-life estimates, and final structural contemporaneity values for PPN Beidha. Subphases under investigation highlighted in grey.
Table 6.9. HUM population estimates for Beidha Subphase A1
Table 6.10. RADC population estimates for Beidha Subphase A1
Table 6.11. SPF population and people per dwelling estimates for Beidha Subphase A1. Suggested amount of storage provision highlighted in grey. 150
Table 6.12. Application of Naroll's (1962) AGF1 to Beidha Subphase A1
Table 6.13. Summary of estimates for application of Naroll's (1962) AGF1 to BeidhaSubphase A1. Estimates based on suggested amount of storage provision in theresidential floor area highlighted in grey.153
Table 6.14. Application of Wiessner's (1974) AGF2 to Beidha Subphase A1. Estimates based on suggested amount of storage provision and applicable settlement types highlighted in grey
Table 6.15. Population estimates and SPDCs for Beidha Subphase A1 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates
Table 6.16. Summary of estimates for Beidha Subphase A1. Values highlighted in grey include SPF estimates, which are the final estimates used in AGF and comparative analysis; the most plausible amount of storage provision in the residential floor area; appropriate settlement types for Wiessner's (1974) AGF2; and contemporaneous proportions utilised in systematic methodologies
Table 6.17. HUM population estimates for Beidha Subphase A2. Estimate/s based on applicable nuclear family size/s highlighted in grey. 162
Table 6.18. RADC population estimates for Beidha Subphase A2
Table 6.19. SPF population and people per dwelling estimates for Beidha Subphase A2163
Table 6.20. Application of Naroll's (1962) AGF1 to Beidha Subphase A2
Table 6.21. Application of Wiessner's (1974) AGF2 to Beidha Subphase A2
Table 6.22. Population estimates and SPDCs for Beidha Subphase A2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates
Table 6.23. Summary of estimates for Beidha Subphase A2
Table 6.24. HUM population estimates for Beidha Subphase B2. 171
Table 6.25. RADC population estimates for Beidha Subphase B2 based on Subphase A2 area proportions (highlighted in grey)
Table 6.26. SPF population and people per dwelling estimates for Beidha Subphase B2 172
Table 6.27. Application of Naroll's (1962) AGF1 to Beidha Subphase B2174
Table 6.28. Application of Wiessner's (1974) AGF2 to Beidha Subphase B2
Table 6.29. Population estimates and SPDCs for Beidha Subphase B2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates. 175
Table 6.30. Summary of estimates for Beidha Subphase B2
Table 6.31. HUM population estimates for Beidha Subphase C2. 180
Table 6.32. RADC population estimates for Beidha Subphase C2. 181
Table 6.33. SPF population and people per dwelling estimates for Beidha Subphase C2181
Table 6.34. Application of Naroll's (1962) AGF1 to Beidha Subphase C2
Table 6.35. Application of Wiessner's (1974) AGF2 to Beidha Subphase C2
Table 6.36. Population estimates and SPDCs for Beidha Subphase C2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates
Table 6.37. Summary of estimates for Beidha Subphase C2
Table 6.38. HUM results for Beidha Subphases A1 to C2

Table 6.59. RADC method results for Beldna Subphases AT to C2.	189
Table 6.40. SPF results for Beidha Subphases A1 to C2	190
Table 6.41. Naroll's (1962) AGF1 (A = 2.17 x $P^{0.84195}$) results for Beidha Subphases A1 to C2.	.192
Table 6.42. Wiessner's (1974) AGF2 results for Beidha Subphases A1 to C2 1	194
Table 6.43. SPDC method results for Beidha Subphases A1 to C2	197
Table 6.44. Estimates for Beidha Subphases A1 to C2. SPF estimates considered most	st
reliable and highlighted in grey for comparative analysis.	204
Table 6.45. Additional demographic data derived for Beidha Subphases A1 to C2. Estimate	es
adjusted for contemporaneity highlighted in grey.	207
Table 7.1. Description of Nahal Oren Stratum II* and refined variables.	211
Table 7.2. Summary of estimates for Nahal Oren Stratum II. 2	213
Table 7.3. Description of Gilgal I* and refined variables. 2	215
Table 7.4. Modelled boundary dates and span estimates for Gilgal I	217
Table 7.5. Summary of estimates for Gilgal I	219
Table 7.6. Description of Netiv Hagdud Phase I* and refined variables	222
Table 7.7. Modelled boundary dates and span estimates for Netiv Hagdud. Dates with poor	or
agreement (A \leq 60%) highlighted in grey	225
Table 7.8. Summary of estimates for Netiv Hagdud Phase I. 2	228
Table 7.9. Description of PPNA el-Hemmeh* and refined variables. 2	231
Table 7.10. Summary of estimates for PPNA el-Hemmeh. 2	234
Table 7.11. Description of Shkārat Msaied Phase II * and refined variables	237
Table 7.12. Modelled boundary dates and span estimates for Shkārat Msaied	240
Table 7.13. Summary of estimates for Shkārat Msaied Phase II	242
Table 7.14. Description of Ghwair I Phase III* and refined variables	245
Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006).	ns 247
Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date	ns 247 es
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. 	ns 247 2s 249
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. 	ns 247 es 249 252
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. 	ns 247 25 249 252 256
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. 	ns 247 249 252 256 259
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Date 	ns 247 252 252 256 259 26
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Dat highlighted in grey removed from 2nd run. 	ns 247 249 252 256 259 259 262
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Dat highlighted in grey removed from 2nd run. Table 7.21. Summary of estimates for Wadi Hamarash I. 	ns 247 252 252 256 259 262 264
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Dat highlighted in grey removed from 2nd run. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. 	ns 247 252 252 256 259 262 262 264 266
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Dat highlighted in grey removed from 2nd run. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh. 	ns 247 252 252 256 259 262 262 264 266 269
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Dat highlighted in grey removed from 2nd run. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh. Table 7.24. Summary of estimates for 'Ain Abu Nekheileh Phase III. 	ns 247 252 252 256 259 262 262 264 266 269 271
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Dat highlighted in grey removed from 2nd run. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh. Table 7.24. Summary of estimates for 'Ain Abu Nekheileh Phase III. Table 7.25. Description of LPPNB el-Hemmeh* and refined variables. 	ns 247 252 252 256 259 262 262 264 266 269 271 274
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Dat highlighted in grey removed from 2nd run. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh. Table 7.24. Summary of estimates for 'Ain Abu Nekheileh Phase III. Table 7.25. Description of LPPNB el-Hemmeh* and refined variables. 	ns 247 252 252 256 259 262 264 266 269 271 274 275
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Dat highlighted in grey removed from 2nd run. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh. Table 7.24. Summary of estimates for 'Ain Abu Nekheileh Phase III. Table 7.25. Description of LPPNB el-Hemmeh* and refined variables. Table 7.27. Summary of estimates for LPPNB el-Hemmeh. 	ns 247 252 252 256 259 262 262 264 266 269 271 274 275 277
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh. Table 7.24. Summary of estimates for 'Ain Abu Nekheileh Phase III. Table 7.25. Description of LPPNB el-Hemmeh* and refined variables. Table 7.27. Summary of estimates for LPPNB el-Hemmeh. Table 7.28. Description of Basta Phase II* and refined variables. 	ns 247 252 252 256 259 262 262 264 266 269 271 274 275 277 281
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh. Table 7.24. Summary of estimates for 'Ain Abu Nekheileh Phase III. Table 7.26. Residential units identified at LPPNB el-Hemmeh. Table 7.27. Summary of estimates for LPPNB el-Hemmeh. Table 7.29. Modelled boundary dates and span estimates for Basta. Highlighted date for 'Ain Abu Particular and refined variables. 	ns 247 252 252 256 259 262 264 266 269 271 274 275 277 281 275 277 281
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh. Table 7.24. Summary of estimates for 'Ain Abu Nekheileh Phase III. Table 7.26. Residential units identified at LPPNB el-Hemmeh. Table 7.27. Summary of estimates for LPPNB el-Hemmeh. Table 7.28. Description of Basta Phase II* and refined variables. Table 7.29. Modelled boundary dates and span estimates for Basta. Highlighted data removed from 2nd run. 	ns 247 252 252 256 259 262 264 266 269 271 274 275 277 281 286 286 290
 Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmon and Najjar 2006). Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted date removed from 2nd run. Table 7.17. Summary of estimates for Ghwair I Phase III. Table 7.18. Description of Wadi Hamarash I* and refined variables. Table 7.19. Potential residential units identified in Wadi Hamarash I. Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Dat highlighted in grey removed from 2nd run. Table 7.21. Summary of estimates for Wadi Hamarash I. Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables. Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh. Table 7.24. Summary of estimates for 'Ain Abu Nekheileh Phase III. Table 7.26. Residential units identified at LPPNB el-Hemmeh. Table 7.27. Summary of estimates for LPPNB el-Hemmeh. Table 7.28. Description of Basta Phase II* and refined variables. Table 7.29. Modelled boundary dates and span estimates for Basta. Highlighted dat removed from 2nd run. 	ns 247 252 252 256 259 262 264 266 269 271 274 275 277 281 275 277 281 275 277 281 290 293

Table 7.33. Modelled boundary dates and span estimates for Ba'ja. Highlighted date removed from 2 nd run
Table 7.34. Summary of estimates for Ba'ja
Table 7.35. Population estimates based on the SPDC method converted to population and dwelling unit size in the assessable area. 306
Table 7.36. Summary of micro-level estimates
Table 8.1. One-sample Kolmogorov-Smirnov test for normality
Table 8.2. Levene's statistic for homogeneity of variance (variables lacking homogeneity of variance highlighted in grey). 319
Table 8.3. Discriminant function analysis - five site type classification system
Table 8.4. Discriminant function analysis - four site type classification system. 326
Table 8.5. Discriminant function analysis - three site type classification system. 328
Table 8.6. Discriminant function analysis - two site type classification system (size)
Table 8.7. Discriminant function analysis - two site type classification system (architecture)331
Table 8.8. Estimates for each variable based on the five site type classification system
Table 8.9. Analysis of variance: one-way ANOVA (variables with significant difference highlighted in grey). 337
Table 8.10. Analysis of variance: Kruskal-Wallis test (variables with significant difference highlighted in grey). 338
Table 8.11. Measures of effect size (eta ²)
Table 8.12. Proposed minimum, maximum and mean site type and universal constants
Table 9.1. Methodologies for systematically estimating PPN village population parameters348
Table 9.2. Tests for significant difference between micro-level and systematic estimates(methods with statistically significant differences highlighted in grey).353
Table 9.3. Examples of estimate ranges for each method
Table 9.4. Potential suitability of methods for producing systematic population estimates (most suitable methods highlighted in grey)
Table 9.5. Population and density estimates for central and southern Levantine PPN villages.386
Table 9.6. Population and density estimates per period and site type
Table 9.7. Total population and annual population growth rates per period
Table 9.8. Correlation between structural density and the difference between mean micro- level and systematic estimates
Table 9.9. Proposed allometric growth formulae for estimating PPN village populationsindicating average structural density corresponding to the mean formulae
Table 10.1. Contemporaneity values for central and southern Levantine PPN villages
Table 11.1. A sample of recommended sites for extension of this research beyond the PPN central and southern Levant

List of Figures

Figure 2.1. The location of the investigation area: the central and southern Levant (administrative boundaries from Global Administrative Areas (GADM) Version 1, 2009)9
Figure 2.2. Modern sites and regions mentioned in the text (administrative boundaries from Global Administrative Areas (GADM) Version 1, 2009)
Figure 2.3. The four major geomorphological zones (administrative boundaries from GADM Version 1, 2009)
Figure 2.4. Average annual precipitation (data from WorldClim; Hijmans <i>et al.</i> 2005; administrative boundaries from GADM Version 1, 2009)
Figure 2.5. Mean annual temperature (data from WorldClim; Hijmans <i>et al.</i> 2005; administrative boundaries from GADM Version 1, 2009)
Figure 2.6. Elevation (data from WorldClim; Hijmans <i>et al.</i> 2005; administrative boundaries from GADM Version 1, 2009)
Figure 2.7. Modern land cover (land cover data from GADM 2012; administrative boundaries from GADM Version 1, 2009)
Figure 2.8. Palaeoclimate proxy sites and Palaeolithic sites and regions mentioned in the text (administrative boundaries from GADM Version 1, 2009)
Figure 2.9. Climatic data summarised by Robinson <i>et al.</i> 2006 (p.1535) showing climatic conditions from the LGM to the early Holocene. Estimations based on turbidite data, Alkenone sea surface temperature (SST) and sea surface salinity (SSS) data, speleothem data, pollen data, lake levels, foraminiferal assemblages, sea surface salinity values, palaeosol data, fluvial data and temperature, precipitation and pollen maps drawn with open source Genetic Mapping Tools (GMT) available at http://gmt.soest.hawaii.edu
 Figure 2.10. Difference in temperature and precipitation between the present and 1) the Last Glacial Maximum (LGM) (c. 20,000 cal BC); and 2) the mid-Holocene (c. 4,000 cal BC). LGM: average annual temperature c. 2-5°C lower and average daily precipitation up to c. 0.5 mm lower in the south and higher in the north. Mid-Holocene: average annual temperature up to 0.5°C higher in the north and average daily precipitation 0.25-0.75 mm higher (PMIP 2 2008a-d).
Figure 2.11. Vegetation reconstruction during the Neolithic (adapted from University of Oregon n.d.)
Figure 3.1. Various chronological sequences for the Pre-Pottery Neolithic (PPN) in the central and southern Levant. Dashed lines indicate M-LPPNB span. Goring-Morris and Belfer- Cohen (1997) use 'Final PPNB' instead of 'PPNC'
Figure 3.2. Distribution of PPNA villages in the current database. ID numbers correspond to those within the PPN village database (Appendix D.1)
 Figure 3.3. PPNA archaeological features. A: residential structure schematic (Kuijt and Goring-Morris 2002, p.375); B: tool assemblage - el-Khiam points (1/2), Hagdud truncations (3/4), awl (5), bifacial axe (6), sickle blade (7), shaft straightener (8), cup holed limestone slab (9), limestone celt (10) (Bar-Yosef 1998, p.171); C: Wadi Faynan 16 (WF16) - plan of excavated area with large communal structure (O75) and potential storage structures (O12 and O45) (Finlayson <i>et al.</i> 2012, p.19); D: figurines (Kuijt and Chesson 2005, p.159); E: incised stones from Zahrat adh-Dhra' 2 (Edwards 2007, p.29); F: Jericho Tower (Kuijt and Goring-Morris 2002, p.375).
Figure 3.4. Distribution of EPPNB villages in the current database
 Figure 3.5. EPPNB archaeological features. A: curvilinear and rectangular structures at Motza (Khalaily <i>et al.</i> 2007, pp.9-10); B: tools - Jericho point (a), Byblos point (b), Amuq point (c), Helwan point (d), burin (e), sickle blades (f/g) (adapted from Kuijt and Goring-Morris 2002, p.401); C: model of naviform core reduction sequence (Nishiaki 2000, p.56) 32

Figure 3.7. MPPNB archaeological features. A: site plan of Shkārat Msaied (Jensen et al. 2005, p.115); B: pier or corridor house forms - buttresses often interpreted as representing basements of two-storey structures (Goring-Morris and Belfer-Cohen 2013, p.27); C: rectangular room with niches and bins at Ghwair I (Simmons and Najjar 2006, p.81); D: mortuary practices associated with residential architecture (Kuijt and Goring-Morris 2002, p.390); E: lime plaster anthropomorphic figurines from 'Ain Ghazal (Rollefson 2008, p.402); E: cattle figurines from 'Ain Ghazal (Rollefson 2008, p.399).....36 Figure 3.9. LPPNB archaeological features. A: schematic reconstruction of possible twostorey residential architecture at Basta showing storage facilities on the ground floor and open domestic space on the upper floor (Kuijt and Goring-Morris 2002, p.409); B: digital reconstruction of pueblo-style, steep slope settlement at Ba'ja (Gebel 2006, p.69); C: drawing and photograph of curvilinear "temples" at 'Ain Ghazal (Kafafi 2010, p.304); D: pendants from Basta (adapted from Rollefson 2008, p.407); E: geometric tokens from es-Sifiya - cones (1/2), spheres (15/16) (Mahasneh and Gebel 1998, Figure 3.11. PPNC archaeological features. A: large walls constructed at 'Ain Ghazal (Rollefson and Köhler-Rollefson 1993, p.38); B: schematic cross-section of a well at the coastal village of Atlit-Yam, showing location of the village in relation to ancient and modern sea levels (ASL and MSL) (Galili and Nir 1993, p.268); C: residential structures at 'Ain Ghazal (Rollefson et al. 1992, p.451); D: disc beads of red dabba marble from Figure 4.1. Correlation between population density and settlement size (in logarithmic scale). Crosses indicate villages assessed by Aurenche (1981, Table 3) and Kramer (1982, Table 5.3); diamonds indicate towns assessed by Kramer (1982, Table 5.6); and Figure 4.2. Negative correlation between population density and population size in hunter-Figure 4.3. Correlation between number of occupants and settlement size (in logarithmic scale). Crosses indicate villages assessed by Aurenche (1981, Table 3) and Kramer (1982, Table 5.3); diamonds indicate towns assessed by Kramer (1982, Table 5.6); and Figure 4.4. Allometric relationship between settlement area (dashed lines), population size (shaded units) and population density (scales underneath) when growth occurs in (A) open, (B) village (isometric growth) and (C) urban settlements (adapted from Wiessner Figure 4.5. Late Natufian to PPNC central and southern Levantine estimates of the ratio

Figure 4.9. Correlation between floor area and the mid-point of the maximum number of 1.65 m and 1.83 m tall sleeping occupants based on three amounts of annual personal storage within the floor area. Data from Hemsley (2008) (Appendix A)
Figure 5.1. Site extents per period and architectural form (* 16: Jericho; 15: Huzuq Musa; 18: Tell Aswad IA; 24: Tell Aswad IB; 78: Basta; 79: Beisamoun; 84: Tell 'Ain el-Kerkh/II) 90
Figure 5.2. Sites selected for micro-level analysis
Figure 5.3. Example of OxCal code for chronological modelling of boundary (start/transition/end) dates and span estimates for PPN Beidha
Figure 5.4. The housing unit method (HUM) process
Figure 5.5. The residential area density coefficient (RADC) method process
Figure 5.6. The storage provision formulae (SPF) process
Figure 5.7. Naroll's (1962) allometric growth formula (AGF1) process
Figure 5.8. Wiessner's (1974) allometric growth formula (AGF2) process
Figure 5.9. The settlement population density coefficient (SPDC) method process 109
Figure 5.10. The regional population density coefficient (RPDC) method process
Figure 5.11. The residential built area proportions (RBAP) method process
Figure 5.12. The residential floor area proportions (RFAP) method process
Figure 5.13. The storage provisions formulae (SPF) process for systematic estimates 115
Figure 5.14. The settlement population density coefficient (SPDC) method process for systematic estimates
Figure 5.15. Naroll's (1962) allometric growth formula (AGF1) process for systematic estimates
Figure 5.16. Wiessner's (1974) allometric growth formula (AGF2) process for systematic estimates
Figure 6.1. Location of Beidha excavation area, southern Jordan
Figure 6.2. Site plans of Beidha Subphases A1 and A2 (transcribed from Byrd 2005a, pp.180 and 183)
Figure 6.3. Site plans of Beidha Subphases B2 and C2 (transcribed from Byrd 2005a, pp.186, 192 and 195)
Figure 6.4. Beidha PPN radiocarbon dates (cal BC) ($n = 23$) with 95% probability distributions. Dates with insufficient contextual information highlighted in grey
 Figure 6.5. Modelled boundary (start/end) dates for Beidha PPN occupation based on posterior density estimates of calibrated dates (cal BC) by order of subphase and descending chronological order of earliest cal BC date: 1st run (<i>n</i> dates = 19). Distributions in lighter grey represent the simple radiocarbon calibrations and those in darker grey represent the posterior 95% probability distributions. Dates with poor agreement highlighted in grey.
Figure 6.6. Modelled boundary (start/end) dates for Beidha PPN occupation based on posterior density estimates of calibrated dates (cal BC): 2 nd run (<i>n</i> dates = 14), following removal of dates with poor agreement
Figure 6.7. Modelled boundary (start/transition/end) dates for PPN Beidha occupation and subphases based on posterior density estimates of calibrated dates (cal BC) (<i>n</i> dates = 14). Date with poor agreement highlighted in grey
Figure 6.8. Modelled occupation span and subphase lengths for PPN Beidha
Figure 6.9. Modelled building use-life estimates for PPN Beidha
Figure 6.10. SPF population and people per dwelling estimates for Beidha Subphase A1 150
Figure 6.11. Population estimates and SPDCs for Beidha Subphase A1 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates. Variables utilised in HUM, RADC and SPF population estimates indicated

 Figure 6.12. Summary of estimate ranges for Beidha Subphase A1. Values on range bars indicate the variables included in the final estimate range (i.e. HUM: nuclear family size - 3-8 people; RADC: residential floor area per person - 1.77-5 m²; SPF: storage provisions in residential floor area - none to moderate; SPDC: 90-294 people per hectare). SPF estimate ranges are considered most valid and are highlighted in grey for comparative analysis.
Figure 6.13. SPF population and people per dwelling estimates for Beidha Subphase A2164
Figure 6.14. Population estimates and SPDCs for Beidha Subphase A2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates. The HUM arrow indicates the direction of estimates if higher nuclear family sizes were employed.166
Figure 6.15. Summary of estimates for Beidha Subphase A2. The HUM arrow indicates the direction of estimates if higher nuclear family sizes were employed
Figure 6.16. SPF population and people per dwelling estimates for Beidha Subphase B2173
Figure 6.17. Population estimates and SPDCs for Beidha Subphase B2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates
Figure 6.18. Summary of estimates for Beidha Subphase B2
Figure 6.19. SPF population and people per dwelling estimates for Beidha Subphase C2182
Figure 6.20. Population estimates and SPDCs for Beidha Subphase C2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates
Figure 6.21. Summary of estimates for Beidha Subphase C2
Figure 6.22. Estimates of people per dwelling (left axis) and total population (right axis) derived from applicable SPF for Beidha Subphases A1 to C2 (all subphases: none to moderate storage)
Figure 6.23. Naroll's (1962) AGF1 (A = 2.17 x P ^{0.84195}) results for Beidha Subphases A1 to C2 compared to data derived from the archaeological evidence
Figure 6.24. Wiessner's (1974) AGF2 open, village and urban initial growth indices for Beidha Subphases A1 to C2. Results in lighter grey indicate where the subphase does not conform to that particular settlement type
Figure 6.25. Data derived from SPDC methods for Beidha Subphases A1 to C2: (a) data derived from commonly utilised SPDCs; (b) data derived from HUM, RADC and SPF population estimates
Figure 6.26. Estimates for Beidha Subphases A1 to C2. SPF estimates considered most reliable and highlighted in grey for comparative analysis
Figure 7.1. Site plan of Nahal Oren Stratum II (transcribed from Goring-Morris and Belfer- Cohen 2008, p.259)
Figure 7.2. Summary of estimates for Nahal Oren Stratum II
Figure 7.3. Site plan of Gilgal I (transcribed from Bar-Yosef et al. 2010a, p.11)216
Figure 7.4. Modelled posterior density estimates for Gilgal I
Figure 7.5. Summary of estimates for Gilgal I
Figure 7.6. Site plan of Netiv Hagdud Phase I (transcribed from Bar-Yosef <i>et al.</i> 1980, p.203; 1991, pp.407 and 409; Hemsley 2008, p.175)
Figure 7.7. Schematic section of deep sounding at Netiv Hagdud, indicating the context of radiocarbon dates (uncalibrated BP) (Bar-Yosef <i>et al.</i> 1991, p.408)
Figure 7.8. Modelled posterior density estimates for Netiv Hagdud (2 nd run: divergent dates removed)
Figure 7.9. Summary of estimates for Netiv Hagdud Phase I
Figure 7.10. Site plan of PPNA el-Hemmeh (transcribed from Makarewicz and Rose 2011, p.24)
Figure 7.11. Summary of estimates for PPNA el-Hemmeh235

Figure 7.12. Site plan of structures built and/or (probably) utilised during Phase II at Shkārat Msaied (transcribed from Kinzel 2013, p.339)
Figure 7.13. Modelled boundary dates and span estimates for Shkārat Msaied
Figure 7.14. Summary of estimates for Shkārat Msaied Phase II
Figure 7.15. Site plan (centre) and enlarged plans of Ghwair I Phase III, Areas I and IV (transcribed from Ladah 2006, pp.97 and 117)
Figure 7.16. Modelled posterior density estimates for Ghwair I (2 nd run: divergent dates removed)
Figure 7.17. Summary of estimates for Ghwair I Phase III
Figure 7.18. Site plan of Wadi Hamarash I (transcribed from Sampson 2013a, pp.8, 12, 15, 18, 23 and 24)
Figure 7.19. Enlarged plans of Wadi Hamarash I, Areas 1, 2, 3 and 5 (transcribed from Sampson 2013a, pp.8, 12, 15, 18, 23 and 24)258
Figure 7.20. Modelled posterior density estimates for Wadi Hamarash I. 1 st run (left) and 2 nd run (right) following removal of highlighted date
Figure 7.21. Summary of estimates for Wadi Hamarash I
Figure 7.22. Site plan of 'Ain Abu Nekheileh Phase III, Blocks I (north) and II (south) (transcribed from Henry <i>et al.</i> 2003, p.7)
Figure 7.23. Radiocarbon dates for 'Ain Abu Nekheileh (Henry et al. 2003, p.13)
Figure 7.24. Modelled posterior density estimates for 'Ain Abu Nekheileh
Figure 7.25. Summary of estimates for 'Ain Abu Nekheileh Phase III
Figure 7.26. Site plan of LPPNB el-Hemmeh (transcribed from Makarewicz and Austin 2006, p.19 and Makarewicz 2010, p.7)
Figure 7.27. Summary of estimates for LPPNB el-Hemmeh
 Figure 7.28. Site plan of Basta Phase II, Area B. Four scenarios: residential floor area in (1) ground floor central room/s; (2) upper storey above smaller compartments; (3) ground floor central room/s and partial upper storey; (4) full upper storey (transcribed from Nissen 2006, pp.164-169 and Gebel <i>et al.</i> 2006b, Insertion: Top Plan Area B)
Figure 7.29. Ground plan of Basta Area A. Phase II features highlighted in green (Phase I: blue; Phase III: red). There is a small "Basta house" in the southwest portion (Gebel <i>et al.</i> 2006b, Insertion: Top Plan Area A)
Figure 7.30. Modelled posterior density estimates for Basta (2 nd run: divergent date removed).287
Figure 7.31. Summary of estimates for Basta Phase II: Scenario 3
Figure 7.32. Site plan of Ba'ja Areas B North, C and D (transcribed from Gebel and Hermansen 1999, p.19 and Kinzel 2013, pp.406-444)
Figure 7.33. Enlarged plans of Ba'ja Areas B North, C and D (transcribed from Gebel and Hermansen 1999, p.19 and Kinzel 2013, pp.406-444)
Figure 7.34. Reconstruction of pueblo-style settlement at Ba'ja showing open, communal area between Area B North and South (Kinzel 2004, p.21)
Figure 7.35. Reconstruction of residential Unit BI in Ba'ja Area B North (Purschwitz and Kinzel 2007, p.30)
Figure 7.36. Modelled posterior density estimates for Ba'ja (2 nd run: divergent date removed).299
Figure 7.37. Summary of estimates for Ba'ja. Values in brackets for the SPF indicate direction of estimate if the formula for none and maximum storage were included in the final estimate range
Figure 7.38. Summary of micro-level estimates
Figure 8.1. Discriminant function analysis - five site type classification system: distance to group centroid based on discriminant functions 1 and 2

Figure 8.2. Discriminant function analysis - four site type classification system
Figure 8.3. Discriminant function analysis - three site type classification system
Figure 8.4. Box plots of estimates for each variable based on the five site type classification system
Figure 9.1. PPN central and southern Levantine villages per period
Figure 9.2. Temporal distribution of PPN central and southern Levantine villages (? = questionable PPNC date)
Figure 9.3. Site extent (ha) per period (* 15: Huzuq Musa; 16: Jericho; 18: Tell Aswad IA)344
Figure 9.4. Predominant architectural form per period
Figure 9.5. Site type frequencies
Figure 9.6. Site type per period
Figure 9.7. Comparison of mean micro-level estimates with mean estimates derived from systematic methodologies. Error bars display minimum to maximum range of estimates based on site type constants
Figure 9.8. PPNA population estimates. Error bars show minimum to maximum range of estimates based on site type constants
Figure 9.9. Distribution of PPNA villages in the current database indicating population size363
Figure 9.10. EPPNB population estimates. Error bars show minimum to maximum range of estimates based on site type constants
Figure 9.11. Distribution of EPPNB villages in the current database indicating population size.368
Figure 9.12. MPPNB population estimates. Error bars show minimum to maximum range of estimates based on site type constants
Figure 9.13. Distribution of MPPNB villages in the current database indicating population size.374
Figure 9.14. LPPNB population estimates. Error bars show minimum to maximum range of estimates based on site type constants
Figure 9.15. Distribution of LPPNB villages in the current database indicating population size.380
Figure 9.16. PPNC population estimates. Error bars show minimum to maximum range of estimates based on site type constants
Figure 9.17. Distribution of PPNC villages in the current database indicating population size. 385
Figure 9.18. Megalithic installation at PPNC Atlit-Yam (Eshed and Galili 2011, p.409)
Figure 9.19. Mean population and density estimates per period and site type (1-5). Errors bars display minimum to maximum values
Figure 9.20. Population estimates per period
Figure 9.21. Total population and annual population growth rates per period
Figure 9.22. Comparison of revised and pre-existing estimates
Figure 9.23. Correlation between structural density and the difference between mean micro- level and systematic estimates
Figure 9.24. Allometric growth formulae for reconstructing minimum, mean and maximum population estimates for central and southern Levantine PPN villages
Figure 10.1. Micro-level estimates of population size and people per dwelling derived from commonly utilised SPDCs, and SPDCs re-calculated from final proposed estimate range
Figure 10.2. Contemporaneity values for central and southern Levantine PPN villages421
Figure 10.3. Potential group size thresholds for PPN central and southern Levantine villages.433

Acknowledgements

This project is match funded by the Arts and Humanities Research Council (AHRC) and Bournemouth University. I would like to thank my supervisors Fiona Coward, Emma Jenkins and Mark Maltby for their support and advice throughout this research. I am also grateful to the Council for British Research in the Levant (CBRL) and the Kenyon Institute for facilitating ethnographic and archaeological research in Jordan and Israel, with particular thanks to Carol Palmer (CBRL), Sarah Elliott (CBRL) and Reuven Yeshurun (Haifa University). Additional thanks goes to Jean-Pierre Bocquet-Appel (French National Centre for Scientific Research) for valuable feedback and advice on methodologies; Rick Stafford (Bournemouth University) for assistance with statistical techniques; and Tim Darvill (Bournemouth University) and Karen Wicks (University of Reading) for advice and assistance with Bayesian chronological modelling. Finally, I am grateful to my husband, Ian Chapman, and my mother, Dawn Birch, who provided emotional support throughout.

Abbreviations and Definitions

а	Initial growth index for allometric growth formulae
A ≥ 60	Positive agreement threshold for Bayesian chronological models
AGF(1/2)	Allometric growth formulae based on (1) Naroll's (1962) research and (2) Wiessner's (1974) research
AMS	Accelerator mass spectrometry
ANOVA	Analysis of variance
ArcMAP10	GIS software
b	Scaling exponent for allometric growth formulae
BC/BCE	Before Christ/Christian Era
BP	Before present (before 1950)
C ≥ 95	Positive convergence value for Bayesian chronological models
Cal BC	Calibrated years before Christ
Cal BP	Calibrated years before present (before 1950)
DFA	Discriminant function analysis
DNA	Deoxyribonucleic acid: genetic structure of humans
EPPNB	Early Pre-Pottery Neolithic B
eta ²	Effect size - test statistic
FPPNB	Final Pre-Pottery Neolithic B
GADM	Global administrative areas
HUM	Housing unit method
ID	Identification
IntCal 13	Current atmospheric calibration curve for the Northern Hemisphere
LEPI	Late Epipalaeolithic
LPPNB	Late Pre-Pottery Neolithic B
LGM	Last Glacial Maximum
MPPNB	Middle Pre-Pottery Neolithic B
NDT	Neolithic Demographic Transition
OxCal	Radiocarbon date calibration software
p	Significance value for statistical tests (p value)
Р	Population estimate
PN	Pottery Neolithic
PPN	Pre-Pottery Neolithic
PPNA	Pre-Pottery Neolithic A
PPNB	Pre-Pottery Neolithic B
PPNC	Pre-Pottery Neolithic C
PPND	Platform for Neolithic Radiocarbon Dates
RADC	Residential area density coefficient
RBAP	The proportion of contemporaneous residential built area in site area
RFAP	The proportion of contemporaneous residential floor area in site area
RPDC	Regional population density coefficient
SPDC	Settlement population density coefficient
SPF	Storage provisions formula
SPSS	Statistical software
WF16	Wadi Faynan 16: a PPNA site in southern Jordan
X ²	Chi-square test statistic

1 Introduction

'Probably few kinds of archaeological interpretation have more systematically built-in sources of potential error than have estimates of population, yet...because our concerns in archaeology turn more and more toward reconstructing social systems, we shall have to devise methods of obtaining better demographic data.' (Hole and Heizer 1969, p.306)

The Neolithic Demographic Transition (NDT) was a period of transformation from mobile hunter-gatherer to sedentary, village-based, agro-pastoralist societies, which profoundly altered the way humans interacted with each other and their environment. This transition has been subject to considerable investigation and debate, particularly regarding the nature and extent of human interaction with, and exploitation of, the environment, including the adoption of agriculture (Colledge 2001; Kuijt and Goring-Morris 2002; Drennan and Peterson 2008; Asouti and Fuller 2013) and pastoral practices (Kuijt and Goring-Morris 2002; Makarewicz 2009; 2013; Martin and Edwards 2013); and the impact of sedentism on the environment (Rollefson and Köhler-Rollefson 1989; Simmons 2002; Campbell 2009). Other research has explored social, technological and architectural developments aimed at promoting social cohesion within larger and more densely populated sedentary settlements (Chagnon 1980; Kosse 1990; Bowser 2000; Kuijt 2000; Dunbar 2003; Bandy 2006; Düring 2013; Alberti 2014). A major research focus is the transition from curvilinear to rectilinear architecture and how this relates to changing household composition and function, and inter-household competition, which may have induced social differentiation (Flannery 1972; 2002; Banning and Byrd 1987; Wills 1992; Winterhalder 1990; Byrd 1994; Kuijt and Goring-Morris 2002; Banning 2003; Kuijt et al. 2011).

The transition to village society and the increasingly larger and diverse populations within these villages required significant changes to social organisation. This, combined with major developments in subsistence, technology, and ritual and symbolic practices, ultimately led to the emergence of complex societies characterised by organised social, economic, political and religious institutions (Kuijt and Goring-Morris 2002; Goring-Morris and Belfer-Cohen 2008). In order to reconstruct social developments during the NDT, a clear understanding of the key demographic parameters (i.e. size, density, growth and decline) of these early villages is essential.

Current evidence suggests that the NDT originated in the central and southern Levant during the Late Epipalaeolithic (LEPI) (c. 13,500 cal BC) when early Natufian hunter-gatherer groups established permanent (or at least semi-permanent) base-camps in resource rich areas (Bar-Yosef and Belfer-Cohen 1989, p.452; 1991, p.86; Bar-Yosef,

1998, p.168; Belfer-Cohen and Bar-Yosef 2002, p.21). However, in the later Natufian, these communities appear to have reverted to a more mobile way of life and it was not until the Pre-Pottery Neolithic (PPN) (beginning c. 10,000 cal BC) that groups of people created permanent settlements in this region, forming arguably the world's earliest sedentary villages (Goring-Morris and Belfer Cohen 1997; Bar-Yosef 1998; Kuijt 2009). Year-round habitation of these villages is suggested based on combinations of features, including the considerable durability of architectural materials and effort required for building construction (Whitelaw 1991; Dennis 2008; Balbo et al. 2012); the increased distinction between, and separation of, residential and non-residential built space (Byrd 1994; Rollefson 1998a; Kuijt 2000; Finlayson et al. 2011); subsistence strategies and storage facilities that enabled year-round food availability (Bar-Yosef and Gopher 1997; Bar-Yosef 1998; Kuijt 2008a); and the presence of human commensals (i.e. mice, sparrows and rats) that indicate continuous garbage accumulation (Bar-Yosef and Belfer-Cohen 1989; Tchernov 1991; Bar-Yosef and Meadow 1995). Ethnographic and archaeological evidence indicates that these characteristics are not always diagnostic of permanently settled communities, as inhabitants may move to seasonal camps, particularly during summer (Bar-Yosef and Belfer-Cohen 1989; 1992; Boyd 2006). However, the combined presence of these features within many PPN settlements provides reasonable justification for their interpretation as sedentary (or predominantly sedentary) communities.

There is some debate regarding the use of the term 'village' to describe these early settlements. The modern definition of the term denotes a self-contained settlement of a cluster of structures, including dwellings and associated buildings, usually in a rural setting (Oxford Dictionaries Online 2016). According to the 'Domesday Project', essential village characteristics in Britain include residential structures (i.e. dwellings) and non-residential structures and open areas used for ritual (i.e. a church), communal (i.e. a village hall or community centre, a public house and a village green) and decision-making (i.e. a parish council) activities, and/or as places of work (i.e. shops and allotments) (Cellan-Jones 2011). The term 'hamlet' refers to small modern settlements lacking non-residential structures (Parsons 1971, p.22; Blanton 1972, p.20) and is, thus, sometimes applied to early Natufian base-camps (Bar-Yosef and Belfer-Cohen 1989, p.490; 1991, p.86; Bar-Yosef 1998, p.168).

Many central and southern Levantine PPN settlements demonstrate village characteristics. The majority of structures within permanent PPN settlements are identified as residential based on interior domestic features (i.e. hearths and sleeping platforms/compartments), evidence for food-related activities within structures and associated annexes, and consistent architectural morphology (Watson 1978; Kramer

2

1982; Byrd 2002; 2005a). These dwellings were occupied by permanent (or at least predominantly-permanent) co-resident units for relatively long periods (Kuijt 2000). Open areas for communal activities, such as food processing, cooking and feasting (Twiss 2008), were a common feature, with the majority of settlements also containing non-residential structures for ritual, communal, storage and workshop activities. These non-residential structures are usually identified by their distinctive form and layout, unique interior features and associated non-residential structures and communal areas (Rosenberg and Redding 2002; Byrd 2005a; Bar-Yosef *et al.* 2010a; 2010b). Byrd (1994, p.643) interprets large communal structures as representing the establishment of supra-household corporate groups to facilitate group decision-making and social cohesion within larger populations. Open and built area for non-residential activities became increasingly structured and formalised throughout the PPN (Byrd 2002). The presence of these formal village characteristics within many PPN settlements provides reasonable justification for their interpretation as early and/or formative villages.

The fundamental re-structuring of human societies into village settlements occurred throughout the world in different time periods, making this transitional period highly relevant for comparative analysis of cultural and social evolution on a global scale (Bandy 2005; Bocquet-Appel and Bar-Yosef 2008). The causes, motivations and consequences of the central and southern Levantine NDT have been subject to extensive investigation. However, to date, there has been limited progress towards producing the accurate absolute estimates of PPN village population size, density and dynamics that are essential for reconstructing the trajectories of these early village societies. This is largely due to the methodological difficulties associated with reconstructing population estimates.

The few investigations that have produced absolute estimates of demographic data for multiple central and southern Levantine PPN villages have reconstructed this data as part of broader investigations into processes of socio-cultural development during the NDT rather than as absolute representations of past populations (Kuijt 2000; 2008a; Campbell 2009). For example, Kuijt (2000, p.81) estimated the population size of 25 settlements from the Late Natufian to the Pre-Pottery Neolithic C (PPNC) to explore the relationship between population growth, sedentism, food production, social crowding and social inequality. In a later investigation, Kuijt (2008a, pp.293-295) estimated and assessed diachronic variations in population size, settlement size and the ratio of built to open space to explore the relationship between food storage and sedentism during the NDT. In another study, Campbell (2009) established low, mid-range and high population estimates for PPN villages at 'Ain Ghazal, Basta and Jericho to explore the environmental impact of agricultural practices employed by groups of different sizes.

3

Due to the comparative focus of each of these investigations, emphasis on the accuracy of the population estimates themselves is limited. In each of these cases, the same basic methodology was employed to calculate population size based on total site extent and a narrow selection of population density coefficients derived from ethnographic analysis of Southwest Asian villages (Jacobs 1979; Watson 1979; Kramer 1982; van Beek 1982). These investigations, while valuable, do not adequately critically assess the suitability of ethnographic comparatives or the underlying theoretical and methodological assumptions associated with this method.

Further limitations of pre-existing estimates include few attempts to estimate the number of people per dwelling or the amount of space per person. This is largely due to methodological issues regarding the identification of habitable and/or residential area and theoretical issues relating to the composition of dwelling units, particularly the type of family unit and the ratio of children to adults, as well as the potential use of space for animals.

Given the pivotal role of the central and southern Levant during the NDT and the importance of this region for understanding early village development, the limited number of investigations that have attempted to reconstruct absolute estimates of PPN village population parameters is surprising. In addition, a revision of the theoretical and methodological framework underpinning these reconstructions, including the use of ethnographic comparatives from Southwest Asia, is long overdue. If more insightful conclusions are to be made regarding the development of these early village societies, more precise and accurate estimates based more heavily on empirical archaeological evidence are required.

1.1 Aims and objectives

The purpose of this PhD research is to establish a more empirically and statistically robust methodology for estimating the population parameters of central and southern Levantine PPN villages. It is expected that the final methodologies presented in this research will be easily applied (and adapted) by archaeologists in future to produce more precise and accurate absolute estimates of early village population parameters both within and beyond this time period and region. Compared to previous investigations, this analysis proposes site-specific population size and density estimates for a considerably larger number of central and southern Levantine PPN villages and village phases (n = 106). The estimates proposed in this research have the ability to enhance our understanding of the demographic trajectories of these early sedentary societies by facilitating more meaningful analyses of the relationship

between demographic parameters and developments during the NDT, including major transitional stages relating to subsistence, architecture, technology, culture and social organisation.

Aim 1: establish a more empirically and statistically robust methodology for estimating population size, density and dynamics of central and southern Levantine PPN villages at the micro-level (i.e. individual site analysis) and for systematic application to numerous sites.

Objectives:

- Evaluate a range of modern demographic, ethnographic and archaeological methodologies for estimating population size, density and dynamics of early and formative village societies.
- Identify the most appropriate methodologies for estimating population size, density and dynamics of central and southern Levantine PPN villages, taking into consideration the environmental conditions, archaeological features and social processes that existed during the PPN.
- Apply selected micro-level methods to a test site with multiple phases (Beidha) to determine the suitability of the methods and to refine the methodology prior to application to other sites.
- Apply refined micro-level methodologies to selected PPN villages to estimate population size, density and dynamics.
- Establish a site type classification system that can be easily applied by archaeologists in future.
- Determine universal and site type constants for data required for systematic methodologies.
- Apply systematic methodologies to PPN villages identified (in this study) within the central and southern Levant to rapidly estimate demographic parameters based on site extent, site type and associated constants.
- Determine the most suitable methodologies for the systematic reconstruction of estimates by:
 - examining the differences between estimates derived from micro-level and systematic methodologies to determine the accuracy of the systematic methods; and,
 - eliminating systematic methods that produce excessive population estimate ranges.
- Establish final population estimate ranges for each PPN village identified in the central and southern Levant.

• Develop site type and universal formulae to estimate the minimum, mean and maximum population of PPN central and southern Levantine villages.

Aim 2: produce a precise chronology of population size, density, growth and decline of central and southern Levantine PPN villages in order to facilitate further investigation into the relationship between population change and socio-cultural development during the PPN.

Objectives:

- Establish estimates of population size and density for each PPN village identified (in this study) within the central and southern Levant.
- Identify patterns in population size, density and dynamics throughout each period.
- Determine the rate of population growth or decline throughout the PPN in this region.
- Explore a major theoretical aspect that can be enhanced by more precise and accurate population estimates (i.e. the relationship between group size and specific developments during the PPN).

1.2 Thesis structure

The next chapter (Chapter 2) outlines the geographical and environmental background of the central and southern Levant, including modern and palaeoenvironmental conditions, providing the environmental context for the PPN and justification for the use of specific ethnographic comparatives. This is followed by a summary of the chronological sequence for the PPN, including major aspects of village development throughout each PPN period (Chapter 3).

In Chapter 4, commonly utilised methodologies for estimating population parameters of early villages are evaluated, followed by a summary of existing estimates of population parameters for PPN central and southern Levantine villages. This chapter includes a brief discussion of the impact of group size on cultural evolution, identifying some of the major pre-existing hypothesised group size thresholds relevant to the PPN.

The methodology chapter (Chapter 5) describes the process for the selection and preparation of data, including the selection of sites for inclusion in the PPN village database and for micro-level assessment; and the criteria for identifying dwellings and residential area. In addition, this chapter provides the methodology for establishing the most precise site extent estimates based on the information available, and outlines the

process for digital transcription of site plans. This is followed by an explanation of the micro-level and systematic methods employed for estimating population parameters.

The results of the micro-level application of methodologies to the PPNB village at Beidha, southern Jordan, are presented in Chapter 6. This includes a detailed description of the use of Bayesian chronological modelling of radiocarbon dates to estimate building use-life and phase length in order to reconstruct structural contemporaneity values.

The application of micro-level methodologies to a further 11 PPN central and southern Levantine villages/village phases is presented in Chapter 7. The results of micro-level analyses are assessed in order to develop a site type classification system and constants to systematically reconstruct population estimates for all sites in the central and southern Levantine PPN village database.

The results of this systematic application are presented in Chapter 8. This chapter provides descriptive statistics relating to site extent, predominant architectural form and site type for the village database as a whole, followed by a detailed analysis of systematic methodologies in order to establish a final population estimate and density values for each village. These estimates are assessed against pre-existing hypothesised group size thresholds relating to three major aspects of cultural evolution during the NDT: changing subsistence practices; the introduction of mechanisms for reducing scalar stress and promoting social cohesion; and emerging social complexity. Summaries of density estimates per site type and population growth rates per PPN period are presented. Finally, a series of site type and universal formulae are proposed for estimating PPN village populations in future.

In Chapter 9, current theory relating to population density is re-evaluated. This includes a critical assessment of assumptions relating to dwelling unit size and composition, and the use of ethnographically derived population density coefficients to estimate population. The major methodological contributions of this research are discussed, including the preferred method proposed for estimating population at the micro-level (i.e. the storage provisions formulae); the use of Bayesian chronological modelling for reconstructing structural contemporaneity values (i.e. the percentage of structures in simultaneous use); the new site type classification system; and the newly proposed formulae for estimating PPN village populations. Finally, the revised population estimates are assessed against the archaeological evidence to propose potential group size thresholds specific to central and southern Levantine PPN villages.

The final chapter (Chapter 10) presents an overall summary of the investigation, including major conclusions and avenues for further work.

2 The Geographical and Environmental Background

The interrelationship between the physical geography of a region and its climatic conditions directly influences habitation by living organisms and must be considered in order to fully understand human occupation and development. Human beings continually make decisions relating to their surroundings and adapt to new situations. In the Levant, human adaptive responses to long-term and rapid environmental changes are considered an important factor in the development of sophisticated technological, social, economic and political strategies, many of which have persisted to this day (Henry 1997). As such, an understanding of the impact of geography and environment on human behaviour is critical for investigating the adaptive strategies developed during the late Epipalaeolithic and Neolithic periods, and for sourcing suitable ethnographic comparatives. Although present communities are unlikely to exactly mimic those of the past, historical and ethnographic evidence can provide suitable comparative data, particularly where comparable environmental conditions and behavioural practices exist (Bocquet-Appel *et al.* 2005).

This chapter outlines the geographic and environmental background of the central and southern Levant. This includes a summary of the modern geographical and environmental conditions, providing the context for commonly utilised Southwest Asian ethnographic comparatives; and a summary of geographical and environmental reconstructions from the Last Glacial Maximum (LGM) (c. 20,000 cal BC), providing the context for Pre-Pottery Neolithic (PPN) sites.

2.1 The study area

The investigation area focusses on the central and southern Levant which forms part of the Fertile Crescent: an area of nutrient-rich land along the main watercourses from the Red Sea to the Arabian Gulf, via Turkey (Figure 2.1). The Levant refers to an area of cultural habitation. The central and southern Levant extends from the Gulf of Aqaba, along the Mediterranean coast to the mouth of the Orontes River, and is bounded by the Syro-Arabian desert to the east. This area covers the southernmost point of Turkey; Syria southwest of the Euphrates; Lebanon; the Palestinian Territories; Israel; and the western part of Jordan (Sabatinelli 2008). The central and southern Levant is of high global significance as it contains some of the earliest evidence for sedentism, agriculture and pastoralism, and serves as a land bridge between the peoples and cultures of Europe, Asia and Africa (Killebrew and Steiner 2013, p.2).

Figure 2.1. The location of the investigation area: the central and southern Levant (administrative boundaries from Global Administrative Areas (GADM) Version 1, 2009).

2.2 Current geographical and environmental background

The investigation area covers approximately 500,000 km², spanning relatively temperate regions along the Mediterranean coast and relatively arid regions, including the Syro-Arabian desert, to the east (Figure 2.2). The variable topographical and environmental conditions have produced a series of distinctive habitats, which can be

broadly divided into four longitudinal geomorphological zones: the Mediterranean coastal plain, the Syro-African Rift Valley, the highlands and the Syro-Arabian desert (Colledge 2001, p.1; Suriano 2013, p.9) (Figure 2.3). The following sections provide a description of these geomorphological zones, with reference to the physical geography, climatic conditions, and floral and faunal elements (Figures 2.4-2.7).

The Mediterranean Coastal Plain

The Mediterranean coastal plain stretches discontinuously along the eastern shoreline of the Mediterranean Sea. Along the Palestinian-Israeli coast, the plain is composed of sandy and alluvial soils with mobile sand dunes occupying a maximum width of around 60 km (Colledge 2001, p.1). In the north, the coastal plain varies in width from around one to nine km and is dissected in several areas by mountainous slopes (Asmar 2011, p.10). Annual rainfall varies from 350 mm to 1,000 mm in the temperate north and up to around 400 mm in the more arid and steppic south (Figure 2.4). The coastal plain is inhabited by temperate Atlantic-Mediterranean vegetation, including carob, thatching grass, meadow oat grass, evergreen shrubs and oak (Masri 2006, p.7; Sabatinelli 2008) (Figure 2.7). Cultivated fruits include citrus and banana (Asmar 2011, p.10). The low slope gradient (0°-8°) and easy access to water resources provide excellent conditions for human habitation.

The Syro-African Rift Valley

The Syro-African Rift Valley and adjacent highlands form a natural barrier between the Mediterranean coastal plain and the Syro-Arabian desert (Suriano 2013, p.10). The valley is up to 15 km wide and extends from the Orontes River to the Gulf of Aqaba, through the Bekaa and Jordan Valleys and the Wadi Araba. The valley contains the modern remnants of the large ancient Lake Lisan: Lake Tiberius (the Sea of Galilee) and the Dead Sea (Colledge 2001, p.1; Suriano 2013, pp.9-10). Elevation above sea level ranges from -396 m (the lowest dry point on Earth located on the shores of the Dead Sea) to around 1,000 m in the Bekaa Valley, Lebanon (Figure 2.6). Average annual precipitation in the north (c. 100-400 mm) is generally much higher than in the xero-trophic conditions of the south (c. 50-100 mm), where rainfall is almost absent during the summer months (Zohary 1942, p.203; Colledge 2001, p.1) (Figure 2.4).

Varied climatic conditions have produced significantly different vegetation regimes along the rift with a variety of Mediterranean, Irano-Turanian and Sudanian vegetation in moister regions and Saharo-Arabian vegetation in the more arid southern regions (Zohary 1942, p.202) (Figure 2.7). Differing hydrological and vegetative formation processes have produced fertile alluvial soils in some parts and dry soils with low organic content in others (Colledge 2001, p.1). Permanent water sources, such as the Orontes and Yarmouk Rivers, provide grazing areas and important agricultural regions for the cultivation of vegetables, fruit (i.e. citrus and banana) and crops (i.e. lucerne) (Abusetta Al-Jaloudy 2006).

The Highlands

The Levantine highlands almost continuously border the Syro-African Rift Valley. On the west are the Syrian Coastal and Lebanon Mountain Ranges and the Negev Highlands; and on the east, the Eastern Lebanon Mountain Range (Anti-Lebanon Mountains), and the Golan and Jordanian Heights. Elevation above sea level ranges from around 600 m to 1,500 m in the north and south, with higher altitudes than these in the central regions. The highest point (3,088 m) occurs in the Lebanon Mountain Range (Figure 2.6). Average annual rainfall is less than 80 mm in the southern arid regions, and around 200 mm to 300 mm in the semi-arid highlands, plains and plateaus. Higher annual rainfall (> 400 mm) is recorded in the Mediterranean-facing coastal highlands and in the Syrian highlands during the winter months (Abusetta Al-Jaloudy 2006; Corradi 2006, p.11; Al-Jawarneh 2008; Avni *et al.* 2012, p.14) (Figure 2.4). Average annual temperature ranges from around 10°C to 20°C depending on altitude (Hijmans *et al.* 2004; Avni *et al.* 2012, p.14) (Figure 2.5).

Fertile soils support Mediterranean woodland and forests of evergreen, conifer and deciduous trees, particularly oak varieties, and shrub lands in more moist areas (Zohary 1942, p.1; Colledge 2001, p.211; Corradi 2006, p.11; Sabatinelli 2008). Within drier areas, less fertile and rockier terrain supports Irano-Turanian steppe grasses and shrubs (Sabatinelli 2008; Avni *et al.* 2012, p.14) (Figure 2.7). The Jordanian highlands contain shallow, heavy clay soils with high water holding capacity (Al-Jawarneh 2008, p.15).

Several permanent and seasonal wadi systems (i.e. seasonally flowing rivers) dissect the highlands, including Wadis ar-Ruyan and Zurayqun in Lebanon, and Wadis Faynan, Rummen and el-Hasa in Jordan. These areas are most attractive for human occupation due to the more moist and fertile conditions suitable for cultivation and pastoral practices. Terraced plots throughout the highlands are also used to cultivate cereals (i.e. wheat and barley), fruit trees and Mediterranean crops specially adapted to desert environments, such as almonds, olives, figs and grapes (Abusetta Al-Jaloudy 2006; Avni *et al.* 2012, pp.15 and 24).

11

The Syro-Arabian Desert

The Syro-Arabian Desert lies to the east of the Syro-African Rift Valley and eastern highlands. It includes the Syrian and Jordanian Badias, which cover 55% and 80% of their respective countries, and comprise generally uncultivable and uninhabitable desert and steppe regions with occasional vegetated wadis and semi-arid rangelands. Elevation above sea level is around 600 m to 900 m. The average annual rainfall is less than 50 mm. Temperatures wary widely from below 0°C to over 40°C (Jordan LESA 2014) (Figure 2.5). The underlying geology of black basalt boulders and limestone plateaus has resulted in largely unproductive areas with discontinuous Saharo-Arabian drought resistant vegetation interspersed with large barren areas (Colledge 2001, p.3; Abusetta Al-Jaloudy 2006; Jordan LESA 2014).

Human habitation is confined to the vegetated wadis, such as the Azraq Basin, and areas irrigated by underground water, which enable growth of Irano-Turanian vegetation, including small annuals, grasses and legumes (Sabatinelli 2008). These areas are utilised for pastoral activities and cultivation of cereal crops, including barley, vegetables and fruits, particularly tomatoes and watermelons (Abusetta Al-Jaloudy 2006; Louhaichi *et al.* 2012, p.102). The rangelands are also used extensively for pastoral activities, particularly sheep, goat and camel grazing (Abusetta Al-Jaloudy 2006).

Figure 2.2. Modern sites and regions mentioned in the text (administrative boundaries from Global Administrative Areas (GADM) Version 1, 2009).

Figure 2.3. The four major geomorphological zones (administrative boundaries from GADM Version 1, 2009).

Figure 2.4. Average annual precipitation (data from WorldClim; Hijmans *et al.* 2005; administrative boundaries from GADM Version 1, 2009).

Figure 2.5. Mean annual temperature (data from WorldClim; Hijmans *et al.* 2005; administrative boundaries from GADM Version 1, 2009).

Figure 2.6. Elevation (data from WorldClim; Hijmans *et al.* 2005; administrative boundaries from GADM Version 1, 2009).

Figure 2.7. Modern land cover (land cover data from GADM 2012; administrative boundaries from GADM Version 1, 2009).

2.3 Palaeoenvironmental reconstruction

The environmental history of the central and southern Levant has changed considerably since early human habitation during the Pleistocene. Palaeoclimate proxy sites in the region, such as Lake Huleh (Baruch and Bottema 1999; Meadows 2005), Soreq Cave (Bar-Matthews *et al.* 1999) and Mount Sedom (Frumkin *et al.* 1991; 1994) in Israel, and the Ghab Valley in Northwest Syria (Yasuda *et al.* 2000) (Figure 2.8) have revealed a generalised climatic trend from cold, glacial conditions during the Pleistocene to more temperate, warmer and wetter conditions during the early Holocene, followed by a deterioration of environmental conditions from the mid-Holocene (Robinson *et al.* 2006, p.1517) (Figures 2.9-2.11).

It has been argued that human adaptive strategies in this region were largely in response to changes in access to water and water-dependent resources (Robinson *et al.* 2006, p.1521). The location of the Levant on the border of vastly different climatic zones (i.e. the moist Mediterranean Sea, dry desert regions and cold mountainous regions) increases its sensitivity to climatic changes. As such, the Levant has experienced relatively rapid environmental change, requiring swift implementation of adaptive strategies. The major climatic shifts that have impacted socio-cultural development in the central and southern Levant include those which occurred at the end of the Last Glacial Maximum, and during the Bølling-Allerød Würm Interstadial, the Younger Dryas and the Holocene.

2.3.1 End of the Last Glacial Maximum c. 20,000 cal BC

During the Last Glacial Maximum (LGM), extensive ice sheets produced colder and more arid climatic conditions (Yechieli *et al.* 1993). Speleothem data from Soreq, Peqiin and Ma'ale Efrayim Caves, in Israel, show high δ^{18} O values (i.e. the ratio between ¹⁸O and ¹⁶O isotopes), indicating lower temperatures and less rainfall (Bar-Matthews *et al.* 1997, p.162; 1999, p.89; McGarry *et al.* 2004, p.931). General circulation models have indicated reduced average annual precipitation of around 250 mm to 400 mm and lower average daily temperatures of around 12°C to 19°C (Robinson *et al.* 2006, p.1535) (Figures 2.9-2.10). Increasingly arid conditions caused sea and lake levels to lower significantly (Bar-Matthews *et al.* 1997, p.164; 1999, p.91; Abed and Yaghan 2000; McLaren *et al.* 2004, p.134). A reduction in tree pollen indicates reduced forest growth (Rossignol-Strick 1995, p.913), whilst rising δ^{13} C (i.e. the ratio between ¹³C and ¹²C isotopes) indicates a proliferance of more arid C₄ plant varieties that are restricted to areas with annual rainfall of less than 300 mm (Bar-Matthews *et al.* 1997, p.162; 1999, p.91; Goodfriend 1999, p.503).

2.3.2 Bølling-Allerød Würm Interstadial c. 13,000-11,000 cal BC

During the Bølling-Allerød Würm Interstadial, warmer daily average temperatures (c. 18° C) and increased annual average precipitation (c. 550-750 mm) caused rising lake levels and increased hydrological activity (Goodfriend and Magaritz 1988). Speleothem data from Soreq Cave and pollen analysis from the Ghab Valley indicate increased growth of C₃ plants, such as cereals (i.e. barley), vegetables and fruits, and forest trees, particularly oak (Rossignol-Strick 1995; Bar-Matthews *et al.* 1997; 1999; Yasuda *et al.* 2000). The presence of perennial water sources has been linked to the establishment of more permanent Natufian hunter-gatherer base-camps during this period (Bar-Yosef and Belfer-Cohen 1992; Bar-Yosef 2000).

2.3.3 Younger Dryas c. 11,000-9,600 cal BC

Evidence indicates that conditions during the Younger Dryas were generally more arid and cool, with mean annual daily temperature of around 13°C. Two climatic subregions existed: a moister region in the north with continued forest cover; and an extremely arid region in the south (Rossignol-Strick 1995; Bar-Matthews *et al.* 1997, p.165; 1999, p.91; 2000, p.151; Baruch and Goring-Morris 1997, pp.257-258; Colledge 2001, p.4).

Analysis of palaeosols indicates that large amounts of dust were transported from southern deserts. The arid southern regions, which received average annual rainfall of less than 150 mm, were dominated by C_4 plants, including hardy, flowering shrubs and grasses (Baruch and Bottema 1999; Gvirtzman and Wieder 2001, p.1827). Large Pleistocene lakes, such as Lake Lisan, contracted, leaving layers of salt deposits (Yechieli *et al.* 1993, p.63; Colledge 2001, p.4; Robinson *et al.* 2006, p.1524). It has been argued that the variable access to water and other resources during this period caused some semi-sedentary hunter-gatherer communities to return to a more mobile existence (Bar-Yosef and Belfer-Cohen 1992; Bar-Yosef 2000).

2.3.4 The Holocene c. 9,600 cal BC - present

The early Holocene was characterised by the wettest climatic conditions of the past 25,000 years, with higher annual precipitation (> 240 mm) and increased average daily temperatures (c. 14-17°C) (Frumkin *et al.* 2001, p.1183). Speleothem data, palynological evidence, lake level evidence and fluvial deposits indicate a wetter climate resulting from a northern extension of monsoonal weather from the Indian Ocean (Arz *et al.* 2003, p.121). Lake levels rose significantly and salinity reduced in the Mediterranean and Red Seas (Arz *et al.* 2003, p.120). Increased hydrological activity

produced perennial streams and enhanced wadi systems providing year-round access to water and nutrient-rich, fertile sediments, even in more arid regions (Hunt *et al.* 2004, p.922). These conditions were more favourable for sedentary subsistence practices, including agriculture and pastoralism, and are considered by many to be the catalyst for the Neolithic Demographic Transition (NDT) (Bar-Yosef 1998; 2000).

In more arid regions, vegetation was most prevalent around wadis, which accumulate highly productive alluvial fans (Petrie and Thomas 2012, p.1056). It has been suggested that the restricted nature of these productive zones and the limited potential for cereals to grow naturally in these areas required communities to re-sow crops intentionally, eventually producing morphologically domesticated species (Sherratt 2007, pp.8-10). Access to water and the ability to cultivate crops are major facilitators of long-term settlement. As such, seasonal water sources are often artificially enhanced to prolong water availability. Some of the earliest examples of water management in the central and southern Levant include wells at the Pre-Pottery Neolithic C (PPNC) site of Atlit-Yam in Israel (c. 6,700 cal BC) (Galili and Nir 1993); and brushwood and earth dams at the Pottery Neolithic site of Dhra' in Jordan (c. 6,000 cal BC) (Kuijt *et al.* 2007).

Increased rainfall and milder temperatures significantly reduced arid C_4 vegetation and encouraged growth of C_3 plant varieties, including oak and pistachio (Rossignol-Strick 1995, pp.908-909; Goodfriend 1999, p.196; Hunt *et al.* 2004, p.925). Ratios between C_4 and C_3 vegetation indicate that annual rainfall averages of less than 200 mm occurred 20 km further south than presently, sustaining moisture-dependant Irano-Turanian vegetation rather than the Saharo-Arabian varieties that dominate the area today (Goodfriend 1999, p.196). Analysis of charcoal from settlements at 'Ain Ghazal and Basta, and pollen from Nahal Divshon, indicate that the average annual rainfall was around 50 mm to 100 mm higher than at present (Horowitz 1976, p.59; Neef 2004, p.298).

Faunal evidence for fallow deer and wild cattle indicates extensive woodland and open scrubland (Tchernov 1976, p.69). Perennial freshwater ponds and open water supported a variety of species, including water fowl and catfish (Bar-Yosef 1984, p.153). The limited evidence for ovicaprines (goats and sheep) in steppe environments suggests that rainfall was not sufficient in these regions to support wild herds, which require daily water (Baird 1993, p.44). These more arid regions were inhabited by gazelle, foxes, jackals, ostriches and wild boar (Betts 1998, p.151). Archaeological evidence suggests that gazelle formed the predominant food source prior to the domestication of goats and sheep during the Middle Pre-Pottery Neolithic B (MPPNB) (Bar-Yosef 1998, p.168).

At around 6,200 and 2,200 cal BC, there were major climatic events characterised by rapid cooling and reduced precipitation related to North Atlantic climate fluctuations (Bond *et al.* 1997; 2001; Bar-Matthews and Ayalon 2011, p.163). These events have been associated with the abandonment of later PPN sites in the Jordan Valley and the Bronze Age Akkadian civilisation, respectively (Cullen *et al.* 2000; Mithen 2003). From the mid-Holocene (c. 4,000 cal BC), climatic conditions deteriorated considerably, causing desiccation of water sources and the retreat and replacement of forests by steppe vegetation and drought resistant plants (Bar-Matthews *et al.* 2000, p.151; Frumkin *et al.* 2001, p.1184; Hunt *et al.* 2004, p.926; Avni *et al.* 2012) (Figure 2.11). These conditions have continued relatively unchanged to the present day (Robinson *et al.* 2006, p.1521 and 1537).

2.4 Summary

This chapter has provided the environmental context for this investigation. A review of the current environmental conditions and palaeoenvironmental reconstructions emphasises the importance of adaptation for socio-cultural development in this region. The oscillation between cold/dry conditions and warm/wet conditions over the past 21,000 years has induced relatively fast adaptations in subsistence strategies, varying between mobile hunter-gatherer and settled agro-pastoralist economies depending on the environmental conditions. The period under investigation (the PPN, c. 10,000-6,000 cal BC) roughly corresponds to the early Holocene. Palaeoenvironmental and palaeoclimatic data indicates that environmental conditions during this period were more temperate than at present, with milder average daily temperatures (c. 14-17°C) and higher average annual precipitation (c. 240 mm) (Frumkin et al. 2001; McGarry et al. 2004). Increased hydrological activity provided constant access to freshwater and fertile sediments (Arz et al. 2003; Hunt et al. 2004). Mediterranean vegetation dominated the area, with more arid Irano-Turanian vegetation in the south and in drier marginal zones (Goodfriend 1999). These environments supported a large variety of land animals and freshwater species (Bar-Yosef 1984; 1998; Baird 1993). The considerable differences between the warm and moist environmental conditions of the PPN and those which exist today raise doubts regarding the suitability of Southwest Asian villages as comparative ethnographic examples for PPN villages.

The favourable conditions that existed during the early Holocence are generally considered to have facilitated one of the greatest transitions in human history: the NDT from mobile hunter-gatherer to sedentary agro-pastoralist communities (Bar-Yosef 1998; 2000). This transitional period is further detailed in Chapter 3.

Figure 2.8. Palaeoclimate proxy sites and Palaeolithic sites and regions mentioned in the text (administrative boundaries from GADM Version 1, 2009).

Figure 2.9. Climatic data summarised by Robinson *et al.* 2006 (p.1535) showing climatic conditions from the LGM to the early Holocene. Estimations based on turbidite data, Alkenone sea surface temperature (SST) and sea surface salinity (SSS) data, speleothem data, pollen data, lake levels, foraminiferal assemblages, sea surface salinity values, palaeosol data, fluvial data and temperature, precipitation and pollen maps drawn with open source Genetic Mapping Tools (GMT) available at http://gmt.soest.hawaii.edu.

Figure 2.10. Difference in temperature and precipitation between the present and 1) the Last Glacial Maximum (LGM) (c. 20,000 cal BC); and 2) the mid-Holocene (c. 4,000 cal BC). LGM: average annual temperature c. 2-5°C lower and average daily precipitation up to c. 0.5 mm lower in the south and higher in the north. Mid-Holocene: average annual temperature up to 0.5°C higher in the north and average daily precipitation 0.25-0.75 mm higher (PMIP 2 2008a-d).

Figure 2.11. Vegetation reconstruction during the Neolithic (adapted from University of Oregon n.d.).

3 The Archaeological Background

The archaeological record of the central and southern Levant extends far back into the Pleistocene. The majority of archaeological research explores socio-cultural developments since the Epipalaeolithic period, from the end of the Last Glacial Maximum (c. 20,000 cal BC). A common theme of investigation is the widespread transition to sedentary subsistence strategies and the development of early villages during the Pre-Pottery Neolithic (PPN). This chapter summarises the chronological sequence for the PPN and information relating to village development throughout each PPN period.

3.1 The chronology

The PPN was originally identified by Kenyon (1956, pp.72-76), whose excavations at Jericho exposed settlement evidence comparable to Neolithic sites in the region, though devoid of pottery. Kenyon (1956) identified two distinct PPN phases. Subsequent investigations refined the time-stratigraphic, cultural-historical sequence (Goring-Morris and Belfer-Cohen 1997; Henry 1998; Garrard *et al.* 1999; Aurenche *et al.* 2001; Kuijt and Goring-Morris 2002; Byrd 2005b; Asouti 2006). Despite some debate, archaeologists generally propose three main PPN periods (PPN A, B and C), with a further three sub-periods within the PPNB (Early, Middle and Late) (Figure 3.1).

Figure 3.1. Various chronological sequences for the Pre-Pottery Neolithic (PPN) in the central and southern Levant. Dashed lines indicate M-LPPNB span. Goring-Morris and Belfer-Cohen (1997) use 'Final PPNB' instead of 'PPNC'.

Cultural-historical schemes facilitate regional comparisons of broadly contemporaneous sites. The chronological precision of such schemes is critical for reconstructing population dynamics. The application of radiocarbon (¹⁴C) dating techniques and the use of increasingly accurate calibration curves have enhanced this precision. Therefore, the commonly published radiocarbon ages (BP) for the PPN periods (based on Kuijt and Goring-Morris 2002, p.366) were calibrated in this investigation using the latest version of OxCal (v4.2.4) (Bronk Ramsey 2009) and the currently accepted IntCal13 atmospheric curve (Reimer *et al.* 2013). Date ranges are based on mid-point values of the 95% probability ranges (Table 3.1).

Table 3.1. Chronology of the Pre-Pottery Neolithic (PPN) in the central and southern Levant based on Kuijt and Goring-Morris (2002, p.366). Dates calibrated into Cal BP and Cal BC in OxCal v4.2.4 (IntCal13; based on mean 95% probability values) (Bronk Ramsey 2005; Reimer *et al.* 2013).

Period	Period Radiocarbon date		
	BP	Cal BP	Cal BC
PPNA	10200-9500	11900-10700	10000-8800
PPNB Early	9500-9300	10700-10500	8800-8600
Middle	9300-8300	10500-9300	8600-7400
Late	8300-7900	9300-8700	7400-6700
PPNC (Final PPNE	3)* 7900-7500	8700-8300	6700-6400

* Contested term: 'PPNC' utilised by Rollefson and Köhler-Rollefson (1989) and Galili *et al.* (2004); 'Final PPNB' utilised by Goring-Morris and Belfer-Cohen (1997) and Barzilai (2013).

3.2 Pre-Pottery Neolithic A

The Pre-Pottery Neolithic A (PPNA) (c. 10,000-8,800 cal BC) is characterised by technological and typological variability in lithic assemblages between the northern and southern regions of the Levant, indicating potentially distinct cultural-historical phases and/or units (Edwards *et al.* 2004). The period is often divided into two phases: Sultanian and Khiamian, based on the frequencies of microliths and el-Khiam points in the Lower Jordan Valley (Crowfoot-Payne 1976; Kuijt and Goring-Morris 2002). However, as distinctions between these units remain unclear, the PPNA is treated as a single cultural entity in this research.

The climatic shift from the cold and dry conditions of the Younger Dryas to the warm and moist conditions of the early Holocene coincides with the beginning of the PPNA. Improved environmental conditions may have counteracted the need for residential mobility in response to seasonal resource availability. In resource rich areas with perennial water sources, some groups established permanent settlements that have been interpreted as formative villages (Goring-Morris and Belfer Cohen 1997, p.83) (Figure 3.2). These villages reached a maximum known extent of three hectares (Simmons 2007) and contained durable, curvilinear and often semi-subterranean structures of pisé and stone walls, such as at Dhra' (Kuijt 2001), Netiv Hagdud (BarYosef 1998), Zahrat adh-Dhra' 2 (Edwards *et al.* 2004; Edwards and House 2007) and Nahal Oren (Goring-Morris and Belfer-Cohen 2013) (Figure 3.3, A).

The improved environmental conditions provided a greater variety of resources, including small and medium mammals, reptiles, fish and birds (Kuijt and Goring-Morris 2002). Some groups developed new technologies to take advantage of these opportunities. Notched projectile points of various styles (i.e. el-Khiam, Jordan Valley and Salibiya), and arrow barbs and points formed from Hagdud and Gilgal truncations were produced in large quantities (Nadel et al. 1991) (Figure 3.3, B). More recent evidence suggests that Hagdud and Gilgal truncations were utilised as hafted microscrapers (Sayej 2005) and el-Khiam points as perforators (Smith 2005) for processing soft materials, such as leather. Large bifacially-retouched tools with sharp cutting edges developed into complex forms, including picks, adzes, axes and sickle blades hafted in large bone or wooden handles (Barkai 2011). Experimental archaeology conducted at Dhra' indicated that sickle blades may have been intensively utilised for harvesting wheat and barley (Goodale et al. 2010). High frequencies of ground stone implements including cup-hole mortars and pestles indicate extensive processing of these grains and a desire to extract the maximum nutritional value (Wright 1993). Cultivation, harvesting and processing of wild plant forms during the PPNA ultimately led to fully domesticated plant forms by the MPPNB (Kuijt and Goring-Morris 2002; Nesbitt 2002; Verhoeven 2004; Fuller et al. 2011).

Harvesting of storable food resources enabled communities to sustain their daily needs and to provide surplus for periods of seasonal or yearly shortage. The PPNA provides the most conclusive evidence for the commencement of surplus management in the form of storage facilities (Kuijt 2008a). There is evidence for small storage pits or bins in many structures, whilst other structures appear to have been built primarily for storage purposes, as at Dhra' (Finlayson *et al.* 2003; Kuijt and Finlayson 2009), Netiv Hagdud (Bar-Yosef and Gopher 1997), Jericho (Kuijt and Goring-Morris 2002) and possibly Wadi Faynan 16 (WF16) (Mithen *et al.* 2011; Finlayson *et al.* 2012) (Figure 3.3, C). At Dhra', storage structures with mud-plaster flooring and pisé-lined walls were suspended on timber floors supported with stone slabs. These were internally compartmentalised and exhibit cyclical stages of construction, use and abandonment. The central location of these storage features may indicate the communal nature of resource exploitation and distribution (Finlayson *et al.* 2012). This has been interpreted as representing a generally egalitarian society (Bar-Yosef 1998; Kuijt and Goring-Morris 2002; Finlayson *et al.* 2010, 2011, 2012).

The presence of storage systems reflects the emergence of a delayed-return economic system, whereby the yields of labour are held, managed and utilised over the following

months and years (Woodburn 1982, pp.432-433). This had far-reaching implications for social organisation, potentially resulting in hierarchical ranking whereby some community members may have exerted control over resources and labour. In addition, surplus management enabled strengthening and enlargement of existing trade and exchange networks, for example, the obsidian trade from Anatolia to the southern Levant (Sherratt 2005). The need to manage more intricate and extended networks may be associated with the increased incidence of ritual and symbolic elements, including incised pebbles and human figurines (Kuijt and Chesson 2005; Edwards 2007), and monumental communal structures, such as the tower at Jericho (Finlayson *et al.* 2011) (Figure 3.3, D-F).

Although mortuary evidence generally indicates a standardised treatment of adult and child burials, including both primary and secondary burials, and a general lack of grave goods (Kuijt 1996), more recent evidence has revealed increasingly diverse burial practices. These include the presence of ground stone grave goods (Malinsky-Buller *et al.* 2013) and the association of skeletal remains with architectural elements, including the placement of burials within the Jericho tower and child burials under the post holes or walls of houses (Kuijt and Goring-Morris 2002, p.378) (Figure 3.3, F). The association of skeletal remains with houses has been interpreted as representing more sedentary communities, who sought to create permanent links between themselves, their dwellings, their land and their ancestors (Watkins 1992).

Figure 3.3. PPNA archaeological features. A: residential structure schematic (Kuijt and Goring-Morris 2002, p.375); B: tool assemblage - el-Khiam points (1/2), Hagdud truncations (3/4), awl (5), bifacial axe (6), sickle blade (7), shaft straightener (8), cup holed limestone slab (9), limestone celt (10) (Bar-Yosef 1998, p.171); C: Wadi Faynan 16 (WF16) - plan of excavated area with large communal structure (O75) and potential storage structures (O12 and O45) (Finlayson *et al.* 2012, p.19); D: figurines (Kuijt and Chesson 2005, p.159); E: incised stones from Zahrat adh-Dhra' 2 (Edwards 2007, p.29); F: Jericho Tower (Kuijt and Goring-Morris 2002, p.375).

3.3 Early Pre-Pottery Neolithic B

The Early Pre-Pottery Neolithic B (EPPNB) (c. 8,800-8,600 cal BC) represents a transitional period between the socio-cultural and economic systems of the PPNA and the MPPNB. The limited evidence for continuity in these systems between many PPNA and MPPNB sites may indicate that this was a relatively rapid transformation (Kuijt 1997; Edwards and Sayej 2007). Knowledge of this period is limited, particularly in more southern regions of the Levant, where few settlements have undergone detailed investigation (Figure 3.4). This has ignited debate about the existence and extent of this cultural-historical period in this region (Gopher 1996; Kuijt and Goring-Morris 2002).

Current evidence suggests that the EPPNB originated along the Euphrates in North Syria at sites such as Mureybet III, Dja'de al-Mughara, Cheikh Hassan and Jerf al-Ahmar. Debate continues as to the origin of EPPNB occupation in the central and southern Levant. Some argue that the EPPNB independently emerged in this region, whilst others suggest the migration of ideas and/or people from the north, based on the abundance of non-local, fine-grained material, such as Anatolian obsidian and chalcedony (Edwards *et al.* 2004; Khalaily *et al.* 2007).

EPPNB settlement represents the beginnings of the transition from curvilinear to rectilinear architectural forms (Figure 3.5, A) (Khalaily *et al.* 2007; Balbo *et al.* 2012). These architectural developments, as well as the use of lime plaster flooring and evidence for cleaning activities have been interpreted as reflecting longer term occupation (Kuijt and Goring-Morris 2002). There is some evidence for permanent internal storage facilities (i.e. at Motza), although the lack of excavated sites makes it difficult to make general statements about the degree and success of food procurement strategies and related aspects of social organisation (Khalaily *et al.* 2007). However, current evidence suggests increasing manipulation of wild cereals resulting in the domestication of wheat, barley and lentils as part of a low-level food production economy (Kuijt and Goring-Morris 2002; Byrd 2005b; Asouti and Fuller 2013).

A major characteristic of the EPPNB is the predominance of Helwan points amongst other flint projectile forms such as Jericho, Byblos and Amuq types (Edwards and Sayej 2007; Gopher 1994; Edwards *et al.* 2004) (Figure 3.5, B). This changing technology highlights aspects of economic and social development. For example, craft specialisation is indicated by innovative tool technology (i.e. naviform core reduction), which enabled systematic production of relatively uniformly-shaped, parallel-sided blades utilised as sickles, arrowheads, borers and perforators (Kuijt and Goring-Morris 2002) (Figure 3.5, C). In addition, a decreasing presence of perforating tools infers different strategies for material manipulation (Khalaily *et al.* 2007). Further, the increasing use of lime plaster for flooring and its application to the treatment of human remains prior to burial demonstrates significant investment in secondary resource production (Gopher 1994; Edwards *et al.* 2004). These experimentations with different tool types and technologies required specialist knowledge and facilitated more standardised and specialised outputs.

- 19 'Ain Abu Hudhud
- 20 Ein Suhun
- 21 El Hemmeh
- 22 Motza VI
- 23 Mujahiya
- 24 Tell Aswad IB
- 25 Horvat Galil
- 26 Tell Qarassa
- 27 Mishmar Ha'emeq

Figure 3.4. Distribution of EPPNB villages in the current database.

Figure 3.5. EPPNB archaeological features. A: curvilinear and rectangular structures at Motza (Khalaily *et al.* 2007, pp.9-10); B: tools - Jericho point (a), Byblos point (b), Amuq point (c), Helwan point (d), burin (e), sickle blades (f/g) (adapted from Kuijt and Goring-Morris 2002, p.401); C: model of naviform core reduction sequence (Nishiaki 2000, p.56).

3.4 Middle Pre-Pottery Neolithic B

There is extensive archaeological evidence for the Middle Pre-Pottery Neolithic B (MPPNB) period (c. 8,600-7,400 cal BC) from sites such as Beidha (Kirkbride 1966; Byrd 2005a), Jericho (Kenyon 1981), 'Ain Ghazal (Rollefson *et al.* 1992), Ghwair I (Simmons and Najjar 2006) and Shkārat Msaied (Hermansen *et al.* 2006) (Figure 3.6). MPPNB archaeological evidence is often utilised to generalise the broader PPNB period, misrepresenting the vast differences in social, economic, technological and ritual characteristics of the Early, Middle and Late PPNB (Kuijt and Goring-Morris 2002) (Figure 3.7).

Numerous settlements were established in the Mediterranean zone along the eastern foothills and in the centre of the Jordan Valley, indicating relatively rapid regional population growth. Marginal arid zones were more intensively exploited during this period, possibly as a result of population pressure (Hole 1984). The colonisation of more arid zones enlarged the interaction sphere of MPPNB communities, facilitating (and perhaps necessitating) greater exchange of goods between core and peripheral zones and between communities engaged in variable production activities (Wright and Garrard 2003).

MPPNB villages represent small- to medium-sized communities. Those in more marginal and transitional environments (i.e. 'Ain Abu Nekheileh, Beidha and Shkārat Msaied) occupied small areas (< 0.5 ha), whilst those in the central Jordan Valley and further north (i.e. 'Ain Ghazal, Beisamoun, Jericho and Tell Aswad II) were larger (c. 4-5 ha). These larger villages may have maintained regional economic, ritual and social functions. However, the degree of autonomy of smaller settlements and the economic importance of larger settlements remains debated (Kuijt and Goring-Morris 2002; Simmons and Najjar 2006).

MPPNB settlements demonstrate considerable regional variability in terms of subsistence strategy, settlement structure and organisation. In more marginal, arid zones, hunter-gatherer subsistence strategies are evidenced by higher percentages of projectile points and burins (Garrard *et al.* 1994; Bar-Yosef 1998; Betts 1998; Kuijt and Goring-Morris 2002). These settlements usually comprised clusters of curvilinear, often semi-subterranean, mud and stone-walled structures, as at Beidha and Shkārat Msaied (Kirkbride 1966; Byrd 2005a; Hermansen *et al.* 2006; Kinzel 2013) (Figure 3.7, A). Settlements in central areas practiced more sedentary food procurement strategies, including cultivation of a wide repertoire of plants, such as wheat, barley, flax, peas, lentils, chickpeas, figs, almonds and pistachios (Rollefson *et al.* 1992; Simmons and Najjar 1998; Colledge 2001; Colledge and Conolly 2007; Stordeur and Jamous 2009; Weiss and Zohary 2011). Incipient pastoral practices involved the exploitation of

ovicaprines for meat and potentially milk and wool, as at 'Ain Ghazal (Wasse 2002). These villages often comprised more durable, rectilinear, sometimes multi-storey structures (i.e. 'Ain Ghazal, Beisamoun, Jericho and Wadi Shu'eib) (Goring-Morris and Belfer-Cohen 2008; Guerrero *et al.* 2009) (Figure 3.7, B-D). Similar architectural features did not appear in marginal zones for another several hundred years.

Residential structures usually exhibit standardised form and size within settlements. These were often internally partitioned with an entrance at one end opening onto an internal space with a central hearth (Goring-Morris and Belfer-Cohen 2013). The simple and modestly-sized nature of residential buildings, many of which contain private storage facilities, supports the interpretation that the household was the fundamental socio-economic unit of MPPNB societies (Banning 2003). At the same time, communal or non-residential architecture also became more discernible. This is evident at Beidha (Byrd 1994; 2005a), Mishmar Ha'emeq (Barzilai and Getzov 2008), Munhata (Kuijt and Bar-Yosef 1994) and Wadi Hamarash I (Sampson 2013a). These structures were usually centrally located and larger than residential structures, with different morphology, more superior construction and more elaborate decoration.

Larger settlements with higher structural density indicate increased population sizes and higher population densities that would have required new strategies for community cohesion. An effective strategy for this is the establishment of formalised ritual practices. MPPNB ritual beliefs represent a consolidation of a wide range of ritual practices and symbolic items. Household-based ritual practices may even be evident at Shkārat Msaied, which contained regularly located platforms within houses (Kinzel 2013) (Figure 3.7, A). Human skeletal remains were increasingly associated with residential architecture, including both primary and secondary burials beneath house floors and in courtyard areas (Kuijt and Goring-Morris 2002) (Figure 3.7, D). There was extensive skull removal, with skulls sometimes plastered or painted and reburied in individual or multiple caches. Lime plaster-modelling and asphalt coating of skulls provided life-like representations, which have been linked to ancestor worship and communal festive activities (Arensburg and Hershkovitz 1989; Goren et al. 2001; Kuijt 2008b). Large plaster anthropomorphic figurines (c. half-life size) were found at 'Ain Ghazal (Rollefson 1983) and life-size limestone masks with inset eyes were found at Jericho (Kenyon 1981) (Figure 3.7, E). Plaster was also utilised for ritual representations of animals, particularly cattle, reflecting increasing interactions between humans and these animals. Small clay cattle figurines, some showing evidence of ritual slaughter using flint prior to setting, have been interpreted as representing cattle cult practices (Rollefson 2008) (Figure 3.7, F).

The presence of plaster-manufacturing facilities in residential areas, and the extensive evidence for lime plaster products, indicate the importance of plaster for both residential (i.e. wall and floor coating) and non-residential (i.e. ritual items) purposes. This production required such extensive exploitation of wood resources for fuel that it may have induced local deforestation around settlements. Rollefson and Köhler-Rollefson (1989, p.79) estimated that over the total period of settlement at 'Ain Ghazal (c. 1,500 years), almost 43,000 trees were felled across 3,268 hectares for plaster manufacture. Lime plaster production requires considerable labour input and specialist knowledge, providing some of the earliest evidence for craft specialisation and large-scale secondary production within PPN villages. In more marginal zones, locally-available materials were also exploited, for example, for large scale bead production at Jebels Arqa, Rabigh, Ragref and Salaqa (Fabiano *et al.* 2004; Wright 2008).

Figure 3.6. Distribution of MPPNB villages in the current database.

Figure 3.7. MPPNB archaeological features. A: site plan of Shkārat Msaied (Jensen *et al.* 2005, p.115); B: pier or corridor house forms - buttresses often interpreted as representing basements of two-storey structures (Goring-Morris and Belfer-Cohen 2013, p.27); C: rectangular room with niches and bins at Ghwair I (Simmons and Najjar 2006, p.81); D: mortuary practices associated with residential architecture (Kuijt and Goring-Morris 2002, p.390); E: lime plaster anthropomorphic figurines from 'Ain Ghazal (Rollefson 2008, p.402); E: cattle figurines from 'Ain Ghazal (Rollefson 2008, p.399).

3.5 Late Pre-Pottery Neolithic B

During the Late Pre-Pottery Neolithic B (LPPNB) (c. 7,400-6,700 cal BC) evidence suggests frequent abandonment of MPPNB settlements in the western Mediterranean zone and the central Jordan Valley, with relocation to new and pre-existing settlements in more arid regions to the east (Byrd 1992; Garrard *et al.* 1994; Kuijt and Goring-Morris 2002) (Figure 3.8). West of the Jordan Valley, few sites (i.e. Beisamoun and Tell Eli) demonstrate continuity between the MPPNB and LPPNB. In the east, continued occupation of MPPNB sites gave rise to very large villages (> 7 ha), often termed "mega-sites", such as 'Ain Ghazal, Tell Abu es-Sawwan and Wadi Shu'eib (Rollefson 1989a; Gebel 2004a; Al-Nahar 2006). Numerous new settlements were established in previously unoccupied areas suggesting massive regional population growth and expansion. These included large settlements at 'Ain Jamam, Basta and es-Sifiya (Kuijt and Goring-Morris 2002; Goring-Morris and Belfer Cohen 2008).

The impetus for an easterly shift may have been a combination of factors, including environmental degradation, population pressure and resource stress. By the LPPNB, settlements relied largely on agro-pastoralist practices, with evidence suggesting that almost 80% of the meat diet was sourced from domesticated animals, including goat, sheep, pig and cattle (Twiss 2007, p.128; Makarewicz 2013; Martin and Edwards 2013). These intensive land use practices may have encouraged expansion into more marginal areas, requiring further developments in tool technology, water management and agro-pastoral practices adapted for more arid environments.

The majority of architecture during the LPPNB was rectilinear. The use of lime plaster for wall and floor coating decreased, possibly due to reduced availability of wood required for lime production (Rollefson and Köhler-Rollefson 1989; Kuijt and Goring-Morris 2002). Whilst unfired mud brick buildings remained common in the western regions, the availability and increased use of flat stones as a building material in the eastern regions enabled more complex architecture. Two-storey, enclosed 'courtyard' houses consisting of a series of small areas for storage on the lower floor and domestic activities on the upper floor were constructed at Beidha, es-Sifiya and possibly Basta (Byrd 2005a; Goring-Morris and Belfer-Cohen 2008) (Figure 3.9, A). Pueblo-style settlements, comprising closely-packed structures on steep slopes, appeared at Ba'ja and 'Ain Jamam (Gebel 2006; Goring-Morris and Belfer-Cohen 2008) (Figure 3.9, B). Increased architectural density and reduced incidence of freestanding structures within more eastern settlements (i.e. 'Ain Jamam, 'Ain Ghazal, Ba'ja, Basta, Beidha and es-Sifiya) suggest greater population densities in these areas (Kuijt 2000). The construction of sub-floor channels for water management or air ventilation at several

sites, including el-Hemmeh, 'Ain Jamam, es-Sifiya and Basta, may be evidence of strategies to cope with these higher population densities (Mahasneh 1996).

Non-residential structures continue to differ from residential structures in morphology, construction and associated features. For example, two curvilinear buildings at 'Ain Ghazal have been interpreted as "temples" (Rollefson 1998a) (Figure 3.9, C). The first had red painted floors and sub-floor channels radiating from a central hole that may have been a hearth or "altar". However, the use of standardised religious terminology, such as 'temple' and 'altar', has been questioned as this may induce interpretation of a more formalised ritual system than was actually the case (Goring-Morris and Belfer-Cohen 1997).

Evidence indicates the endurance of earlier PPNB ritual practices, although there appears to be a decline in the manufacture of skull masks and anthropomorphic figurines, possibly linked to a reduction in lime plaster production (Rollefson and Köhler-Rollefson 1989; Rollefson *et al.* 1992; Rollefson 2008). Burials continued to be associated with residential architecture, interred beneath house floors and in courtyards, with some evidence for skull caching and plastering. Grave goods became more prevalent and included shell necklaces, bracelets, stone beads, pendants and animal skeletal elements (Kuijt and Goring-Morris 2002) (Figure 3.9, D). It is argued that grave goods, particularly those made from imported materials, signify concern with identity and displays of status, potentially reflecting an increasingly hierarchical social system (Kuijt and Goring-Morris 2002). A more complex social system may also be evidenced by large quantities of geometric tokens and incised pebbles, which have been argued to reflect economic practices involving the transfer of goods and services (Mahasneh and Gebel 1998; Edwards 2007) (Figure 3.9, E).

- 56 Beidha
- 57 'Ail IV
- 58 Ba'ja
- 59 El Hemmeh
- 60 Er-Rahib (WY180)
- 61 Jericho
- 62 Motza Tahtit (Nahal Soreq)
- 63 Qminas
- 64 Tell Aray
- 65 Tell el-Ghafar I
- 66 Tell Eli III (Khirbet Sheikh Ali)
- 67 Tell Ghoraifé II
- 68 Tell Labwé
- 69 Tell Rakan I (WZ 120)
- 70 Tell Ramad I
- 71 Tell Ras Shamra V C
- 72 Tel Tif'dan (Wadi Fidan A)
- 73 Wadi Badda
- 74 Yiftah'el III
- 75 'Ain Ghazal
- 76 'Ain Jamam
- 77 Al-Baseet
- 78 Basta
- 79 Beisamoun
- 80 Es-Sifiya
- 81 Kharaysin
- 82 Khirbet Hammam
- 83 Tell Abu es-Sawwan
- 84 Tell 'Ain el-Kerkh/II
- 85 Wadi Shu'eib
- 86 Aviel
- 87 Es-Sayyeh

Figure 3.8. Distribution of LPPNB villages in the current database.

Figure 3.9. LPPNB archaeological features. A: schematic reconstruction of possible two-storey residential architecture at Basta showing storage facilities on the ground floor and open domestic space on the upper floor (Kuijt and Goring-Morris 2002, p.409); B: digital reconstruction of pueblo-style, steep slope settlement at Ba'ja (Gebel 2006, p.69); C: drawing and photograph of curvilinear "temples" at 'Ain Ghazal (Kafafi 2010, p.304); D: pendants from Basta (adapted from Rollefson 2008, p.407); E: geometric tokens from es-Sifiya - cones (1/2), spheres (15/16) (Mahasneh and Gebel 1998, p.108).

3.6 Pre-Pottery Neolithic C

For decades a gap in occupation of almost 1,000 years was documented between the end of the PPNB and the beginning of the Pottery Neolithic. However, the excavation of some archaeological sites with radiocarbon dates relating to this period has provided sufficient evidence for interim occupation, termed the Pre-Pottery Neolithic C (PPNC) (c. 6,700-6,400 cal BC) (Rollefson 1990; Rollefson *et al.* 1992; Rollefson and Köhler-Rollefson 1993) (Figure 3.10). These sites revealed various continuities and changes in settlement patterns, architecture, mortuary practices and lithic technology. Some researchers have interpreted the continuities as representing an extension of the PPNB rather than a new phase, preferring to label this period the Final Pre-Pottery Neolithic B (FPPNB) (Rollefson and Köhler-Rollefson 1993; Goring-Morris and Belfer-Cohen 1997; Barzilai 2013).

Limited archaeological evidence for the PPNC makes it difficult to generalise about this period. Although some new villages were established, for example, at Hagoshrim in the Huleh Valley and along the Mediterranean littoral zone at Atlit-Yam, there appears to be population contraction at the end of the LPPNB, with few sites demonstrating occupational continuity from the LPPNB to the PPNC (i.e. 'Ain Ghazal, Wadi Shu'eib, and perhaps Basta, es-Sifiya, Yiftah'el, Tell Eli, Ramad and Beisamoun) (Kuijt and Goring-Morris 2002).

Limited excavation evidence, mainly from 'Ain Ghazal, indicates increased reliance on foraging activities (Rollefson and Köhler-Rollefson 1993; Kuijt and Goring-Morris 2002). At 'Ain Ghazal, the meat diet revolved around a small set of domesticated animals, particularly sheep with some goat, pig and cattle, with the latter two species also used for ritual practices (Kuijt and Goring-Morris 2002, p.417). Domestic sheep numbers increased rapidly during the PPNC. Age and sex data suggests primary focus on meat production rather than secondary products, such as milk and wool (Wasse 2002). Hunting activities remained an important strategy for supplementing the diet. This is evidenced by skeletal remains of wild gazelle and onager; the appearance of 'desert kites' interpreted as holding enclosures for large numbers of animals; and the proliferation of projectile points (Betts 1998, p.157; Kuijt and Goring-Morris 2002, p.417). Where lower frequencies of sickle blades exist, such as at 'Ain Ghazal, this has been interpreted as representing harvesting of reeds in favour of cereals, although, there is continued cultivation of wheat, barley, legumes and flax at many settlements (Rollefson and Köhler-Rollefson 1993; Galili et al. 2004). Evidence suggests that coastal zones, in particular, maintained a wide spectrum subsistence economy based on a combination of agro-pastoralist, hunter-foraging and fishing activities that minimised the risks associated with seasonality and ecological conditions (Galili *et al.* 2004).

A great degree of effort was devoted to the construction of communal structures including semi-subterranean refuse dumps, water wells and large dividing walls (Figure 3.11, A-B) (Rollefson *et al.* 1992; Kuijt and Goring-Morris 2002). The presence of wells indicates theoretical knowledge and practical understanding of hydrological processes as well as specialised extraction and construction technology (Galili and Nir 1993).

Whilst immense effort was expended on communal structures, a limited degree of effort was expended on residential structures (Figure 3.11, C). Limited evidence for new construction indicates a preference for modification and reuse of earlier LPPNB buildings. Lime plaster flooring was replaced by crushed marl flooring and even where stones were available, mud brick constituted the main building material (Kuijt and Goring-Morris 2002).

Mortuary evidence suggests diverse burial practices involving a continuation of primary single and group burials, interment of infants in courtyard or open areas, occasional skull removal and burial with animal remains. At Wadi Shu'eib, primary burials are common (Simmons *et al.* 2001), whilst at 'Ain Ghazal there is increased incidence of secondary burial practices of the type often associated with more mobile communities, including isolated bones and incomplete skeletons (Rollefson 1998a). Ritual and symbolic items, such as anthropomorphic and animal figurines, and items of personal adornment made from marble, stone and mother of pearl indicate a continuation of existing ritual practices and social organisation (Kuijt and Goring-Morris 2002; Wright *et al.* 2008) (Figure 3.11, D).

Figure 3.10. Distribution of PPNC villages in the current database.

Figure 3.11. PPNC archaeological features. A: large walls constructed at 'Ain Ghazal (Rollefson and Köhler-Rollefson 1993, p.38); B: schematic cross-section of a well at the coastal village of Atlit-Yam, showing location of the village in relation to ancient and modern sea levels (ASL and MSL) (Galili and Nir 1993, p.268); C: residential structures at 'Ain Ghazal (Rollefson *et al.* 1992, p.451); D: disc beads of red dabba marble from Wadi Jilat 25 (Wright *et al.* 2008, p.144).

3.7 Summary of major developments

Archaeological evidence suggests that improved climatic conditions at the beginning of the Holocene facilitated the emergence of formalised village settlements during the PPNA (c. 10,000-8,800 cal BC). PPNA communities engaged in more diverse food procurement activities than their predecessors and initiated cultivation practices relating to wild plants. A range of new tools was developed, facilitating innovative methods for food procurement and material manipulation. Storage facilities were constructed to manage food surplus, providing the first evidence for a delayed-return economic system (Woodburn 1982). This changing economic organisation accompanied a transition from relatively egalitarian social systems to those based on more complex relationships. These features continued into the less well-defined EPPNB (c. 8,800-8,600 cal BC) period: a transitional period characterised by a combination of circular PPNA and rectilinear MPPNB architectural forms. EPPNB communities increased resource exploitation and introduced more efficient and effective tool technology, such as naviform core technology: a specialised lithic reduction technique that enabled systematic blade production.

The widespread adoption of a sedentary existence and increasing intensification of resource exploitation during the MPPNB (c. 8,600-7,400 cal BC) significantly altered the way humans interacted with each other and their environment. Settlement forms demonstrate considerable regional variation, with particular distinctions between the northern and southern regions of the Levant and between the Mediterranean and more marginal, arid zones. MPPNB communities exploited a variety of domesticated plants including wheat, barley, flax, peas, lentils and chickpeas and there are signs of incipient pastoralist practices relating to ovicaprines. Secondary production technologies emerged, including milk and wool production and lime plaster production for use as a building material and for ritual items, such as anthropomorphic figurines, painted skulls and limestone masks. Lime plaster and other items, such as beads and pendants, were extensively and systematically manufactured, indicating increasing craft specialisation, potential centralised control of labour and resources, and increasingly complex social organisation. The formalisation of ritual practices may have served as a control mechanism to facilitate community cohesion with these larger and more diversified populations.

Rapid population expansion and aggregation produced large villages during the MPPNB (up to 5 ha). Social crowding and unsustainable resource exploitation may have contributed to the decline and abandonment of many villages between the MPPNB and the LPPNB (c. 7,400-6,700 cal BC). Numerous communities appear to have relocated to more marginal areas to the east and along the littoral zone. Plant and

animal domestication increased with fishing and exploitation of marine resources supplementing diets within coastal settlements, resulting in a varied diet that minimised risk from adverse environmental conditions. Ritual practices were enhanced with more distinctive communal or ritual architecture and increased association of animal skeletal elements and grave goods with burials. Very large villages, or "mega-sites" (> 7 ha) emerged, requiring greater labour diversification and more elaborate control mechanisms. The impact of these settlements on the environment must have been considerable and may have contributed to population contraction at the end of the LPPNB and into the PPNC (c. 6,700-6,400 cal BC).

The PPNC (c. 6,700-6,400 cal BC), termed the Final PPNB by some, is characterised by a general decline in population and reduction in the range of domesticated plant and animal species. Whilst, limited effort was devoted to the construction of residential structures, a high degree of effort was devoted to large-scale community structures including rubbish facilities, wells and large walls. This may indicate declining self-sufficiency of individual households and a shifting focus toward whole settlement autonomy and preservation. The PPNC persisted for around 300 years until the introduction of pottery around 6,400 cal BC.

Archaeologists have developed a sophisticated understanding of PPN cultures in the central and southern Levant, including knowledge of settlement structure, organisation and distribution; resource management and exploitation; technology and secondary manufacturing practices; ritual and mortuary practices; and trade and exchange networks. However, more precise demographic data is required to explain how and why populations aggregated and expanded during this period and what influence this had on early village development and the relationship between humans and the environment. This need for demographic data and the underlying methodological and theoretical frameworks for existing early village population estimates are examined in the following chapter.

4 Estimating Early Village Population Parameters

An essential element in reconstructing past cultures is the ability to estimate the size, density and dynamics of a society's population. Although the term 'population' can be fluid, in an archaeological context it refers to the total number of people within a social unit with shared linguistic, cultural or historical traditions, who are normally co-resident or within close geographical proximity (Chamberlain 2006, p.1). In archaeological demography, the population is considered a single entity for quantitative analyses in order to explore differences in population size, density and dynamics that may be linked to socio-economic and socio-cultural factors. Population size refers to the total number of individuals in a population; population density refers to the number of individuals occupying a unit of space or the amount of space occupied by an individual; and population dynamics refers to the growth or decline of population size (Chamberlain 2006, p.2). These estimates enable palaeodemographers to establish trajectories of human social development by framing important questions relating to changing subsistence strategies, technology, community organisation, and socio-political and religious institutions (Hershkovitz and Gopher 2008).

Estimates of demographic parameters are particularly important for developing theories based on cultural evolutionary and structural-functionalist approaches, providing a link between the demographic constitution of a population and evidence for the often increasing diversity and complexity in cultural systems (Steward 1955; Barth 1956; White 1959; Fried 1967; Feinman 2000; Johnson and Earle 2000; Shennan 2001; Henrich 2004; Kline and Boyd 2010; Castro and Toro 2014; Verwiebe 2014; Andersson and Read 2016). For example, estimates of population size in hierarchical and non-hierarchical societies have been used to determine the coevolution of population size and leadership in pre-Hispanic Pueblo communities (Kohler *et al.* 2012); population density, resource diversification and food niche expansion and contraction (Neeley and Clark 1993); and population growth and decline models have been used to explore 'boom' and 'bust' periods following the introduction of agriculture (Shennan *et al.* 2013).

The estimation of population parameters is, as Renfrew (1972, p.383) states, "one of the most perilous exercises in prehistoric archaeology". Nevertheless, given the importance of demographic data for understanding socio-cultural development, archaeologists continue to explore methodologies for producing increasingly precise estimates. This chapter provides a detailed discussion of four commonly utilised methodologies for estimating population parameters of early and formative villages, highlighting some of the major underlying theoretical and methodological

considerations. A summary of existing estimates of population parameters for PPN central and southern Levantine villages is presented, highlighting the major limitations and the need for more empirically and statistically robust methods. A new method devised in this investigation is then presented: the storage provisions formulae (SPF). This is followed by a discussion of the relationship between group size and cultural evolution, with specific reference to hypothesised group size thresholds potentially relevant to the PPN.

4.1 Methodologies for estimating early village populations

The most common methodologies for estimating population parameters of early village societies are based on residential data, including the number and size of dwellings, household size and floor area per person; and settlement data, including settlement size and population density. These methodologies usually employ density values derived from ethnoarchaeological analysis. Modern Southwest Asian villages are commonly utilised as comparative ethnographic examples when investigating PPN settlements despite (1) the sometimes considerable environmental differences between the early Holocene and the modern day, particularly in the more arid regions to the south; and (2) the potential impacts of modern religion and infrastructure on settlement layout and social organisation. Use of this ethnographic data should be combined with (or possibly rejected in favour of) ethnographic case studies in more comparable environmental settings, for example, the historical and contemporary formative villages in Mesoamerica and North America (Hayden et al. 1996; Bandy 2006). Archaeological evidence also suggests that these villages may demonstrate more comparable structural features to PPN settlements (i.e. circular pit houses similar to those in the earlier PPN and pueblo-style settlements with agglomerated, rectangular structures similar to those in the later PPN), as well as more comparable subsistence practices (i.e. hunter-gatherer and low-level food production) (Hill 1970; Hayden et al. 1996; Diehl 2001; Bandy and Janusek 2005; Bandy 2006).

The following sections outline the four most commonly utilised methods for estimating population parameters: the housing unit method (HUM); the residential area density coefficient (RADC) method; the settlement population density coefficient (SPDC) method; and allometric growth formulae (AGF). For each method, demographic data derived from ethnographic and archaeological research in Southwest Asia and comparable contexts elsewhere is presented. Each of these methods can be applied at the micro-level to estimate the population of individual sites based on site-specific archaeological data; or can be applied systematically to multiple sites based on site

extent and average values for constants (i.e. the number of people per dwelling or the number of people per hectare) that may be applicable across broad cultural horizons.

4.1.1 Housing unit method (HUM)

The housing unit method (HUM) calculates population size by multiplying the average number of people residing in a dwelling by the number of dwellings within a settlement. These methods rely on the assumption that the number of residential dwellings directly relates to the number of inhabitants. Nelson (1909) was amongst the first to utilise this method in an archaeological context to estimate the population of a San Francisco Bay shell mound, multiplying the number of house depressions by an arbitrary figure of six people per house. The method was subsequently widely explored, particularly with the rise of processual archaeology in the 1960s.

Archaeologists quickly acknowledged a number of methodological and theoretical issues with this method, the foremost of which was the use of a standard figure for household size and debate regarding the constitution of the 'household'. In modern terms, a household is loosely defined as "a house and its occupants regarded as a unit" (Stevenson and Waite 2001, p.691). Archaeologists generally agree that households represent a social and economic unit, which makes common provisions for living essentials, including food and shelter (Pressat 1985). Household members may reside in a single building, an apartment or within several buildings, and may even have members who reside in dormitories or other communal structures (Wilk and Rathje 1982; Netting 1982; Netting *et al.* 1984; Brown 1987). The term 'household' is often used interchangeably with that of 'family'. However, Kramer (1982) asserts that such conceptually defined terms do not reflect the considerable intra-site and cross-cultural variability in the nature of the household.

Indeed, households constitute a variety of family types, engaged in various marriage practices, following different post-marital residence practices. For example, a study of aboriginal Californian settlements indicated that the majority were occupied by single nuclear family dwelling units (i.e. a couple and their offspring) (Cook and Heizer 1968, pp.89-91), whilst analysis at Tell-i Nun, Iran, indicated that compounds were inhabited by variable dwelling unit types, including single nuclear families (48.2%), single nuclear families with one or two dependent relatives (12.5%) and extended families (37.5%) (i.e. two or more co-resident nuclear families or nuclear families with several dependent relatives) (Jacobs 1979). A cross-cultural analysis of marriage practices by Murdock (1981) revealed that 75% of communities engaged in polygamous marriage. Murdock (1981) also found that patrilocal post-residence marriage practices were more common

than matrilocal practices. Different post-marital residence practices have been linked to differential use of space in ethnographic examples (see Section 4.1.2).

For the purpose of population estimates, the term 'household' has come to mean the total number of people living within a single dwelling, a notion more accurately reflected by the terms 'dwelling unit' (Wilk and Rathje 1982, p.620) or 'domestic group' (Hammel and Laslett 1974, p.76). To determine how many people formed this dwelling unit, archaeologists usually employ ethnographic analogy. Southwest Asian ethnographic villages, often used as comparative examples for PPN settlements, usually comprise nuclear family dwelling units averaging around five to six people (Sweet 1960; Wright 1969; Antoun 1972; Watson 1978; 1979; Kramer 1979; 1982; Aurenche 1981; van Beek 1982; Finkelstein 1990; Zorn 1994) (Table 4.1). This equates to units of two adults and three to four children.

It has been suggested that earlier PPN settlements with circular dwellings and shared storage may have been inhabited by polygynous communities, in which each dwelling was occupied by an individual or possibly an adult and their offspring; whilst later PPN rectangular dwellings, which were larger, more compartmentalised and contained private storage, may have accommodated monogamous nuclear or extended family units (Flannery 1972; 2002; Byrd 2002). Within several earlier PPN settlements, such as Dhra' and WF16, residential structures are not clearly discernible, raising debate regarding co-residence patterns and the use of a standard dwelling unit type (Finlayson *et al.* 2011).

The predominant theory, however, is that nuclear families formed the main dwelling unit type throughout the PPN. This is based on:

- interpretations of internal features, such as the number of hearths per structure (usually one) often equated to the number of families (Heidenreich 1971; Milisauskas 1972; Wright 1974; Starna 1980; Trigger 1981; Dodd 1982; Warrick 1983; Byrd 2002);
- evidence for dwelling-based food storage, processing and consumption activities of a sufficient scale to support single family units (Turner and Lofgren 1966; Bar-Yosef *et al.* 1991; Byrd 1994; 2002; Wright 2000; Rosenberg 2008; Goring-Morris and Belfer-Cohen 2011);
- sub-floor burials and reburial throughout the lifespan of a structure at the majority of PPN sites, including Motza (Khalaily *et al.* 2007), Jericho (Kenyon 1965; 1981) and Wadi Shu'eib (Simmons *et al.* 2001), which have been interpreted as representing long-term generational connections with space (Watkins 1992);
- workshop areas associated with dwellings, as at Beidha (Byrd 2005a), el-Hemmeh (White 2013) and Ba'ja (Kinzel 2013), which provide evidence for the vertical transfer of technological knowledge throughout these generations (Atienzar and Maestre 2011, p.21); and,
- settlement spatial organisation and structural developments, including orientation of entrances away from central areas, the transition to rectilinear architecture and repeated modifications and compartmentalisation, as at Tell Qarassa (Ibañez *et al.* 2010), Ghwair I (Simmons and Najjar 2006) and Basta (Nissen 2006), which may indicate a desire for household privacy and increasing occupant numbers (Rosenberg and Redding 2002; Byrd 2002; Kuijt 2004b; Byrd 2005b, p.232; Asouti 2013).

Based on the theory that nuclear families formed the predominant dwelling unit type and ethnographic data relating to nuclear family sizes, a dwelling unit size of five to six people is often proposed for Neolithic settlements (Sweet 1960; Kramer 1982; Rollefson and Köhler-Rollefson 1989; Düring 2001; Byrd 2002; 2005a).

Some archaeologists have explored alternative methods for deriving dwelling unit size. For example, Turner and Lofgren (1966) based their estimates for prehistoric Western Pueblo Indian longhouses on the capacity of serving bowls, cooking jars and ladles. An average serving size per person of 691 cm³ was determined from mean bowl capacity and used as a divisor to determine the amount of people served from vessels of various sizes. They deduced an average dwelling unit size of around 4.5 to 5.2 people.

For the phases of Çatalhöyük contemporary with the PPNB, Mellaart (1967) explored two methodologies: the first estimated an average dwelling unit size of four to five people based on the number of burials; and the second estimated an average of three to four people (with a maximum of 8 people) based on the capacity of sleeping compartments. For Pottery Neolithic Çatalhöyük, Düring (2001) examined sleeping platform capacity, estimating that larger platforms (2.6 x 1.3 m) could accommodate up to two adults/adolescents and that smaller platforms (1.3 x 1.3 m) could accommodate two to three children. Düring (2001) proposed an average dwelling unit size of four to five people.

At PPNB/PPNC 'Ain Ghazal, Rollefson and Köhler-Rollefson (1989, p.79) first estimated the total population size using van Beek's (1982, pp.64-65) ethnographically derived density values of 286 to 302 people per hectare at Tell Marib, North Yemen. This estimate was reduced by 20% based on an 80% structural contemporaneity value (i.e. the proportion of structures suggested to be in contemporaneous use) and divided by a total estimated number of dwellings based on van Beek's (1982, p.63) value of 63

buildings per hectare (also identified at Tell Marib) to derive an average dwelling unit size of six people. Van Beek's (1982) original estimates incorporated dwelling units predominantly comprising nuclear families. Thus, Rollefson and Köhler-Rollefson's (1989) estimate could be deemed to roughly equate to two adults and four children.

The HUM can be applied at the micro-level by extrapolating the total number of dwellings within a site from the excavated evidence and multiplying this by an appropriate dwelling unit size (or sizes). The theory that nuclear families occupied PPN settlements is tested in this investigation by applying dwelling unit sizes of three people (the smallest possible nuclear family size) to eight people (a large nuclear family size). Where excavation evidence is lacking, the HUM can be employed systematically, using a regional population density coefficient (RPDC) for the number of dwellings per hectare derived from micro-level analyses of comparable sites. Although usually employed to estimate regional population based on aggregate occupied area (Wendt and Zimmermann 2009; Zimmermann et al. 2009), this method could be used to estimate the population of individual sites by multiplying an RPDC by site extent (in hectares) to derive the total number of dwellings per site, and multiplying this by appropriate dwelling unit sizes. An alternative, though more complicated, method for deriving the total number of dwellings per site could involve applying a constant for the proportion of residential built area in site area (RBAP) to site extent to estimate the total residential built area per site, and then dividing this by the mean residential built area of dwellings.

These methods would enable site-specific population estimates to be derived based on limited data (i.e. site extent and constants produced via micro-level analysis). However, the use of constants is problematic, firstly due to the assumption that sites analysed at the micro-level are representative of the cultural horizon under investigation; and secondly, the further removed the constant becomes from the source of the data, the greater the potential for compounding errors. In addition, the application of these methods, both at the micro-level and systematically, requires consideration of several common methodological issues relating to site extent estimates, representativeness of the excavated area, identification of residential area and dwellings, and the degree of structural and site contemporaneity (i.e. the number of structures or sites in contemporaneous use). These issues are discussed in detail in Section 4.2.

Table 4.1. Dwelling unit sizes derived from ethnographic and archaeological analysis.

Site/Region	People/ dwelling	Notes	References
Single site ethnographic analysis			
Tell Togaan, Syria	5.6	Single nuclear families (68%)	Sweet 1960
Sayeh South, Iraq	6		Wright 1969
B'dair, Iraq	5.6		Wright 1969
Daghghara, Iraq	5.6		Wright 1969
Kufr al-Ma, Transjordan	6.5		Antoun 1972
Hasanabad, Iran	4.4		Watson 1978
Hasanabad, Iran	4.59		Watson 1979
Shahabad, Iran	5.1/6.3	Landless/landed households	Kramer 1979
Tell-I Nun, Iran	4.8/8.75	New, unwalled section/old, walled section; single nuclear families (48.2%), extended families (37.5%), nuclear families with 1-2 dependent relatives (12.5%)	Jacobs 1979
Marib, North Yemen	5		van Beek 1982
Aliabad, Iran	6.2		Kramer 1982
Seker al-Aheimar, Syria	8		Portillo et al. 2014
Regional and cross-cultural ethnographic analysis			
18 regions: California	6		Cook and Heizer 1968
14 villages: North America, Alaska	5		Cook 1972
29 villages: Near East	5.3/6.4	Site extent < 3 ha/> 3 ha	Aurenche 1981
40 villages: Aliabad region, Iran (not incl. Aliabad)	5.3		Kramer 1982
95 villages: Lake Patzcuaro Basin, Mexico	5.97	1940 and 1970 census data	de Roche 1983
Mesoamerican villages	5.5	, th	Kolb 1985
113 villages: Palestine/Ephraim	4.3-6.1	19" century census data collections	Finkelstein 1990
20 villages: North America, Alaska, Artic Circle	5		Hayden <i>et al.</i> 1996
Archaeological analysis			
Western Pueblo Indians, Arizona (AD500-1900)	4.5-5.2	Based on vessel capacity	Turner and Lofgren 1966
Çatalhöyük, Turkey (PPNB)	3-4	Based on sleeping compartments (max = 8)	Mellaart 1967
Çatalhöyük, Turkey (PPNB)	4-5	Based on number of burials	Mellaart 1967
'Ain Ghazal (PPNB-PPNC)	6	Based on estimated population size and estimated number of contemporaneous houses: 2 adults/4 children	Rollefson and Köhler-Rollefson 1989
Çatalhöyük, Turkey (Pottery Neolithic)	4-5	Based on sleeping platforms; 2 adults or adolescents/2-3 children	Düring 2001

4.1.2 <u>Residential area density coefficient method (RADC)</u>

A residential area density coefficient (RADC) is a measure of the amount of residential space per person (Table 4.2). Population size is calculated by dividing the total amount of residential space by an RADC. This method was first explored in an ethnoarchaeological context by Naroll (1962), who attempted to derive a universal constant for the amount of roofed floor area per person by examining data relating to roofed floor area and total settlement population within 18 nomadic and sedentary societies from North and South America, Africa, Oceania and Eurasia. The majority of sites were large, with agglomerated, rectilinear architecture. Naroll (1962) identified an allometric relationship between the two variables (A = 21.7 x $P^{0.84195}$), where A is the roofed floor area and P is the population size (discussed in detail in Section 4.1.4). The formula was simplified to P = A/10, producing an average of 10 m² roofed floor area per person. Naroll's (1962) constant was criticised for being too simple and for having the potential to underestimate population by including all roofed floor area as opposed to living and/or sleeping space only (Cook and Heizer 1968; Nordbeck 1971; Wiessner 1974; Schacht 1981; Kolb 1985; Brown 1987; Byrd 2002). Despite this criticism, Naroll's (1962) constant has been widely utilised in archaeological contexts, although most studies emphasise the need to develop constants for different types of settlements, and for different dwelling forms and units (LeBlanc 1971; Flannery 1972; Milisauskas 1972; Marfoe 1980; Kramer 1982; van Beek 1982; Kolb 1985; Finkelstein 1990).

Several variables impact the amount of personal floor area allocation. For example, smaller personal space allocations are usually recorded within more mobile communities (Porčić 2012) and those located within extremely cold conditions (Brown 1987; Hayden *et al.* 1996). Alternatively, larger space allocations have been recorded in communities that follow matrilocal post-marital residence patterns and in settlements of larger populations. This has been interpreted as an attempt to increase privacy, particularly relating to female practices and conditions, and to mitigate the effects of overcrowding (Flannery 1972; Brown 1987). The correlation between wealth and personal space allocation is variable. Kramer (1979) recorded no correlation at Shahabad, Iran, whilst Hayden *et al.* (1996, p.157) recorded a positive correlation in Arctic settlements, where lower occupant density was recorded in dwellings of wealthier families, who could afford to maintain fires.

Archaeologists have argued that RADCs should be based on living area only, omitting non-living area, such as walls, stairs, storage space, kitchens, workshops, courtyards and animal pens (Hill 1970; LeBlanc 1971, p.211; Kramer 1979; Hayden *et al.* 1996). In this way, RADCs apply to potential sleeping area only, which more accurately reflects

the resident population. The few analyses that have employed this method produced considerably more constrained constants (2.16-4.82 m² living area per person) (Hill 1970; Kramer 1979; Hayden *et al.* 1996). Lower RADCs were derived from settlements with curvilinear structures (Hayden *et al.* 1996), whilst higher RADCs were derived from settlements with rectilinear structures (Hill 1970; Kramer 1979). Unfortunately, due to the difficulties associated with identifying potential sleeping area, investigations generally do not employ this methodology.

There has been little attempt to refine RADCs for PPN settlements. Byrd (2002, p.72) measured the interior area of 106 domestic structures from southern Levantine sites spanning the Early Epipalaeolithic to the PPNB. He applied Naroll's (1962) constant of 10 m² roofed floor area per person to the mean interior area measurements to determine whether domestic structures were inhabited by individuals, or nuclear or extended families. Byrd (2002) suggests that Naroll's constant is too high for settlements occurring during this period, although he does not propose a more suitable value.

In this investigation, population estimates are derived from RADCs relating to residential floor area only. The range of RADCs employed is based on the limited number of constants outlined above (c. 2-5 m²). The RADC method is applied at the micro-level by extrapolating the total residential floor area within a site from the excavated evidence and dividing this by the amount of residential floor area per person. The RADC method could be employed systematically to estimate the total residential floor area per site by applying a constant for the proportion of residential floor area in site area (RFAP) to site extent.

Site/Region	RADC -	Notes	References
	m ⁻ /person		
Single site ethnographic analysis			
Broken K Pueblo, Southwest America	4.55	Dwelling unit size of 6.1 people; based on living area only	Hill 1970
Hasanabad, Iran	7.3		Watson 1978
Shahabad, Iran	4.82	Based on living area only	Kramer 1979
Shahabad, Iran	8	Based on living and kitchen area only	Kramer 1979
Marib, North Yemen	9.9-10.4		Van Beek 1982
Baghestan, Iran	8		Horne 1994
Regional and cross-cultural ethnographic ar	alysis		
18 societies: N and S America, Oceania,	10		Naroll 1962
Africa, Eurasia			
18 regions: California	1.86	1.86 m ² for first 6 people; 9.3 m ² per additional person thereafter	Cook and Heizer 1968
2 Samoan fisher-farmer settlements	13.2/9.8		LeBlanc 1971
2 Peruvian haciendas	12.8/8.2		LeBlanc 1971
Rural villages: Iran	7-10		LeBlanc 1971, Kramer 1982
Villages: California (1), American SW (10)	4.21	21.07 m ² per nuclear family of 5 people	Cook 1972
New World and Ontario Iroquoian	6	Multifamily dwellings	Casselberry 1974
Southwest American nuchles	2 2 2		Clarka 1071
Mooopmariaan villagoo	5.55 6.10	Average pueleer femily dwelling unit of 5 5 people: based on fleer groe	
Mesoamencan villages	0.12	of kitchen, bedroom/s and storage rooms	NUD 1905
38 societies: worldwide	6	-	Brown 1987
Abandoned Palestinian houses	9.65		Finkelstein 1990
20 villages: N America, Alaska, Artic Circle	2.16	Based on living area only	Hayden <i>et al.</i> 1996
35 sedentary societies	6.97		Porčić 2012
11 mobile communities	3.25		Porčić 2012
Archaeological analysis			
Keatley Creek, British Columbian pit	2.8-3.8	Number of hearths = number of families; family size of five people;	Hayden <i>et al.</i> 1996
house village (Prehistoric)		based on living area only	

Table 4.2. Residential area density coefficients (RADC) derived from ethnodraphic and ar	v coemcients i	(RADC)	derived from	ethnodrapr	nic and archaeo	odical analysis
--	----------------	--------	--------------	------------	-----------------	-----------------

4.1.3 <u>Settlement population density coefficient method (SPDC)</u>

A settlement population density coefficient (SPDC) is a measure of the amount of people living within a hectare. The most common method for estimating population size is to multiply total site extent by an ethnographically derived SPDC. SPDCs derived from single-site ethnographic analysis of Southwest Asian villages vary from around 16 to 334 people per hectare (Table 4.3) (Jeremias 1969; Wright 1969; Antoun 1972; Watson 1978; 1979; Jacobs 1979; Kramer 1979; 1980; 1982; Van Beek 1982). Regional ethnographic analyses tend to produce a more limited range, usually between 100 and 200 people per hectare, with higher densities (mostly in the range of 100-600 people/ha) estimated for archaeological sites (Sumner 1979; Shiloh 1980; Adams 1981; Aurenche 1981; Kramer 1982; Zorn 1994; Drennan and Peterson 2008). Wossinik (2009, p.59) plotted densities and settlement size of villages, towns and archaeological sites. Each of these settlement types produces different regression lines (Figure 4.1). For example, there appears to be a weak negative correlation between density and settlement size in modern villages, a weak positive correlation in modern towns and a relatively strong negative correlation in the few archaeological sites assessed.

Figure 4.1. Correlation between population density and settlement size (in logarithmic scale). Crosses indicate villages assessed by Aurenche (1981, Table 3) and Kramer (1982, Table 5.3); diamonds indicate towns assessed by Kramer (1982, Table 5.6); and triangles indicate archaeological sites (Wossinik 2009, p.59).

Higher population densities (~300 p/ha) are often recorded for settlements located in economically advantageous areas, such as coastal plains (Finkelstein 1990); and for walled settlements, such as Jerusalem (Jeremias 1969), Tell-i Nun, Iran (Jacobs 1979)

and Marib, North Yemen (van Beek 1982). Both positive and negative correlations have been identified between population density and settlement or population size. Sumner (1979) identified that larger villages ($P \ge 400$) in the Marv Dasht region exhibited a higher SPDC (155 p/ha) than smaller villages (P < 100) (70 p/ha). Finkelstein (1990, p.50) revealed a similar positive correlation for Palestinian villages, where larger villages (P > 1000) produced higher densities (189 p/ha) due to less abandoned residential space than smaller villages (P < 300; 141 p/ha).

Conversely, in an analysis of Near Eastern villages, Aurenche (1981) recorded the lowest population densities (31 p/ha) in the largest villages (> 10 ha) and the highest population densities (111 p/ha) in smaller villages (1-3 ha). Whitelaw (1991) identified a similar negative correlation in hunter-gatherer populations (Figure 4.2). Higher densities were recorded within settlements occupied by extended family groups, whose social and subsistence strategies were based on kinship roles and cooperative interaction. Lower densities were recorded for settlements with larger populations, where greater spacing between residence units reflects less familiar and less intensive interactions, and subsistence strategies based on reduced economic cooperation (Whitelaw 1991, p.149). Environmental factors affect density due to variable needs for cooperative food-procurement and sharing strategies, and the relationship between this and household spacing. For example, lower densities are recorded in subarctic, arctic and desert regions, where the foraging of plants and hunting of small game requires limited cooperation between households (Whitelaw 1991, p.168). Variations in density have also been association with occupation duration, with lower densities recorded in settlements occupied for extended periods, potentially linked to mechanisms for relieving tension with long-term neighbours (Whitelaw 1991, p.151).

Figure 4.2. Negative correlation between population density and population size in huntergatherer settlements (in logarithmic scale) (Whitelaw 1991, p.146).

SPDCs for archaeological sites are usually based on population estimates derived from the HUM and RADC methods. This is problematic as errors resulting from insufficient critique of factors influencing dwelling unit size and the amount of space per person are compounded. Density estimates for archaeological sites vary considerably from around six to 1,250 people per hectare. Higher densities occur within walled settlements (Shiloh 1980; Zorn 1994), highly centralised settlements (Drennan and Peterson 2008) and topographically restricted or compact settlements (Drennan 1988). Density estimates for prehistoric archaeological sites are generally higher than those derived from ethnographic analysis. Sumner (1979, p.172) suggests that this is probably due to a larger amount of built area reserved for domesticated animals in modern settlements when compared to prehistoric settlements.

Several archaeologists have proposed SPDCs for Neolithic settlements. Kramer (1982) advised utilising 100 to 200 people per hectare based on cross-cultural ethnographic analyses. Chapman (1981, p.48) identified that "population densities higher than 100 per hectare are rare for the Neolithic period" and proposed application of 50 to 100 people per hectare to estimate Neolithic Vinca Culture sites in the Central Balkans. Kouchoukos (1998) recommended a similar density coefficient of 100 people per hectare for Neolithic and Chalcolithic (6th-4th millennium BC) villages in Deh Luran and Susiana, Iran. The majority of PPN village population estimates utilise SPDCs derived from ethnographic research of Southwest Asian villages. These generally apply a minimum value of around 90 people per hectare based on research by Jacobs (1979). Watson (1979) and Kramer (1982); an average value of around 140 to 150 people per hectare based on Kramer's (1979; 1982) research and the range generally derived from cross-cultural analyses (c. 100-200 people/ha); and a maximum value of 286 to 302 people per hectare (mean: 294 people/ha) based on van Beek's (1982) research (Rollefson and Köhler-Rollefson 1989; Kuijt 2000; 2008a; Campbell 2009). Although many researchers utilise this maximum value, Kuijt (2008a, p.290) warns that "in the absence of any clear consensus, it is probably best to employ Kramer's (1982) and Watson's (1979) more conservative, lower estimates for developing population estimates", whilst Fletcher (1981; 1995) warns against the use of any SPDCs for estimating population size due to the wide range in density estimates for small-scale agricultural settlements (c. 50-1,000 people/ha).

In this investigation, the commonly utilised density values (90, 150 and 294 people/ha) are applied at the micro-level. These density values and the resulting population estimates are compared to those derived from other methods (i.e. the HUM and RADC) to explore whether these density values are indeed suitable for PPN settlements. Refined density values may be established for systematic application.

Site/Region	SPDC (people/ha)	Notes	References
Single site ethnographic analysis			
Jerusalem City (1920s)	334	Walled village	Jeremias 1969
3 villages: Iraq	16/66/129	Sayeh South/B'dair/Daghghara	Wright 1969
Kufr al-Ma village, Jordan	181		Antoun 1972
Hasanabad village, Iran	132.3		Watson 1978; 1979
Tell-I Nun village, Iran	53.3/85.9	New, unwalled section/old, walled section	Jacobs 1979
Shahabad village, Iran	139/119	1979/1980	Kramer 1979; 1980
Aliabad village, Iran	139		Kramer 1982
Marib town, North Yemen	286-302	Walled village	Van Beek 1982
Regional ethnographic analysis			
110 villages in Marv Dasht region, SW Iran	155/70	Large villages/small villages	Sumner 1979
Villages, Iran	83		Watson 1979
Urban settlements in South Central Iraq	125		Adams 1981
39 Near Eastern villages	31/74/111/74	> 10 ha/3-10 ha/1-3 ha/< 1 ha	Aurenche 1981
40 villages, Aliabad region, Iran	97		Kramer 1982
113 Palestinian villages	189/141	Large (>1000 people)/small (<300 people)	Finkelstein 1990
	99/212/170	Desert fringe/harsh topography/hill country	
Archaeological analysis			
Tall-i Bakun, Iran (4 th mill BC)	200-600	Based on 3.6-5.5 people/house & 6-9 m ² roofed	Sumner 1979
		floor area/person	
Walled urban settlements in Palestine (Iron Age)	400-500	Based on 8 people/house	Shiloh 1980
Villages: Nea Nikomedia/Otzaki, Greece; Knossos, Crete (Neolithic)	100-300	Based on 10 m ² roofed floor area/person	Halstead 1981
Mesoamerican villages (2000 BC-AD 1519)	50-130/6-12	Compact/dispersed; based on 5.6 people/house	Drennan 1988
Tell Bouqras, East Syria (PPNB)	309	Based on 5 people/house	Boerma 1989-90
Arad City, Israel (c. 3000 BC)	200-250	Based on 10 m ² roofed floor area/person	Finkelstein 1990
Kfar 'Atia, deserted Palestinian village	190	Based on 4.5 people/house	Finkelstein 1990
Urban settlement at Abu Salabikh, Iraq (3 rd mill BC)	248-1205	Based on 4-7 m ² roofer floor area/person	Postgate 1994
Enclosed urban settlement, Tell en-Nasbeh, Palestine (Iron Age)	200-250/450	Stratum 2/3; based on 4-5 people/house	Zorn 1994
Lower Xiajiadian period (2 nd -3 rd mill BC.) sites, NE China	306-510/180-420	Small sites/large sites	Shelach 2002
Highly centralised settlements, Chifeng, China (2 nd -3 rd mill BC)	300-600		Drennan and
			Peterson 2008
Ugarit, Canaan (1550-1150BC)	550	Based on 6.1 people/house	Kennedy 2013

Table 4.3. Settlement population density coefficients (SPDC: people per hectare) derived from ethnographic and archaeological analysis.

4.1.4 Allometric growth formulae (AGF)

The majority of investigations highlight a strong positive correlation between population size and settlement size, indicating the potential for settlement size to be used as a proxy for population size and for the creation of formulae to depict this relationship (Cook and Treganza 1950; Naroll 1962; Nordbeck 1971; Wiessner 1974; Sumner 1979; Aurenche 1981; Schacht 1981; Kramer 1982; Hemsley 2008; Wossinik 2009) (Figure 4.3).

The allometric growth formulae (AGF) have potential for accurately estimating population size from area measurements. AGF were first explored in biology to investigate differential growth and biological scaling based on the notion that population size alters relative to settlement area (Huxley 1932). The AGF is expressed as:

$$Y = aX^b$$

where Y is area, X is population size, *a* refers to the initial growth index based on the intercept of the regression line with X, and *b* refers to the allometric coefficient, also known as the scaling exponent, which determines the slope of the regression line. A scaling exponent of one (b = 1) signifies isometric growth, where changes in settlement area directly correlate to changes in population size, whilst scaling exponents of less than or greater than one signify allometric growth, where the relationship between area and population size is variable.

Figure 4.3. Correlation between number of occupants and settlement size (in logarithmic scale). Crosses indicate villages assessed by Aurenche (1981, Table 3) and Kramer (1982, Table 5.3); diamonds indicate towns assessed by Kramer (1982, Table 5.6); and triangles indicate archaeological sites (Wossinik 2009, p.59).

Naroll (1962) was amongst the first to use AGF to investigate human demography. He identified an allometric relationship between built/roofed floor area and population size in ethnographic contexts, noting that the resulting AGF could be beneficial for estimating population size from estimates of roofed floor area particularly within settlements undergoing (or which had achieved) urbanisation. Naroll identified the allometric relationship as:

A = 21.7 x P^{0.84195}

where A is the total roofed/built floor area, P is population size, the initial growth index (*a*) is 21.7 and the scaling exponent (*b*) is 0.84195. Naroll converted this to $A = 10 \text{ m}^2$. This constant, which directly correlates population to area, was highly criticised as it does not reflect the relationship indicated by the scaling exponent, which reveals a slightly lower rate of increase in roofed/built floor area compared to population size (Nordbeck 1971; LeBlanc 1971; Wiessner 1974).

In 1987, Brown re-examined Naroll's formula, revealing that there was actually no linear or allometric relationship between population size and roofed floor area at the lower end of the scale and only a moderately strong linear correlation at the upper end. As a result, Brown (1987) rejected the use of AGF to explain patterns in settlement and population growth, instead preferring the RADC method. Indeed, Brown and other critics emphasised that considerable cross-cultural and inter-regional variation in the patterns of settlement growth would prevent the application of a single constant for converting settlement area to population size. This acknowledgement led to the refinement of the AGF for different settlement types.

Within urban settlements, Nordbeck (1971) discovered that the settlement profile always contains lower density at the edge or peripheral areas, high density near the centre, and low density at the centre where residences are not often situated. After plotting the site extent and population of around 1,800 modern Swedish urban settlements, Nordbeck identified an allometric relationship represented by the formula:

$A = 1.30 \text{ x P}^{0.664}$

where A is the total site extent, P is population size, the initial growth index (a) is 1.3 and the scaling exponent (b) is 0.664. The scaling exponent indicated that settlement area increased at around two-thirds of the rate of the population size increase, due to increased density in suburban areas within urban settlements.

Wiessner (1974, p.349) adopted this scaling exponent for her analysis of urban communities and considered other scaling exponents for open and village settlements. The scaling exponent is based on the dimensional development of different settlement

types. For example, open settlements are considered to have a scaling exponent of two (b = 2) as settlement area is deemed to increase by the square of the population size increase. This is based on the notion that open settlements tend to conform to a circumferential pattern, so that when the number of dwellings (or population) doubles, the diameter of the village doubles, resulting in a quadrupling of the settlement size and a reduction in population density (Wiessner 1974) (Figure 4.4, A). This theory was supported by an extensive study of Australian Aboriginal hunter-gatherer, open settlements, which indicated that maximum residential density decreased as community size increased (Fletcher 1990).

For village settlements, the scaling exponent is considered to equal one (b = 1), as it is expected that village settlement area will increase in direct proportion to population size, resulting in constant population density (Chamberlain 2006, pp.127-128) (Figure 4.4, B). This is due to the nature of village expansion, whereby generally single story dwellings and structures are constructed at relatively equal distances from each other.

For urban settlements, the scaling exponent is considered to be two-thirds (b = 2/3). This is based on the relationship between area, which is two dimensional, and population, which is three dimensional in urban settings, as these usually contain multi-storey residential structures in the suburban areas. This exponent reflects the smaller relative variation in settlement area when compared to variations in population size and density (Wiessner 1974, p.347) (Figure 4.4, C).

Despite establishing these scaling exponents, the application of this method for estimating population size in archaeological contexts remains largely unexplored. In terms of application to PPN central and southern Levantine settlements, Wiessner's (1974) allometric growth formula for open settlements may be suitable for estimating the population of circular hut compounds, whose inhabitants predominantly relied on hunter-gatherer subsistence strategies, such as Nahal Oren (Noy *et al.* 1973) and Gilgal I (Bar-Yosef *et al.* 2010a; 2010b). The formula for urban settlements may be applicable to those with agglomerated and multi-storey structures, such as LPPNB el-Hemmeh (White 2013), Beidha Phase C (Byrd 2005a) and Ba'ja (Gebel and Hermansen 1999). The formula for village settlements should, theoretically, be applicable to all settlements assessed in this investigation.

In this investigation, the AGF are employed to estimate population at the micro-level using estimates for total built floor area (Naroll's 1962 AGF) and total site extent (Wiessner's 1974 AGF) as the A variable and the related scaling exponents. For Naroll's (1962) AGF, the formula is directly applied to produce population estimates at the micro-level. As Wiessner (1974) does not propose initial growth indices, this AGF

cannot be directly applied to calculate population size. It is expected that new initial growth indices will be developed for both AGF from the refined population estimates produced in this investigation, and that these could be applied within the formulae to systematically estimate population size.

Figure 4.4. Allometric relationship between settlement area (dashed lines), population size (shaded units) and population density (scales underneath) when growth occurs in (A) open, (B) village (isometric growth) and (C) urban settlements (adapted from Wiessner 1974, p.347).

4.2 Major methodological considerations

This section briefly outlines some of the major underlying methodological considerations, including estimates of site extent; the representativeness of the excavated area, particularly relating to structural density; the identification of residential area, dwellings and potential sleeping area; and the degree of structural and site contemporaneity.

4.2.1 Site extent estimates

The determination of site extent is notoriously difficult (Goring-Morris and Belfer-Cohen 2008). Sites are rarely excavated in full and there are numerous factors that affect site preservation. Where estimated site extents are provided in excavation reports, they are most commonly based on delimitation of surface archaeological material, which may have been considerably enlarged (or even reduced) by post-depositional processes. In addition, these estimates usually do not account for "splash zones", which contain displaced and peripheral artefacts (Bandy and Janusek 2005). In many cases it is unclear whether the site extent refers to the surface scatter or the habitable area, and whether this area includes land designated for agricultural or pastoral activities. Most surveys estimate the maximum site extent, which may include multiple periods of occupation (Wossinik 2009). In many cases, the maximum site extent is quoted and applied to all periods. Many PPN central and southern Levantine villages are occupied in several PPN and PN periods. PN occupation phases usually cover the most extensive area, obscuring the extent of earlier occupations.

In the absence of definitive site extent estimates per occupation phase, PPN settlements are often placed within broad site size categories (Aurenche 1981, p.93) or assigned an average period-based site extent founded on the assumption that site sizes remained relatively consistent within each period (Kuijt 2008a, pp.292-294) (Table 4.4). Standardised site sizes and categorisations are beneficial for rapid and comparative assessments. However, to produce absolute population estimates, significant attempts should be made to determine the potential habitable area by identifying possible disused or abandoned areas, open and communal areas, and space designated for agricultural or pastoral activities.

Table 4.4. Categorised and period-based PPN Levantine site sizes.				
Aurenche 1981, p.93		Kuijt 2008a, pp.292-294		
Site size category	Site size (ha)		Period	Average site size (ha)
Small sites	<1		PPNA	1 (≤ 2.5)
Medium sites	1-3		EPPNB	N/A
Large sites	3-10		MPPNB	2.5 (≤ 5)
Mega sites	>10		LPPNB	10 (≤ 14)
			PPNC	5

Table 4.4. Cotogorized and pariod based DDN Leventing site sizes

4.2.2 Representativeness and structural density

Excavations usually uncover a small proportion of a site from which conclusions are made about the entire settlement. This process relies on the assumption that the excavated area is representative of the total site (Shiloh 1980; Broshi and Gophna 1984; Peterson and Shelach 2012). An essential element for reconstructing population parameters based on the commonly utilised methods is the accurate quantification of built area. Excavation often centres on areas of dense archaeological material, usually architectural remains, distorting perceptions of the degree of built area within a site. For central and southern Levantine PPN settlements, Kuijt (2008a, p.294) estimated period-based ratios of built to open space (Figure 4.5; Table 4.5). In the absence of excavated evidence, these ratios could be beneficial for calculating the total built area from estimates of total site extent.

Figure 4.5. Late Natufian to PPNC central and southern Levantine estimates of the ratio between built and open space; and estimated site area and population level. Population estimates are based on ethnographic data from Kramer (1982, p.162) and Watson (1979, pp.35-47) (after Kuijt 2008a, p.294).

Table 4.5. Minimum and maximum PPN period-based proportions of built area in site extent
derived from the ratio of built to open area (based on values proposed by Kuijt 2008a, p.294).

Period	Ratio of built to open area		Built area in site extent (%)		
	Minimum	Maximum	Minimum	Maximum	
PPNA	1:2	2:1	33.3	66.7	
EPPNB	N/A				
MPPNB	1.5:1	4:1	60	80	
LPPNB	4:1	8:1	80	88	
PPNC	1:1	3:1	50	75	

4.2.3 Identification of residential area, dwellings and potential sleeping area

The majority of methodologies for estimating population parameters rely on identification of residential structures or 'dwellings'. Most PPN structures are interpreted as residential. However, debate exists regarding the accuracy of these interpretations, particularly in the earliest PPN periods where there is limited ability to distinguish between residential and non-residential structures (Finlayson *et al.* 2011). Where 'dwellings' are identified, this is usually based on combinations of features, including hearths, plaster or clay flooring, and sleeping platforms; in-situ artefacts relating to food storage, processing, preparation and consumption; the potential function of associated architectural features (i.e. annexes for cooking and storage); and architectural elements common to residential structures relating to size, morphology (i.e. circular huts and rectangular buildings, partitions/subdivisions, multi-storeys) and construction material (i.e. mud bricks, stone slab foundations, organic and stone superstructures) (Watson 1978; Kramer 1982; Watkins 1990; Byrd 2002; 2005a).

4.2.4 Structural contemporaneity and Bayesian chronological modelling

Although structures within a settlement may appear to have been utilised contemporaneously according to archaeological phases, it is possible that occupation was separated by tens to hundreds of years and that the human processes associated with the archaeological materials were entirely unconnected (Kuijt 2008a). When reconstructing population size, archaeologists must adjust estimates to reflect structural contemporaneity (i.e. the number of structures in simultaneous use). This can be achieved by applying a standard value for the proportion of building contemporaneity (e.g. Rollefson and Köhler-Rollefson (1989) proposed 80% contemporaneity for the PPNB/PPNC village of 'Ain Ghazal) or by deriving formulae for estimating contemporaneity based on archaeological evidence (Schiffer 1987; Varien and Potter 1997; Ortman *et al.* 2007; Varien *et al.* 2007). Varien *et al.* (2007) used the following formula to calculate structural contemporaneity from building use life and occupation span (or phase length):

This method relies on the accurate identification of dwellings (previously addressed), and accurate estimates for building use-life and phase length. Archaeological, ethnographic and experimental research of building use-life indicates that earthen and light organic structures, comparable to those which existed in the early PPN, can be

utilised for up to 15 years without maintenance and up to 50 years with maintenance (Table 4.6). Conversely, analysis indicates that predominantly masonry structures, comparable to those which existed in later PPN periods, could be utilised for up to 100 years with maintenance.

Table 4.6. Bullu	ing use-life estimates.		
Predominant construction material	Additional information	Building use-life (years)	References
Earthen/light	Without maintenance	6-15	Cameron 1990; Reynolds 1995; Diehl
organic	With maintenance	15-45	2001; Ortman <i>et al.</i> 2007;
			Arnoldussen 2008; Varien 2012
	PPNA granaries	< 50	Kuijt and Finlayson 2009
Masonry	Neolithic Çatalhöyük	50-100	Hodder and Cessford 2004; Cessford
(all			2005; Matthews 2005
maintained	PPNB-PPNC 'Ain Ghazal	≤ 100	Rollefson and Köhler-Rollefson 1989
maintainou)	Ancient Southwest America	60	Ahlstrom 1985

Table 4.6. Building use-life estimates.

A statistically robust method for producing more precise chronological information relating to building use-life and phase length is Bayesian chronological modelling of radiocarbon dates (Buck *et al.* 1996; Bayliss 2007; Bayliss *et al.* 2011). A detailed analysis of the use of Bayesian chronological modelling in an archaeological context was recently conducted by Bayliss *et al.* (2011), who incorporated almost 2,000 radiocarbon determinations into models to refine the chronology of causewayed enclosures during the Early Neolithic of southern Britain and Ireland. The process is outlined in detail with a view to enabling routine employment of Bayesian chronological models by archaeologists.

The Bayesian approach is based on Baye's theorem (Bayes 1763), which defines probability based on prior knowledge. Bayesian chronological models produce revised probability distributions ('posterior density estimates') based on calibrated radiocarbon dates ('standardised likelihoods') and prior chronological information derived from archaeological, ethnographic or experimental interpretation ('prior beliefs'). Effectively, the radiocarbon dates are interpreted in relation to the archaeological and stratigraphic information to produce more precise boundary dates (i.e. start, transition and end dates) and span estimates for specific events and periods (Bronk Ramsey 2009; Bayliss *et al.* 2011).

Bayesian chronological analysis is usually conducted on large radiocarbon datasets to explore large scale population dynamics, often relating to major climatic events or cultural episodes, including human dispersals, the emergence and spread of agriculture, and typological or technological changes (Whittle *et al.* 2011; Riede and Edinborough 2012; Baggaley *et al.* 2012; Benz *et al.* 2012; Higham *et al.* 2012; Talamo *et al.* 2012; Banks *et al.* 2013; Crema *et al.* 2014; Wicks and Mithen 2014; Whitehouse

et al. 2014; McLaughlin *et al.* 2016; Porčić and Nikolić 2016). Depending on the availability and precision of the prior information, and the number and stratigraphic distribution of radiocarbon dates, it is also possible to model short-term events such as phase length and building use-life. For example, Robb and Marino (2010) estimated spans of events at the Neolithic settlement at Capo Alfiere, Italy, based on just five accelerator mass spectrometry (AMS) dates, using each as constraints for previous and successive events. Marciniak *et al.* (2015) modelled boundary dates and spans for domestic structures and burial chambers at Late Neolithic Çatalhöyük based on 56 radiocarbon determinations. Kerns (2016) refined the chronological sequence of Neolithic chambered cairns and settlements in the Orkney Islands based on over 100 dates from eight sites. In addition, Richards *et al.* (2016) modelled boundary dates and spans for structures at the Late Neolithic settlement of Barnhouse in Orkney based on 70 dates.

Due to the limited number of radiocarbon dates for individual PPN sites and the paucity of information regarding context, sample material and pre-treatment, Bayesian chronological analyses of PPN settlements is rarely conducted. One exception is the recent analysis of 46 AMS dates from the PPNA site of WF16 in southern Jordan (Wicks et al. 2016). Chronological models were constructed in the OxCal software (v.4.2; Bronk Ramsey 2009) to produce lower and upper boundary posterior density estimates for the entire site and individual structures (referred to as 'objects' based on the terminology of the database used at the site). As part of this investigation, a methodology was explored to account for the effect of old wood on radiocarbon determinations, producing an offset of 825 to 1,370 years. The site chronological model indicated start and end dates of c. 11,840 to 10,240 cal BP and a span of around 1,590 years, with a summed calibrated probability distribution indicating a period of intense activity lasting for around 350 years centred on c. 11,250 cal BP. Unfortunately, the chronological resolution of models for individual structures was not well constrained due to the limited number of AMS dates per structure, old wood effects, plateaus in the calibration curve and stratigraphic inversion of dates probably resulting from postdepositional processes.

Despite the difficulties associated with Bayesian chronological modelling of PPN phase length and building use-life, the method warrants further investigation. The database of radiocarbon determinations compiled by Benz (2013) provides a sound platform for this analysis.

4.2.5 <u>Site contemporaneity</u>

When attempting to establish regional population estimates, site contemporaneity adjustments should be applied to avoid overestimating population. However, due to the difficulties associated with establishing site contemporaneity, most investigations assume that sites dated to the same chronological phase are contemporaneously inhabited. However, this does not accurately reflect episodes of establishment and abandonment that were taking place over shorter periods. Few analyses have attempted to devise methods for estimating site contemporaneity (Schacht 1984; Sumner 1990) and fewer still propose a contemporaneity value (though Halstead (1981) proposed a contemporaneity value of 10-30% for Neolithic and Bronze Age settlements in Greece). Unfortunately, no suitable method has been identified for determining the proportion of contemporaneously occupied sites during the PPN of the central and southern Levant. Until a method is discovered, the estimates produced in this investigation cannot be considered to represent the total regional population.

4.3 Existing estimates for PPN central and southern Levantine villages

There have been limited attempts to estimate absolute population parameters of PPN villages. The few published instances of absolute estimates of population size, density and growth are summarised below.

4.3.1 Population size

An extensive literature review revealed absolute population size estimates for 23 PPN central and southern Levantine villages (Figure 4.6). These include around 60 estimates derived from seven investigations (Kramer 1982; Rollefson and Köhler-Rollefson 1989; Gebel and Hermansen 1999; Kuijt 2000; 2008a; Ladah 2006; Campbell 2009). All but one (Gebel and Hermansen 1999) employed the same method involving the application of a population density coefficient derived from Southwest Asian ethnographic research, and all use van Beek's (1982, pp.64-65) density coefficients of 286 to 302 people per hectare to produce maximum estimates.

The majority of estimates (n = 42) were produced by Kuijt (2000, p.81; 2008a, p.294) to explore the relationship between population dynamics and sedentism, food production, food storage, social crowding, social inequality and the collapse of large villages at the end of the PPN. Kuijt's estimates are based on site area (either estimated directly or based on the mean settlement size of the largest sites per period) and mean population density coefficients of 90 and 294 people per hectare derived from ethnographic research in Iran (Watson 1979, pp.35-47; Kramer 1982, p.162) and North Yemen (van

Beek 1982, pp.64-65). Kuijt (2000, pp.82-85) acknowledges that this method requires a series of assumptions relating to the applicability of ethnographic constants to PPN sites, stating that the resulting estimates are more suitable for comparative analysis than as definitive population estimates.

Campbell (2009) produced additional estimates (n = 10) for 'Ain Ghazal, Basta and Jericho to investigate the impact of agricultural practices on the environment. Campbell (2009, p.137) established low, mid-range and high population estimates based on estimated total site extent and ethnographically derived density coefficients of 85.9 (Jacobs 1979, p.178), 139 (Kramer 1979, p.144) and 294 people per hectare (van Beek 1982, pp.64-65). Maximum estimates were utilised to explore worst-case scenarios relating to resource exploitation pressure.

Rollefson and Köhler-Rollefson (1989, p.75) produced estimates for 'Ain Ghazal (n = 6) to explore reasons for settlement collapse at the end of the PPNB, based on total site extent and van Beek's (1982, pp.64-65) population density coefficient range (286-302 people/ha).

To investigate the relationship between group size and socio-political complexity at Ghwair I, Ladah (2006, p.150) estimated population based on total site extent and a density coefficient of 286 people per hectare (van Beek 1982, pp.64-65).

Bar-Yosef (1986, p.157) re-evaluated estimates of Jericho, suggesting a population of 400 to 900 people based on ethnographic research by Kramer (1982), with no further explanation of the methodology utilised.

Gebel and Hermansen (1999, p.19) employed an alternative method to estimate the population of LPPNB Ba'ja as part of a report on the architectural findings. It was hypothesised that extended families of around eight to ten people formed the predominant dwelling unit and that 50 to 60 families occupied around 0.6 to 0.7 hectares of densely built houses. A final population estimate of 400 to 500 people was proposed. Unfortunately, the authors provide no further information as to how these figures were derived.

An assessment of existing estimates indicates that PPN villages may have been occupied by a maximum of around 500 people during the PPNA; up to 1,400 people by the MPPNB; and up to 4,000 people by the LPPNB. However, the limited methodological basis for these estimates, the considerable estimate ranges and the focus on relative rather than absolute estimates reduce the reliability of these estimates and the efficacy of any subsequent analysis of the relationship between population parameters and other demographic or developmental factors.

4.3.2 Population density

Three types of density are explored in this research: people per hectare; space per person; and people per dwelling.

People per hectare

Ethnographic analysis of Southwest Asian villages and towns has revealed that the majority have a population density range of around 100 to 200 people per hectare, regardless of settlement size or intra-site organisation (Antoun 1972; Aurenche 1981; Kramer 1979; 1982; Wossinik 2009). As previously identified, the primary methodology for producing estimates to date has been via the application of a density coefficient to total site extent. A minimum to maximum range of 90 to 294 people per hectare based on ethnographic research is commonly utilised. Kuijt (2008a, p.290) highlights the wide range in density values, recommending the use of lower values. Density coefficients derived from archaeological analysis of prehistoric and early historic settlements usually range from around 200 to 600 people per hectare (Sumner 1979; Shiloh 1980; Halstead 1981; Finkelstein 1990; Postgate 1994; Zorn 1994; Shelach 2002; Drennan and Peterson 2008; Kennedy 2013). There has been no significant attempt to refine these density coefficients for PPN central and southern Levantine villages. The few density estimates derived for Neolithic settlements include estimates of 100 to 300 people per hectare in Greece and Crete (Halstead 1981) and 309 people per hectare for the PPNB village at Tell Bouqras, East Syria (Boerma 1989-1990).

Space per person

Ethnographic research of Southwest Asian villages and comparable villages elsewhere has produced a wide range of personal space estimates from around 1.86 m² to 13.2 m² per person (Naroll 1962; Cook and Heizer 1968; Hill 1970; LeBlanc 1971; Clarke 1974; Watson 1978; Kramer 1979; 1982; van Beek 1982; Kolb 1985; Brown 1987; Finkelstein 1990; Horne 1994; Hayden *et al.* 1996; Porčić 2012). This variation is partly due to contextual differences relating to climate, architecture, dwelling unit type and perceptions relating to crowding, privacy and personal space. However, the most significant cause is the inconsistency in the definition of 'space'. 'Space' usually refers to total roofed floor area, although it can refer to total site area, total built area and total residential floor area (that is, the area in which people lived and slept).

When based on residential floor area only, the density coefficient range is considerably reduced to around two to five m^2 per person (Hill 1970, p.75; Clarke 1974, p.286; Hayden *et al.* 1996, pp.152 and 159). Hemsley's (2008) research into the affordance of

space within structures utilises a maximum sleeping area of 1.77 m² per person. It would be reasonable to suggest that residential floor area allocations within PPN central and southern Levantine villages lie somewhere between 1.77 m² and five m² per person. Residential floor area density coefficients have the potential to produce accurate population estimates, provided that residential floor area can be identified in the archaeological record. However, due to the methodological issues associated with identifying this area, archaeologists do not generally propose precise personal space allocations and have generally avoided this technique for estimating PPN village populations.

People per dwelling

There is considerable debate regarding PPN dwelling unit size. Estimates of the number of inhabitants per dwelling require consideration of two main aspects: the first relates to the composition of the dwelling unit (i.e. an individual, a couple or pair, a nuclear or extended family, or a non-related group); whilst the second relates to the number of people typically thought to comprise that particular dwelling unit. For PPN central and southern Levantine villages, a dwelling unit size of five to six people is commonly utilised based on the theory that dwelling units predominantly comprised nuclear families and ethnographic research of nuclear family sizes in Southwest Asian villages. Byrd (2002, p.90) suggests that Southwest Asian PPN dwellings probably consisted of nuclear households due to their adaptive advantage over extended households. He explains that smaller households focus on a reduced number of simultaneous tasks and are able to distribute spatially restricted resources more easily, with less conflict and jealousy.

Archaeological investigations have attempted to refine estimates of dwelling unit size for PPN villages (Table 4.7). Analyses of house size and the role of the household indicate that smaller, curvilinear dwellings, which usually comprise undifferentiated residential floor area, may have accommodated individual, pairs or smaller units of up to three people (Flannery 1972; 2002; Bar-Yosef 1998); whilst larger and rectilinear dwellings, which are often highly compartmentalised and contain considerable storage space, may have accommodated nuclear or extended families (Rollefson and Köhler-Rollefson 1989; Gebel and Hermansen 1999; Banning 2003; Byrd 2005a; Hemsley 2008; Rollefson and Kafafi 2013). Hemsley (2008) estimated a maximum of 46 sleeping occupants for the largest house at Basta (House I) based on an upper storey residential area covering the entire ground floor plan. However, this does not take into consideration access routes to ground floor/basement rooms and such large occupant numbers are highly improbable given the population density this would reflect.

Site	Period	Dwelling type	People/ dwelling	Reference
Jericho Netiv Hagdud	PPNA	Small, single-roomed structures	1-3	Hemsley 2008 ^a
		Large, single-roomed and compartmentalised structures	4-9	
Jericho	MPPNB	Single storey pier houses	max: 5-11	
Basta	LPPNB	Large, central rooms as residential area	max: 4-8	
		2 nd storey as residential area over entire ground floor area	max: 46	
'Ain Ghazal	PPNB- PPNC	Rectilinear houses	6	Rollefson and Köhler- Rollefson 1989 ^b
Ba'ja	LPPNB	Rectilinear houses	8-10	Gebel and Hermansen 1999

Table 4.7. Dwelling unit size estimates for PPN central and southern Levantine villages.

a Based on maximum number of adults lying extended within dwellings.

b Based on estimated population (using van Beek's (1982) SPDC) and number of contemporaneously utilised houses (80% of 63 dwellings per hectare).

4.3.3 Population dynamics

A number of investigations have derived annual population growth rates for early village communities. Carneiro and Hilse (1966) and Hassan (1981) estimated a universal annual population growth rate of around 0.1% for non-industrialised, agricultural village populations; Bandy (2001) estimated a 0.08% annual growth rate for formative villages in the Titicaca Basin, Bolivia; and Drennan and Peterson (2008) estimated a 0.25% annual growth rate for communities undergoing the NDT in the Chifeng region of the Liao Valley, China, and in the Alto Magdalena, Colombia.

There have been two major attempts to estimate central and southern Levantine PPN population growth. Eshed *et al.* (2004) examined skeletal evidence from Natufian and Neolithic contexts to establish growth rates of 0.5% to 1% per annum, whilst Goodale (2009, p.160) estimated growth rates varying between -1.3% and 2.1% throughout the PPN. Kuijt (2008a, p.295) assessed population growth rates in relation to population size, population density and processes of human and settlement development throughout the NDT (Figure 4.7). His results suggest that population growth rates increased to around 1% per annum, following the development of agro-pastoralist economies during the MPPNB, then reduced to around 0.4% by the LPPNB, despite an increase in site density, stabilising at this level for the remainder of the PPN.

Deriving absolute population growth rates for PPN settlements is problematic for various reasons, including problems associated with dating and phasing; the limited number of sites containing consecutive phases; and difficulties with producing precise and accurate population size estimates.

Figure 4.7. Population growth pattern during the NDT compared to population sizes and processes of socio-cultural development (Kuijt 2008a, p.295).

4.4 Limitations of existing methodologies and estimates

This summary of the main methodologies for estimating population parameters and the existing estimates for PPN central and southern Levantine villages highlights several limitations. Firstly, there are a limited number of sites for which absolute estimates exist, particularly relating to the number of people per dwelling and the amount of space per person. Secondly, due to methodological issues, investigations rarely attempt to produce absolute estimates and those that do emphasise their benefit for comparative analysis rather than as representations of actual population size. For this reason, methodologies and density coefficients are often insufficiently critically assessed prior to application and estimates usually display considerable ranges with little attempt at refinement. Thirdly, the majority of estimates are based on a very limited range of methodologies and a narrow selection of density coefficients derived from Southwest Asian ethnographic research conducted more than three decades ago. An assessment of the environmental context and the architectural and spatial characteristics of these ethnographic cases reveals that these are often unsuitable comparatives for PPN central and southern Levantine villages, particularly those with curvilinear architecture. If archaeologists are to develop more insightful reconstructions of social developments during the NDT, more empirically and statistically robust methodologies are required for estimating absolute population size, density and

dynamics. In response to this need, a new method is developed in this investigation: the storage provisions formulae (SPF).

4.5 New method: the storage provisions formulae (SPF)

The storage provisions formulae (SPF) is a new method developed in this investigation that aims to estimate the resident population of a village based predominantly on empirical archaeological data. The formulae were derived from data produced by Hemsley (2008) (Appendix A). As part of her research into the multi-sensorial experience of central and southern Levantine PPN buildings, Hemsley (2008) employed a method for estimating the number of adult sleeping occupants per building. Using average personal sleeping space requirements of 1.24 m² for a 1.65 m tall person and 1.77 m² for a 1.83 m tall person, maximum occupant ranges were calculated per structure, factoring in hearths and surrounding activity zones, access routes and three potential amounts of annual personal storage allowance within the floor area (none; 0.46 m³; 2 x 0.46 m³) (Figure 4.8).

Figure 4.8. Examples of Hemsley's (2008) method for delineating space within PPN structures at Jericho. Left: PPNA - eight adults sleeping facing inwards (p.182); right: MPPNB - two 1.83 m tall and four 1.65 m tall adults sleeping facing inwards towards a hearth and surrounding activity area, with 0.46 m³ annual personal storage within the floor area (p.246).

The human heights utilised in Hemsley's (2008, p.82) investigation represent the lower to upper end of the modern average adult height range. As the target population in this method relates only to adults, this method avoids making assumptions about the composition of the dwelling unit. However, there would certainly have been children present within these settlements, meaning that estimates based on the SPF may represent an underestimation of actual population size. Alternatively, animals may have occupied some of the residential area, particularly from the MPPNB with the increasing prevalence of domesticated animals, meaning that the SPF may overestimate the population size. It is important to highlight the potential impact of the presence of children and animals on the SPF population estimates. However, in this analysis, only the basic application of the SPF is explored with further work recommended to refine the method.

Storage quantification in Hemsley's (2008) analysis was based on average daily calorific requirements for physically active modern hunter-gatherer populations (c. 2,500 calories/day) and an estimated requirement of 221 kilos of grain per person per year based on ethnographic research into the percentage of diet comprising plant resources (c. 80%) and calorific content of these resources (1 kilo = 3,300 calories) (Hemsley 2008, pp.90-91). Ethnographic data relating to daily calorie intake in huntergatherer populations is considered directly applicable to prehistoric populations as sustainability requirements should have remained relatively constant. Assuming that grains were stored in a semi-clean state, Hemsley (2008, p.92) calculated that 0.33 m³ of stored grains would be required to comprise 80% of an individual's total annual intake. Factoring in 25% wastage, she arrived at a final annual personal storage requirement of 0.46 m³. Maximum provisions (2 x 0.46 m³) accounted for the amount required to sustain an individual for a year, with additional quantities as a risk buffer and for seed for the following year (Hemsley 2008, p.89). This maximum amount is comparable to Kramer's (1982, p.121) estimate of stored requirements for a family of five to six people.

Consideration of storage allowance limits the maximum occupant number considerably (Hemsley 2008, p.141). The correlation between floor area and the mid-point of the maximum number of 1.65 m and 1.83 m tall sleeping occupants based on each of the three amounts of storage provision produces formulae that have the potential to directly calculate dwelling unit size from floor area (Figure 4.9).

Figure 4.9. Correlation between floor area and the mid-point of the maximum number of 1.65 m and 1.83 m tall sleeping occupants based on three amounts of annual personal storage within the floor area. Data from Hemsley (2008) (Appendix A).

This presents an opportunity to develop a more empirically robust and systematic methodology for estimating the total (adult) population size and the number of people (i.e. adults) per dwelling. To estimate population size and people per dwelling via the SPF in this investigation, residential floor area is assigned as the A variable and suitable formulae are selected based on archaeological evidence for storage (or the potential for storage) within the residential floor area. At the micro-level, calculations of residential floor area are derived from the excavated evidence. Systematic estimates use constants derived from micro-level analyses.

4.6 Group size and cultural evolution

Cultural evolutionary theory is based on the notion that, over time, human socio-cultural developments, such as the emergence of agriculture or the rise of social inequalities, occur as a result of adaptation to non-cultural stimulus, such as population growth or climate change. Cultural evolutionary theory proposes that cultural developments are directional, progressing either through a process or via a sequence from simple to more complex (Feinman 2000, p.5). A widely accepted theory based on this premise is Fried's (1967) three-stage evolution from egalitarian to ranked, and eventually, stratified societies. Egalitarian societies are described as lacking inherited differences in wealth and status, and are commonly associated with hunter-gatherer communities; ranked or moderately stratified cultures are described as having inherited differences with the potential for generational status change and have been associated with small to medium-scale food producing economies; and highly stratified cultures are described as having inherited differences with little or no potential for generational status change and are associated with highly complex and diversified societies (Watts et al. 2016, p.228). Archaeological evidence for the PPN supports this theory of evolution, indicating a general shift from egalitarian to ranked or moderately stratified communities.

Theorist have explored different trajectories for this evolution. For example, early theorists explored unilinear evolution, whereby culture evolves from cumulative mastery of resources and technology through a prescribed set of stages (White 1959; Castro and Toro 2014). This theory was largely criticised for not accounting for the remarkable diversity in social systems and, as such, others sought to explain cultural development via multilinear evolution. Multilinear evolution explains diversity in cultural evolution as a process of local adaptation, in which cultural development is induced as a result of community members solving problems of daily life (Steward 1955). Local adaptations are argued to produce geographically localised cultures that prompt exchange and interdependence between communities adapted to, and harnessing the

outputs of, their respective geographical zones (Barth 1956). Ultimately, groups that exploit a wider repertoire of food resources are said to gain a competitive advantage over nearby groups, further inducing geographically confined competitive developments in social organisation and technology (Read and LeBlanc 2003).

A key element of human socio-cultural evolution is group size (Oswalt 1976; Shennan 2001; Henrich 2004; Kline and Boyd 2010). There are two major theories that link changes in population size to socio-cultural evolution. The first relates to the relationship between groups and their environment, particularly in relation to food acquisition (Andersson and Read 2016). Johnson and Earle (2000, pp.24-31) explain the "primary engine" of subsistence intensification as the positive feedback between population growth, which expands the needs of a society, and technological developments that enhance resource exploitation. As the population increases, groups develop more complex food procurement strategies and technologies, indirectly inducing and/or increasing social complexity. This theory emphasises the role of population pressure and group adaptation on cultural complexity.

The second relates to what is defined as the "treadmill of cultural loss" (Kline and Boyd 2010), whereby highly creative individuals are required to counteract the loss of information that occurs through imperfect imitation of transmitted skills. The probability of selecting effective role models and the occurrence of highly creative individuals is argued to be higher in larger populations, enabling these communities to "outrun" culture loss (Shennan 2001; Henrich 2004; Kempe and Mesoudi 2014). This theory emphases the role of endogenous forces on increasingly complex social interactions and institutions (Andersson and Read 2016).

The directional and cumulative assumptions underlying cultural evolutionary theory and the widespread recognition of the link between group size and cultural evolution have lead some researchers to explore group size thresholds: that is, the size at which groups demonstrate evidence for certain socio-cultural developments. Group size thresholds are based on the notion that as groups increase in scale, organisational strategies shift, changing the way society functions in terms of the relationships between various social institutions (i.e. family and relationship networks, religion, education, economic activities and government). The importance of these social institutions is particularly emphasised in structural functionalist approaches, in which such institutions are considered to serve three core functions: i) to structure social relationships through role expectation; ii) to enable suitable people to adopt positions of power; and iii) to provide symbols, policies and ideologies that form the meanings and values underlying the social system (Verwiebe 2014). Some major elements of

structural functionalism include, social inequality, interdependence, social cohesion and equilibrium.

Social inequality (i.e. unequal distribution of risks and rewards) is considered an important element of societies, as it provides motivation for people to act in order to gain rewards (i.e. wealth, status, power, etc.). This is both a manifestation and facilitator of social diversification, often linked to the division of labour. Durkheim (1893) refers to the division of labour in more complex societies (i.e. non hunter-gatherer) as representing "organic solidarity", where diversity leads to interdependence between community members. This interdependence requires increasing specialisation (i.e. craft specialisation), ultimately leading to more complex, socially diversified and stratified (i.e. hierarchical) societies (Bodley 2003, p.55).

Theories relating to social cohesion are closely linked to those of scale (i.e. relative size) and scalar stress. The term "scalar stress" describes the processes of increased intra-group conflict resulting from a lack of cohesiveness and reduced quality in decision-making that occurs in larger groups (Johnson 1982). As group size approaches a critical level of scalar stress and the community is no longer able to manage as it once did, mechanisms are sought to promote social cohesion and prevent group fissioning, as often occurs within smaller-scale societies (Bandy 2004; Alberti 2014). Social cohesion is achieved by producing and maintaining positive membership attitudes and behaviours, and interpersonal interactions that promote group-level conditions (Friedkin 2004, p.410). Strategies for social cohesion are aimed at producing equilibrium in the social system, both internally, between interrelated sub-groups or social institutions, and externally, between the social system and the environment (Spencer 1898; Hackman and Vidmar 1970).

Although some emphasise the role of non-demographic factors (i.e. environmental risk and mobility) in cultural evolution (Vaesen *et al.* 2016), Johnson and Earle (2000, p.2) argue that "population growth is undeniably central to the process of sociocultural evolution, because of its clear consequences for how people meet their basic needs". When exploring cultural evolution from early small-scale to complex societies, three common evolutionary processes emerge: intensified subsistence practices, political integration and social stratification. Based on the recognition of these key processes, this research focusses on the relationship between group size and developments relevant to the NDT: i) changing subsistence practices; ii) integrative and cohesive strategies aimed at reducing scalar stress in larger sedentary communities; and iii) increasing labour diversification and social complexity. Extensive research has been conducted on the impact of group size on cultural complexity, particularly in hunter-gatherer groups (Oswalt 1976; Read 2008; 2012; Kline and Boyd 2010; Collard *et al.* 2013; 2016; Vaesen *et al.* 2016). Fewer studies have focussed on the relationship between group size and cultural evolution in non-industrialised, small-scale, food-producing communities, such as those which existed during the central and southern Levantine PPN. From these studies, several group size thresholds potentially relevant to this period have been proposed (Table 4.8). These thresholds are drawn from several ethnographic, historical and archaeological analyses of settlements undergoing the NDT, or exhibiting similar characteristics to PPN villages, throughout the world. These thresholds are based on various theories, including labour requirements relating to the primary mode/s of subsistence (Binford 2001); the potential mating network; and the size of land available for agriculture, pastoralism and hunting (Kuijt and Goring-Morris 2002, p.368).

The smallest group size threshold identified in this analysis relevant to the NDT relates to the transition from a mobile to a permanently settled community. This is often hypothesised to occur in populations of at least 25 people (Fletcher 1981; Binford 2001; Kuijt and Goring-Morris 2002; Bandy 2010). This minimum group size may be linked to the average number of families recorded in mobile communities (3-4 nuclear families) as opposed to early sedentary communities (perhaps 5-10 nuclear families) (Goring-Morris and Belfer-Cohen 2008, p.274).

The next level of thresholds relates to changes in subsistence from hunting and gathering to farming (i.e. the cultivation of wild plants) ($P \ge 50$) (Drennan and Peterson 2008), and, eventually, to fully agro-pastoralist strategies (i.e. relating to domesticated species) ($P \ge 100$) (Fletcher 1981; Kuijt and Goring-Morris 2002). In some cases, agricultural practices are present in populations that do not exceed these thresholds. The incidence of cumulative cultural evolution that occurs within extended labour networks could explain the presence of more developed processes than expected within some small settlements (Shennan 2001; Henrich 2004; Vaesen 2012). Indeed, within certain geographical settings, larger populations may be formed from networks of interactive subpopulations (Powell *et al.* 2009; Kobayashi and Aoki 2012).

Gallagher *et al.* (2015, pp.14220-14221) explored several models for the transition to farming, suggesting that farming has a greater probability of emerging within smaller communities, in which group cooperation is favoured over behavioural experimentation. Other studies have linked subsistence developments to larger populations, citing behavioural experimentation as a key element (Mesoudi 2011; Castro and Toro 2014; Gallagher *et al.* 2015). This, combined with the ability to select the most effective role models for skills transmission in larger groups (Andersson and Read 2016, p.272), is

argued to increase domains of specialisation and diversification (Naroll 1956; Carneiro 1967). Boserup (1965) argues that maintaining these skills and producing further innovations would require ever larger labour units and networks, and more hierarchical organisational structures in which some community members attain power or higher status through highly specialised knowledge. As such, Boserup (1965) views population growth as an essential, if not sole, factor in increasing social complexity.

A further threshold relates to the role of the house and household in increasing social complexity. Kuijt and Goring-Morris (2002, p.368) suggest that group sizes of 100 to 750 people are common for southern Levantine sedentary farming and/or herding villages comprising potential house-based societies. These societies are based on the house as the fundamental organisational unit. These houses are often interpreted as representing household economic units that function within an overarching, suprahousehold economy (Gillespie 2007; Baird *et al.* 2016). The emergence of households as economic sub-units has been linked to increasing reliance on agricultural and pastoral activities, as farmers may have preferred to share produce with closely related individuals rather than with less productive neighbours (Wills 1992; Winterhalder 1990; Flannery 2002). In this way, thresholds relating to house-based societies may be closely linked to those relating to changing subsistence practices.

Ethnographic research has revealed that in populations of at least 127 people intravillage conflicts frequently arise (Chagnon 1980; Bowser 2000; Dunbar 2003; Alberti 2014, p.12) leading either to fissioning of communities into subgroups (i.e. 'daughter villages') (Bandy 2004, pp.323 and 330; 2006, p.233) or to the introduction of mechanisms for promoting social cohesion within larger groups (Kosse 1990, p.284; Hill and Dunbar 2003).

Mechanisms to facilitate greater social cohesion include:

- segmentation of the community into neighbourhoods (Düring 2013);
- an increase in economic independence of household units (Byrd 1994; Kuijt and Goring-Morris 2002);
- greater compartmentalisation within dwellings to alleviate stress associated with social crowding (Kuijt 2000);
- the maintenance of communal food-related activities (i.e. feasting) (Twiss 2008); and,
- the development of more formalised institutions for group decision-making, and ceremonial and ritual activities (Byrd 1994).

Within settlements of at least 250 people, it is suggested that individuals would be unable to maintain close personal relationships with all people causing the transition from egalitarian to more complex social structures (Forge 1972; Kosse 1990; Dunbar 1992; Bintliff 1999). Suggested indicators of increased social differentiation and complexity include: i) extensive food storage, which would have required some degree of management in terms of acquisition and distribution (Kuijt 2000); ii) differentiation of individuals at death, including variable association with grave goods or differential skeletal treatment; iii) variable structural form of, and differential and/or restricted access to, residential structures (Kuijt and Goring-Morris 2002, p.421); and iv) evidence for innovative technologies that would have required specialised knowledge, such as the manipulation of lithic material to produce rings and bracelets, or hydrological developments that enabled construction of water wells (Gebel and Bienert 1997: Galili and Nir 1993). More complex methods of communication and interaction would have been required to monitor community members within these larger sedentary populations. Efforts to foster cooperative relationships within such communities may be reflected by repeated symbolic representations and standardised ritual practices (Rosenberg and Redding 2002, pp.40-52).

At population levels of around 400, face-to-face communication becomes more difficult and it is argued that, in populations of such size, information may be regulated by a restricted number of authoritative individuals with decision-making powers ($P \ge 500$). In ethnographic contexts these roles are usually occupied by adult males (Naroll 1956, p.690; Kosse 1990, p.284). The presence of authoritative individuals may be indicated by notched and incised items that may have been formal markers for identification purposes (Edwards 2007, p.27). In addition, specialist skeletal treatment, such as skull plastering, may have been reserved for such individuals (Kuijt and Goring-Morris 2002). Rival authoritative individuals are suggested to occur within settlements of at least 1,500 people, giving rise to politically stratified communities (Alder 1990). Longrunning walls which segment some settlements may indicate such rival or competing groups (Goring-Morris and Belfer-Cohen 2008, p.276).

Cross-cultural studies of non-hierarchical societies have revealed similar group size thresholds for specific developmental processes. Indeed, Johnson (1982) has identified a distinct pattern whereby group size thresholds in such communities often represent multiples of six times the average household size. However, in hierarchical communities, the relationship between group size and developmental processes is more varied, being largely dependent on environmental context and underlying cultural practices. PPN central and southern Levantine villages demonstrate increasingly hierarchical social structures. Therefore, an exploration of group size thresholds

specifically founded on cultures undergoing the NDT, and in similar geographic settings if possible, has the potential to enable archaeologists to predict specific developmental processes based on estimated group size, and potentially to predict group size based on evidence for developmental processes. Despite the problematic nature of group size thresholds, this investigation seeks to explore the precise relationship between group size and socio-cultural developments that occurred during the PPN in the central and southern Levant. The more empirically and statistically robust population estimates produced in this investigation will facilitate this exploration.

Table 4.8. Hypothesised group size thresholds relevant to PPN villages.

Social state/condition	Group size	References
	threshold	
Extended family nomadic tribal camp: southern Levant	10-30	Kuijt and Goring-Morris 2002, p.368
Transition to sedentary existence	≥ 25	Fletcher 1981; Binford 2001
Sedentary tribal hamlet: southern Levant	30-100	Kuijt and Goring-Morris 2002, p.368
Minimum village size	40	Bandy 2010, p.31
Initial farming village: China	≥ 50	Drennan and Peterson 2008
Largest hunter-gatherer group size based on mobility cost curves	100-300	Perlman 1985, p.42
Adoption of a fully sedentary, agro-pastoralist subsistence strategy	≥ 100	Fletcher 1981
Sedentary farming and/or herding village w/possible household units: southern Levant	100-750	Kuijt and Goring-Morris 2002, p.368
High probability of experiencing critical scalar stress (intra-village conflict)	≥ 127	Alberti 2014, p.12
Clan or regional group	≤ 150	Zhou <i>et al.</i> 2005, p.440
Fission/fusion: sectoring or introduction of mechanisms for social cohesion	≥ 150	Kosse 1990, p.284; Hill and Dunbar 2003
Size of neighbourhoods at PPN Çatalhöyük	150-250	Düring 2013
Large villages split into 'daughter' villages	170	Bandy 2004, pp.323 and 330
Intra-village conflicts frequently arise (scalar stress)	≥ 200	Chagnon 1980; Bowser 2000
Unable to maintain close personal relationship with all people	≥ 250	Forge 1972; Kosse 1990; Dunbar 1992; Bintliff 1999
Predominantly egalitarian communities develop more complex social structures	≥ 350	Forge 1972
Face-to-face interaction with all people	≤ 400	Kosse 1990, p.284
Development of more complex, hierarchical society: New Guinea	≥ 400	Kosse 1990, p.283
Transition from village to town	≥ 400	Murdock and Provost 1973
More casual relationships	400-600	Forge 1972; Kosse 1990; Dunbar 1992; Bintliff 1999
Demographically stable community - intra-community mate-exchange: Chacoan region	≥ 475	Mahoney 2000, p.20
Rise of authoritative officials and development of polities	≥ 500	Naroll 1956, p.690
Adult males with decision-making power regulate information	500-2500	Kosse 1990, p.284
Politically non-stratified communities	≤ 1500	Alder 1990
Maximum pueblo village size: American Southwest	≤ 2000-3000	Kosse 1990, pp.282-283
Development of complex society	≥ 2000	Kosse 1990, p.283
Community members able to monitor each other through social networks	≤ 2500	Kosse 1990, p.284
Need for innovative farming methods (i.e. specialised pastoralism, flood-plain cultivation)	3000-5000	Bogaard and Isaakidou 2010
Largest Southwest Asian Neolithic settlement population estimate: Çatalhöyük	3500-8000	Düring 2013, p.35
4.7 Summary

Population size, density and dynamics are essential for reconstructing early village development. Commonly utilised methods for estimating population parameters of formative, pre-industrial villages include the housing unit method (HUM), residential area (RADC) and settlement population density (SPDC) coefficient methods, and allometric growth formulae (AGF). An additional method established in this analysis is the storage provisions formulae (SPF), based on data produced by Hemsley (2008), which equate available residential floor area to a maximum number of sleeping occupants.

These methods can be applied at the micro-level and systematically to multiple sites. For each of these methods, there are a series of theoretical and methodological considerations, particularly relating to the identification of dwellings and residential or sleeping area; the composition of the dwelling unit; site extent estimates; the representativeness of structural density in the excavated area; and the degree of structural and site contemporaneity.

In this analysis, a methodology is explored for determining structural contemporaneity values based on span estimates for building use-life and phase length (Varien *et al.* 2007). The use of Bayesian chronological modelling for producing more precise span estimates is explored.

A summary of existing estimates of population parameters for PPN central and southern Levantine villages has highlighted some of the theoretical and methodological limitations, providing support for the exploration of more empirically and statistically robust methods in this investigation. Accurate and precise estimates will enable more meaningful analyses of the relationship between PPN village group size and cultural evolution during the NDT.

5 Methodology

This chapter describes the selection and preparation of data, including criteria for inclusion of sites within the PPN village database; estimates of total site extent; criteria for the selection of sites for micro-level assessment; criteria for identification of (potential) dwellings and residential area; and the process for digital transcription of site plans. This is followed by a detailed explanation of the methods employed in micro-level analyses and for systematic reconstruction of population parameters of all sites in the PPN village database.

5.1 Data selection and preparation

5.1.1 The PPN village database

The PPN village database (Appendix D.1) includes permanently and predominantly permanently settled, open air clusters of structures, including dwellings and associated non-residential structures and areas. The database does not include rockshelter or cave sites (i.e. Iraq ed-Dubb) (Kuijt 2004a); sites which have been interpreted as principally for ceremonial, ritual or mortuary purposes (i.e. Kfar HaHoresh) (Barker 2012), or for other communal or production activities (i.e. WF16) (Finlayson *et al.* 2012); or ephemeral or seasonal camps, whose inhabitants were either predominantly mobile or would have maintained permanent accommodations elsewhere (i.e. Nahal Issaron) (Barzilai and Goring-Morris 2007).

The initial dataset was based on Coward's (2010) database of Near Eastern prehistoric archaeological sites developed between 2005 and 2008 for the British Academy Centenary Project 'From Lucy to Language: the archaeology of the social brain'. Potential village sites were selected from this database, with additional sites identified through extensive examination of site reports, publications, and online resources and databases (i.e. the Radiocarbon CONTEXT database, MEGAJordan and ex oriente). Those which contained village characteristics as outlined in the introduction were classed as villages in this analysis.

The village database includes PPN period, identification (ID) numbers, site name, site type based on the newly proposed classification system (see Section 8.8), predominant architectural form (i.e. curvilinear or rectilinear), estimated total site extent, latitude and longitude coordinates, country of location and references. ID numbers are assigned first according to PPN period, then by site type and alphabetical order of site names. ID

numbers are utilised in all tables, graphs, site distribution maps (created in ArcMAP10) and statistical analyses (conducted in SPSS).

5.1.2 Estimates of total site extent

Total site extent estimates are used in several methodologies for estimating population. As such, the accuracy of site extent estimates needs to be addressed. It is generally recognised that there is a tendency to overestimate site sizes based on artefact scatters and to not clearly consider the extent of the habitable area in relation to disused open area or space designated for non-residential purposes, such as farming or communal activities (Goring-Morris and Belfer-Cohen 2008, p.270). Inflated site extent estimates will result in inflated population size estimates.

Total site extent estimates were derived from publications for 79 of the 106 villages and village phases. Where a general site size and minimum or maximum extent is published (i.e. "a small site of perhaps 1-2 ha"), the minimum suggested extent is utilised. Where the published site extent is excessive (i.e. as for LPPNB Aviel: 50 ha and Kharaysin: 36 ha) or includes multiple periods (i.e. Tell Eli and Tell Labwé), a moderated site extent is utilised (Tables 5.1-5.3; Figure 5.1). This extent was determined via analysis of (1) published site extents per period and predominant architectural form; (2) site extents for preceding and succeeding phases (where present); (3) the extent of nearby villages; and (4) any additional information relating to site extent. The same method was utilised to establish site extent for the 27 villages/village phases for which site extent estimates were not published. There is potential for circularity in these suggested site extent per period, site type and location. However, this is mitigated against by the assessment of additional site-specific information relating to site size.

For villages assessed at the micro-level that demonstrate evidence for considerable uninhabited space within the estimated total site extent (i.e. Ghwair I, LPPNB el-Hemmeh, Basta and Ba'ja), a reduced site extent was utilised in calculations of population size to avoid overestimation. This reduced extent attempts to account for only the habitable area. The original estimated site extent was utilised in all subsequent micro-level and systematic analyses. Thus, constants and proportions derived at the micro-level and applied systematically to all sites in the PPN village database inherently account for uninhabited space.

89

Table 5.1. Reduced and moderated site extents.

Site name	Period	Site extent	(ha)	Reference
		Estimated	Moderated/	
			Reduced	
Huzuq Musa	PPNA	1-2	1	Nadel and Rosenberg 2013
Tell Aswad 1A	PPNA	≥ 1	1	Moore 1983
Tell Aswad 1B	EPPNB	≥ 1	1	Moore 1983
Horvat Galil	EPPNB	≤ 2	1	Hershkovitz and Gopher 1988
Qminas	LPPNB	≤ 2	1.5	Masuda and Sha'ath 1983
Tell Aray	LPPNB	≥ 5	5	Tsuneki 2012
Tell 'Ain el-Kerkh/II	LPPNB	≥ 16	16	Tsuneki 2012
Sites assessed at	micro-level			
Ghwair I	MPPNB	1.2-1.45	1.325	Simmons and Najjar 2003
El-Hemmeh	LPPNB	1	0.8	Rollefson 1999
Basta	LPPNB	12-14	13	Kuijt 2000
Ba'ja	LPPNB	1.2-1.5	1.35	Gebel 2003

Table 5.2. Site extents per period and architectural form.

				Statistics		
		Ν	Mean	Median	Minimum	Maximum
	Valid	Missing				
Period						
PPNA	16	2	.47	.20	.05	2.50
EPPNB	6	3	.60	.65	.10	1.00
MPPNB	21	7	1.56	.50	.06	5.00
LPPNB	24	8	5.34	4.50	.30	16.00
PPNC	12	7	4.18	4.00	1.00	8.00
Predominant a	rchitectur	al form				
Curvilinear	26	7	.39	.20	.05	2.50
Rectilinear	49	15	4.28	3.00	.25	16.00
Unknown	4	5	.55	.50	.20	1.00

Figure 5.1. Site extents per period and architectural form (* 16: Jericho; 15: Huzuq Musa; 18: Tell Aswad IA; 24: Tell Aswad IB; 78: Basta; 79: Beisamoun; 84: Tell 'Ain el-Kerkh/II).

Table 5.3. Suggested site extents for sites of unknown size.

ID	Site name	Period	Predominant architectural form	edominant Site size chitectural per period form (ha)		Site size per Size of nearby sites predominant architectural form (ba)		Size of nearby sites	Additional information/ References	Suggested site size (ha)
				Mean	Median	Mean	Median			
3	Bori Baraine	PPNA	Curvilinear	0.47	0.20	0.39	0.20	-	(Copeland 1991)	0.20
5	El Aoui Safa	PPNA	Curvilinear	0.47	0.20	0.39	0.20	-	(Coqueugniot and Anderson 1996)	0.20
22	Motza VI	EPPNB	Curvilinear	0.60	0.65	0.39	0.20	-	EPPNB phase up to 2 m thick; at least 3 occupations (Khalaily et al. 2007)	0.50
23	Mujahiya	EPPNB	Curvilinear	0.60	0.65	0.39	0.20	-	"Small"; possibly ≤ 2 ha (Gopher 1990)	0.50
26	Tell Qarassa	EPPNB	Rectilinear	0.60	0.65	4.28	3.00	-	(Ibañez <i>et al.</i> 2010)	1.00
33	Jebel Ragref	MPPNB	8 Curvilinear	1.56	0.50	0.39	0.20	'Ain Abu Nekheileh (2 km): 0.12; Jebel Arqa (27 km): 0.2; Jebel Salaqa (33 km): 0.1	"Small" bead production site; similar to Jebels Arqa, Rabigh and Salaqa (Fabiano <i>et al.</i> 2004)	0.15
35	Shkārat Msaied	MPPNB	8 Curvilinear	1.56	0.50	0.39	0.20	Adh-Dhaman I (24 km): 0.2 Beidha (11 km): 0.2 Ghwair I (21 km): 1.325	0.1 ha of architecture (Kinzel 2013)	0.20
36	Tell Eli IV	MPPNE	3 Curvilinear	1.56	0.50	0.39	0.20	-	10 ha includes all periods (Simmons 2007)	2.00
39	ʻAil IV	MPPNB	8 Rectilinear	1.56	0.50	4.28	3.00	Jebel Arqa (28 km): 0.2 Jebel Rabigh (17 km): 0.06 Jebel Salaqa (22 km): 0.1	A "major" site; compared to Ba'ja (1 ha), Beidha (0.2 ha) and Shkārat Msaied (0.2 ha) (Gebel 2008; 2010)	1.00
41	Beisamoun	MPPNE	8 Rectilinear	1.56	0.50	4.28	3.00	-	Less than LPPNB Beisamoun (13.5 ha); similar to MPPNB Tell Aswad (5 ha) (Bocquentin <i>et al.</i> 2011)	5.00
46	Motza V	MPPNB	8 Rectilinear	1.56	0.50	4.28	3.00	Abu Gosh (6 km): 0.25 Jericho (30 km): 4	(Khalaily <i>et al.</i> 2007)	1.00
55	Tel Roim West V	MPPNB	3 Unknown	1.56	0.50	0.55	0.50	-	PPNC Tel Roim West IV = 1 ha (Nadel and Nadler-Uziel 2011)	0.50
57	'Ail IV	LPPNB	Rectilinear	5.34	4.50	4.28	3.00	'Ain Jamam (19 km): 7	A "major" site; similar to Ba'ja (1.35 ha), Beidha (0.3 ha) and Shkārat Msaied (0.2 ha) (Gebel 2008; 2010)	2.00
62	Motza Tahtit	LPPNB	Rectilinear	5.34	4.50	4.28	3.00	Jericho (31 km): 4	3 LPPNB phases; "almost certainly abandoned" by PPNC (Mizrahi 2015)	2.00

9

ID	Site name	Period	Predominant architectural form	Site per p (h	size eriod a)	Site s predo archit form	ize per minant ectural n (ha)	Size of nearby sites	Additional information/ References	Suggested site size (ha)
				Mean	Median	Mean	Median			
66	Tell Eli III	LPPNB	Rectilinear	5.34	4.50	4.28	3.00	-	10 ha includes all periods (Simmons 2007)	5.00
68	Tell Labwé	LPPNB	Rectilinear	5.34	4.50	4.28	3.00	-	12 ha includes PN (Khalidi et al. 2013)	5.00
81	Kharaysin	LPPNB	Rectilinear	5.34	4.50	4.28	3.00	-	36 ha scatter likely due to deflation (Thorpe and Edwards 1986)	10.00
85	Wadi Shu'eib	LPPNB	Rectilinear	5.34	4.50	4.28	3.00	-	LPPNB/PPNC: 14-30 acres (5.5-12 ha); larger than Jericho (LPPNB: 4 ha); smaller than 'Ain Ghazal (LPPNB: 10 ha) (Simmons <i>et al.</i> 2001)	8.00
86	Aviel	LPPNB	Unknown	5.34	4.50	0.55	0.50	-	50 ha scatter (Barkai and Biran 2011)	3.00
87	Es-Sayyeh	LPPNB	Unknown	5.34	4.50	0.55	0.50	-	10 ha includes all periods; occupied area "much smaller" (Kafafi <i>et al.</i> 1999)	3.50
91	Hagoshrim VI	PPNC	Rectilinear	4.18	4.00	4.28	3.00	Beisamoun (11 km): 7 Tel Roim West IV (10 km): 1	8 ha includes PN levels; a "major" site (Rosenberg and Getzov 2006)	3.50
94	Tell Eli III	PPNC	Rectilinear	4.18	4.00	4.28	3.00	-	10 ha includes all periods (Simmons 2007)	3.50
95	Tell Labwé	PPNC	Rectilinear	4.18	4.00	4.28	3.00	-	12 ha includes PN (Khalidi et al. 2013)	3.50
98	Tell Teo	PPNC	Rectilinear	4.18	4.00	4.28	3.00	Beisamoun (9 km): 7 Tel Roim West IV (23 km): 1	(Horwitz and Ducos 2005)	3.50
100	Wadi Shu'eib	PPNC	Rectilinear	4.18	4.00	4.28	3.00	-	LPPNB/PPNC: 14-30 acres (5.5-12 ha); smaller than 'Ain Ghazal (PPNC: 8 ha) (Simmons <i>et al.</i> 2001)	6.00
105	Es-Sayyeh	PPNC	Unknown	4.18	4.00	0.55	0.50	Tell Abu es-Sawwan (10 km): 5	10 ha includes all periods; occupied area "much smaller" (Kafafi <i>et al.</i> 1999)	2.00
106	Wadi Fidan C	PPNC	Unknown	4.18	4.00	0.55	0.50	-	(Colledge 2001)	1.50

5.1.3 <u>Selection of sites for micro-level analysis</u>

Eleven villages were selected for micro-level analysis (Figure 5.2) based on the following criteria:

- clear and well-defined site plans enabling identification and measurement of assessable area and different aspects of the built environment;
- detailed excavation reports containing interpretation of archaeological features;
- clear evidence for, and interpretation of, residential structures enabling quantification and measurement of (potential) dwellings and residential area;
- justifiable dating of the site and its phases to cultural-historical periods.

These sites include 15 phases. Unfortunately, due to the limited spatial excavation of EPPNB and PPNC sites, these periods are not represented.

	PPNA	EPPNB	MPPNB	LPPNB	PPNC
Nahal Oren					
Gilgal I					
Netiv Hagdud		1 1 1	 	1 1 1	1 1 1
El-Hemmeh		1 1 1	1 1		1 1 1
Shkārat Msaied		1		1	1
Beidha					
Ghwair I					
Wadi Hamarash I		1 1 1		1 1 1	1 1 1
'Ain Abu Nekheileh		1 1 1		1 1 1	1 1 1
Basta		1 1 1			
Ba'ja		 			-

Figure 5.2. Sites selected for micro-level analysis.

5.1.4 Criteria for identification of (potential) dwellings and residential area

Dwellings are defined as structures in which people slept. Residential area in this investigation denotes (potential) sleeping area. Identification of dwellings and residential area is based on archaeological interpretations provided in publications and site reports. All interpretations of the excavators and report writers are accepted as correct. Where interpretation is unavailable, (potential) dwellings and residential area are distinguished based on the presence of a combination of interior features, including hearths, plaster or clay flooring and sleeping platforms or compartments; in situ artefacts relating to food storage, processing, preparation and consumption; and architectural elements that show strong similarities to previously identified dwellings, including size, construction materials, morphology and the potential function of associated architectural features (i.e. annexes for cooking and storage) (Watson 1978; Kramer 1982; Byrd 2002; 2005a). Where upper storey area exists, this is usually

interpreted as residential area (Kuijt 2000; Byrd 2005a). Identification of dwellings and residential area is difficult and several identifications are hypothetical. There is always a margin of error when attempting to produce precise estimates from such data. However, attempts have been made to produce the most accurate estimates given the data available.

5.1.5 Transcription of site plans

Accurate area measurements are required for all micro-level methodologies. Existing site plans were transcribed using ArcMAP10. Images of site plans were imported into the ArcMAP10 interface. The map unit was set to metres, allowing the scale bar on the original site plan to be georeferenced to the correct length. Shapefiles were created to measure each archaeological feature (Table 5.4).

Shapefile	Polygon description	Use						
Potential dwellings	Encompasses the total area of potential dwellings including outer walls and clearly associated annexes. Where dwellings share an outer wall, the polygon border follows the midpoint of the wall to avoid doubling-up on area measurements. Where a dwelling floor exists with no/limited evidence for a wall, a hypothetical wall outline is drawn based on the average wall width within the site plan.	Dwelling identification for the HUM, SPF, RADC, AGF1, and SPDC.						
Built (roofed) floor area	Follows the inside of the building wall and excludes built-in features identified in published site plans (i.e. cists and steps). The polygon border crosses between vertices of the inside of the wall on both sides of a doorway or gap.	To calculate floor area and proportions relating to floor area for the RADC, SPF and AGF1.						
Potential upper storey residential built floor area	Where evidence exists for upper storey floor area, this is usually suggested to comprise residential area. Polygons are drawn as described for 'built floor area'.							
Potential residential built area	Encompasses the built area in which people probably slept, including walls and any built-in features.	To calculate residential area (and proportions of) for the HUM, RADC, SPF and AGF1.						
Potential non- residential built area	Encompasses the built area which was probably not utilised for sleeping, such as workshops, storage facilities and other non-residential structures.	To calculate built area (and proportions of) for the HUM, RADC and AGF1.						
Assessable area	Follows the boundary of the assessable area. Baulks, insufficiently described areas and unassessable areas () are subtracted from the total assessable area prior to assessment.	To calculate the proportion of site assessable for use in all methodologies.						
Additional polygon	Additional polygon shapefiles							
Evilding walls	Potential upper storey non-re	esidential built floor area						
Building walls:	Building walls: lower storey Corridors or passageways							

Table 5.4. Explanation of shapefiles and their use in micro-level methodologies.

5.2 Micro-level estimates

Methods for estimating population parameters at the micro-level include the housing unit method (HUM), the residential area density coefficient method (RADC), the storage provisions formulae (SPF), the allometric growth formulae derived by Naroll (1962) (AGF1) and Wiessner (1974) (AGF2), and the settlement population density coefficient method (SPDC). For each method, there are a number of sub-methods which enable the calculation of a range of demographic data for further analysis and for systematic reconstruction of population parameters of sites in the PPN village database (Table 5.5).

5.2.1 <u>Methodological considerations and assumptions</u>

The following basic assumptions and processes are applied for all methods:

- The assessable area is considered representative of the total site, unless there is sufficient evidence to suggest otherwise. This evidence could include dwelling clusters, variable structural layout in different areas, and disused areas or corridors between structures indicative of sectoring into potential neighbourhoods; unsustainable structural density in the excavated area; or large open and communal areas in the excavated area. Where this occurs, a reduced site extent is used in calculations of population size to avoid overestimation (i.e. Ghwair I, LPPNB el-Hemmeh, Basta and Ba'ja).
- 2. The term 'residential area' equates to (potential) sleeping area.
- 3. The terms 'built floor area' and 'roofed floor area' are interchangeable.
- 4. Where multiple storeys are present, upper storeys are usually assumed to comprise residential area. Both ground floor and upper storey areas are included in measurements of residential and non-residential built and floor area. 'Built area' measurements are based on ground floor built area only in order to calculate proportions in the assessable area, which are used to establish proportions in total site extent for use in systematic methodologies.

Table 5.5. Micro-level methodologies: outputs and data required.

Method	Direct estimates	Indirect estimates and addition	al demographic	Data required
	produced	data produced		
		Proportion o	f:	
	Population size People per dwelling People per hectare Initial growth index Total number of contemporaneous dwellings Total built floor area Built floor area per son Residential floor area per person	People per dwelling People per hectare Residential floor area per person Population growth rate residential built area in assessable area residential built area in built area residential floor area in built area residential floor area in built area contemporaneous residential built area in assessable area contemporaneous residential built area in assessable area	built floor area in built area built floor area in assessable area contemporaneous built floor area in assessable area Evaluation of common density coefficients Evaluation of existing formulae	Assessable area Total site extent Proportion of area assessable Contemporaneity value Contemporaneity value Residential built area Built area Number of dwellings Nuclear family sizes* Total residential floor area Residential floor area of complete dwellings Total contemporaneous residential floor area Mean residential floor area of complete dwellings Total number of contemporaneous dwellings Total built floor area Population estimate Total built floor area Proportion of residential floor area in built floor area
HUM	✓ ✓		Not 🗸	
RADC	✓ ✓		✓ method √	
SPF	✓ ✓			$\checkmark \checkmark \checkmark$
AGF1	✓ ✓ ✓ ✓ ✓		✓	$\checkmark \checkmark \checkmark$
AGF2	✓		✓	✓ ✓
SPDC	\checkmark	\checkmark \checkmark \checkmark	✓	\checkmark \checkmark \checkmark

* Suggested values based on ethnographic, archaeological and experimental research.

5.2.2 Calculating upper storey floor area

Upper storey evidence is usually not sufficient to establish upper storey floor area. Therefore, a methodology was derived for calculating upper storey floor area based on the substantial second storey evidence at Beidha Subphase C2. Byrd (2005a, p.85) interprets all corridor buildings at Beidha as "primarily, if not exclusively, two-storey" based on upper storey evidence in five structures (Buildings 3-5, 14 and 73) and comparable ground floor plans throughout. As such, all Beidha corridor buildings are considered two-storey in this investigation.

To calculate upper storey floor area in structures with insufficient upper storey evidence, the three structures (Buildings 3, 14 and 73) that demonstrate the best preserved second storey evidence were analysed to determine the potential proportion of floor area in the upper storey interior area (Table 5.6). Internal walls, built-in features and a hypothesised 60 cm² passage between the lower and upper floors comprised around 17.5% of the upper storey interior area of these buildings. The remainder of the area was considered potential upper storey floor area. For sites and structures where upper storey floor area could not be determined directly, the total upper storey interior area was estimated based on the internal boundary of ground floor external walls. The proportion of upper storey interior area comprising internal features (17.5%) was then deducted from this area to calculate potential upper storey floor area.

Building	Total	Are	Area to deduct from upper storey interior area						
	potential upper storey	Interi and	or walls built-in	Suggested between lo	passage wer and	Total		upper storey	
	interior area	fea	atures	upper s	torey			floor area	
	m^2	m ²	%	m^2	%	m^2	%	m^2	
3	21.79	2.8	12.85	0.6	2.75	3.40	15.60	18.39	
14	15.23	1.15	7.55	0.6	3.94	1.75	11.49	13.48	
73*	16.06	3.44	21.42	0.6	3.74	4.04	25.16	12.02	
Mean							17 42		

Table 5.6. Beidha Subphase C2 structures assessed to determine the proportion to deduct from
upper storey interior area to calculate potential upper storey floor area.

* Marginally incomplete structure measures 13.10 m². Hypothetical boundary drawn in southwest corner to represent complete structure measuring 16.06 m².

5.2.3 <u>Estimating structural contemporaneity: building use-life analysis and Bayesian</u> chronological modelling

Structures identified within each site often appear to have been occupied contemporaneously. However, in reality, what we actually see in the archaeological record may have been produced by entirely unconnected human activities separated by tens to hundreds of years (Kuijt 2008a). Therefore, to avoid overestimating population size at any one point, estimates of the total number of dwellings, total

residential floor area and area proportions require adjustment for structural contemporaneity. For the PPN village of 'Ain Ghazal, Rollefson and Köhler-Rollefson (1989) suggested that 80% of the structures were occupied contemporaneously. In this investigation, a more empirically robust method for determining contemporaneity is employed. Used by Varien *et al.* (2007), this method calculates the proportion of structures that were contemporaneously occupied (herein referred to as a 'contemporaneity value') by dividing the average building use-life for a particular phase by the length of that phase.

Estimates of building use-life and phase (or subphase) length were derived from chronological information relating to stratigraphic sequences; building use-life estimates of comparable structures derived from archaeological, ethnographic and experimental research (Table 5.7); and Bayesian chronological modelling.

Table 5.7. Building use-life	estimates based	on archaeological,	ethnographic a	and experimental
research.				

Predominant construction material	Additional information	Building use-life (years)	References
Earthen/light	Without maintenance	6-15	Cameron 1990; Reynolds 1995; Diehl
organic	With maintenance	15-45	2001; Ortman <i>et al.</i> 2007;
-			Arnoldussen 2008; Varien 2012
	PPNA granaries	< 50	Kuijt and Finlayson 2009
Masonry	Neolithic Çatalhöyük	50-100	Hodder and Cessford 2004; Cessford
(all			2005; Matthews 2005
(aii maintained)	PPNB-PPNC 'Ain Ghazal	≤ 100	Rollefson and Köhler-Rollefson 1989
maintaineu)	Ancient Southwest America	60	Ahlstrom 1985

Suggested building use-life (years)								
Maintenance								
Construction	Minimal	Moderate	Considerable					
Earthen	6-15	15-35	35-50					
Earthen/masonry	10-35*	35-55	55-75					
Masonry	20-50	50-75	75-100					

* Use-life values based on the midpoint of the preceding and succeeding construction types (all values rounded to nearest 5).

Bayesian chronological modelling was conducted in the online programme OxCal v.4.2.4 (see the OxCal online manual for detailed user instructions) (Bronk Ramsey 1995; 2001; 2005; 2009; Bayliss *et al.* 2011). Radiocarbon dates were calibrated using the currently internationally accepted atmospheric calibration curve for the Northern Hemisphere (IntCal 13) (Reimer *et al.* 2013).

Dates were statistically assessed to determine potential outliers for removal prior to analysis. Chi squared tests (χ^2 ; Ward and Wilson 1978) were conducted on combined sets of radiocarbon dates ordered by phase/subphase in descending chronological order of the earliest calibrated date ranges. Where resulting 'T' values were higher than

the threshold based on the 5% confidence limit (given in brackets), this indicated one or more stratigraphically divergent dates. Bayesian chronological modelling of the lower and upper occupation boundaries (i.e. 'start' and 'end' dates) based on the same ordering as per the χ^2 test revealed which dates were divergent.

Modelled date ranges are given as posterior density estimates using their 95.4% probability ranges and are indicated using italics, following the conventions defined by Millard (2014, p.557). Model index agreement values less than the agreement threshold ($A \le 60\%$) highlight statistical outliers. The characteristics of these outliers were assessed to determine whether they represent residual or intrusive samples and could, thus, be removed from the sequence. Convergence values (C) were also assessed to determine whether the models were stable. A convergence value of greater than 95% indicates stability.

'Phase' or 'sequence' models were applied to the refined datasets to calculate start and end dates, and to estimate occupation span, subphase length and building use-life. In the OxCal online manual, 'phases' are defined as "groups of events which are all from one coherent group in some context but for which there is no information on the internal ordering" (Bronk Ramsey 2005). Phase models are suitable for datasets which do not have clear phasing or subphasing information, where the internal ordering of dates is unknown within a phase or where radiocarbon dates are not in chronostratigraphic order. 'Sequences' are defined as "groups of events or phases which are known to follow one after another with no possibility of overlap" (Bronk Ramsey 2005). Sequence models are suitable for datasets which contain clear phasing and subphasing information and where radiocarbon dates conform to the stratigraphic sequence. A combination of phase and sequence models is usually employed within each overall model.

Bayesian models can be constructed to produce 'transition' or 'start' and 'end' dates depending on the stratigraphic relationships between phases/subphases. 'Gap' periods can be inserted where phases/subphases have not been directly dated (i.e. Beidha Subphases B1 and C1) (Figure 5.3). Where more than one structure occurs within a phase/subphase, individual 'building phase' models can be grouped within overall 'phase/subphase building phase' models to allow for potential overlap between the dates of the structures within these phases (as conducted for Netiv Hagdud, Shkārat Msaied, Beidha, 'Ain Abu Nekheileh, Basta).

```
Plot("Beidha")
                                                    R_Date("K1083", 8640, 160);
                                                    R_Date("GrN5136", 8810, 50);
Sequence("Beidha")
                                                    Span("Span Building 74");
                                                   };
Boundary("Start Subphase A1");
                                                  };
Sequence("Subphase A1")
                                                  Span("Span Subphase A2");
                                                  };
 Phase("Subphase A1 Buildings")
                                                  Boundary("End Subphase A2");
                                                  Gap("Gap Subphase B1", 30);
 Phase("Building 18")
                                                  Boundary("Start Subphase B2");
                                                  Sequence("Subphase B2")
  R_Date("K1086", 8940, 160);
  R_Date("P1381", 8765, 102);
                                                  Phase("Building 26")
  Span("Span Building 18");
                                                  {
                                                   R_Date("BM111", 8790, 200);
 }:
                                                   R_Date("K1084", 8730, 160);
 Phase("Building 48")
                                                   Span("Span Building 26");
  R_Date("K1410", 8850, 150);
                                                  };
  R_Date("K1411", 8770, 150);
                                                  Span("Span Subphase B2");
  R_Date("K1412", 8720, 150);
                                                  };
  Span("Span Building 48");
                                                  Boundary("End Subphase B2");
                                                  Gap("Gap Subphase C1", 70);
 };
                                                  Boundary("Start Subphase C2");
 };
 Span("Span Subphase A1");
                                                  Sequence("Subphase C2")
};
                                                  Phase("Building 8")
Boundary("Transition Subphase A1/A2");
Sequence("Subphase A2")
                                                   R_Date("P1382", 8892, 115);
 Phase("Subphase A2 Buildings")
                                                   R_Date("K1085", 8550, 160);
                                                   Span("Span Building 8");
 Phase("Building 54")
                                                  };
                                                  Span("Span Subphase C2");
  R_Date("K1082", 8710, 130);
                                                  };
  R_Date("P1378", 8715, 100);
                                                  Boundary("End Subphase C2");
  Span("Span Building 54");
                                                  Span("Span Beidha");
                                                 };
 };
 Phase("Building 74")
                                                 };
```

Figure 5.3. Example of OxCal code for chronological modelling of boundary (start/transition/end) dates and span estimates for PPN Beidha.

5.2.4 Housing unit method (HUM)

The housing unit method (HUM) derives total population based on a total number of dwellings and an ethnographically derived value for the number of people per dwelling. This method requires consideration of factors influencing the number of people per dwelling, such as household composition, the size and layout of residential architecture and interior features, cultural norms and preferences, settlement and subsistence type, social stratification, and economic status (see Section 4.1.1). Ethnographic studies of dwelling unit sizes in villages with similar characteristics to those of the PPN central and southern Levant range from around 4.3 to 8.75 people (see Table 4.1). The majority of archaeological investigations propose a value of around five to six people per dwelling based on the theory that Neolithic dwellings were inhabited by nuclear families and ethnographic analysis of nuclear family sizes in Southwest Asia (Sweet 1960; Haviland 1972; Kramer 1982; Düring 2001; Byrd 2002). To test the theory that nuclear families formed the predominant dwelling unit type, minimum, average and maximum family sizes of three, 5.5 and eight people are utilised in this investigation.

The basic equation for deriving population estimates via the HUM is as follows:

Total population = number of dwellings x number of people per dwelling

The total number of dwellings is calculated via three methods: each produces the same estimate as they are all based on the same fundamental data (i.e. measurements and area proportions derived from the site plan). However, each method provides different demographic data for use in further analysis (Figure 5.4). See Table 5.4 for additional information regarding the terminology used in process charts.

Variables for some methods can be refined via analysis of the archaeological evidence. Depending on the size of the residential floor area and the resulting space per person, one or more of the family sizes used in the HUM can be removed from the final estimate.

Figure 5.4. The housing unit method (HUM) process.

5.2.5 <u>Residential area density coefficient method (RADC)</u>

Residential area density coefficients (RADC) are a measure of the amount of residential area required per person. RADC estimates for settlements comparable to PPN central and southern Levantine villages vary significantly from around 1.86 m² to 10.4 m² per person (see Table 4.2). Variation is due to the type of dwelling and the constitution of the dwelling unit; environmental conditions relating to the need for shelter and the economic capacity for keeping warm in cooler temperatures; perceptions relating to crowding, privacy and personal space; and, perhaps predominantly, theoretical and methodological issues relating to the definition and measurement of residential area (see Section 4.1.2).

In this investigation, the RADC is based on residential floor area and relates to potential sleeping area only. The minimum RADC utilised in this investigation is sourced from Hemsley's (2008, p.131) research into the affordance of space within PPN dwellings, in which she estimated a maximum sleeping space requirement of 1.77 m² per person. This is marginally lower than Hayden *et al.*'s (1996) estimate for villages in the Arctic Circle (2.16 m²). The mid-range RADC employed is 3.3 m² per person based on Hayden *et al.*'s (1996, p.159) range of 2.8 m² to 3.8 m² for Keatley Creek pit houses and Clarke's (1974) estimate of 3.33 m² for Southwest American pueblos. The maximum RADC employed is five m² per person based on Hill's (1970) estimate of 4.55 m² per person at the archaeological site of Broken K Pueblo in the American Southwest and Kramer's (1979) estimate of 4.82 m² living space per person based on ethnographic research in Shahabad, Iran.

The basic formula for deriving estimates via the RADC method is:

```
Total population = \frac{\text{total residential floor area}}{\text{RADC (residential floor area per person m<sup>2</sup>)}}
```

Total residential floor area is calculated via three different methods. Each produces the same estimate, but again provides additional demographic data for further analysis (Figure 5.5).

Figure 5.5. The residential area density coefficient (RADC) method process.

5.2.6 Storage provisions formulae (SPF)

A series of storage provisions formulae (SPF) were developed based on Hemsley's (2008) research into the affordance of space within dwellings at PPN sites (see Section 4.5). The formulae correlate available residential floor area (A) to the mid-point of the maximum numbers of 1.65 m and 1.83 m tall occupants lying in an extended position, factoring in access routes, hearths and activity zones, and three potential amounts of storage: none, moderate and high (Table 5.8).

Table e.e. eterage previolene rennalae (babba en data nen henolog 2000).										
Annual personal storage within the residential floor area	Formula									
None	P = 0.3944A - 0.375									
Moderate (0.46 m ³ per person)	P = 0.2477A + 0.0339									
Maximum (2 x 0.46 m ³ per person)	P = 0.1903A + 0.3976									

Table 5.8. Storage provisions formulae (based on data from Hemsley 2008).

In this investigation, the formulae are applied using residential floor area (i.e. potential sleeping area) as the A variable to determine maximum adult dwelling occupant numbers. The potential amount of storage (both permanent and ephemeral) within the residential floor area is derived from an assessment of the archaeological remains, predominant subsistence strategy and the general relationship between storage facilities and residential area per period. This evidence often enables one or more of the storage provisions formulae to be removed from the final estimate.

The SPF utilises the formulae to calculate total (adult) population (Method 1) and the number of people (i.e. adults) per dwelling (Method 2) from the total contemporaneous residential floor area, the mean residential floor area of complete dwellings and a total contemporaneous dwelling number estimate (Figure 5.6). The mean of Methods 1 and 2 are used to form the final population estimate range.

Of the four methods utilised to produce population estimates in this investigation, the SPF is considered the most beneficial and robust for several reasons. Firstly, this unique methodological approach is based almost exclusively on archaeological evidence and empirically derived values for adult human sleeping space. It does not incorporate assumptions regarding dwelling unit size or composition, or perceptions relating to space preference. All other methods assessed in this investigation are based on several assumptions that cannot be verified and employ ethnographically derived constants from settlements that often do not demonstrate a high degree of comparability to PPN villages.

Secondly, assessment of the archaeological evidence for storage within the residential area and a comparison of population and dwelling unit size estimates with estimates of

available residential floor area enable the selection of the most appropriate formula/e for final estimate reconstruction. This not only reduces the final estimate range, but also highlights the most plausible amount of residential storage.

Thirdly, this is the only method which directly calculates dwelling unit size.

Finally, the consistent methodological application of set formulae improves the comparative capability of the results.

Due to the more empirically robust nature of the SPF method, SPF estimates are considered the most reliable (see Section 10.2.1). SPF estimates are, therefore, presented as the final estimates for comparative analysis in this investigation and are utilised as the population variable (P) within the allometric growth formulae.

Figure 5.6. The storage provision formulae (SPF) process.

5.2.7 Allometric growth formulae (AGF)

Allometric growth formulae (AGF) correlate area (A) to population size (P) based on an initial growth index (*a*) and a scaling exponent (*b*), as follows:

$$A = a \times P^b$$

This investigation explores AGF developed specifically for archaeological sites by Naroll (1962) (AGF1) and Wiessner (1974) (AGF2) (see Section 4.1.4). The main aim is to derive a universal initial growth index, or set of indices for different settlement types, in order to estimate the population of any PPN village directly from estimated total site extent.

Naroll's (1962) formula is expressed as:

$$A = 21.7 \text{ x P}^{0.84195}$$

where A is the total built floor area and P is population size. The initial growth index (*a*) is 21.7 and the scaling exponent (*b*) is 0.84195. Two methods are explored (Figure 5.7). The first method applies the SPF population estimates for each site as the P variable to calculate the total built floor area and the amount of built floor area per person. The latter value is converted to residential floor area per person (RADC) based on the proportion of residential floor area in built floor area. Where comparability exists between these RADCs and those derived via the SPF population estimates, it is suggested that Naroll's formula may be suitable for estimating the population of these sites. The second method re-calculates the initial growth index based on the estimated total built floor area and the SPF population estimates. Where comparability exists between Naroll's original index (21.7) and the re-calculated indices, it is again suggested that Naroll's formula is suitable for estimating the population of these sites.

In Wiessner's (1974) formula, A is the total site extent, P is population size, the initial growth index (*a*) is variable and the scaling exponent (*b*) alters for different settlement types: two for open settlements (b = 2), one for villages (b = 1) and two-thirds for urban settlements (b = 0.6667). The initial growth index is calculated for each of the three settlement types based on the total site extent estimate and SPF population estimates (Figure 5.8). It is hypothesised that the scaling exponent for village settlements will produce relatively consistent initial growth indices for all sites assessed at the micro-level. In addition, the scaling exponent for open settlements is expected to produce comparable initial growth indices for PPN circular hut compounds; whilst the scaling exponent for urban settlements is expected to produce comparable indices for later PPN settlements containing agglomerated and multi-storey, rectilinear structures.

Figure 5.8. Wiessner's (1974) allometric growth formula (AGF2) process.

5.2.8 <u>Settlement population density coefficient method (SPDC)</u>

Settlement population density coefficients (SPDC) are a measure of the number of people per hectare. The basic formula for deriving estimates via the SPDC method is:

Total population = total site extent (ha) x SPDC (people/ha)

Almost all existing population estimates for PPN central and southern Levantine villages are based on this method (see Section 4.3.1). These estimates generally utilise minimum and maximum values of 90 and 294 people per hectare based on ethnographic research in Iran (Watson 1978; Kramer 1982) and North Yemen (van Beek 1982). An average density of around 150 people per hectare is also commonly utilised based on the general density range of 100 to 200 people per hectare for modern Southwest Asian villages (Sumner 1979; Adams 1981; Kramer 1982; Wossinik 2009).

To assess the suitability of these density coefficients for PPN central and southern Levantine villages, two SPDC methods are explored (Figure 5.9). In the first method, minimum, average and maximum density values of 90, 150 and 294 people per hectare are applied to total site extent to estimate population; and in the second, density values are derived from HUM, RADC and SPF population estimates produced in this investigation and estimated total site extent.

Figure 5.9. The settlement population density coefficient (SPDC) method process.

5.3 Systematic estimates

To systematically estimate the population of all sites in the PPN central and southern Levantine village database, information extrapolated from the results of micro-level analysis was used to develop a site type classification system (based on architectural form and site size) and universal and site type constants for all variables employed within the systematic methodologies (see Sections 8.1-8.3). Seven methodologies were employed to systematically estimate population parameters of each village based on an assigned site type, associated constants and an estimated total site extent (Table 5.9).

There are several issues with applying systematic methodologies. The foremost of these include problems with total site extent estimates (addressed in Section 5.1.2); the use of standardised constants; and the inability to classify some sites. The application of standard constants for variables (i.e. people per dwelling; residential floor area per person; people per hectare) is questionable as the further removed these constants are from the source of their development, the greater the potential for compounding errors. This is particularly the case where more than one type of constant is utilised within the same methodology (i.e. the residential built area proportions (RBAP) method; see Section 5.3.2). The combination of ranges for these constants can cause considerable estimate ranges, which are ineffectual for further demographic analysis.

An additional problem with the use of standardised constants is that these cannot reflect the real diversity that occurs within settlements. In this investigation, this diversity is accounted for to some degree by developing constants for different site types. However, not all sites conform exactly to a site type category. One of the major characteristics determining site type in this investigation is predominant architectural form (i.e. curvilinear or rectilinear) (see Section 8.2). For a limited number of sites, predominant architectural form could not be identified and, thus, these sites could not be classified (e.g. EPPNB Mishmar Ha'emeq; MPPNB Nahal Betzet I). Estimates for unclassified sites are based on universal constants, which can result in excessive estimate ranges.

Method	Est	ima	tes	pro	duc	ed	Data required													—	
	Population size	People per dwelling	Total number of contemporaneous dwellings	Total contemporaneous residential built area (m ²)	Total contemporaneous residential floor area (m ²)	Total built floor area (m ²)	Site type	Total site extent	Contemporaneous dwellings per hectare	People per dwelling	Proportion of contemporaneous residential built area in assessable area	Mean residential built area of complete dwellings (m^2)	Proportion of contemporaneous residential floor area in assessable area	RADC (m ² residential floor area per person)	Mean residential floor area of complete dwellings (m^2)	Probable amount of residential storage provisions	Mean total number of contemporaneous dwellings from RPDC/RBAP methods	SPDC (people per hectare)	Proportion of built floor area in assessable area	AGF1: re-calculated initial growth index	AGF2: village initial growth index
RFDC RBAP RFAP SPF SPDC AGF1		√	√	•	√ √	√	* * * * * *	• • • • • •	·	· ·	~	~	✓ ✓	~	~	~	~	✓	✓	√	
AGF2	\checkmark						\checkmark	\checkmark													\checkmark

5.3.1 Regional population density coefficient method (RPDC)

A regional population density coefficient (RPDC) is a measurement of the density of dwellings per unit of area (i.e. a hectare) (Wendt and Zimmermann 2009; Zimmermann *et al.* 2009). RPDCs are utilised to estimate total population based on the same premise as the micro-level housing unit method (HUM), where:

Total population = number of dwellings x number of people per dwelling

Universal and site type constants for the number of contemporaneous dwellings per hectare derived from micro-level analysis are applied to site extent estimates to calculate the total number of contemporaneous dwellings at each site. This is multiplied by universal and site type constants for the minimum, mean and maximum number of people per dwelling to produce population estimates for each site (Figure 5.10).

Figure 5.10. The regional population density coefficient (RPDC) method process.

5.3.2 Residential built area proportions method (RBAP)

The proportion of contemporaneous residential built area in site area (RBAP) is utilised to estimate total contemporaneous residential built area based on total site extent. This is divided by universal and site type constants for the mean residential built area of complete dwellings to calculate the total number of contemporaneous dwellings. This is multiplied by universal and site type constants for the number of people per dwelling to produce population estimates (Figure 5.11).

Figure 5.11. The residential built area proportions (RBAP) method process.

5.3.3 Residential floor area proportions method (RFAP)

The proportion of contemporaneous residential floor area in site area (RFAP) is utilised to estimate the total contemporaneous residential floor area based on total site extent. This is divided by universal and site type constants for residential floor area per person (m^2) (RADC) to produce population estimates (Figure 5.12).

Figure 5.12. The residential floor area proportions (RFAP) method process.

5.3.4 Storage provisions formulae (SPF)

The storage provision formulae (SPF) derived from Hemsley's (2008) data are applied systematically based on the same method utilised in micro-level estimates (see Section 5.2.6). Two methods are explored: the first calculates population from total contemporaneous residential floor area, whilst the second calculates the number of people per dwelling from the mean residential floor area of complete dwellings and multiplies this by the total number of contemporaneous dwellings to produce population estimates (Figure 5.13). The potential amount of storage provisions per site type is derived from micro-level analysis. The mean of Methods 1 and 2 are used to form the final population estimate ranges.

Figure 5.13. The storage provisions formulae (SPF) process for systematic estimates.

5.3.5 <u>Settlement population density coefficient method (SPDC)</u>

The settlement population density coefficient (SPDC) method is applied systematically to all sites based on the same method utilised in micro-level estimates. Universal and site type constants for the number of people per hectare are applied to total site extent to produce population estimates (Figure 5.14).

Figure 5.14. The settlement population density coefficient (SPDC) method process for systematic estimates.

5.3.6 Allometric growth formulae (AGF)

Allometric growth formulae (AGF) are applied systematically to estimate population using the formula:

$$\mathsf{P} = (\mathsf{A}/a)^{1/\mathsf{b}}$$

where P is population size, A is area, *a* is the initial growth index and *b* is the scaling exponent.

Naroll's (1962) re-calculated initial growth index (AGF1)

The AGF1 employs Naroll's (1962) scaling exponent (b = 0.84195) and constants for the re-calculated initial growth index (*a*) to calculate population size (P) from total built floor area (A). The AGF1 is expressed as:

$$P = (A/a)^{1/0.84195}$$

Total built floor area (A) is calculated via the application of universal and site type constants for the proportion of built floor area in site area to total site extent (Figure 5.15).

Figure 5.15. Naroll's (1962) allometric growth formula (AGF1) process for systematic estimates.

Wiessner's (1974) village formula (AGF2)

The AGF2 employs Wiessner's (1974) scaling exponent for village settlements (b = 1) and constants for the initial growth index (*a*) to calculate population from total site extent. The AGF2 is expressed as:

$$P = (A/a)^{1/1}$$

where P is population size, A is total site extent and *a* is the initial growth index (Figure 5.16). As Wiessner's (1974) scaling exponent for villages equals one, the formula can be more simply expressed as P = A/a.

Figure 5.16. Wiessner's (1974) allometric growth formula (AGF2) process for systematic estimates.

5.4 Summary

This investigation aims to produce more empirically and statistically robust absolute estimates of PPN central and southern Levantine villages. Population estimates are commonly based on total site extent. In this investigation, published site extents were critically assessed to ensure that these were not overestimated and to assign site extents where these were not previously provided. Of the 106 villages and village phases in the site database, 15 demonstrate sufficient evidence for micro-level analysis. This chapter outlines the processes for several micro-level and systematic methodologies for estimating population parameters. The following chapter illustrates in detail the application of micro-level methodologies to the settlement at Beidha, southern Jordan.

6 Micro-Level Estimates – Part I: Beidha, Southern Jordan

This chapter presents the preliminary application of methodologies for estimating population parameters to the PPN village of Beidha, southern Jordan. Archaeological background is provided, including a description of features by subphase and major developments in subsistence, architecture, economy, ritual practices and community organisation. Radiocarbon dates are examined alongside the archaeological evidence to establish subphase length and building use-life estimates for reconstructing structural contemporaneity values. Results are presented for each subphase, followed by an overall analysis of methods and estimates. The process and results of each method are presented in detail for Subphase A1. Additional information for the remaining subphases and a database of results are provided in Appendices B.1 and B.2¹.

6.1 Site description

Beidha is a small MPPNB/LPPNB village situated in an alluvial valley bordered by steep sandstone cliffs to the north and the Wadi el-Ghurab to the south (Figure 6.1). The extensive and well-documented PPN occupation evidence provides an excellent opportunity for preliminary application of methodologies for estimating population parameters. Beidha demonstrates the full demographic transition from an incipient sedentary community reliant on hunter-gatherer subsistence practices, to a well-established sedentary society engaged in agro-pastoralist subsistence strategies.

Byrd (2005a) published an extensive volume on the architectural features excavated by Kirkbride (1966; 1985), re-examining the evidence to refine the stratigraphic sequence. Three main phases were identified (A, B and C) (Byrd 2005a, p.15). Phases A and C were divided into two subphases (A1 and A2; C1 and C2). Evidence exists for earlier and later Phase B remains, assessed as Subphases B1 and B2 in this investigation.

Byrd (2005a, p.131) proposes a total site extent of between 0.15 ha and 0.35 ha. Individual subphase site extents are suggested in this investigation based on the potential degree of village expansion as indicated by topographical location, the number and distribution of structures per subphase and information relating to construction timing, longevity and abandonment (Byrd 2005a). A site extent of 0.1 ha is suggested for Subphase A1; 0.2 ha for Subphases A2 and B2; and 0.3 ha for Subphase C2.

¹ Article published in *Levant* based on Chapter 6 (Appendix B.3).

Figure 6.1. Location of Beidha excavation area, southern Jordan.

6.1.1 Phase A (Subphases A1 and A2)

Phase A occupation has been dated to the early MPPNB, with a suggested start date of sometime after c. 7,000 BC (Byrd 2005a, p.26). Subphase A1 directly overlies ephemeral EPPNB deposits. Around 130 m² of Subphase A1 occupation was excavated, providing the earliest evidence for permanent structures at this site (Figure 6.2). The architecture comprises semi-subterranean, earthen and masonry structures, with lightweight, organic roofing. Byrd (2005a, pp.33-36) identifies four large curvilinear, post-socketed structures as dwellings (Buildings 18, 41, 48 and 49), and two smaller, sub-square structures as annexes (Buildings 17 and 50). At some point, the function of Building 41 appears to have been utilised as communal space. Evidence suggests that the village wall and steps were constructed during this subphase, reducing erosion of the alluvial terrace upon which the village was built (Byrd 2005a, p.31).

Around 300 m² of Subphase A2 occupation was excavated, revealing nine curvilinear structures and the eroded remains of a further two to the south of Building 21 and east of Building 74. Stratigraphic evidence suggests that seven buildings were constructed in short succession (Buildings 21, 38, 51, 52, 56, 74 and 83) (Byrd 2005a, p.18). Architecture generally comprised post-socketed, earthen and masonry structures, with beam and reed roofing (Byrd 2005a).

Byrd (2005a) identifies six Subphase A2 dwellings (Buildings 33, 51, 55, 56, 74 and 83), whilst a further three (Buildings 38, 53 and 54) have been assigned as potential dwellings in this investigation based on comparable architectural form and interior features. A large, semi-subterranean structure (Building 37) at the centre of the excavated area was identified as non-residential. This structure was associated with open communal areas to its north and east (Byrd 2005a).

Buildings (29, 53, 54 and 55) exposed in the northern section were not assigned to a subphase by Byrd (2005a). However, Byrd (2005a, p.19) considers it "unlikely" that Buildings 54 and 55 comprise part of the initial Neolithic occupation, highlighting the fact that the foundations of Buildings 29 and 53 cut into earlier plastered surfaces. These buildings and remnants of other buildings eroding out of the slope to the west were all destroyed by burning, which may have been simultaneous with the major conflagration event that terminated Subphase A2. Based on this evidence, these buildings are tentatively assigned to Subphase A2 in this investigation.

6.1.2 Phase B (Subphase B2)

Around 600 m² of Phase B occupation was excavated, exposing at least 18 predominantly curvilinear, single-roomed, semi-subterranean, earthen and masonry structures, with mudbrick upper walls and plastered floors (Figure 6.3). The majority were accessed via stone steps. Several earlier Phase B structures (Buildings 25, 26, 34, 40, 43 and 60) were superimposed by or cut into by later Phase B structures (Buildings 24, 25, 35, 36, 42, 47 and 61). A considerable amount of the later Phase B occupation was destroyed by Phase C construction (Byrd 2005a, p.19).

Byrd (2005a, pp.44-47 and 115) identified seven dwellings (Buildings 25, 34, 35, 40, 47, 60 and 61). Buildings 25 and 40 are sub-square with a pronounced entrance and limited internal features. Buildings 34, 35, 47 and 60 are ovoid with simple entrances. Building 60 had ceiling plaster, a quern, sandstone slabs and a possible raised rim hearth associated with a stone platform. Building 61 is a unique rectilinear building with a series of benches and platforms associated with a quern and stone bowls. Beyond this structure lies a quern and sandstone slabs set into a plaster surface.

Buildings 24 and 44 have been assigned as potential dwellings in this investigation based on morphological similarity to Buildings 40 and 60, and other features including plastered ceilings, walls and floors; raised-rim hearths associated with querns, stone slabs and stone bowls; stone platforms; and occupation debris. Similarly, despite the limited exposure, Buildings 36 and 82 were assigned as potential dwellings based on the presence of rimmed hearths and plastered floors. Of the 11 dwellings identified, eight (Buildings 25, 34, 36, 44, 47, 60, 61 and 82) were assigned to Subphase B2 based on the stratigraphic sequence proposed by Byrd (2005a).

Buildings 26, 31, 42 and 81 have been interpreted as non-residential structures probably relating to ritual activities, based on their comparatively large size and large interior hearths (Byrd 2005a, p.115). Buildings 15 and 43 were minimally exposed, revealing insufficient information to interpret building function. Building 15 is possibly an extension of Building 44. However, as the relationship remains unclear, Building 15 is assigned as non-residential area in this investigation given the limited interior floor area. A large outdoor activity area lies to the west of Buildings 25 and 60, containing plastered surfaces, large hearths and stone slabs. A stone-lined pit just north of Building 81 appears to have continued in use during Phase C (Byrd 2005a, p.51).

6.1.3 Phase C (Subphase C2)

Phase C occupation dates to the late MPPNB/LPPNB (although a PPNC date has been suggested by Rollefson (1998b)). Around 960 m² of Phase C occupation was excavated, revealing at least 25 buildings. Of these, nine were considered part of Subphase C1 construction; three as part of Subphase C2 construction; and the remainder non-subphased (Byrd 2005a). Several Subphase C1 buildings (n = 5) and two earlier Subphase C2 buildings (16 and 20) were superimposed by or destroyed in the construction of later Phase C structures. The remaining four Subphase C1 structures, as well as all non-subphased structures, were positioned alongside and interconnected with Subphase C2 structures, suggesting simultaneous use (Henry *et al.* 2003; Byrd 2005a). As such, 19 buildings are assessed as representing Subphase C2 occupation in this investigation (Figure 6.3). Subphase C2 is assessed as an LPPNB site.

Excavations exposed 14 masonry, corridor buildings or 'pier houses' (Byrd and Banning 1988, p.65) (Buildings 1-5, 10-14, 19 and 71-73), with semi-subterranean basements containing sets of small rooms separated by similarly sized piers. A further two partial structures to the west of Buildings 14 and 19 display sufficient morphological similarities for interpretation as potential dwellings.

Byrd (2005a, p.85) interpreted all dwellings as two-storey. Several buildings (2-5, 14, 19 and 73) retained evidence for an upper storey comparable in size to the lower storey, containing plastered floors and plastered, sandstone-slab walls. Byrd (2002, p.80) states that "cooking and eating, entertaining and sleeping presumably occurred primarily in the upper stories, based on the presence of hearths and a more open plan". Building 14 demonstrated the best preserved upper storey evidence including a raised
rim hearth with red paint and associated floor slabs (Byrd 2005a, p.65). Its lower storey contained numerous pestles, grinders, polishers and bone tools described as representing the workshop of a bone tool or bead specialist (Kirkbride 1966, p.25).

Several corridor buildings contained burials (Buildings 2-3, 5 and 12-13). At least one upper storey contained a storage bin (Building 73), whilst numerous dwellings (Buildings 2-4, 12, 19 and 71-72) contained blocked basement compartments which may have formed the base of similar storage facilities. Building 11 was either abandoned or underwent a functional change from a residential to non-residential structure with the construction of Building 13 and is, thus, not assessed as a dwelling in this analysis.

Three structures were identified as non-domestic. These include a very large, rectangular, two-roomed building (Building 8); an irregular structure formed of a series of compartments interpreted as a roofed storage facility (Building 75) (Byrd 2005a, pp.69-70); and an additional wall further enclosing this facility (Building 76). A courtyard area with large hearths and other features similar to those of the courtyard areas in Phases A and B was located to the east and north of Building 8.

6.1.4 <u>Societal conditions, processes and developments</u>

Subsistence

Subsistence practices at Beidha reflect the full transition from hunter-gatherer (Phase A) to agro-pastoralist (Phase C) strategies. Phase A residents hunted wild animals, including goat and gazelle (Kirkbride 1966; Perkins 1966), and foraged for plant foods, such as nuts, acorns and wild oats (Kirkbride 1985). Outdoor courtyard areas were utilised for a range of domestic activities suggestive of a communal subsistence and a predominantly egalitarian ethos. Foraging activities continued during later phases alongside agricultural practices involving domesticated plants (i.e. barley and emmer), which emerged during Phase B and intensified during Phase C (Colledge 2001). Outdoor areas continued to be used for communal cooking activities throughout Phases B and C. Wild goats may have been culturally controlled during Phase B and possibly locally domesticated during Phase C (Kirkbride 1966; Perkins 1966; Mithen 2003). Phase C demonstrates a considerable array of processing tools and substantial space allocation for storage, processing and preparation of food resources within dwellings, indicating the potential economic independence of dwelling units (Wright 2000; Byrd 2005a).

Architecture

During Phase A, thick-walled, curvilinear, earthen and masonry structures were built in primary dwelling clusters followed by secondary addition of abutting structures (Byrd 2005a). Architecture and layout is comparable to other PPN settlements at Dhra' (Kuijt and Mahasneh 1998), Shkārat Msaied (Kinzel *et al.* 2011), Nahal Issaron (Carmi *et al.* 1994), Abu Salem (Gopher and Goring-Morris 1998) and sites within the Azraq Basin (i.e. Wadi Jilat 7, 25, 26 and 32, and Azraq 31) (Garrard *et al.* 1994). Towards the end of Phase A, at least one large, communal building was constructed in the central area.

In Phase B, access to dwellings became more formalised and restricted, and interior space became more structured. There is increased distinction between residential and non-residential space, with multiple large, structures appearing to be in simultaneous use. Towards the end of Phase B, rectilinear architectural forms emerge.

During Phase C, non-residential architecture became highly distinctive, with a very large, rectangular, non-domestic structure and associated circular, potential storage facility dominating the central area. Numerous rectilinear, two-storey structures were built. These are interpreted as pier houses, each containing storage facilities and workshop areas on the ground floor and residential area on the upper floor (Byrd 2005a). These structures have been compared to those at Jericho (Kenyon 1981), 'Ain Ghazal (Rollefson *et al.* 1992), Beisamoun (Bocquentin *et al.* 2011) and Yiftah'el (Khalaily *et al.* 2008).

Economy

During Phase A, hunter-gatherer traditions persisted, with non-compartmentalised activities performed in undifferentiated residential spaces and little distinction between public and private space (Byrd 1994, p.649). Increased privacy and restricted access to residential space, and greater distinction between public and private domains during Phase B may reflect the emerging institutionalisation of the household or dwelling unit. By Phase C, architectural developments, including increased residential space, greater compartmentalisation within dwellings and more restricted access to buildings are considered to reflect well-established, potentially autonomous, household economic units. (Byrd 2005a, pp.121-122). There is evidence to suggest that these household units managed domesticated livestock, intensively produced and prepared food resources, and engaged in household-based specialist activities, such as bone tool and bead production (Kirkbride 1966; Byrd 2005a, pp.121-122 and 128). Byrd (2005a, p.121) suggests that dwelling units comprised nuclear families in all phases. This assumption was based on (1) the identification of structures as dwellings by the

presence of hearths, bins, storage units and other domestic artefacts; and (2) correlations in the house size and floor area of these structures with those identified in ethnographic contexts, where nuclear families formed the predominant dwelling unit. Rollefson and Kafafi (2013, pp.11-13) propose that large, compartmentalised dwellings, such as those that existed during Phase C, may have accommodated large nuclear or extended family units.

Ritual and community organisation

Ritual activities are present in all phases, with numerous burials uncovered in Subphase A1 Building 41, which was interpreted as a possible mortuary structure towards the end of its use-life (Byrd 2005a). Subphase A2 provides increasing evidence for designated non-residential space including a large, centrally-located, curvilinear building (Building 37) interpreted as representing ritual, communal or decision-making activities. Several non-residential structures appear to be in simultaneous use in Phase B, suggesting increasing formalisation of ritual and communal activities. During Phase C, a very large, centrally-located, unique, nonresidential structure associated with potentially centrally-managed storage was interpreted as representing a form of corporate management, reflecting increasing social complexity and possible hierarchical differentiation (Byrd 2005a, p.129). Potential social differentiation may also be evidenced by increasing variability in residential architecture (Wiessner 1982; Saidel 1993; Rollefson and Kafafi 2013) and by items of personal adornment (i.e. beads, pendants, necklaces), which have been interpreted as mechanisms for individual or group identity (Wright and Garrard 2003; Edwards 2007).

Figure 6.2. Site plans of Beidha Subphases A1 and A2 (transcribed from Byrd 2005a, pp.180 and 183).

Figure 6.3. Site plans of Beidha Subphases B2 and C2 (transcribed from Byrd 2005a, pp.186, 192 and 195).

6.1.5 <u>Estimating structural contemporaneity</u>

Adjustments to reflect the potential number of contemporaneous structures are essential when reconstructing population sizes. The method employed in this investigation calculates structural contemporaneity based on span estimates for building use-life and phase length (see Section 5.2.3). Precise span estimates were produced via (1) analysis of chronological information relating to the stratigraphic sequence at Beidha (Byrd 2005a); (2) estimates of building use-life of comparable structures derived from archaeological, ethnographic and experimental research; and (3) Bayesian chronological modelling of radiocarbon dates.

Prior chronological information

An occupation span of around 600 years is generally accepted for the PPN occupation at Beidha (Gebel 1987, p.346; Rollefson 1989b, p.169). Byrd (2005a, pp.26-27) analysed the radiocarbon dates and archaeological evidence to establish specific settlement and abandonment dates. Byrd (2005a, p.7) suggested that occupation may have spanned as much as 500 years from sometime after c. 7,000 BC, during the MPPNB, extending into the LPPNB beyond the latest reliable radiocarbon date of 6,596 \pm 100 BC. It has been hypothesised that the inhabitants of the latest phase at Beidha migrated to Ba'ja during the LPPNB (Gebel 2003, p.18).

Byrd (2005a) attempted to refine phase boundaries by analysing radiocarbon dates from short-lived material. Byrd (2005a, p.27) proposed that Phase A began around 7,000 BC and probably ended around 6,700 BC. Unfortunately, due to several divergent dates, interpreted as the result of considerable disturbance processes, Byrd (2005a, p.27) was unable to establish boundary dates for Phases B and C. Byrd (2005a) suggests a span of 150 to 250 years each for these phases in order to place the final subphase (C2) in the LPPNB. These phase lengths equate to an occupation span of between 600 and 800 years. Byrd does not propose lengths for each subphase. However, given the proposed phase lengths and the lack of evidence for abandonment between phases and subphases (Byrd 2005a, p.12), a potential span of around 150 years each for Subphases A1 and A2, and around 100 years for each subphase within Phases B and C is suggested in this investigation based on Byrd's research.

Byrd (2005a) does not attempt to produce precise estimates of building use-life. However, based on the degree of remodelling and maintenance, and evidence for structural superpositioning and juxtapositioning, Byrd indicates relative longevity of structures per subphase, although his comments are rather vague. Subphase A1 structures are suggested to have spanned a "considerable period", with Subphase A2 structures occupied for a "reasonable duration" (Byrd 2005a, pp.77-78). Variable spans are suggested for Phase B structures. He suggests that structures in the central cluster may have been occupied for a "considerable period", whilst those in the northeastern corner may have been occupied for "relatively short periods" (Byrd 2005a, p.84). Byrd (2005a, p.94) suggests that Phase C dwellings had a "considerable duration of habitation", which may have been relatively uniform across the site.

Byrd's (2005a) detailed description of the architectural features and maintenance evidence enables reconstruction of building use-life estimates based on archaeological, ethnographic and experimental research of comparable structures (Table 6.1). Phase A and B architecture includes freestanding and interconnected, curvilinear structures with organic roofing and walls of earthen and masonry materials; whilst Phase C architecture includes agglomerated, rectilinear and often two-storey, predominantly masonry structures (Byrd 2005a, p.28). The majority of structures demonstrate a moderate to considerable amount of maintenance and remodelling, indicating deliberate attempts to extend the building use-life. A summary of occupation span, phase length and building use-life estimates based on Byrd's (2005a) analysis and ethnographic, archaeological and experimental data is provided in Table 6.2.

Building/ Phase		Predominant construction material*	Degree of maintenance	Use-life (vears)	
18	A1	Earthen/masonry: Wooden posts and stone cobble/ block walls; large central post supporting beam, clay, read and large stone slab superstructure	Considerable: Plastered walls; two floor levels with intervening fill deposits; considerable remodelling: blocked entrances, addition of annexes	55-75	
48	A1	Earthen/masonry: Similar to Building 18	Considerable: <i>Plastered walls and floor; Building</i> <i>50 added as annex (modified</i> <i>several times)</i>	55-75	
54	A2	Earthen/masonry: Similar to Building 18	Moderate-considerable: Plastered walls, floor and ceiling; multiple plastering episodes; possible earlier floor layer; remodelling: blocked entrance/s	35-75	
74	A2	Earthen/masonry: Similar to Building 18	Moderate: Plastered floor	35-55	
26	B2	Earthen/masonry: Similar to Building 18 plus mudbrick upper walls	Moderate: Plastered walls, floor and ceiling; remodelling episode	35-55	
8	C2	Masonry: Stone block/slab/rubble fill walls; wooden posts for additional support of heavy superstructure	Considerable: Plastered floor; at least four major re-modelling and re-plastering episodes	75-100	

Table 6.1. Beidha PPN building information (Byrd 2005a) and suggested use-life based on archaeological, ethnographic and experimental research of comparable structures.

* Earthen: Cameron 1990; Reynolds 1995; Diehl 2001; Ortman *et al.* 2007; Arnoldussen 2008; Kuijt and Finlayson 2009; Varien 2012. Masonry: Ahlstrom 1985; Rollefson and Köhler-Rollefson 1989; Hodder and Cessford 2004; Cessford 2005; Matthews 2005.

Table 6.2. Beidha PPN occupation span, subphase length and building	use-life estimates based
on Byrd 2005a and archaeological, ethnographic and experimental rese	arch.

	Phase/	Ву	rd 2005a		
	Subphase:				
	Building	Years	Start date ^a	Archaeologic	cal,
Occupation s	span	500-800	6990±160 BC	ethnographi	ic,
			8470-7600 cal BC	experiment	al
				research	
Phase	A	300			
length	В	150-250			
	С	150-250		Construction and	Use-life
				maintenance [♭]	(years)
Building	A1: 18	Considerable		E/M, C	55-75
use-life	A1: 48	Considerable		E/M, C	55-75
	A2: 54	Reasonable		E/M, Mod-C	35-75
	A2: 74	Reasonable		E/M, Mod	35-55
	B2: 26	-		E/M, Mod	35-55
	C2: 8	Considerable		M, C	75-100

^a Start date: earliest radiocarbon date after 7,000 BC as suggested by Byrd 2005a; converted to cal BC in OxCal v.4.2.4 (Bronk Ramsey 2009).

^b Construction - E: Earthen, M: Masonry; Maintenance - Mod: Moderate, C: Considerable.

Bayesian chronological modelling

Bayesian chronological modelling of radiocarbon dates was conducted to determine more precise start, transition and end dates for the various phases, subphases and structures at Beidha. Of the 23 radiocarbon dates associated with the PPN occupation deposits at Beidha, four have insufficient contextual information for inclusion in this analysis: Beta235216, AA13038, AA1461 and AA13037 (Table 6.3; Figure 6.4). The remaining 19 dates were statistically assessed to determine potential outliers. A Chisquared test (χ^2) was conducted on the combined set of 19 radiocarbon dates ordered by subphase in descending chronological order of the earliest calibrated date ranges (Ward and Wilson 1978). The χ^2 result produced a 'T' value higher than the threshold based on the 5% confidence limit (given in brackets), indicating that at least one date does not conform to the stratigraphic constraints (Table 6.4).

Divergent dates were identified via Bayesian chronological modelling of the lower and upper occupation boundaries ('start' and 'end' dates). Convergence values indicated that all models were stable (C > 95%). Model index agreement values indicated five statistical outliers (all producing A \leq 60%; AA14109, GrN5063, P1379, P1380 and GrN5062) (Table 6.5; Figure 6.5). Removal of the five potential outliers resulted in acceptable agreement index values (A \geq 60%) in a subsequent run of the model (Figure 6.6) with χ^2 testing confirming that the refined dataset constituted a stratigraphically coherent group (Table 6.4). Following an assessment of the source material and the prior chronological information, the five outliers were deemed to represent residual or intrusive samples and were excluded from further analysis.

Table 6.3. Contextual information for Beidha PPN radiocarbon dates (*n* = 23) and justification for exclusion from analysis. Dates in descending chronological order of the earliest 95% probability distribution of radiocarbon dates (cal BC). Dates highlighted in grey are excluded.

Lab	Context		Material*	Radiocarbon date		Justification for exclusion
reference		Subphase: Location		BP	Cal BC	
					range (95%)	
P1380	A2	Building 74: central post	CH: Pistacia	9128 ± 103	8640-7990	Poor agreement; considerably earlier than other PPN dates despite being from Subphase A2; one of three dates (including GrN5136 and K1083) derived from the same object - considerably earlier than the other two dates; potential old wood effect: potential timber re-use or tree potentially felled (or wood collected) years before use.
K1086	A1	Building 18: possible roof beam	CH: Quercus	8940 ± 160	8470-7600	
beta 235216		3.35 m; Neolithic layer right above sterile sand	СН	9110 ± 50	8460-8240	Insufficient contextual information
BM111	B2	Building 26: beam roof fall directly above floor	CH: ?	8790 ± 200	8430-7490	
AA1461		-	СН	8390 ± 390	8430-6470	Insufficient contextual information
GrN5062	C2	Building 8: possible wooden lid of stone-lined pit	CH: Juniper	9030 ± 50	8320-7990	Poor agreement; one of the earlier PPN dates despite being from Subphase C2 (last PPN phase); unclear nature of material (possible lid); potential old wood effect due to long-living species, potential timber re-use or tree potentially felled (or wood collected) years before use.
P1382	C2	Building 8: from near top of stone-lined pit	CH: ?	8892 ± 115	8290-7670	Below agreement threshold (A < 60%) in subphased sequence model (A = 29.5%); date retained as one of only two potentially suitable dates for estimating span of Subphase C2 and Building 8
K1410	A1	Building 48: roof beam	CH: Juniper	8850 ± 150	8290-7590	-
K1411	A1	Building 48: wall post	CH: Quercus	8770 ± 150	8260-7580	
K1084	B2	Building 26: beam root fall directly above floor	CH: Juniper	8730 ± 160	8250-7530	

CH: Charcoal; S: Seed/nut; B: Bone.

Lab		Context	Material*	Radiocar	bon date	Justification for exclusion
reference		Subphase: Location		BP	Cal BC	
					range (95%)	
K1412	A1	Building 48: central post	CH: Pistacia	8720 ± 150	8240-7540	
K1083	A2	Building 74: central post	CH: Pistacia	8640 ± 160	8240-7370	
AA13036	A1	Outdoor area: hearth 5	S: Pistacia	8830 ± 70	8230-7680	
K1082	A2	Building 54: large basket of carbonised pistachios	S: Pistacia	8710 ± 130	8220-7560	
GrN5136	A2	Building 74: central post	CH: Pistacia	8810 ± 50	8210-7720	
P1381	A1	Building 18: burnt fill	CH: ?	8765 ± 102	8210-7590	
AA13038		Non-phased, Hearth A	Legumes	8765 ± 80	8200-7600	Insufficient contextual information
P1378	A2	Building 54: central post	CH: ?	8715 ± 100	8200-7580	
K1085	C2	Building 8: from near top of stone-lined pit	CH: Juniper	8550 ± 160	8200-7180	
AA14109	A1	Building 49: upper floor	B: Ovicaprid femur	8646 ± 69	7940-7550	Poor agreement; one of the later PPN dates despite being from Subphase A1; the only date sourced from bone; the only sample (of 7 submitted) to retain sufficient amino acids for dating; carbon contamination often causes younger dates in bone; possibly intrusive disarticulated bone.
P1379	A2	Building 54: large basket of carbonised pistachios	S: Pistacia	8546 ± 100	7940-7350	Poor agreement; two of the latest PPN dates
GrN5063	A2	Building 54: large basket of carbonised pistachios	S: Pistacia	8640 ± 50	7790-7570	despite being from Subphase A1; date considerably later than K1082 sourced from the same material.
AA13037		Non-phased, Hearth B	Legumes	7720 ± 130	7040-6360	Insufficient contextual information

132

* CH: Charcoal; S: Seed/nut; B: Bone.

Figure 6.4. Beidha PPN radiocarbon dates (cal BC) (n = 23) with 95% probability distributions. Dates with insufficient contextual information highlighted in grey.

	2			
Table C A Desults of Obling	\cdots	a sussels in a sl D si slla s		
I ADIA 6 4 RASILITS OF U.DI-SC	nuared tests (V) on	complined Reidna	PPIN radiocarbon	nates
				autoo

4	Table 6.4. Results of oni squared tests () of combined belana i i i i radiocarbon dates.							
		Weighted mean (BP)	X^2 result	Cal BC range (95%)				
I	19 dates	8798 ± 21	fail: df=18 T=60.4 (5% 28.9)	7960 - 7750				
	14 dates	8788 ± 29	df=13 T=6.7 (5% 22.4)	7970 - 7730				

OxCal v4.2.4 Bronk Ramsey (2013); r:5 IntCal13 atmospheric curve (Reimer et al 2013)

Figure 6.5. Modelled boundary (start/end) dates for Beidha PPN occupation based on posterior density estimates of calibrated dates (cal BC) by order of subphase and descending chronological order of earliest cal BC date: 1^{st} run (*n* dates = 19). Distributions in lighter grey represent the simple radiocarbon calibrations and those in darker grey represent the posterior 95% probability distributions. Dates with poor agreement highlighted in grey.

Figure 6.6. Modelled boundary (start/end) dates for Beidha PPN occupation based on posterior density estimates of calibrated dates (cal BC): 2^{nd} run (*n* dates = 14), following removal of dates with poor agreement.

Lab reference	Radiocarbon date	1 st run: 19 dates			2 nd run: 14 dates				
	range (cal BC) (95%)	Posterior density estimate range (cal BC) (95.4%)	Indice Amodel= Aoveral	s ⊧0.7 !=1	Posterior density estimate range (cal BC) (95.4%)	Indices Amodel=122 Aoverall=126.3			
			A	С		A	С		
Start		8120-7780		96.9	8270-7760		97.4		
K1086	8470-7600	8100-7780	106.2	98.6	8220-7760	110	99.3		
K1410	8290-7590	8080-7780	114.5	99.1	8170-7760	113.6	99.6		
K1411	8260-7580	8060-7780	113	99.4	8130-7750	110.6	99.7		
K1412	8240-7540	8030-7780	105.9	99.6	8080-7750	105.1	99.6		
AA13036	8230-7680	8010-7780	120	99.6	8060-7750	115.3	99.8		
P1381	8210-7590	8000-7780	117.1	99.5	8000-7740	119	99.8		
AA14109	7940-7550	7980-7780	14.5	99.5					
P1380	8640-7990	7980-7780	1.4	99.4					
K1083	8240-7370	7970-7780	94.9	99.3	7970-7740	98.8	99.8		
K1082	8220-7560	7960-7780	106.2	99.2	7960-7740	110.9	99.8		
GrN5136	8210-7720	7950-7780	132.1	99.4	7950-7730	116.3	99.8		
P1378	8200-7580	7950-7780	97.9	99.4	7950-7700	109.7	99.8		
P1379	7940-7350	7940-7770	10.5	99.5					
GrN5063	7790-7570	79407770	3	99.4					
BM111	8430-7490	7940-7760	121.2	99.4	7940-7670	119.1	99.7		
K1084	8250-7530	7930-7760	117.5	99.4	7940-7650	121.8	99.7		
GrN5062	8320-7990	7930-7750	0	99.2					
P1382	8290-7670	7930-7750	84.6	99.0	7920-7610	61.3	99.6		
K1085	8200-7180	7940-7730	66.3	98.7	7930-7570	96.8	99.3		
End		7940-7710		97.2	7940-7520		97.4		
Span (years)		0-320		96.1	0-660		97.0		

Table 6.5. Modelled boundary (start/end) dates for Beidha PPN occupation based on posterior density estimates of calibrated dates (cal BC) by order of subphase and in descending chronological order: 1^{st} (19 dates) and 2^{nd} (14 dates) run. Dates with poor agreement (A ≤ 60%) highlighted in grey and removed from 2^{nd} run.

A 'sequence' model was applied to the refined dataset (n = 14 dates) to estimate occupation span, subphase length and building use-life. Byrd's (2005a) detailed analysis of the stratigraphic sequence at Beidha indicated a contiguous relationship, with no intermittent break, between Subphases A1 and A2 and sequential relationships, with intermittent breaks reflecting intervening subphases or earlier building periods, between Subphases A2, B2 and C2 (i.e. Subphases B1 and C1). Occupational evidence for Subphases B1 and C1 and building use-life estimates for comparable structures via archaeological, ethnographic and experimental research indicated potential 'gap' periods of at least 30 years for Subphase B1 and at least 70 years for Subphase C1 (Table 6.6). Based on the stratigraphic relationships between subphases, a Bayesian chronological model was structured to produce a 'transition' date between Subphases A1 and A2, and estimated 'end' and 'start' dates between Subphases A2, B2 and C2, with suggested minimum 'gap' periods of 30 years for Subphase B1 and 70 years for Subphase C1 (see Figure 5.3 for OxCal code).

Table 6.6. Archaeological evidence for and suggested minimum length of Subphases B1 and C1.

_		
	Archaeological evidence for subphase length	Min subphase
	(Byrd 2005a: pp.46-58, 90-91)	length (years)
S	ubphase B1 (earlier Phase B occupation)	30
•	Later Phase B buildings (34, 25, 26) superimposed earlier Phase B buildings	; (35, 40, 42).
•	Wall fall deposits west of later Phase B Building 25 represent large-scale lev	elling of earlier
	Phase B structure.	
•	Remodelling of earlier Phase B Building 42.	
•	Use-life of earlier Phase B structures potentially 35-55 years (use-life estimation	te for
	comparable earthen/masonry structures with moderate maintenance: see Ta	ble 6.1).
S	ubphase C1	70
٠	"Considerable span" suggested for Phase C buildings.	
٠	Extensive remodelling of C1 buildings.	
٠	Construction of C1 Building 23 within exterior cultural deposits accumulated	after
	construction of C1 Building 7.	
٠	Use of earlier Phase C wall by C1 Building 6.	
٠	Truncation of earlier Phase C Building 5 by C1 Building 9.	
٠	Several re-flooring episodes in C1 Building 9.	
٠	Two probable occupations of Building 1 during C1 separated by a probable p	period of
	abandonment.	
٠	At least four building episodes in C1 (as opposed to one main building episod	de in C2).
٠	Use-life of C1 structures potentially 50-100 years (use-life estimate for comp	arable masonry
	structures with moderate-considerable maintenance: see Table 6.1).	

'Phase' subsets were constructed for each building to estimate use-life. As more than one structure occurred within Subphases A1 (Buildings 18 and 48) and A2 (Buildings 54 and 74), individual 'building phase' models were grouped within overall 'subphase building phase' models to allow for potential overlap between the dates of these structures. Based on the prior chronostratigraphic information and the considerable developments that occurred throughout the PPN occupation at Beidha, the broader span estimates based on the upper end of the 95.4% range are considered most valid.

The model indicates that the PPN occupation of Beidha began sometime between *8,220 and 7,810 cal BC* (posterior density estimates italicised herein), during the MPPNB, terminating around 600 years later sometime between *7,810 and 7,460 cal BC*, at the end of the MPPNB (Figures 6.7-6.8; Table 6.7). However, the majority of radiocarbon samples were sourced from structural elements and it is highly probable that earlier start and end dates have resulted from old wood effects (Wicks *et al.* 2016).

Modelled dates indicate that Subphase A1 spanned around 140 years, terminating sometime between *8,190 and 7,770 cal BC*, with Subphase A2 spanning around 80 years and terminating sometime between *8,160 and 7,740 cal BC* (Figures 6.7-6.8; Table 6.7). The overall estimated 260 year span for Phase A compares well with Byrd's (2005a, p.27) estimate of 300 years. The model produced a 'gap' of around 70 years between the end and start dates of Subphases A2 and B2 to account for Subphase B1, which was not directly dated. For Subphase B2, the model indicated a span of 50 years, beginning sometime between *8,080 and 7,680 cal BC* and terminating between *7,920 and 7,670 cal BC*. This produces an overall estimated span of around 120 years for Phase B, lower than Byrd's (2005a) estimate of 150 to 250 years. The model indicates a further 'gap' of around 100 years between Subphase B2 and C2 to account for Subphase C1. Modelled dates indicate that Subphase C2 began sometime between *7,810 and 7,580 cal BC* and terminated Sometime between *7,810 and 7,580 cal BC* and terminated sometime between *7,810 and 7,580 cal BC* and terminated sometime between *7,810 and 7,580 cal BC* and terminated Phase C span of around 180 years compares well with the range proposed by Byrd (2005a) (150-250 years).

The model produced building use-life estimates of 90 and 120 years for Subphase A1 Buildings 18 and 48, respectively; 60 years each for Subphase A2 Buildings 54 and 74; 50 years for Subphase B2 Building 26; and 80 years for Subphase C2 Building 8 (Figure 6.9; Table 6.7). Building use-life estimates for Subphases A2, B2 and C2 are comparable to values derived from archaeological, ethnographic and experimental research (Table 6.8). However, building use-life values for Subphase A1 are relatively high. This probably partly reflects earlier than expected start dates resulting from old wood effects (Wicks *et al.* 2016). Even if adjustments were made for old wood effects, the difference between Subphase A1 length and building use-life values are considered suitable for the purposes of contemporaneity adjustments.

If the long span estimate for Subphase A1 Building 48 (120 years) is not due to old wood effects, this raises some questions about the generally accepted stratigraphic

sequence. Building 48 and associated annex, Building 50, are the only Subphase A1 structures that were not superimposed by Subphase A2 buildings and the only Subphase A1 structures for which there is clear evidence of burning (Byrd 2005a, p.78). Byrd (2005a, p.78) argues that it is possible, although "unlikely", that Buildings 48 and 50 were utilised to the end of Subphase A2 when a conflagration destroyed much of the occupation. The long span estimate derived for Building 48 could suggest that this building was indeed occupied during Subphase A2.

End Subphase C2 [C:97]	
К1085 (8550,160) [A:132 C:100]	
P1382 (8892,115) [A:30 C:100]	
Building 8	
Subphase C2	
Start Subphase C2 [C:100]	
Gap 70 End Subphase B2 [C:100]	
[] K1084 (8730,160) [A:120 C:100]	
BM111 (8790,200) [A:119 C:100]	
Building 26	
Subphase B2	
Start Subphase B2 [C:100]	
Gap 30 End Subphase A2 [C:100]	
GrN5136 (8810,50) [A:126 C:100]	
K1083 (8640,160) [A:92 C:100] —	
Building 74	
P1378 (8715,100) [A:91 C:100]	
K1082 (8710,130) [A:102 C:100]	
Building 54	
Subphase A2 Buildings	
Subphase A2	
Transition Subphase A1/Subphase A2 [C:100]	
[] K1412 (8720,150) [A:100 C:99]	
K1411 (8770,150) [A:110 C:99]	
K1410 (8850,150) [A:115 C:99]	
Building 48	
P1381 (8765,102) [A:105 C:99]	
K1086 (8940,160) [A:107 C:99]	
Building 18	
Subphase A1 Buildings	
Subphase A1	
Start Subphase A1 [C:97]	
[Amodel:97]	
	8500 8000 7500 7000 650
10000 10000 3000 3000	

OxCal v4.2.4 Bronk Ramsey (2013); r:5 IntCal13 atmospheric curve (Reimer et al 2013)

Posterior density estimate (cal BC)

Figure 6.7. Modelled boundary (start/transition/end) dates for PPN Beidha occupation and subphases based on posterior density estimates of calibrated dates (cal BC) (n dates = 14). Date with poor agreement highlighted in grey.

Table 6.7. Modelled boundary (start/transition/end) dates for Beidha PPN occupation and subphases, and span (years) estimates based on posterior density estimates of calibrated dates (cal BC) by order of subphase and building in descending chronological order. Date with poor agreement highlighted in grey.

Building Lab R		Radiocarbon	Posterior density	Indices		
reference dat		date range	estimate range	Amodel=96	6.5	
(cal l		(cal BC) (95%)	(cal BC) (95.4%)	Aoverall=95	5.6	
0(a.r.(0)	h		0000 7040	A	00.5	
Start Supp	nase A1	0.170 7000	8220-7810	100 7	96.5	
18	K1086	8470-7600	8200-7790	106.7	99.3	
	P1381	8210-7590	8200-7790	104.7	99.3	
	Span Buildi	ng 18	0-90		99.9	
48	K1410	8290-7590	8200-7790	114.6	99.3	
	K1411	8260-7580	8200-7790	110.1	99.3	
	K1412	8240-7540	8200-7790	99.9	99.3	
	Span Buildi	ng 48	0-120		99.8	
Span Sub	phase A1		0-140		99.7	
Transition	Subphase A1/.	A2	8190-7770		99.5	
54	K1082	8220-7560	8170-7750	102.3	99.7	
	P1378	8200-7580	8170-7750	91.1	99.6	
	Span Buildi	ng 54	0-60		100	
74	K1083	8240-7370	8170-7750	92.4	99.6	
	GrN5136	8210-7720	8170-7760	125.8	99.7	
	Span Buildi	ng 74	0-60		100	
Span Sub	phase A2		0-80		99.9	
End Subpl	nase A2		8160-7740		99.7	
		Subphase B1:	Gap ≥ 30 years			
Start Subp	hase B2		8080-7680		99.7	
26	BM111	8430-7490	7950-7680	119	99.8	
	K1084	8250-7530	7950-7680	120.4	99.8	
	Span Buildi	ng 26	0-50		100	
Span Sub	phase B2		0-50		100	
End Subpl	nase B2		7920-7670		99.7	
		Subphase C1:	Gap ≥ 70 years			
Start Subp	hase C2		7810-7580		99.7	
8	P1382	8290-7670	7800-7580	29.5	99.6	
K1085		8200-7180	7810-7530	131.7	99.6	
Span Building 8			0-80		100	
Span Sub	phase C2		0-80		100	
End Subpl	nase C2		7810-7460		97.4	
Span Beid	lha		150-600		97.4	

Figure 6.8. Modelled occupation span and subphase lengths for PPN Beidha.

141

Figure 6.9. Modelled building use-life estimates for PPN Beidha.

Final subphase length and building use-life estimates for PPN Beidha

Final span estimates for use in reconstructing structural contemporaneity values are predominantly based on the maximum span values derived from the 95.4% probability posterior density estimates (Table 6.8). Modelled subphase length and average building use-life values for Subphases A1 (140 years and 100 years) and A2 (80 years and 60 years) are considered suitable. However, Subphases B2 and C2 include dates from one structure only, producing identical modelled estimates for subphase length and building use-life. For these subphases, the modelled span estimates are adjusted based on the prior chronological information and archaeological, ethnographic and experimental building use-life estimates.

For Subphase B2 and associated Building 26, the modelled spans were 50 years. Evidence exists for reuse of the western wall of Building 26 in the construction of a later Subphase B2 structure (Byrd 2005a, p.51). Therefore, if the span estimate is considered accurate for Building 26, as seems reasonable based on archaeological, ethnographic and experimental research of comparable structures (see Table 6.1), Subphase B2 must have spanned longer than 50 years. Byrd (2005a, p.84) suggests 33.3% to 50% contemporaneity in the northeastern corner of the excavated area and potentially 100% contemporaneity in the central cluster. If an average contemporaneity value of around 70% is considered reasonable for this subphase, this would equate to a Subphase B2 span of around 70 years. This falls part way between the 100 year span estimate based on Byrd's (2005a) estimate of 150 to 250 years for Phase B and the modelled estimate of 50 years for Subphase B2. A subphase length of 70 years and an average building use-life of 50 years is, therefore, considered suitable for Subphase B2 in this investigation.

For Subphase C2 and associated Building 8, the modelled spans were 80 years. The construction of Building 8 represents the beginning of Subphase C2, with abandonment of the structure probably occurring slightly prior to site abandonment (Byrd 2005a, p.178). If this use-life estimate is considered reasonable for Building 8, as is supported by research of comparable structures (see Table 6.1), Subphase C2 must have spanned marginally longer than 80 years, possibly 90 years or more. This falls part way between the 100 year span estimate based on Byrd's (2005a) estimate of 150 to 250 years for Phase C and the modelled estimate of 80 years for Subphase C2.

The building use-life estimate for Building 8 (80 years), which was considerably maintained, is probably not representative of Subphase C2 buildings, which generally demonstrate moderate to considerable maintenance. Archaeological, ethnographic and experimental research of comparable structures indicates a potential use-life of 50 to 100 years for these types of structures (see Table 6.1). Building 8 demonstrates a

longer duration of use compared to other Subphase C2 structures, which were gradually abandoned throughout the subphase (Byrd 2005a, pp.93-94). A high degree of structural contemporaneity appears to have occurred at least in the earlier stages of Subphase C2, with many Subphase C1 buildings continuing in use alongside Subphase C2 structures built early in the subphase in relatively rapid succession (Byrd 2005a, p.93). To establish a population estimate for the height of Subphase C2 occupation, the average building use-life must reflect this high degree of contemporaneity, whilst being less than the span estimate derived for Building 8 (i.e. 80 years). Therefore, this investigation utilises an average building use-life of 70 years. This is part way between the suggested use-life based on comparable structures (50-100 years) and slightly lower than the modelled use-life for Building 8 (80 years).

Structural contemporaneity values were calculated by dividing the building use-life estimate by the subphase length estimate, as per the method detailed by Varien *et al.* (2007). Contemporaneity values were estimated at 71.43% for Subphases A1 and B2; 75% for Subphase A2; and 77.78% for Subphase C2. The latter is comparable to the contemporaneity value applied by Rollefson and Köhler-Rollefson (1989) (80%) to the PPNB/PPNC village of 'Ain Ghazal, which demonstrates similar architectural features to Phase C.

Table 6.8. Radiocarbon dates (cal BC), phase/subphase span and building use-life estimates, and final structural contemporaneity values for PPN Beidha. Subphases under investigation highlighted in grey.

Phase Subphase: Building		Byrd 2005a		Archaeological, ethnographic, experimental research		Bayesian chronological modelling			Final values	
		Span/	Radiocarbon	Construction,	Use-life	Pos	terior density est	timates	Span/	Structural
		Building	date - start	<i>maintenance^c</i>	(years)		(cal BC) (95.4%	6)	use-life	contemporaneity
		use-life	(cal BC) (95%) ^a			Span/	Start	End	(years)	(%)
		(years)				use-life				
000000	tion on on	500.800	9470 7600			(years)	0000 7010	7910 7460	600	
Occupa	ation span	500-600	6470-7600			600	0220-7010	/010-/400	~000	
Phase/s	subphase length									
А		300								
	A1	(150) ^b				140	8220-7810	8190-7770	140	
	A2	(150)				80	8190-7770	8160-7740	80	
В		150-250								
	B1	(100)				(≥ 30)				
	B2	(100)				50	8080-7680	7920-7670	70	
С		150-250								
	C1	(100)				(≥ 70)				
	C2	(100)				80	7810-7580	7810-7460	90	
Buildin	a use-life									
A	A1	Considerabl	е	E/M. C	55-75	[100	71.43
	Building 18			E/M. C	55-75	90				
	Building 48			E/M, C	55-75	120				
	A2	Reasonable		E/M, Mod-C	35-75				60	75
	Building 54			E/M, Mod-C	35-75	60				
	Building 74			E/M, Mod	35-55	60				
В	B2	Short (NE)/L	ong (Centre)	E/M, Mod	35-55				50	71.43
	Building 26			E/M, Mod	35-55	50				
С	C2	Considerabl	e	M, Mod-C	50-100				70	77.78
	Building 8			M, C	75-100	80				

^a Start date is earliest radiocarbon date after 7000 BC as suggested by Byrd 2005a (6,990±160 BC). Start date converted to cal BC in OxCal v.4.2.4 (Bronk Ramsey 2005; 2009). ^b Suggested in this investigation based on Byrd's (2005a) research. ^c Construction - E: Earthen, M: Masonry; Maintenance - Mod: Moderate, C: Considerable (see Table 6.1 for references).

6.2 Population estimates - Subphase A1

6.2.1 Housing unit method

The housing unit method (HUM) estimates population based on an estimated total number of contemporaneous dwellings and a hypothesised number of people per dwelling. In this research, the theory of nuclear family habitation is tested by applying nuclear family dwelling unit sizes ranging from three to eight people. Three methods are explored to produce total dwelling estimates. Each produces identical results as these are based on the same fundamental area measurements and proportions sourced from the site plan. Whilst Method 1 is more efficient, Methods 2 and 3 involve the calculation of a range of demographic data useful for further analysis.

Method 1: Subphase A1 assessable area (132.17 m²) comprises 13.22% of the estimated total site extent (1,000 m²) (Table 6.9.). Four potential dwellings were identified. This number was divided by the proportion of area assessable (0.1322) to produce a total dwelling estimate of 30.26.

Method 2: The mean excavated residential built area per dwelling, including external walls, is 18.71 m². Assessable built area (86.77 m²) constitutes 65.65% of the assessable area, producing a total built area estimate of 656.5 m² when multiplied by the total site extent. Potential residential built area (74.85 m²) comprises 86.26% of the assessable built area. Multiplying this proportion by the total built area estimate produces a total residential built area estimate of 566.32 m². Dividing the total residential built area (566.32 m²) by the mean residential built area per dwelling (18.71 m²) produces a total dwelling estimate of 30.26.

A simpler method for estimating total residential built area is to divide the assessable residential built area (74.85 m^2) by the proportion of area assessable (13.22%), although this bypasses calculations of additional, useful demographic data.

Method 3: The proportion of assessable area comprising potential residential built area (56.63%) was multiplied by the total site extent to produce a total residential built area estimate of 566.32 m². This was divided by the mean residential built area per dwelling (18.71 m²) to produce a total dwelling estimate of 30.26.

Application of the Subphase A1 structural contemporaneity value (71.43%) produced an estimate of 21.62 contemporaneous dwellings. Multiplication of the number of dwellings by the three nuclear family sizes produced total population estimates of around 65 to 175 people.

Table 6.9. HUM population estimates for Bei	idha Subphase A	1.				
Method 1: Total potential dwelling number	r			30.26		
Number of potential dwellings in the assessa	able area			4		
Assessable area (m ²)				132.17		
Estimated total site extent (m ²)				1000		
Assessable area (proportion)				0.1322		
Method 2: Total potential dwelling number	r			30.26		
Mean potential residential built area (m ²)				18.71		
Potential residential built area (m ²)	Building 18	17.76	Building 48	23.51		
	Building 41	12.77	Building 49	20.81		
Total built area estimate (m ²)				656.50		
		Assessal	ble area (m^2)	132.17		
Assessable built area (m^2)						
Assessable bu	ilt area as a prop	portion of asse	essable area	0.6565		
Estimated total site extent (m^2)						
Residential built area as a proportion of asse	essable built area	A		0.8626		
Potential residential built area (m2)						
Total potential residential built area (m ²)				566.32		
Method 3: Total potential dwelling number						
Potential residential built area as a proportion of assessable area						
Total number of contemporaneous dwellings (71.43%)						
Total population estimate based on nucle	ar family size:	Minimum	3	64.85		
		Average	5.5	118.90		
		Maximum	8	172.94		

1 - 4 D - : -II.

6.2.2 Residential area density coefficient

The residential area density coefficient (RADC) method estimates population based on an estimated total contemporaneous residential floor ('sleeping') area and a hypothesised residential floor area allocation per person (in this research: 1.77-5 m²). As for the HUM, the three methods explored for estimating total residential floor area produce identical results, though each method provides a range of demographic data for further analysis (Table 6.10).

Method 1: The potential residential floor area of the four dwellings (38.84 m²) was divided by the proportion of area assessable (0.1322) to produce a total residential floor area estimate of 293.88 m².

Method 2: Built area (86.77 m²) constitutes 65.65% of the assessable area. Multiplying this proportion by the total site extent produces a total built area estimate of 656.5 m². Excavated potential residential floor area (38.84 m²) constitutes 44.76% of the assessable built area. Multiplying this proportion by the total built area estimate produces a total residential floor area estimate of 293.88 m².

Method 3: The proportion of assessable area comprising potential residential floor area (29.39%) was multiplied by the total site extent to produce a total residential floor area estimate of 293.88 m^2 .

Application of the Subphase A1 structural contemporaneity value (71.43%) produced an estimate of 209.92 m² contemporaneous residential floor area. This was divided by the three RADCs to produce total population estimates of around 40 to 120 people.

Method 1: Total potential residential fl	r area (m ²) 293.88						
Potential residential floor area (m^2)	38.84						
Potential residential floor Building 18							
area (m^2) Building 41	6.50 Building 49 9.23						
	3						
Assessable area (m ²)	132.17						
Estimated total site extent (m ²)	1000						
Assessable area (proportion)	0.1322						
Method 2: Total potential residential fl	r area (m²) 293.88						
Total built area estimate (m ²)	656.50						
Assessable area (m ²)							
Assessable built area (m ²)							
Assessable built area as a proportion of assessable area							
Estimated total site extent (m ²)							
Potential residential floor area as a propo	on of assessable built area 0.4476						
Potential residential floor area (m ²)							
	<u> </u>						
Method 3: Total potential residential floor area (m ²)							
Potential residential floor area as a proportion of assessable area							
	<u>.</u>						
Total contemporaneous residential floor area (m ²) (71.43%)							
Total population estimate based on	Minimum 1.77 118.60						
RADC (m ²):	Average 3.3 63.61						
	Maximum 5 41.98						

Table 6.10. RADC population estimates for Beidha Subphase A1.

6.2.3 Storage provisions formulae

The storage provisions formulae (SPF) estimate population size and dwelling occupant numbers from available residential floor area. There are three SPF based on different amounts of hypothesised personal annual storage allowance in the residential floor area, as follows: no storage: P = 0.3944A - 0.375moderate storage (0.46 m³ per person): P = 0.2477A + 0.0339maximum storage (2 x 0.46 m³ per person): P = 0.1903A + 0.3976

Method 1: The variables for Method 1 are defined as follows:

- A Total contemporaneous residential floor area (m²)
- P Total (adult) population

The estimated total contemporaneous residential floor area (A) for Subphase A1 calculated via the RADC method is 209.92 m². Application of the SPF Method 1 produced population (P) estimates of around 40 people (maximum storage) to 80 people (no storage) (Table 6.11; Figure 6.10).

Method 2: The variables for Method 2 are defined as follows:

- A Mean residential floor area of complete dwellings (m²)
- P Number of people (i.e. adults) per dwelling

The mean residential floor area of complete dwellings (A) for Subphase A1 is 11.56 m². Application of the SPF Method 2 produced dwelling unit size (P) estimates of around 2.6 people (maximum storage) to 4.2 people (no storage). Multiplication of these estimates by the estimated total number of contemporaneous dwellings derived via the HUM (n = 21.62) produced total population estimates of around 55 people (maximum storage).

There is no evidence for built-in storage features within Subphase A1 dwellings and given the reliance on hunter-gatherer subsistence strategies, including communal food-related activities, and evidence for annexes associated with dwellings, it is improbable that the maximum amount of storage occurred within the residential floor area. Bitumen baskets and basket fragments uncovered in Buildings 18 and 48 indicate some residential storage. Whether this reflects on floor or elevated storage remains unclear. Based on this evidence, formulae reflecting limited (none to moderate) residential storage are considered most suitable for Beidha Subphase A1. These formulae produce a mean population estimate of around 55 to 85 people.

				Residential storage provisions (m ³ per person)								
			None)		Modera	nte (0.46)		Maximum (2 x 0.46)			
			P = 0.3944A - 0.375			P = 0.2477	7A + 0.0339		P = 0.1903	3A + 0.3976		
Metho	d 1: To	tal population estin	mate (P)									
А	=	209.92	0.3944 x 209.92	=	82.79	0.2477 x 209.92	=	52.00	0.1903 x 209.92	=	39.95	
Р	=	?	82.79 - 0.375	=	82.42	52 + 0.0339	=	52.03	39.95 + 0.3976	=	40.35	
			Р	=	82.42	Р	=	52.03	Р	=	40.35	
Metho	d 2: Pe	ople per dwelling (P) and total populatio	n estimate	es							
А	=	11.56	0.3944 x 11.56	=	4.56	0.2477 x 11.56	=	2.86	0.1903 x 11.56	=	2.20	
Р	=	?	4.56 - 0.375	=	4.18	2.86 + 0.0339	=	2.90	2.20 + 0.3976	=	2.56	
			Р	=	4.18	Р	=	2.90	Р	=	2.56	
			Total number of contemporaneous dwellings 21							21.62		
		Total population			90.45			62.63			55.32	
		- -										
Mean t	total po	opulation			86.44			57.33			47.83	

Figure 6.10. SPF population and people per dwelling estimates for Beidha Subphase A1.

6.2.4 Naroll's (1962) allometric growth formula

The SPF was considered the most empirically robust and reliable method for estimating population parameters (see Section 10.2.1). Therefore, the SPF population estimates based on the applicable storage provisions (Subphase A1: none to moderate) are employed as the P (population) variable within the allometric growth formulae (AGF).

Two methods are explored in the application of Naroll's (1962) AGF (AGF1) (A = $a \times P^{b}$), where constants and variables are defined as follows:

- A Total built floor area (m²)
- a Initial growth index (21.7)
- P Total population
- *b* Scaling exponent (0.84195)

Method 1: To estimate total built floor area, the value of $P^{0.84195}$ was multiplied by the initial growth index (a = 21.7) (Table 6.12). This produced total built floor area (A) estimates of between 656.06 m² (moderate storage) and 926.96 m² (no storage). These estimates are considerably higher than the estimated total built floor area based on the excavated evidence (A = 342.21 m²) (Table 6.13). The total built floor area estimates based on Naroll's (1962) formula were divided by the corresponding SPF population estimate to calculate built floor area per person of 10.72 m² (no storage) to 11.44 m² (moderate storage). These values compare well with Naroll's (1962) proposed universal constant of 10 m² roofed/built floor area per person (see Section 4.1.4).

Built floor area per person estimates were multiplied by the proportion of residential floor area in built floor area as derived from the excavated evidence (85.88%) to produce residential floor area per person (RADC) estimates of 9.21 m² (no storage) to 9.83 m² (moderate storage). These are considerably higher than RADCs calculated from the SPF population estimate range and the estimated total contemporaneous residential floor area in this investigation (2.43-3.66 m² per person).

Method 2: The total built floor area estimate derived from the excavated evidence (A = 342.21 m^2) and the Subphase A1 SPF population estimates were used to re-calculate Naroll's (1962) initial growth index (*a* = 21.7). This produced initial growth indices (*a*) of 8.01 (no storage) to 11.32 (moderate storage). These are considerably lower than Naroll's (1962) original index.

		, ippliout					
					Data required		
SPF	popula	ation esti	mate (F) based on	amount of storage:	None	86.44
Moderate							
						Maximum	47.83
Resid	dential	floor are	a as a	proportion (of built floor area (%)		85.88
				Total bui	It floor area (m^2) (A)		342 21
				i otai bui		$able erec (m^2)$	15 22
					Built noor area in assess	able area (m.)	40.23
					Proportion of site a	ssessable (%)	13.22
				l otal res	idential floor area (m ²) (RADC met	hod)	293.88
Built	floor a	rea per p	erson ((m²) derive	d from SPF population estimates	None	3.96
and t	otal bu	uilt floor a	area bas	sed on amo	ount of storage:	Moderate	5.97
					-	Maximum	7.15
RAD	C deriv	/ed from	SPF pc	poulation es	stimates and total	None	2.43
conte	empor	aneous re	esidenti	al floor are	a based on amount of storage.	Moderate	3.66
oome	mpore		00100110		a babba on ambant or otorago.	Maximum	4 30
			Total	ontomnoro	nonucleonidantial floor area $(m^2)/(l$	ADC mathad)	200.02
			Total C	ontempora	neous residential noor area (m.) (r	RADC method)	209.92
					$A = a \times P^{b}$		
		Metho	d 1: To	tal built flo	oor area (m ²) (A), built floor area	per person an	d RADC
		Α	=	?	$\Delta = 21.7 \text{ y}$	86 44 ^{0.84195}	
		D	_	96 11	A = 21.1 A		10 70
		Г	=	00.44	86.44	=	42.72
		a	=	21.7	21.7 x 42.72	=	926.96
		b	=	0.84195	Α	=	926.96
	Φ	Built f	loor are	ea per pers	son (m²)		10.72
	ю	RADC	(m ² pe	r person)			9.21
	Z		(Resid	lential floor area as a proportion of	built floor area	85.88
		Motho	d 2. Pa		d initial growth index (a)		
		A	=	342.21	$342.21 = a^{1}$	(80.44	40 70
		Р	=	86.44	86.44	=	42.72
		а	=	?	342.21/42.72	=	8.01
		b	=	0.84195	а	=	8.01
		Metho	d 1: To	tal built flo	oor area (m ²) (A), built floor area	per person an	d RADC
		А	=	?	A = 21.7 x	57.33 ^{0.84195}	
		P	_	57 22	57 22 ^{0.84195}	_	30.23
ë		' 0	_	21.33	37.33	_	656.06
ag		a h	=	21.7	21.7 X 30.23	=	050.00
P	te	<i>D</i>	=	0.84195	A	=	000.00
st	ra	Built f	loor are	ea per pers	son (m ⁻)		11.44
of	qe	RADC	(m ² pe	r person)			9.83
nt	Мо			Resid	lential floor area as a proportion of	built floor area	85.88
nc	-	Metho	d 2: Re	-calculate	d initial growth index (a)		
Ĕ		Α	=	342.21	342 21 = a s	x 57.33 ^{0.84195}	
◄		P	_	57 33	57 22 ^{0.84195}	_	30 23
		1	-	07.00	07.00	—	30.23
		a	=	? 0.04405	342.21/30.23	=	11.32
		D	=	0.84195	a	=	11.32
		Metho	d 1: To	tal built flo	oor area (m ²) (A), built floor area	per person an	d RADC
		А	=	?	A = 21.7 x	47.83 ^{0.84195}	
		Р	=	47.83	47.83 ^{0.84195}	=	25.96
		а	=	21.7	21.7 x 25.96	=	563.27
		b	=	0 84195	A	=	563 27
	ш	~ Ruilt f		a nor nor	son (m ²)		11 78
$\frac{1}{2}$							
	ixi	RADC	(m⁻ pe	r person)			10.11
	Ma			Resid	lential floor area as a proportion of	built floor area	85.88
		Metho	d 2: Re	-calculate	d initial growth index (a)		
		А	=	342.21	$342.21 = a_1$	47.83 ^{0.84195}	
		Р	=	47 83	47 83 ^{0.84195}	=	25 96
		2	_	2	3/2 21/25 OF	_	12 10
		a h	=	r 0.04405	342.21/23.90	=	13.10
		Ø	=	0.84195	ä	=	13.18

Table 6.12. Application of Naroll's (1962) AGF1 to Beidha Subphase A1.

Table 6.13. Summary of estimates for application of Naroll's (1962) AGF1 to Beidha Subphase A1. Estimates based on suggested amount of stora	ge
provision in the residential floor area highlighted in grey.	

Summary of estimates based on:	Naroll's (1962) formula				Archaeological evidence			
	SPF population e	estimate based on a	amount of storage:	SPF population e	estimate based on a	amount of storage:		
	None Moderate Maximum			None Moderate		Maximum		
	(86.44)	(57.33)	(47.83)		(86.44)	(57.33)	(47.83)	
Total built floor area (m ²)	926.96	656.06	563.27	342.21				
Built floor area per person (m ²)	10.72	11.44	11.78		3.96	5.97	7.15	
RADC (m ² per person)	9.21	9.83	10.11		2.43	3.66	4.39	
Initial growth index	8.01	11.32	13.18					

6.2.5 <u>Wiessner's (1974) allometric growth formulae</u>

Wiessner's (1974) allometric growth formulae (AGF2) for open (A = $a \ge P^2$), village (A = $a \ge P^1$) and urban (A = $a \ge P^{0.6667}$) settlements were applied using the estimated total site extent as the A variable and SPF population estimates as the P variable to determine the value of the initial growth index (*a*). Variables and constants are defined as follows:

- A Total site extent (m²)
- a Initial growth index
- P Total population
- *b* Scaling exponent (open: 2; village: 1; urban: 0.6667)

Wiessner's (1974) AGF2 produced open, village and urban initial growth indices of 0.13 (no storage) to 0.3 (moderate storage); 11.57 to 17.44; and 51.15 to 67.25, respectively (Table 6.14). The AGF2 for open and village settlements only are considered suitable for this subphase. This is due to the low estimated population size; the formative nature of the village; the enduring hunter-gatherer social processes, architectural forms and settlement layout; and the lack of multi-storey structures.

					Data required		
Total s	ite exten	t (m²) (A	4) (D)	hased on	amount of storage.	None	1000
	opulation	Counta			amount of Storage.	Moderate	57 33
						Maximum	47.83
					$A = \alpha \times \mathbf{P}^{b}$		
		Open	settl	ements	A=dXP	$1000 - a \times 86 44^2$	
		A	=	1000		1000 = 4 × 00.44	
		Р	=	86.44	86.44 ²	=	7471.15
		а	=	?	1000/7471.15	=	0.13
		b	=	2	а	=	0.13
		Villag	je set	tlements		1000 = <i>a</i> x 86.44 ¹	
	ы	А	=	1000			
	lor	Р	=	86.44	86.44 ¹	=	86.44
	<	а	=	?	1000/86.44	=	11.6
		b	=	1	а	=	11.57
		Urbar	ו sett	lements		1000 = <i>a</i> x 86.44 ^{0.6667}	
		A	=	1000	0 6667		
		Р	=	86.44	86.44	=	19.55
		a	=	?	1000/19.55	=	51.15
		D	=	0.6667	<u>a</u>	=	51.15
		Open	settl	ements		$1000 = a \ge 57.33^2$	
		A	=	1000	$r_{7} 22^{2}$		2200.00
		P 2	=	57.33	57.33 1000/3286.08	=	3286.98
:e		h	_	2	a	-	0.30
raç		Villag		tlomonte	ŭ	-	0.00
ŝto	ate	A	=	1000		$1000 = a \times 57.35$	
d s	ler	P	=	57.33	57.33 ¹	=	57 33
Ĕ	100	a	=	?	1000/57.33	=	17.4
Inc	2	b	=	1	а	=	17.44
ŭ		Urbar	ו sett	lements		1000 = <i>a</i> x 57.33 ^{0.6667}	
<		А	=	1000			
		Р	=	57.33	57.33 ^{0.6667}	=	14.87
		а	=	?	1000/14.87	=	67.25
		b	=	0.6667	а	=	67.25
		Open	settl	ements		$1000 = a \times 47.83^2$	
		A	=	1000			
		Р	=	47.83	47.83	=	2288.12
		a h	=	? O	1000/2200.12	=	0.44
			=	۲ د امبید میراد	đ	=	0.44
	ш	villag	e set			$1000 = a \times 47.83^{\circ}$	
	m	A D	=	1000	47 00 ¹		47.00
	axi	г а	=	41.03 ?	47.00 1000/47 83	=	47.03
	N	b	_	1	a		20.91
		Urbar	n sett	lements	-	$1000 - 2 \times 47 83^{0.6667}$	
		A	=	1000		1000 - a A 41.03	
		P	=	47.83	47.83 ^{0.6667}	=	13 18
		а	=	?	1000/13.18	=	75.88
		b	=	0.6667	a	=	75.88
Initial c	growth in	dices		SPF	population estimate k	based on amount of storage)[

Table 6.14. Application of Wiessner's (1974) AGF2 to Beidha Subphase A1. Estimates based on suggested amount of storage provision and applicable settlement types highlighted in grey. Data required

Initial growth indices	SPF population estimate based on amount of storage:						
for:	None (86.44)	Moderate (57.33)	Maximum (47.83)				
Open settlements	0.13	0.30	0.44				
Village settlements	11.57	17.44	20.91				
Urban settlements	51.15	67.25	75.88				

6.2.6 Settlement population density coefficient

The settlement population density coefficient (SPDC) method calculates (1) population size from commonly utilised SPDCs and (2) SPDCs from HUM, RADC and SPF population estimate ranges.

Method 1: To calculate population size, the total site extent (0.1 ha) was multiplied by the three commonly utilised SPDCs (90, 150 and 294 people/ha). This produced total population estimates of nine, 15 and 29.4 people, respectively (Table 6.15; Figure 6.11). When multiplied by the proportion of assessable excavated area (13.22%), these estimates equate to a total population of 1.19, 1.98 and 3.89 people in the assessable area, and average dwelling unit sizes of 0.42, 0.69 and 1.36 people based on an estimated 2.86 contemporaneously occupied dwellings in the assessable area.

Method 2: To calculate SPDCs, population estimates derived from the HUM (P = 64.85-172.94), RADC (P = 41.98-118.6) and applicable SPF (P = 57.33-86.44) were divided by the total site extent (0.1 ha). This produced density values of around 650 to 1,730 people per hectare (HUM), 420 to 1,190 people per hectare (RADC) and 570 to 960 people per hectare (SPF). These values are substantially higher than the commonly utilised SPDCs (90-294 people per hectare).

Table 6.15. Population estimates and SPDCs for Beidha Subphase A1 derived from commonly	y
utilised SPDCs and HUM, RADC and SPF population estimates.	

Data required	
Total site extent (ha)	0.1
Proportion of site assessable (%)	13.22
Number of contemporaneous dwellings in the assessable area	2.86
Dwellings in assessable area	4
Contemporaneity value (%)	71.43

Method 1: Total population based on commonly utilised SPDCs							
		SPDC (people/ha)					
		Minimum	Average	Maximum			
		90	150	294			
Total population		9	15	29.4			
	Population in the assessable area	1.19	1.98	3.89			
	People per dwelling in the assessable area	0.42	0.69	1.36			
Mothod 2. SDDC	's based on HIIM PADC and SPE nonulati	on octimate)C				

Method 2: SPDCs based on HUM, RADC and SPF population estimates									
Method	Total popula	Total population estimate				SPDC (people/ha)			
	Minimum	Average	Maximum	Minimum	Average	Maximum			
HUM	64.85	118.90	172.94	648.53	1188.97	1729.41			
RADC	41.98	63.61	118.60	419.84	636.12	1185.99			
SPF	57.33	-	86.44	573.32	-	864.36			

Figure 6.11. Population estimates and SPDCs for Beidha Subphase A1 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates. Variables utilised in HUM, RADC and SPF population estimates indicated.

6.2.7 Summary of estimates

Table 6.16. Summary of estimates for Beidha Subphase A1. Values highlighted in grey include SPF estimates, which are the final estimates used in AGF and comparative analysis; the most plausible amount of storage provision in the residential floor area; appropriate settlement types for Wiessner's (1974) AGF2; and contemporaneous proportions utilised in systematic methodologies.

Method Total population		People per dwelling		RADC (m ² /person)		SPDC (people/ha)		
		Based on total number of contemporaneous dwellings:		Based on total contemporaneous residential floor area (m ²):		Based on total site extent (ha):		
		21.62			209.92		0.1	
HUM	64.85-172.94		3-8			1.21-3.24		648.53-1729.41
RADC	41.98-118.6		1.94-5.49			1.77-5		419.84-1185.99
SPF1	57.33-86.44		2.65-4			2.43-3.66		573.32-864.36
SPF2 ^ª	-		2.9-4.18			-		-
AGF1 ^ª						9.21-9.83		-
SPDC	9-29.4		0.42-1.36			7.14-23.32		90-294
~ Direct calculations.								
Initial growth indices derived from SPF population estimates:				Amount of storage:				
•					None (86.44)		Moderate (57.33)	Maximum (47.83)
Naroll's (196	2) AGF1					8.01	11.32	13.18
Wiessner's (1974) AGF2		Open settlements				0.13	0.30	0.44
		Village settlements				11.57	17.44	20.91
		Urban settlements				51.15	67.25	75.88
Additional demographic data								
Additional demographic data							Contemporaneous (71.43%)	
Proportion (%) of assessable area		Built area				65.65	·	46.89
comprising:		Residential built area				56.63		40.45
1 0		Built floor area ^b				34.22		24.44
		Residential floor area				29.39		20.99
Proportion (%	6) of assessable built	Residential built area				86.26		
area compris	ing:	Built floor area ^c				52.13		
		Residential floor area				44.76		
Proportion (%) of built floor area comprising residential floor area						85.88		
Mean residential floor area of complete dwellings (m ²)						11.56		
^b Based on assessable area (132.17 m ²) and built floor area (45.23 m ²).								
^c Based on assessable built area (86.77 m ²) and built floor area (45.23 m ²).								

Figure 6.12. Summary of estimate ranges for Beidha Subphase A1. Values on range bars indicate the variables included in the final estimate range (i.e. HUM: nuclear family size - 3-8 people; RADC: residential floor area per person - 1.77-5 m²; SPF: storage provisions in residential floor area - none to moderate; SPDC: 90-294 people per hectare). SPF estimate ranges are considered most valid and are highlighted in grey for comparative analysis.

159

6.3 Population estimates - Subphase A2

6.3.1 Housing unit method

The total number of dwellings in Subphase A2 was estimated at around 61. Application of the Subphase A2 structural contemporaneity value (75%) produced an estimate of 46 contemporaneous dwellings (Table 6.17).

The limited mean residential floor area of complete dwellings in Subphase A2 (7.26 m²) allowed exclusion of the average (5.5 people) and maximum (8 people) nuclear family sizes from the final estimate range as these were deemed to produce insufficient residential floor area space allowance (RADC = 1.32 m^2 and 0.91 m^2 per person, respectively). The lowest RADCs derived from comparative ethnographic examples are 1.86 m² per person for Aboriginal Californian settlements in which dwellings were occupied by nuclear families of six to eight occupants (Cook and Heizer 1968) and 2.16 m² per person for dwellings without internal fireplaces in the Arctic Circle (Hayden *et al.* 1996). The lowest RADC employed in this investigation is 1.77 m² based on an average maximum modern human sleeping space requirement (Hemsley 2008). When based on the minimum nuclear family size only (3 people), the HUM produced a Subphase A2 population estimate of around 140 people.

6.3.2 Residential area density coefficient

The total residential floor area was estimated at around 400 m² (Table 6.18). Based on a total contemporaneous residential floor area estimate of 300 m², the total population was estimated at around 60 to 170 people.

6.3.3 Storage provisions formulae

Application of the SPF produced population estimates of around 55 people (maximum storage) to 115 people (no storage), and dwelling unit size estimates of around 1.7 people (maximum storage) to 2.5 people (no storage) (Table 6.19; Figure 6.13). Evidence exists for possible permanent storage (i.e. a small pit) and more ephemeral storage (i.e. a pistachio basket) within Building 54. However, no other storage features were uncovered. The continued reliance on hunter-gatherer subsistence strategies, evidence for communal food-related activities and annexes associated with dwellings suggest that the maximum amount of storage did not occur in the residential floor area. Therefore, formulae reflecting limited (none to moderate) residential storage are

considered most suitable for Beidha Subphase A2. These formulae produce a population estimate of around 80 to 115 people, and a dwelling unit size estimate of around 1.8 to 2.5 people.

6.3.4 Naroll's (1962) allometric growth formula

Utilising the applicable SPF population estimates as the P variable, Naroll's (1962) AGF1 produced total built floor area (A) estimates of around 860 m² (no storage) to 1,180 m² (moderate storage). These are considerably higher than the total built floor area estimate derived from the excavated evidence (595.31 m²) (Table 6.20). Built floor area per person was estimated at 10.24 m² (no storage) to 10.88 m² (moderate storage). This compares well with Naroll's constant of 10 m² per person. These values were converted to 6.81 m² (no storage) and 7.24 m² (moderate storage) residential floor area per person. These are considerably higher than values derived from the archaeological evidence in this investigation (2.57-3.76 m² per person).

The AGF1 initial growth index (*a*) was re-calculated at 10.91 (no storage) to 15.04 (moderate storage). These are considerably lower than Naroll's (1962) original index (a = 21.7).

6.3.5 <u>Wiessner's (1974) allometric growth formulae</u>

Utilising the applicable SPF population estimates as the P variable, Wiessner's (1974) AGF2 produced open, village and urban initial growth indices of 0.15 (no storage) to 0.32 (moderate storage); 17.3 to 25.34; and 84.26 to 108.67, respectively (Table 6.21). Due to the continued hunter-gatherer social, architectural and spatial elements; the potential for settlement sprawl at this relatively low population size; and the lack of multi-storey structures, the formulae for open and village settlements only are considered suitable for Subphase A2.

6.3.6 Settlement population density coefficient

The commonly utilised SPDCs (90, 150 and 294 people/ha) produced total population estimates of 18, 30 and 58.8 people (Table 6.22; Figure 6.14). This equates to a population of 2.64, 4.4 and 8.63 people in the assessable area, respectively, and an average dwelling unit size of 0.39, 0.65 and 1.28 people in the assessable area, based on 6.75 contemporaneous dwellings.

Population estimates calculated via micro-level methods produced density estimates of around 700 (HUM), 300 to 840 (RADC), and 400 to 580 (SPDC) people per hectare, respectively. All SPDC estimates based on the population estimate ranges derived from the HUM, RADC and SPF methods exceed the commonly utilised values. The SPDC based on the HUM far exceeds the maximum value (294 people/ha) despite being based on the minimum nuclear family size (3 people) only.

Method 1: Total potential dw	elling number	<i>c</i>):		61 32
Number of potential dwellings	in the executed of	roo		01.52
Assossable area (m^2)		aica		203 53
Estimated total site extent (m^2)				293.33
Assessable area (proportion)				0 1468
Assessable alea (proportion)				0.1400
Method 2: Total potential dw	elling number			61.32
Mean potential residential built	area (m ²)			12.98
Potential residential built	Building 33	12.53	Building 55	7.63
area (m²)	Building 38	17.66	Building 56	12.31
	Building 51	9.87	Building 74	14.72
	Building 53	13.44	Building 83	11.47
	Building 54	17.17	Ū.	
Total built area estimate (m ²)				1144.28
, , , , , , , , , , , , , , , , , , ,		Assess	able area (m²)	293.53
		Assessable	built area (m^2)	167.94
Assessal	ble built area as a	proportion of as	sessable area	0.5721
		Estimated total s	site extent (m^2)	2000
Residential built area as a pror	oortion of assessa	ble built area		0.6955
	Pote	ential residential	built area (m²)	116.81
Total potential residential built	area (m²)			795.89
Method 3: Total potential dw	elling number			61.32
Potential residential built area	as a proportion of	assessable area	a	0.3979
Total number of contemporaneous dwellings (75%)				45.99
family size	seu on nuclear	Average	55	137.98
141111y 3120.		Mavimum	9.0 8	252.90
		WIDAIIIIUIII	0	307.34

Table 6.17. HUM population estimates for Beidha Subphase A2. Estimate/s based on applicable nuclear family size/s highlighted in grey.

		Deluna Subpriase	RZ.	
Method 1: Total potential	residential floo	r area (m²)		396.09
Potential residential floor ar		58.13		
Potential residential floor	Building 33	3.68	Building 55	4.82
area (m²)	Building 38	10.31	Building 56	4.45
	Building 51	4.98	Building 74	8.07
	Building 53	7.02	Building 83	4.77
	Building 54	10.03		
Assessable area (m ²)				293.53
Estimated total site extent (m²)			2000
Assessable area (proportion	n)			0.1468
Method 2: Total potential	residential floo	r area (m²)		396.09
Total built area estimate (m	²)			1144.28
	,	Asse	essable area (m²)	293.53
		Assessab	ble built area (m^2)	167.94
Asse	ssable built area	as a proportion of	assessable area	0.5721
		Estimated tota	al site extent (m²)	2000
Potential residential floor ar	ea as a proporti	on of assessable b	uilt area	0.3461
		Potential residenti	ial floor area (m²)	58.13
Method 3: Total potential	residential floo	r area (m²)		396.09
Potential residential floor area as a proportion of assessable area				
Total contemporaneous residential floor area (m ²) (75%)				
Total population estimate	based on	Minimum	1.77	167.84
RADC (m ²):		Average	3.3	90.02
		Maximum	5	59.41

Table 6.18. RADC population estimates for Beidha Subphase A2.

Table 6.19. SPF population and people per dwelling estimates for Beidha Subphase A2.

		Storage provisions formulae (m ³ residential storage per person)			
	None	Moderate (0.46)	Maximum (2 x 0.46)		
Method 1: Total population (P) based on total contemporaneous residential floor area (297.07 m ²)					
Total population (P)	116.79	73.62	56.93		
Method 2: People per dwelling (P) based on mean residential floor area of complete dwellings (7.26 m ²) and total population based on total number of contemporaneous dwellings (45.99)					
People per dwelling (P)	2.49	1.83	1.74		
Total population	114.44	84.27	80.07		
Mean total population	115.62	78.94	68.50		

Table 6.20. Application of Naroll's (1962) AGF1 to Beidha Subphase A2.

Summary of estimates based on:	Naroll's (1962) formula			Archa	eological evidence		
	SPF population estimate based on amount of storage:			SPF population	estimate based on a	mount of storage:	
	None (115.62)	Moderate (78.94)	Maximum (68.5)		None (115.62)	Moderate (78.94)	Maximum (68.5)
Total built floor area (m ²)	1184.18	858.81	762.09	595.31			
Built floor area per person (m ²)	10.24	10.88	11.13		5.15	7.54	8.69
RADC (m ² per person)	6.81	7.24	7.40		2.57	3.76	4.34
Initial growth index	10.91	15.04	16.95				

Table 6.21. Application of Wiessner's (1974) AGF2 to Beidha Subphase A2.

Initial growth indices				
Settlement type	SPF population estimate based on amount of storage:			
	None (115.62)	Moderate (78.94)	Maximum (68.5)	
Open	0.15	0.32	0.43	
Village	17.30	25.34	29.20	
Urban	84.26	108.67	119.45	

Table 6.22. Population estimates and SPDCs for Beidha Subphase A2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates.

Data required			
Total site extent (ha)	0.2		
Proportion of site assessable (%)	14.68		
Number of contemporaneous dwellings in the assessable area	6.75		
Dwellings in assessable area	9		
Contemporaneity value (%)	75		

Method 1: Total population based on commonly utilised SPDCs				
		SP	DC (people	/ha)
		Minimum	Average	Maximum
		90	150	294
Total population		18	30	58.8
	Population in the assessable area	2.64	4.40	8.63
	People per dwelling in the assessable area	0.39	0.65	1.28

Method 2: SPDCs based on HUM, RADC and SPF population estimates						
Method	Total popula	Total population estimate			DC (people	e/ha)
	Minimum	Average	Maximum	Minimum	Average	Maximum
HUM	137.98	-	-	689.88	-	-
RADC	59.41	90.02	167.84	297.07	450.10	839.18
SPF	78.94	-	115.62	394.71	-	578.08

Figure 6.14. Population estimates and SPDCs for Beidha Subphase A2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates. The HUM arrow indicates the direction of estimates if higher nuclear family sizes were employed.

6.3.7 <u>Summary of estimates</u>

167

Table 6.23. Summary of estimates for Beidha Subphase A2.

Method	Total population	People per dwelling Based on total number of contemporaneous dwellings:	RADC (m²/person) Based on total contemporaneous residential floor area (m ²):	SPDC (pe Based on total	eople/ha) site extent (ha):
		45.99	297.07	0.	.2
HUM	137.98	3	2.1	5	689.88
RADC	59.41-167.84	1.29-3.65	1.77-	5	297.07-839.18
SPF1	78.94-115.62	1.72-2.51	2.57-3.7	6	394.71-578.08
SPF2 ^a	-	1.83-2.49		-	-
AGF1 ^a	-	-	6.81-7.2	4	-
SPDC	18-58.8	0.39-1.28	5.05-16.	5	90-294
^a Direct calcula	ations.				
Initial growt	h indices derived from SPF	population estimates:	Amo	ount of storage:	
			None (115.62)	Moderate (78.94)	Maximum (68.5)
Naroll's (196	2) AGF1		10.9	1 15.04	16.95

				1 /
Naroll's (1962) AGF1		10.91	15.04	16.95
Wiessner's (1974) AGF2	Open settlements	0.15	0.32	0.43
	Village settlements	17.30	25.34	29.20
	Urban settlements	84.26	108.67	119.45

Additional demographic data			
			Contemporaneous (75%)
Proportion (%) of assessable area	Built area	57.21	42.91
comprising:	Residential built area	39.79	29.85
	Built floor area ^b	29.77	22.32
	Residential floor area	19.80	14.85
Proportion (%) of assessable built	Residential built area	69.55	
area comprising:	Built floor area ^c	52.02	
	Residential floor area	34.61	
Proportion (%) of built floor area comp	prising residential floor area	66.54	
Mean residential floor area of complet	te dwellings (m ²)	7.26	
^b Based on assessable area (132.17 m ²) a	and built floor area (45.23 m ²).		
^c Based on assessable built area (86.77 n	n ²) and built floor area (45.23 m ²).		

Figure 6.15. Summary of estimates for Beidha Subphase A2. The HUM arrow indicates the direction of estimates if higher nuclear family sizes were employed.

168

6.4 Population estimates - Subphase B2

6.4.1 Housing unit method

Eight potential dwellings were identified in the assessable area (Table 6.24). The total number of dwellings was estimated at around 27, reduced to around 19 contemporaneous dwellings based on 71.43% structural contemporaneity. Due to the limited mean residential floor area of complete dwellings (6.52 m²), only the minimum nuclear family size is considered appropriate for this subphase. This produces a population estimate of around 55 people. This low population estimate reflects the low proportions of built area (28.5%) and residential built area (15.14%) within the assessable portion of the site. The proportion of built area is considerably lower than the average proposed by Kuijt (2008a) for MPPNB villages (70%) and the proportion calculated for the preceding phase, which demonstrates comparable architectural and spatial characteristics (Subphase A2 = 57.21%). This is probably due to the destruction of many Phase B buildings, particularly dwellings, by later construction (Byrd 2005a, p.19). To reconstruct a more realistic population estimate for Subphase B2, area proportions derived for Subphase A2 are utilised in place of Subphase B2 area proportions. This produces an estimate of around 50 contemporaneous dwellings and a population estimate of around 150 people (based on the minimum nuclear family size only). Subphase A2 area proportions are utilised for Subphase B2, herein.

6.4.2 <u>Residential area density coefficient</u>

The total residential floor area was estimated at 396.06 m². Based on the total contemporaneous residential floor area estimate of 282.91 m², the total population was estimated at around 55 to 160 people (Table 6.25).

6.4.3 Storage provisions formulae

Application of the SPF produced population estimates of around 55 people (maximum storage) to 110 people (no storage), and dwelling unit size estimates of around 1.6 people (maximum storage) to 2.2 people (no storage) (Table 6.26; Figure 6.16). Domesticated plant forms emerge during Phase B, suggesting that there may have been an increased amount of storage. However, evidence for storage within structures is generally lacking (i.e. a small pit in Building 31 only). Given this and the small mean floor area of residential structures, it is improbable that the maximum amount of storage would have occurred. Therefore, formulae reflecting limited (none to moderate)

residential storage are considered most suitable for Beidha Subphase B2. These formulae produce a population estimate of around 75 to 110 people and a dwelling unit size estimate of around 1.7 to 2.2 people.

6.4.4 Naroll's (1962) allometric growth formula

Naroll's (1962) AGF1 produced total built floor area (A) estimates of around 830 m² (moderate storage) to 1,140 m² (no storage). Again, these are considerably higher than the built floor area estimated from the archaeological evidence (595.4 m²) (Table 6.27). Built floor area per person was calculated at 10.31 m² (moderate storage) to 11.08 m² (no storage), and converted to 6.86 m² (moderate storage) to 7.37 m² (no storage) residential floor area per person. These RADCs are also considerably higher than those produced from the archaeological evidence (2.56-3.71 m² per person). The initial growth index (*a*) was re-calculated at 11.33 (no storage) to 15.48 (moderate storage). This range is considerably lower than Naroll's (1962) original index (*a* = 21.7).

6.4.5 <u>Wiessner's (1974) allometric growth formulae</u>

Wiessner's (1974) AGF2 produced open, village and urban initial growth indices of 0.16 (no storage) to 0.34 (moderate storage); 26.2 to 18.08; and 86.79 to 111.12, respectively (Table 6.28). Due to the continued open layout of the predominantly curvilinear structures; maintenance of external areas for communal food-related practices; and lack of multi-storey structures, the formulae for open and village settlements only are considered suitable for Subphase B2.

6.4.6 <u>Settlement population density coefficient</u>

The commonly utilised SPDCs (90, 150 and 294 people/ha) produced population estimates of 18, 30 and 58.8 people (Table 6.29; Figure 6.17). In the assessable area, this equates to a population of 5.4, nine and 17.64 people, and dwelling unit sizes of 0.36, 0.6 and 1.17 people based on an estimated 15.02 contemporaneous dwellings. Population estimates calculated via micro-level methods produced density estimates of around 750 (HUM), 280 to 800 (RADC), and 380 to 550 (SPDC) people per hectare, respectively. The minimum SPDCs based on the RADC and SPF methods are comparable to the maximum commonly utilised value (294 people/ha). The SPDC based on the HUM far exceeds this value despite based on the minimum nuclear family size (3 people) only.

Table 6.24. HUM population	on estimates for Beidha	Subphase B2.

	Method 1: Tota	al potential dwo	elling number		26.67	
	Number of pote	ential dwellings i	n the excavated a	irea	8	
	Assessable are	a (m ²)			599 92	
	Estimated total	cito oxtont (m^2)			2000	
					2000	
	Assessable area (proportion)					
-	Method 2: Tota	al potential dw	elling number		26.67	
-	Moon notontial	residential built	$\frac{1}{2}$		11.25	
		Duilding 25		Duilding 17	11.55	
	Potential	Building 25	11.97	Bullaling 47	10.47	
		Building 34	10.92	Building 60	12.72	
ns	built area (m)	Building 36	14.71	Building 61	14.25	
rtio		Building 44	4.01	Building 82	11.77	
odo .						
pre	Total built area	estimate (m ²)			570.01	
ea				Assessable area (m^2)	599.92	
ar				Assessable built area (m ²)	170.98	
al		400000	hla huilt araa as a	nroportion of assessable area	0.285	
gin		7335336			0.200	
ori	Estimated total site extent (m^2)					
on	Residential built area as a proportion of assessable built area					
sed	Potential residential built area (m^2)					
Bas						
	Total potential residential built area (m ²)				302.77	
-	Method 3: Total potential dwelling number					
	Method 3: Tota	al potential dw	elling number		26.67	
	Method 3: Tota Potential reside	al potential dwo ntial built area a	elling number as a proportion of	assessable area	26.67 0.1514	
•	Method 3: Tota Potential reside	al potential dwo	elling number as a proportion of	assessable area	26.67 0.1514	
	Method 3: Tota Potential reside Total number of	al potential dwo ntial built area a f contemporane	elling number as a proportion of ous dwellings (71	assessable area .43%)	26.67 0.1514 19.05	
	Method 3: Tota Potential reside Total number of Total populatio	al potential dwo ntial built area a f contemporane	elling number as a proportion of ous dwellings (71 Minimum	assessable area .43%)	26.67 0.1514 19.05 57.15	
-	Method 3: Tota Potential reside Total number of Total populatio based on nucle	al potential dwo ntial built area a f contemporane on estimate ear family	elling number as a proportion of ous dwellings (71 Minimum Average	assessable area .43%) 3 5 5	26.67 0.1514 19.05 57.15	
-	Method 3: Tota Potential reside Total number of Total population based on nucle size:	al potential dwo ntial built area a f contemporane on estimate ear family	elling number as a proportion of ous dwellings (71 Minimum Average Maximum	assessable area .43%) 3 5.5 8	26.67 0.1514 19.05 57.15 104.78 152.4	
-	Method 3: Tota Potential reside Total number of Total populatio based on nucle size:	al potential dwa ntial built area a f contemporane on estimate ear family	elling number as a proportion of ous dwellings (71 Minimum Average Maximum	assessable area .43%) 3 5.5 8	26.67 0.1514 19.05 57.15 104.78 152.4	
su	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota	al potential dwo intial built area a f contemporane on estimate ear family al potential dwo	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number	assessable area .43%) 3 5.5 8	26.67 0.1514 19.05 57.15 104.78 152.4 70.1	
tions	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area	al potential dwo intial built area a f contemporane on estimate ear family al potential dwo estimate (m ²)	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number	assessable area .43%) 3 5.5 8	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18	
ortions	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area	al potential dwo intial built area a f contemporane on estimate ear family al potential dwo estimate (m ²)	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number	assessable area .43%) 3 5.5 8 a proportion of assessable area	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721	
oportions	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area	al potential dwa ntial built area a f contemporane on estimate ear family al potential dwa estimate (m ²) <i>Assessa</i>	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number	assessable area .43%) 3 5.5 8 a proportion of assessable area	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.0555	
proportions	Method 3: Total Potential reside Total number of Total population based on nucle size: Method 2: Total Total built area Residential built	al potential dwa ntial built area a f contemporane on estimate ear family al potential dwa estimate (m ²) <i>Assessa</i> t area as a prop	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955	
area proportions 1 grey)	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area Residential built Total potential r	al potential dwo initial built area a f contemporane on estimate ear family al potential dwo estimate (m ²) <i>Assessa</i> t area as a prop residential built a	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa area (m ²)	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955 795.82	
A2 area proportions d in grey)	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area Residential built Total potential r	al potential dwo initial built area a f contemporane on estimate ear family al potential dwo estimate (m ²) <i>Assessa</i> t area as a prop residential built a	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa area (m ²) elling number	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955 795.82 70.1	
ie A2 area proportions ited in grey)	Method 3: Tota Potential reside Total number of Total population based on nucle size: Method 2: Tota Total built area Residential built Total potential reside Method 3: Tota	al potential dwo initial built area a f contemporane on estimate ear family al potential dwo estimate (m ²) Assessa t area as a prop residential built a	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa area (m ²) elling number	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955 795.82 70.1	
hase A2 area proportions lighted in grey)	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area Residential built Total potential reside Potential reside	al potential dwo initial built area a f contemporane on estimate ear family al potential dwo estimate (m ²) <i>Assessa</i> t area as a prop residential built area a	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa area (m ²) elling number as a proportion of	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area assessable area	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955 795.82 70.1 0.3979	
ubphase A2 area proportions iighlighted in grey)	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area Residential built Total potential r Method 3: Tota Potential reside	al potential dwa Intial built area a f contemporane on estimate ear family al potential dwa estimate (m ²) <i>Assessa</i> t area as a prop residential built a al potential dwa residential built area a f contemporane	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa area (m ²) elling number as a proportion of ous dwellings (71	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area assessable area .43%)	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955 795.82 70.1 0.3979 50.07	
n Subphase A2 area proportions (highlighted in grey)	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area Residential built Total potential r Method 3: Tota Potential reside	al potential dwo initial built area a f contemporane on estimate ear family al potential dwo estimate (m ²) <i>Assessa</i> t area as a prop residential built area a f contemporane	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa area (m ²) elling number as a proportion of ous dwellings (71	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area assessable area .43%)	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955 795.82 705.82 70.1 0.3979 50.07	
d on Subphase A2 area proportions (highlighted in grey)	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area Residential built Total potential reside Total number of Total number of	al potential dwo initial built area a f contemporane on estimate ear family al potential dwo estimate (m ²) Assessa t area as a prop residential built a al potential dwo initial built area a f contemporane on estimate	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa area (m ²) elling number as a proportion of ous dwellings (71 Minimum	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area assessable area .43%) 3	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955 795.82 705.82 70.1 0.3979 50.07	
sed on Subphase A2 area proportions (highlighted in grey)	Method 3: Tota Potential reside Total number of Total populatio based on nucle size: Method 2: Tota Total built area Residential built Total potential r Method 3: Tota Potential reside Total number of Total populatio	al potential dwa Intial built area a f contemporane on estimate ear family al potential dwa estimate (m ²) <i>Assessa</i> t area as a prop residential built area a f contemporane on estimate ear family	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa area (m ²) elling number as a proportion of ous dwellings (71 Minimum Average	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area assessable area .43%) 3 5.5	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955 795.82 70.1 0.3979 50.07 50.07	
Based on Subphase A2 area proportions (highlighted in grey)	Method 3: Tota Potential reside Total number of Dased on nucle size: Method 2: Tota Total built area Residential built Total potential r Method 3: Tota Potential reside Total number of Total population based on nucle	al potential dwa initial built area a f contemporane on estimate ear family al potential dwa estimate (m ²) <i>Assessa</i> t area as a prop residential built area a f contemporane on estimate ear family	elling number as a proportion of ous dwellings (71 Minimum Average Maximum elling number able built area as a portion of assessa area (m ²) elling number as a proportion of ous dwellings (71 Minimum Average Maximum	assessable area .43%) 3 5.5 8 a proportion of assessable area ble built area assessable area .43%) 3 5.5 8	26.67 0.1514 19.05 57.15 104.78 152.4 70.1 1144.18 0.5721 0.6955 795.82 70.1 0.3979 50.07 50.07 150.22 275.4 400.58	

Table 6.25. RADC population estimates for Beidha Subphase B2 based on Subphase A2 area proportions (highlighted in grey).

Method 2: Total potential reside	ential floor ar	rea (m²)		396.06	
Total built area estimate (m ²)					
		Assess	sable area (m²)	599.92	
Assessable built area (m^2)					
Assessable	e built area as	a proportion of a	ssessable area	0.5721	
		Estimated total	site extent (m²)	2000	
Potential residential floor area as	a proportion of	of assessable buil	t area	0.3462	
Potential residential floor area (m	²)			49.82	
Potential residential floor area	3uilding 25	7.69	Building 47	6.29	
(m ²) <u>E</u>	34 Building	5.84	Building 60	6.02	
E	30 Building	6.74	Building 61	9.17	
E	3uilding 44	2.25	Building 82	5.82	
Method 3: Total potential reside	ential floor a	rea (m²)		396.06	
Potential residential floor area as a proportion of assessable area					
Total contemporaneous residentia	al floor area (r	m²) (71.43%)		282.91	
Total population estimate base	d on RADC	Minimum	1.77	159.83	
(m²):		Average	3.3	85.73	
		Maximum	5	56.58	

Table 6.26. SPF population and people per dwelling estimates for Beidha Subphase B2.

	Storage provisions formulae (m ³ residential storage per person)					
	None	Moderate (0.46)	Maximum (2 x 0.46)			
Method 1: Total populat (282.91 m ²)	Method 1: Total population (P) based on total contemporaneous residential floor area (282.91 m ²)					
Total population (P)	111.20	70.11	54.23			
Method 2: People per d dwellings (6.52 m ²) and dwellings (50.07)	welling (P) bas total populatio	ed on mean residential flo on based on total number	oor area of complete of contemporaneous			
People per dwelling (P)	2.20	1.65	1.60			
Total population	109.98	82.57	80.12			
Mean total population	110.59	76.34	67.18			

Figure 6.16. SPF population and people per dwelling estimates for Beidha Subphase B2.

Table 0.27. Application of Natoli's (1902) AGET to belona Subpliase D	Table 6.27	Application of	Naroll's (19	962) AGF1	to Beidha	Subphase B2
---	------------	----------------	--------------	-----------	-----------	-------------

Summary of estimates based	Naroll's (1962) formula		Archaeological evidence				
on:							
	SPF population estimate based on amount of storage:			SPF population es	timate based on a	amount of storage:	
	None	Moderate	Maximum		None	Moderate	Maximum
	(110.59)	(76.34)	(67.18)		(110.59)	(76.34)	(67.18)
Total built floor area (m ²)	1140.72	834.89	749.70	595.40			
Built floor area per person (m ²)	10.31	10.94	11.16		5.38	7.80	8.86
RADC (m ² per person)	6.86	7.28	7.42		2.56	3.71	4.21
Initial growth index	11.33	15.48	17.23				

Table 6.28. Application of Wiessner's (1974) AGF2 to Beidha Subphase B2.

Initial growth indices				
Settlement type	SPF population estimate based on amount of storage:			
	None (110.59) Moderate (76.34) Maximum (67			
Open	0.16	0.34	0.44	
Village	18.08	26.20	29.77	
Urban	86.79	111.12	121.01	

Table 6.29. Population estimates and SPDCs for Beidha Subphase B2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates.

Data required			
Total site extent (ha)	0.2		
Proportion of site assessable (%)	30.00		
Number of contemporaneous dwellings in the assessable area	15.02		
Total number of contemporaneous dwellings (derived from HUM)	50.07		
Proportion of site assessable (%)	30		

Method 1: Total population based on commonly utilised SPDCs				
	SPDC (people/ha)			
	Minimum Average Maximum			
	90	150	294	
Total population	18	30	58.8	
Population in the assessable area	5.40	9.00	17.64	
People per dwelling in the assessable area	0.36	0.60	1.17	

Method 2: SPDCs based on HUM, RADC and SPF population estimates						
Method	Total population estimate			SPDC (people/ha)		
	Minimum	Average	Maximum	Minimum	Average	Maximum
HUM	150.22	-	-	751.10	-	-
RADC	56.58	85.73	159.83	282.91	428.64	799.17
SPF	76.34	-	110.59	381.69	-	552.97

Figure 6.17. Population estimates and SPDCs for Beidha Subphase B2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates.

6.4.7 <u>Summary of estimates</u>

Table 6.30. Summary of estimates for Beidha Subphase B2.

Method	Total population	People per dwelling Based on total number of contemporaneous dwellings:	RADC (m ² /person) Based on total contemporaneous residential floor area (m ²):	SPDC (people/ha) Based on total site extent (ha):
		50.07	282.91	0.2
HUM	150.22	3	2.15	751.1
RADC	56.58-159.83	1.13-3.19	1.77-5	282.91-799.17
SPF1	76.34-110.59	1.52-2.21	2.56-3.71	381.69-552.97
SPF2 ^a	-	1.65-2.2	-	-
AGF1 ^a	-	-	6.86-7.28	-
SPDC	18-58.8	0.36-1.17	4.81-15.72	90-294
^a Direct colcul	lations			

^a Direct calculations.

Initial growth indices derived from	Amount of storage:			
		None (110.59)	Moderate (76.34)	Maximum (67.18)
Naroll's (1962) AGF1		11.33	3 15.48	17.23
Wiessner's (1974) AGF2	Open settlements	0.10	o 0.34	0.44
	Village settlements	18.08	3 26.20	29.77
	Urban settlements	86.79) 111.12	121.01

Additional demographic data					
			Contemporaneous (71.43%)		
Proportion (%) of assessable area	Built area	57.21	40.87		
comprising:	Residential built area	39.79	28.42		
	Built floor area ^b	29.77	21.26		
	Residential floor area	19.80	14.14		
Proportion (%) of built floor area comprising residential floor area 66.52					
Mean residential floor area of complete dwellings (m ²) 6.52					
Proportions derived from Subphase A2	; converted based on Subphase B2 contemporaneity value.				

Figure 6.18. Summary of estimates for Beidha Subphase B2.

177

6.5 Population estimates - Subphase C2

6.5.1 Housing unit method

The total number of dwellings was estimated at around 47, reduced to around 37 contemporaneous dwellings based on 77.78% structural contemporaneity (Table 6.31). The large mean residential floor area of complete dwellings (17.15 m²) could have accommodated any of the nuclear family sizes employed in this investigation. These produce a total population estimate of around 110 to 290 people.

6.5.2 Residential area density coefficient

Upper storeys of dwellings are considered to represent residential area in Phase C. The method for calculating upper storey residential floor area is outlined in Section 5.2.2. The total residential floor area was estimated at around 650 m² (Table 6.32). Based on the total contemporaneous residential floor area estimate of 500 m², the total population was estimated at around 100 to 285 people.

6.5.3 Storage provisions formulae

Application of the SPF produced population estimates of around 95 people (maximum storage) to 235 people (no storage) and dwelling unit size estimates of around 3.6 people (maximum storage) to 6.4 people (no storage) (Table 6.33; Figure 6.19).

Given the considerable storage space available on ground floors, it is improbable that the maximum amount of storage occurred within the upper storey residential area. Upper storey residential area measurements incorporate some degree of adjustment for storage based on upper storey storage evidence in Building 73 and blocked walls in several basements interpreted as representing similar storage facilities. As such, the formulae based on limited (none to moderate) residential storage only are considered suitable for Subphase C2. These produced population estimates of around 140 to 215 people and dwelling unit size estimates of around 4.3 to 6.4 people.

6.5.4 Naroll's (1962) allometric growth formula

Naroll's (1962) AGF1 based on the applicable SPF population estimates produced total built floor area (A) estimates of around 1,400 m^2 (moderate storage) to 2,000 m^2 (no storage). The built floor area estimate derived from the archaeological evidence

(1,490.16 m²) falls within this range (Table 6.34). Built floor area per person was calculated at 9.28 m² (no storage) to 9.93 m² (moderate storage). These are closely comparable to Naroll's (1962) constant of 10 m² built floor area per person. These values were converted to 4.03 m² (no storage) to 4.31 m² (moderate storage). These are marginally higher than RADCs derived from the archaeological evidence (2.33-3.58 m² per person).

The initial growth index (*a*) was re-calculated at 16.15 (no storage) to 23.16 (moderate storage). Naroll's (1962) original index (a = 21.7) falls within this range.

6.5.5 <u>Wiessner's (1974) allometric growth formulae</u>

Wiessner's (1974) AGF2 based on the applicable SPF population estimates produced open, village and urban initial growth indices of 0.06 (no storage) to 0.15 (moderate storage); 13.9 to 21.34; and 83.38 to 110.95, respectively (Table 6.35). The presence of two-storey, agglomerated, rectilinear architecture indicates that the formula for open settlements is not suitable for Subphase C2.

6.5.6 <u>Settlement population density coefficient</u>

The commonly utilised SPDCs (90, 150 and 294 people/ha) produced total population estimates of 27, 45 and 88.2 people (Table 6.36; Figure 6.20). In the assessable area, this equates to a population of 8.62, 14.36 and 28.15, and dwelling unit sizes of 0.74, 1.23 and 2.41 people based on an estimated 11.67 contemporaneous dwellings.

Population estimates calculated via micro-level methods produced density estimates of around 370 to 970 (HUM), 340 to 950 (RADC), and 470 to 720 (SPDC) people per hectare, respectively. The SPDCs derived from HUM, RADC and SPF population estimates demonstrate considerable overlap, and all exceed the maximum commonly utilised value (294 people/ha).

Table 6.31. HUM population estimates for Beidha Subphase C2.						
Method 1: Total potential dwell	ing number			46.99		
Number of potential dwellings in t	he excavated a	rea		15		
Assessable area (m ²)				957.64		
Estimated total site extent (m ²)				3000		
Assessable area (proportion)				0.3192		
Method 2: Total potential dwell	ing number			46.99		
Mean potential residential built an	ea (m²)			22.84		
Potential residential built area	Building 1	13.08	Building 14	21.54		
(m ²)	Building 2	39.91	Building 19	33.17		
	Building 3	32.75	Building 71	8.63		
	Building 4	29.11	Building 72	15.90		
	Building 5	23.57	Building 73	21.64		
	Building 10	29.92	West of 14	10.07		
	Building 12	25.17	West of 19	7.57		
	Building 13	30.62				
Total built area estimate (m ²)				1780.47		
		Assessa	able area (m²)	957.64		
		Assessable l	built area (m^2)	568.35		
Assessabl	e built area as a	a proportion of ass	sessable area	0.5935		
		Estimated total si	ite extent (m^2)	3000		
Residential built area as a propor	tion of assessa	ble built area		0.6029		
	Pot	tential residential l	built area (m²)	342.65		
Total potential residential built are	ea (m²)			1073.42		
Method 3: Total potential dwell	ing number			46.99		
Potential residential built area as a proportion of assessable area						
Total number of contemporaneou	s dwellings (77	.78%)		36.55		
I otal population estimate base	d on nuclear	Minimum	3	109.65		
ranniy size:		Average	5.5	201.02		
		Maximum	8	292.39		

Method 1: Total potential	residential flo	oor area (m ²)		646.75
Potential residential floor are	ea (m²)			206.45
Potential residential floor	Building 1	8.76	Building 14	13.48
area (m²)	Building 2	25.42	Building 19	21.41
	Building 3	18.39	Building 71	5.21
	Building 4	10.84	Building 72	10.61
	Building 5	13.98	Building 73	12.02
	Building 10	18.99	West of 14	5.91
	Building 12	16.03	West of 19	4.42
	Building 13	20.98		
Assessable area (m ²)				957.64
Estimated total site extent (m²)			3000
Assessable area (proportion	າ)			0.3192
		. 2.		
Method 2: Total potential	residential flo	oor area (m ²)		646.75
Total built area estimate (m	²)		2.	1780.47
		Asse	essable area (m²)	957.64
		Assessal	ble built area (m²)	568.35
Asses	ssable built ar	ea as a proportion of	fassessable area	0.5935
		Estimated tot	al site extent (m²)	3000
Potential residential floor an	ea as a propo	rtion of assessable b	uilt area	0.3632
		Potential resident	ial floor area (m²)	206.45
Method 3: Total potential	rosidontial fle	or area (m^2)		6/6 75
Detential residential fleer or		rtion of accordable of	r00	0.0156
Potential residential noor an	ea as a propo	rtion of assessable a	rea	0.2156
Total contemporaneous res	idential floor a	rea (m²) (77.78%)		503.04
				004.00
I otal population estimate	based on	Minimum	1.//	284.20
RADC (III):		Average	3.3 F	152.44
		Maximum	5	100.61

Table 6.32. RADC population estimates for Beidha Subphase C2.

Table 6.33. SPF population and people per dwelling estimates for Beidha Subphase C2.

	Storage provisions formulae					
		(m ³ residential storage	e per person)			
	None	Moderate (0.46)	Maximum (2 x 0.46)			
Method 1: Total population (P) based on total contemporaneous residential floor area (503.04 m ²)						
Total population (P)	198.02	124.64	96.13			
Method 2: People per dwelling (P) based on mean residential floor area of complete dwellings (17.15 m ²) and total population based on total number of contemporaneous dwellings (36.55)						
People per dwelling (P)	6.39	4.28	3.62			
Total population	233.51	156.50	132.42			
Mean total population	215.77	140.57	114.27			

Summary of estimates based on:	Naroll's (1962) formula			Archaec	ological evidence			
	SPF population	SPF population estimate based on amount of storage:				SPF population estimate based on amount of storage:		
	None	None Moderate Maximum			None	Moderate	Maximum	
	(215.77)	(140.57)	(114.27)		(215.77)	(140.57)	(114.27)	
Total built floor area (m ²)	2002.44	1395.97	1172.57	1490.10				
Built floor area per person (m ²)	9.28	9.93	10.26		6.91	10.60	13.04	
RADC (m ² per person)	4.03	4.31	4.45		2.33	3.58	4.40	
Initial growth index	16.15	23.16	27.58					

Table 6.34. Application of Naroll's (1962) AGF1 to Beidha Subphase C2.

Table 6.35. Application of Wiessner's (1974) AGF2 to Beidha Subphase C2.

Initial growth indices						
Settlement type	SPF population estimate based on amount of storage:					
	None (215.77)	Moderate (140.57)	Maximum (114.27)			
Open	0.06	0.15	0.23			
Village	13.90	21.34	26.25			
Urban	83.38	110.95	127.38			

Table 6.36. Population estimates and SPDCs for Beidha Subphase C2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates.

Data required					
Total site extent (ha)	0.3				
Proportion of site assessable (%)	31.92				
Number of contemporaneous dwellings in the assessable area	11.67				
Dwellings in assessable area	15				
Contemporaneity value (%)	77.78				

Method 1: Total population based on commonly utilised SPDCs						
		SPDC (people/ha)				
		Minimum	Average	Maximum		
		90	150	294		
Total population		27	45	88.2		
	Population in the assessable area	8.62	14.36	28.15		
	People per dwelling in the assessable area	0.74	1.23	2.41		

Method 2: SPDCs based on HUM, RADC and SPF population estimates

Method	Total popula	Total population estimate			SPDC (people/ha)		
	Minimum	Average	Maximum	Minimum	Average	Maximum	
HUM	109.65	201.02	292.39	365.49	670.07	974.65	
RADC	100.61	152.44	284.20	335.36	508.12	947.34	
SPF	140.57	-	215.77	468.56	-	719.23	

Figure 6.20. Population estimates and SPDCs for Beidha Subphase C2 derived from commonly utilised SPDCs and HUM, RADC and SPF population estimates.

6.5.7 <u>Summary of estimates</u>

Table 6.37. Summary of estimates for Beidha Subphase C2.

Method Total population		People per dwelling Based on total number of		RADC (m ⁻ /person) Based on total contemporaneous		SPDC (people/ha) Based on total site extent (ha):	
		contemporaneous dwellings:		residential floor are	ea (m²):		
		36.55		503.04	. ,	0	.3
HUM	109.65-292.39	3	-8		1.72-4.59		365.49-974.65
RADC	100.61-284.2	2 2.75-7.78			1.77-5		335.36-947.34
SPF1	140.57-215.77	3.85-5	.9		2.33-3.58		468.56-719.23
SPF2 ^a	-	4.28-6.3	39		-		-
AGF1 ^a	-		-		4.03-4.31		-
SPDC	27-88.2	0.74-2.4	11		5.7-18.63		90-294
^a Direct calcul	ations.						
Initial growt	th indices derived from	SPF population estimates:			Am	ount of storage:	
Ū		• •		None (215.77)		Moderate (140.57)	Maximum (114.27)
Naroll's (196	62) AGF1				16.15	23.16	27.58
Wiessner's (1974) AGF2		Open settlements			0.06	0.15	0.23
		Village settlements			13.90	21.34	26.25
		Urban settlements			83.38	110.95	127.38
Additional	lomographic data						
Additional	demographic data					Contemporan	eous (77 78%)
Proportion (%) of assessable area	Built area			59.35		46.16
comprisina:		Residential built area			35.78		27.83
		Built floor area ^b			49.67		38.63
		Residential floor area			21.56		16.77
Proportion (9	%) of assessable built	Residential built area			60.29		
area compris	sing:	Built floor area ^c	83.69				
•	5	Residential floor area			36.32		
Proportion (9	%) of built floor area comp	prising residential floor area			43.40	-	-
Mean reside	ntial floor area of complet	e dwellings (m²)			17.15		
^b Based on as	ssessable area (957.64 m ²) a	and built floor area (475.66 m ²).					
^c Based on as	sessable built area (568.35	m ²) and built floor area (475.66 m ²).					

Figure 6.21. Summary of estimates for Beidha Subphase C2.

6.6 Analysis of methods and results

6.6.1 Housing unit method (HUM)

The HUM is considered a suitable method for estimating the population of PPN villages and for providing further demographic data. However, issues arise from the application of a predetermined range of dwelling occupant numbers. In this investigation, the assumption of nuclear family dwelling units was tested via application of dwelling unit sizes of three to eight people. This produces large population estimate ranges, except where insufficient mean residential floor area allows exclusion of one or more of these family sizes, as was the case for Subphases A2 (7.26 m²) and B2 (6.52 m²) (Table 6.38).

The HUM produced some interesting data for comparison. The results indicate a total of around 22 contemporaneous dwellings during Subphase A1 and more than twice this during Subphases A2 (c. 46) and B2 (c. 50). Interestingly, despite a significantly higher population estimate in Subphase C2, there appears to be a decrease in the number of contemporaneous dwellings (c. 37). This may reflect affordance of higher dwelling unit sizes within the larger, two-storey, highly compartmentalised Subphase C2 residential structures (Byrd 2005a; Rollefson and Kafafi 2013).

Another interesting set of data relates to the proportions of built area and residential built area in the assessable area. The proportion of built area appears to have remained relatively consistent throughout (around 60%), except for Subphase B2 (28.5%) where later construction had destroyed much of the archaeological evidence. Proportions for Subphases A1 (c. 66%) and A2 (c. 57%) coincide with the lower range of Kuijt's (2008) average estimates for the proportion of built area in MPPNB villages (60-80%). The Subphase C2 proportion (c. 59%) is around 20% lower than that proposed by Kuijt (2008a) for LPPNB settlements (80-88%), though it should be noted that Kuijt classified this subphase as MPPNB.

The proportion of potential residential built area in assessable built area demonstrates greater variation. A higher proportion during Subphase A1 (c. 86%) reflects a lack of differentiation between residential and non-residential built area; whilst lower proportions, particularly in Subphase C2 (c. 60%), reflect increasing designation of built space for non-residential purposes. This changing use of space is similarly evidenced in the proportion of residential built area in assessable area, which decreased from around 57% in Subphase A1 to around 36% by Subphase C2.

Table 6.38.	HUM results	s for Beidha	Subphases	A1	to C2
1 4010 01001	1101011000010	b ror Boraria	Caspilacoc		

		Subphase					
		A1	A2 .	B2	C2		
Populati	ion estimate	64.85-172.94	137.98	150.22	109.65-292.39		
Nuclear	family sizes applied	3-8	3	3	3-8		
Mean residential floor area of complete dwellings (m ²)		11.56	7.26	6.52	17.15		
Total number of		21.62	45.99	50.07	36.55		
contemporaneous dwellings							
suc	Built area in assessabl area	e 65.65	57.21	28.5*	59.35		
Area portio (%)	Residential built area in assessable area	n 56.63	39.79	15.14*	35.78		
pro	Residential built area in assessable built area	n 86.26	69.55	53.12*	60.29		

* Distorted by later construction; proportions for Subphase A2 used in estimates.

6.6.2 Residential area density coefficient method (RADC)

The RADC method is also considered suitable for estimating the population of PPN villages and for providing further demographic data. However, it is necessary to identify appropriate RADCs for specific settlement types as space requirements per person are impacted by various factors (i.e. available space, notions of privacy, permanence of settlement, etc.). Furthermore, the RADCs must be derived from living or sleeping area only.

Beneficial demographic data produced by the RADC method includes estimates of total contemporaneous residential floor area and area proportions (Table 6.39). The results indicate a total of around 210 m² contemporaneous residential floor area during Subphase A1, increasing to around 290 m² during Subphases A2 and B2. This increase reflects a substantial increase in the number of dwellings rather than increases in the residential floor area of individual dwellings. The results indicate a considerable increase in total contemporaneous residential floor area by Subphase C2 (c. 505 m²), reflecting the greater amount of residential floor area within the two-storey structures (Byrd 2005a)

The proportions of residential floor area in assessable area and assessable built area were highest in Subphase A1 (c. 30% and 45%), and slightly lower in Subphases A2 (c. 20% and 35%) and C2 (c. 22% and 36%). This reflects the increasing designation of built floor area for non-residential activities (Byrd 2005a). Lower proportions in Subphase A2 (and probably B2) also reflect the smaller dimensions of dwellings.

	Subphase					
	A1	A2	B2	C2		
Population estimate	41.98-118.6	59.41-167.84	56.58-159.83	100.61-284.2		
RADCs (m ² per person) applied		1.77-5				
People per dwelling range based on RADC	1.94-5.49	1.29-3.65	1.13-3.19	2.75-7.78		
Total contemporaneous residential floor area (m ²)	209.92	297.07	282.91	503.04		
Residential floor area ir	n 29.39	19.8	8.3*	21.56		
ຊັຊ ເຊັ Residential floor area ir	ו 44.76	34.61	29.14*	36.32		

Table 6.39. RADC method results for Beidha Subphases A1 to C2.

* Distorted by later construction; proportions for Subphase A2 used in estimates.

6.6.3 <u>Storage provisions formulae (SPF)</u>

The SPF is considered the most robust, valid and beneficial method in this investigation for several reasons (see Section 10.2.1). The SPF was applied for three purposes: to estimate population (Method 1 and 2); to estimate the number of people per dwelling (Method 2); and to determine the probable amount of storage within the residential floor area. Archaeological evidence indicated limited (none to moderate) storage provisions within the residential floor area throughout the PPN occupation at Beidha. Application of selected formulae produced reasonably confined estimate ranges compared to other methods (Table 6.40; Figure 6.22).

A comparison of SPF population and dwelling unit size estimates with estimates of available residential floor area can confirm the potential amount of storage provisions. For example, during Subphase C2, dwellings comprised two-storey structures with large residential floor areas (mean c. 17 m²). It is improbable that these dwellings were occupied by less than four people on average. This potentially supports the exclusion of the maximum SPF for Subphase C2. However, as SPF estimates are based on adult population size, consideration of children would increase the population estimate.

Assessment of theorised group size thresholds and estimates for preceding subphases may also lead to the exclusion of specific formulae. For example, by Subphase B2, a sedentary community appears to have existed in this location for at least 200 years and evidence suggests that the community engaged in agricultural practices relating to domesticated plants. It is almost certain that the population had exceeded (i) 25 people, which is the minimum hypothesised threshold for transition to sedentary society; and (ii) the minimum population estimate for the preceding subphase (c. 74 people). The population may even have exceeded 100 people, which is the

hypothesised threshold at which communities adopt agricultural practices (Fletcher 1981). Therefore, it could be suggested that the maximum (or even the moderate) amount of storage did not occur during Subphase B2 because the resulting population estimate may be too low (c. 55-80 people).

Table 6.40. SPF results for Beldna Subphases AT to C2.					
	Storage		Su		
	Provisions	A1	A2	B2	C2
Method 1					
Total contemporaneous		209.92	297.07	282.91	503.04
residential floor area (m ²)					
Total	None	82.42	116.79	111.20	198.02
population	Mod (0.46)	52.03	73.62	70.11	124.64
	Max (2 x 0.46 ³)	40.35	56.93	54.23	96.13
Method 2					
Mean residential floor area of		11.56	7.26	6.52	17.15
complete dwellings (m ²)					
People per	None	4.18	2.49	2.20	6.39
dwelling	Mod (0.46)	2.90	1.83	1.65	4.28
	Max (2 x 0.46 ³)	2.56	1.74	1.60	3.62
Total	None	90.45	114.44	109.98	233.51
population	Mod (0.46)	62.63	84.27	82.57	156.50
	Max (2 x 0.46 ³)	55.32	80.07	80.12	132.42
					_
	F _		and and a set of a set of a		

Table 6.40. SPF results for Beidha Subphases A1 to C2.

	Estimates base	ed on selected f	ormulae (none-	moderate)
Total population*	57-86	79-116	76-111	141-216
People per dwelling	2.9-4.2	1.8-2.5	1.7-2.2	4.3-6.4

* Based on mean of the two methods.

Figure 6.22. Estimates of people per dwelling (left axis) and total population (right axis) derived from applicable SPF for Beidha Subphases A1 to C2 (all subphases: none to moderate storage).

6.6.4 <u>Allometric growth formulae (AGF)</u>

Naroll's (1962) AGF1

Naroll's (1962) AGF1 (A = $2.17 \times P^{0.84195}$) was applied to calculate total built floor area (A), built floor area per person and residential floor area per person (RADC), using the SPF population estimates as the P variable (Table 6.41; Figure 6.23). Across all phases, estimates of built floor area per person (c. 9.3-11.4 m²) were closely comparable to Naroll's (1962) suggested constant of 10 m². This could support the functionality of Naroll's (1962) formula and the accuracy of the SPF population estimates produced in this investigation.

However, a comparison of estimates of total built floor area, built floor area per person and RADC derived from Naroll's (1962) AGF1 and the excavated evidence suggest that Naroll's (1962) AGF1 is not suitable for estimating population parameters of all phases at Beidha. Estimates based on the AGF1 were considerably higher than those based on the excavated evidence for Subphases A1, A2 and B2, though comparable for Subphase C2. In addition, re-calculated initial growth indices were considerably lower than the original index (a = 21.7) for Subphases A1, A2 and B2, though comparable for Subphase C2.

Naroll's (1962) formula was originally derived from predominantly larger settlements comprising agglomerated, rectilinear structures, similar to the Phase C occupation evidence. The comparability between estimates derived from the AGF1 and those derived from the excavated evidence for Subphase C2, indicates that Naroll's (1962) formula may be suitable for estimating demographic parameters of villages with agglomerated rectilinear architecture only.

The comparability between the re-calculated initial growth indices derived for Subphases A1, A2 and B2 (mean c. 10-14) indicates that a lower initial growth index may be more appropriate when applying Naroll's (1962) AGF1 to villages of this type (i.e. with curvilinear architecture).

	Subphase			
	A1	A2	B2	C2
Method 1: Calculations based on Naroll's (1962) formula and suitable SPI	Population estimat	es (P): A = 21.7 x P ^{0.84}	195	
Total built floor area (m ²) (A)	656.06-926.96	834.89-1140.72	834.89-1140.72	1395.97-2002.44
Built floor area per person (m ²)	10.72-11.44	10.31-10.94	10.31-10.94	9.28-9.93
RADC (m ² per person)	9.21-9.83	6.86-7.28	6.86-7.28	4.03-4.31
Proportion of residential floor area in built floor area (%)	85.88	66.54	66.52*	43.4
Calculations based on mean of suitable SPF population estimate and arc	haeological evidence	e		
SPF population estimates (all none to moderate storage)	57.33-86.44	78.94-115.62	76.34-110.59	140.57-215.77
Built floor area per person (m ²)	3.96-5.97	5.15-7.54	5.38-7.8	6.91-10.6
Estimated total built floor area (m ²)	342.21	595.31	595.4	1490.1
RADC range (m ² per person)	2.43-3.66	2.57-3.76	2.56-3.71	2.33-3.58
Estimated total contemporaneous residential floor area (m ²)	209.92	297.07	282.91	503.04
Method 2: Re-calculated initial growth indices (a) based on estimated tota	al built floor area (A)	and SPF population	estimate (P)	
Initial growth index (a)	8.01-11.32	10.91-15.04	11.33-15.48	16.15-23.16
* Based on Subphase A2 proportions.				

Table 6.41. Naroll's (1962) AGF1 (A = $2.17 \times P^{0.84195}$) results for Beidha Subphases A1 to C2.

Figure 6.23. Naroll's (1962) AGF1 (A = 2.17 x P^{0.84195}) results for Beidha Subphases A1 to C2 compared to data derived from the archaeological evidence.

193

Wiessner's (1974) AGF2

Wiessner's (1974) AGF2 were applied to calculate initial growth indices for open, village and urban settlements (Table 6.42; Figure 6.24). All phases represent village settlements, with Subphases A1, A2 and B2 also considered open settlements, and Subphase C2 also considered an urban settlement.

Initial growth indices derived for open settlements (Subphases A1, A2 and B2) were almost equivalent (min: 0.13-0.16; max: 0.3-0.34). Indices derived for village settlements (all subphases) demonstrated a limited range, with a minimum of around 12 to 18 and a maximum of around 17 to 26. Only Subphase C2 was classified as a potential urban settlement and, therefore, no comparisons can be made regarding the urban initial growth index.

There is generally a disparity between settlement type-based initial growth indices for settlements identified as that particular settlement type and those which are not. For example, the open index derived for Subphase C2 (a village/urban settlement) was notably lower than those derived for settlements identified as open settlements (Subphases A1, A2 and B2); and the urban index derived for Subphase C2. However, there is no distinction between the urban indices derived for Subphase C2 and Subphases A2 and B2, which were not identified as potential urban settlements. This analysis highlights the potential for construction of specific initial growth indices for Wiessner's (1974) AGF2 for open and village settlements, though not necessarily for urban settlements.

Table 6.42. Wiessner's (1974) AGF2 results for Beidha Subphases A1 to C2.					
Initial growth indices for:	Subphase				
	A1	A2	B2	C2	
Open settlements	0.13-0.3	0.15-0.32	0.16-0.34	0.06-0.15	
Village settlements	11.57-17.44	17.3-25.34	18.08-26.2	13.9-21.34	
Urban settlements	51.15-67.25	84.26-108.67	86.79-111.12	83.38-110.95	
Site extent (m ²)	1000	2000	2000	3000	
SPF population estimates (none to moderate storage)	57.33-86.44	78.94-115.62	76.34-110.59	140.57-215.77	

Table 6.42. Wiessner's (1974) AGF2 results for Beidha Subphases A1 to C2.

Figure 6.24. Wiessner's (1974) AGF2 open, village and urban initial growth indices for Beidha Subphases A1 to C2. Results in lighter grey indicate where the subphase does not conform to that particular settlement type.

6.6.5 <u>Settlement population density coefficient method (SPDC)</u>

SPDC methods were applied to (1) assess the suitability of commonly utilised SPDCs (90, 150 and 294 people/ha) for estimating the population of PPN Beidha and (2) to reconstruct SPDCs from population estimates based on other methods.

The first method applies the commonly utilised SPDCs to total site extent. There appears to be several issues with this method. Firstly, the same population estimates were produced for subphases with the same estimated site extent (i.e. Subphases A2 and B2: 0.2 ha) (Table 6.43; Figure 6.25). In addition, the large range in the commonly utilised SPDCs (90 to 294 people/ha) causes increasingly broader population estimate ranges as site extent increases.

When adjusted to reflect population and dwelling occupant numbers in the assessable area only, it is apparent that commonly utilised SPDCs may underestimate population. Even when dwelling numbers were reduced to reflect potential structural contemporaneity (all subphases c. 70-78%), the minimum SPDC (90 people/ha)

resulted in average dwelling unit sizes of less than one person in all subphases, whilst the average SPDC (150 people/ha) produced average estimates of less than one person in Subphases A1, A2 and B2 and just over one person in Subphase C2. Application of the maximum SPDC (294 people/ha) produced average dwelling unit sizes of one person for Subphases A1, A2 and B2, and around 2.5 people in Subphase C2. If dwellings were indeed occupied by nuclear families, as Byrd (2005a) suggests, this could reflect two adults and a child. However, it is highly improbable that these highly compartmentalised, two-storey dwellings with considerable ground floor storage space and large upper storey residential areas were occupied by such small units.

Given that dwellings at Beidha are considered to have been predominantly occupied by nuclear families of around five to six people (Byrd 2005a), it is apparent that the commonly utilised values for population density and dwelling unit size are not compatible. There could not have been a population density of 294 people per hectare or fewer on the one hand and a dwelling occupant size of five to six people on the other. The results do not correlate. Either the population density was higher or the dwelling unit size was smaller. It appears that these commonly utilised values and the theory that PPN dwellings were occupied by nuclear families of five to six people need to be reconsidered.

As part of this re-evaluation, SPDCs were calculated from HUM, RADC and SPF population estimates and converted to population and average dwelling unit size in the assessable area. Re-calculated SPDCs ranged from around 280 people per hectare (Subphase B2: based on the RADC population estimate) to 1,730 people per hectare (Subphase A1: based on the HUM population estimate). All SPDCs, except the lowest mentioned above, were higher than the maximum commonly utilised SPDC (294 people/ha). The revised SPDCs all produce more realistic estimates of population and dwelling unit size in the assessable area (Table 6.43).

The SPDC method is a simple tool for rapidly estimating population for comparative analysis. However, the reliability of the method for producing absolute estimates depends on the suitability of the density coefficients employed. For the PPN settlement at Beidha, it appears that the commonly utilised SPDCs (90-294 people/ha) are too low to accurately estimate population.

			Subph	ase	
		A1	A2	B2	C2
Method 1: Population estimates based on c	ommonly utilised SPDCs				
	SPDC (people per hectare)				
Total population estimate	90	9	18	18	27
	150	15	30	30	45
	294	29.4	58.8	58.8	88.2
Population in the assessable area	90	1.2	2.6	5.4	8.6
	150	2.0	4.4	9.0	14.4
	294	3.9	8.6	17.6	28.2
Based or	proportion of site assessable (%)	13.22	14.68	30.00	31.92
People per dwelling in the assessable area	90	0.4	0.4	0.4	0.7
	150	0.7	0.7	0.6	1.2
	294	1.4	1.3	1.2	2.4
Based on estimated contemporaneous	s dwellings in the assessable area	2.86	6.75	15.02	11.67
Method 2: SPDC estimates based on HUM,	RADC and SPF population estimation	ates			
SPDC (people per hectare)	HUM	648.53-1729.41	689.9	751.1	365.49-974.65
	RADC	419.84-1185.99	297.07-839.18	282.91-799.17	335.36-947.34
	SPF	573.32-864.36	394.71-578.08	381.69-552.97	468.56-719.23
Based on population estimate	НИМ	64.85-172.94	137.98	150.22	109.65-292.39
	RADC	41.98-118.6	59.41-167.84	56.58-159.83	100.61-284.2
	SPF	57.33-86.44	78.94-115.62	76.34-110.59	140.57-215.77
Population in the assessable area	HUM	8.6-22.9	20.30	45.10	35-93.3
	RADC	5.5-15.7	8.7-24.6	17-47.9	32.1-90.7
	SPF	7.6-11.4	11.6-17	22.9-33.2	44.9-68.9
Based or	proportion of site assessable (%)	13.22	14.68	30.00	31.92
People per dwelling in the assessable area	HUM	3-8	3	3	3-8
	RADC	1.9-5.5	1.3-3.7	1.1-3.2	2.8-7.8
	SPF	2.7-4	1.7-2.5	1.5-2.2	3.8-5.9
Based on estimated contemporaneous	s dwellings in the assessable area	2.86	6.75	15.02	11.67

Table 6.43. SPDC method results for Beidha Subphases A1 to C2.

Figure 6.25. Data derived from SPDC methods for Beidha Subphases A1 to C2: (a) data derived from commonly utilised SPDCs; (b) data derived from HUM, RADC and SPF population estimates.

6.7 Summary of estimates

This section provides a summary of estimates of total population, population growth, the number of people per dwelling, residential floor area per person (RADC), the number of people per hectare (SPDC), initial growth indices (AGF1 and 2) and area proportions (Table 6.44; Figure 6.26). As the SPF is considered the most empirically robust and valid method (see Section 10.2.1), SPF estimates are presented as the final estimates for further analysis.

6.7.1 Total population

The SPF indicated a total (adult) population of around 55 to 85 people in Subphase A1; 80 to 115 people in Subphase A2; 75 to 110 people in Subphase B2; and 140 to 215 people in Subphase C2. Kuijt's (2008, p.294) estimate for the final phase (P = 225) compares well with the higher estimate derived in this investigation, although his calculations were based on a density coefficient of 90 people per hectare (including children) and an average period-based site extent of 2.5 hectares (for the MPPNB), which is far in excess of the estimated extent for this subphase (0.3 ha).

Estimates for Subphases A2 and B2 were almost equivalent on account of several factors, including equivalent site extent (0.2 ha); comparable mean residential floor area per dwelling (c. 7 m²); and the use of Subphase A2 area proportions for Subphase B2 calculations due to the destruction of much of the Subphase B2 occupation by later construction. For this latter reason also, it is probable that Subphase B2 population size has been underestimated. Given the agricultural and architectural developments occurring at Beidha between Subphases A2 and B2, it is highly probable that the population exceeded that of Subphase A2.

The estimates achieved for Beidha coincide with a range of hypothesised group size thresholds relevant to settlements undergoing the NDT. Firstly, it is hypothesised that a group size of at least 25 people is required for the initial transition to sedentism (Fletcher 1981; Binford 2001; Kuijt and Goring-Morris 2002; Bandy 2010). Subphase A1 (50-90 people) provides the first evidence for a permanently settled community on this site (Byrd 2005a).

Secondly, a group size of at least 50 people is considered necessary for the transition to farming practices (Drennan and Peterson 2008), with at least 100 people required for adoption of a fully sedentary agro-pastoralist subsistence strategy (Fletcher 1981; Kuijt and Goring-Morris 2002). Archaeological evidence indicates agricultural practices

relating to domesticated plant forms from Subphase B2 (75-110 people) and transition to agro-pastoralist practices by Subphase C2 (140-215 people) (Byrd 2005a).

Finally, it is theorised that groups of around 150 people either undergo fissioning processes, including the establishment of smaller 'daughter villages' (Bandy 2004; 2006), or introduce mechanisms for social cohesion (Fletcher 1981; Dunbar 2003). Cohesive elements are evident in the emergence of large, centrally-located, non-domestic structures from Subphase A2 (80-115 people) and, particularly, in Subphases B2 and C2, where several non-residential structures appear to be in simultaneous use. In the final subphase, evidence suggests some form of central or corporate management (Byrd 2005a). Elements of intra-community fissioning or sectoring are evident in the increasing household control of resources and production from Subphase A2 and is again particularly evident in Subphase C2, where individual dwellings contain considerable space for household controlled storage, and evidence for household-based production and possibly inherited specialist knowledge (Fletcher 1981; Dunbar 2003; Byrd 2005a).

6.7.2 Population growth

The consecutive phases at Beidha present a rare opportunity to directly calculate population growth. The SPF population estimates and estimated subphase lengths produced annual population growth rates of around 0.2% to 0.3% between Subphases A1 and A2; -0.1% to Subphase B2; and 1.2% to 1.4% to Subphase C2. These rates fall within the range calculated for the MPPNB (-1.3%-1%) and LPPNB (-0.75%-2.1%) by Goodale (2009, p.160). The mean annual population growth rate throughout all phases is around 0.5%. This compares well with Eshed *et al.*'s (2004) estimate of 0.5% to 1% for southern Levantine communities at the advent of agriculture.

The comparatively high growth rate between Subphases A1 and A2 probably reflects the initial and increasing transition to a fully sedentary existence and may indeed have been the cause of this transition. The reduced (and perhaps negative) growth rate to Subphase B2 is probably due to an underestimation of population as a result of depleted occupational evidence. If such low growth did actually occur during this stage, it may suggest that the population had reached carrying capacity, which could explain the emergence of agricultural practices during Phase B. The high growth rate to Subphase C2 probably reflects a "boom" period following the transition to agropastoralist subsistence practices. This growth pattern is well documented in early

Neolithic settlements (Whitehouse *et al.* 2014). This high growth also probably reflects the architectural revolution from curvilinear to multi-storey, rectilinear structures, which enabled higher density housing.

6.7.3 <u>People per dwelling</u>

The SPF produced average (adult) dwelling unit size estimates of around 2.7 to 4.2 people in Subphase A1; 1.7 to 2.5 people in Subphase A2; 1.5 to 2.2 people in Subphase B2; and 3.9 to 6.4 people in Subphase C2. These estimates correspond to variations in the mean residential floor area, with larger areas occurring in Subphases A1 (11.56 m²) and C2 (17.15 m²), and smaller areas in Subphases A2 (7.26 m²) and B2 (6.52 m²).

The lower dwelling occupant numbers produced in Subphases A2 and B2 could reflect erroneous interpretation of smaller structures as representing residential space and larger structures as representing non-residential space. It is also probable that later construction destroyed more substantial Subphase B2 residential structures.

The results indicate that nuclear families could have formed the main dwelling unit in Subphases A1 and C2. However, estimates suggest paired occupancy on average in Subphases A2 and B2. These results challenge the current theory that nuclear families formed the main dwelling unit throughout the PPN sequence at Beidha (Byrd 2005a) and could support the theory that individual structures within circular hut compounds were occupied by individuals or smaller units as part of a larger family group (Flannery 1972). However, it must be emphasised that SPF estimates are based on adult human heights and, thus, that the estimated dwelling unit sizes would be higher if the formulae were amended to consider children.

Subphase C2 dwelling unit size estimates are considerably higher than those derived for the previous phases. This potentially reflects the changing structure of the residential unit in terms of increasing household institutionalisation (Byrd 2005a; Baird *et al.* 2016). In addition, architectural developments, including substantial upper storey residential area, greater compartmentalisation and more restricted access routes, enabled increased residential density whilst satisfying needs of privacy and personal space.

A comparison of population estimates derived from the HUM and SPF methods revealed potential correlations between dwelling unit size and residential architectural forms. During Subphases A1, A2 and B2, residential architecture predominantly comprised curvilinear dwellings with undifferentiated residential floor space; whilst in Subphase C2, residential architecture comprised two-storey, highly compartmentalised dwellings, with large upper storey residential areas and substantial ground floor area for storage and additional activities (Byrd 2005a). For the subphases with curvilinear architecture, estimates derived from the HUM were considerably higher than those of other methods. This occurred even when employing the minimum nuclear family size only, as was the case for Subphases A2 and B2, where the available mean residential floor area (c. 7 m²) afforded on average paired dwelling occupancy. This could indicate that nuclear families did not form the main dwelling unit in these subphases. Conversely, the HUM estimate for Subphase C2, which employed all nuclear family sizes, was more comparable to the SPF estimate. This highlights the potential for nuclear family dwelling units in the latest phase.

6.7.4 Residential floor area per person

The SPF method produced estimates of 2.3 m² to 3.8 m² residential floor area per person across all phases, with marginally higher minimum personal space allocation for Subphases A2 and B2 (c. 2.6 m²). The RADCs fall within the range derived from ethnographic studies of comparable villages and the range utilised in RADC population estimates in this investigation (1.77-5 m²). Interestingly, despite the larger available residential floor area in Subphases A1 and C2, the results do not suggest an increase in personal space allocation. The comparability in RADCs across all phases is probably partly due to the SPF method. For each subphase, estimates were based on the SPF for limited storage (none to moderate). This produced similar correlations between the number of occupants and available space.

An assessment of RADCs produced via other methods highlights some interesting information. Firstly, RADCs based on the HUM for Subphases A2 and B2, which employed the minimum nuclear family size (3 people) only, suggest that these dwellings may not have accommodated nuclear families. Population estimates based on the average and maximum nuclear family sizes (5.5 and 8 people) would have produced RADCs considerably lower than the minimum RADC employed in this investigation (1.77 m²).

Secondly, the comparability between the Subphase C2 RADCs derived from the AGF1 $(4-4.3 \text{ m}^2)$ and the SPF $(2.3-3.6 \text{ m}^2)$ compared to other subphases potentially supports

the suitability of Naroll's (1962) formula for settlements with agglomerated, rectilinear architecture.

Thirdly, the SPDC method produced excessive RADC ranges. The maximum RADCs derived from the SPDC method (based on 90 people/ha) exceeded the mean residential floor area of complete dwellings in all subphases. This provides further support for the re-evaluation of SPDCs commonly utilised for estimating PPN village population.

6.7.5 People per hectare

The SPF method produced population density coefficients (SPDCs) of around 575 to 865 people per hectare for Subphase A1; 395 to 580 people per hectare for Subphase A2; 380 to 555 people per hectare for Subphase B2; and 470 to 720 people per hectare for Subphase C2. Despite being based on adult population only, these SPDCs far exceed the range commonly used for estimating PPN central and southern Levantine populations (90-294 people/ha). The SPDCs produced in this analysis are more comparable to those derived for enclosed Bronze Age settlements (Ugarit, Syria: 550 people/ha; Mesopotamia: 380-750 people/ha) (Wossinik 2009; Kennedy 2013) and Iron Age settlements (Palestine: 400-500 people/ha; Jerusalem: 395 people/ha) (Jeremias 1969; Shiloh 1980; Zorn 1994). These estimates also compare well with SPDCs derived for several hunter-gatherer camps, including coastal Tlingit fishing and hunting communities (327 people/ha), Mbuti tropical forest hunters (820 people/ha) and the desert savannah !Kung (804 people/ha) (Whitelaw 1983, p.60).

The high SPDCs may reflect the spatial restrictions on the settlement at Beidha due to the topographical context and the placement of a village wall bounding the settlement to the south. However, it is improbable that settlement sprawl was restricted in any significant way given the low estimated population sizes for all phases and the open spatial distribution of structures particularly in Phases A and B. This is further supported by the combination of population increase with declining density from Subphases A1 to A2. It is more probable that the high SPDCs are probably due to the nature of the architectural construction, which included clustered and interconnected, curvilinear dwellings in Phases A and B, and high density, interconnected, two-storey, rectilinear housing in Phase C. Further analysis will reveal whether high SPDCs were a characteristic of PPN villages in the central and southern Levant.

	Subphase						
	A1	A2	B2	C2			
Total population							
HUM	65-175	140	150	110-290			
RADC	40-120	60-170	55-160	100-285			
SPF	55-85	80-115	75-110	140-215			
SPDC	10-30	20-60	20-60	25-90			
Annual population growth rate (%)							
Estimated subphase length	140	80	70	90			
HUM		-0.14-0.81	0.11	-0.39-1.35			
RADC		0.3	-0.06	1.11			
SPF		0.24-0.27	-0.040.05	1.2-1.36			
SPDC		0.71	0	0.71			
People per dwelling							
Total number of contemporaneous dwellings	21.62	45 99	50.07	36.55			
Mean residential floor area of complete	11.56	726	6.52	17 15			
dwellings (m^2)	1100	1.20	0.02				
HUM	3-8	3	3	3-8			
RADC	1.9-5.5	1.3-3.7	1.1-3.2	2.8-7.8			
SPF1	2.7-4	1.7-2.5	1.5-2.2	3.9-5.9			
SPF2	2.9-4.2	1.8-2.5	1.7-2.2	4.3-6.4			
SPDC	0.4-1.4	0.4-1.3	0.4-1.2	0.7-2.4			
RADC (m ² per person)							
Total contemporaneous residential floor area	209.92	297.07	282.91	503.04			
(m ²)							
HUM	1.2-3.2	2.2	2.2	1.7-4.6			
RADC		1.	77-5				
SPF	2.4-3.7	2.6-3.8	2.6-3.7	2.3-3.6			
AGF1	9.2-9.8	6.8-7.2	6.9-7.3	4-4.3			
SPDC	7.1-23.3	5.1-16.5	4.8-15.7	5.7-18.6			
SPDC (people per hectare)							
Total site extent (hectares)	0.1	0.2	0.2	0.3			
HUM	650-1730	690	750	365-975			
RADC	420-1185	295-840	285-800	335-945			
SPF	575-865	395-580	380-555	470-720			
SPDC		90	-294				

Table 6.44. Estimates for Beidha Subphases A1 to C2. SPF estimates considered most reliable and highlighted in grey for comparative analysis.

Figure 6.26. Estimates for Beidha Subphases A1 to C2. SPF estimates considered most reliable and highlighted in grey for comparative analysis.

Naroll's (1962) AGF1

Re-calculation of the initial growth index utilised in Naroll's (1962) AGF1 (a = 21.7) produced relatively consistent values for Subphases A1, A2 and B2 (min: c. 8-11; max: c. 11-15), and a range comparable with the original index for Subphase C2 (c. 16-23) (see Table 6.4.1). The comparability between constants derived for sites exhibiting predominantly curvilinear architecture (Subphases A1, A2 and B2) and predominantly rectilinear architecture (Subphase C2 and Naroll's (1962) original dataset) indicate the potential for Naroll's (1962) formula to be refined for different settlement types.

Wiessner's (1974) AGF2

The initial growth index calculated for Wiessner's (1974) AGF2 for village settlements was relatively consistent across all phases (min: c. 12-18; max: c. 17-26), suggesting that an average index range of around 15 to 23 may be suitable for estimating the population of all PPN central and southern Levantine villages when applying this formula (see Table 6.4.2). Similarly, the comparability between indices derived for open settlement types (Subphases A1, A2 and B2) (min: 0.13-0.16; max: 0.3-0.34) indicates that an average index range of around 0.15 to 0.32 may be suitable for application of the open AGF2 to PPN villages with curvilinear architecture. In this preliminary analysis, only one phase demonstrated characteristics of an urban settlement (Subphase C2). Thus, further analysis is required prior to the assessment of indices for this settlement type.

6.7.7 Area proportions

The methods explored in this investigation have provided a range of area proportions for further analysis and for the creation of formulae and constants for large-scale application (Table 6.45). All have been discussed in detail in Section 6.6, except for the proportion of built floor area comprising residential floor area. Proportions decline from around 85% in Subphase A1 to around 45% in Subphase C2. This reflects the increasing differentiation between residential and non-residential space and the increasing allocation of interior dwelling area to non-domestic activities by Subphase C2 (Kirkbride 1966, p.25; Byrd 2005a).

	Subphase							
	A	1	A2		B2		C2	
		9	Structur	al conte	mporan	eity (%)		
		71.43		75		71.43		77.78
Proportion (%) of assessab	ole area c	omprisi	ing:					
Built area	65.65	46.89	57.21	42.91	28.5*	40.87	59.35	46.16
Residential built area	56.63	40.45	39.79	29.85	15.14*	28.42	35.78	27.83
Built floor area	34.22	24.44	27.77	22.32	17.05*	21.26	49.67	38.63
Residential floor area	29.39	20.99	19.8	14.85	8.3*	14.14	21.56	16.77
Proportion (%) of assessab	ole built a	irea con	nprising	J:				
Residential built area		86.26		69.55		53.12*		60.29
Built floor area		52.13		52.02		59.83		83.69
Residential floor area		44.76		34.61		29.14		36.32
Proportion (%) of residential	floor	85.88		66.55		66.52		43.4
area in built floor area								

Table 6.45. Additional demographic data derived for Beidha Subphases A1 to C2. Estimates adjusted for contemporaneity highlighted in grey.

* Distorted by later construction; Subphase A2 proportions used in calculations.

6.8 Summary

The PPN village at Beidha is an excellent case study for preliminary methodological analysis as it demonstrates a transition from the earliest stages of a PPN village characterised by curvilinear architecture and the maintenance of hunter-gatherer practices, to the latest stages characterised by rectilinear architecture, agro-pastoralist subsistence practices and increasing social and economic differentiation.

Application of a range of methodologies for estimating population parameters of PPN villages has revealed that the storage provisions formula (SPF) is the most empirically robust and valid method for producing absolute estimates for comparative analysis. This method relies on less ethnographic analogy and incorporates fewer assumptions than other methods explored in this investigation. It has the advantage of producing direct estimates of dwelling unit size in addition to total population size, and can highlight the potential amount of storage within the residential floor area.

The SPF method indicates that the (adult) population of Beidha increased from around 55 to 85 people in Subphase A1 to around 140 to 215 people in Subphase C2, with a mean annual population growth rate of around 0.5%. These estimates correspond well with current group size threshold theory relating to the initial transition to sedentism (P \geq 25); the adoption of farming practices (P \geq 50) and agro-pastoralist practices (P \geq 100); and the introduction of mechanisms for social cohesion within larger groups (P \geq 150) (Fletcher 1981; Binford 2001; Kuijt and Goring-Morris 2002; Dunbar 2003; Drennan and Peterson 2008; Bandy 2010). The population growth rate also compares well with those derived for early agricultural and formative villages throughout the world

(0.08-1%) (Carneiro and Hilse 1966; Hassan 1981; Bandy 2001; Eshed *et al.* 2004; Drennan and Peterson 2008).

Preliminary analysis indicates that current theory relating to population density and the composition of the dwelling unit, as well as methodological practices relating to commonly utilised values for the number of people per dwelling, residential floor area per person (RADC) and the number of people per hectare (SPDC) require re-evaluation. For decades, nuclear families have been considered to represent the main dwelling unit in Neolithic societies (Sweet 1960; Haviland 1972; Kramer 1982; Düring 2001; Byrd 2002; 2005a). However, this analysis indicates that nuclear family dwelling units may not have occurred within some PPN settlements, especially those with predominantly curvilinear dwellings.

Ethnographically derived RADCs are often not employed in population estimates due to the inconsistency in the measurements utilised to calculate RADC and the vast estimate ranges. However, this assessment has produced a relatively limited RADC range of 2.3 m² to 3.8 m² across all phases. It appears that changes in architecture, including increases in available residential floor area, may not have significantly altered the amount of personal residential floor area. These RADCs correspond well with archaeological and ethnographic estimates of RADC in comparable villages in Southwest Asia, Southwest America and the Arctic Circle (1.77-5 m² per person) (Cook and Heizer 1968; Hill 1970; Clarke 1974; Kramer 1979; Hayden *et al.* 1996; Hemsley 2008). The consistency of results indicates that this RADC range could be utilised to estimate the population of PPN central and southern Levantine villages.

Almost all PPN village population estimates to date have utilised the same simple methodology for rapidly estimating populations based on site extent and an ethnographically derived population density range of 90 to 294 people per hectare. However, this analysis indicates that this range is too low to accurately estimate the population of PPN Beidha. This investigation produced SPDCs ranging from around 380 to 870 people per hectare.

Another method for rapidly estimating population is the allometric growth formula (AGF). This method has been largely abandoned in archaeology given the variable relationship between human population size, population density and settlement size. However, re-calculation of initial growth indices utilised in these formulae has revealed that AGF may be suitable for estimating PPN central and southern Levantine villages. This analysis has revealed that Naroll's (1962) original index of 21.7, or a range from around 16 to 23 (derived from Subphase C2) may be suitable for estimating the population of PPN villages with predominantly rectilinear architecture; and that a

reduced index range of around 10 to 14 (derived from Subphases A1, A2 and B2) may be suitable for application to PPN villages with predominantly curvilinear architecture.

For Wiessner's (1974) AGF2, this assessment indicates that an initial growth index range of around 15 to 23 (derived from all subphases) may be suitable when applying the AGF2 for village settlements; and an index range of around 0.15 to 0.32 (derived from Subphases A1, A2 and B2) may be suitable when applying the formula for open settlements. Further analysis is required prior to development of a suitable index range for urban settlements.

This preliminary analysis of Beidha has challenged current theory relating to the use of space within PPN central and southern Levantine villages and the application of commonly accepted constants for estimating population size. The following chapter presents the results of application of these methodologies to a further 10 sites across 11 phases to derive more precise constants for estimating PPN central and southern Levantine populations.

7 Micro-Level Estimates – Part II

This chapter presents the application of micro-level methodologies to a further 11 PPN central and southern Levantine villages/village phases ordered in ascending chronological order. For each village, a description of archaeological features and a site plan are provided, in addition to the structural contemporaneity assessment and previous population estimates. SPF population estimates are assessed in relation to previously hypothesised group size thresholds for each village (see Table 4.8 for references for each hypothesised threshold). All other population parameters are assessed in the summary of estimates. Additional results are provided in Appendices C.1 to C.2.

7.1 Micro-level analyses

7.1.1 Nahal Oren

Site description

Nahal Oren is a very small (0.05 ha) Late Epipalaeolithic (LEPI) to PPNB cave and terrace site in Mount Carmel, Israel (Stekelis and Yizraely 1963; Noy *et al.* 1973; Banning 1998, p.195; Twiss 2001; Nadel *et al.* 2012). The limited occupation evidence and restricted agricultural potential of the site suggests short-term sporadic rather than long-term continuous occupation. The most substantial occupation evidence dates to the PPNA (Stratum II). This stratum is interpreted as a village based on the presence of several durable structures that appear to have been utilised for a mixture of residential and non-residential purposes. Micro-level analysis is conducted on the Stratum II occupation only (Table 7.1; Figure 7.1).

Excavation exposed at least 13 curvilinear structures set on four terraces cut into the natural slope. Structures were predominantly semi-subterranean with thick walls (up to 80 cm wide). At least 10 structures have been interpreted as dwellings (Buildings 5, 8-9, 11-12, 14, 16, and 18-20). These structures contained stone-lined hearths, stone slabs and cup-marked stones set into packed earth and pebble flooring (Nadel *et al.* 2012). The presence of limestone bowls and platters within dwellings indicates dwelling-based food-related activities and may reflect habitation of dwellings by household economic units (Noy *et al.* 1973, p.86; Rosenberg 2008). However, Bar-Yosef (1998, p.170) suggested that the clustering of structures probably reflects occupation of dwellings by smaller units or individuals as part of an extended family compound. The location of smaller structures interpreted as stores or workshops (Buildings 7, 10 and 13) between dwellings may indicate a predominantly communal

economic strategy characteristic of such compounds (Stekelis and Yizraely 1963, p.4; Finlayson *et al.* 2012).

Estimated site extent	500 m ²
Assessable area	326.36 m ²
Potential dwellings	10
Environment	On steep slope above Wadi Fallah; perennial watercourses; many caves
Subsistence	Hunting, gathering, cultivation (pre-domesticated cereals and grains; sickle blades); separate permanent storage and workshop structures; potential on floor storage in residential floor area
Architecture	Curvilinear; organised in clusters; semi-subterranean; thick stone walls; organic roofing; artificial terraces; no/very few subdivisions or compartmentalisation; some remodelling
Economy	Dwelling-based processing and consumption (vessels and grinding implements in dwellings); communal processing and cooking (stores and workshops in communal area); incipient craft specialisation (workshops; food vessels; one figurine); possible broader network with several Mount Carmel cave sites
Ritual/community organisation	Incipient ritual activity: one figurine
Structural contemporaneity	80%
Refined HUM	Minimum-average (maximum nuclear family size excluded based on
variables:	insufficient mean residential floor area (9.6 m ²))
AGF2	Open and village

Table 7.1. Description of Nahal Oren Stratum II* and refined variables.

* Stekelis and Yizraely 1963, Noy et al. 1973, Twiss 2001, Nadel et al. 2012.

Figure 7.1. Site plan of Nahal Oren Stratum II (transcribed from Goring-Morris and Belfer-Cohen 2008, p.259).

Contemporaneity assessment

The considerable effort required for excavating terraces from the natural hillside and evidence for floor renewal and wall remodelling indicates that structures were utilised

for an extended period. Analysis of comparable structures (earthen/masonry with moderate-considerable maintenance) has produced use-life estimates of around 35 to 75 years (see Table 5.7). Only one radiocarbon date is available for the PPNA occupation at Nahal Oren (9,194 to 8,558 cal BC; OxA 5010: 9480 ± 100 BP). As such, building use-life and phase length estimates could not be derived from Bayesian chronological modelling. A suggested structural contemporaneity value is, therefore, based on those derived for the most comparable sites in this investigation (i.e. Beidha Subphases A1: 71.43% and A2: 75%; Shkārat Msaied: 80%). The lack of evidence for superpositioning or building abandonment during the Stratum II occupation at Nahal Oren suggests that most structures were utilised contemporaneously. Therefore, a contemporaneity value at the higher end of this range (80%) is utilised.

Previous population estimates

The population of PPNA Nahal Oren has previously been estimated at between 18 and 59 people based on the commonly utilised density coefficient range of 90 to 294 people per hectare and an estimated total site extent of 0.2 hectares (Kuijt 2000). An alternative estimate of 90 people was based on 90 people per hectare and a suggested average total site extent of one hectare for PPNA settlements (Kuijt 2008a). A third estimate of 332 people was based on the population estimate derived for the largest five PPNA settlements and a density of 294 people per hectare (Kuijt 2000).

Population estimates and group size thresholds

The SPF indicates a total (adult) population of around 24 to 43 people, around two to 3.5 people per dwelling, around 2.6 m² to 4.7 m² residential floor area per person and around 490 to 860 people per hectare (Table 7.2; Figure 7.2). The population estimate is at the lower end of the pre-existing estimate range (18-332 people). The estimate coincides with hypothesised group size thresholds relevant to the NDT relating to the transition from a nomadic tribal camp (P = 10-30) to a sedentary tribal hamlet or village (P \geq 25). Archaeological evidence exists for emerging specialisation and differentiation between residential units, as indicated by variable association of dwellings with annexes and workshops, which is usually associated with higher population levels (P \geq 150). Excavations on Mount Carmel have revealed at least five additional PPNA sites within one kilometre of Nahal Oren (Nadel *et al.* 2012). It is possible that these sites formed a broader social network, which could explain the presence of such processes at Nahal Oren despite the low estimated population size.

Table 7.2. Summary of estimates for Nahal Oren Stratum II.

Method Total population		People per dwelling	RADC	SPDC
			(m²/person)	(people/ha)
		Based on total number of	Based on total contemporaneous	Based on total site extent (ha):
		contemporaneous dwellings:	residential floor area (m^2) :	
		12.25	113.30	0.05
HUM	36.74-67.36	3-5.5	1.68-3.08	734.8-1347.2
RADC	22.66-64.01	1.85-5.23	1.77-5	453.19-1280.21
SPF1	24.37-43.05	1.99-3.51	2.63-4.65	487.39-860.98
SPF2 ^ª	-	2.19-3.41	-	-
AGF1 ^ª	-	-	10.35-11.3	-
SPDC	4.5-14.7	0.37-1.2	7.71-25.18	90-294
^a Direct calcul	ations.			
Initial growt	th indices derived from	m SPF population estimates:	Αποι	unt of storage:
			None	Moderate Minimum
			(P = 43.05)	(P = 28.82) $(P = 24.37)$
Naroll's (196	52) AGF1		6.90	9.67 11.13
Wiessner's (1974) AGF2	Open settlements	0.27	0.60 0.84
		Village settlements	11.61	17.35 20.52
		Urban settlements	40.70	53.18 59.48
Additional	lemographic data			
Additional	demographic data			Contemporaneous (80%)
Proportion (9	%) of assessable area	Built area	54.69	43.75
comprising:	,	Residential built area	46.19	36.95
		Built floor area ^b	32.76	26.20
		Residential floor area	28.32	22.66
Proportion (9	%) of assessable built	Residential built area	84.46	
area compris	sing:	Built floor area ^c	59.89	
·	C C	Residential floor area	51.79	
Proportion (9	%) of built floor area co	mprising residential floor area	86.47	
Mean reside	ntial floor area of comp	lete dwellings (m ²)	9.60	
^b Based on as	sessable area (326.36 m	²) and built floor area (106.9 m ²).		
^c Based on as	sessable built area (178.4	18 m^2) and built floor area (106.9 m ²).		

Figure 7.2. Summary of estimates for Nahal Oren Stratum II.

7.1.2 Gilgal I

Site description

Gilgal I is a PPNA village in the West Bank, Palestine (Table 7.3; Figure 7.3). It forms part of a complex of sites in the Salibiya basin with Gilgal III and IV, also assigned to the PPNA (Bar-Yosef *et al.* 2010a, p.8). Gilgal I to IV are located on ridge tops, spanning around 1.0 to 1.5 hectares (Bar-Yosef *et al.* 2010a, p.7). Based on an assessment of the relative settlement size of each of these sites, depicted by Bar-Yosef *et al.* (2010a, p.4), a site extent of 0.4 hectares is proposed for Gilgal I in this investigation. Evidence exists for more than one phase, with occupation debris at least two meters deep (Noy 1989, p.17; Bar-Yosef *et al.* 2010a, p.23).

Excavations exposed at least 14 curvilinear, stone-walled structures originally interpreted as "round houses" (Noy 1979, p.233; 1989, p.12). More detailed analysis identified five as potential dwellings (Loci 1 [not depicted in Figure 7.3], 3, 5, 10 and 12) (Bar-Yosef *et al.* 2010a, p.11). Loci 4 and 7 display sufficient comparable evidence for assessment as potential dwellings in this investigation. These contained ground stone artefacts, including mortars, pestles, querns and cup-marked slabs; occasional hearths; and similar objects outside the dwellings, which may have been associated with external household or communal activities. Locus 10 also contained a bowl, hammerstone, figurines and human remains.

Estimated site extent	4,000 m ²
Assessable area	214.66 m ²
Potential dwellings	6 (Locus 1 not included as not in site plan)
Environment	On edge of a spur on the Gilgal Ridge; above large, fertile basin
Subsistence	Hunting, gathering, cultivation (wild barley and oats; seedless figs); silo with seeds in Locus 11; separate potential permanent storage structures; possible on floor storage in residential area
Architecture	Mostly curvilinear; one rectilinear; organised in clusters; stone walls covered with mud or daub; clay floors with white surface; light organic roofing; moderate subdivisions or compartmentalisation; some superpositioning, remodelling and abandonment
Economy	Dwelling-based production, processing and consumption (vessels and grinding tools in dwellings; annexed storage/work structures); communal cooking and storage (few hearths in dwellings; pits in communal areas); incipient craft specialisation (stone vessels, tools, figurines, imported material); part of a Salibiya basin society, including Gilgal sites I to VI
Ritual/community organisation	Incipient ritual activity: one central non-domestic rectilinear building (Locus 11) with seeds, large hearth, miniature grinding tools and figurines
Structural contemporaneity	60%
Refined AGF2 variables:	Open and village

Table 7.3. Description of Gilgal I* and refined variables.

* Noy 1989; Colledge 2001; Weiss et al. 2006; Rosenberg 2008; Zeder 2009; Bar-Yosef et al. 2010a; 2010b.

Figure 7.3. Site plan of Gilgal I (transcribed from Bar-Yosef et al. 2010a, p.11).

Contemporaneity assessment

Building use-life estimates derived from analysis of similar structures, including relatively thin stone walls, light organic roofing and limited evidence for remodelling, partitioning and addition of annexes (Bar-Yosef *et al.* 2010a, pp.24-25) suggest relatively short habitation of between 10 and 55 years (see Table 5.7).

Previous analysis of radiocarbon dates also indicated a relatively short period of occupation (Boaretto *et al.* 2010, p.34; Bar-Yosef *et al.* 2010b, p.300). Unfortunately, the radiocarbon determinations (n = 5) have very limited information regarding context or source material. Date RT 777-A has a large standard deviation (9,900 ± 220 BP) resulting in a broad calibrated date range (10,418-8,750 cal BC). A χ^2 test (df = 4, T = 5.3 (5% 9.5)) indicated that the dates conform to one coherent stratigraphic group, with a centre date of 9,360 to 9,250 cal BC. A single phase model highlighted no divergent dates (all agreement values A ≥ 60%). The model indicated a start date of *9,880 to 9,250 cal BC*, an end date of *9,340 to 8,830 cal BC* and a span of up to 520 years (Table 7.4; Figure 7.4).

Lack of phasing information for dates prevented estimation of phase length. Therefore, a contemporaneity value could not be directly derived for Gilgal I. Contemporaneity values derived for the village with the most comparable architecture and spatial layout in this investigation range is around 60% (Netiv Hagdud). Evidence for superpositioning

and abandonment of structures at Gilgal I indicates relatively low contemporaneity. Therefore, the contemporaneity value of 60% is also considered suitable for Gilgal I.

Lab reference	Material	Radiocarbon date (BP)	Radiocarbon date range (cal BC) (95%)	Posterior density estimate range (cal BC) (95.4%)	Indic Amodel= Aoverall=	: es =146.2 =148.2
			(,		Α	С
Start Gilgal	1			9880-9250		95.8
RT 777-Å	СН	9900 ± 220	10420-8740	9660-9110	134.3	99.6
RT 777-B	СН	9950 ± 150	10110-9140	9630-9170	112.5	99.6
Pta 4588	СН	9920 ± 70	9750-9250	9530-9240	115.7	99.7
Pta 4583	СН	9830 ± 80	9660-9140	9450-9190	127.4	99.8
Pta-4585	СН	9710 ± 70	9300-8830	9360-9120	108.4	99.5
End Gilgal I	I			9340-8830		97.4
Span Gilga	l I			0-520		98.8

Table 7.4. Modelled boundary dates and span estimates for Gilgal I.

Posterior density estimate (cal BC)

Figure 7.4. Modelled posterior density estimates for Gilgal I.

Previous population estimates

The population of Gilgal I has previously been estimated at 90 people based on a density coefficient of 90 people per hectare and a suggested average PPNA settlement size of one hectare (Kuijt 2008a). An alternative estimate of between 90 and 294 people was based on density coefficients of 90 and 294 people per hectare and an estimated total site extent of one hectare for Gilgal I specifically (Kuijt 2000). A third estimate of 332 people was based on the mean population estimate for the largest five PPNA settlements and a density coefficient of 294 people per hectare (Kuijt 2000).

Population estimates and group size thresholds

The SPF indicates a total (adult) population of around 155 to 285 people, around 2.3 to 4.7 people per dwelling, around 2.3 m² to 4.2 m² residential floor area per person and around 390 to 720 people per hectare (Table 7.5; Figure 7.5). The population estimate is a considerable revision of the pre-existing estimate range (90-332 people). The estimate exceeds hypothesised group size thresholds relating to the transition to sedentary communities (P ≥ 25); and the adoption of farming practices (P ≥ 50), which is evident at Gilgal I by the cultivation of wild barley. Despite the population estimate exceeding the minimum hypothesised threshold for transition to agro-pastoralist subsistence strategies (P ≥ 100), there is no evidence for domesticated species at Gilgal I. The abundant water availability in this region and the plentiful wild animal, plant and aquatic resources may have mitigated the need for this transition despite the relatively large population size (Bar-Yosef *et al.* 1991).

When groups reach around 150 people, processes of fission and fusion are often initiated to reduce scalar stress (i.e. intra-village conflict). The presence of smaller nearby PPNA settlements (Gilgal III and IV) could reflect fission of Gilgal I into smaller 'daughter villages' in a process similar to that described by Bandy (2004; 2006). Attempts to promote social cohesion may be evidenced by the potential sectoring of the community into household economic units; more formalised ritual practices, including the distinct rectilinear structure identified as non-residential; and the increased amount of built area for non-domestic activities. These developments could reflect the initial transition from a predominantly egalitarian to a more hierarchical community hypothesised to occur in higher populations of at least 350 people.

Table 7.5. Summary of estimates for Gilgal I.

Method	Total population People per dwelling		RADC	SPDC
		Pasad on total number of	(m ⁻ /person)	(people/ha) Based on total site ovtent (ba):
		contemporaneous dwellings:	residential floor area (m ²):	based on total site extent (na).
		67.08	663.16	0.4
HUM	201.25-536.66	3-8	1.24-3.30	503.13-1341.65
RADC	132.63-374.67	1.98-5.59	1.77-5.00	331.58-936.67
SPF1	156.86-286.93	2.34-4.28	2.31-4.23	392.14-717.33
SPF2 ^a		2.79-4.66	-	-
AGF1 ^a	-	-	6.13-6.74	-
SPDC	36-117.60	0.54-1.75	5.64-18.42	90-294
^a Direct calc	ulations			

" Direct calculations.

Initial growth indices derived	I from SPF population estimates:	Amount of storage:					
-		None (286.93)	Moderate (189.38)	Maximum (156.86)			
Naroll's (1962) AGF1		13.63	19.35	22.67			
Wiessner's (1974) AGF2	Open settlements	0.05	0.11	0.16			
	Village settlements	13.94	21.12	25.50			
	Urban settlements	91.93	121.27	137.51			

Additional demographic data			
			Contemporaneous (60%)
Proportion (%) of assessable area	Built area	51.39	30.83
comprising:	Residential built area	34.94	20.97
	Built floor area ^b	40.01	24.01
	Residential floor area	27.63	16.58
Proportion (%) of assessable built area	Residential built area	68.00	
comprising:	Built floor area ^c	77.86	
	Residential floor area	53.77	
Proportion (%) of built floor area comprising	residential floor area	69.10	
Mean residential floor area of complete dwe	ellings (m ²)	12.77	
^b Based on assessable area (214.66 m ²) and bui	lt floor area (85.89 m ²).		
^c Based on assessable built area (110.31 m ²) an	d built floor area (85.89 m ²).		

Figure 7.5. Summary of estimates for Gilgal I.

7.1.3 Netiv Hagdud

Site description

Netiv Hagdud is a PPNA village situated near to what was once a substantial spring and lake in the Lower Jordan Valley (Table 7.6; Figure 7.6) (Bar-Yosef *et al.* 1991, p.418). Hemsley (2008, p.163) produced site plans for four phases. 'Phase I', which appears to have been the major building phase, was selected for analysis in this investigation. The total estimated site extent of 1.5 hectares for Netiv Hagdud incorporates all phases. A reduced total site extent of half this (0.75 ha) is suggested in this investigation for Phase I, as it is assumed that structures would have been dispersed further across the site as the duration of occupation increased.

Excavations in the southwest portion of the site and a deep sounding in the north revealed numerous curvilinear structures interpreted as "houses" and "storage facilities" (Bar-Yosef *et al.* 1991, p.405). Building density appears similar in both the excavated and deep sounded areas indicating that there may have been relatively continuous habitation across the site (Bar-Yosef *et al.* 1991, p.408). Subsistence evidence indicates that the site was occupied for at least nine months per year (Bar-Yosef *et al.* 1991, p.405).

At least six structures were uncovered (Loci 8-10, 20, 22 and 30) (Bar-Yosef *et al.* 1980; 1991; Bar-Yosef and Gopher 1997; Hemsley 2008). The presence of hearths, stone bowls and embedded cup-hole mortars reflects household-based food-related activities (i.e. processing and consumption) potentially indicative of the emerging economic independence of these household units (Rosenberg 2008, p.29). Loci 8 and 10 contained internal partitioning, indicating compartmentalisation of activities within structures. Locus 10 contained an oval-shaped concave cobble hearth feature (c. 1 m diameter) similar to features found in Loci 8 and 22 (Bar-Yosef *et al.* 1991). Burial remains were associated with Locus 22 and, perhaps, Locus 10. The location of a skull cache and high proportions of pestles and grinders within Locus 8, may indicate an additional special function for this building (Bar-Yosef and Gopher 1997). Locus 8 also contained cup-marked stone slabs, a rectangular cobble-covered installation (c. 1 m long), mortars, bowls, polished flat pebbles and a flint axe. Despite the evidence for additional non-domestic activities in Locus 8, all structures are interpreted as potential residential areas (Bar-Yosef *et al.* 1991, p.408).

Table 7.6. Description of Netiv Hagdud Phase I* and refined variables.

Estimated site e	xtent	7,500 m ²
Assessable area	a	533.82 m ²
Potential dwellin	ngs	6
Environment		On slope above Wadi Bakar; perennial watercourse; substantial spring and lake nearby
Subsistence		Hunting, gathering, cultivation (wild barley and lentils: one of the earliest farming communities; sickle blades)
Architecture		Curvilinear; organised in clusters; semi-subterranean; thick stone walls; organic roofing; moderate sub-divisioning or
		compartmentalisation; moderate remodelling, superpositioning and abandonment
Economy		Dwelling-based processing and consumption (vessels, cup hole mortars, hearths); secondary station for obsidian distribution (Anatolian obsidian); craft specialisation (figurines, decorative items and items of personal adornment)
Ritual/communit organisation	ty	Established ritual (burials and adult skull removal); symbolic items (incised pebbles, polished pebbles, female figurines, decorative objects); social differentiation/social status (items of personal adornment)
Structural		60%
contemporaneity	y	
Refined S	SPF	Moderate-maximum (none excluded based on no evidence for
variables:		separate permanent storage structures; probable storage within
		residential floor area)
I	AGF2	Open and village
* Day Vacat at al	4000.40	204. Der Vesef and Capher 1007: Calledre 2004: Weise et al. 2000: Hereley

* Bar-Yosef *et al.* 1980; 1991; Bar-Yosef and Gopher 1997; Colledge 2001; Weiss *et al.* 2006; Hemsley 2008.

Figure 7.6. Site plan of Netiv Hagdud Phase I (transcribed from Bar-Yosef *et al.* 1980, p.203; 1991, pp.407 and 409; Hemsley 2008, p.175).

Contemporaneity assessment

The majority of structures comprise relatively thin stone and mudbrick walls and organic roofing, with variable evidence for remodelling and maintenance (Bar-Yosef *et al.* 1980). Analysis of comparable earthen/masonry structures with moderate maintenance generally indicates a use life of between 35 and 55 years (see Table 5.7).

Sufficient radiocarbon dates exist for Bayesian chronological modelling of phase length and building use-life. Dateable material was collected from an area of deep sounding across three main levels (i.e. lower, middle and upper complex) (Figure 7.7). Although a lack of chronostratigraphic order of dates even within the same structure (i.e. Locus 1001) revealed potentially residual and/or intrusive dates, a χ^2 test (df = 10, T = 8.0 (5% 18.3)) indicated that all dates conform to the same stratigraphic sequence.

Figure 7.7. Schematic section of deep sounding at Netiv Hagdud, indicating the context of radiocarbon dates (uncalibrated BP) (Bar-Yosef *et al.* 1991, p.408).

There does not appear to be any major period of abandonment between the lower, middle and upper complexes (Bar-Yosef *et al.* 1991, p.421). As such, the chronological model was constructed to represent three contiguous phases (lower, middle and upper). Within these phases, individual building phase models were constructed for buildings with more than one date (lower complex: Locus 1006; middle complex: Loci 1001 and 1004), with all other dates placed within a separate phase model. The use of building phase models allows overlap between the dates of the structures.

Chronological modelling highlighted two dates with poor agreement (RT 762D: A = 53.8; RT 762C: A = 20.9) (Table 7.7; Figure 7.8). These dates were removed from a subsequent run of the model. The first model produced estimates of middle complex phase length and building use-life that could be used to reconstruct a contemporaneity value despite the relatively long length of these estimates. Although the final model

prevented useful span estimates for building use-life, it produced potentially more realistic phase length estimates for the phases with more than one date (i.e. lower and middle complex).

The final model indicated a start date of *9,410 to 8,930 cal BC* and an end date of 9,260 to 8,880 cal BC, with a total span of up to 480 years. This compares well with previous estimates of the occupation span by Bar-Yosef *et al.* (1991, p.407) and Hemsley (2008, p.160) (350-550 years). Transition dates of *9,290 to 8,940 cal BC* between the lower and middle complexes and *9,260 to 8,860 cal BC* between the middle and upper complexes produced span estimates of up to 80 years each for the lower and middle complexes; and up to 10 years for the upper complex.

Contemporaneity values were reconstructed based on the upper end of the 95.4% probability range of (1) middle complex span estimates derived from the initial model for phase length (220 years) and building use-life (120-130 years) (contemporaneity value: 54.55-59.09%); and (2) lower and middle complex phase span estimates derived from the final model (80 years) and building use-life estimates of comparable structures derived from archaeological, ethnographic and experimental research (35-55 years) (contemporaneity value: 43.75-68.75%). Based on these estimates, an average contemporaneity value of 60% is utilised for Netiv Hagdud.

Previous population estimates

The population of Netiv Hagdud has previously been estimated at 90 people based on 90 people per hectare and a suggested average total site extent of one hectare for PPNA settlements (Kuijt 2008a). An alternative estimate of between 135 and 441 people was based on 90 and 294 people per hectare and estimated total site extent of 1.5 hectares (Kuijt 2000). A third estimate of 332 people was based on the population estimate derived for the largest five PPNA settlements (Kuijt 2000). In addition, Goring-Morris and Belfer-Cohen (2011, S201) suggest that Netiv Hagdud "may have housed up to a couple of hundred inhabitants".

Table 7.7. Modelled boundary dates and span estimates for Netiv Hagdud. Dates with poor agreement ($A \le 60\%$) highlighted in grey.

Locus	Complex	Lab	Material	Radiocarbon	Radiocarbon	1st ru	n		2nd run		
		reference		date (BP)	date range	Posterior density	Indic	es	Posterior density	Indic	es
					(cal BC)	estimate range	Amodel	=86.2	estimate range Amode		212.4
					(95%)	(cal BC) (95.4%)	Aoveral	=88.2	(cal BC) (95.4%)	Aoverall=	=206.8
							Α	С		Α	С
Start Lower C	omplex					9600-8960		95.8	9410-8930		72.5
1006	Lower	RT 762F	СН	9780 ± 150	9390-8820	9410-8960	162.1	99.3	9330-8930	160.4	79.3
	Lower	Pta 4556	СН	9660 ± 70	9300-8820	9310-8960	85.8	99.5	9300-8950	100.3	81.5
	Span Locu	us 1006				0-140		99.9	0-80		99.5
Span Lower (Complex					0-140		99.9	0-80		99.5
Transition Lov	ver/Middle Col	mplex				9300-8950		99.6	9290-8940		82.4
1001	Middle	Pta 4557	СН	9780 ± 90	10120-9180	9280-8920	100.9	99.7	9270-8930	108.7	82.1
	Middle	RT 762D	CH	9400 ± 180	9660-8630	9270-8930	53.8	99.7			
	Span Locu	us 1001				0-130		100			
1004	Middle	RT 762C	CH	9970 ± 150	9650-8830	9290-8920	20.9	99.7			
	Middle	OxA 744	S	9700 ± 150	9220-8290	9280-8920	139.4	99.8	9280-8920	142.9	81.4
	Span Locu	us 1004				0-120		100			
1000	Middle	RT 762A	СН	9680 ± 140	10570-8270	9280-8920	132.1	99.7	9280-8920	134.3	81.6
1012	Middle	Pta 4555	СН	9750 ± 90	9800-8760	9280-8920	124.1	99.7	9270-8930	133.3	81.9
1002	Middle	RT 762B	СН	9600 ± 170	9450-8470	9270-8920	113.9	99.7	9280-8920	111.1	81.5
?	Middle	RT 502A	СН	9730 ± 380	9450-8630	9280-8920	141	99.8	9280-8920	142.1	81.5
Span Middle	Complex					0-220		99.9	0-80		97.4
Transition Mid	ldle/Upper Col	mplex				9260-8860		99.5	9270-8910		81.1
1007	Upper	Pta 4590	СН	9700 ± 80	9260-8820	9250-8840	113.6	99.3	9260-8860	125.2	79.4
Span Upper C	Complex					0-280		99.8	0-10		100
End Upper Co	mplex					9250-8810		98.7	9260-8800		78.3
Span Lower-U	Jpper Comple	ex				0-580		97.5	0-480		83.2

OxCal v4.2.4 Bronk Ramsey (2013); r:5 IntCal13 atmospheric curve (Reimer et al 2013)

Figure 7.8. Modelled posterior density estimates for Netiv Hagdud (2nd run: divergent dates removed).

Population estimates and group size thresholds

The SPF based on moderate and maximum storage provisions indicates a total (adult) population of around 215 to 270 people, around 4.2 to 5.3 people per dwelling, around four m² to five m² residential floor area per person and around 290 to 360 people per hectare (Table 7.8; Figure 7.9). The population estimate is a considerable refinement of the pre-existing estimate range (90-441 people). The estimate exceeds the hypothesised group size thresholds relating to the transition to sedentism (P ≥ 25); the adoption of farming practices (P ≥ 50); and the minimum threshold for the transition to an agro-pastoralist subsistence strategy (P ≥ 100). Evidence suggests that Netiv Hagdud was one of the earliest farming communities, though there is no evidence for domesticated species (Bar-Yosef *et al.* 1991).

The population estimate also exceeds the threshold for the introduction of mechanisms for creating social cohesion within larger groups ($P \ge 150$), which may be evidenced by more formalised ritual activities and potential sectoring into household economic units (Rosenberg 2008). As the population of Netiv Hagdud began to exceed this threshold,

it is possible that some inhabitants migrated to other areas, forming settlements of a more manageable size (Bandy 2004; 2006). Indeed, Netiv Hagdud lies in close proximity to Gilgal I and other smaller PPNA settlements in the Salibiya Basin, which may have initiated in this way. These developments, in addition to evidence for specialist craft production, an organised exchange network relating to obsidian distribution, and numerous items of personal adornment possibly related to individual or group identification (Bar-Yosef *et al.* 1991) indicate that the inhabitants of Netiv Hagdud were transitioning from a predominantly egalitarian to more hierarchical community, previously suggested to occur in settlements of higher populations ($P \ge$ 350).

Table 7.8. Summary of estimates for Netiv Hagdud Phase I.

Method	Total population	People per dwelling	RADC	SPDC		
		Pasad on total number of	(m /person)	(people/na) Based on total site extent (ba):		
		contemporaneous dwellings:	residential floor area (m ²):	based on total site extent (na).		
		50.58	1078.93	0.75		
HUM	151.74-404.63	3-8	2.67-7.11	202.32-539.51		
RADC	215.79-609.57	4.27-12.05	1.77-5.00	287.71-812.75		
SPF1	214.6-268.12	4.24-5.3	4.02-5.03	286.13-357.49		
SPF2 ^a		4.42-5.32	-	-		
AGF1 ^a	-	-	8.97-9.29	-		
SPDC	67.5-220.5	1.33-4.36	4.89-15.98	90-294		
^a Direct calculations.						

Initial growth indices derived	from SPF population estimates:	Amount of storage:		
		None (415.85)	Moderate (268.12)	Maximum (214.6)
Naroll's (1962) AGF1		11.22	16.23	19.58
Wiessner's (1974) AGF2	Open settlements	0.04	0.10	0.16
	Village settlements	18.04	27.97	34.95
	Urban settlements	134.59	180.34	209.20

228

Additional demographic data Contemporaneous (60%) Proportion (%) of assessable area comprising: Built area 31.70 19.02 Residential built area 31.70 19.02 Built floor area^b 23.98 14.39 Residential floor area 23.98 14.39 Residential built area Proportion (%) of assessable built area 100.00 Built floor area ^c comprising: 75.63 Residential floor area 75.63 Proportion (%) of built floor area comprising residential floor area 100.00 Mean residential floor area of complete dwellings (m²) ^b Based on assessable area (533.82 m²) and built floor area (127.99 m²). 21.33 ^c Based on assessable built area (169.23 m²) and built floor area (127.99 m²).

Figure 7.9. Summary of estimates for Netiv Hagdud Phase I.

229

7.1.4 <u>El-Hemmeh (PPNA)</u>

El-Hemmeh is a multi-period PPN settlement in Jordan. Two main phases were identified, with the majority of structures relating to the PPNA and LPPNB (Makarewicz *et al.* 2006). These phases are described and assessed separately (see Section 7.19 for LPPNB el-Hemmeh).

Site description

Excavations of the earlier PPN occupation exposed 12 semi-subterranean, curvilinear structures, with light organic roofing, often with two-course stone walls set in mud mortar and occasionally with a pisé superstructure (Table 7.9; Figure 7.10). A further two centrally-located structures appear to be communal hearths or storage pits. Bar-Yosef (1998) suggests that the earlier PPN occupation at el-Hemmeh, which comprised a cluster of small structures, was inhabited by one extended family unit.

Stratigraphic analysis revealed at least three earlier PPN subphases spanning the second half of the PPNA period and possibly extending into the EPPNB. Structural composition and the relationship between structures were assessed in detail to identify potential PPNA structures for inclusion in the micro-level assessment. A single radiocarbon date of 9,450 ± 60 BP (9,130-8,570 cal BC) obtained from a hearth in Structure 1 places this structure within the second half of the PPNA (Makarewicz et al. 2006, p.215). At least five other structures (2-3, 5, 10 and 12) were also assigned to the PPNA by Makarewicz et al. (2006). The remainder of the structures (4-8) have been assigned to periods in this investigation based on stratigraphic evidence and archaeological features (Makarewicz and Rose 2011, pp.24-28). Structures assigned to the PPNA include Structure 4, which is of similar architectural construction to Structures 2 and 3; Structure 8, which shares a common wall with Structure 2; and Structure 5, which is considered to have had an extended use-life potentially spanning much of the earlier PPN occupation and possibly utilised through to the EPPNB. The remainder of structures are suggested to date to the EPPNB. These include Structure 6, which cuts into the later construction elements of Structure 5; and Structure 7, both of which have superior architectural construction and unique interior finds, including three complete single human burials within well-constructed cists in Structure 6 and a solid partitioning wall in Structure 7 delineating a large subterranean bin feature (Structure 11). Based on this assessment, structures assigned to the PPNA phase assessed in this investigation include Structures 1 to 5, 8 and 10. Structure 12 lies beneath structures assigned to this phase and is, thus, not included in this investigation (Makarewicz and Rose 2011; White and Makarewicz 2012).
Structures 1 to 4 and 10 demonstrate sufficient evidence for interpretation as dwellings. Structures identified as dwellings contain hearths, raised circular platforms, occasional storage bin features, and domestic artefacts including pestles, a cup, a bone spatula and a clay ball. The original form of Structure 5 is also interpreted as a domestic structure. Remodelling and addition of walls connected the northern border of Structure 5 to later PPNA/EPPNB Structure 6, potentially indicate an EPPNB date for this remodelling. Therefore, only the original boundaries of Structure 5 are included in this analysis.

Structure 8 appears to have maintained a non-residential function based on a lack of internal features, a unique wall break allowing entrance through the side and the presence of thin and delicate flooring with red and orange discolouration, probably resulting from informal hearths (Makarewicz and Rose 2011, p.28).

Estimated site	extent	1,000 m ²
Assessable are	ea	61.49 m ²
Potential dwell	ings	6
Environment		On an alluvial fan near perennial watercourse in steep-sided Wadi Hasa
Subsistence		Hunting, gathering, cultivation (wild barley); some storage within dwellings
Architecture		Curvilinear; organised in clusters; semi-subterranean; thick stone walls; organic roofing; no/very few subdivisions or compartmentalisation; some remodelling and superpositioning
Economy		Some dwelling-based storage, processing and cooking (storage features, hearths, vessels, grinding implements); communal processing and cooking (hearths in open areas); possible incipient craft specialisation (figurine, polished stone axe)
Ritual/commur	nity	Incipient ritual activity: human burials in floor deposits, figurine,
organisation		polished axe and potential ritual structure
Structural		75%
contemporane	ity	
Refined	HUM	Minimum (average and maximum nuclear family sizes excluded
variables:		based on insufficient mean residential floor area (4.83 m ²))
	AGF2	Open and village

Table 70 Deceription		* and rafined veriables
TANE / 9 Description	OF PPNA AI-HAMMAN	and relined variables

* Wright 2000; Makarewicz and Austin 2006; Makarewicz *et al.* 2006; Makarewicz and Rose 2011; White and Makarewicz 2012; White and Wolff 2012; White 2013.

Figure 7.10. Site plan of PPNA el-Hemmeh (transcribed from Makarewicz and Rose 2011, p.24)

Contemporaneity assessment

All dwellings exhibit successive flooring events interspersed with layers of pisé melt, indicating periods of temporary disuse followed by reoccupation (Makarewicz and Rose 2011, p.25). Structures 2 and 3 exhibit at least 10 and five flooring events, respectively. Structure 2 also displays evidence for remodelling. Archaeological, ethnographic and experimental research of comparable structures (earthen/masonry with moderate-considerable maintenance) indicate a potential use-life of between 35 and 75 years (see Table 5.7).

There are insufficient radiocarbon dates for chronological modelling of phase length and building use-life. Therefore, a contemporaneity value could not be directly derived for PPNA el-Hemmeh. The most comparable sites for which precise contemporaneity values have been reconstructed are Beidha Subphases A1 (71.43%) and A2 (75%), and Shkārat Msaied (80%). Based on these, an average contemporaneity value of 75% is utilised for PPNA el-Hemmeh.

Population estimates and group size thresholds

The SPF indicates a total (adult) population of around 70 to 100 people, around 0.9 to 1.5 people per dwelling, around 2.3 m² to 3.3 m² residential floor area per person and around 690 to 1,010 people per hectare (Table 7.10; Figure 7.11). The population estimate exceeds the hypothesised group size thresholds relating to the transition to sedentism (P \ge 25) and the adoption of farming practices (P \ge 50). There is evidence for storage within some structures, which has been linked to sedentism, and for the cultivation of wild barley (White 2013).

There is also evidence for ritual activity that may reflect attempts to promote social cohesion, which is expected to occur within larger populations ($P \ge 150$). The presence of imported materials may indicate that PPNA el-Hemmeh formed part of a broader social network with other sites in the region, which could explain the presence of more developed processes at this settlement despite its low estimated population size.

Table 7.10. Summary of estimates for PPNA el-Hemmeh.

Method	Total population	People per dwelling	RADC	SPDC
			(m²/person)	(people/ha)
		Based on total number of contemporaneous	Based on total contemporaneous	Based on total site extent (ha):
		dwellings:	residential floor area (m^2) :	
		73.18	227.31	0.1
HUM	219.55	3	1.04	2195.48
RADC	45.46-128.42	0.62-1.75	1.77-5.00	454.62-1284.23
SPF1	68.62-100.62	0.94-1.37	2.26-3.31	686.06-1006.19
SPF2 ^a	-	1.23-1.53	-	-
AGF1 ^a	-	-	8.19-8.72	-
SPDC	9-29.4	0.12-0.4	7.73-25.26	90-294
^a Direct cald	culations.			
Initial gro	wth indices derived f	from SPF population estimates:	Amoun	t of storage:
			None (100.62)	Moderate (73.19) Maximum (68.61)
Naroll's (1	962)		7.12	9.31 9.83
AGF1				

Wiessner's (1974) AGF2	Open settlements		0.10	0.19	0.21
	Village settlements		9.94	13.66	14.58
	Urban settlements		46.22	57.15	0.21 14.58 59.66 \$ (75%) 41.04 35.87 25.93 22.73
Additional demographic data				Contomporanoous	(750/)
Dreparties (0() of eccessible or		Duilt area	E4 70	Contemporarieous	5 (7570)
Proportion (%) of assessable ar	rea comprising:	Built area	54.72		41.04
		Residential built area	47.83		35.87
		Built floor area ^D	34.57		25.93
		Residential floor area	30.31		22.73
Proportion (%) of assessable bu	uilt area comprising:	Residential built area	87.41		
,		Built floor area ^c	63.18		
		Residential floor area	55.38		
Proportion (%) of built floor area	a comprising residentia	al floor area	87.66		
Mean residential floor area of co	omplete dwellings (m ²		4.83		
^b Based on assessable area (61.49	9 m ²) and built floor area	(21.26 m ²).			
^c Based on assessable built area (3	33.65 m ²) and built floor a	area (21.26 m ²).			

Figure 7.11. Summary of estimates for PPNA el-Hemmeh.

235

7.1.5 Shkārat Msaied

Site description

Shkārat Msaied is a MPPNB village in southern Jordan. Investigations identified at least five phases, with the majority of building and remodelling occurring in Phase II (Kinzel 2013). Micro-level analysis is conducted on the Phase II occupation (Table 7.11; Figure 7.12). The extent of the occupation is unclear. However, a site extent of 0.2 hectares is proposed based on the presence of around 0.1 hectares of well-preserved architecture; topographical restriction due to a wadi bordering the north-eastern boundary of the site; and the size of comparable MPPNB sites in the region.

Excavations exposed at least 16 Phase II curvilinear structures arranged in clusters. Several potential domestic structures (Units A-E, L, R and T) have been identified (Jensen *et al.* 2005; Hermansen *et al.* 2006). The walls of these structures predominantly comprise limestone foundations and a double course of sandstone around 60 cm wide or more supported by a series of wooden beams placed at regular intervals around the inside of the stone wall. Wall interiors were occasionally finished with upright standing stone slabs (Units A-C). Floors were plastered and usually replastered, and in at least one case (Unit C) had been painted red. Most structures were identified as domestic based on the presence of hearths. Several contained stone installations or cists to the east of the entrance, with Units B, C and D containing a stone platform on the wall opposite the entrance. Evidence suggests that roofs were constructed with wooden beams, mud mortar, soil and small stones, forming a flat surface that may have been utilised as an activity platform or floor of an upper storey.

Through comparison with these residential structures, five additional units (H-K, X and Y) are assigned as potential dwellings in this investigation. Unit J was originally interpreted as a communal cereal processing centre based on the large quantity of grinding implements (Jensen *et al.* 2005). However, physical inspection in 2015 highlighted notable similarities to the other suggested domestic structures and, as such, Unit J was also considered potential residential area in this investigation.

Table 7.11. Description of Shkārat Msaied Phase II * and refined variables.

Estimated site extent Assessable area Potential dwellings	2,000 m ² 679.91 m ² 13
Environment	On slope on sandstone mountain above wadi
Subsistence	Hunting, gathering, cultivation (cereal; grinding stones; picks), pastoralism (possibly domesticated goat and sheep); storage in dwellings (some measured independently of floor area); probable additional on-floor storage
Architecture	Curvilinear; organised in clusters; semi-subterranean and on terraces; thick stone walls with wooden posts; plastered walls and floors; organic roofing; flat roofs possibly utilised for storage or activities; partitioning; considerable compartmentalisation; considerable remodelling; potential sectoring of dwelling clusters
Economy	Dwelling-based storage, processing and consumption (storage and hearths within dwellings); possible communal processing (Unit J); craft specialisation (bead workshops: Units A and B; figurines; naviform cores; worked shell, bone and other material); trade (obsidian; mother of pearl); incised stones/seals
Ritual/community organisation	Established ritual and organisation (Unit F – mortuary building, central location, large size, large raised-rimmed hearth, numerous annexed structures, two stone benches creating a rectangular interior plan, at least 15 inhumations in stone cists; bone figurine; incised stones and slabs; ritual feasting - animal remains with burials; celts; shell and bone beads); potential household-based ritual (stone cists); social differentiation/hierarchy (items of personal adornment; differing structural associations)
Structural contemporaneity	80%
Refined AGF2 variables:	Open and village

* Byrd 1994; Hermansen and Hoffman Jensen 2002; Bartl et al. 2006; Jensen et al. 2005; Hermansen et al. 2006; Edwards 2007; Kinzel 2013.

Figure 7.12. Site plan of structures built and/or (probably) utilised during Phase II at Shkārat Msaied (transcribed from Kinzel 2013, p.339).

Contemporaneity assessment

Considerable evidence exists for building maintenance, re-plastering, remodelling and subdivision (Jensen *et al.* 2005). Archaeological, ethnographic and experimental research of comparable structures indicates potential use-life of 35 to 75 years (see Table 5.7). The structures demonstrate considerable comparability to those of Beidha Phases A and B. Use-life estimates for Beidha range from 50 to 100 years, with contemporaneity values ranging from 71.43% to 75%.

There are a sufficient number of radiocarbon determinations for Shkārat Msaied to enable Bayesian chronological modelling. Of the five available dates, one is considerably older (Aar-936: 9590 \pm 90 BP) and was removed prior to analysis. Of the

four remaining dates, three were sourced from Unit E, which appears to have been occupied in at least three phases (Phases I-III). A χ^2 test (df = 13, T = 12.001 (5% 7.8)) indicated that at least one date does not conform to the stratigraphic sequence. This suggests that more than one phase is present. Unfortunately, no information regarding phase is supplied. A single 'phase' model was constructed containing individual building phase models for Units C and E to allow for potential overlap between these structures. The model did not highlight any statistical outliers (all agreement values A ≥ 60%) (Table 7.12; Figure 7.13).

The model produced a start date of *8,890 cal BC* and an end date of *7,450 cal BC*, with an occupation span of up to 520 years. The model produced a span estimate of up to 470 years for Unit E. These span estimates produced a contemporaneity value of 90.39%. Evidence suggests that most structures were built almost contemporaneously and it appears that most or all of the entrances may have been deliberately blocked, indicating simultaneous abandonment (Jensen *et al.* 2005, p.124). This could suggest a high degree of contemporaneity. Therefore, the contemporaneity value based on the modelled span estimates could be reliable, even though the span estimates themselves are clearly too broad for the phase under investigation. However, to avoid inflating estimates, a more conservative contemporaneity value was derived from the prior chronological information regarding the site stratigraphy, the modelled data and contemporaneity values derived for comparative sites (Beidha Phases A and B: 71.43%-75%). A contemporaneity value of 80% is proposed for Shkārat Msaied.

Unit	Lab reference	Material	Context	Radiocarbon date (BP)	Radiocarbon date range (cal BC) (95%)	Posterior density estimate range (cal BC) (95.4%)	Indice Amodel= Aoverall=:	e s =114 113.4
							A	С
Start Shkā	irat Msaied					8890		98.4
Unit E	Wk-15160	CH, wood		9144 ± 55	8540-8260	8460-8230	105.2	99.7
	Wk-15159	CH, wood		8977 ± 60	8300-7960	8300-7980	112	99.8
	Aar-9337	CH, Pistacia		8885 ± 70	8250-7760	8280-7910	104.3	99.6
	Span Unit E					0-470		98.9
Unit C	Aar-9335	CH. Ephedra	In stone cist	8880 ± 80	8260-7750	8290-7880	104.6	99.6
End Shkārat Msaied					7450		97.9	
Span Shk	Span Shkārat Msaied 0-520							

Table 7.12. Modelled boundary dates and span estimates for Shkārat Msaied.

Figure 7.13. Modelled boundary dates and span estimates for Shkārat Msaied.

240

Population estimates and group size thresholds

The SPF indicates a total (adult) population of around 80 to 150 people, around 2.6 to 4.9 people per dwelling, around 2.5 m² to 4.7 m² residential floor area per person and around 400 to 740 people per hectare (Table 7.13; Figure 7.14). The population estimate exceeds the hypothesised group size thresholds relating to initial sedentism ($P \ge 25$); the adoption of farming practices ($P \ge 50$); and the minimum threshold for the transition to an agro-pastoralist subsistence strategy ($P \ge 100$). Evidence suggests that the inhabitants of Shkārat Msaied intensively cultivated wild plants and may have cultivated domesticated emmer wheat. In addition, the inhabitants engaged in pastoral practices relating to potentially domesticated goats and sheep (Jensen *et al.* 2005, p.131).

There is evidence for mechanisms to reduce scalar stress and promote social cohesion ($P \ge 150$) and for the transition from more egalitarian to more complex social structure ($P \ge 350$), including craft specialisation, ritual activity and potential household economic units, indicated by dwelling based workshop activities (i.e. bead manufacture in Units A and B; Jensen *et al.* 2005, p.127). The presence of such processes at Shkārat Msaied despite the estimated population being at the lower end of the crucial range may indicate that the village formed part of wider network of sites, which may have included the nearby MPPNB village at Beidha. This is supported by evidence for an extensive trade network relating to marine materials (i.e. mother of pearl and shells) (Jensen *et al.* 2005).

Table 7.13. Summary of estimates for Shkārat Msaied Phase II.

Method	Total population	People per dwelling	RADC	SPDC	
			(m²/person)	(people/ha)	
		Based on total number of contemporaneous dwellings:	Based on total contemporaneous residential floor area (m ²):	Based on total site extent (ha):	
		30.59	373.81	0.2	
HUM	91.78-244.74	3-8	1.53-4.07	458.88-1223.69	
RADC	74.76-211.19	2.44-6.9	1.77-5	373.81-1055.97	
SPF1	80.44-148.99	2.63-4.87	2.51-4.65	402.2-744.94	
SPF2 ^a	-	2.92-4.93	-	-	
AGF1 ^a	-	-	7.8-8.6	-	
SPDC	18-58.8	0.59-1.92	6.36-20.77	90-294	
a 🗗 🕐	1 1 2				

^a Direct calculations.

Initial growth indices deriv	ed from SPF population estimates:	Amount of storage:				
		None (148.99)	Moderate (97.83)	Maximum (80.44)		
Naroll's (1962) AGF1		8.72	12.43	14.66		
Wiessner's (1974) AGF2	Open settlements	0.09	0.21	0.31		
	Village settlements	13.42	20.44	24.86		
	Urban settlements	71.15	94.19	107.31		

Additional demographic data

			Contemporaneous (80%)		
Proportion (%) of	Built area	58.13	46.50		
assessable area	Residential built area	45.91	36.73		
comprising:	Built floor area ^b	29.47	23.58		
	Residential floor area	23.36	18.69		
Proportion (%) of	Residential built area	78.98			
assessable built area	Built floor area ^c	50.70			
comprising:	Residential floor area	40.19			
Proportion (%) of built floor	area comprising residential floor area	79.29			
Mean residential floor area of complete dwellings (m ²)					
^b Based on assessable area (6	Based on assessable area (679.91 m ²) and built floor area (200.37 m ²).				
^c Based on assessable built are	ea (395.23 m ²) and built floor area (200.37 m ²).				

Figure 7.14. Summary of estimates for Shkārat Msaied Phase II.

243

7.1.6 Ghwair I

Site description

Ghwair I is a MPPNB village in southern Jordan. Excavations revealed three major architectural phases (Phases I-III) with a series of subphases (Simmons and Najjar 2006, p.80). Phase I structures consisted of very large rooms, which were generally subdivided during Phase II. Phase III comprises many multi-storey/level rectilinear houses with large and small compartments (Simmons and Najjar 2006, p.80). Investigations were conducted across multiple areas (Areas I-VI), although only the Phase III remains in Areas I and IV were excavated and interpreted in sufficient detail for inclusion in this assessment (Table 7.14; Figure 7.15).

Phase III architectural features include stone-built, rectilinear complexes on artificial terraces. These complexes include larger rooms or a large upper floor area considered to represent residential space. These residential areas are connected to smaller compartments interpreted as storage facilities. Small rooms were often constructed by sub-dividing rooms built in earlier phases. This compartmentalisation and maximisation of space suggests a high population density and a high degree of building contemporaneity (Simmons and Najjar 2006, pp.83-84).

At least two residential units were identified in Area I and four in Area IV (Table 7.15). The spatial distribution of structures in Area I is haphazard, making it difficult to determine how structures relate to each other. Conversely, Area IV structures appear to be systematically constructed according to a pre-determined plan. A communal area exists in the western portion of Area IV, containing a wide stairway leading north towards a large open plaza (Simmons and Najjar 2006, p.84). On the eastern side of Area IV, long walls that may have formed part of a water management system create long passageways providing access to the residential units.

Assessment of the remaining areas revealed a complex series of walls in Area II, probably relating to Phase III, and a large wall running parallel to the slope that may indicate water management similar to that found in Areas III and IV. It appears that Areas III and VI originally contained residential structures, although these were abandoned by Phase III and the area was utilised for waste disposal (Simmons and Najjar 2006, pp.86-87). Given the variable spatial distribution of structures and the presence of open areas, passageways and water management walls; the abandonment of some areas; and the topographical restriction of the settlement by a wadi to the south and cliffs to north, the estimated total site extent of 1.2 to 1.45

hectares (Simmons and Najjar 2003, p.407) is reduced to one hectare of potentially habitable area for calculations of population size.

Estimated site extent	12,000-14,500 m ² (10,000 m ² used in calculations)				
Assessable area	440.75 m ²				
Potential dwellings	6				
Environment	On steep-moderate slope between Wadis Ghwair and Faynan and steppe hill to the south				
Subsistence	Hunting, gathering, cultivation (barely, emmer, einkorn, pea; few sickles; numerous grinders), pastoralism (domesticated goats)				
Architecture	Rectilinear; stone walls; single and two-storey; variable spatial layout (Area I: single-storey, free-standing; Area IV: two-storey, agglomerated); considerable subdivision and compartmentalisation; considerable remodelling				
Economy	Dwelling-based production, storage, processing and consumption (numerous vessels; household autonomy); craft specialisation (tool manufacture; symbolic items); local regional centre; trade/exchange networks (clay token/seal)				
Ritual/community organisation	Establish ritual activity (symbolic items; clay and stone figurines); household ritual activities (niches and burials); trade (mother of pearl; clay token/seal; incised stones); social hierarchy (items of personal adornment; unique infant burial with grave goods; houses of various size, composition and association); large public staircase leading to large open plaza				
Structural contemporaneity	77.78%				
Refined SPF variables: AGF2	None-moderate (maximum excluded based on high frequency of designated storage rooms) Village and urban				

Table 7.14. Description of Ghwair I Phase III* and refined variables.

* Simmons and Najjar 2006; Ladah 2006.

Figure 7.15. Site plan (centre) and enlarged plans of Ghwair I Phase III, Areas I and IV (transcribed from Ladah 2006, pp.97 and 117).

Area	Unit	Room	Description	Suggested residential area
Ι	I	5	Large room - possibly the main living area; benches; sub-floor pits; plaster; ritual items Small rooms - possible storage	Room 5
		1	Medium-sized room – possible workshop	
	II	17 14-16	Large room - possibly the main living area Small rooms – possible storage	Room 17
IV		? 21 18-20, 22-23	Upper storey residential area above all rooms Medium-sized basement room – possible working area Small basement rooms – possible storage	Upper storey area above all rooms
	IV	? 27-30 24-26, 31-34	Upper storey area residential above all rooms Medium-sized basement rooms – possible working areas Small basement rooms – possible storage	Upper storey area above all rooms
	V	? 35-36, 38-40 48 49	Upper storey area residential above Rooms 35- 40 Small basement rooms – possible storage Staircase leading from Room 49 (and 50) to 2 nd storey of Unit 3 Lower landing of staircase; possible storage, corridor or other non-domestic purpose	Upper storey area above Rooms 35-40
	VI	? 44 41-43, 45- 47, 51-52 53 Staircase	Upper storey residential area above Rooms 41- 47 Medium-sized basement room – possible working area; infant burial Small basement rooms – possible storage Room with ritual or ceremonial purpose Staircase leading from Room 53 (and 50) to 2 nd storey of Unit 4	Upper storey area above Rooms 41-47

Table 7.15. Potential residential units identified in Ghwair I Phase III (Ladah 2006; Simmons and Najjar 2006).

Contemporaneity assessment

Simmons and Najjar (2006, p.80) assessed 22 radiocarbon determinations to refine the absolute chronology. The dates suggested an occupation span of 1,300 years. However, they identified several divergent dates, including two that were considerably earlier (ISGS 4366 and DRI 3253). These dates were removed from their assessment and an occupation span of around 500 years was suggested. Simmons and Najjar (2006, p.80) were unable to determine phase length. Following further removal of a potentially erroneous determination (ISGS 4364-bis), Benz (2013) suggested that several dates questionably attributed to Phase II (labelled Phase II?) may belong to Phase III. Prior to chronological modelling in this investigation, the two early dates (ISGS 4366 and DRI 3253) and potentially erroneous date (ISGS 4364-bis) were removed, and the four latest Phase II? dates were reassigned to Phase III.

A χ^2 test (df = 16, T = 62.501 (5% 26.3)) indicated that at least one date does not conform to the stratigraphic sequence. There is no evidence for occupational hiatus (Simmons and Najjar 2006, p.80). Therefore, a 'sequence' model was constructed representing three contiguous phases (Phases I-III with no intermittent abandonment). The model highlighted two dates with poor agreement (ISGS 4330: A = 35.5; Beta140757: A = 51.9) (Table 7.16; Figure 7.16). Removal of these dates from a subsequent run of the model revealed a further potentially divergent date (DRI 3252: A = 56.4). However, due to the limited contextual information, the proximity of the agreement value to the agreement threshold (A ≥ 60) and the high overall agreement values of the model (Amodel=163.9; Aoverall=166.4), this date was retained.

The final model indicated a Phase I start date of *8,240 to 7,610 cal BC* and a Phase III end date of *7,610 to 7,540 cal BC*, spanning up to 670 years. Modelled transition dates between Phases I and II (*7,920-7,600 cal BC*) and Phases II and III (*7,690-7,580 cal BC*) indicated spans of up to 210 years for Phase I; up to 230 years for Phase II; and up to 90 years for Phase III.

The span estimate for Phase III (the phase assessed in this investigation) appears suitable considering the architectural features and evidence for significant remodelling, including blocked wall openings, subdivisions, re-plastering and addition of supporting walls (Simmons and Najjar 2006, p.80). Archaeological, ethnographic and experimental research of comparable structures indicates potential use-life of 50 to 100 years (see Table 5.7). Structural composition is similar to buildings found at Beidha Subphase C2, which were estimated as spanning around 70 years. The Phase III span estimate (90 years) and an average building use-life estimate of 70 years produce a contemporaneity value of 77.78% for Ghwair I Phase III.

Previous population estimate

The population of Ghwair I has previously been estimated at 418 people based on van Beek's (1982) minimum population density coefficient of 286 people per hectare and an estimated site extent of 1.45 hectares (Ladah 2006).

-						1 st run			2 nd run		
	Phase	Area	Lab reference	Radiocarbon	Radiocarbon	Posterior density	Indice	es	Posterior density	Indic	es
				date (BP)	date range (cal	estimate range	Amodel=	-69.6	estimate range	Amodel=	163.9
					BC) (95%)	(cal BC) (95.4%)	Aoverall=	=81.8	(cal BC) (95.4%)	Aoverall=	=166.4
_							A	С		A	С
-	Start Ph	nase I				8280		98.3	8240-7610		97
	I	I	Hd 17219-17541	8812 ± 61	8220-7680	8180-7620	107.6	98	8160-7610	102.1	99.4
	I	II	ISGS 4364	8690 ± 70	7960-7580	7980-7610	62.4	98.6	7950-7620	83.1	99.7
_	Span P	hase I				0-180		99.7	0-210		99.9
_	Transitio	on Phas	e I/II			7950-7610		98.8	7920-7600		99.7
	11	I	DRI 3252	8880 ± 117	8290-7660	7930-7610	75.8	98.9	7880-7600	56.4	99.8
	11		DRI 3254	8659 ± 178	8256-7360	7900-7610	124.2	99	7840-7600	136.3	99.8
	II	I	ISGS 4330	8870 ± 70	8250-7750	7870-7600	35.5	99			
•	11?		DRI 3255	8755 ± 111	8210-7590	7840-7600	119.3	99.1	7800-7600	112.2	99.9
ž	11	II	DRI 3256	8754 ± 52	8170-7600	7800-7600	97.6	99.2	7760-7590	74	99.9
0	11?	IV	ISGS 4333	8620 ± 70	7940-7520	7760-7590	104.9	99.4	7720-7590	129.2	99.9
_	Span P	hase II				0-260		99.3	0-230		99.7
_	Transitio	on Phas	e II/III			7750-7580		99.4	7690-7580		99.7
	/ ?	IV	ISGS 4365	8530 ± 100	7830-7330	7720-7580	77	99.5	7670-7580	106.2	99.6
	II/III?	II	ISGS 4325	8590 ± 70	7790-7510	7700-7580	124.2	99.6	7660-7580	160.8	99.7
	II/III?	IV	Hd17221-17359	8528 ± 89	7760-7350	7680-7580	79	99.6	7650-7580	104	99.7
		I	Beta140758	8620 ± 50	7750-7560	7660-7570	142.2	99.8	7640-7580	157.7	99.8
		Ι	Beta140759	8610 ± 50	7750-7550	7640-7570	155.6	99.9	7620-7570	172.9	99.8
	III?	II	ISGS 4332	8570 ± 70	7750-7490	7630-7560	170.2	99.9	7620-7570	180.1	99.8
		I	Hd17220-17550	8627 ± 46	7740-7570	7610-7550	81.4	99.9	7610-7570	108.6	99.8
	II/III?	IV	ISGS 4331	8510 ± 70	7680-7370	7600-7520	132.9	99.8	7610-7550	108.5	99.7
		I	Beta140757	8390 ± 50	7570-7340	7600-7480	51.9	99.5			
	Span P	hase III				0-200		99.3	0-90		99.9
-	End Pha	ase III				7600-7450		99.2	7610-7540		99.5
-	Span P	hases l·	-111			770		99.2	20-670		98

Table 7.16. Modelled boundary dates and span estimates for Ghwair I. Highlighted dates removed from 2nd run.

OxCal v4.2.4 Bronk Ramsey (2013); r:5 IntCal13 atmospheric curve (Reimer et al 2013)

Posterior density estimate (cal BC)

Figure 7.16. Modelled posterior density estimates for Ghwair I (2nd run: divergent dates removed).

Population estimates and group size thresholds

The SPF based on limited (none to moderate) residential storage provisions indicates a total (adult) population of around 400 to 610 people, around 3.8 to 5.8 people per dwelling, around 2.6 m² to four m² residential floor area per person and around 300 to 460 people per hectare (Table 7.17; Figure 7.17). The pre-existing population estimate (P = 418) falls at the lower end of the range derived in this investigation. The population estimate exceeds the minimum hypothesised group size threshold relating to the adoption of a fully sedentary, agro-pastoralist society (P ≥ 100). Evidence indicates that inhabitants of Ghwair I cultivated a wide range of domesticated and wild plants, including barely, emmer, einkorn, pea and medicinal plants, and engaged in pastoral practices relating to domesticated goats (Simmons and Najjar 2006, p.91).

The population estimate also exceeds the hypothesised threshold for the introduction of mechanisms to reduce scalar stress and promote social cohesion ($P \ge 150$). Such

mechanisms are potentially evidenced by the possible sectoring of the community into neighbourhoods and household economic units, the more formalised ritual practices, and the more structured open area for communal activities (Simmons and Najjar 2006).

The estimate also exceeds thresholds proposed for the development from a predominantly egalitarian to more hierarchical community ($P \ge 350$) and the rise of authoritative individuals ($P \ge 500$). These developments are potentially evidenced at Ghwair I by household based specialist activities and workshops potentially reflecting economically independent dwelling units; variable structural layouts possibly reflecting different dwelling unit sizes and/or different compositions and functions; and variable grave goods possibly indicating different degrees of wealth and status (Simmons and Najjar 2006).

Table 7.17. Summary of estimates for Ghwair I Phase III.

Method Total population		People per dwelling	RADC	SPDC	
		Pasad on total number of	(m ² /person)	(peop	le/ha)
		contemporaneous dwellings:	contemporaneous residential	based on totals	sile exterit (na).
		contemporaneous aweilings.	floor area (m^2) :		
		105.88	1603.29	1.3	25
HUM	317.65-847.07	3-8	1.89-5.05		239.74-639.29
RADC	320.66-905.81	3.03-8.55	1.77-5		242.01-683.63
SPF1	398.92-612.25	3.77-5.78	2.62-4.02		301.07-462.08
SPF2 ^a	-	3.78-5.6	-		-
AGF1 ^a	-	-	4.19-4.49		-
SPDC	119.25-389.55	1.13-3.68	4.12-13.44		90-294
^a Direct calcul	ations.				
Initial growt	h indices derived from SF	PF population estimates:		Amount of storage:	
			None (612.25)	Moderate (398.92)	Maximum (324.31)
Naroll's (196	2) AGF1		17.43	25.00	29.76
Wiessner's (1974) AGF2		Open settlements	0.04	0.08	0.13
		Village settlements	21.64	33.21	40.86
		Urban settlements	183.73	244.46	280.65
A -1-1:4: 1	lana ana kia data				
Additional C	demographic data			Contemporane	eous (77,78%)
Proportion (9	%) of site comprising:	Built area	48.23	Contemporant	37.51
-1 (-	, , , , , , , , , , , , , , , , , , , ,	Residential built area	24.70		19.21
		Built floor area	29.21		22.72
		Residential floor area	15.56		12.10
Proportion (%) of assessable built area		Residential built area	51.22		
comprising:		Built floor area ^b	60.56		
		Residential floor area	32.25		
Proportion (%	%) of built floor area compris	sing residential floor area	53.26		
Mean residential floor area of complete dwellings (m ²)		dwellings (m²)	15.14		
^b Based on as	sessable built area (281.67 m ²	and built floor area (170.57 m ²).			

Figure 7.17. Summary of estimates for Ghwair I Phase III.

253

7.1.7 Wadi Hamarash I

Site description

Wadi Hamarash I is a MPPNB village in west-central Jordan (Table 7.18; Figures 7.18-7.19). Excavation across five areas (1-5) exposed numerous interconnecting, rectilinear structures. Considerably high, thick stone-walls indicate that some structures were two-storey. Clusters of structures often formed units that included a combination of single and multi-storey areas. Various elements of the architecture and structural layout resemble that of Beidha Subphase C2 (Byrd 2005a), LPPNB el-Hemmeh (White 2013), Ghwair I (Simmons and Najjar 2006) and Basta (Nissen 2006).

Identification of dwellings and residential area is partly based on interpretations by Sampson (2013a), though predominantly on analysis of the archaeological evidence for domestic activities and the structural layout of dwellings at comparable sites.

Area 1 is suggested to contain five residential units (Table 7.19). Sampson (2013a, p.8) identifies two "houses" (Units I and II) and a potential "special residence" (Unit III). The remaining units (IV and V) are assigned as residential units based on domestic archaeological features. Structures identified as non-residential include Locus 28, which contained an upright standing stone at its centre; and Locus 22, which contained unique features and remains, including burnt soil, animal bones and two possible benches.

Area 2 is suggested to contain four residential units. Sampson (2013a) identifies two "units" (I and II). These, and two further units (III and IV), are assigned as residential in this investigation based on the presence of domestic artefacts and architectural features. It is probable that further residential units occur within this area. Structures identified as non-residential include a "unit" (Loci 16-19 and 25) adjacent to the large communal building in Area 4, containing colour-coated plaster floors and walls, built-in benches, a set of gazelle antlers and unique stone objects (Sampson 2013a, p.33); Locus 13, which comprised fine masonry and contained a hearth, a large quern and many blades and arrowheads (Sampson 2013a, pp.12-13); a corridor (Locus 14); an open area with a unique feature comprising a large flint nodule placed on a large slab (Locus 21); and a series of medium-sized workshop areas containing numerous lithics and animal bones (Loci 2, 8, 11-13 and 15), querns (Locus 11 and 15), ground stone tools and stone vessels (Loci 11, 13 and 15). It is probable that a number of these structures formed a unit with Locus 1.

Area 3 is suggested to contain three residential units. Sampson (2013a) identifies "a large property" (Unit I), which contains at least two large rooms connected to a series of small rooms or storage areas; and a "building" (Unit II) which comprises at least two

larger rooms and a small narrow area. These, in addition to Unit III are assigned here as residential based on domestic artefacts and architectural form.

Area 4 contained a large, rectangular, structure with fine masonry, a rectangular hearth, drainage channels, niches and a circular pit surrounded with stones containing an incised, spherical flint nodule. This structure was associated with an external rectangular niche and ortholith, potentially indicating a ritual function. A courtyard area measuring at least 15 m by 20 m extended towards the northwest (Sampson 2013a, pp.22-23).

Area 5 is suggested to contain four residential units. Sampson (2013a) identifies a "channel house" (Unit I) based on the presence of sub-floor stone-built channels usually interpreted as water management (Goring-Morris and Belfer-Cohen 2010) or ventilation shafts (Kuijt and Goring-Morris 2002, p.409). The remaining units (II-IV) have been assigned based on architectural layout and domestic artefacts. High frequencies of ground stone tools and stone vessels within structures in the southern, unassessed portion of Area 5 may indicate food processing and consumption practices from further residential contexts.

A total of 16 potential dwellings were identified. Although speculative, the suggestions made in this assessment allow some progress towards understanding the demographic parameters at this site.

Table 7.18. Description of Wadi Hamarash I* and refined variables.

Estimated si Assessable Potential dw	te extent area ellings	5,000 m ² 1,249.49 m ² 16
Environmen	t	On a constricted plateau above intercept of the Wadis al-Hasa and Hamarash-Suweif with steep mountains to the north; enclosed by stone wall
Subsistence		Hunting, gathering, cultivation (einkorn, emmer, barley; 900 ground stone tools), pastoralism (potentially domesticated goats and sheep)
Architecture		Rectilinear; stone walls; diverse forms; two-storey; considerable subdivision and compartmentalisation; considerable remodelling
Economy		Dwelling-based production, storage, processing and consumption (grinding stones; stone vessels; household autonomy); craft specialisation (small scale processing of stone, shell and bone objects and jewellery); specific specialist activity areas (perforated objects in different areas); possibly part of a "hydraulic society" situated along the wadi
Ritual/community organisation		Established ritual activity (Area 4: large, central communal building and courtyard with symbolic items – ortholith; flint nodules, stone objects, decorative objects, items of personal adornment, symbolic incisions; possible human figurine); social differentiation/social status (different architectural forms and displays of wealth); possible sectoring of site into neighbourhoods
Structural contemporal	neity	78%
Refined variables	SPF AGF2	None-moderate (maximum excluded based on high frequency of designated storage rooms) Village and urban

* Donta 2013; Gkotsinas and Karathanou 2013; Sampson 2013a; 2013b; Tampakopoulou 2013.

Figure 7.18. Site plan of Wadi Hamarash I (transcribed from Sampson 2013a, pp.8, 12, 15, 18, 23 and 24).

Figure 7.19. Enlarged plans of Wadi Hamarash I, Areas 1, 2, 3 and 5 (transcribed from Sampson 2013a, pp.8, 12, 15, 18, 23 and 24).

Table 7.19. Potential residential units identified in Wadi Hamarash I.

Area	Unit	Locus	Description	Suggested residential area
1	1	16	Numerous ground stone tools; interpreted as the main room of the residence (Sampson 2013a, p.10); two storey	Locus 16 (or an
		7, 8, 9	Three small storage features connected by narrow passages - ground floor storage rooms	upper storey of
		3, 4	Not described; possible storage or work areas	comparable size)
	II	14	Possible corridor or storage area	Locus 20 (or an
		17	Possible storage area	upper storey of
		20	Large room - possibly the main living area; the thickness of the walls indicate possible two storey structure	comparable size)
		10	Large room of a potentially 'special' residence (Sampson 2013a, p.11); two-storey	Locus 10 (or an
		11, 15	Two smaller ground floor loci connected to Locus 10; probable storage areas	upper storey of
				comparable size)
	IV	1	Large room - possibly the main living area; buttressing suggests two-storey structure (Sampson 2013a, p.7);	Locus 1 (or an
			numerous episodes of reconstruction and remodelling; much later partitioning walls; many grinding implements; two	upper storey of
			stone mortars; two floors preserved	comparable size)
	V	2	Thick walls and a hard surface (probably a floor) reached at a depth of 2.1 m indicate that the structure may have	An upper storey
			been two-storey (Sampson 2013a, p.9); contained two semi-circular storage areas on the western side; many	area covering
			ground stone tools; many querns, a millstone, a flint borer and two perforated rounded stones; querns used in wall	Loci 2 and 18
			construction; human and unidentified skeletal fragments; doorway to Locus 18	
		18	Accessed via the roof or an upper storey; high walls indicate an upper storey; many querns; querns used in wall	
			construction; necklace of flat, drilled stones; flint blades and fragments; many drill borers possibly for stone working;	
			skeletal fragments, perforated shell, numerous stone tools, flint cores and a perforated rounded sandstone;	
			limestone bowls and other stone vessels; a possible game board; two benches; may also have been utilised for the	
			manufacture of decorative items as indicated by the high frequencies of borers and perforated stones	
2	I	3, 4	Small independent loci; many ground stone tools and lithic artefacts	Locus 23
		22	Smaller room at entrance; many ground stone tools and lithic artefacts	
		23	Large room - possibly the main living area; many ground stone tools and lithic artefacts; plastered floor	
		24	Many ground stone tools and lithic artefacts; elongated with 2 doors leading to main room	
	II	20	Buttresses and very high walls (> 2.2 m) indicate two storey; red and yellow painted ellipsoid stone object with	Locus 20 (or an
			incised decoration; big stone basins and smaller vases; two grinders; stone vessels and fragment; flint blades;	upper storey of
			animal bones; phallic shaped stone	comparable size)
		26	Ground floor unit; small entrance via Locus 20; many ground stone tools	
		28	Ground floor unit; small entrance via Locus 20 (incompletely excavated)	

Area	Unit	Locus	Description	Suggested residential area
2	111	1	Large, two storey structure; thick stone walls made of large stones; burnt soil and remains, arrowheads, large stone vessel fragments, quern fragments; animal bones; green stone bead, two stone balls; fine masonry; ground floor remains infer ritual significance.	Locus 1 (or an upper storey of comparable size)
		q	Very small locus: many ground stone tools and lithic artefacts	comparable size)
	IV	7	Larger area connected to two storage rooms	
	IV	56	Small storage rooms	
3	1	4 5	Larger rooms: possible ground floor residential area: connected to a series of smaller rooms	Loci 4 and 5
5	1	-, 0 7-10	Small storage areas: narrow doorways: ground floor: stone vessel fragments in Locus 7	
		17	Sinal storage areas, harrow doorways, groand hoor, stone vesser hagments in Essas r	
		3	Larger area: possible courtyard	Locus 13 (or an
		8	Verv narrow space: possible storage area	upper storev of
		13	Possible two-storey room	comparable size)
		12	Two-storey indicated by considerably high walls; stone vessel fragment	An upper storey
		11	Smaller storage room	area covering
		16	Ground floor; two stone vessel fragments	Loci 11 and 12
5		11	Stone slab pavement covered with lime plaster; plaster probably on walls; two large querns; sub floor channels	Loci 11 and 12
			under pavement; stone vessel fragment	
		12	Large room; stone vessel fragments	
		20	Storage space	
	11	17	Storage room	Locus 19
		19	Stone vessel fragments	
		33	Storage room	
		2	Traces of burning; several ground stone tools; sandstone slab with two rows of cup-marks (palette or game board); semi-spherical sandstone	An upper storey area covering all
		5	Caprid bones; stone sphere with circular groove; bone ring; perforated oblong shell piece; broken shell pendant;	loci
			grinder, mortars, bones; passage leads to Locus 7; stone vessel fragment	
		7	Passage leads to Locus 5; burnings; lithics, animals bones, shell pendants; partitioned; many cereal seeds; few flint	
			blades; a grinder; few animals bones; large group of burned stones, large quern and grinder in lower levels;	
			entrance to this unit must have been from a roof or upper storey; evidence for buttressing indicates upper storey	
	IV	13	Large room; two perforated shells	Locus 13
		14, 15	Narrow storage rooms	

Contemporaneity assessment

Wadi Hamarash I has been radiocarbon dated to between $8,710 \pm 50$ BP (7,940-7,590 cal BC) and $8,425 \pm 45$ BP (7,590-7,360 cal BC). Unfortunately, no information is available regarding context or material sourced. Sampson (2013a, p.27) suggests that there is little temporal variation between earlier and later strata, though he provides no further information regarding the stratigraphic sequence.

A χ^2 test (df = 3, T = 22.178 (5% 7.8)) indicated that at least one date does not conform to the stratigraphic sequence. Observation of the calibrated date ranges indicates that the latest date may not belong to the same strata as the three earlier dates. Removal of this date from a subsequent χ^2 test (df = 2, T = 0.8 (5% 6.0)) indicated that the three earlier dates form one coherent stratigraphic group.

A single 'phase' model was constructed and applied to the full and reduced dataset. The final model indicates a start date of *8,100 to 7,600 cal BC*, an end date of *7,750 to 7,260 cal BC*, and a span of up to 170 years (Table 7.20; Figure 7.20).

Architectural evidence indicates a significant expenditure of effort on construction of the thick-walled and often multi-storey structures, particularly those containing fine masonry. There is considerable evidence for remodelling and reconstruction throughout the site, suggesting that the majority of structures may have been utilised for an extended period, and probably contemporaneously. Archaeological, ethnographic and experimental research of masonry structures with considerable maintenance indicate a potential use-life of between 75 and 100 years (see Table 5.7). If the maximum building use-life (100 years) is used in conjunction with the modelled occupation/phase span estimate (170 years), this produces a contemporaneity value of 58.82%. There appears to be one main phase of construction and limited evidence for superpositioning or abandonment of structures indicating a high degree of contemporaneity. Values derived for comparable sites in this analysis range from around 60% (Basta) to around 78% (Beidha Subphase C2 and Ghwair I). The higher value (78%) is considered more suitable for Wadi Hamarash I given the evidence for high structural contemporaneity and is, thus, used in this investigation.

			1st run			2nd run			
Context	Radiocarbon date (BP)	Radiocarbon date range (cal BC) (95%)	Posterior density estimate range (cal BC) (95.4%)	Indices Amodel=116.4 Aoverall=116.3		IndicesPosterior densityAmodel=116.4estimate range (calAoverall=116.3BC) (95.4%)		Indices Amodel=120.6 Aoverall=119.3	
				Α	С		A	С	
Start Wadi Hamarash I			8080-7600		97.2		8100-7600	97.9	
R_Date(8710, 50)	8710 ± 50	7940-7590	7800-7590	112.6	99.8	7800-7590	116.9	99.7	
R_Date(8650, 60)	8650 ± 60	7940-7570	7760-7570	113.1	99.8	7760-7580	111.1	99.8	
R_Date(8660, 45)	8660 ± 45	7790-7580	7740-7580	108.7	99.9	7750-7590	104.6	99.8	
R_Date(8425, 45)	8425 ± 45	7590-7360	7590-7460	97.7	99.8				
End Wadi Hamarash I			7590-7180		98		7750-7260	99.4	
Span Wadi Hamarash			30-320		99.7	0-170		98.5	

Table 7.20. Modelled boundary dates and span estimates for Wadi Hamarash I. Date highlighted in grey removed from 2nd run.

Figure 7.20. Modelled posterior density estimates for Wadi Hamarash I. 1st run (left) and 2nd run (right) following removal of highlighted date.

Population estimates and group size thresholds

The SPF based on limited residential storage provisions indicates a total (adult) population of around 145 to 220 people, around 2.9 to 4.5 people per dwelling, around 2.6 m² to 3.9 m² residential floor area per person and around 290 to 450 people per hectare (Table 7.21; Figure 7.21). The population estimate exceeds the minimum group size threshold relating to the adoption of a fully sedentary, agro-pastoralist society (P \ge 100). Evidence suggests intensive cultivation of a wide range of plants including einkorn, emmer and barley (although it is currently unclear whether these were domesticated), and pastoral practices relating to potentially domesticated goats and sheep (Gkotsinas and Karathanou 2013).

The estimates also fit with thresholds relating to the introduction of mechanisms for reducing scalar stress and promoting social cohesion ($P \ge 150$). This is potentially evidenced by the sectoring of the community into household economic units and possible neighbourhoods, as indicated by streets dissecting the village and variable structural layout within each area. This may also be evidenced by the more elaborate ritual structures and features (i.e. ortholith; spherical nodule); and the potentially centralised organisation of the settlement and communal activities, as indicated by the unique, large, centrally located, non-domestic building and associated courtyard, and highly organised spatial layout of streets and communal areas throughout (Sampson 2013a).

Diverse structural forms, variable structural layout, craft specialisation, decorative objects and items of personal adornment (Sampson 2013a; 2013b; Tampakopoulou 2013) may all suggest an increasingly hierarchical and complex society (expected to occur at $P \ge 350$). The well-structured layout of the settlement and the highly formalised non-domestic space may indicate the presence of an individual or group of individuals with authoritative, decision-making powers (expected to occur at $P \ge 500$). Wadi Hamarash I may have formed part of a "hydraulic society" with other settlements along the wadi, including adjacent sites Wadi Hamarash II and IV, and settlements at Khirbet Hammam and possibly el-Hemmeh (Sampson 2013a, p.31). Exchange of ideas, products and people through this network may have produced more advanced developments than expected for this comparatively low population size. Of course, given the tentative and conservative identification of residential area in this investigation, it is possible that the population has been underestimated.

Table 7.21. Summary of estimates for Wadi Hamarash I.

Method	Total population	People per dwelling	RADC	SPDC	
			(m²/person)	(people/ha)	
		Based on total number of contemporaneous dwellings:	Based on total contemporaneous residential floor area (m ²):	Based on total site extent (ha):	
		49.94	566.58	0.5	
HUM	149.82-399.53	3-8	1.42-3.78	299.64-799.05	
RADC	113.32-320.10	2.27-6.41	1.77-5.00	226.63-640.2	
SPF1	146.62-222.52	2.94-4.46	2.55-3.86	293.23-445.05	
SPF2 ^a	-	3.06-4.44	-	-	
AGF1 ^a	-	-	3.67-3.92	-	
SPDC	45-147	0.9-2.94	3.85-12.59	90-294	
^a Direct coloul	ations				

^a Direct calculations.

Initial growth indices derived fro	Amount of storage:			
-		None (222.52)	Moderate (146.62)	Maximum (121.15)
Naroll's (1962) AGF1		19.30	27.43	32.21
Wiessner's (1974) AGF2	Open settlements	0.10	0.23	0.34
	Village settlements	22.47	34.10	41.27
	Urban settlements	136.14	179.79	204.18

Additional demographic data

			Contemporaneous (78%)	
Proportion (%) of assessable area	Built area	63.16	49.26	
comprising:	Residential built area	21.98	17.15	
	Built floor area ^b	36.56	28.52	
	Residential floor area	14.53	11.33	
Proportion (%) of assessable built area	Residential built area	34.80		
comprising:	Built floor area ^c	57.89		
	Residential floor area	23.00		
Proportion (%) of built floor area comprising residential floor area		39.73		
Mean residential floor area of complete of	dwellings (m²)	12.22		
^b Based on assessable area (1249.48 m ²) and built floor area (456.85 m ²).				
Based on assessable built area (789.16 m ²) and built floor area (456.85 m ²).				

Figure 7.21. Summary of estimates for Wadi Hamarash I.

265

7.1.8 'Ain Abu Nekheileh

Site description

'Ain Abu Nekheileh is a late MPPNB village in southern Jordan (Table 7.22.; Figure 7.22). Three main phases were excavated. Phase III is the major period of settlement and is assessed in this investigation (Henry et al. 2002, p.15). Excavations across two blocks (I-II) revealed a series of high density, interconnected, semi-subterranean, structures of predominantly curvilinear, stone walls (Henry et al. 2003; Henry and Albert 2004). Surface evidence indicates similar structural remains over an area of around 1,200 m² (Henry et al. 2003, p.5). Larger structures with walls two to three courses thick (Loci 1-5, 11, 20, 22 and 25) were interpreted as stone lined pit-houses (Henry et al. 2002; 2003). These structures contained domestic features such as hearths, querns, ground stone implements and caches of points. Several contained discreet storage features separate from the residential floor area and were adjoined by additional storage facilities (Loci 1-3, 5, 20 and 22). Locus 20 contained a working platform and high frequencies of spherulites from sheep and goat dung, potentially indicating partial or temporary use as a pen for herding animals (Henry et al. 2003, p.12; Henry and Albert 2004, p.91). However, as the timing of this change of function is uncertain, Locus 20 is assessed as a dwelling in this investigation based on the concentration of domestic artefacts. A sub-rectangular building (Locus 3) contains an internal pillar of the same height as the external wall, which may indicate an upper storey (Henry et al. 2003, p.9).

Estimated site extent		1,200 m ²		
Assessable area		135.3 m ²		
Potential dw	ellings	9		
Environment		On hill on edge of Wadi Rum; within steep canyon near water inundated mudflat		
Subsistence)	Hunting, gathering, cultivation (300+ grinding stones; sickles), potential pastoralism (goats and sheep)		
Architecture		Predominantly curvilinear with some transitional rectilinear forms; organised in clusters; semi-subterranean; thick stone walls; organic roofing; built in storage features; moderate subdivision and compartmentalisation; some remodelling		
Economy		Dwelling-based storage, production and processing (grinding tools, querns and hearth); possible communal consumption (no stone vessels; may have been a lack of suitable stone material); potential craft specialisation (naviform core technology; preference for pink chert); trade network (ornamental shell); potential broader network with Jebel Ragref, Jebel Arqa, Jebel Salaqa and Jebel Rabigh.		
Ritual/community		Potential social hierarchy or symbolism (items of personal adornment		
organisation		- ornamental shell)		
Structural		65%		
contemporaneity				
Refined variables:	HUM	Minimum-average (maximum nuclear family size excluded due to insufficient mean residential floor area (7.98 m ²))		
	AGF2	Village		

Table 7.22. Description of 'Ain Abu Nekheileh Phase III* and refined variables.

* Henry et al. 2002; 2003; Fabiano et al. 2004; Henry and Albert 2004.

Figure 7.22. Site plan of 'Ain Abu Nekheileh Phase III, Blocks I (north) and II (south) (transcribed from Henry *et al.* 2003, p.7).

Contemporaneity assessment

Henry and Albert (2004, p.82) suggest a total occupation span of 180 to 260 years. This included three occupational phases (I-III) and probably a short period of abandonment between Phases II and III.

Structures comprised thick, interconnected stone walls, probably with organic roofing (Henry *et al.* 2003). Re-occupation of several Phase II structures during Phase III indicates considerable use-life in some cases. Archaeological, ethnographic and experimental research of comparable structures indicates a potential use-life of between 35 and 75 years (see Table 5.7). Structures demonstrate strong similarities with those of Beidha Phases A and B, estimated at 50 to 100 years use-life (Byrd 2005a), and Shkārat Msaied (Kinzel 2013).

Sufficient radiocarbon dates exist for Bayesian chronological modelling of 'Ain Abu Nekheileh. A χ^2 test (df = 5, T = 8.6 (5% 11.1)) indicated that all dates conform to one coherent stratigraphic group. The loci from which the radiocarbon dates are sourced (Locus 2, 5, 20, 22 and 25) were all occupied during Phase III, although Loci 20, 22 and 25 appear to have been originally constructed during Phase II (Figure 7.23). The lack of chronostratigraphic order of dates, even within the same structure (Locus 20) prevents allocation of dates to a specific phase. As such, a Bayesian chronological model was constructed representing one phase (Phases II/III combined), containing an individual building phase model for Locus 20 and a separate phase model for all other loci.

The model indicates a Phase II start date of between *7,830* and *7,530 cal BC* and a Phase III end date of between *7,590* and *7,300 cal BC* (Table 7.23; Figure 7.24). The model indicates a span of up to 290 years for Phases II and III. The modelled span for Locus 20, which was occupied during Phases II and III, was up to 190 years. Unfortunately, as the proportion of spans relating to each phase remains unclear, span estimates for Phase III could not be further refined. However, as both estimates incorporate dates from both phases, these were considered suitable for reconstructing a structural contemporaneity value of 65%.

Figure 7.23. Radiocarbon dates for 'Ain Abu Nekheileh (Henry et al. 2003, p.13)

Locus	Lab reference	Phase	Context	Radiocarbon date (BP)	Radiocarbon date range (cal BC) (95%)	Posterior density estimate range (cal BC) (95.4%)	Indices Amodel=1 Aoverall=1	s 22.8 18.7
							Α	С
Start Phase II						7830-7530		98.2
20	A11804	11/111	Level 7	8565 ± 55	7720-7520	7640-7520	110.6	99.8
	A11805		Level 10/11	8370 ± 80	7580-7180	7600-7400	81.7	99.5
	Span Locus 20					0-190		99.3
22	A11806	11/111	Level 15	8610 ± 95	7960-7490	7700-7500	112.2	99.7
2	A11802	III	Level 9	8625 ± 85	7940-7520	7700-7510	99.2	99.6
25	A11807	11/111	Level 13	8410 ± 80	7600-7190	7600-7420	105.9	99.7
5	A11803	III	Level 12	8465 ± 120	7790-7170	7660-7410	142.8	99.7
End Phase III						7590-7300		98.6
Span Phases II/III						0-290		97.5

Table 7.23. Modelled boundary dates and span estimates for 'Ain Abu Nekheileh.

OxCal v4.2.4 Bronk Ramsey (2013); r:5 IntCal13 atmospheric curve (Reimer et al 2013)

Figure 7.24. Modelled posterior density estimates for 'Ain Abu Nekheileh.

Population estimates and group size thresholds

The SPF indicates a total (adult) population of around 85 to 150 people, around 1.7 to 2.9 people per dwelling, around 2.6 m² to 4.5 m² residential floor area per person and around 710 to 1,230 people per hectare (Table 7.24; Figure 7.25). The population estimate exceeds the hypothesised group size thresholds relating to initial sedentism (P \geq 25) and the adoption of farming practices (P \geq 50); and is comparable to the minimum threshold for the transition to a fully sedentary, agro-pastoralist subsistence strategy (P \geq 100). Evidence suggests that the inhabitants of 'Ain Abu Nekheileh cultivated cereals and engaged in pastoral practices relating to potentially domesticated goats and sheep (Albert and Henry 2004, p.83).

'Ain Abu Nekheileh also exhibits a number of attributes that reflect the transition from a more egalitarian to more complex society, hypothesised to occur at higher population levels ($P \ge 350$). This includes evidence for formalised ritual activity and economically independent household units as indicated by dwelling based storage, production and consumption activities (Henry *et al.* 2003). The village appears to have formed part of wider network with other sites in the region, including Jebel Ragref, Jebel Arqa, Jebel Salaqa and Jebel Rabigh (Fabiano *et al.* 2004). This could explain the presence of such processes despite the small population estimate.

Table 7.24. Summary of estimates for 'Ain Abu Nekheileh Phase III.

Method Total population		People per dwelling	RADC	SPDO	SPDC	
			(m²/person)	(people	/ha)	
		Based on total number of	Based on total	Based on total sit	e extent (ha):	
		contemporaneous dwellings:	contemporaneous residential			
			floor area (m²):			
		51.88	385.56	0.12		
HUM	155.65-285.37	3-5.5	1.35-2.48		1297.12-2378.05	
RADC	77.11-217.83	1.49-4.2	1.77-5		642.59-1815.23	
SPF1	85.6-147.76	1.65-2.85	2.61-4.5		713.34-1231.37	
SPF2 ^a	-	1.88-2.77	-		-	
AGF1 ^a	-	-	9.02-9.84		-	
SPDC	10.8-35.28	0.21-0.68	10.93-35.7		90-294	
^a Direct calculations	S.					
Initial growth inc	lices derived from SPF popu	lation estimates:		Amount of storage:		
			None (147.76)	Moderate (99.93)	Maximum (85.6)	
Naroll's (1962) AC	GF1		9.65	13.42	15.29	
Wiessner's (1974) AGF2	Open settlements	0.05	0.12	0.16	
		Village settlements	8.12	12.01	14.02	
		Urban settlements	42.93	55.72	61.77	
	arenhia data					
Additional demo	graphic data			Contomporono	α_{10} (6E0()	
Drag artists (0() of		Duilt and a	05.40	Contemporane	0US (00%)	
Proportion (%) of	assessable area comprising:	Built area	95.46		62.05	
		Residential built area	83.95		54.57	
		Built 1001 area	53.97		30.00	
∇		Residential hour area	49.43		32.13	
Proportion (%) of	assessable built area	Residential built area	87.94			
comprising:		Built floor area	56.53			
		Residential floor area	51.78			
Proportion (%) of	built floor area comprising res	Idential floor area	91.59			
Mean residential f	tioor area of complete dwelling	js (m²)	7.98			
[°] Based on assessa	able area (135.3 m ²) and built floo	or area (73.02 m ²).				
[°] Based on assessa	able built area (129.16 m ²) and bu	ilt floor area (73.02 m ²).				

7.1.9 EI-Hemmeh (LPPNB)

Site description

The extent of the LPPNB occupation at el-Hemmeh has been estimated at one hectare (Rollefson 1999) (Table 7.25; Figure 7.26). However, area north of the excavated area indicates discontinuous habitation. Based on this and the topographical restrictions of the site, a reduced extent of 0.8 hectares is utilised in calculations of population size.

Excavation exposed a series of rectilinear, semi-subterranean and multi-storey structures, similar to those at Wadi Hamarash I (Sampson 2013a), Basta (Nissen 2006) and Ba'ja (Gebel and Bienert 1997; Makarewicz *et al.* 2006). Walls were constructed with limestone slabs, double-faced with red and white plaster, whilst floors comprised plaster-coated flat stone slabs over sub-floor channels of the type found at Basta (Nissen 2006), Wadi Hamarash I (Sampson 2013a) and es-Sifiya (Mahasneh 1997; Makarewicz *et al.* 2006, p.185). These channels have been interpreted as representing water management (Goring-Morris and Belfer-Cohen 2010) or ventilation shafts (Kuijt and Goring-Morris 2002, p.409).

Groups of structures may represent residential units comprising a larger and potentially upper storey residential area connected to smaller storage or workshop areas (White 2013, p.70). Four potential residential units are identified (Table 7.26) (Wright 2000; White and Wolff 2012). The presence of thick stone walls, buttresses, inset spaces for roof beams within higher walls, stone stairways and rooms which were only accessible from above all indicate upper storeys.

Table 7.25. Description of LPPNB el-Hemmeh* and refined variables.

Estimated site	e extent	10,000 m ² (8,000 m ² used in calculations)				
Assessable a	lings	101.38 m 4				
Environment	annys	On an alluvial fan near perennial watercourse in steep-sided Wadi Hasa				
Subsistence		Hunting, gathering, agriculture (wild barley; domesticated emmer and small-seeded legumes); pastoralism (sheep and goats); possible intentional irrigation				
Architecture		Rectilinear; thick stone walls, limestone slabs; semi-subterranean and multi-storey; sub-floor channels; plastered interior; residential upper storey; lower storey storage/workshop space; pueblo-style; considerable subdivision and compartmentalisation; considerable remodelling				
Economy		Considerable storage facilities; workshops (beads); household-based production, consumption and storage; craft specialisation; important centre for agricultural activities; household inherited agricultural knowledge; established trade networks (imported shell)				
Ritual/community organisation		Establish ritual activity (anthropomorphic figurine; burial with burial goods); social differentiation/social status (items of personal adornment; different architectural forms and displays of wealth)				
Structural contemporan	eity	78%				
Refined	HUM	Minimum-average (maximum nuclear family size excluded based on				
variables:	QDE	Insufficient mean residential floor area (8.66 m ⁻))				
	JFF	designated storage rooms)				
	AGF2	Village and urban				
* \//	NA-1	is a later in a constraint of the second state in the second state is a second state of the second state o				

* Wright 2000; Makarewicz and Austin 2006; Makarewicz *et al.* 2006; Makarewicz and Rose 2011; White and Makarewicz 2012; White and Wolff 2012; White 2013.

Figure 7.26. Site plan of LPPNB el-Hemmeh (transcribed from Makarewicz and Austin 2006, p.19 and Makarewicz 2010, p.7).

Unit	Space	Description	Suggested residential area
1	13	Passageway, probably roofed; huge stone lintel requiring considerable effort for placement supported weight above opening - infers an upper storey; modifications of wall in Space 13; later used as a midden	An upper storey area covering all ground floor spaces
	14	Storage(?); accessed via Space 13; a series of renovations - bins filled and covering with floor; later used as a midden	
	15	Unknown function - probable storage; accessed via Space 13; later used as a midden	
	32	Possible extension of Space 14; additional storage(?).	
2	12	Extremely durable white plaster floor; raised platform 2 x 2 m in western portion; accessed via stairs from Space 19; beneath the top plaster floor: hearth connected to subterranean channel	Space 12 (or an upper storey of comparable size)
	19	Possible courtyard; later filled and had three bins built within the fill; fill of F-27 indicates bead-manufacturing; original access via Space 12	,
3	16	Probable access through roof or second-storey; repeated modifications - changed in use four times from active living/working/storage space to a midden; 2.5 m of cultural deposits; extended use life; resembles "Basta House" layout	An upper storey area covering Space 16
	17	Accessible through roof or second-storey; frequent alterations of external walls and partitioning of interior space; two plastered bins, one of which contained an adult skull associated with a cache of burial goods which appeared to have been placed within a basket; anthropomorphic figurine	
4	20	2 nd storey evidence; contained subterranean channel; three construction phases; stairway and roof supports; packed earth floor when single storey; when converted to two-storey had plaster floor; groundstone artefacts, complete mammal leg bones and ochre on ground floor suggests use of ground floor as a storage or processing area	An upper storey area covering Space 20

Contemporaneity assessment

The considerable investment in architectural construction, including sub-floor channels, an immensely heavy lintel between Spaces 13 and 15, and huge volumes of storage facilities, indicates a relatively extended occupation span. Almost all structures have been substantially remodelled, re-floored and re-plastered throughout their use-life, with many demonstrating successive stages of active use followed by periods of refuse dumping. Analysis of comparable structures (masonry with considerable maintenance) indicates potential use-life of between 75 and 100 years (see Table 5.7).

Unfortunately, due to insufficient radiocarbon determinations, chronological information regarding phase length and building use-life could not be further refined and a direct contemporaneity value could not be established. Sites that demonstrate the closest comparable architectural features and spatial layout in this investigation all recorded contemporaneity values of around 78% (Beidha Subphase C2, Ghwair I and Wadi Hamarash I). Therefore, this value is also utilised for LPPNB el-Hemmeh.

Previous population estimate

The population of LPPNB el-Hemmeh has previously been estimated at 900 people based on 90 people per hectare and a suggested average total site extent of 10 hectares for LPPNB settlements (Kuijt 2008a). This is almost 10 times the actual estimated extent of LPPNB el-Hemmeh

Population estimates and group size thresholds

The SPF based on limited residential storage provisions indicates a total (adult) population of around 530 to 795 people, around 2.2 to 3.2 people per dwelling, around 2.7 m² to four m² residential floor area per person and around 530 to 790 people per hectare (Table 7.27; Figure 7.27). This population estimate is considerably lower than the pre-existing estimate (P = 900). This estimate falls at the upper end of the hypothesised group size threshold relating to the adoption of a fully sedentary agropastoralist subsistence strategy (P = 100-750). Evidence suggests that inhabitants of LPPNB el-Hemmeh engaged in agricultural and pastoral practices relating to domesticated emmer, legumes, sheep and goats.

The estimate also exceeds the threshold relating to the introduction of mechanisms for reducing scalar stress and promoting social cohesion ($P \ge 150$). This is evidenced at LPPNB el-Hemmeh by the possible sectoring of the village into household economic units, more formalised ritual activities and more structured space designated for non-domestic activities (Wright 2000; White and Wolff 2012).

The emergence of more complex society ($P \ge 350$), including potential authoritative individuals ($P \ge 500$), may be evidenced at LPPNB el-Hemmeh by specialist craft activities and workshops, well-established trade networks, differing structural forms and associated facilities, various items of personal adornment, and differential mortuary treatment, including a unique skull burial with a cache of burial goods (Makarewicz *et al.* 2006, pp.213-215).

Potential evidence exists for innovative farming methods, hypothesised to occur at much higher population levels ($P \ge 3,000$). The cultivation of domesticated emmer wheat requires at least 400 mm annual rainfall, suggesting either a significant increase in annual rainfall during the LPPNB or intentional irrigation (White 2013, p.420). It is suggested that cultivation plots were intentionally irrigated and that these plots may have been inherited (White and Wolff 2012, pp.289-294). The occurrence of such innovations in farming methods despite the small population size may indicate that LPPNB el-Hemmeh formed part of a broader group of villages, as is reflected by the extensive trade network.

Table 7.27. Summary of estimates for LPPNB el-Hemmeh.

Method Total population		People per dwelling	RADC	SPDC	
			(m²/person)	(people/ha)	
		Based on total number of contemporaneous dwellings:	Based on total contemporaneous residential floor area (m ²):	Based on total site extent (ha):	
		246.20	2133.04	1	
HUM	738.61-1354.11	3-5.5	1.58-2.89	738.61-1354.11	
RADC	426.61-1205.11	1.73-4.89	1.77-5.00	426.61-1205.11	
SPF1	532.43-794.74	2.16-3.23	2.68-4.01	532.43-794.74	
SPF2 ^a	-	2.18-3.04	-	-	
AGF1 ^a	-	-	3.38-3.6	-	
SPDC	90-294	0.37-1.19	7.26-23.7	90-294	
^a Direct calcula	ations.				

Initial growth indices derived		Amount of storage:			
-		None (794.74)		Moderate (532.43)	Maximum (450.26)
Naroll's (1962) AGF1			22.10	30.96	35.65
Wiessner's (1974) AGF2	Open settlements		0.02	0.04	0.05
	Village settlements		12.58	18.78	22.21
	Urban settlements	1	16.53	152.20	170.19

Additional demographic data							
			Contemporaneous (78%)				
Proportion (%) of site comprising:	Built area	79.89	62.31				
	Residential built area	41.75	32.57				
	Built floor area	61.12	47.67				
	Residential floor area	27.35	21.33				
Proportion (%) of assessable built area	Residential built area	52.26					
comprising:	Built floor area ^b	76.50					
	Residential floor area	34.23					
Proportion (%) of built floor area compris	44.74						
Mean residential floor area of complete	8.66						
^b Based on assessable built area (101.24 m ²	$\frac{2}{2}$) and built floor area (77.45 m ²).						

Figure 7.27. Summary of estimates for LPPNB el-Hemmeh.

7.1.10 Basta

Site description

Basta is a very large LPPNB (and possibly PPNC) village in southern Jordan (Table 7.28). Three architectural phases (I-III) are present across three excavation areas (A-C). Area B, Phase II occupation evidence is assessed in detail as the function and grouping of architectural features in the remaining areas and phases are unclear.

Excavation exposed interlocking and adjacent, rectilinear structures above sub-floor channels, which often contained burials. Structures were built on artificial terraces supported by massive retaining walls (surviving up to two metres high). The carefully prepared terraces adjoined and, therefore, the structures on top of them could not be extended or externally modified, indicating that structure size and layout was predetermined. The uniformity in layout and construction in Area B suggests a single building episode (Nissen 2006, p.173). Walls, floors, door frames, lintels and passageways were constructed with limestone. It is suggested that roofs consisted of a layer of organic material over a grid of wooden beams, coated with a thick layer of mud (Nissen 2006, pp.138-139). Reconstructions indicate that structures were completely roofed except for an access or ventilation point in the central area. Plaster and colourful decoration were a common feature (Nissen 2006, pp.134-135).

Most structures in Area B conform to the distinctive "Basta house" architectural form (Houses I-VII). These comprise a large central space surrounded by small rooms attached to at least one side. Smaller compartments, regarded as storerooms, usually cover no more than one square metre and were accessed from the central space via window-like openings (Nissen 2006, p.138). House VIII is a unique form for Area B, comprising a large space (Room 1) connected to a series of smaller compartments on the southern and western sides and two long parallel rooms (Rooms 2 and 3) on the northern side (Nissen 2006, p.134). It is unclear whether this house was utilised for residential or non-residential purposes. As such, House VIII is unassessed.

The lack of obvious evidence for living or sleeping space has ignited debate about upper storey rooms. Hemsley (2008, p.294) estimated the population of House I based on an upper storey area covering the entire ground floor plan. She estimated that up to 46 people could have slept in this space. Clearly dwelling units of this size would produce an excessive population density. Alternate scenarios including partial upper storey areas produced dwelling occupant ranges of six to 13 people, which are more consistent with the ranges derived for MPPNB Jericho and Basta Area A in the same investigation (Hemsley 2008, p.297). This estimate supports the current theory that

279

large, compartmentalised LPPNB dwellings accommodated large nuclear or extended family units (Rollefson and Kafafi 2013, pp.11-13).

The majority of archaeological evidence, including hearths and localised densities of lithic-production waste, points to single storey structures in which larger central areas formed the main residential area, whilst roofs may have provided additional space for living, sleeping and working (Nissen 2006, p.139). Gebel (2006, p.68) proposes that the larger space occupied by Basta houses may have made upper storeys unnecessary. Nissen (2006, p.177) supports this notion, suggesting that upper storeys, where present, would probably have consisted of one or two rooms on one part of the building. It is highly plausible that upper storeys may have been located in spaces backing onto the walls of other structures built on higher terraces. For example, House III was built on a higher terrace compared to adjoining Houses I and VIII. A physical inspection of the site in 2016 indicated that the north-western portion of House I may have contained an upper storey area adjacent to House III. High walls and buttresses between Rooms 1 to 3 in House VIII indicate that the majority, if not all, of this structure may have been two-storey.

In this investigation, four scenarios relating to the location of residential space within the lower and/or upper storey are explored. In these scenarios, residential floor area is located in (1) the ground floor central room/s only; (2) an upper storey covering the smaller compartments only; (3) the ground floor central room/s and a partial upper storey area on one side of the structure covering areas which allow for floor area of at least two meters width/length and on the upslope side of the building where possible; and (4) a full upper storey (Figure 7.28).

Given the exclusion of Areas A and C in this assessment, it is necessary to discuss to what degree Area B represents the total site and whether a reduced total site extent should be utilised in calculations of population size. The total site extent of Basta has been estimated at between 12 and 14 hectares (Kuijt 2000, p.81). It is suggested that the architectural density evident in the excavated areas could not have extended across the entire site. Gebel *et al.* (2006b, pp.216-217) compared the structure and layout of Basta to terraced, pueblo-style settlements in modern Afghanistan and Algeria in which clusters of compounds or living quarters are separated by abandoned or disused areas, and walkways (i.e. in Area B, Rooms 22-23 are interpreted as a walkway or corridor). The differences in architectural layout between Areas A (Figure 7.29) and B indicate sectoring of the settlement into 'neighbourhoods', potentially based on different socio-economic status. This is suggested based on the well-planned, larger and more elaborate house layout in Area B as opposed to the haphazard distribution of structures in Area A. To account for disused space between

these 'neighbourhoods' and differential use of space in different areas, the total site extent is reduced to 10 hectares in calculations of population size to avoid overestimating the population.

Estimated site extent	120,000-140,000 m ² (100,000 m ² used in calculations)
Assessable area	302.51 m ²
Potential dwellings	6
Environment	On SE facing slope above Wadi Basta amongst prehistoric steppe forest in a semi-arid region
Subsistence	Hunting, gathering, agriculture (domesticated barley, wheat, emmer and lentil); pastoralism (caprines and cattle)
Architecture	Rectilinear; stone walls; single or two-storey?; "Basta house" form; master plan; sub-floor channels; considerable subdivision and compartmentalisation
Economy	Dwelling-based production, processing, consumption and storage; storage bins within some residential floor area; craft specialisation (figurines; jewellery; tools); possible centre for stone tool manufacture; extensive trade and exchange of precious materials (turquoise; Anatolian obsidian) and exotic items (mother of pearl amulets; shaped green stone pendants; stone rings)
Ritual/community organisation	Well-established ritual (sub-floor burials; skulls surrounded by stones; figurines; possible ceramic horns); social differentiation/social status (items of personal adornment and identification); sectoring into neighbourhoods
Structural contemporaneity	60.47%
Refined SPF variables:	Scenario 1: none-moderate (maximum excluded based on high frequency of designated storage rooms) Scenarios 2-4: moderate (none removed to account for space used for possible access of ground floor storage/workshop areas from upper storey)
AGF2	Village and urban

Table 7.28. Description of Basta Phase II* and refined variables.

* Kuijt 2000; Twiss 2001; Gebel 2006; Gebel *et al.* 2006a; 2006b; Nissen 2006; Hemsley 2008; Makarewicz and Tuross 2009.

Figure 7.28. Site plan of Basta Phase II, Area B. Four scenarios: residential floor area in (1) ground floor central room/s; (2) upper storey above smaller compartments; (3) ground floor central room/s and partial upper storey; (4) full upper storey (transcribed from Nissen 2006, pp.164-169 and Gebel *et al.* 2006b, Insertion: Top Plan Area B).

Figure 7.29. Ground plan of Basta Area A. Phase II features highlighted in green (Phase I: blue; Phase III: red). There is a small "Basta house" in the southwest portion (Gebel *et al.* 2006b, Insertion: Top Plan Area A).

Contemporaneity assessment

Sufficient radiocarbon dates (n = 12) exist for Bayesian chronological modelling. Several dates have been assigned to Phases I (n = 2) and II (n = 3). A further date is assigned to Phase I in this investigation based on its location and context (GrN 14537: sourced from the northern section of Area A in cultural debris above bedrock). It is unclear whether the remainder of dates belong to architectural Phase II or III due to the lack of chronostratigraphic order, probably resulting from disturbance processes. However, the calibrated date ranges indicate two distinct phases. For the purposes of Bayesian chronological modelling, dates belonging to the earlier and later phases were assigned to Phases II and III, respectively.

As the relationship between phases is unclear and there is no further information regarding the internal ordering of dates within each phase, a contiguous phase model was constructed with three phases (I-III). Each phase included one building with more than one date (Phase I: Area B, Room 24; Phase II: Area B, Building V, Room 1; Phase III: Area A, Room 39) enabling estimates of building use-life. Within each phase, an individual building phase model was constructed for these buildings, with all other loci placed within separate phase models.

A χ^2 test (df = 11, T = 209.042 (5% 19.7)) indicated that at least one date does not conform to the stratigraphic sequence. The initial run of the chronological model highlighted one date with poor agreement (KIA 30845b: A = 1.5). The removal of this date from subsequent χ^2 testing (df = 10, T = 205.602 (5% 18.3)) indicated further divergent dates, which were not identified in a subsequent run of the chronological model.

The final model produced a start date of 7,790 to 7,380 cal BC and an end date of 7,040 to 6,640 cal BC, with a span of up to 1,050 years (Table 7.29; Figure 7.30). The maximum span would suggest occupation from the later MPPNB to the beginning of the PPNC. Modelled transition dates for Phases I and II (7,540-7,350 cal BC) and Phases II and III (7,140-6,890 cal BC) produced span estimates of up to 100 years for Phase I; up to 430 years for Phase II; and up to 230 years for Phase III. The relative length of these spans is consistent with the archaeological evidence for Phase II as the major occupation phase.

Removal of the date with poor agreement from Phase I prevented reconstruction of a span estimate for Room 24 (estimated at up to 130 years in the initial model). The span for Phase II: Building V, Room 1 was estimated at up to 260 years; whilst the span for Phase III: Room 39 was estimated at up to 150 years. The lengthy spans reflect the exceptional durability of the structures at Basta, which made prominent use of large limestone slabs to create interconnecting walls and used massive terrace walls for their external boundaries (Nissen 2006, pp.135-136). These spans exceed building use-life estimates derived from archaeological, ethnographic and experimental research of masonry structures with considerable maintenance evidence (75 to 100 years) (see Table 5.7). It is possible that span estimates have been inflated due to the impact of old

wood on radiocarbon distributions (Wicks *et al.* 2016). However, the spans produced may still be suitable for establishing a contemporaneity value. This investigation assesses Phase II only. Phase II length (430 years) and building use-life (260 years) span estimates produce a contemporaneity value of 60.47%. This relatively low contemporaneity value is consistent with the theory that groups of structures may have been separated by considerable abandoned and disused area (Gebel *et al.* 2006b, pp.216-217).

Previous population estimate

The population of LPPNB Basta has previously been estimated at 900 people based on 90 people per hectare and a suggested average of 10 hectares for LPPNB settlements (Kuijt 2008a). An alternative estimate of between 1,260 and 4,116 people was based on 90 and 294 people per hectare and an estimated total site extent of 14 hectares (Kuijt 2000). A third estimate of 3,293 people was based on population estimates of the largest LPPNB settlements (Kuijt 2000). A further estimate of 839 to 2,789 people was based on a total site extent of 9.8 hectares and density coefficients of 35 m² site area per person (van Beek's 1982) to 116.3 m² site area per person (Jacobs 1979) (Campbell 2009, p.199).

					1 st rui	n		2 nd r	un	
Building/Room	Lab	Area	Material	Radiocarbon	Posterior density	Indic	es	Posterior density	Indice	es
	reference			date range	estimate range	Amodel=	=27.6	estimate range	Amodel=	106.4
				(cal BC) (95%)	(cal BC) (95.4%)	Aoverall	=28.9	(cal BC) (95.4%)	Aoverall=	105.5
						Α	С		Α	С
Start Phase I					7680-7350		98.6	7790-7380		98.4
(north)	GrN 14537	А	?	7600-7170	7570-7360	126.8	99.7	7590-7400	122.8	99.9
Room 24	KIA 30845a	В	СН	7590-7380	7580-7360	87.5	99.7	7580-7450	102.7	99.9
	KIA 30845b	В	Н	7170-6410	7550-7350	1.5	99.7			
	Span Area B	Room 2	4		0-130		99.9			
Span Phase I					0-140		99.9	0-100		100
Transition Phases I/II					7530-7330		99.7	7540-7350		99.9
Building V, Room 1	KIA 30848a	В	СН	7520-7190	7480-7190	92.2	99.9	7490-7190	98	99.8
	KIA 30848b	В	Н	7480-7090	7450-7080	104	99.9	7460-7080	102.6	99.8
	Span Area B	Building	V, Room 1		0-250		99.9	0-260		99.8
Room 11b	KIA 30842	А	СН	7520-7300	7480-7190	92.1	99.9	7490-7190	98.2	99.7
Room 7	GrN 14538	А	СН	7320-7050	7310-7060	99.6	99.9	7310-7050	99.4	99.8
Room 33	KIA 30846	В	СН	7300-6840	7290-7030	96.1	99.9	7290-7030	96.9	99.8
Span Phase II					160-420		99.9	180-430		99.8
Transition Phases II/II	I				7140-6890		99.7	7140-6890		99.7
Room 39	KIA 30843a	А	СН	7060-6770	7050-6820	107	99.5	7050-6820	106.9	99.7
	KIA 30843b	А	Н	7050-6770	7050-6820	106.4	99.5	7050-6820	106.3	99.7
	Span Area A	Room 3	9		0-150		99.9	0-150		99.9
Building I, Room 1	KIA 30844	В	СН	7050-6700	7050-6800	108.8	99.5	7050-6800	109.1	99.7
Building VIII	KIA 30847	В	CH/H	7030-6640	7050-6760	79.7	99.4	7050-6760	80.3	99.6
Span Phase III					0-230		99.7	0-230		99.7
End Phase III					7040-6650		97	7040-6640		96.5
Span Phases I-III					980		98.4	460-1050		96.8

Table 7.29. Modelled boundar	v dates and span estimates for Basta.	Highlighted date removed from 2 nd run.
	g datee and opan countatee for Bactar	

Figure 7.30. Modelled posterior density estimates for Basta (2nd run: divergent date removed).

Population estimates and group size thresholds

The results of each scenario were assessed to determine which should be included in the final analysis. SPF estimates based on Scenario 4 (P = 10,140-12,410) were considered excessive, as these would produce seemingly unsustainable density values (780-1,000 people/ha) (Appendix C.1). Conversely, estimates based on Scenario 1 (P = 3,250-4,920), although plausible, appear to be too conservative, particularly when converted to people per dwelling (2.7-4.2) and population density (250-380 people/ha).

Similar estimates were derived for Scenarios 2 (P = 6,460-7,830; 5.4-6.5 people/dwelling; 500-600 people/ha) and 3 (P = 5,690-7,850; 4.8-6.5 people/dwelling; 440-600 people/ha). The final analysis is based on the slightly more conservative Scenario 3 estimates. The concentration of domestic features and artefacts in the

central rooms and the variable evidence for upper storeys indicates that this may be the most plausible scenario.

The SPF based on moderate residential storage provisions indicates a total (adult) population of around 5,690 to 7,850 people, around 4.8 to 6.6 people per dwelling, around 2.9 m² to four m² residential floor area per person and around 440 to 600 people per hectare (Table 7.30; Figure 7.31). This population estimate exceeds the pre-existing estimate range (P = 1,260-4,116) and is comparable to the current population size estimate for the largest known PPN settlement, Çatalhöyük (P = 5,000-8,000; c. 14 ha) (Matthews 1996; Cessford 2005; Hodder 2006; Düring 2007).

The estimate exceeds all hypothesised group size thresholds discussed in this investigation, including those for the adoption of a fully sedentary agro-pastoralist subsistence strategy (P = 100-750); the introduction of mechanisms for reducing scalar stress and promoting social cohesion (P \geq 150); the emergence of more complex society including authoritative individuals (P \geq 350 and 500, respectively); and the adoption of innovative farming methods (P \geq 3,000).

At Basta, these developments are evidenced by agro-pastoralist practices relating to domesticated barley, wheat, emmer, lentil, sheep, goat and cattle; intentional irrigation and floodplain cultivation; intensive fodder provisioning strategies for goat management; and the use of animals for both meat and dairy products (Makarewicz and Tuross 2009; Makarewicz 2013, p.256). In addition, Basta demonstrates evidence for intra-village sectoring into neighbourhoods and economically independent household units, with compartmentalisation in dwellings potentially aimed at alleviating stress associated with social crowding (Gebel *et al.* 2006b, pp.216-217; Nissen 2006). Further, there is evidence for well-established ritual activities, specialist craft activities, extensive trade networks and variable mortuary practices, including variable association of burials with grave goods (Nissen 2006). The distinct architectural differences between Areas A and B, and the clear sectioning of the village into 'neighbourhoods' may provide further evidence for socio-economic differentiation.

At this population size, Basta could be considered to represent a 'town' rather than 'village' settlement ($P \ge 400$). However, archaeologists are reluctant to use the term 'town' for settlements dating to this period, due to a lack of some major urban characteristics, such as evidence for vastly increased productivity, incorporation into a broader political system and the presence of many places of entertainment.

In a recent study of epigenetic characteristics of teeth and skulls at Basta, Alt *et al.* (2013) identified evidence for intentional endogamy, the process of marrying only within a community. Such demographically stable residential communities are hypothesised

288

to occur in settlements of at least 475 people. The earliest examples are usually only documented within urbanised, hierarchical communities that emerged in Mesopotamia, Egypt and the Indus Valley around 3,000 years ago (Bittles and Black 2010). Endogamy at Basta was interpreted as a deliberate strategy for segregation based on familial relationships, ensuring inherited wealth and status, and access to restricted resources, such as agricultural land (Alt *et al.* 2013, p.6). This increasing social differentiation may have induced rival authority figures, potentially resulting in political stratification (expected to occur at $P \ge 1,500$).

Table 7.30. Summary of estimates for Basta Phase II: Scenario 3.

Method	od Total population People per dwelling		RADC	SPDC	
			(m²/person)	(people/ha)	
		Based on total number of	Based on total contemporaneous	Based on total site extent (ha):	
		contemporaneous dwellings:	residential floor area (m²):		
		1199.37	22981.40	13	
HUM	3598.1-9594.92	3-8	2.40-6.39	276.79-738.07	
RADC	4596.28-12983.84	3.83-10.83	1.77-5.00	353.56-998.76	
SPF1	5692.53-7853.94	4.75-6.55	2.93-4.04	437.89-604.15	
SPF2 ^a	-	6.55	-	-	
AGF1 ^a	-	-	2.87-3.02	-	
SPDC	1170-3822	0.98-3.19	6.01-19.64	90-294	
^a Direct calcula	ations.				
Initial growt	h indices derived from SF	PF population estimates:	Arr	nount of storage:	
			None (10527.20)	Moderate (6773.23) Maximum (5403.69)	
Naroll's (196	2) AGF1		28.63	41.51 50.20	
Wiessner's (1974) AGF2	Open settlements	0.00	0.00 0.00	

N	
ဖ	
0	

Wiessner's (1974) AGF2	Open settlements	0.00	0.00	0.00		
, , , , , , , , , , , , , , , , , , ,	Village settlements	12.35	19.19	24.06		
	Urban settlements	270.56	363.04	422.04		
Additional demographic data						
			Contemporan	eous (60.47%)		
Proportion (%) of site comprising:	Built area	76.92		46.52		
	Residential built area	41.40		25.03		
	Built floor area	53.64		32.44		
	Residential floor area	29.23		17.68		
Proportion (%) of assessable built	Residential built area	53.82				
area comprising:	Built floor area ^b	69.73				
	Residential floor area	38.00				
Proportion (%) of built floor area comprising residential floor area 54.50						
Mean residential floor area of complete dwellings (m ²) 26.30						
^b Based on assessable built area (302.51	³ Based on assessable built area (302.51 m ²) and built floor area (210.95 m ²).					

Figure 7.31. Summary of estimates for Basta Phase II: Scenario 3.

291

7.1.11 <u>Ba'ja</u>

Site description

Ba'ja is a LPPNB village in southern Jordan (Table 7.31; Figures 7.32-7.33). Investigations were conducted across multiple areas (A-I) with major excavations in Areas B, C and D. Excavations revealed a densely-packed, pueblo-style settlement, with the majority of residential area located in the eastern portion on the upper slope (Areas B-D) (Figure 7.34). Spatial distribution of architectural, agricultural and open areas varied throughout the site (Bienert and Gebel 2004). Based on this spatial patterning and inspection of the potential habitable area, the estimated total site extent of 1.2 to 1.5 hectares (Gebel 2003, p.18) is reduced to 0.9 hectares for calculations of population size.

The residential units comprised terraced, two-storey and split-level architecture with smaller potential storage or workshop rooms on the ground floor, and larger potential residential rooms usually on the upper storey (Figure 7.35). Thick stone walls and twin strengthening buttresses supported upper storeys and roofs made of hard mortar-like material and gravel, which were utilised for additional activities including sandstone ring workshops (Kinzel 2013). No doorways were uncovered and outer walls of residential units contained no windows, indicating that access to all rooms was via the ceilings. Bienert and Gebel (2004, p.141) compare these units to a "communal fortified complex, not easy to enter and easy to control". The interior of these residential units appear to have formed private sectors, whilst rooftops served as public and perhaps communal spaces (Bienert and Gebel 2004, p.141).

In all areas, building units are considered to be predominantly residential (Bienert and Gebel 2004; Gebel 2006; Kinzel 2013). Kinzel (2013, p.120) identifies six residential units in Area B North and four in Area C (Table 7.32). Bienert and Gebel (2004, p.126) identify a further two potential residential units in Area D. It is suggested that ground floor rooms or spaces built on bed-rock were not utilised areas but, rather, spaces resulting from the construction of substructures for supporting first floors on the sloping ground (Bienert and Gebel 2004). Where bedrock is utilised as a wall boundary, these tend to lack wall dressings and are suggested to have a non-residential function.

Table 7.51. Description of Daja and reiffied variables.					
Estimated s	ite extent	12,000-15,000 m^2 (9,000 m^2 used in calculations)			
Assessable area		486.69 m ²			
Potential dw	vellings	12			
Environmen	nt	On slope within an elevated, intra-montane basin surrounded by rock			
		formations and steep slopes – defensive position			
Subsistence	9	Hunting, gathering, probable agriculture (emmer), pastoralism			
		(domesticated goat, sheep); may have harvested rain water as there			
		was no nearby water source; designated storage rooms within			
		structures; storage rooms accessed via residential floor area; potential			
		additional on floor storage			
Architecture)	Rectilinear; thick stone walls; hard mortar roots; multi storey; pueblo-			
		sigle, residential upper storey and lawer storey; plastered interior; considerable			
		subdivision and compartmentalisation: considerable remodelling			
Economy		Dwelling-based production, processing and consumption (household			
Loonomy		autonomy): craft specialisation (iewellery: tools): sandstone ring			
		production centre: household production of rings for export and trade:			
		imported materials (pendants, rings and buttons made of greenstone,			
		mother of pearl and Red Sea molluscs); part of a local settlement			
		system with nearby "mega-sites" al-Baseet and Basta			
Ritual/comm	nunity	Established ritual (anthropomorphic figurines; burial with burial goods;			
organisatior	ו	collective burials; red pigment on bones and painting on burial chamber			
		wall; ritual-related imagery); social differentiation/social status (items of			
		personal adornment; different architectural forms; differing burial			
		goods); possible sectoring into neighbourhoods			
Structural		78%			
contemporaneity					
Refined	SPF	Moderate (none excluded due to area required to access storage			
variables:		rooms via residential floor area; maximum excluded based on high			
	ACE2	Trequency of designated storage rooms)			
	AGF2	village and urban			

Table 7.31. Description of Ba'ja* and refined variables.

* Gebel 2002; 2003; 2006; Bienert and Gebel 2004; Gebel and Hermansen 2004; Gebel and Kinzel 2007; Purschwitz and Kinzel 2007; Kinzel 2013.

Figure 7.32. Site plan of Ba'ja Areas B North, C and D (transcribed from Gebel and Hermansen 1999, p.19 and Kinzel 2013, pp.406-444).

Figure 7.33. Enlarged plans of Ba'ja Areas B North, C and D (transcribed from Gebel and Hermansen 1999, p.19 and Kinzel 2013, pp.406-444).

Figure 7.34. Reconstruction of pueblo-style settlement at Ba'ja showing open, communal area between Area B North and South (Kinzel 2004, p.21).

Figure 7.35. Reconstruction of residential Unit BI in Ba'ja Area B North (Purschwitz and Kinzel 2007, p.30).

Area	Unit	Room/Space	Description	Suggested residential area
В	BI	17	Large upper storey room with twin buttresses resting on basement walls and supporting the roof	Room 17
North		17.1-3	Basement rooms accessed from above; red plaster floor; Space 17.3 had a renewed floor	
		Rooftop	Sandstone ring workshop	
	BIII	22-23	Large upper storey room with twin buttresses	Rooms 22-23
		18-19, 22-29, 34	Basement workshop and storage rooms (celt workshop: Room 23)	
	BIV	?	Large upper storey room (not numbered) with twin buttresses	Upper storey area
		1-2, 4-6, 37-38, 41	Basement rooms accessed via Room 2 from upper storey; red stained plaster floor in Room 2	above Rooms 2, 4-6,
		3	Staircase in Space 3 from upper storey to basement Room 2	37-38
		Rooftop	Sandstone ring workshop	
	BV	39	Basement and upper storey level	Room 40
		40, 42	Rooms accessed to the north and south	
		Rooftop	Sandstone ring workshop	
	BVI	9-10	Large room probably with twin buttresses	Rooms 9-10
		7-8	Smaller rooms – possible storage or work areas	
	BVIII	20-21	Larger rooms; possibly two-storey	Upper storey area
		14	Very small storage rooms accessed from above	above Rooms 15-16,
		15-16, 30	Small, basement rooms	20-21, 30
С	CII	4-10	Basement and upper storey levels	Upper storey area
				above Rooms 4-5, 9-10
С	CV	17, 23	Large, central rooms	Rooms 17, 23
		18-22	Smaller surrounding compartments – possible storage	
	CVI	34-40	Basement and upper storey levels	Upper storey area
				above Rooms 34-40
	CVII	28	Large central room with basement and upper level	Upper storey area
		29, 32	Small basement rooms	above Room 28
		27	Staircase and landing	
		33	Possible corridor, courtyard or room	
D	DI	1	Large central room	Room 1
		4-7	Smaller surrounding compartments	
	DII	8-9, 13	Basement and upper level rooms	Upper storey area
		10-11	Possibly ground floor rooms of single storey section	above Rooms 8-11, 13
		12	Small storage room accessed via steps from Room 11	,

Table 7.32. Potential residential units identified in Ba'ja Areas B North, C and D (Kinzel 2013).

Contemporaneity assessment

Structures comprised multi-storey, masonry construction, with thick, interconnecting stone walls. Considerable evidence for remodelling, including blocked wall openings, raised floors, new floors and the addition of supporting walls indicates extended use-life. Archaeological, ethnographic and experimental research of comparable structures (masonry with moderate-considerable maintenance) indicates potential use-life of 50 to 100 years (see Table 5.7). Structural composition is similar to the buildings found at Beidha Subphase C2, which were estimated as spanning around 70 years.

Radiocarbon dates were sourced from three loci (3, 18 and 20). As there was only one date per structure, building use-life estimates could not be refined. A χ^2 test (df = 2, T = 20.172 (5% 6)) indicated at least one divergent date. This date was not identified in the chronological model. Removal of the earliest and latest date in turn from subsequent χ^2 tests indicated that radiocarbon date Bin 5123 was probably divergent. This date was removed from the final run of the model, which indicated a start date of *7,840 to 6,660 cal BC*, an end date of *6,900 to 5,770 cal BC*, and a span of up to 250 years (Table 7.33; Figure 7.36).

The end date spans into the Pottery Neolithic period, well beyond the suggested end of the occupation indicating that this estimate may be too broad. Indeed, evidence for only one domestic phase in Area B North and a maximum of two phases in Area B South and Area C, as well as minimal evidence for superpositioning or disuse of structures throughout, indicates a relatively restricted occupation span. In addition, large rubble accumulations, twisted walls and subsidence presumably resulting from high energy events such as floods and earthquakes suggest that a catastrophic event may have prematurely terminated the occupation (Gebel and Kinzel 2007, p.29).

General evidence for one domestic phase and rapid abandonment suggests that there may have been a high degree of structural contemporaneity. Unfortunately, the available chronological information is insufficient for reconstruction of a precise contemporaneity value. Analysis of settlements with comparable structures and spatial layout (Beidha Subphase C2, Ghwair I and Wadi Hamarash I) has produced relatively high contemporaneity values (78%). This value is also considered suitable for Ba'ja.

Previous population estimate

The population of Ba'ja has previously been estimated at between 400 and 500 people based on an hypothesised number of 50 to 60 dwellings occupied by families of 8 to 10 people (Gebel and Hermansen 1999, p.19).

Lab	Locus	Material	Radiocarbon	1 st run			2 nd run		
reference			date range (cal BC) (95%)	Posterior density estimate range (cal BC) (95.4%)	Indices Amodel=90.6 Aoverall=88.7		Posterior density estimate range (cal BC) (95.4%)	Indic Amodel= Aoverall=	e s =111.8 =109.4
					Α	С		Α	С
Start Ba'ja				8270-7030		97.6	7840-6660		97
Bin 5123	20	CH: Juniperus; Pistacia	7180-7040	7180-6860	103.2	99.7			
Bin 5036	3	CH: Juniperus + indet	7030-6640	7040-6650	92.5	99.2	7030-6640	108.3	99.5
Bin 5035	18	CH: Juniperus	7030-6630	7040-6640	85.1	99.3	7030-6640	104.9	99.6
End Ba'ja				7020-5550		95.6	6900-5770		97.4
Span Ba'ja				50-470		99.1	0-250		99.8

Table 7.33. Modelled boundary dates and span estimates for Ba'ja. Highlighted date removed from 2nd run.

299

Posterior density estimate (cal BC) Figure 7.36. Modelled posterior density estimates for Ba'ja (2nd run: divergent date removed).

Population estimates and group size thresholds

The SPF based on moderate residential storage provisions indicates a total (adult) population of around 585 to 610 people, around 3.4 to 3.5 people per dwelling, around four m² to 4.2 m² residential floor area per person and around 650 to 680 people per hectare (Table 7.34; Figure 7.37). This population estimate is slightly higher than the pre-existing estimate of 400 to 500 people. This estimate exceeds the minimum hypothesised group size thresholds relating to the adoption of a fully sedentary agropastoralist subsistence strategy (P \ge 100); the introduction of mechanisms for reducing scalar stress and promoting social cohesion (P \ge 150); and the emergence of more complex society (P \ge 350), including authoritative individuals (P \ge 500).

These developments are evidenced at Ba'ja by agro-pastoralist practices relating to potentially domesticated emmer and domesticated goat and sheep (von den Driesch *et al.* 2004), including possible intentional harvesting of rain water (Gebel 2004b, p.28). In addition, evidence exists for intra-village sectoring into neighbourhoods and economically independent household units engaged in specialist production of luxury objects for export, including sandstone rings (Wright 2000; Bienert and Gebel 2004). Ba'ja also demonstrates highly formalised ritual activities and well-structured space for non-domestic activities. These aspects all indicate some degree of labour and social differentiation. Although not a "mega-site" itself, Ba'ja is considered to reflect many aspects of such a community (Gebel 2002).

Table 7.34. Summary of estimates for Ba'ja.

Method Total population		People per dwelling	RADC	SP	DC		
			(m²/person)	(peop	le/ha)		
		Based on total number of	Based on total contemporaneous	Based on total	site extent (ha):		
		contemporaneous dwellings:	residential floor area (m²):				
		173.09	2461.74	1	35		
HUM	519.26-1384.7	3-8	1.78-4.74		576.96-1538.56		
RADC	492.35-1390.81	2.84-8.04	1.77-5.00		547.05-1545.35		
SPF1	583.81-609.81	3.37-3.52	4.04-4.22		648.67-677.56		
SPF2 ^a	-	3.37	-		-		
AGF1 ^a	-	-	3.18		-		
SPDC	121.5-396.9	0.7-2.29	6.2-20.26		90-294		
^a Direct calcul	ations.						
Initial growt	th indices derived from SP	PF population estimates:	Ame	Amount of storage:			
-			None (912.92)	Moderate (596.81)	Maximum (487.53)		
Naroll's (196	52) AGF1		25.20	36.05	42.74		
Wiessner's (1974) AGF2		Open settlements	0.02	0.04	0.06		
	· · ·	Village settlements	14.79	22.62	27.69		
		Urban settlements	143.42	190.41	217.89		

Additional demographic data				
			Contemporaneous (78%)	
Proportion (%) of site comprising:	Built area	65.36		50.98
	Residential built area	38.21		29.81
	Built floor area	58.03		45.27
	Residential floor area	23.38		18.24
Proportion (%) of assessable built area	Residential built area	58.47		
comprising:	Built floor area ^b	88.79		
	Residential floor area	35.77		
Proportion (%) of built floor area comprising residential floor area 40.28				
Mean residential floor area of complete dwellings (m ²) 13.48				
^b Based on assessable built area (477.15 m ²) and built floor area (423.66 m ²).				

Figure 7.37. Summary of estimates for Ba'ja. Values in brackets for the SPF indicate direction of estimate if the formula for none and maximum storage were included in the final estimate range.

302
7.2 Summary of micro-level estimates

This section summarises estimates of people per dwelling; residential floor area and settlement population density coefficients (RADC and SPDC); re-calculated initial growth indices for Naroll's (1962) and Wiessner's (1974) AGF; various area proportions; and the mean residential floor area of complete dwellings. Results are based on estimate ranges derived from applicable SPF (Table 7.36; Figure 7.38).

7.2.1 <u>People per dwelling</u>

People per dwelling estimate ranges varied considerably from a minimum of 0.9 to 1.5 people at PPNA el-Hemmeh to a maximum of 3.9 to 6.6 people at Basta. The estimated range derived for PPNA el-Hemmeh is unique to this dataset, in that it is the only estimate that indicates that dwellings may have been predominantly inhabited by individuals, possibly as part of an extended family unit, as originally proposed by Bar-Yosef (1998). More restricted unit sizes were also estimated for Beidha Subphases A2 (1.7-2.5 people) and B2 (1.5-2.2 people), and 'Ain Abu Nekheileh (1.7-2.9 people). Byrd (2005a) suggested that nuclear families formed the predominant dwelling unit in all phases at Beidha and it is commonly argued that nuclear families typified the dwelling unit throughout the PPN (Sweet 1960; Wright 1969; Antoun 1972; Watson 1978; 1979; Kramer 1979; 1982; Aurenche 1981; van Beek 1982; Finkelstein 1990; Zorn 1994) (see Table 4.1). These low estimates do not appear to support this generalisation. However, it must again be emphasised that SPF population estimates are based on adult human heights and may be increased following consideration of children.

7.2.2 <u>Residential floor area per person</u>

Estimates of residential floor area per person (RADC) demonstrated limited variation from a minimum of 2.3 m² to 3.3 m² at PPNA el-Hemmeh, which had the smallest estimated mean residential floor area of complete dwellings (4.83 m²) to a maximum of four m² to five m² at Netiv Hagdud, which had the largest mean residential floor area (21.33 m²). However, for all other settlements, there is limited correlation between RADC and residential floor area.

The estimated RADCs compare well with those derived for comparable sites in other investigations (2.16-4.55 m^2 per person) (Hill 1970; Clarke 1974; Kramer

1979; Hayden *et al.* 1996) and the range utilised in RADC population estimates in this investigation $(1.77-5 \text{ m}^2)$.

7.2.3 People per hectare

Conversion of total population estimates derived from the SPDC method into population and dwelling unit sizes in the assessable area indicated that the commonly utilised density values (SPDCs) are too low for PPN central and southern Levantine villages (Table 7.35). The minimum SPDC (90 people/ha) resulted in average dwelling unit sizes of less than one person for all sites except Netiv Hagdud (1.33 people) and Ghwair I (1.13 people). The average SPDC (150 people/ha) produced average dwelling unit sizes of less than one person for nine of the 15 sites, with just over one person for three sites (Wadi Hamarash I: 1.5; Beidha Subphase C2: 1.23; Ba'ja: 1.17), and around two people for the remaining three sites (Netiv Hagdud: 2.22; Ghwair I: 1.88; Basta: 1.63).

Application of the maximum SPDC (294 people/ha) produced average dwelling unit sizes of:

- less than one person for PPNA el-Hemmeh and 'Ain Abu Nekheileh;
- around one person for Nahal Oren, Beidha Subphases A1, A2 and B2, and LPPNB el-Hemmeh;
- around two people for Gilgal I, Shkārat Msaied, Beidha Subphase C2 and Ba'ja;
- around three people for Wadi Hamarash I and Basta; and,
- around four people for Netiv Hagdud and Ghwair I.

Even the maximum commonly utilised SPDC produces seemingly insufficient dwelling unit size estimates for most sites. This is particularly evident when assessing estimates for sites with high density, highly compartmentalised, two-storey dwellings, considerable ground floor storage space and potentially large upper storey residential areas that are generally thought to have been occupied by larger nuclear or even extended family units (i.e. Beidha Subphase C2, LPPNB el-Hemmeh, Basta and Ba'ja) (Gebel and Hermansen 1999; Byrd 2005a; Rollefson and Kafafi 2013).

Dwelling unit sizes produced via this method were similar to the minimum final estimates derived from the SPF for Netiv Hagdud (based on SPDC: 4.36; minimum

based on SPF: 4.3), Ghwair I (based on SPDC: 3.68; minimum based on SPF: 3.8) and Wadi Hamarash I (based on SPDC: 2.94; minimum based on SPF: 3). These sites contained very low estimated proportions of contemporaneous residential floor area in assessable area resulting in low dwelling unit size estimates via the SPF method. In addition, Netiv Hagdud and Ghwair I recorded the two lowest structural densities.

Population density coefficients derived from SPF population estimates ranged widely from a minimum of around 290 to 360 people per hectare at Netiv Hagdud to a maximum of around 710 to 1,230 people per hectare at 'Ain Abu Nekheileh. The majority of SPDC estimates far exceed the density coefficients previously utilised for estimating PPN Levantine village populations (90-294 people/ha) (Rollefson and Kohler-Rollefson 1989; Kuijt 2000; 2008a; Campbell 2009). The upper end of SPDCs estimated for 'Ain Abu Nekheileh, PPNA el-Hemmeh (686-1,006 people/ha) and LPPNB el-Hemmeh (666-993 people/ha) are comparable to the upper density limit suggested for early agricultural villages (1,000 people/ha) (Fletcher 1981). If children were factored into SPF population estimates, the subsequent SPDCs would further exceed those derived in this analysis.

High population density largely reflects high structural density resulting from interconnected, clustered, and often multi-storey structures; and high proportions of contemporaneous residential floor area, particularly within settlements of predominantly curvilinear architecture where the majority of structures were identified as residential.

Site name	Total population based on commonly utilised SPDCs			oportion of site issessable (%)	Populati area bas util	on in asse ed on com ised SPDC	ssable imonly s	ontemporaneous dwellings in assessable area	People in ass based utili	e per dw sessable on com sed SPE	elling area monly DCs	Peo p dwe estin base S	ople er elling nates ed on PF	ilt area in site area uctural density) (%)	ontemporaneous dential floor area in sessable area (%)
		People/ha		Ч, "	People/ha			ບ "	F	People/ha	9			Bu	c esi as
	90	150	294		90	150	294		90	150	294	Min	Max	- 3	2
Nahal Oren	4.5	7.5	14.7	65.27	2.94	4.9	9.59	8	0.37	0.61	1.2	2.1	3.5	54.69	22.66
Gilgal I	36	60	117.6	5.37	1.93	3.22	6.32	3.6	0.54	0.9	1.75	2.6	4.5	51.39	16.58
Netiv Hagdud	67.5	112.5	220.5	7.12	4.8	8.01	15.69	3.6	1.33	2.22	4.36	4.3	5.3	31.70	14.39
El-Hemmeh (PPNA)	9	15	29.4	6.15	0.55	0.92	1.81	4.5	0.12	0.2	0.4	1.1	1.5	54.72	22.73
Shkārat Msaied	18	30	58.8	34	6.12	10.2	19.99	10.4	0.59	0.98	1.92	2.8	4.9	58.13	18.69
Beidha (A1)	9	15	29.4	13.22	1.19	1.98	3.89	2.86	0.42	0.69	1.36	2.8	4.1	65.65	20.99
Beidha (A2)	18	30	58.8	14.68	2.64	4.4	8.63	6.75	0.39	0.65	1.28	1.8	2.5	57.21	14.85
Beidha (B2)	18	30	58.8	30	5.4	9	17.64	15.02*	0.36	0.6	1.17	1.6	2.2	57.21	14.14
Ghwair I	119.25	198.75	389.55	4.41	5.26	8.76	17.18	4.67	1.13	1.88	3.68	3.8	5.7	48.23	12.10
Wadi Hamarash I	45	75	147	24.99	11.25	18.74	36.73	16	0.9	1.5	2.94	3.0	4.4	63.16	11.33
'Ain Abu Nekheileh	10.8	18	35.28	11.28	1.22	2.03	3.98	5.85	0.21	0.35	0.68	1.8	2.8	95.46	32.13
Beidha (C2)	27	45	88.2	31.92	8.62	14.36	28.15	11.67	0.74	1.23	2.41	4.1	6.1	59.35	16.77
El-Hemmeh (LPPNB)	90	150	294	1.27	1.14	1.9	3.73	3.12	0.37	0.61	1.19	2.2	3.1	79.89	21.33
Basta	1170	1950	3822	0.3	3.54	5.9	11.56	3.63	0.98	1.63	3.19	4.8	6.6	76.92	17.68
Ba'ja	121.5	202.5	396.9	5.41	6.57	10.95	21.46	9.36	0.7	1.17	2.29	3.4	3.5	65.36	18.24

Table 7.35. Population estimates based on the SPDC method converted to population and dwelling unit size in the assessable area.

* Based on Beidha Subphase A2 proportions due to depletion of Subphase B2 evidence.

7.2.4 Initial growth indices for the allometric growth formulae

Naroll's (1962) AGF1 re-calculated

Indices re-calculated for Naroll's (1962) AGF1 varied considerably from a minimum of 6.9 to 11.1 for Nahal Oren to a maximum of 36.6 to 48.1 for Basta. There is a clear distinction between the AGF1 index ranges for settlements with predominantly curvilinear architecture (min a = 6.9-16.2; max a = 9.8-22.7) and those with predominantly rectilinear architecture (min a = 16.2-36.6; max a = 23.2-48.1). This reflects the fact that Naroll's formula was based predominantly on large villages with agglomerated, rectilinear architecture. Sites with indices comparable to Naroll's original index (a = 21.7) demonstrated similar architectural features to those included in Naroll's analysis (Ghwair I: 17.4-25; Wadi Hamarash I: 19.3-27.4; Beidha Subphase C2: 16.2-23.2). Sites that recorded the lowest indices (Nahal Oren; PPNA el-Hemmeh: 7.1-9.8; Shkārat Msaied: 8.7-14.7; Beidha Subphases A1: 8-11.3, and A2/B2: 11.3-15.5; 'Ain Abu Nekheileh: 9.7-15.3) comprised curvilinear architecture, whilst sites which recorded the highest indices (LPPNB el-Hemmeh: 22.1-31; Basta; Ba'ja: 35.4-36.7) comprised very high density, pueblo-style architecture. The highest index, achieved for Basta, reflects the considerably larger estimated site extent (12-14 ha) and population (P = 5,690-7,850).

Interestingly, the mean AGF1 re-calculated index achieved in this investigation (a = 18.89) is similar to Naroll's original index (a = 21.7). The similarity between these two means supports both Naroll's original conclusions and the potential reliability and accuracy of the population and total built floor area estimates utilised to re-calculate this index in this investigation.

Wiessner's (1974) AGF2 open, village and urban

All sites included in this analysis are considered village settlements. Village initial growth indices ranged from a minimum of 8.1 to 14 for 'Ain Abu Nekheileh to a maximum of 28 to 35 for Netiv Hagdud.

Sites with curvilinear architecture and considerable open space were considered potential open settlements. Open initial growth indices ranged from a minimum of 0.00 (Basta) to a maximum of 0.27 to 0.84 (Nahal Oren). Higher open indices were derived for settlements that conformed most closely to the open settlement type (Nahal Oren; Shkārat Msaied: 0.09-0.31; Beidha Subphases A1: 0.13-0.3, A2: 0.15-0.32 and B2: 0.16-0.34). The lowest open indices were produced for sites

containing high density, multi-storey, rectilinear structures that clearly do not conform to this type (Basta; LPPNB el-Hemmeh: 0.02-0.04; Ba'ja: 0.04; Ghwair I: 0.04-0.08).

Sites with rectilinear architecture and multi-storey structures were considered potential urban settlements. Urban initial growth indices ranged from a minimum of 41 to 59 for Nahal Oren to a maximum of 329 to 408 for Basta. The index derived for Basta, which probably represents the only real urban settlement, is considerably higher than that of all other sites.

7.2.5 Area proportions

Proportions of contemporaneous residential built area and residential floor area in site area range from a minimum of 17.15% and 11.33%, respectively, at Wadi Hamarash I to a maximum of 54.57% and 32.13%, respectively, at 'Ain Abu Nekheileh. The percentages recorded for 'Ain Abu Nekheileh are considerably higher than all other sites. This reflects the extremely high proportion of built area and the high proportion of residential structures within that area. Conversely, the percentages derived for Wadi Hamarash I are notably lower than other sites. This reflects the considerable open area and non-residential built space.

The proportion of built floor area in site area ranges from a minimum of 23.98% at Netiv Hagdud to a maximum of 61.12% at LPPNB el-Hemmeh. Sites with the highest percentages contained substantial upper storey floor areas (LPPNB el-Hemmeh; Beidha Subphase C2: 49.67%; Basta: 53.64%; Ba'ja: 58.03%) or had very limited open area between structures ('Ain Abu Nekheileh: 53.97%).

The proportion of residential floor area in built floor area ranges from a minimum of 39.73% at Wadi Hamarash I to a maximum of 100% at Netiv Hagdud, where all structures were considered potential dwellings. In general, sites with agglomerated, rectilinear architecture and those that occur later in the PPN sequence produced lower percentages (Ghwair I: 53.26%; Wadi Hamarash I; Beidha Subphase C2: 43.4; LPPNB el-Hemmeh: 44.74; Basta: 54.5; Ba'ja: 40.28). This reflects the greater allocation of built space for non-residential purposes at these sites.

Table 7.36. Summary of r	nicro-level estimates.
--------------------------	------------------------

Site	Total population	People per dwelling	RADC	al floor llete m²)	SPDC	AGF1 index	AGF2 open index	AGF2 village index	AGF2 urban index	Contempo resident in site a	oraneous ial area rea (%)	A propo ('	rea ortions %)
				Mean residentia area of comp dwellings (r						Duille	Floor	Built floor area in site area	Residential floor area in built floor area
Nabal Oren	24-43	2-3.5	26-47	9.6	/87-861	6 0-11 1	0.27-0.84	11 6-20 5	11-50	26.05	22.66	32.76	86.47
Gildal I	157-287	2 3 4 7	2.3-4.2	12 77	392-717	13 6-22 7	0.05-0.16	13.9-25.5	91-138	20.97	16 58	40.01	69.1
Netiv Hagdud	215-268	4.2-5.3	4-5	21.33	286-357	16.2-19.6	0.1-0.16	28-35	180-209	19.02	14.39	23.98	100
El-Hemmeh (PPNA)	69-101	0.9-1.5	2.3-3.3	4.83	686-1006	7.1-9.8	0.01-0.21	9.9-14.6	46-60	35.87	22.73	34.57	87.66
Shkārat Msaied	80-149	2.6-4.9	2.5-4.7	13.46	402-745	8.7-14.7	0.09-0.31	13.4-24.9	71-107	36.73	18.69	29.47	79.29
Beidha (A1)	57-86	2.7-4.2	2.4-3.7	11.56	573-864	8-11.3	0.13-0.3	11.6-17.4	51-67	40.45	20.99	34.22	85.88
Beidha (A2)	79-116	1.7-2.5	2.6-3.8	7.26	395-578	11.3-15.5	0.15-0.32	17.3-25.3	84-109	29.84	14.85	29.77	66.54
Beidha (B2)	76-111	1.5-2.2	2.6-3.7	6.52	382-553	11.3-15.5	0.16-0.34	18.1-26.2	87-111	*			
Ghwair I	399-612	3.8-5.8	2.6-4	15.14	399-612	17.4-25	0.04-0.08	21.6-33.2	184-244	19.21	12.1	29.21	53.26
Wadi Hamarash I	147-223	2.9-4.5	2.6-3.9	12.22	293-445	19.3-27.4	0.1-0.23	22.5-34.1	136-180	17.15	11.33	36.56	39.73
'Ain Abu Nekheileh	86-148	1.7-2.9	2.6-4.5	7.98	713-1231	9.7-15.3	0.05-0.16	8.1-14	43-62	54.57	32.13	53.97	91.59
Beidha (C2)	141-216	3.9-6.4	2.3-3.6	17.15	469-719	16.2-23.2	0.06-0.15	13.9-21.3	83-111	27.83	16.77	49.67	43.4
EI-Hemmeh (LPPNB)	532-795	2.2-3.2	2.7-4	8.66	666-993	22.1-31	0.02-0.04	12.6-18.8	117-152	32.57	21.33	61.12	44.74
Basta	5693-7854	4.8-6.6	2.9-4	26.3	438-604	36.6-48.1	0.00	16.6-22.8	329-408	25.03	17.68	53.64	54.5
Ba'ja	584-610	3.4-3.5	4-4.2	13.48	649-678	35.4-36.7	0.04	22.1-23.1	188-193	29.81	18.24	58.03	40.28

* Beidha Subphase B2 proportions not assessed as largely based on Subphase A2 proportions.

Figure 7.38. Summary of micro-level estimates (continued).

7.3 Summary

Methodologies for estimating population parameters have been applied to 11 PPN central and southern Levantine villages across 15 phases. This included Bayesian chronological modelling of several sites, which further highlighted the potential of this method for producing phase length and building use-life estimates for reconstructing structural contemporaneity values.

Estimates of population parameters based on the SPF were assessed. Cross-analyses of estimates with archaeological evidence support several hypothesised group size thresholds, particularly relating to initial sedentism ($P \ge 25$) (Fletcher 1981; Binford 2001; Kuijt and Goring-Morris 2002; Bandy 2010); the adoption of farming practices ($P \ge 50$) (Drennan and Peterson 2008) and a fully agro-pastoralist subsistence strategy (P = 100-750) (Fletcher 1981; Kuijt and Goring-Morris 2002). The majority of sites contained evidence for the introduction of mechanisms to reduce scalar stress ($P \ge 150$) (Chagnon 1980; Kosse 1990; Bowser 2000; Kuijt and Goring-Morris 2002; Dunbar 2003; Bandy 2006; Alberti 2014); and for the transition from a more egalitarian to more complex social structure ($P \ge 350$) (Forge 1972; Kosse 1990), including individuals with authoritative roles ($P \ge 500$) (Naroll 1956; Kosse 1990). Finally, some sites (i.e. LPPNB el-Hemmeh, Ba'ja and Basta) demonstrate evidence for innovative farming methods (expected to occur at $P \ge 3,000$) (Bogaard and Isaakidou 2010).

In some cases, these developments are not present within sites whose population estimates exceed these thresholds (i.e. pastoral practices do not occur in the earliest PPN sites regardless of population size). Conversely, some developments appear to occur at lower population sizes. The presence of more advanced processes at lower population thresholds may reflect the broader social networks that occurred at this time (i.e. Nahal Oren and additional sites on Mount Carmel; Gilgal I, Netiv Hagdud and additional sites in the Salibiya Basin; Shkārat Msaied and nearby Beidha). Networks extending as far as the northern Levant would have enabled transmission of ideas, products and people from potentially more developed regions. These networks would have effectively formed a larger overall population. The resulting population pressure on resources and social stress within these communities may have led to innovative methods for improving resource availability and reducing scalar stress (Coward and Dunbar 2014). Therefore, an analysis of the combined population sizes of settlement networks may be a more effective means of exploring settlement and population parameters.

Dwelling unit size estimates were assessed to determine the potential for nuclear family dwelling units, which are often considered to represent the predominant dwelling unit type of PPN settlements (Sweet 1960; Wright 1969; Antoun 1972; Watson 1978;

1979; Kramer 1979; 1982; Aurenche 1981; van Beek 1982; Finkelstein 1990; Zorn 1994). Estimates ranged from around one to 6.5 people per dwelling. Several sites (PPNA el-Hemmeh; MMPNB Beidha Subphases A2 and B2; MPPNB 'Ain Abu Nekheileh) recorded dwelling unit size estimates lower than that of the minimum nuclear family size (3 people), indicating that nuclear families may not have typified the dwelling unit in these settlements. All other sites produced estimates that could indicate nuclear family dwelling units. However, as the SPF are based on average adult human heights, depending on the stature of individuals or the presence of children, dwelling unit sizes could be larger than those estimated in this analysis.

Estimates of residential floor area per person (RADC) ranged from around 2.3 m² to five m². These compare well with RADCs derived in other analyses (2.16-4.55 m² per person) (Hill 1970; Clarke 1974; Kramer 1979; Hayden *et al.* 1996). The limited range suggests that RADCs could be used to estimate population from total residential floor area in future.

Settlement population density coefficient (SDPC) estimates ranged from around 290 to 1,230 people. Almost all SPDC estimates exceed the density coefficients commonly utilised for estimating PPN Levantine village populations (90-294 people/ha) (Rollefson and Kohler-Rollefson 1989; Kuijt 2000; 2008a; Campbell 2009), with some also exceeding the upper density limit suggested for early agricultural villages (1,000 people/ha) (Fletcher 1981). Consideration of children in the SPF estimates would further increase density values derived in this investigation.

Initial growth indices (*a*) for the AGF1 (Naroll 1962) and AGF2 (Wiessner 1974) were reconstructed to determine whether patterns exist between different types of settlements. There was a clear distinction between the AGF1 index ranges for settlements with predominantly curvilinear architecture (mean a = 10.3-15.1) and those with predominantly rectilinear architecture (mean a = 24.5-31.9). The mean AGF1 index achieved in this investigation (18.9) is closely comparable to Naroll's (1962) original index (21.7). These results indicate that type-based AGF1 initial growth indices could be used to estimate population in future.

Considerable differences occurred between the AGF2 open and urban indices for sites conforming to these settlement types and those that did not. The open settlement recorded an index of 0.27 to 0.84. The urban settlement recorded an index of 329 to 408. However, as there is only one site potentially corresponding to each of these settlement types, the open and urban indices could not be refined and are not explored further in this analysis. The AGF2 village indices demonstrate considerable overlap regardless of settlement type (mean a = 16.1-23.8). This raises the possibility of a

313

universal AGF2 village index for estimating the population of any central and southern Levantine PPN village.

Area proportions were mainly derived to create constants for systematic methodologies. Of particular interest are the estimates of the proportion of residential floor area in built floor area. Lower proportions were recorded in sites with predominantly rectilinear architecture and those that occur later in the PPN sequence. This reflects the increased designation of space for non-residential activities within these settlements.

The results of micro-level analyses are statistically assessed in the following chapter to develop a site type classification system for PPN central and southern Levantine villages and to construct constants for several variables utilised in methodologies for systematically estimating population parameters based on site size and an assigned site type.

8 Micro-Level Estimates – Statistical Analysis

Statistical analysis was conducted to (1) establish an appropriate site type classification system for central and southern Levantine PPN villages; and (2) to provide justification for the development of either site type or universal constants for the 14 variables utilised in the systematic methodologies. These variables include people per dwelling; residential floor area and settlement population density coefficients (RADC and SPDC); the four initial growth indices (AGF1 re-calculated and AGF2 open, village and urban); the mean residential floor area and residential built area of complete dwellings; proportions of built floor area, contemporaneous residential built area and contemporaneous residential floor area; and the number of contemporaneous dwellings per hectare (Table 7.36). Statistical methods explore the correlation between the 14 variables, site size and predominant architectural form to develop the classification system and constants that are essential for producing an empirically and statistically robust, standardised methodology.

Three main statistical methods are explored. Discriminant function analysis (DFA) is used to determine the most appropriate site type classification system. To provide justification for the development of constants, analysis of variance (ANOVA) and the Kruskal-Wallis tests are used to determine whether significant differences exist in the mean and median values of variables between site types; and analysis of effect size (ETA squared/eta²) is used to determine the percentage of variation between the values of variables that is attributable to differences in site type. Process charts for statistical methods and information regarding interpretation of statistical outputs are provided in Appendix D.

8.1 Hypothesised site type classification systems

In order to extrapolate micro-level data for use in systematic methods, a standardised site type classification system is required. Based on the 15 villages/village phases assessed at the micro-level, two relatively easily discernible characteristics were selected to establish potential site types: predominant architectural form (curvilinear or rectilinear) and a site size category (small, large or very large). Site size categories differ marginally for sites of different architectural form. This reflects the generally smaller sizes of sites with curvilinear architecture and allows for more than one case per site type, which is essential for statistical analysis. Five potential site type classification systems are proposed:

- 1. A five type system based on site size and predominant architectural form:
 - 1: small (< 0.4 ha) and 2: large (≥ 0.4 ha) sites with predominantly curvilinear architecture
 - 3: small (≤ 0.5 ha), 4: large (0.6-6 ha) and 5: very large ["mega"] (≥ 7 ha) sites with predominantly rectilinear architecture.
- 2. A four type system based on site size and predominant architectural form:
 - 1: small (< 0.4 ha) and 2: large (≥ 0.4 ha) sites with predominantly curvilinear architecture
 - 3: small (≤ 0.5 ha) and 4: large (≥ 0.6 ha) sites with predominantly rectilinear architecture.
- 3. A three type system based on site size:
 - 1: small sites (< 0.4 ha: curvilinear; ≤ 0.5 ha: rectilinear)
 - 2: large sites (≥ 0.4 ha: curvilinear; 0.6-6 ha: rectilinear)
 - 3: very large ["mega"] sites (≥ 7 ha)
- 4. A two type system based on site size:
 - 1: small sites (< 0.4 ha: curvilinear; ≤ 0.5 ha: rectilinear)
 - 2: large sites (\geq 0.4 ha: curvilinear; \geq 0.6 ha: rectilinear).
- 5. A two type system based on predominant architectural form:
 - 1: sites with predominantly curvilinear architecture
 - 2: sites with predominantly rectilinear architecture.

Micro-level analysis did not include any sites with an estimated areal extent of between two and 10 hectares. The cut-off point between large (0.6-6 ha) and very large sites (\geq 7 ha) with rectilinear architecture was based on the minimum site size generally applied to "mega-sites", which have been estimated at anywhere between seven and 16 hectares (Rollefson 1989a).

8.2 Methodological issues and considerations

Statistical analyses are most effective when there are a large number of cases (n > 30). Unfortunately, there are only 15 cases (i.e. villages/village phases) in this analysis, which slightly reduces the reliability of significance values. When cases are split into different site type categories, the number of cases per category varies from one to 10. Some statistical tests, such as post-hoc tests for analysis of variance (ANOVA), omit

categories with less than two cases (i.e. site types relating to 'very large' sites only have one case: Basta), reducing the informativeness of the results. Despite the small sample size in this investigation and the potential for reduced reliability of significance values, statistical analysis remains an important tool for identifying trends in the data.

8.3 Tests for normality and homogeneity of variance

Ideally, data submitted to the chosen tests should be parametric: that is, data should be normally distributed and have homogeneity of variance. To determine whether data are parametric, data were submitted to a one sample Kolmogorov-Smirnov test to assess for normal distribution and to Levene's test to assess for homogeneity of variance (see Appendix D). Prior to the tests, variables recorded as proportions were arcsine transformed (i.e. converted to the arc sine value of the square root of the proportion) as statistical analysis of proportion values is problematic (McDonald 2014).

In the one sample Kolmogorov-Smirnov test, a significance value (p) of greater than .05 indicates normal distribution. The test indicated that all variables were normally distributed (Table 8.1).

Levene's tests were achieved via analysis of variance (ANOVA) tests. A significance value (*p*) of greater than .05 indicates homogeneity of variance (i.e. that the variance within each of the variables is equal). ANOVA requires a grouping variable. In this analysis, the grouping variable is the site type classification system. For site type systems involving five and three types, ANOVA omitted the site types relating to the 'very large' site (Basta) as this type has fewer than two cases. Of the 14 variables assessed, three were identified as lacking homogeneity of variance in one or more of the site type classification systems (RADC; the AGF1 re-calculated initial growth index; and the proportion of residential floor area in built floor area (Table 8.2). This somewhat reduces the reliability of the significance values in further tests.

Tests for normality and homogeneity of variance indicated that most variables (n = 11/14) were parametric. The remaining variables are normally distributed though lack homogeneity of variance. The chosen tests are considered robust despite incorporation of non-parametric data, particularly where divergence from normality or homogeneity is minimal (Drennan 1996; Tabachnick and Fidell 1996; Underwood 1997). Therefore, the potential non-parametric nature of this data is not expected to impact statistical analyses in any significant way.

Table 8.1. One-sample Kolmogorov-Smirnov test for normality.

		People/dwelling	RADC (m ² residential floor area/person)	SPDC (people/ha)	AGF1 e-calculated	litial gr 1965 oben	AGF2 village	a AGF2 urban	Me reside area comp dwelling	an ential o of blete gs (m ²)	Built floor area	tion in site arcsine): Contempo resident	area oraneous ial area	Proportion of residential floor area in built floor area (arcsine)	Contemporaneous dwellings per hectare
Ν		15	15	15	15	15	15	15	15	<u> </u>	14	14	14	14	15
Normal	Mean	3.38	3.44	575.68	18.98	.169	20.08	131.88	12.55	20.47	.69	.58	.44	.99	173.56
parameters	SD	1.29	.45	166.44	9.84	.14	5.75	84.51	5.77	7.73	.13	.11	.07	.27	98.41
Most	Absolute	.128	.184	.105	.181	.187	.128	.185	.169	.170	.190	.111	.136	.159	.151
extreme															
differences	Positive	.128	.184	.105	.181	.187	.128	.185	.169	.170	.190	.111	.136	.159	.151
	Negative	119	110	064	149	-	099	170	090	086	143	085	077	122	140
						.123									
Kolmogorov-	Smirnov Z	.498	.711	.408	.702	.724	.497	.716	.656	.658	.711	.416	.510	.595	.585
Asymp. sig. ((2-tailed) (<i>p</i>)*	.965	.693	.996	.707	.671	.966	.684	.783	.779	.692	.995	.957	.870	.884

* p > .05 indicates normal distribution.

Classification	Statistics		ial)	Initial growth index Mean residential Proportion in site area			a in	s are							
system		People/dwelling	RADC (m ² resident floor area/person	SPDC (people/ha)	AGF1 re-calculated	AGF2 open	AGF2 village	AGF2 urban	area comp dwelling	of lete s (m ²)	Built floor area	(arcsine): Contempol residentia	raneous al area	Proportion of esidential floor area built floor area (arcsine)	Contemporaneou dwellings per hecta
5 Site Types ^a	Levene df1 df2 Sig. (<i>p</i>) ^b	.026 3 10 .994	6.79 3 10 .009	.17 3 10 .91	4.737 3 10 .026	.902 3 10 .474	.85 3 10 .49	2.997 3 10 .082	1.115 3 10 .388	.276 3 10 .841	1.297 3 9 .334	.645 3 9 .605	.388 3 9 .764	12.976 3 9 .001	.450 3 10 .723
4 Site Types	Levene df1 df2 Sig. (<i>p</i>)	.850 3 11 .495	4.53 3 11 .027	.26 3 11 .84	11.53 3 11 .001	.974 3 11 .440	.98 3 11 .43	2.400 3 11 .123	1.181 3 11 .362	.240 3 11 .867	.488 3 10 .698	.624 3 10 .616	.354 3 10 .787	14.809 3 10 .001	.453 3 11 .720
3 Site Types ^a	Levene df1 df2 Sig. (<i>p</i>)	.391 1 12 .543	5.33 1 12 .040	.05 1 12 .82	1.414 1 12 .257	1.00 1 12 .335	.16 1 12 .69	.795 1 12 .390	.000 1 12 .984	.301 1 12 .593	3.968 1 11 .072	.245 1 11 .631	.894 1 11 .365	.488 1 11 .499	.585 1 12 .459
2 Site Types (size)	Levene df1 df2 Sig. (<i>p</i>)	.000 1 13 1.00	2.55 1 13 .134	.43 1 13 .52	4.899 1 13 .045	1.09 1 13 .315	.03 1 13 .85	2.160 1 13 .165	1.923 1 13 .189	.014 1 13 .908	4.447 1 12 .057	.631 1 12 .442	1.464 1 12 .250	.163 1 12 .693	.934 1 13 .352
2 Site Types (architecture)	Levene df1 df2 Sig. (<i>p</i>)	.056 1 13 .816	.598 1 13 .453	.85 1 13 .37	8.348 1 13 .013	.845 1 13 .375	.03 1 13 .86	1.847 1 13 .197	.058 1 13 .814	.041 1 13 .842	1.368 1 12 .265	1.058 1 12 .324	.289 1 12 .601	1.868 1 12 .197	1.454 1 13 .249

Table 8.2. Levene's statistic for homogeneity of variance (variables lacking homogeneity of variance highlighted in grey).

^a One type removed as it contains only one case. ^b p > .05 indicates homogeneity of variance.

8.4 Discriminant function analysis

Discriminant function analysis (DFA) was conducted in SPSS to determine the most appropriate classification system for PPN central and southern Levantine villages (see Appendix D). DFA reveals whether cases (i.e. sites) are correctly classified by predicting categorical groupings based on linear sets of non-related predictor or discriminating variables, called discriminating functions (Adams 1988, p.50; Huberty and Olejnik 2006; Kovarovic *et al.* 2011, p.3008).

There is no clear consensus as to the required ratio between the number of cases and the number of discriminant variables. Kovarovic et al. (2011, p.3008) suggest that the number of discriminant variables should not exceed the sample size of the smallest group. In this study, the sample size of the smallest group is one (potential n variables = 1). Alternatively, they propose on a mathematical basis that the number of variables should be less than or equal to the number of cases in the entire sample minus the number of groups. In this study, the number of cases (i.e. sites) in the entire same is 15 and the number of groups (i.e. site types) ranges from two to five (potential n variables = 10-13). Others propose that the total number of cases must be a multiple (i.e. 3-5times) of the number of discriminant variables (Burns and Burns 2008, p.591) (potential n variables = 3-5). In this investigation, five discriminant variables were selected for analysis. These variables were selected based on (1) their potential to further our understanding of demographic processes within early PPN villages; (2) their ability to distinguish between settlement types; and (3) their usefulness for estimating population size in future. The discriminant variables include people per dwelling, RADC, SPDC and initial growth indices for AGF1 re-calculated and AGF2 village. For each of the site type classification systems, one of these variables was identified as containing nonparametric data. Five types: small (1) or large (2) with curvilinear architecture; small (3), large (4) or very large (5) with rectilinear architecture

DFA of the five type classification system indicated that discriminant Function 1 explained 93.6% of the variance between site types (Eigenvalue: 21.927; r = .978), with Function 2 explaining a further 2.9% (Eigenvalue: .671; r = .634) (Table 8.3; Figure 8.1). Functions 1 and 2 combined explained 96.4% of the variance between site types. The importance of Function 1 within the classification system is highlighted by the Wilks' Lambda results, which indicate that combinations that do not include Function 1 do not contribute significance (p < .05) to the classification system.

The largest correlation between variables and functions is recorded in the structure matrix. Variables with a correlation of 0.3/-0.3 or more are considered important within

that function. Factor loading of important variables within Function 1 and, to a lesser degree, Function 2 indicate that the best predictor for classifying sites is the AGF1 recalculated initial growth index (Function 1: .607; Function 2: -.397). This supports the development of site type constants for this variable.

The final classification results table indicates that 93.3% of cases were classified correctly within the five type system. Casewise statistics indicates that all original groupings (actual groups) coincide with predicted groups, except case 12 (Ghwair I), which was re-classified from a Type 4 (large: 0.6-6 ha with rectilinear architecture) to Type 3 (small: \leq 0.5 ha with rectilinear architecture) site. The architecture and spatial layout of Ghwair I may demonstrate more similarities with Type 3 sites (Wadi Hamarash I and Beidha Subphase C2) than Type 4 sites (LPPNB el-Hemmeh and Ba'ja). However, due to the comparability of site sizes of Type 4 sites assessed at the micro-level in this investigation, and the designated site size categories used in the classification system, re-classification was not possible. Further, the close proximity of the Type 3 and Type 4 group centroids (Figure 8.1) indicates that there may be considerable overlap in characteristics of these site types. As such, re-classification was not deemed necessary.

8.4.1 Four types: small (1) or large (2) with curvilinear architecture; small (3) or large (4) with rectilinear architecture

Three discriminant functions were utilised in the analysis of the four type classification system based on site size and predominant architectural form. Function 1 (Eigenvalue: 4.893; r = .911) explains 81.8% of the variance (Table 8.4; Figure 8.2). Functions 1 and 2 combined explain 92.2% of the variance. The Wilks' Lambda test indicates that the combination of functions that includes Function 1 (i.e. 'Test of Functions 1 through 3') contributes significantly to the classification system (Wilks' Lambda .071; $\chi^2 = 25.103$, df = 15, p = .049). Factor loading of variables within Functions 1 and 2 indicate that the re-calculated AGF1 initial growth index is the best predictor for classifying sites (Function 1: .827; Function 2: -.440), followed by people per dwelling (Function 1: .399) and RADC (Function 2: -.821).

DFA indicated that 86.7% of cases were correctly classified, highlighting two misclassified cases (8: Gilgal I - re-classified from a Type 2 (large) to Type 1 (small) site with curvilinear architecture; 12: Ghwair I – re-classified from a Type 4 (large) to Type 3 (small) site with rectilinear architecture). Based on the increased incidence of

misclassified cases compared to the five type classification system, the four type classification system is considered less suitable for classifying PPN villages.

8.4.2 Three types: small (1), large (2) or very large (3)

Two discriminant functions were utilised in the analysis of the three type classification system based on site size (small, large or very large) (Table 8.5; Figure 8.3). Function 1 (Eigenvalue: 3.735; r = .888) explains 89.7% of the variance. The Wilks' Lambda test indicates that the combination of functions that includes Function 1 (i.e. 'Test of Functions 1 through 2') contributes significantly to the classification system (Wilks' Lambda .148; $\chi^2 = 19.122$, df = 10, p = .039). Factor loading of variables again indicated that the re-calculated AGF1 initial growth index is the best predictor for classifying sites (Function 1: -.768), followed by people per dwelling (Function 1: -.389) and RADC (Function 2: .706).

DFA indicated that 86.7% of cases were correctly classified, identifying two misclassified cases (8: Gilgal I and 12: Ghwair I - both re-classified from a Type 2 (large) to Type 1 (small) site). Based on the increased incidence of misclassified cases compared to the five type classification system, the three type classification system is considered less suitable for classifying PPN villages..

8.4.3 <u>Two types (size): small (1) or large (2)</u>

One discriminant function (Eigenvalue: 1.462; r = .771) was utilised in the analysis of the two type classification system based on site size (small or large) (Table 8.6). The Wilks' Lambda test indicated that this function does not contribute significantly to the classification system (Wilks' Lambda .406; $\chi^2 = 9.458$, df = 5, p = .092). Factor loading of variables again indicated that the re-calculated AGF1 initial growth index is the best predictor for classifying sites (.803).

DFA indicated that 86.7% of cases were correctly classified, highlighting two misclassified cases (8: Gilgal I and 12: Ghwair I - both re-classified from a Type 2 (large) to Type 1 (small) site). Based on the lack of significant contribution of functions to the classification system and the increased incidence of misclassified cases compared to the five type classification system, the two type classification system based on site size is considered less suitable for classifying PPN villages.

8.4.4 <u>Two types (architecture): curvilinear (1) or rectilinear (2)</u>

One discriminant function was utilised in the analysis of the two type classification system based on predominant architectural form (curvilinear or rectilinear) (Eigenvalue: 3.712; r = .888) (Table 8.7). This function contributes significantly to the classification system (Wilks' Lambda .212; $\chi^2 = 16.275$, df = 5, p = .006). Factor loading of variables indicated that the re-calculated AGF1 initial growth index is the best predictor for classifying sites (.670), followed by people per dwelling (.345).

DFA identified that 100% of sites were correctly classified, indicating that architectural form contributes significantly to the classification system. However, this system was considered too simple and, therefore, it was decided that the five type classification system, which had a high percentage of correctly classified sites (93.3%), would be utilised to classify PPN central and southern Levantine villages.

8.4.5 Final selection of classification system

DFA indicated that 93.3% (all but one) of cases within the five type system were classified correctly (case 12: Ghwair I was re-classified from a large to small site). For classification systems involving four and three site types, and two site types based on site size, DFA indicated two incorrectly classified cases (cases 8: Gilgal I and 12: Ghwair I) (86.7% correctly classified). For the two site type system based on architectural form, DFA identified all cases as being correctly classified. This suggests that architectural form contributes more significantly than site size to the classification system. However, the two type classification system is considered too broad to reflect differences that occur within settlements of the same architectural form. Therefore, it was decided that the five type system, which had a high percentage (93.3%) of correctly classified cases, would be more effective for classifying PPN central and southern Levantine villages. The remaining statistical analyses in this investigation are applied to variables based on the five type classification system (Table 8.8; Figure 8.4).

Table 8.3. Discriminant function analysis - five site type classification system.

Eigenvalues									
Eigenvalue	% of	Cumulative %	Canonical	Correlation					
21.927	93.6	93.6		.978					
.671	2.9	96.4		.634					
.521	2.2	98.7		.585					
.313	1.3	100.0		.488					
Wilks'	Lambda								
nction(s)	Wilks	s' Chi-square	df	Sig. (<i>p</i>)					
	.0	39.036	20	.007					
	.3	10.845	12	.542					
	.5	6.224	6	.399					
	.7	62 2.451	2	.294					
ion									
Structu	re Matrix								
		F	unction						
	Eigenvalue 21.927 .671 .521 .313 Wilks' I nction(s)	Eigenvalues Eigenvalue % of 21.927 93.6 .671 2.9 .521 2.2 .313 1.3 Wilks' Lambda .0 nction(s) Wilk .52 .7 .60 .7	Eigenvalues Eigenvalue % of Cumulative % 21.927 93.6 93.6 .671 2.9 96.4 .521 2.2 98.7 .313 1.3 100.0 Wilks' Lambda Chi-square .013 39.036 .300 10.845 .501 6.224 .762 2.451 ion F	Eigenvalues Canonical Eigenvalue % of Cumulative % Canonical 21.927 93.6 93.6 93.6 .671 2.9 96.4 .521 2.2 98.7 .313 1.3 100.0 .010.0					

	T UTCION					
	1	2	3	4		
AGF2 village index	.078	.126	0.885*	.010		
SPDC (people/ha)	076	101	681*	.310		
RADC (m ² residential floor area/person)	.024	589	.662*	.238		
AGF1 re-calculated index	.607	397	.088	.680*		
People/dwelling	.252	.103	.551	651*		
* Largest absolute correlation between each variable and any discriminant function						

	Casewise Statistics							
Cas	se Number/Site Name	Actual			Highe	st Group		
		Group	Predicted	P(D>d G	∋=g)	P(G=g	Squared Mahalanobis	
			Group	p	df	D=d)	Distance to Centroid	
1	Nahal Oren	1	1	.393	4	1.000	4.100	
2	El-Hemmeh (PPNA)	1	1	.331	4	1.000	4.602	
3	Shkārat Msaied	1	1	.568	4	.915	2.937	
4	Beidha (A1)	1	1	.594	4	.992	2.787	
5	Beidha (A2)	1	1	.972	4	.988	.519	
6	Beidha (B2)	1	1	.982	4	.993	.405	
7	'Ain Abu Nekheileh	1	1	.826	4	1.000	1.502	
8	Gilgal I	2	2	.609	4	.887	2.702	
9	Netiv Hagdud	2	2	.609	4	.994	2.702	
10	Wadi Hamarash I	3	3	.783	4	.697	1.745	
11	Beidha (C2)	3	3	.783	4	.920	1.745	
12	Ghwair Ì	4	3	.914	4	.861	.975	
13	EI-Hemmeh (LPPNB)	4	4	.422	4	.968	3.880	
14	Ba'ja	4	4	.297	4	.997	4.910	
15	Basta	5	5	1.000	4	1.000	.000	

	Classification Results ^b									
	Site	Site Predicted Group Membership								
	Туре	1	2	3	4	5				
Count	1	7	0	0	0	0	7			
	2	0	2	0	0	0	2			
	3	0	0	2	0	0	2			
	4	0	0	1	2	0	3			
	5	0	0	0	0	1	1			
%	1	100.0	.0	.0	.0	.0	100.0			
	2	.0	100.0	.0	.0	.0	100.0			
	3	.0	.0	100.	.0	.0	100.0			
	4	.0	.0	33.3	66.7	.0	100.0			
	5	.0	.0	.0	.0	100.0	100.0			

^a Misclassified case.
^b 93.3% of original grouped cases correctly classified.

Figure 8.1. Discriminant function analysis - five site type classification system: distance to group centroid based on discriminant functions 1 and 2.

Table 8.4. Discriminant function analysis - four site type classification system.

			Eigenvalue	s	
	Function	Eigenvalue	% of	Cumulative %	Canonical Correlation
			Variance		
1		4.893	81.8	81.8	.911
2		.625	10.4	92.2	.620
3		.467	7.8	100.0	.564

		Wilks' Lambda			
	Test of Function(s)	Wilks'	Chi-square	df	Sig. (<i>p</i>)
		Lambda			
1 through 3		.071	25.103	15	.049
2 through 3		.419	8.254	8	.409
3		.682	3.642	3	.303

p < .05 = significant contribution

Structure Matrix								
		Function						
	1	2	3					
AGF1 re-calculated index	.827*	440	328					
RADC (m ² residential floor area/person)	.062	821*	.314					
AGF2 village index	.214	212	.776*					
SPDC (people/ha)	169	.111	.730*					
People/dwelling	.399	037	.612*					
* Lawrent all a shife a smallet as historia a sach sach bla sa	al a mu alta a mina in a mt funa at	li a la						

Largest absolute correlation between each variable and any discriminant function

Casewise Statistics								
Cas	e Number/Site Name	Actual		Highest Group				
		Group	Predicted	P(D>d 0	G=g)	P(G=g	Squared	
			Group	р	df	D=d)	Mahalanobis Distance to	
							Centroid	
1	Nahal Oren	1	1	.339	3	.985	3.364	
2	El-Hemmeh (PPNA)	1	1	.502	3	.999	2.357	
3	Shkārat Msaied	1	1	.680	3	.878	1.510	
4	Beidha (A1)	1	1	.546	3	.980	2.131	
5	Beidha (A2)	1	1	.974	3	.960	.220	
6	Beidha (B2)	1	1	.972	3	.962	.234	
7	'Ain Abu Nekheileh	1	1	.863	3	.993	.744	
8	Gilgal I	2	1 ^a	.461	3	.707	2.582	
9	Netiv Hagdud	2	2	.515	3	.988	2.285	
10	Wadi Hamarash I	3	3	.958	3	.759	.312	
11	Beidha (C2)	3	3	.958	3	.934	.312	
12	Ghwair Í	4	3 ^a	.869	3	.890	.719	
13	EI-Hemmeh (LPPNB)	4	4	.174	3	.717	4.965	
14	Ba'ja	4	4	.691	3	.998	1.460	
15	Basta	4	4	.242	3	.998	4.191	

Classification Results ^b								
	Site Type	Predict	ted Group I	Vembersh	ip	Total		
		1	2	3	4			
Count	1	7	0	0	0	7		
	2	1	1	0	0	2		
	3	0	0	2	0	2		
	4	0	0	1	3	4		
%	1	100.0	.0	.0	.0	100.0		
	2	50.0	50.0	.0	.0	100.0		
	3	.0	.0	100.0	.0	100.0		
	4	.0	.0	25.0	75.0	100.0		

^a Misclassified case. ^b 86.7% of original grouped cases correctly classified.

Figure 8.2. Discriminant function analysis - four site type classification system.

Table 8.5. Discriminant function analysis - three site type classification system.

		Eigenvalues		
Function	Eigenv	% of	Cumulative %	Canonical Correlation
	alue	Variance		
1	3.735	89.7	89.7	.888
2	.430	10.3	100.0	.548

Wilks' Lambda								
Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig. (<i>p</i>)				
1 through 2	.148	19.122	10	.039				
2	.700	3.573	4	.467				

p < .05 = significant contribution

Structure Matrix		
	Fur	nction
	1	2
AGF1 re-calculated index	768*	.245
People/dwelling	389*	.050
RADC (m ² residential floor area/person)	173	.706*
AGF2 village index	123	.648*
SPDC (people/ha)	.130	340

* Largest absolute correlation between each variable and any discriminant function

		Ca	sewise Statis	stics			
	Case Number/Site Name	Actual			Highest Gro	oup	
		Group	Predicted	P(D>d	l G=g)	P(G=	Squared
			Group	р	df	g	Mahalanobis
						D=d)	Distance to
							Centroid
1	Nahal Oren	1	1	.967	2	.930	.067
2	El-Hemmeh (PPNA)	1	1	.182	2	.999	3.403
3	Shkārat Msaied	1	1	.761	2	.840	.546
4	Beidha (A1)	1	1	.570	2	.995	1.126
5	Beidha (A2)	1	1	.979	2	.951	.043
6	Beidha (B2)	1	1	.903	2	.959	.204
7	'Ain Abu Nekheileh	1	1	.765	2	.976	.536
8	Gilgal I	2	1 ^a	.394	2	.624	1.865
9	Netiv Hagdud	2	2	.234	2	.921	2.905
10	Wadi Hamarash I	1	1	.318	2	.535	2.289
11	Beidha (C2)	1	1	.140	2	.800	3.926
12	Ghwair I	2	1 ^a	.421	2	.558	1.728
13	EI-Hemmeh (LPPNB)	2	2	.225	2	.885	2.979
14	Ba'ja	2	2	.196	2	.997	3.255
15	Basta	3	3	1.000	2	1.000	.000

Classification Results ^b								
	Site	Predicted G	roup Mem	Total				
	Туре	1	2	3				
Count	1	9	0	0	9			
	2	2	3	0	5			
	3	0	0	1	1			
%	1	100.0	.0	.0	100.0			
	2	40.0	60.0	.0	100.0			
	3	.0	.0	100.0	100.0			

^a Misclassified case. ^b 86.7% of original grouped cases correctly classified.

Figure 8.3. Discriminant function analysis - three site type classification system.

Table 8.6. Discriminant function analysis - two site type classification system (size).

			Eigenvalues	5		
	Function	Eigenvalue	% of	Cumulative	Can	onical Correlation
		_	Variance	%		
1		1.462	100.0	100.0		.771
		N	/ilks' Lambo	la		
Te	est of Function(s)	Wilks' La	ambda	Chi-square	df	Sig. (<i>p</i>)
1			.406	9.458	5	.092
p < .05	= significant contribution					
-	-					
		St	ructure Mat	rix		
						F <i>i</i> :

	1
AGF1 re-calculated index	.803*
People/dwelling	.455
RADC (m ² residential floor area/person)	.452
AGF2 village index	.369
SPDC (people/ha)	277

* Largest absolute correlation between each variable and any discriminant function

	Casewise Statistics						
Case N	Number/Site Name	Actual		Highest Group			
		Group	Predicted Group	P(D> G=g	d J)	P(G=g D=d)	Squared Mahalanobis
				р	đî		Distance to Centroid
1	Nahal Oren	1	1	.863	1	.934	.030
2	EI-Hemmeh (PPNA)	1	1	.167	1	.998	1.908
3	Shkārat Msaied	1	1	.626	1	.873	.238
4	Beidha (A1)	1	1	.340	1	.995	.910
5	Beidha (A2)	1	1	.925	1	.944	.009
6	Beidha (B2)	1	1	.942	1	.947	.005
7	'Ain Abu Nekheileh	1	1	.925	1	.963	.009
8	Gilgal I	2	1 ^a	.388	1	.743	.746
9	Netiv Hagdud	2	2	.797	1	.944	.066
10	Wadi Hamarash I	1	1	.185	1	.500	1.754
11	Beidha (C2)	1	1	.781	1	.917	.077
12	Ghwair Ì	2	1 ^a	.232	1	.574	1.428
13	EI-Hemmeh (LPPNB)	2	2	.520	1	.681	.413
14	Ba'ja	2	2	.187	1	.995	1.741
15	Basta	2	2	.109	1	.997	2.569

Classification Results ^b								
	Site Type	Predicted Group Membership		Total				
		1	2					
Count	1	9	0	9				
	2	2	4	6				
%	1	100.0	.0	100.0				
	2	33.3	66.7	100.0				

^a Misclassified case. ^b 86.7% of original grouped cases correctly classified.

Table	e 8.7. Discriminant fu	unction analysis	<u>s - two site t</u>	ype classificatic	on system (ar	chitecture).
			Eigenvalu	es		
	Function	Eigenvalue	% of Variance	Cumulative %	Canonica	Correlation
1		3.712	100.0	100.0		.888
			Wilks' Lam	oda		
٦	Test of Function(s)	Wilks' La	ambda	Chi-square	df	Sig. (<i>p</i>)
1			.212	16.275	5	.006
р < .0	5 = significant contribu	ution				
			Structure Ma	atrix		
						Function

	Function
	1
AGF1 re-calculated index	.670
People/dwelling	.345
AGF2 village index	.144
SPDC (people/ha)	118
RADC (m ² residential floor area/person)	032

Casewise Statistics										
С	ase Number/Site Name	Actual	Highest Group							
		Group	Predicted	P(D>	d	P(G=g	Squared			
			Group	G=g	J)	D=d)	Mahalanobis			
				р	df		Distance to Centroid			
1	Nahal Oren	1	1	.064	1	1.000	3.427			
2	El-Hemmeh (PPNA)	1	1	.877	1	.999	.024			
3	Shkārat Msaied	1	1	.515	1	1.000	.423			
4	Beidha (A1)	1	1	.512	1	.991	.430			
5	Beidha (A2)	1	1	.858	1	.998	.032			
6	Beidha (B2)	1	1	.819	1	.998	.052			
7	'Ain Abu Nekheileh	1	1	.956	1	.999	.003			
8	Gilgal I	1	1	.236	1	.941	1.407			
9	Netiv Hagdud	1	1	.878	1	.999	.024			
10	Wadi Hamarash I	2	2	.960	1	.998	.003			
11	Beidha (C2)	2	2	.613	1	.988	.256			
12	Ghwair I	2	2	.705	1	.993	.144			
13	El-Hemmeh (LPPNB)	2	2	.115	1	.627	2.489			
14	Ba'ja	2	2	.613	1	1.000	.255			
15	Basta	2	2	.045	1	1.000	4.032			

Classification Results ^a									
	Site Type	Predicted Membe	l Group ership	Total					
		1	2						
Count	1	9	0	9					
	2		6	6					
%	1	100.0	.0	100.0					
	2		100.0	100.0					

^a 100% of original grouped cases correctly classified.

Site	Cas	e Site	Mean estimates											a			
type	numb	er name	ation	lling	n² al ⊧rson)	le/ha)	Initia	al gro	wth inc	dex	Residential area of complete dwellings (m ²)		Proportion (%) in site area ^a :			l (%) of oor are or area* aneous s/ha	
			luqoq la	ple/dwe	RADC (n esidenti area/pe	C (peop	culated	open	village	urban	-	. ,	loor	Contempo residenti	oraneous ial area	oportior lential fl ouilt floo	atempor dwelling
			Tota	Peo	F floor	SPD(AGF1 re-cal	AGF2	AGF2	AGF2	Floor	Built	Built fi area	Built	Floor	Pro resic in t	Cor
1	1 2 3	Nahal Oren El-Hemmeh (PPNA) Shkārat Msaied	32 81 109	2.6 1.2 3.7	3.74 2.89 3.66	642 808 545	9.2 8.8 11.9	.57 .17 .20	16.5 12.7 19.6	51 54 91	9.6 4.8 13.5	16.34 7.56 26.32	32.76 34.57 29.47	36.95 35.87 36.73	22.66 22.73 18.69	86.47 87.66 79.29	245 73 153
	4 5 6	Beidha (A1) Beidha (A2) Beidha (B2)	72 97 93	3.4 2.1 1.9	3.05 3.17 3.13	719 486 467	9.7 13.4 13.4	.22 .24 .25	14.5 21.3 22.1	59 96 99	11.6 7.3 6.5	20.64 14.81 12.47	34.22 29.77	40.45 29.84	20.99 14.85	85.88 66.54	216 230 250
	7 Total	'Ain Abu Nekheileh	111	2.2	3.66	926	12.8	.11	11.4	53	8.0	14.47	53.97	54.57	32.13	91.59	432
	i otai	Minimum Maximum Mean	32 111 85 27	1.2 3.7 2.5	2.89 3.74 3.33	467 926 656	8.8 13.4 11.3	.11 .57 .25	11.4 22.1 16.9	51 99 72 22	4.8 13.5 8.7	7.56 26.32 16.09	29.47 53.97 35.79	29.84 54.57 39.07	14.85 32.13 22.01	66.54 91.59 82.91	73 432 229
2	8 9	Gilgal I Netiv Hagdud	211 241	3.3 4.8	3.35 4.53	528 322	18.6 17.9	.13 .11 .13	20.2 31.5	117 195	12.8 21.3	15.95 28.21	40.01 23.98	20.97 19.02	16.58 14.39	69.10 100.00	168 67
	Total	N 2 Minimum Maximum Mean SD	211 241 226 21	3.3 4.8 4.1 1.0	3.35 4.53 3.94 .83	322 528 425 146	17.9 18.6 18.2 .5	.11 .13 .12 .02	20.2 31.5 25.8 8.0	117 195 156 55	12.8 21.3 17.1 6.1	15.95 28.21 22.08 8.67	23.98 40.01 32.00 11.33	19.02 20.97 20.00 1.38	14.39 16.58 15.49 1.55	69.10 100.00 84.55 21.85	67 168 118 71
3	10 11	Wadi Hamarash I Beidha (C2)	185 178	3.7 5.1	3.21 2.95	369 594	23.4 19.7	.17 .11	28.3 17.6	158 97	12.2 17.2	21.01 29.53	36.56 49.67	17.15 27.83	11.33 16.77	39.73 43.40	100 122
	rotal	N 2 Minimum Maximum Mean SD	178 185 181 5	3.7 5.1 4.4 1.0	2.95 3.21 3.08 .18	369 594 482 159	19.7 23.4 21.5 2.6	.11 .17 .14 .04	17.6 28.3 23.0 7.5	97 158 128 43	12.2 17.2 14.7 3.5	21.01 29.53 25.27 6.03	36.56 49.67 43.12 9.27	17.15 27.83 22.49 7.55	11.33 16.77 14.05 3.85	39.73 43.40 41.57 2.60	100 122 111 16

Table 8.8. Estimates for each variable based on the five site type classification system.

* Beidha Subphase B2 proportions not assessed as largely dependent on Beidha Subphase A2.

Site	Cas	se Site	Mean estimates								Pro	portion (%)					
type	pe number name		ulation	velling	ssidential person)	ple/ha)	Initia	al grov	wth ind	lex	Resid area com dwellin	ential a of plete gs (m ²)		site area:		on (%) of I floor area Ioor area	oraneous ngs/ha
			tal pop	ople/dv	C (m² re or area/	DC (pec	l culated	; open	? village	: urban			floor	Contempo residentia	raneous al area	roporti idential n built f	ontemp dwelli
			To	å	RAD floc	SP	AGF1 re-ca	AGF2	AGF2	AGF2	Floor	Built	Built I area	Built	Floor	res ii	Ŭ
4	12	Ghwair I	506	4.7	3.32	382	21.2	.06	27.4	214	15.1	24.04	29.21	19.21	12.10	53.26	80
	13	El-Hemmeh (LPPNB)	664	2.7	3.35	664	26.5	.03	15.7	134	8.7	15.32	61.12	32.57	21.33	44.74	246
	14	Ba'ja	603	3.4	4.13	663	36.1	.04	22.6	190	13.5	23.20	58.03	29.81	18.24	40.28	128
	Total	N 3	500	07	0.00	000	04.0	00	4 5 7	404	0.7	45.00	00.04	40.04	40.40	40.00	00
		Minimum	506	2.7	3.32	382	21.2	.03	15.7	134	8.1 15 1	15.32	29.21	19.21	12.10	40.28	80
		Mean	004 501	4.7	4.13	004 560	27.0	.00	21.4	214 180	10.1	24.04	01.1Z 70.75	32.37 27.20	∠1.33 17.22	55.20 16.00	240 151
		SD	80	5.0 1 1	3.00 46	163	75	.04	21.9 5.9	41	3.4	20.05	49.45	7.05	4 70	40.09 6.59	86
5	15	Basta	6773	5.7	3 50	521	42.3	00	19.7	368	26.3	37 11	53 64	36.95	17.68	54 50	92
•	Total	N 1			0.00	•						•••••					
		Minimum	5693	4.8	2.90	438	36.6	.00	16.6	329							
		Maximum	7854	6.6	4.00	604	48.1	.00	22.8	408							
		Mean	6773	5.7	3.50	521	42.3	.00	19.7	368	26.3	37.11	53.64	36.95	17.68	54.50	92
		SD															
Total	Ν	15															
	Minimu	um	32	1.2	2.89	322	8.8	.00	11.4	51	4.8	7.56	23.98	17.15	11.33	39.73	67
	Maxim	um	7854	6.6	4.53	926	48.1	.57	31.5	408	21.3	29.53	61.12	54.57	32.13	100	432
	Mean		664	3.4	3.44	576	19.0	.16	20.1	132	12.6	20.47	40.50	31.28	18.61	67.32	174
	SD		1702	1.3	.45	166	9.8	.14	5.7	85	5.8	7.73	12.27	10.23	5.30	21.24	98

Figure 8.4. Box plots of estimates for each variable based on the five site type classification system.

Figure 7.40. Box plots of estimates for each variable based on the five site type classification system (continued).

8.5 Analysis of variance (ANOVA): one-way ANOVA and Kruskal-Wallis

Analysis of variance tests (one-way ANOVA and the non-parametric equivalent: the Kruskal-Wallis test) were conducted to determine whether significant differences occur in the mean and median values of variables between the five site types (VanPool and Leonard 2011) (see Appendix D). The purpose of these tests is to determine whether site type and/or universal constants could be developed for each of the variables. A significance value (p) of less than .05 indicates significant difference.

The one-way ANOVA indicated significant differences between the five site types in the mean values of six variables: people per dwelling (p = .029); initial growth indices for AGF1 re-calculated (p = .000) and AGF2 urban (p = .000); the mean residential floor area of complete dwellings (p = .007); the proportion of contemporaneous residential built area in site area (p = .040); and the proportion of residential floor area in built floor area (p = .010) (Table 8.9).

The Kruskal-Wallis test indicated significant differences between the five site types in the median values of five variables: initial growth indices for AGF1 re-calculated (p = .015), AGF2 open (p = .024) and AGF2 urban (p = .026); the proportion of contemporaneous residential built area in site area (p = .044); and the proportion of residential floor area in built floor area (p = .036) (Table 8.10).

Indication of significant differences supports the creation of site type constants for these variables. In addition, high significance values could support the creation of universal constants for some variables, including population density (SPDC) (p = .446 and .448); residential floor area per person (RADC) (p = .359 and .384); the proportion of built floor area in site area (p = .356 and .544); and the number of contemporaneous dwellings per hectare (p = .378 and .383).

		Variable	Statistics	Sum of Squares	df	Mean Square	F	Sig. (<i>p</i>)*
People/dwelling			Between Groups	14.688	4	3.672	4.234	.029
			Within Groups	8.672	10	.867		
			Total	23.359	14			
RA	C	(m ² residential	Between Groups	.919	4	.230	1.229	.359
floo	r ar	ea/person)	Within Groups	1.871	10	.187		
			Total	2.790	14			
SPE	C	(people/ha)	Between Groups	111802.330	4	27950.583	1.013	.446
			Within Groups	276028.763	10	27602.876		
			Total	387831.093	14			
	A	GF1	Between Groups	1209.675	4	302.419	20.861	.000
	re	-calculated	Within Groups	144.965	10	14.497		
×			Total	1354.640	14			
de	A	GF2 open	Between Groups	.128	4	.032	2.366	.123
			Within Groups	.135	10	.014		
۸th			Total	.263	14			
jro	A	GF2 village	Between Groups	164.481	4	41.120	1.380	.309
а а		-	Within Groups	298.051	10	29.805		
niti			Total	462.531	14			
_	A	GF2 urban	Between Groups	88826.946	4	22206.736	19.880	.000
			Within Groups	11170.336	10	1117.034		
			Total	99997.282	14			
Mean Floor			Between Groups	340.109	4	85.027	6.780	.007
resi	der	ntial	Within Groups	125.403	10	12.540		
area	a of	:	Total	465.512	14			
com	nple	ete Built	Between Groups	463.060	4	115.765	3.101	.067
dwe	ellin	gs	Within Groups	373.274	10	37.327		
(m-)		Total	836.335	14			
ы		Built floor area	Between Groups	.074	4	.018	1.254	.356
le			Within Groups	.133	9	.015		
e			Total	.206	13			
, sit) G	Contemporaneous	Between Groups	.103	4	.026	3.982	.040
.⊑.	SIL	residential built	Within Groups	.058	9	.006		
tio	ar	area	Total	.161	13			
۲Ö	<u> </u>	Contemporaneous	Between Groups	.022	4	.006	1.417	.304
lo		residential floor	Within Groups	.035	9	.004		
Δ.		area	Total	.058	13			
Pro	por	tion of residential	Between Groups	.695	4	.174	6.323	.010
floo	r ar	ea in built floor	Within Groups	.247	9	.027		
area	a (a	ircsine)	Total	.942	13			
Cor	nter	nporaneous	Between Groups	43390.453	4	10847.613	1.177	.378
dwe	ellin	gs/ha	Within Groups	92185.664	10	9218.566		
			Total	135576.117	14			

Table 8.9. Analysis of variance: one-way ANOVA (variables with significant difference highlighted in grey).

* p < .05 indicates significant difference.

	Variable		Chi-	df	Sig. (<i>p</i>)*
			Square		
People/dwelling			8.804	4	.066
RADC (m ² reside	ntial floor area/pers	son)	4.167	4	.384
SPDC (people/ha	a)		3.699	4	.448
Initial growth	AGF1 re-calculate	d	12.264	4	.015
index	AGF2 open		11.229	4	.024
	AGF2 village		4.481	4	.345
	AGF2 urban		11.057	4	.026
Mean residential	area of complete	Floor	8.345	4	.080
dwellings (m ²)		Built	6.545	4	.162
Proportion in site	Built floor area		3.086	4	.544
area (arcsine):	Contemporaneous	s residential built area	9.771	4	.044
	Contemporaneous	s residential floor area	6.038	4	.196
Proportion of resi	dential floor area in	built floor area (arcsine)	10.257	4	.036
Contemporaneou	is dwellings/ha		4.170	4	.383

Table 8.10. Analysis of variance: Kruskal-Wallis test (variables with significant difference highlighted in grey).

* p < .05 indicates significant difference.

8.6 Effect size (ETA squared/eta²)

ETA squared (eta²) values are a measure of effect size. An eta² value is the proportion of variability in the dependent variable (i.e. people per dwelling) accounted for by variation in the independent variable (i.e. the grouping variable: site type). Eta² values were produced in SPSS via an ANOVA test. In general, an eta² value of around 1% indicates a small effect; around 6% indicates a medium effect; and around 14% indicates a large effect (Cohen 1988).

All eta² values exceed the threshold for a large effect size (eta² \ge 14%) (Table 8.11). This indicates that differences in site type have a large effect on the values of all variables, supporting the development of site type constants.

Extremely large effect sizes were produced for initial growth indices for AGF1 recalculated (89.3%) and AGF2 urban (88.8%); the mean residential floor area of complete dwellings (73.1%); and the proportion of residential floor area in built floor area (73.8%). Almost all of the variation in these variables appears to be due to variations in site type. This supports the development of site type constants for these variables.
	Variable	Measur Associa	es of ation	
		Eta	Eta ² *	
People/dwelling		.793	.629	
RADC (m ² residential floor	area/person)	.574	.330	
SPDC (people/ha)		.537	.288	
Initial growth index	AGF1 re-calculated	.945	.893	
	AGF2 open	.697	.486	
	AGF2 village	.596	.356	
	AGF2 urban	.942	.888	
Mean residential area of	Floor	.855	.731	
complete dwellings (m ²)	Built	.744	.554	
Proportion in site area	Built floor area	.598	.358	
(arcsine):	Contemporaneous residential built area	.799	.639	
	Contemporaneous residential floor area	.622	.386	
Proportion of residential flo	Proportion of residential floor area in built floor area (arcsine)			
Contemporaneous dwelling	gs/ha	.566	.320	

Table 8.11. Measures of effect size (eta²).

* Proportion of variation due to site type.

8.7 Proposed site type classification system

A new five site type classification system is proposed in this investigation for PPN central and southern Levantine villages based on the results of discriminant function analysis. The five types include:

- 1. Small (< 0.4 ha) villages of predominantly curvilinear architecture;
- 2. Large (≥ 0.4 ha) villages of predominantly curvilinear architecture;
- 3. Small (≤ 0.5 ha) villages of predominantly rectilinear architecture;
- 4. Large (0.6-6 ha) villages of predominantly rectilinear architecture; and,
- 5. Very large $(\geq 7 \text{ ha})$ villages of predominantly rectilinear architecture.

8.8 Proposed site type and universal constants

Analysis of variance indicated significant differences between the five site types in the values of several variables, including initial growth indices for AGF1 recalculated, AGF2 open and AGF2 urban; the proportion of contemporaneous residential built area in site area; and the proportion of residential floor area in built floor area. Analysis of ANOVA effect size indicated that variations in site type had a large effect on all variables. Based on these analyses, site type constants are proposed for all variables. In addition, universal constants are proposed for application to sites where site type may be unknown. Site type constants are based on the mean, minimum and maximum values for the corresponding site type. Universal constants are based on the mean, minimum and maximum values of variables across all site types (Table 8.12).

Site type	Statistic	ing	ential son)	/ha)	Init	ial gro	wth inde	ЭХ	Mean res area of co	idential omplete	Prop	oortion in site a	of r area ırea	eous a	
		People/dwell	RADC (m ² resid floor area/per	SPDC (people	AGF1 re-calculated	AGF2 open ^a	AGF2 village	AGF2 urban ^b	aweiling aweiling	js (m)	Built floor area	Contempor residential b	aneous uilt area ooj	Proportion (residential flooi in built floor a	Contemporane dwellings/h
1	Minimum	1.2	2.89	467	8.8	.11	11.4	51	4.8	7.6	29.47	29.84	14.85	66.54	73
	Maximum	3.7	3.74	926 656	13.4	.57	22.1	99 7 2	13.5	26.3	53.97	54.57	32.13	91.59	432
·····	Minimum	2.3	3.33	000	11.3	.20	20.2	117	0. /	10.1	33.79	39.07	22.01	62.91	67
Ζ	Maximum	3.3	3.30	522	17.9	.11	20.2	117	12.0	10.0	23.90	19.02	14.39	69.10	100
	Maximum Mean	4.0 4 1	4.53 3 94	ວ20 425	10.0 18.2	.13	31.5 25.8	195 156	∠⊺.3 17 1	20.2 22 1	40.01 32 00	20.97 20 00	10.00 15 49	84 55	100
3	Minimum	37	2 95	369	19.7	11	17.6	97	12.2	21.0	36 56	17 15	11 33	39.73	100
0	Maximum	5.1	3 21	594	23.4	17	28.3	158	17.2	29.5	49.67	27.83	16.77	43.40	122
	Mean	4.4	3.08	482	21.5	.14	23.0	128	14.7	25.3	43.12	22.49	14.05	41.57	111
4	Minimum	2.7	3.32	382	21.2	.03	15.7	134	8.7	15.3	29.21	19.21	12.10	40.28	80
	Maximum	4.7	4.13	664	36.1	.06	27.4	214	15.1	24.0	61.12	32.57	21.33	53.26	246
	Mean	3.6	3.60	569	27.9	.04	21.9	180	12.4	20.9	49.45	27.20	17.22	46.09	151
5 ^c	Minimum	4.8	2.93	438	36.6	.00	16.6	329	18.9	27.0	-	-	12.42	-	-
	Maximum	6.6	4.04	604	48.1	.00	22.8	408	33.7	47.2	-	-	21.90	-	-
	Mean	5.7	3.49	521	42.3	.00	19.7	368	26.3	37.1	53.64	36.95	17.68	54.50	92
Universal	Minimum	1.2	2.89	322	8.8	.00	11.4	51	4.8	7.6	23.98	17.15	11.33	39.73	67
	Maximum	6.6	4.53	926	48.1	.57	31.5	408	21.3	29.5	61.12	54.57	32.13	100.00	432
	Mean	3.4	3.44	576	19.0	.16	20.1	132	12.6	20.5	40.50	31.28	18.61	67.32	174

Table 8.12. Proposed minimum, maximum and mean site type and universal constants.

^a Based on Nahal Oren only. ^b Based on Basta only. ^c All values based on Basta only. Minimum and maximum values for the proportion of contemporaneous residential floor area in site area are required for the SPF Method 1. These could not be established from the Basta evidence and are instead based on the proportional differences between the mean and minimum/maximum values for Site Type 4, which produced a comparable mean value.

8.9 Summary

Statistical analysis revealed correlations between variables (i.e. people per dwelling, RADC, SPDC, etc.) and sites of different site size and predominant architectural form. Based on these correlations, a five type classification system is proposed for PPN central and southern Levantine villages, including (1) small (< 0.4 ha) and (2) large (\geq 0.4 ha) villages of predominantly curvilinear architecture; and (3) small (\leq 0.5 ha), (4) large (0.6-6 ha) and (5) very large ("mega": \geq 7 ha) villages of predominantly rectilinear architecture. Site type and universal constants were developed for each variable (see Table 8.12). The site type classification system and constants developed in this chapter form the basis of methodologies for systematic reconstruction of population estimates explored in the following chapter.

9 Estimates of PPN Central and Southern Levantine Villages

This chapter presents descriptive statistics for site extent, predominant architectural form and site type for the PPN central and southern Levantine village database (Appendix E.1). This is followed by an assessment of the results of systematic methodologies to determine those for inclusion in the final estimate range. Statistical analyses are conducted to determine whether significant differences occur between the results of micro-level and systematic methodologies in order to select the most suitable methodologies for inclusion in the final estimate ranges. Population estimates are assessed against hypothesised group size thresholds and additional thresholds are suggested. A summary of density estimates per site type and population growth rates are presented. Finally, a series of site type and universal formulae are proposed for estimating PPN village populations in future.

9.1 Descriptive statistics per PPN period

9.1.1 Site frequency

The village database includes 71 villages, of which 46 are dated to a single PPN period; 16 to two different periods; eight to three different periods; and one to four different periods. This produces a total database of 106 villages/village phases. Almost a third date to the LPPNB (n = 32; 30.2%) and a further quarter to the MPPNB (n = 28; 26.4 %) (Figures 9.1-9.2). The smallest proportion dates to the EPPNB (n = 9; 8.5%). Sites identified as terminating early in a period (i.e. Tell Aswad was abandoned early in the LPPNB) (Helmer and Gourichon 2008) were not included in that period in order to more accurately reflect long-term population dynamics.

Figure 9.1. PPN central and southern Levantine villages per period.

Figure 9.2. Temporal distribution of PPN central and southern Levantine villages (? = questionable PPNC date).

9.1.2 Site extent

Site extent estimates range from 0.05 hectares to 16 hectares, with a mean of 2.81 hectares and a median of 1.5 hectares. Mean site size estimates increase gradually from the PPNA (0.44 ha) to the MPPNB (1.52 ha), with considerable increase occurring between the MPPNB and LPPNB (5.21 ha). Mean estimated site size decreases between the LPPNB and PPNC (3.87 ha) (Figure 9.3). This pattern of settlement size increase and decline compares well with previous investigations of changing site extent throughout the PPN (Kuijt 2008a, p.292).

9.1.3 <u>Predominant architectural form</u>

The majority of villages have predominantly rectilinear architecture (n = 64; 60.4%), followed by curvilinear architecture (n = 33; 31.1%) (Figure 9.4). The predominant architectural form could not be identified for nine (8.5%) villages. All villages dated to the PPNA contain predominantly curvilinear architecture. Curvilinear forms continue through the EPPNB (n = 6; 75%) and MPPNB (n = 9; 32.14%). No villages were identified as having predominantly curvilinear architecture during the LPPNB or PPNC. Villages with predominantly rectilinear architecture emerge during the EPPNB (n = 2; 22.2%). Rectilinear architecture becomes increasingly common during the MPPNB (n = 15; 53.57%) and forms the predominant type during the LPPNB (n = 30; 93.75%) and PPNC (n = 17; 89.47%).

Figure 9.4. Predominant architectural form per period.

9.1.4 Site type

Villages were categorised into five types based on micro-level analysis (see Section 8.4):

Type 1: small (< 0.4 ha) villages of predominantly curvilinear architecture Type 2: large (\geq 0.4 ha) villages of predominantly curvilinear architecture Type 3: small (\leq 0.5 ha) villages of predominantly rectilinear architecture Type 4: large (0.6-6 ha) villages of predominantly rectilinear architecture Type 5: very large (\geq 7 ha) villages of predominantly rectilinear architecture

Type 4 villages were most frequent (n = 47; 44.3%), followed by Type 1 villages (n = 23; 21.7%) (Figures 9.5-9.6). Low frequencies were recorded for Type 2 (n = 10; 9.4%) and Type 5 villages (n = 14; 13.2%). Only three Type 3 villages were recorded (2.8%). Of these, two were analysed at the micro-level (Wadi Hamarash I and Beidha Subphase C2). It is possible that several Type 3 villages have been incorrectly classified as Type 4 villages as a result of site extent overestimation where predominantly rectilinear architecture occurs. Site type could not be determined for nine (8.5%) villages as the predominant architectural form could not be established.

The PPNA contains site types with curvilinear architecture only (Types 1: n = 12, 66.7% and 2: n = 6, 33.3%). Type 4 villages appear during the EPPNB (n = 2, 22.2%) with the introduction of rectilinear architecture and form the predominant type from the MPPNB (n = 13, 46.4%). No LPPNB or PPNC villages were categorised as Type 1 or 2

(curvilinear architecture). Type 5 villages ("mega-sites") appear during the LPPNB (n = 11, 34.4%), although few appear to maintain such large site extents during the PPNC (n = 3, 15.8%).

Figure 9.5. Site type frequencies.

Figure 9.6. Site type per period.

9.2 Assessment of systematic methodologies for inclusion in final estimates

Several systematic methodologies (Table 9.1) were applied to the PPN village database to rapidly estimate population from total site extent and an assigned site type (Appendix E.2).

	Method	Constants required	Data produced
1	Regional population density coefficient (RPDC)	 number of contemporaneous dwellings per hectare number of people per dwelling 	 population size total number of contemporaneous dwellings
2	Residential built area proportions (RBAP)	 proportion of contemporaneous residential built area in site area mean residential built area of complete dwellings number of people per dwelling 	 population size total number of contemporaneous dwellings total contemporaneous residential built area
3	Residential floor area proportions (RFAP)	 proportion of contemporaneous residential floor area in site area residential floor area per person 	 population size total contemporaneous residential floor area
4	Storage provisions formula (SPF)	 probable amount of storage provisions within the residential floor area proportion of contemporaneous residential floor area in site area (Method 1) mean residential floor area of complete dwellings (Method 2) mean values for the total number of contemporaneous dwellings derived from the RPDC and RBAP methods (Method 2) 	 population size (Methods 1 and 2) number of people per dwelling (Method 2)
5	Settlement population density coefficient (SPDC)	 settlement population density coefficient (people per hectare) 	 population size
6	Naroll's (1962) allometric growth formula (AGF1)	 P = (A/a)^{1/0.84195} proportion of built floor area in site area AGF1 re-calculated initial growth index 	 population size total built floor area
7	Wiessner's (1974) village allometric growth formula (AGF2)	 P = (A/a)^{1/7} AGF2 village initial growth index 	 population size

Table 9.1. Methodologies for systematically estimating PPN village population parameters.

For villages estimated at the micro-level, the SPF micro-level population estimates were considered most valid and form the final estimate range (see Section 10.2.1). These estimates are also assigned to the succeeding phases of the same site where site extent estimates remain constant (i.e. PPNA/EPPNB el-Hemmeh; LPPNB/PPNC el-Hemmeh). To establish the most suitable methodologies for inclusion in the final estimate ranges of all other villages, statistical techniques were employed to identify systematic methods that produce estimates that differ significantly from the micro-level estimate range (Figure 9.7; Appendix E.3). In addition, the results of each method are assessed to identify those which produce excessive, and thus, ineffectual population estimate ranges.

Figure 9.7. Comparison of mean micro-level estimates with mean estimates derived from systematic methodologies. Error bars display minimum to maximum range of estimates based on site type constants.

Figure 9.7. Comparison of mean micro-level estimates with mean estimates derived from systematic methodologies. Error bars display minimum to maximum range of estimates based on site type constants (continued).

Figure 9.7. Comparison of mean micro-level estimates with mean estimates derived from systematic methodologies. Error bars display minimum to maximum range of estimates based on site type constants (continued).

9.2.1 Statistical analysis

Paired-samples t tests and Wilcoxon signed-rank tests were conducted in SPSS to determine whether there are significant differences between micro-level estimates and estimates derived from systematic methods in order to eliminate methods from the final estimate range (Appendix E.3). Paired-samples t tests compare the means of values from two related samples, whilst the Wilcoxon signed-rank test compares the median of values (Geert van den Berg 2014; 2016). A significance value (p) of less than .05 indicates a significant difference.

Tests indicated no significant differences between the micro-level estimates and estimates derived from systematic methods based on either the site type or universal constants (Table 9.2). However, the paired-samples t test indicated statistically significant differences between the minimum and maximum micro-level and RPDC estimates (min: t = 2.611, df = 12, p = .023; max: t = -2.731, df = 12, p = .018), and the maximum micro-level and AGF1 estimates (t = -2.301, df = 12, p = .040).

The Wilcoxon signed-rank test also indicated statistically significant differences between the minimum and maximum micro-level and RPDC estimates (min: Z = -2.411, p = .016; max: Z = -3.111, p = .002), and the maximum micro-level and AGF1 estimates (Z = -2.271, p = .023). In addition, significant differences were identified between the minimum micro-level and RBAP estimates (Z = -2.274, p = .023).

The statistically significant differences between micro-level estimates and those derived from the RPDC, AGF1 and RBAP methods indicate that these methods are unsuitable for systematically estimating PPN village populations. An assessment of the estimate ranges resulting from these methods further supports their exclusion from the final estimate range.

Difference between		Paired-samples t test - test statistics								Wilcoxon signed-rank		
min/max/mean micro-level estimate and:			Pair	ed Differe	nces		t	df	Sig.	test - test statistics		
		Mean	SD	SE	95%	6 CI			(2-	Z	Asymp. Sig.	
					Lower	Upper			tailed)		(2-tailed) (p) ^a	
									(<i>p</i>) ^a			
RPDC	Min	81.00	111.84	31.02	13.42	148.58	2.611	12	.023	-2.411	.016	
	Max	-250.92	331.23	91.87	-451.08	-50.76	-2.731	12	.018	-3.111	.002	
	Mean	-28.62	88.92	24.66	-82.35	25.12	-1.160	12	.269	804	.422	
	Universal ^o	-122.77	255.91	70.98	-277.42	31.88	-1.730	12	.109	-1.572	.116	
RBAP	Min	97.23	221.46	61.42	-36.60	231.06	1.583	12	.139	-2.274	.023	
	Max	-343.00	1071.81	297.27	-990.69	304.69	-1.154	12	.271	-1.503	.133	
	Mean	-35.15	186.23	51.65	-147.69	77.39	681	12	.509	105	.917	
	Universal	-16.85	87.36	24.23	-69.63	35.94	695	12	.500	175	.861	
RFAP	Min	36.08	83.83	23.25	-14.58	86.74	1.552	12	.147	-1.452	.147	
	Max	-48.85	116.57	32.33	-119.29	21.60	-1.511	12	.157	-1.363	.173	
	Mean	15.85	93.09	25.82	-40.41	72.10	.614	12	.551	070	.944	
	Universal	-49.69	111.43	30.91	-117.03	17.64	-1.608	12	.134	-1.049	.294	
SPF	Min	3.54	60.65	16.82	-33.11	40.19	.210	12	.837	902	.367	
	Max	-78.54	150.35	41.70	-169.39	12.32	-1.883	12	.084	-1.490	.136	
	Mean	-33.15	94.47	26.20	-90.24	23.93	-1.265	12	.230	804	.421	
	Universal	-6.31	207.18	57.46	-131.50	118.89	110	12	.914	419	.675	
SPDC	Min	10.08	59.82	16.59	-26.07	46.23	.607	12	.555	629	.529	
	Max	-43.92	123.07	34.13	-118.29	30.45	-1.287	12	.222	734	.463	
	Mean	-29.85	91.95	25.50	-85.41	25.72	-1.170	12	.265	824	.410	
	Universal	-101.77	210.38	58.35	-228.90	25.36	-1.744	12	.107	-1.503	.133	
AGF1	Min	70.77	124.36	34.49	-4.38	145.92	2.052	12	.063	-1.887	.059	
	Max	-133.00	208.43	57.81	-258.96	-7.04	-2.301	12	.040	-2.271	.023	
	Mean	6.69	94.38	26.18	-50.34	63.72	.256	12	.803	035	.972	
	Universal	-462.08	1521.61	422.02	-1381.57	457.42	-1.095	12	.295	594	.552	
AGF2	Min	16.46	61.47	17.05	-20.68	53.61	.966	12	.353	909	.363	
	Max	-28.15	116.58	32.33	-98.60	42.29	871	12	.401	664	.507	
	Mean	24.85	85.14	23.61	-26.61	76.30	1.052	12	.313	699	.485	
	Universal	14.54	119.79	33.23	-57.85	86.93	.438	12	.669	454	.650	

Table 9.2. Tests for significant difference between micro-level and systematic estimates (methods with statistically significant differences highlighted in grey).

^a p < .05 = significant difference. ^b Compared to mean micro-level estimate.

9.2.2 Assessment of estimate ranges

Population estimates produced via systematic methodologies were evaluated to eliminate methodologies that produced excessive and thus, ineffectual, ranges from the final population estimate range. Excessive estimate ranges were identified as having a maximum estimate at least 250% higher than the minimum estimate, whilst restricted estimate ranges were identified as having a maximum estimate less than 200% higher than the minimum estimate less than 200% high

Regional population density coefficient method (RPDC)

The RPDC method produced excessive population estimate ranges for Site Types 1, 2, 4 and Unknown. This is due to wide ranges in constants for the total number of contemporaneous dwellings per hectare (Type 1: 73-432/ha; Type 2: 67-168/ha; Type 4: 80-246/ha; Unknown: 67-432/ha), combined with wide constant ranges for the number of people per dwelling (Type 1: 1.2-3.7; Type 2: 3.3-4.8; Type 4: 2.7-4.7; Unknown: 1.2-6.6).

Conversely, the constant ranges for Site Types 3 and 5 are relatively constrained (Type 3: 100-122 dwellings/ha; 3.7-5.1 people/dwelling; Type 5: 92 dwellings/ha; 4.8-6.6 people/dwelling), producing more restricted estimate ranges.

Residential built area proportions method (RBAP)

The RBAP method produced excessive estimate ranges for Site Types 1 and Unknown. This reflects the combination of considerable ranges in constants for the proportion of contemporaneous residential built area in site area (Type 1: 29.84-54.57%; Unknown: 17.15-54.57%), the mean residential built area of complete dwellings (Type 1: 7.6-26.3 m²; Unknown: 7.6-29.5 m²) and the number of people per dwelling (Type 1: 1.2-3.7; Unknown: 1.2-6.6).

The combination of marginally more restricted constant ranges for Site Types 2 and 5 produced moderately constrained estimate ranges (Type 2: RBAP: 19.02-20.97%, 16-28.2 m² mean floor area, 3.3-4.8 people/dwelling; Type 5: 27-47.2 m² mean floor area, 4.8-6.6 people/dwelling).

Refined constant ranges for Site Types 3 (RBAP: 17.15-27.83%; 21-29.5 m² mean floor area; 3.7-5.1 people/dwelling) and 4 (RBAP: 19.21-32.57%; 15.3-24 m² mean floor area; 2.7-4.7 people/dwelling) produced restricted estimate ranges for these site types.

Residential floor area proportions method (RFAP)

As the range of constants for the mean residential floor area per person is restricted for all site types (maximum range: 2.89-4.53 m² per person), this variable has limited impact on the final population estimate ranges derived from the RFAP method.

Considerable constant ranges for the proportion of contemporaneous residential floor area in site area for Site Types 1 (14.85-32.13%) and Unknown (11.33-32.13%%) resulted in excessive population estimate ranges for these site types. A marginally more refined constant range for Site Type 4 (12.1-21.33%) produced moderately constrained estimates.

Refined constant ranges for Site Types 2 (14.39-16.58%) and 3 (11.33-16.77%) produced restricted population estimate ranges. For Site Type 5, only a mean constant could be established for the proportion of contemporaneous residential floor area in site area (17.68%). This combined with the limited range in mean residential floor area per person (2.9-4 m²) also produced restricted population estimate ranges.

Storage provisions formulae (SPF)

For each site type, a hypothesised amount of residential storage provision was suggested based on potential storage within sites assessed at the micro-level. Site Types 3, 4 and 5 were all suggested to contain considerable designated storage space separate from the residential floor area. Therefore, it was hypothesised that the maximum amount of residential storage provision would not occur within these site types. For Site Type 5, the formula reflecting no residential storage provision was also excluded based on micro-level assessment of Basta (the only Type 5 site). For Site Types 1, 2 and Unknown all amounts of storage were considered possible.

For all site types, the SPF produced reasonably constrained population estimate ranges, regardless of variations in the ranges of constants.

Settlement population density coefficient method (SPDC)

For all site types except Unknown, the SPDC method produced restricted population estimate ranges, despite variations in the ranges of density coefficients. For sites of Unknown type, the SPDC range was considerable (322-926 people/ha), producing excessive population estimate ranges. These results support the use of site type, rather than universal, density coefficients.

Naroll's (1962) allometric growth formula (AGF1)

Replacement of Naroll's (1962) original initial growth index with re-calculated indices in the AGF1 produced excessive population estimate ranges for Site Types 1, 4 and Unknown due to considerable ranges in constants for the proportion of built floor area in site area and the re-calculated indices (Type 1: 29.47-53.97%, 8.8-13.4; Type 4: 29.21-61.12%, 21.2-36.1; Unknown: 23.98-61.12%, 8.8-48.1).

More refined constant ranges produced restricted population estimate ranges for Site Types 2, 3 and 5 (Type 2: 23.98-40.01%, 17.9-18.6; Type 3: 36.56-49.67%, 19.7-23.4; Type 5: 36.6-48.1).

Wiessner's (1974) allometric growth formula (AGF2)

For all site types, except Unknown, the range of constants for the AGF2 village index was limited, resulting in restricted population estimate ranges. For sites of Unknown type, the village index range was considerable (11.4-31.5), producing excessive population estimate ranges. These results support the use of site type, rather than universal, village initial growth indices for Wiessner's (1974) AGF2.

Methods included in final estimate range

Statistical analysis indicated that three systematic methods produce results that differ significantly from the micro-level estimate: RPDC, AGF1 and RBAP. These methods, in addition to the RFAP method, produced excessive estimate ranges for at least one classified site type (Tables 9.3-9.4). The SPF was the only method that produced estimates that correlated well with the micro-level estimates and produced relatively constrained estimate ranges for all site types, including sites of Unknown type. Based on this analysis, the final estimate ranges for type classed sites are derived from the SPF, SPDC and AGF2, with estimates for sites of Unknown type derived solely from the SPF.

Method	Range*	Туре	Site name	Estimate	Difference
				range	minimum/
					maximum
					estimate (%)
Regional	Excessive	1	Gesher (PPNA)	13-237	1823
population		2	Jericho (PPNA)	565-2021	358
density		4	Beisamoun (MPPNB)	1060-5826	550
coefficient		Unknown	Nahal Betzet I (MPPNB)	40-1427	3568
(RPDC)	Restricted	3	Beidha (LPPNB)	112-187	167
		5	'Ain Ghazal (LPPNB)	4428-6089	138
Residential	Excessive	1	Gesher (PPNA)	38-216	568
built area		Unknown	Nahal Betzet I (MPPNB)	111-745	671
proportions	Moderate	2	Jericho (PPNA)	622-1437	231
(RBAP)		5	'Ain Ghazal (LPPNB)	3758-9032	240
	Restricted	3	Beidha (LPPNB)	105-125	119
		4	Beisamoun (MPPNB)	1797-2967	165
Residential	Excessive	1	Gesher (PPNA)	60-167	278
floor area		Unknown	Nahal Betzet I (MPPNB)	125-556	445
proportions	Moderate	4	Beisamoun (MPPNB)	1465-3213	219
(RFAP)	Restricted	2	Jericho (PPNA)	795-1238	156
		3	Beidha (LPPNB)	106-170	160
		5	Ain Ghazal (LPPNB)	4420-6097	138
Storage	Moderate	1	Gesher (PPNA)	63-130	206
provisions		2	Jericho (PPNA)	/3/-1651	224
formulae (SPF)	Destricted	Unknown	Nanal Betzet I (MPPNB)	177-374	211
	Restricted	3	Beidna (LPPNB)	104-166	160
		4	Beisamoun (MPPNB)	2133-3396	159
Cattlamont	Evenerive	<u>J</u>	AIII GIIazai (LPPIND)	4379-0203	144
Settlement	Excessive	Unknown	Nanai Betzet I (MPPNB)	70 120	288
density	Restricted	1	Gesner (PPNA)	70-139 905 1210	199
coefficient		2	Boidha (LDDNR)	111 179	104
(SPDC)		J	Beisamoun (MPPNB)	1008-3318	17/
		5	'Ain Ghazal (LPPNB)	4380-6040	138
Naroll's (1962)	Excessive	1	Gesber (PPNA)	61-216	354
allometric	EXCESSIVE	4	Beisamoun (MPPNB)	1251-5642	451
growth formula		Unknown	Nahal Betzet I (MPPNB)	46-1047	2276
(AGF1)	Restricted	2	Jericho (PPNA)	956-1832	192
(/)	rtoothotou	3	Beidha (LPPNB)	97-171	176
		5	'Ain Ghazal (LPPNB)	4163-5759	138
Wiessner's	Excessive	Unknown	Nahal Betzet I (MPPNB)	159-439	276
(1974) village	Restricted	1	Gesher (PPNA)	68-132	194
allometric		2	Jericho (PPNA)	795-1238	156
growth formula		3	Beidha (LPPNB)	106-170	160
(AGF2)		4	Beisamoun (MPPNB)	1823-3189	175
		5	'Ain Ghazal (LPPNB)	4386-6024	137

* Excessive = maximum estimate > 250% higher than minimum estimate; Moderate = maximum estimate 200-250% higher than minimum estimate; Restricted = maximum estimate < 200% higher than minimum estimate.

Method			S	Correlates with			
	1	2	3	4	5	Unknown	micro-level
							estimate
Regional population density coefficient (RPDC)	Х	-	\checkmark	-	√	Х	No
Residential built area proportions (RBAP)	-	-	\checkmark	\checkmark	-	-	No
Residential floor area proportions (RFAP)	-	\checkmark	\checkmark	-	\checkmark	-	Yes
Storage provisions formulae (SPF)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Yes
Settlement population density coefficient	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	Yes
Naroll's (1962) allometric growth formula	-	\checkmark	\checkmark	-	\checkmark	Х	No
Wiessner's (1974) allometric growth formula	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	Yes

Table 9.4. Potential suitability of methods for producing systematic population estimates (most suitable methods highlighted in grey).

9.3 Population estimates and group size thresholds per period

Minimum, maximum and mean population size estimates were produced for all sites in the central and southern Levantine PPN village database (Tables 9.5-9.6; Figures 9.8-9.20)². Estimates are provided for each period by site type and are assessed against the previously hypothesised group size thresholds relating to changing subsistence practices; mechanisms for reducing scalar stress and promoting social cohesion; and increasing social complexity. Additional thresholds are proposed based on the population estimates achieved in this investigation and the archaeological evidence available for each site (Appendix E.4). As such, these thresholds are tentative and will require revision as additional information becomes available.

The proposed thresholds consider population size as the main factor contributing to cultural complexity. This is obviously problematic in that it does not consider other factors that influence socio-cultural development (i.e. geographical context or cultural background). However, as the thresholds proposed here are specific to the central and southern Levant during the PPN, these thresholds provide a solid basis for exploring the relationship between group size and other factors impacting socio-cultural evolution in future.

9.3.1 Pre-Pottery Neolithic A

PPNA villages (n = 18) were categorised as either Site Type 1: small (< 0.4 ha) or 2: large (≥ 0.4 ha) with predominantly curvilinear architecture. Estimates for Type 1 villages (n = 12) range from around 30 people at Nahal Oren (P = 25-45; 0.05 ha) to around 180 people at 'Ein Suhun (P = 130-280; 0.3 ha) (Tables 9.5-9.6; Figures 9.8-

² For sites assessed at the micro-level, estimates are based on the micro-level assessment.

9.9). Estimates for Type 2 villages (n = 6) range from around 190 people at Dhra' (P = 130-300; 0.45 ha) to around 1,060 people at Jericho (P = 740-1,650; 2.5 ha).

Changing subsistence practices

Estimates for all villages exceed the minimum group size threshold previously hypothesised for the initial transition to a sedentary existence ($P \ge 25$) (see Table 4.8 for references for each hypothesised threshold). This threshold is equivalent to the lowest estimate achieved in this investigation (PPNA Nahal Oren: P = 25-45).

Adoption of farming practices is expected to occur in populations of at least 50 people, with transition to agro-pastoralist practices expected to occur in populations of at least 100 people. There is evidence for cultivation of pre-domesticated plants during the PPNA, particularly at Type 2 villages, including Dhra' (P = 130-300), Gilgal I (P = 160-290), Netiv Hagdud (P = 220-270) and Jericho (P = 740-1,650) (Kenyon 1981; Finlayson et al. 2003; Bar-Yosef et al. 1991; 2010a; 2010b); and Type 1 villages situated within geographical zones where conditions may not have been conducive to the natural growth of food plants, such as at Bir el-Maksur (P = 80-190) and Zahrat adh-Dhra'2 (P = 80-190) (Edwards et al. 2004; Kuijt and Finlayson 2009; Malinsky-Buller et al. 2013). Based on estimates achieved in this investigation and the available archaeological evidence, a minimum group size of around 80 people may coincide with the adoption of farming practices relating to pre-domesticated plants in this region. However, as these practices do not relate to domesticated species (Nesbitt 2002), thresholds relating to agricultural practices cannot be applied to PPNA settlements. PPNA faunal remains suggest a reliance on hunting and an absence of domesticated animals (Martin and Edwards 2013). Therefore, thresholds relating to pastoral practices (i.e. rearing and management of domesticated animals) also cannot be applied to PPNA settlements.

The location of most of these early settlements in resource rich areas with abundant water availability may have negated the need for plant and animal domestication at this stage, even where larger populations existed. Indeed, many villages are situated within or near the Jordan Valley and other hydrological systems with abundant resources, including the Salibiya Basin (Gilgal I and III-IV, Netiv Hagdud and Jericho) (Kenyon 1981; Noy 1989; Bar-Yosef *et al.* 1991; 2010a; 2010b) and the Sea of Galilee (Gesher, Huzuq Musa and 'Ein Suhun) (Garfinkel and Nadel 1989; Nadel *et al.* 1999; Rosenberg *et al.* 2010). In addition, the majority are located at the borders of two or more ecological zones enabling exploitation of a wide range of naturally occurring resources.

359

Reducing scalar stress and promoting social cohesion

It has been hypothesised that scalar stress often occurs in populations of at least 150 people. To mitigate the effects of scalar stress, communities can either fission into smaller units or develop mechanisms for creating social cohesion. PPNA villages that produced population estimates comparable to or exceeding this threshold (Gilgal I: P = 160-290; Netiv Hagdud: P = 220-270; Jericho: P = 740-1,650) display evidence for such mechanisms, including sectoring of the community into neighbourhoods; compartmentalisation within dwellings potentially aimed at increasing privacy and reducing the perception of overcrowding; and the addition of dwelling annexes for cooking, workshop activities and storage that enabled dwelling units greater control over their own resources (Kenyon 1981; Bar-Yosef et al. 1991; 2010a; 2010b). The larger villages, particularly Jericho, also demonstrate evidence for organised communal activities, including the construction of large communal and possibly defensive structures, as well as formalised ritual activities that would have facilitated social cohesion by creating and promoting a collective cultural conscience. The minimum group size estimates for villages that demonstrate conflict reduction strategies (P = 160) compare well with the pre-existing hypothesised threshold ($P \ge 150$). An additional threshold could relate to the introduction of more elaborate mechanisms for social cohesion within settlements of at least 740 people (i.e. Jericho: P = 740-1,650).

Emerging social complexity

More complex social structures are hypothesised to occur within populations of greater than 250 people. Some degree of social differentiation may be inferred where there are intra-site variations in structural forms and types of annexed facilities, as at Gilgal I (P = 160-290) and Netiv Hagdud (P = 220-270) (Bar-Yosef *et al.* 1980; 1991; Bar-Yosef and Gopher 1997; Bar-Yosef *et al.* 2010a; 2010b). This could reflect initial segregation of dwelling units and differential engagement with household-based food and production-related activities that are characteristic of house-based societies (Kuijt and Goring Morris 2002, p.368).

Variable distributions of items of personal adornment (i.e. beads and pendants) made of both local and imported materials may reflect promotion of individual identity or group affiliation (Wright and Garrard 2003, p. 277; Bar-Yosef 2005). These items were increasingly produced during the PPNA, with use of more exotic materials at some sites, including Netiv Hagdud (P = 220-270) and Huzuq Musa (P = 300-660) (Bar-Yosef *et al.* 1991; Groman-Yaroslavski *et al.* 2014).

Incised pebbles may be another indicator of the desire for individual identity and could be evidence of transactions between individuals or groups (Edwards and House 2007). These have been uncovered at Zahrat adh-Dhra'2 (P = 80-190), 'Ein Suhun (P = 130-280), Gilgal I (P = 160-290) and Netiv Hagdud (P = 220-270) (Bar-Yosef et al. 1991; Nadel et al. 1999; Edwards 2007; Edwards and House 2007; Bar-Yosef et al. 2010a; 2010b). Similarly, ritual and symbolic items, including figurines at Gilgal IV (P = 40-90), el-Hemmeh (P = 70-100), Zahrat adh-Dhra'2 (P = 80-190), Gilgal I (P = 160-290), Netiv Hagdud (P = 220-270) and Dhra' (P = 130-300) (Kuiit and Chesson 2005) have also been interpreted as tools for individual and group identity. If these aspects do indeed infer social complexity, these developments appear to occur in much smaller groups (P \geq 40) than previously suggested. The presence of these developments at such low estimated population sizes could reflect cumulative cultural evolution (White 1959; Castro and Toro 2014) or may be indicative of the broader social networks that existed between sites in close proximity that probably acted together as a larger interconnected regional population (i.e. Gilgal I, III, IV, Netiv Hagdud and Jericho in the Salibiya Basin; and sites adjacent to the Sea of Galilee: Gesher, Huzuq Musa and 'Ein Suhun) (Shennan 2001; Henrich 2004; Vaesen 2012).

The emergence of hierarchical society, including individuals with authoritative roles, is hypothesised to occur in populations of at least 500 people. The best potential evidence for some form of managerial role during the PPNA is the construction of the tower and village wall at Jericho (P = 740-1,650) (Kenyon 1956; 1981). This would have required an organised labour force and careful planning and management. It could also be argued that authoritative individuals may have facilitated the well-established exchange networks that occurred during this period. This may have been the case particularly at Netiv Hagdud (P = 220-270), which has been interpreted as a secondary station for obsidian distribution (Bar-Yosef *et al.* 1991). It must be noted, however, that exchange networks had existed for thousands of years without any clear evidence for authoritative individuals.

Figure 9.8. PPNA population estimates. Error bars show minimum to maximum range of estimates based on site type constants.

Figure 9.9. Distribution of PPNA villages in the current database indicating population size.

EPPNB villages (n = 9) were categorised as Site Type 1: small (< 0.4 ha) and 2: large (≥ 0.4 ha) with predominantly curvilinear architecture; and 4: large (0.6-6 ha) with rectilinear architecture. An additional site is of Unknown type. Estimates for Type 1 villages (n = 3) range from around 80 people at el-Hemmeh (P = 70-100; 0.1 ha) to around 180 people at 'Ein Suhun (P = 130-280; 0.3 ha) (Tables 9.5-9.6; Figures 9.10-9.11). Estimates for Type 2 villages (n = 3) range from around 210 people at Motza VI and Mujahiya (P = 150-330; 0.5 ha) to around 430 people at Tell Aswad IB (P = 300-660; 1 ha). Type 4 villages at Horvat Galil and Tell Qarassa were both estimated at around 520 people (P = 370-680; 1 ha). The village of Unknown type, Mishmar Ha'emeq, was estimated at around 550 people (P = 320-750; 1 ha).

Changing subsistence practices

Archaeological evidence for EPPNB villages is similar to PPNA villages, suggesting continuity in subsistence practices. There is, however, evidence for intensified cultivation of wild plants, particularly at Mujahiya (P = 150-330) (Gopher 1990), which contained high frequencies of sickle blades, and grinding and pounding implements. Tell Aswad IB (P = 300-660) provides the earliest potential evidence for domesticated forms of emmer and barley (Tanno and Willcox 2012; Chamel 2014). The population estimate achieved for Tell Aswad IB falls within the previously hypothesised group size threshold range proposed for the adoption of a fully agro-pastoralist subsistence strategy (P = 100-750). It appears that this may be an appropriate group size threshold for inferring the earliest transition to agriculture within EPPNB communities. However, faunal evidence indicates an absence of domesticated animals and a reliance on hunting, mainly of gazelle, boar, goat and cattle (Gopher 1990; Khalaily *et al.* 2007; Ibañez *et al.* 2010; Bocquentin *et al.* 2011). Therefore, thresholds relating to pastoral practices cannot be applied to the EPPNB.

Reducing scalar stress and promoting social cohesion

Population estimates for all but one EPPNB village (el-Hemmeh: P = 70-100) exceed thresholds at which scalar stress is hypothesised to begin to impact relationships ($P \ge$ 150). Potential attempts to promote social cohesion are evident in all EPPNB villages, with intensified and more intricate and formalised ritual practices, including the construction of a large, ritual building associated with burial ground at Mishmar Ha'emeq (P = 320-750) (Bocquentin *et al.* 2011). Additional evidence may include the use of yellow and red ochre in ritual contexts at Mujahiya (P = 150-330) (Gopher 1990) and more formalised mortuary practices, including primary and secondary burials, individual and collective burials, skull removal, sub-floor and courtyard burials, and grave goods (i.e. figurines, beads and pendants) at el-Hemmeh (P = 70-100), Motza VI (P = 150-330), Tell Aswad IB (P = 300-660), Mishmar Ha'emeq (P = 320-750), Horvat Galil (P = 370-680) and Tell Qarassa (P = 370-680) (Hershkovitz and Gopher 1988; Khalaily *et al.* 2007; Stordeur and Khawam 2008; Ibañez *et al.* 2010; Bocquentin *et al.* 2011; Makarewicz and Rose 2011; Chamel 2014). These standardised and more formalised ritual activities may have promoted social cohesion by encouraging group ideology.

Innovative architectural developments may reflect a desire to reduce the perception and impact of social crowding. The transition to rectilinear architecture enabled more effective and efficient use of interior space, allowing easier compartmentalisation and more restricted access to interior spaces, increasing privacy and segregation of dwelling units (Flannery 1972; 2002; Wiessner 1982; Saidel 1993). Rectilinear architecture occurs at Horvat Galil (P = 370-680), Tell Qarassa (P = 370-680) and Mishmar Ha'emeq (P = 320-750) (Hershkovitz and Gopher 1988; Ibañez *et al.* 2010; Bocquentin *et al.* 2011). Based on the estimates produced in this investigation and the available archaeological evidence, a possible additional threshold of 320 people may be proposed for the transition to rectilinear architecture during the EPPNB.

Emerging social complexity

Evidence for increasingly independent dwelling units provide some of the earliest potential indication of social complexity (expected to occur at $P \ge 250$). Sub-floor burials are considered to represent permanent links between dwelling occupants, the dwelling structure and their ancestors (Watkins 1992). As such, the prevalence of these burials during the EPPNB has been interpreted as reflecting increasing segregation of dwelling units and a general shift towards house-based societies (Kuijt and Goring-Morris 2002). These house units controlled their own production and distribution, providing some of the earliest potential evidence for household economy. At Motza VI (P = 150-330) and Mujahiya (P = 150-330) there is evidence for dwelling-based specialist activities, including the systematic production of beads, pendants and high-quality stone tools (Gopher 1990; Khalaily *et al.* 2007). The rising independence of dwelling units may reflect increasing divergence from egalitarian social systems.

Other aspects of social complexity may be evidenced even within the smallest EPPNB village (el-Hemmeh: P = 70-100). Potential evidence includes enhanced specialist

activities and innovative manufacturing techniques, including naviform core technology and lime plaster production, which required a considerable degree of heat and material preparation. Lime plaster is increasingly utilised, particularly in architecture at el-Hemmeh (P = 70-100), Motza VI (P = 150-330), Mujahiya (P = 150-330) and Horvat Galil (P = 370-680) (Hershkovitz and Gopher 1988; Gopher 1990; Khalaily *et al.* 2007; Makarewicz and Rose 2011). These innovative developments required specialist knowledge and may indicate some degree of skill diversification or labour differentiation in communities as small as 70 people.

Other potential evidence for increasingly complex communities during the EPPNB includes differential displays of wealth, including variable association of burials with structures and grave goods at Motza VI (P = 150-330) and Tell Qarassa (P = 370-680) (Khalaily et al. 2007; Ibañez et al. 2010); and the placement of some bodies on platforms at Tell Aswad IB (P = 300-660) (Stordeur and Khawam 2008; Chamel 2014). The presence of items made from imported materials at el-Hemmeh (P = 70-100), Motza VI (P = 150-330), Mujahiya (P = 150-330) and Tell Qarassa (P = 370-680) (Gopher 1990; Khalaily et al. 2007; Ibañez et al. 2010; Makarewicz and Rose 2011) indicates a degree of surplus required for trade, potentially requiring individuals with authoritative, decision-making powers to control the acquisition and distribution of these resources (expected to occur at $P \ge 500$). These individuals may have been identified via mud tokens, such as those found at Tell Qarassa (P = 370-680), which are argued to reflect formalised means of communication or identification (Edwards 2007; Ibañez et al. 2010). In addition, the practice of platform burials at Tell Aswad IB (P = 300-660) may have been reserved for individuals who held a higher status (Stordeur and Khawam 2008; Chamel 2014). The potential occurrence of these developments at lower population sizes could reflect cumulative cultural evolution and/or the considerable interactions between settlements.

Figure 9.10. EPPNB population estimates. Error bars show minimum to maximum range of estimates based on site type constants.

MPPNB villages (n = 28) were categorised as Site Type 1: small (< 0.4 ha) and 2: large (≥ 0.4 ha) villages with predominantly curvilinear architecture; 3: small (≤ 0.5 ha) and 4: large (0.6-6 ha) villages with predominantly rectilinear architecture. An additional four sites are of Unknown type (these produced similar estimates to Type 3 villages). Estimates for Type 1 villages (n = 8) range from around 40 people at Jebel Rabigh (P = 30-60; 0.06 ha) to around 120 people at Adh-Dhaman I and Jebel Arqa (P = 80-190; 0.2 ha) (Tables 9.5-9.6; Figures 9.12-9.13). The single Type 2 village at Tell Eli IV, also known as Khirbet Sheikh 'Ali, was estimated at around 850 people (P = 590-1,320; 2 ha). The two Type 3 villages at Abu Gosh and Wadi Hamarash I were estimated at around 110 people (P = 90-150; 0.25 ha) and 190 people (P = 150-220; 0.5 ha), respectively. Estimates for Type 4 villages (n = 13) range from around 510 people at Ghwair I (P = 400-610; 1.33 ha) to around 2,620 people at Beisamoun and Tell Aswad II (P = 1,820-3,400; 5 ha).

Changing subsistence practices

The majority of MPPNB villages, including the smaller settlements (Beidha: P = 80-120; Shkārat Msaied: P = 80-150; 'Ain Abu Nekheileh: P = 90-150; Wadi Hamarash I: P = 150-220), demonstrate evidence for cultivation of domesticated plants, such as emmer, barley and einkorn (Henry et al. 2002; 2003; Henry and Albert 2004; Byrd 2005a; Gkotsinas and Karathanou 2013; Kinzel 2013). Larger villages, such as Yiftah'el IV (P = 370-680), 'Ain Ghazal (P = 1,460-2,720), Jericho (P = 1,460-2,720) and Tell Aswad II (P = 1,820-3,400), exhibit a wide range of domesticated plants, including barley, einkorn, emmer, lentil, chickpea and flax (Colledge and Conolly 2007; Weiss and Zohary 2011), with the latter also containing evidence for fig cultivation (Stordeur and Jamous 2009). The widespread existence of domesticated plants during the MPPNB, even in villages with small populations, could indicate diffusion of agricultural knowledge from more populated and developed areas to the north, which had adopted agricultural practices during the EPPNB, rather than in situ adaptation by central and southern Levantine villagers. This theory may be supported by the results of a recent analysis of ancient DNA, which revealed that the first famers of the Levant trace around a third of their ancestry to early Anatolian farmers (Lazaridis et al. 2016, p.3).

The first clear evidence for pastoral practices relating to domesticated animals occurs during the MPPNB, although many villages still relied on hunting to supplement their diet (Khalaily *et al.* 2007; Barzilai and Getzov 2008). In the smaller MPPNB villages, evidence exists for cultural management of wild animals, such as goats at Beidha (P =

369

80-120) and Abu Gosh (P = 90-150) (Byrd 2005a; Martin and Edwards 2013), and potential domestication of goats and sheep at Shkārat Msaied (P = 80-150), 'Ain Abu Nekheileh (P = 90-150) and Wadi Hamarash I (P = 150-220) (Henry *et al.* 2002; 2003; Henry and Albert 2004; Gkotsinas and Karathanou 2013; Kinzel 2013). Domesticated goats were identified at larger villages, such as Ghwair I (P = 400-610) (Simmons and Najjar 2006), whilst domesticated sheep may also have been identified at Tell Ghoraifé I (P = 1,090-2,040) and Wadi Shu'eib (P = 1,090-2,040) (Van Zeist and Bakker-Heeres 1985; Simmons *et al.* 2001). Both domesticated goats and sheep are present at 'Ain Ghazal (P = 1,460-2,720) and Tell Aswad II (P = 1,820-3,400) (Rollefson *et al.* 1993; Stordeur and Jamous 2009; Martin and Edwards 2013), with both containing evidence for the use of animals for meat and milk production (Makarewicz 2013). Tell Aswad II (P = 1,820-3,400) also produced evidence for domesticated pig earlier in the MPPNB sequence (Helmer and Gourichon 2008).

Based on the estimates achieved in this investigation and the available archaeological evidence for agricultural and pastoral practices, the previously hypothesised group size threshold for the full transition to an agro-pastoralist subsistence strategy (P = 100-750) may be applicable to MPPNB villages, with additional thresholds of at least 370 people suggested for intensified agricultural activities relating to a wider repertoire of plants; and 1,500 people for intensified pastoral practices relating to a wider selection of animals and productive outputs.

Reducing scalar stress and promoting social cohesion

The majority of MPPNB villages exceed thresholds at which strategies are employed to reduce scalar stress and promote social cohesion ($P \ge 150$). Neighbourhoods or distinct clusters of dwellings, separated by open areas, non-residential structures, corridors and/or streets are evident at Beidha (P = 80-120), Shkārat Msaied (P = 80-150), Wadi Hamarash I (P = 150-220), Ghwair I (P = 400-610) and Jericho (P = 1,460-2,720) (Kenyon 1981; Simmons and Najjar 2006; Byrd 2005a; Kinzel 2013; Sampson 2013a). The establishment of clearly defined sectors coincide with evidence for increasing household independence and the emergence of households as economic sub-units (Kuijt and Goring-Morris 2002). Suggested evidence for this is the more formalised and restricted access to dwellings; more ordered interior dwelling space, including greater compartmentalisation to separate areas for specific tasks; and evidence for dwelling based food- and production-related activities. In addition, innovative building techniques enabled the construction of two-storey buildings, such as those at Wadi Hamarash I (P = 150-220) and Ghwair I (P = 400-610) (Simmons and

Najjar 2006; Sampson 2013a), with the former also containing sub-floor channels for water or air ventilation. These contained well-defined areas for living, storage and other activities.

It is suggested that formalised ritual practices may represent another strategy for promoting social cohesion. During the MPPNB, ritual practices intensify and there is remarkable similarity throughout the region, indicating a broad cultural horizon maintained by extensive interactive networks. Typical mortuary practices include primary and secondary burials, skull removal, skull plastering, placement of burials beneath residential floors and association of burials with grave goods (Kuijt and Goring-Morris 2002, pp.394-396). Even within the smaller MPPNB villages, there is evidence for highly formalised ritual practices and symbolic items, including clay anthropomorphic figurines at Beidha (P = 80-120) and Munhata IV-VI (P = 60-150) (Perrot 1966; Byrd 2005a); and large, centrally-located and well-constructed structures, often associated with well-defined open spaces, public staircases, monumental features and burials, such as those identified at Beidha (P = 80-120), Shkārat Msaied (P = 80-150), Wadi Hamarash I (P = 150-220), Mishmar Ha'emeq (P = 160-370), Ghwair I (P = 400-610) and Jericho (P = 1,460-2,720) (Kenyon 1981; Byrd 2005a; Simmons and Najjar 2006; Bocquentin *et al.* 2011; Kinzel 2013; Sampson 2013a).

At Shkārat Msaied (P = 80-150), potential household based ritual activity is evidenced by the regular location of stone cists within dwellings, whilst formalised means of ritual communication are evidenced by numerous incised stone slabs found within ritual contexts (Kinzel 2013). The largest sites at 'Ain Ghazal (P = 1,460-2,720), Jericho (P = 1,460-2,720) and Tell Aswad II (P = 1,820-3,400) (Kenyon 1981; Rollefson *et al.* 1993; Stordeur 2003) provide the most elaborate ritual evidence for this period, with an extensive collection of plastered skulls, and anthropomorphic and zoomorphic figurines comparable to those found in the northern Levant (Kuijt and Chesson 2005). It appears that all MPPNB villages demonstrate mechanisms for social cohesion in the form of intra-village sectoring and ritual activities. However, based on the estimates achieved in this investigation and the available ritual evidence, an additional threshold of around 1,500 people could be suggested for the adoption of highly elaborate ritual practices during this period.

Emerging social complexity

The MPPNB was a period of intensified production, which may reflect the development of skilled occupations and increasing social differentiation. Workshops for the production of beads and other items of personal adornment (Wright and Garrard 2003, p. 277; Bar-Yosef 2005) occur even within smaller villages, as at Shkārat Msaied (P = 80-150) and Wadi Hamarash I (P = 150-220) (Kinzel 2013; Sampson 2013b). In the more arid southern region, a close network of Type 1 villages appears to have been established at Jebel Arqa (P = 80-190), Jebel Rabigh (P = 30-60), Jebel Ragref (P = 60-140) and Jebel Salaqa (P = 40-90) specifically for large scale production of amazonite beads for export (Berna 1995; Fabiano *et al.* 2004). Items made of obsidian, mother of pearl and ornamental shell, even in these extreme southern regions, indicate well-established trade networks extending through to the northern Levant, which would have enabled at least some people to acquire rare and exotic items. Clay tokens and incised stones found at Shkārat Msaied (P = 80-150), Wadi Hamarash I (P = 150-220) and Ghwair I (P = 400-610) (Simmons and Najjar 2006; Kinzel 2013; Sampson 2013b) may have been utilised within these transactions, or could have been used to identify specific individuals or groups (Edwards 2007).

MPPNB people continued to refine naviform core technology to systematically produce high quality stone tools in workshops at Wadi Hamarash I (P = 150-220) and Yiftah'el IV (P = 370-680) (Barzilai and Getzov 2008; Sampson 2013b); and produced large quantities of lime plaster for floor and wall coatings, skull plastering and the manufacture of figurines. Although plaster was widely used during the MPPNB, few sites, including Yiftah'el IV (P = 370-680) and the mortuary site of Kfar HaHoresh demonstrate evidence for limestone production (Goring-Morris et al. 1998; Barzilai and Getzov 2008). These specialist techniques may indicate labour diversification, and potentially reflect an increasingly complex social structure in which individuals, households and the community could enhance skills, wealth and status. As a result, the MPPNB provides the first substantial evidence for a potentially socially and economically stratified community, which could certainly have included authority figures with decision-making powers (P \geq 500) and potentially rival authority figures (P \geq 1,500). These figures may have arisen from the need to disseminate specialist knowledge relating to food acquisition, storage and production, manufacturing processes and ritual activities or from the need to control resources acquisition and distribution (Kenyon 1981; Simmons and Najjar 2006; Bocquentin et al. 2011; Sampson 2013b). Clay tokens and incised stones could represent means of formal identification of these individuals (Edwards 2007). Based on this analysis, it appears that some degree of social complexity may have occurred within all MPPNB villages, regardless of population size.

Figure 9.12. MPPNB population estimates. Error bars show minimum to maximum range of estimates based on site type constants.

Figure 9.13. Distribution of MPPNB villages in the current database indicating population size.
9.3.4 Late Pre-Pottery Neolithic B

LPPNB villages (n = 32) were categorised as Site Type 3: small (≤ 0.5 ha), 4: large (> 0.6-6 ha) and 5: very large (≥ 7 ha) with rectilinear architecture. An additional two sites are of Unknown type (these produced similar estimates to Type 4 villages). Beidha Subphase C2 (0.3 ha) was the only Type 3 village identified for the LPPNB and was estimated at around 180 people (P = 140-220) (Tables 9.5-9.6; Figures 9.14-9.15). Estimates for Type 4 villages (n = 18) range from around 520 people at Tell Rakan I and Wadi Badda (P = 370-680; 1 ha) to around 2,620 people at Tell Aray, Tell Eli III, Tell Ghoraifé I, Tell Labwé and Tell Ras Shamra V C (P = 1,820-3,400; 5 ha). Type 5 villages ("mega-sites") first occur during the LPPNB. Estimates range from around 3,640 people at 'Ain Jamam and Khirbet Hammam (P = 3,070-4,400; 7 ha) to around 8,330 people at the combined site of Tell 'Ain el-Kerkh and Tell el-Kerkh II (P = 7,010-10,050; 16 ha).

Changing subsistence practices

The smallest LPPNB village (Beidha: P = 140-220) displays evidence for an agropastoralist subsistence strategy involving domesticated barley and emmer, and domesticated goats, although inhabitants still relied heavily on hunting activities to supplement their diet (Byrd 2005a; Martin and Edwards 2013). All other villages produced mean population estimates comparable to or greater than the upper end of the size threshold proposed for the full transition to an agro-pastoralist subsistence strategy (P = 750). These villages demonstrate evidence for a predominantly agropastoralist subsistence strategy involving intensive cultivation of wild and domesticated plants, such as barley, emmer, chickpea, lentil and flax (Colledge and Conolly 2007; Weiss and Zohary 2011); and pastoral practices relating to domesticated goats and sheep (Martin and Edwards 2013). Evidence exists for possible cattle domestication at some of the larger sites, as at Tel Tif'dan (P = 1,090-2,040), Tell Labwé (P = 1,820-3,400) and Basta (P = 5,690-7,850) (Martin and Edwards 2013). At several sites, including el-Hemmeh (P = 530-800), Tel Tif'dan (P = 1,090-2,040), Tell Ras Shamra V C (P = 1,820-3,400), 'Ain Jamam (P = 3,070-4,400), es-Sifiya (P = 3,500-5,030) and 'Ain Ghazal (P = 4,380-6,280) evidence exists for the use of animals for meat and milk production (Makarewicz 2009; 2013). An assessment of population sizes produced in this investigation and the archaeological evidence for agricultural and pastoral practices during the LPPNB indicates that the previously hypothesised group size threshold relating to the transition to a fully agro-pastoralist subsistence strategy (P =100-750) may be suitable for inferring such developments within LPPNB villages, with

villages of population sizes comparable to or exceeding the upper limit considered to rely predominantly on agro-pastoralist subsistence strategies.

Reducing scalar stress and promoting social cohesion

Mechanisms for promoting social cohesion within LPPNB villages include the continuation and elaboration of ritual and symbolic practices, which promoted a sense of community, created a collective cultural conscience and enhanced territorial ties. This is evidenced by large ritual buildings and other non-residential structures associated with open and communal areas within the majority of sites, such as Beidha (P = 140-220), Ba'ja (P = 580-610), el-Hemmeh (P = 530-800), Yiftah'el III (P = 550-1,020), Motza Tahtit (P = 730-1,360) and 'Ain Ghazal (P = 4,380-6,280) (Rollefson 1998a; Byrd 2005a; Barzilai and Getzov 2008; Kinzel 2013; White 2013; Mizrahi 2015). Distinctive circular ritual structures have also been uncovered at 'Ain Ghazal and Beidha (Rollefson *et al.* 1993; Rollefson and Kafafi 1997; Byrd 2005a).

Typical LPPNB mortuary practices included both primary and secondary burials, individual and collective burials, association of burials with residential structures and grave goods, and a persistence of skull removal in the central Levant. More elaborate practices involved unique grave goods (i.e. a fox mandible at Motza Tahtit: P = 730-1.360) (Lazaridis et al. 2016): the insertion of infant bones into wall niches at Tel Tif'dan (P = 1,090-2,040) (Bennallack 2012); the ritual decoration of walls with red paint at Ba'ja (P = 580-610), Yiftah'el III (P = 550-1,020), Tell Labwé (P = 1,820-3,400) and 'Ain Ghazal (P = 4,380-6,280) (Rollefson and Kafafi 1997; Barzilai and Getzov 2008; Ibañez et al. 2012; Kinzel 2013); more frequent geometric objects; and highly detailed anthropomorphic and zoomorphic figurines, including a white quartz crystal human figurine with incised red ochre eyes, neck and head uncovered at es-Sifiya (P = 3,500-5,030) and a similar example from Ba'ja (P = 580-610) (Mahasneh 1996, p.140; Kuijt and Chesson 2005). The widespread distribution of these standardised and highly formalised ritual practices and symbolic items, indicates a broad cultural horizon supported by large interactive networks of settlements with similar ideologies and cultural practices. This high degree of regional cohesiveness may be reflected in the general lack of evidence for inter-village conflict despite the rapid regional population growth and expansion that had occurred since the MPPNB (Kuijt and Goring-Morris 2002).

Another method for promoting cohesion within larger populations is via intra-village fissioning or sectoring into neighbourhoods and household units. These strategies allow people to more easily monitor each other, ensuring that each community member

fulfils their responsibilities (Dunbar 1992). Neighbourhoods are indicated by clusters of dwellings, separated by open areas, corridors, streets and non-residential structures at the majority of villages, including Beidha (P = 140-220), Ba'ja (P = 580-610), Beisamoun (P = 5,910-8,480) and Basta (P = 5,690-7,850) (Hermansen and Gebel 1996; Byrd 2005a; Nissen 2006; Bocquentin *et al.* 2011; Kinzel 2013). As all LPPNB villages exceed the previously hypothesised threshold at which mechanisms are introduced for social cohesion (P \geq 150), this threshold could be applied to infer such developments during this period. Based on the population estimates achieved in this investigation and the available archaeological evidence, an additional threshold of around 500 people may coincide with the intensification and elaboration of ritual practices during the LPPNB.

Emerging social complexity

Households appear to form the main socio-economic unit during the LPPNB (Banning 2003). Dwelling form, access and interiors became increasingly systematised, enabling higher density construction and larger dwelling occupant numbers. Dwelling unit size estimates achieved for LPPNB Type 3 (3.9-6.4 people) and 5 (4.7-8.4 people) villages in this investigation indicate that dwellings within these sites may have been inhabited by large nuclear or extended families (Table 9.6). These dwellings contained evidence for dwelling and/or household based production-related activities, and a considerable amount of storage, indicating a high degree of household control of resources and production. Dwelling based workshops have been uncovered at several sites, including those for large-scale sandstone ring production at Ba'ja (P = 580-610) (Kinzel 2013); bead production at Beidha (P = 140-220) (Byrd 2005a), el-Hemmeh (P = 530-800) (White 2013), Tel Tif'dan (P = 1,090-2,040) (Bennallack 2012), 'Ain Jamam (P = 3,070-4,400) (Makarewicz 2009) and al-Baseet (P = 3,290-4,710) (Fino 1997); and woodworking at es-Sifiya (P = 3,500-5,030) (Mahasneh and Gebel 1998). The presence of household based industry suggests hereditary specialist knowledge and could support interpretations of a shift in economic focus towards house-based societies (Gebel 2002; Gillespie 2007). However, Baird et al. (2016) argue that these household economic units probably formed an important part of an overarching supra-household economic group.

The promotion of individual and household economic interests, a high degree of skills specialisation and elaborate ritual practices are all considered evidence of an increasingly complex social structure ($P \ge 250$), potentially including authoritative figures with decision-making powers ($P \ge 500$). Population estimates for all LPPNB villages, except Beidha (P = 140-220), which also demonstrates these characteristics,

exceed the previously hypothesised group size thresholds for these developments. The potential presence of these characteristics within all LPPNB villages probably reflects cumulative culture, as well as the extensive interactive networks that had existed in the region for several centuries. Many villages (i.e. Ba'ja; Jebels Arqa, Ragref, Rabigh and Salaqa, etc.) appear to have focussed on a limited number of economic activities and it was through these broader networks that they would have been able to acquire additional necessary and luxury resources.

There appears to have been massive population expansion during the LPPNB, reflecting large-scale population aggregation within very large Type 5 villages ("megasites") (P > 3,000). It is suggested that rival authoritative figures may have arisen within populations greater than 1,500 people, potentially producing politically stratified communities. This may be evidenced by clearly defined and distinct habitation zones within some settlements (i.e. Ba'ja, Basta and Beisamoun). However, deducing such developments from the available archaeological evidence is problematic and requires further research.

It is hypothesised that innovative methods aimed at improving sustainability and living conditions would be introduced within populations of at least 3,000 people. LPPNB innovations relating to water management included barrage construction at Wadi Badda (P = 370-680) (Fujii 2007), and possible intentional irrigation at Ba'ja (P = 580-610) (Kinzel 2013) and el-Hemmeh (P = 530-800) (White 2013). It appears that innovative methods occurred within smaller populations (P \geq 370). This could further reflect cumulative culture and/or the close ties that existed between LPPNB communities, providing additional impetus for assessing the aggregate populations of clusters of settlements rather than individual village populations.

Figure 9.14. LPPNB population estimates. Error bars show minimum to maximum range of estimates based on site type constants.

Figure 9.15. Distribution of LPPNB villages in the current database indicating population size.

9.3.5 Pre-Pottery Neolithic C

PPNC villages (n = 19) were categorised as Site Type 4: large (0.6-6 ha) and 5: very large (≥ 7 ha) villages with rectilinear architecture. An additional two sites are of Unknown type (these produced similar estimates to Type 4 villages). Estimates for Type 4 villages (n = 14) range from around 520 people at Tell Roim West IV (P = 370-680; 1 ha) to around 3,140 people at Tell 'Ain el-Kerkh/Tell el-Kerkh II and Wadi Shu'eib (P = 2,190-4,080; 6 ha) (Tables 9.5-9.6; Figures 9.16-9.17). Estimates for Type 5 villages (n = 3) range from around 3,640 people at Basta (7 ha) and Beisamoun (P = 3,070-4,400; 7 ha) to around 4,170 people at 'Ain Ghazal (P = 3,500-5,030; 8 ha³).

Changing subsistence practices

By the PPNC, archaeological evidence suggests that most central and southern Levantine villages were predominantly reliant on an agro-pastoralist subsistence strategy (Colledge and Conolly 2007; Weiss and Zohary 2011; Makarewicz 2013; Martin and Edwards 2013). A wide variety of domesticated plant forms, including emmer, barley, naked wheat, einkorn, cereals, lentils, flax and legumes have been identified at Wadi Fidan C (P = 480-1,120), Tell Ramad II (P = 950-1,770), Atlit-Yam (P = 1,090-2,040) and Tell Labwé (P = 1,280-2,380) (Galili *et al.* 2004; Colledge and Conolly 2007; Weiss and Zohary 2011; Ibañez *et al.* 2012).

Use of domesticated goats and sheep for meat and milk production were common (Makarewicz 2009; 2013). High frequencies of cattle bones indicate intensive hunting or pastoral practices relating to cattle at several sites, including Atlit-Yam (P = 1,090-2,040), Tell Labwé (P = 1,280-2,380) and Tell Teo (P = 1,280-2,380) (Galili *et al.* 2004; Bocquentin *et al.* 2011; Ibañez *et al.* 2012). Similarly high frequencies of pig bones have been identified at Atlit-Yam (P = 1,090-2,040), Hagoshrim VI (P = 1,280-2,380) and 'Ain Ghazal (P = 3,500-5,030) (Wasse 2002; Galili *et al.* 2004; Haber and Dayan 2004). The coastal inhabitants of Atlit-Yam (P = 1,090-2,040) also exploited large quantities of fish and may have kept domesticated dogs and cats (Galili *et al.* 2004). Estimates for all PPNC villages are within or exceed the previously hypothesised group size threshold for adoption of a fully agro-pastoralist subsistence strategy (P = 100-750), indicating that this may be a suitable threshold for inferring this development with PPNC villages. Additional thresholds of around 500 people for intensified agricultural

³ A site extent of 12 hectares is proposed for PPNC 'Ain Ghazal (Rollefson *et al.* 1992, p.446). However, given the prolonged population demands on local resources, evidence for increased aridity, and evidence for decreased population density, including a reduction in expenditure on construction and maintenance of domestic architecture and greater allocation of space for domesticated animals, a reduced site extent of eight hectares is utilised in this investigation (Kuijt and Goring-Morris 2002, pp.414-415; Zielhofer *et al.* 2012, p.439).

practices and around 1,000 people for intensified pastoral practices could be applied to the PPNC.

Reducing scalar stress and promoting social cohesion

Evidence for mechanisms to promote social cohesion in the PPNC is similar to that suggested for the LPPNB. This includes standardise and highly formalised ritual and mortuary practices, such as primary and secondary burials, individual and group burials, association of burials with residential structures, wall decoration, grave goods and anthropomorphic and zoomorphic figurines (Rollefson *et al.* 1993; Rollefson and Kafafi 1997; Galili *et al.* 2004; Kuijt and Chesson 2005; Barzilai and Getzov 2008; Ibañez *et al.* 2012). Distinctive circular ritual structures appear at Atlit-Yam (P = 1,090-2,040) (Galili *et al.* 2004), similar to those of LPPNB 'Ain Ghazal and Beidha (Rollefson *et al.* 1993; Rollefson and Kafafi 1997; Byrd 2005a).

Household socio-economic units appear to be well-established by the PPNC. This is reflected by the multi-storey structures with formalised layout, restricted dwelling access and evidence for dwelling based food-related and economic activities. The designation of space for specific activities and the sustained distinction between public and private space would have mitigated some of the effects of social crowding within these densely packed settlements (Banning 2003). More substantial evidence for community segmentation beyond the household level occurs at Atlit-Yam (P = 1,090-2,040) and 'Ain Ghazal (P = 3,500-5,030), where long walls dissect the settlements (Goring-Morris and Belfer-Cohen 2008).

Estimates for all PPNC villages exceed the previously hypothesised group size threshold for the introduction of mechanisms for promoting social cohesion ($P \ge 150$). An additional threshold of around 1,000 people could be suggested for inferring more substantial attempts at community segmentation.

Emerging social complexity

All PPNC villages included in this investigation have population estimates that exceed previously hypothesised thresholds for increasingly complex social structures ($P \ge 250$) and the presence of individuals or groups with authoritative, decision-making powers ($P \ge 500$). This could explain the widespread presence of labour intensive agro-pastoralist practices, which required relatively large and organised populations (Fletcher 1981; Kuijt and Goring-Morris 2002).

Increasingly specialised techniques for manufacturing stone tools and items of personal adornment (i.e. beads, bracelets, pendants and buttons) from stone, bone, shell and mother of pearl, may reflect labour differentiation, with such items potentially acting as identity markers for specific individuals and/or groups (Rollefson *et al.* 1993; Rollefson and Kafafi 1997; Simmons *et al.* 2001; Wright and Garrard 2003, p. 277; Galili *et al.* 2004; Bar-Yosef 2005; Barzilai and Getzov 2008; Bocquentin *et al.* 2011; Nadel and Nadler-Uziel 2011; Ibañez *et al.* 2012).

The construction of water wells at Atlit-Yam (P = 1,090-2,040) (Galili et al. 2004) required specialist hydrological knowledge and an organised work force, possibly suggesting some form of managerial role. A recent discovery of a megalithic installation at Atlit-Yam has provided further evidence for large-scale, organised communal activity (Eshed and Galili 2011, p.409) (Figure 9.18). The maintenance of extensive trade networks and creative developments, such as game boards (Rollefson et al. 1993; Rollefson and Kafafi 1997), indicate production surplus and time for leisure activities, which are usually associated with prosperous communities. However, this prosperity was probably not equally distributed, as is evidenced by differential displays of wealth, particularly in burial contexts (Rollefson et al. 1993; Rollefson and Kafafi 1997; Galili et al. 2004; Kuijt and Chesson 2005; Barzilai and Getzov 2008; Ibañez et al. 2012). This evidence for social inequality could provide support for the interpretation of these sites as increasingly stratified and hierarchical. As for the LPPNB, rival authority figures may even have occurred within the largest settlements ($P \ge 1.500$). This may be evidenced by long-running walls that effectively dissected settlements into distinct sectors, as at Atlit-Yam (P = 1,090-2,040) and 'Ain Ghazal (P = 3,500-5,030) (Goring-Morris and Belfer-Cohen 2008).

An assessment of PPNC village population estimates produced in this investigation and the available archaeological evidence indicates that previously hypothesised thresholds relating to social complexity ($P \ge 250$) and the rise of authoritative figures ($P \ge 500$) may be suitable for inferring such processes within PPNC communities. An additional threshold of around 1,000 people could be suggested for inferring innovative developments requiring highly specialist hydrological knowledge (i.e. well construction).

Figure 9.16. PPNC population estimates. Error bars show minimum to maximum range of estimates based on site type constants.

Figure 9.17. Distribution of PPNC villages in the current database indicating population size.

Figure 9.18. Megalithic installation at PPNC Atlit-Yam (Eshed and Galili 2011, p.409).

Table 9.5. Population and density estimates for central and southern Levantine PPN villages.

Period	ID	Site name	ype	ent (ha)	Final (adult) population			e per (SPF2)	: (m ² al floor irson))C e/ha)
			Site t	ite exte	e	estimate	S	People welling	RADC ssidenti area/pe	SPD (people
				0	Min	Max	Mean	р	Ľ	
ΔN	1 2	'Ain Darat Bir el-Maksur	1 1	0.08 0.20	34 84	74 185	49 123	2.4 2 4	3.62 3.58	608 615
Ч	3	Borj Barajne	1	0.20	84	185	123	2.4	3.58	615
	4	Ein Suhun	1	0.30	126	278	184	2.4	3.58	614
	5	El Aoui Safa	1	0.20	84	185	123	2.4	3.58	615
	6 7	El Hemmen Coshor	1	0.10	69 63	101	81 02	1.2	2.79	846 612
	8	Gildal III	1	0.10	42	93	61	2.4	3.59	613
	9	Gilgal IV	1	0.10	42	93	61	2.4	3.59	613
	10	Hatoula	1	0.20	84	185	123	2.4	3.58	615
	11	Nahal Oren	1	0.05	24	43	32	2.8	3.64	675
	12	Zahrat Adh-Dhra' 2	1	0.20	84	185	123	2.4	3.58	615
	13	Gilgal I	2	0.45	155	290 287	211	4.7	3.00	424 555
	15	Huzug Musa	2	1.00	295	664	425	4.7	3.64	425
	16	Jericho	2	2.50	737	1651	1062	4.7	3.65	425
	17	Netiv Hagdud	2	0.75	215	268	241	4.8	4.53	322
	18	I ell Aswad IA	2	1.00	295	664	425	4.7	3.64	425
B	19 20	Fin Subun	1	0.20	84 126	185	123	2.4	3.58 3.58	615 614
Б	21	El Hemmeh	1	0.10	69	101	81	1.2	2.79	846
Ξ	22	Motza VI	2	0.50	148	330	212	4.7	3.65	425
	23	Mujahiya	2	0.50	148	330	212	4.7	3.65	425
	24	Tell Aswad IB	2	1.00	295	664	425	4.7	3.64	425
	25 26	Tell Qarassa	4 4	1.00	365 365	679 679	523 523	3.8 3.8	3.29 3.29	523 523
	27	Mishmar Ha'emeq	-	1.00	317	751	546	3.5	3.41	546
ш	28	Adh-Dhaman I	1	0.20	84	185	123	2.4	3.58	615
Ā	29	'Ain Abu Nekheileh	1	0.12	86	148	111	2.3	3.56	972
МΡ	30 31	Jehel Arga	1	0.20	79 84	185	97 123	2.1	3.17	407 615
_	32	Jebel Rabigh	1	0.06	26	56	37	2.4	3.57	617
	33	Jebel Ragref	1	0.15	63	139	92	2.4	3.59	613
	34	Jebel Salaqa	1	0.10	42	93	61	2.4	3.59	613
	35	Shkārat Msaied	1	0.20	80	149	109	3.8	3.58	574
	36		2	2.00	<u>590</u> 87	1321	849 117	4.7	3.65	425
	38	Wadi Hamarash I	3	0.23	147	223	185	3.7	3.00	370
	39	'Ail IV	4	1.00	365	679	523	3.8	3.29	523
	40	'Ain Ghazal	4	4.00	1459	2717	2096	3.8	3.29	524
	41	Beisamoun	4	5.00	1823	3396	2619	3.8	3.29	524
	42	Ghwair I Horvet Colil	4	1.325	399	612 1609	506	4.8	3.32	382
	43 44		4 4	2.50	912	2717	2096	3.0 3.8	3.29 3.29	524 524
	45	Khirbet Hammam	4	3.00	1094	2037	1571	3.8	3.29	524
	46	Motza V	4	1.00	365	679	523	3.8	3.29	523
	47	Tell Abu es-Sawwan	4	3.00	1094	2037	1571	3.8	3.29	524
	48	Tell Aswad II	4	5.00	1823	3396	2619	3.8	3.29	524
	49 50	i ell Gnoralte I Wadi Shu'aib	4 1	3.00	1094	2037	15/1	3.8	3.29	524 524
	51	Yiftah'el IV	4	1.00	365	679	523	3.8	3.29	523
	52	Mishmar Ha'emeq	- -	0.50	159	374	272	3.5	3.42	544
	53	Munhata IV-VI	-	0.20	63	152	110	3.5	3.38	550
	54	Nahal Betzet I	-	0.50	159	374	272	3.5	3.42	544
	55	Tel Roim West V	-	0.50	159	374	272	3.5	3.42	544

σ	ID	Site name		~		Final		â	5	
rio			-	ha	(adult)		jr PT2		e (
Ре			þe	ц(р	population			n ⊒ ⊒	υų
			¢ t	ter		estimate	S	ole Ig (Č e
			Site	ě				eol	der ad/	e N
			0)	ite				Ne Pe	R ssic	g
				S	Min	Max	Mean	ð	re	
m	56	Beidha (C2)	3	0.30	141	216	178	5.2	2.96	594
Ž	57	'Ail IV	4	2.00	729	1358	1048	3.8	3.29	524
Ц.	58	Ba'ja	4	1.35	584	610	603	3.5	4.13	664
	59	El Hemmeh	4	1.00	532	795	664	2.7	3.35	664
	60	Er-Rahib	4	3.00	1094	2037	1571	3.8	3.29	524
	61	Jericho	4	4.00	1459	2/1/	2096	3.8	3.29	524
	62 62	Motza Tantit	4	2.00	729 547	1358	1048	3.8 20	3.29	524
	63 64		4	5.00	1823	3306	2610	3.0 3.8	3.29	524
	65	Tell el-Ghafar I	4	1 50	547	1019	786	3.0	3.29	524
	66	Tell Fli III	4	5.00	1823	3396	2619	3.8	3 29	524
	67	Tell Ghoraifé II	4	5.00	1823	3396	2619	3.8	3.29	524
	68	Tell Labwé	4	5.00	1823	3396	2619	3.8	3.29	524
	69	Tell Rakan I	4	1.00	365	679	523	3.8	3.29	523
	70	Tell Ramad I	4	1.50	547	1019	786	3.8	3.29	524
	71	Tell Ras Shamra V C	4	5.00	1823	3396	2619	3.8	3.29	524
	72	Tel Tif'dan	4	3.00	1094	2037	1571	3.8	3.29	524
	73	Wadi Badda	4	1.00	365	679	523	3.8	3.29	523
		Yiftah'el III	4	1.50	547	1019	/86	3.8	3.29	524
	75 76	Ain Ghazai	5	10.00	4379	6283	5206	6.5 6.5	3.40	521
	70 77	Ain Jamam Al-Basoot	5 5	7.00	3000	4397	3044	0.5 6.5	3.40	521 521
	78	Rasta	5	13.00	5693	7854	6773	57	3.40	521
	79	Beisamoun	5	13.50	5912	8480	7028	6.5	3 40	521
	80	Es-Sifiva	5	8.00	3504	5026	4165	6.5	3.40	521
	81	Kharaysin	5	10.00	4379	6283	5206	6.5	3.40	521
	82	Khirbet Hammam	5	7.00	3066	4397	3644	6.5	3.40	521
	83	Tell Abu es-Sawwan	5	10.50	4598	6598	5466	6.5	3.40	521
	84	Tell 'Ain el-Kerkh/II	5	16.00	7007	10052	8329	6.5	3.40	521
	85	Wadi Shu'eib	5	8.00	3504	5026	4165	6.5	3.40	521
	86	Aviel	-	3.00	952	2249	1635	3.5	3.41	545
	8/	Es-Sayyen	-	3.50	1111	2621	1906	3.5	3.42	545
9	00 80	Allit-Yani Fl Hommoh	4 1	3.00	532	2037	664	3.0 2.7	3.29 3.35	524 664
ď	90	Ernemnen Es-Sifiva	4	5.00	1823	3396	2619	3.8	3.29	524
щ	91	Hagoshrim VI	4	3.50	1276	2377	1833	3.8	3.29	524
	92	Tell Abu es-Sawwan	4	5.00	1823	3396	2619	3.8	3.29	524
	93	Tell 'Ain el-Kerkh/II	4	6.00	2188	4075	3143	3.8	3.29	524
	94	Tell Eli III	4	3.50	1276	2377	1833	3.8	3.29	524
	95	Tell Labwé	4	3.50	1276	2377	1833	3.8	3.29	524
	96	Tell Ramad II	4	2.60	948	1766	1362	3.8	3.29	524
	97	Tell Ras Shamra V B	4	3.00	1094	2037	1571	3.8	3.29	524
	98		4	3.50	1276	2377	1833	3.8	3.29	524
	99 100	I EI KOIM West IV	4	1.00	365	679	523	3.8	3.29	523
	100	Viftable III (2)	4 ⊿	6.00 1 E0	2188	4075	3143 796	చ.ర २०	3.29	524 524
	101		4 5	8 00	3504	5026	700 7165	5.0 6.5	3.29	524
	102	Basta (?)	5	7 00	3066	4397	3644	6.5	3.40	521
	104	Beisamoun	5	7.00	3066	4397	3644	6.5	3.40	521
	105	Es-Savveh	-	2.00	635	1498	1089	3.5	3.42	545
	106	Wadi Fidan C	-	1.50	476	1123	817	3.5	3.42	545

Period	Site	Number	Mean		Final		People per dwelling		RADC			SPDC			
	type	of	site		(adult)		-	-	-	(residential floor		(people/h	a)	
		sites	extent		population					are	a/person	m²)			
			(ha)		estimates						-	-			
				Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean
PPNA	All	18	0.44	24	1651	207	1.0	8.0	3.1	1.60	7.65	3.59	286	1006	569
	1	12	0.16	24	278	98	1.0	4.9	2.3	1.60	7.65	3.52	420	1006	638
	2	6	1.02	133	1651	426	2.3	8.0	4.5	2.17	5.62	3.73	286	717	429
EPPNB	All	9	0.62	69	751	315	1.0	8.0	3.5	1.51	10.14	3.43	295	1006	549
	1	3	0.20	69	278	129	1.0	4.9	2.0	1.60	7.65	3.32	420	1006	692
	2	3	0.67	148	664	283	2.8	8.0	4.7	2.17	5.62	3.65	295	664	425
	4	2	1.00	365	679	523	2.2	5.6	3.8	1.78	5.84	3.29	365	679	523
	-	1	1.00	317	751	546	1.2	8.0	3.5	1.51	10.14	3.41	317	751	546
MPPNB	All	28	1.52	26	3396	783	1.2	8.0	3.5	1.49	10.20	3.38	294	1231	543
	1	8	0.15	26	185	94	1.2	4.9	2.5	1.59	7.65	3.53	395	1231	638
	2	1	2.00	590	1321	849	2.8	8.0	4.7	2.18	5.62	3.65	295	661	425
	3	2	0.38	87	223	150	2.9	6.4	4.1	1.91	4.82	3.14	294	592	413
	4	13	2.83	365	3396	1469	2.2	5.8	3.9	1.78	5.85	3.29	301	679	513
	-	4	0.43	63	374	232	1.2	8.0	3.5	1.49	10.20	3.41	315	760	546
LPPNB	All	32	5.21	141	10052	2723	1.2	8.4	4.7	1.51	10.13	3.35	317	795	535
	3	1	0.30	141	216	178	3.9	6.4	5.2	2.33	3.58	2.96	469	719	594
	4	18	2.74	365	3396	1438	2.2	5.6	3.7	1.78	5.85	3.34	365	795	539
	5	11	10.05	3066	10052	5230	4.7	8.4	6.4	2.93	4.04	3.40	438	628	521
	-	2	3.25	952	2621	1771	1.2	8.0	3.5	1.51	10.13	3.42	317	750	545
PPNC	All	19	3.87	365	5026	2036	1.2	8.4	4.1	1.51	10.13	3.32	317	795	533
	4	14	3.44	365	4075	1810	2.2	5.6	3.7	1.78	5.85	3.29	365	795	534
	5	3	7.33	3066	5026	3817	4.7	8.4	6.5	-	-	3.40	438	628	521
	-	2	1.75	476	1498	953	1.2	8.0	3.5	1.51	10.13	3.42	317	749	545

Table 9.6. Population and density estimates per period and site type.

Figure 9.19. Mean population and density estimates per period and site type (1-5). Errors bars display minimum to maximum values.

Figure 9.20. Population estimates per period.

9.4 Summary of population density per period and site type

Minimum, maximum and mean density estimates were produced for all sites in the central and southern Levantine village database (Tables 9.5-9.6; Figure 9.19; Appendix E.5). Dwelling unit size estimates are based on the SPF Method 2 (SPF2), which directly calculates dwelling unit size from constants for the mean residential floor area of complete dwellings (m²). Residential floor area per person (RADC) is derived from estimates of total contemporaneous residential floor area and total population. Population density (SPDC: people/ha) is derived from estimates of total site extent and total population. For sites assessed at the micro-level, estimates are based on the micro-level assessment.

9.4.1 <u>People per dwelling</u>

Dwelling unit size estimates range from around one to 8.4 people, with a mean of 4.3 people (Table 9.6; Figure 9.19). There appears to be a general trend towards larger dwelling unit sizes throughout the PPN. Type 1 villages, which occurred in the earlier PPN periods, produced mean dwelling unit sizes of 2.4 people (range: 1-4.9), suggesting that nuclear families may not have formed the predominant dwelling unit type within all Type 1 villages. This could support the interpretation of some small compounds of circular huts as being inhabited by extended family units in which dwellings were occupied by individuals, pairs or an adult and their offspring (Flannery 1972; Bar-Yosef 1998). However, as dwelling unit sizes are derived from SPF population estimates based on adult occupants only, these unit sizes would be increased following consideration of children.

All other site types recorded dwelling unit sizes that could reflect habitation by nuclear, or perhaps extended, family units. Estimates produced for Type 5 sites (mean: 6.4 people; range: 4.7-8.4 people) could certainly indicate extended family dwelling units. This is consistent with current theory relating to the transition from nuclear to extended family units during the later PPN periods and the notion that extended families may have formed the predominant dwelling unit type within large, rectilinear, highly compartmentalised dwellings typical of later PPN Type 3, 4 and 5 sites (Byrd 1994; Watkins 1990; 1996; Flannery 2002; Rollefson and Kafafi 2013). The almost ubiquitous evidence for household-based production, consumption and storage within these site types further supports this theory.

9.4.2 Residential floor area per person

Estimates of residential floor area per person are relatively consistent throughout the PPN and across all site types (mean range: $3.08-3.7 \text{ m}^2$; total range: $1.59-7.65 \text{ m}^2$), although there appears to be a slight reduction over time (Table 9.6; Figure 9.19). These estimates compare well with those derived for comparable sites in other investigations ($2.16-4.55 \text{ m}^2$ per person) (Hill 1970; Clarke 1974; Kramer 1979; Hayden *et al.* 1996) and the range utilised in RADC population estimates in this investigation ($1.77-5 \text{ m}^2$). The restricted range provides an opportunity to utilise these values in methodologies for estimating population size in future.

The highest mean space allowance was recorded within villages of predominantly curvilinear architecture (Type 1: 3.5 m²; Type 2: 3.7 m²). This may reflect attempts to increase privacy and mitigate the effects of overcrowding within these generally non-compartmentalised structures (Flannery 1972; Brown 1987).

9.4.3 People per hectare

Population density estimates for type classed sites range from around 290 to 1,230 people per hectare (Table 9.6; Figure 9.19). Despite being based on adult population only, almost all density estimates far exceed the density coefficients previously utilised for estimating PPN Levantine village populations (90-294 people/ha) (Rollefson and Kohler-Rollefson 1989; Kuijt 2000; 2008; Campbell 2009).

Mean density values are relatively consistent throughout the PPN, although greater variability in ranges is evident in earlier PPN periods. Type 1 sites recorded the highest densities (mean: 640 people/ha; range: 400-1,230 people/ha). This reflects the high structural density and limited amount of open space within several Type 1 sites assessed at the micro-level (i.e. el-Hemmeh, Nahal Oren, 'Ain Abu Nekheileh). Population density within Type 2 villages (mean: 430 people/ha; range: 300-660 people/ha) is around 35% lower than Type 1 villages. This is consistent with the theory of allometric growth relating to open circular hut compounds, whereby settlement size increases by the square of population size, resulting in a reduction in population density (Wiessner 1974). Despite higher dwelling unit sizes in Type 2 villages, the population density is considerably lower. This could reflect spatial organisational strategies aimed at reducing social crowding and conflict within these larger settlements. This may be further evidenced by the increasing segregation of household units as indicated by the addition of annexes and sectoring of structures into dwelling clusters or neighbourhoods. This sectoring is evident at Gilgal I (Bar-Yosef *et al.*

2010a; 2010b), Netiv Hagdud (Bar-Yosef *et al.* 1991) and Jericho (Kenyon 1956; 1981).

Type 3 sites recorded low densities (mean: 410 people/ha; range: 290-590 people/ha). This reflects separation between dwelling units and large areas of open and communal space within Type 3 sites assessed at the micro-level (i.e. Wadi Hamarash I, Beidha Subphase C2).

Site Types 4 (mean: 530 people/ha; range: 300-800 people/ha) and 5 (mean: 520 people/ha; range: 440-630 people/ha) recorded comparable densities, reflecting the similarities between the architectural forms and spatial distribution of built and open areas within these settlements.

9.5 Annual population growth rates

Population growth rates were derived from total period length (see calibrated BC date ranges in Table 3.1) and estimates of total population per period (Table 9.7; Figure 9.21). As site detection rates are unknown, the total population estimates cannot be considered estimates of village meta-population. However, they can provide some indication of relative population sizes per period. Estimates indicate annual population growth rates of -0.02% between the PPNA and EPPNB; 3.37% between the EPPNB and MPPNB; 0.37% between the MPPNB and LPPNB; and -0.08% between the LPPNB and PPNC. Average annual population growth throughout the PPN was estimated at 0.91%. This rate compares well with the upper end of Eshed *et al.*'s (2004) estimate for the southern Levant during the NDT (0.5-1%).

There are a number of potential causes for the negative growth rate between the PPNA and EPPNB (-0.02%). Firstly, there is ongoing debate regarding the presence of the EPPNB in the southern Levant and, therefore, it is possible that some sites which could be classified as EPPNB have been assigned to the PPNA or MPPNB (Kuijt 1997; 2003; Khalaily *et al.* 2007). Alternatively, some EPPNB sites may have been erroneously assigned to other periods based on the presence of PPNA or MPPNB cultural indicators. Secondly, chronological boundaries for the PPNA are difficult to define and, thus, the length of the PPNA (c. 1,200 years) may have been overestimated. Thirdly, this negative growth rate could reflect climatic deterioration that occurred in the region at the end of the PPNA, where unstable conditions brought dry periods followed by a gradual improvement in rainfall (Sanlaville 1996; Goring-Morris and Belfer-Cohen 1997). It is suggested that this caused some previously settled communities to revert to a more mobile subsistence strategy (Kuijt and Goring-Morris 2002). The minimal evidence for agricultural practices during the EPPNB indicates that most sites

maintained hunter-gatherer subsistence strategies. A recent study of hunter-gatherer populations in Wyoming and Colorado between 13,000 and 6,000 cal BP revealed a long term annual population growth rate of 0.041% (Bettinger 2016; Zahid *et al.* 2016). Analysis of hunter-gatherer populations elsewhere revealed similar growth rates (Goldewijk *et al.* 2010; Peros *et al.* 2010; Johnson and Brook 2011; Shennan *et al.* 2013). As such, a low growth rate would be expected for the earliest PPN periods, which still relied heavily on hunter-gatherer subsistence strategies.

The high growth rate between the EPPNB and MPPNB (3.37%) could be a reflection of the adoption of agricultural practices, sometime between these two phases, that facilitated (and possibly resulted from) increased populations. There is a considerable increase in the numbers of sites of various sizes, indicating regional population increase (Kuijt and Goring-Morris 2002, p.424). The growth rate is considerably higher than that derived by Eshed et al. (2004) (0.5-1%) for the southern Levant during the NDT and those proposed for early formative villages undergoing the transition to agriculture elsewhere (0.08-0.25%) (Carneiro and Hilse 1966; Hassan 1981; Bandy 2001; Drennan and Peterson 2008). This high growth rate may be partly due to an under-assignment of EPPNB sites (as previously discussed) or an underestimated EPPNB period length (c. 200 years) due to unclear chronological boundaries. However, the high growth rate is consistent with evidence for improved climatic conditions, which facilitated a more sedentary lifestyle, including widespread transition to agriculture, the cultural control of wild animals and increasing adoption of pastoral practices relating to domesticated animals (Frumkin et al. 2001; Colledge et al. 2004; Colledge and Conolly 2007; Weiss and Zohary 2011; Makarewicz 2013; Martin and Edwards 2013). In addition, the increasing transition from curvilinear to rectilinear architecture and the innovation of two-storey building enabled more efficient use of settlement area and interior space. Greater compartmentalisation within dwellings may have reduced the perception of social crowding, potentially leading to larger dwelling unit sizes. Indeed, dwelling unit size estimates for MPPNB Site Types 1, 2, 3 and 4 are all marginally higher than estimates for the same site types during the EPPNB (Table 9.6). The high growth rate between the EPPNB and MPPNB could be interpreted as representing a 'boom' period following the introduction of agriculture, which appears to be a universal characteristic of communities undergoing the NDT (Bandy 2005; Whitehouse et al. 2014).

It has been noted that these 'boom' periods are often followed by a period of population decline around 800 years later (Bandy 2005; Whitehouse *et al.* 2014). The length of the MPPNB is generally estimated at around 800 years. If this theory is correct, a lower population growth rate should be expected to occur between the MPPNB and LPPNB.

Indeed, there does appear to be slower annual growth (0.37%) between these periods. Despite this, the total LPPNB population (P = 87,130) is considerably higher than the MPPNB population (P = 21,930). This reflects the considerably larger mean size of sites (MPPNB: 1.52 ha; LPPNB 5.21 ha). This, combined with the reduction in the numbers of small sites, indicates episodes of population aggregation rather than regional population increase (Kuijt 2008a, p.296). Higher settlement populations were facilitated by the widespread transition to rectilinear architecture, which enabled agglomerated, multi-storey construction and larger average dwelling unit sizes (Flannery 1972; 2002; Saidel 1993; Kuijt 2000; Rollefson and Kafafi 2013). Intensified agricultural practices, as well as the widespread adoption of pastoralism would have provided more stable food resources and surplus for trade purposes, improving settlement sustainability (Colledge and Conolly 2007; Weiss and Zohary 2011; Martin and Edwards 2013; Makarewicz 2009; 2013). Refined techniques for cultivation, processing, production and storage would have maximised the nutritional value of food resources and enabled more efficient use of resources, including wood, water and labour. Finally, a series of innovative technologies relating to water (and possibly air) management not only improved agricultural production, but also improved living conditions within these high density settlements, possibly reducing the spread of infectious disease (Köhler-Rollefson and Rollefson 1990; Mahasneh 1996; Kuijt and Chesson 2005; Fujii 2007; Kinzel 2013; White 2013).

There appears to have been a return to negative growth between the LPPNB and PPNC (-0.08%). There are several potential causes for this. Firstly, debate continues as to the presence of a PPNC period in this southern regions, and a number of potential PPNC sites may have been assigned to the LPPNB. Secondly, despite efforts to improve living conditions in the large LPPNB settlements, it is highly probable that without basic sanitation people living within these high density and crowded settlements were subject to a myriad of diseases (Kuijt and Chesson 2005). In addition, it is possible that communities were unable to sustain their daily calorific requirements. The intensive agricultural and pastoral practices that had been in place for at least the previous 1,300 years would certainly have caused some degree of landscape degradation, decreasing agricultural productivity (Köhler-Rollefson and Rollefson 1990). It has been suggested that a combination of such factors forced communities to disperse into smaller groups, migrate or even revert to a more nomadic lifestyle at the end of the PPN (Martin and Edwards 2013).

Table 9.7. Total population and annual population growth rates per period.

					Period		
			PPNA	EPPNB	MPPNB	LPPNB	PPNC
Number of site	es		18	9	28	32	19
Total population	on estimate		3730	2831	21926	87132	38693
Length of peri	od		1200	200	800	700	300
Population inc	rease from preceding	Number	-	-900	19096	65205	-48439
period		Proportion	-	-0.2412	6.7460	2.9738	-0.5559
Annual	Proportion		-	-0.0002	0.0337	0.0037	-0.0008
population growth rate	%		-	-0.02	3.37	0.37	-0.08

Figure 9.21. Total population and annual population growth rates per period.

9.6 Comparison with pre-existing estimates

Pre-existing estimates for 26 sites were compared to the revised estimate ranges produced in this investigation (Figure 9.22). The majority of the pre-existing estimates were produced by Kuijt (2000; 2008a), based on:

- 1. Estimated site area and 90 and 294 people per hectare (Watson 1979, pp.35-47; Kramer 1982, p.162; van Beek 1982, pp.64-65) (Kuijt 2000).
- 2. The mean population of the largest five settlements based on 294 people per hectare (van Beek 1982) (Kuijt 2000).
- 3. Period-based site extents (PPNA: 1 ha; MPPNB: 2.5 ha; LPPNB: 10 ha; PPNC: 5 ha) and 90 people per hectare (Kuijt 2008a).

Campbell (2009, p.137) employed similar density coefficients to estimate the population of 'Ain Ghazal, Basta and Jericho, whilst Rollefson and Köhler-Rollefson (1989, p.75) and Ladah (2006, p.150) used van Beek's (1982) density coefficient to estimate the population of 'Ain Ghazal and Ghwair I, respectively.

Kuijt (2000, pp.82-85) emphasises the use of such estimates for comparative analysis, rather than as absolute representations of population size. However, there are a number of issues with these estimates that may impact the efficacy of any subsequent analysis. Firstly, it appears that the commonly utilised density coefficients are too low for PPN central and southern Levantine villages. In this investigation, the majority of recalculated population density values range from around 400 to 750 people per hectare, despite being based on adult population only. If children were factored into the SPF population estimates, this would further increase the density values achieved in this investigation.

When the commonly utilised density values were applied, this resulted in insufficient population levels in the assessable areas of villages analysed at the micro-level (see Section 10.1.2). Secondly, the application of mean maximum population sizes inflates estimates of smaller sites. Thirdly, the application of period-based site extents does not reflect the variability in settlement size and produces the same population estimate for sites of considerably different sizes. For example, Kuijt (2008a) applied a site extent of one hectare to estimate the population of both PPNA Jericho and Nahal Oren at 90 people each, despite these sites being estimated at around 2.5 hectares (Kenyon 1981, p.238; Bar-Yosef 1986, p.157) and 0.05 hectares (Stekelis and Yizraely 1963; Banning 1998, p.195), respectively. In this investigation, PPNA Jericho was estimated at around 1,060 people (P = 740-1,650), whilst Nahal Oren was estimated at around 30 people (P = 24-43). These estimates more accurately reflect the estimated site extents and the settlement evidence within these sites.

Despite the vastly different methods utilised, almost half of the pre-existing estimates overlap or compare well with the revised estimate ranges. This includes LPPNB el-Hemmeh, which was previously estimated at 900 people based on 90 people per hectare and a suggested average LPPNB site extent of 10 hectares (Kuijt 2008a). In this investigation, el-Hemmeh was estimated at around 660 people (P = 530-800) based on an estimated site extent of one hectare. An additional examples is Ba'ja, which was estimated at 580 to 610 people in this investigation. Gebel and Hermansen (1999, p.19) previously estimated the population of Ba'ja at 400 to 500 people based on a hypothesised 50 to 60 families of eight to 10 people each.

Although these estimates compare well with those derived in this investigation, the purpose underlying the reconstruction of the pre-existing estimates is generally not aimed at precision or accuracy, and the underlying methodologies are generally not sufficiently explained or justified. Conversely, the estimates produced in this investigation are based on detailed assessment of the structural remains of several villages and statistical analyses of various population parameters, which enabled the development of a site type classification system and constants specifically aimed at producing absolute population estimates. These constants were applied to individually estimated site extents to produce mean and absolute minimum and maximum population estimates for each site. The more empirically and statistically robust methodology employed in this investigation has produced far more precise and accurate estimates than previously existed.

Figure 9.22. Comparison of revised and pre-existing estimates.

9.7 Proposed formulae for estimating PPN village populations

Based on the estimates achieved in this investigation, a series of allometric growth formulae are proposed for estimating the minimum, mean and maximum (adult) population size of central and southern Levantine PPN village populations (Table 9.9; Figure 9.24). Scaling exponents for the majority of these formulae are between 0.86 and one. This falls within the range of scaling exponents proposed by Wiessner (1974) for village (b = 1) and urban (b = 0.6667) settlements, with the minimum exponent comparing well to that derived by Naroll (1962) (b = 0.84195).

Assessment of the results indicated that structural density accounted for some of the differences between mean micro-level estimates and mean systematic estimates. In several cases, considerably higher or lower micro-level estimates coincided with considerably higher or lower than average structural density (i.e. 'Ain Abu Nekheileh: 95%, Site Type 1 mean: 64%; Ghwair I: 48% and LPPNB el-Hemmeh: 80%, Site Type 4 mean: 64%). Site type classification would, therefore, benefit from consideration of the degree of structural density. Unfortunately, this was not possible due to the insufficient number of sites available for micro-level assessment and an inability to estimate structural density within the majority of sites in the village database.

Regression analysis was conducted in SPSS to determine the correlation between structural density and the differences between mean micro-level and systematic estimates (Appendix E.3). Regression analysis determines the correlation between an independent variable (i.e. the degree of difference between micro-level and systematic estimates) and dependent variables that may impact the independent variable (i.e. structural density). Pearson's correlation coefficient (*r*) is a measure of the strength of association between these variables. The r^2 value is the percentage of variance explained by the model. This is effectively a proportion value, indicating the percentage of variable (Nau 2017). A significance value (*p*) of less than .05 indicates a significant correlation.

Regression analysis indicated that structural density accounts for 27.4% (r = .523; $r^2 = .274$; p = .066) of the differences between mean micro-level estimates and systematic estimates, although the significance value is above the significance threshold (Table 9.8; Figure 9.23).

Unfortunately, due to the variable relationship between structural density and the difference between mean micro-level and systematic estimates, a standard formula, or addition to the formulae, could not be derived to account for differences in structural density. As such, it is suggested that the mean formulae correspond to the mean

structural density. Where higher or lower than average density occurs, the maximum and minimum formulae, respectively, may produce more accurate population estimates.

Table 9.8. Correlation between structural density and the difference between mean micro-level and systematic estimates.

Pearson Correlation (r)	.523
R Square (r ²)	.274
Sig. (2-tailed) (<i>p</i>)*	.066
Ν	13

* p < .05 = significant correlation.

Figure 9.23. Correlation between structural density and the difference between mean microlevel and systematic estimates.

Table 9.9. Proposed allometric grow	wth formulae for estimating PPN village population	ns
indicating average structural density	y corresponding to the mean formulae.	

Site type		Formulae		Structural density
	Minimum	Mean	Maximum	corresponding to
				mean formula (%)
1	$P = 346A^{0.8638}$	P = 535A ^{0.9139}	P = 825A ^{0.9466}	64
2	$P = 300A^{0.9395}$	P = 419A ^{0.9634}	$P = 628A^{1.0023}$	42
3	P = 237A ^{0.6105}	P = 288A ^{0.5635}	$P = 324A^{0.4768}$	61
4	$P = 383A^{0.9626}$	P = 527A ^{0.9927}	P = 666A ^{1.0111}	64
5	$P = 438A^{0.9997}$	P = 520A ^{1.0004}	$P = 646A^{0.9863}$	77
Universal	P = 384A ^{0.976}	P = 539A ^{0.96}	P = 723A ^{0.9256}	62

Figure 9.24. Allometric growth formulae for reconstructing minimum, mean and maximum population estimates for central and southern Levantine PPN villages.

9.8 Summary

All PPN central and southern Levantine settlements and settlement phases identified as villages (n = 106) were categorised into five site types specifically for the purpose of reconstructing population estimates. These include Type 1: small (< 0.4 ha) (n = 23)and Type 2: large (\geq 0.4 ha) (n = 10) villages with predominantly curvilinear architecture; and Type 3: small (≤ 0.5 ha) (n = 3), Type 4: large (0.6-6 ha) (n = 47) and Type 5: very large (\geq 7 ha) (*n* = 14) villages with predominantly rectilinear architecture. The remainder of villages were of Unknown type (n = 9). Type 1 and 2 villages occur only in the earlier PPN (PPNA-MPPNB), whilst Type 4 and 5 villages occur in the later PPN (MPPNB-PPNC). Type 3 villages occur during the MPPNB and LPPNB. A tendency to assign larger site extents to settlements with rectilinear architecture may have resulted in the incorrect assignment of several potential Type 3 villages as Type 4 villages. Accurate site extent estimates are essential for producing more precise population estimates, as there is often a strong correlation between site extent and population size. Attempts were made in this investigation to establish the most precise site extents from the available information. However, more detailed assessment of site extent in the field and using geographical information systems would be beneficial for further demographic studies.

An assessment of population estimate ranges and statistical analysis of the differences between micro-level and systematic estimates identified three suitable methods for final estimate reconstruction of type classed sites: the storage provisions formulae (SPF), the settlement population density coefficient method (SPDC) and Wiessner's (1974) village allometric growth formula (AGF2). For sites of Unknown type, analysis indicated that the storage provisions formula (SPF) was the only suitable method.

An assessment of the revised population estimates and the available archaeological evidence confirmed several previously hypothesised group size thresholds relating to changing subsistence practices, mechanisms for reducing scalar stress and promoting social cohesion, and the emergence of social complexity. In several cases, developments occur at lower than expected population sizes. This could reflect cumulative cultural evolution and/or the extensive networks that existed throughout the PPN, with several smaller settlements and possibly nearby nomadic groups effectively acting as a larger interactive population. The precise population estimates produced in this investigation and the detailed archaeological evidence for several sites present a unique opportunity to hypothesise about further group size thresholds specifically relating to intensified agricultural and pastoral practices, the elaboration of ritual practices, and innovative technological developments, including architectural transitions, manufacturing processes and water or air management.

A summary of density estimates per site type revealed limited variation in residential floor area per person (mean: 3.08-3.7 m²), though did highlight distinct differences in dwelling unit sizes and population density. The results indicate that Type 1 sites may not have been predominantly occupied by nuclear family dwelling units (range: 1-4.9 people), with estimates for Type 5 sites providing the best evidence for extended family dwelling units (range: 4.7-8.4 people). Despite the low dwelling unit sizes in many Type 1 sites, these demonstrated the highest population density (range: 400-1,230). All mean density estimates (320-930 people/ha) exceed the commonly utilised density coefficients of 90 to 294 people per hectare, despite being based on adult population only (Rollefson and Kohler-Rollefson 1989; Kuijt 2000; 2008a; Campbell 2009).

The mean annual population growth rate (0.91%) falls at the upper end of the range proposed by Eshed *et al.* (2004) for southern Levantine populations during the NDT (0.5-1%). A slow, or perhaps negative, annual growth rate between the PPNA and EPPNB (-0.02%) may be linked to climatic deterioration and/or theoretical debate regarding the existence of an EPPNB period in southern regions. Elevated annual growth rates between the EPPNB and MPPNB (3.37%), and through to the LPPNB (0.37%) correspond to the widespread adoption of agricultural practices, followed by pastoral practices, and the transition to rectilinear architecture. Apparent negative annual growth at the end of the PPN (-0.08%) could reflect population decline resulting from climatic deterioration, landscape degradation and infectious disease, or a combination of these (Köhler-Rollefson and Rollefson 1990; Kuijt and Chesson 2005).

A comparison of the pre-existing estimates with the revised estimates proposed in this analysis revealed variable differences. Several methodological issues relating to the previous estimates were highlighted, including the almost ubiquitous use of density coefficients that were found to be too low in this investigation. In addition, site extents were often not sufficiently assessed or period-based site extents were systematically applied to settlements of vastly different sizes, producing the same population estimates for these sites. Due to issues associated with the pre-exiting estimates, interpretations based on these estimates should be re-examined.

Based on the final estimate ranges produced in this investigation, a series of allometric growth formulae are presented to estimate minimum, mean and maximum (adult) population sizes for PPN villages in future. Structural density was found to have some impact on differences between micro-level and systematic estimates. As such, the mean formulae are suggested to correspond to the mean structural density values. Minimum (lower than average) and maximum (higher than average) formulae could be utilised where structural density is identified as differing from the average.

10 Theoretical and Methodological Implications

The aim of this thesis was to completely revise the manner in which population estimates of PPN villages are reconstructed, with a view to producing more precise and accurate estimates for subsequent demographic analyses. This aim was based on the recognition that pre-existing population estimates for PPN villages are underpinned by limited theoretical and methodological frameworks as these estimates were constructed for comparative analyses rather than as absolute demographic data.

The reluctance to produce absolute estimates in previous investigations has stemmed from the myriad of theoretical and methodological difficulties involved. Some of the major issues considered in this investigation relate to the dichotomy between public and private space and the ability to identify residential as opposed to non-residential areas, particularly within earlier PPN settlements (Watson 1978; Kramer 1982; Watkins 1990; Byrd 1994; 2002; 2005a; Finlayson et al. 2011). Several additional issues addressed in this investigation relate to extrapolating information from the excavated area to make whole site conclusions. Of particular importance are the accuracy of site extent estimates, consideration of the representativeness of the excavated area and the ability to factor uninhabited areas into calculations of population size based on estimated total site extent (Shiloh 1980; Broshi and Gophna 1984; Verhoeven 2006; Goring-Morris and Belfer-Cohen 2008; Bandy and Janusek 2005; Wossinik 2009; Peterson and Shelach 2012). Unfortunately, due to the constraints of this thesis, some aspects cannot be explored in detail. These include changes in population size relating to the degree of sedentism of some community members and periods of settlement aggregation related to cultural events or seasonal activities (Verhoeven 2006).

This analysis focuses on a re-evaluation of current theory relating to PPN village population density, including an assessment of assumptions regarding dwelling unit size and composition, and the use of ethnographically derived population density coefficients to estimate population. The major methodological contributions of this investigation are highlighted, including a discussion of the new method developed in this investigation: the storage provisions formulae (SPF); and the use of Bayesian chronological modelling to estimate building use-life and phase length for reconstructing structural contemporaneity values. The new classification system for PPN village populations in future. The limitations and opportunities relating to these methodological approaches are outlined.

The population estimates derived in this investigation provide opportunities to explore numerous aspects of human social development. In this research, archaeological

evidence is interpreted in light of the revised population estimates to determine the validity of previously hypothesised group size thresholds and to establish additional potential thresholds relating to three major aspects of cultural evolution during the NDT: changing subsistence practices; mechanisms for reducing scalar stress and promoting social cohesion; and emerging social complexity.

10.1 Re-evaluation of theory relating to PPN village population density

10.1.1 Dwelling unit size and composition

It has long been argued that PPN central and southern Levantine villages comprised predominantly nuclear family dwelling units, with larger compartmentalised structures perhaps accommodating extended families (Kramer 1982; Banning and Byrd 1987; Rollefson and Köhler-Rollefson 1989; Düring 2001; Byrd 2002; 2005a; Kuijt *et al.* 2011; Rollefson and Kafafi 2013). These assumptions are largely based on ethnographic analogies with 20th Century villages and towns in Southwest Asia (Sweet 1960; Wright 1969; Antoun 1972; Kramer 1979; 1982; van Beek 1982). However, the application of these conceptually defined terms and the use of these ethnographic comparatives is questionable given the potential variability in PPN dwelling unit types and the differences that occur between settlements.

Flannery (1972; 2002, p.417) identified two main types of village settlement. The first comprised small compounds (usually of circular huts) with shared storage, accommodating extended family groups with dwellings occupied by individuals and smaller units. Flannery defines the second type as "true villages". These comprise large compounds of houses (usually rectilinear) of a sufficient size to accommodate nuclear family dwelling units and associated with private storage facilities. These two settlement types are roughly analogous to PPN settlements, although some sites with curvilinear architecture, particularly during the MPPNB (i.e. Shkārat Msaied and 'Ain Abu Nekheileh) also have evidence for private storage facilities, reflecting an increasing dependence on agriculture during this period (Wills 1992; Kuijt 2008a).

Finlayson *et al.* (2011, p.131) argue that the variability in structural forms and sizes within PPN settlements with curvilinear architecture does not indicate a standardised domestic unit type. At some sites, particularly during the PPNA, there is limited evidence to suggest a specifically residential purpose for any structure (i.e. PPNA WF16 and Jerf el Ahmar) (Finlayson *et al.* 2011). In this investigation, some sites demonstrate a clearer distinction between residential and non-residential structures (i.e. PPNA Nahal Oren, PPNA Gilgal I and MPPNB Shkārat Msaied) (Noy *et al.* 1973;

Noy 1979; 1989; Bar-Yosef 1998; Jensen *et al.* 2005; Hermansen *et al.* 2006; Goring-Morris and Belfer-Cohen 2008; Rosenberg 2008; Bar-Yosef *et al.* 2010a; Kinzel 2013). Within some settlements, the clustering of relatively small, single-celled, curvilinear structures with undifferentiated floor space has been interpreted as representing occupation by individuals, pairs or other small units as part of an extended family (i.e. PPNA Nahal Oren and PPNA/EPPNB el-Hemmeh) (Finlayson 1972; 2002; Bar-Yosef 1998). Larger and occasionally compartmentalised structures have been interpreted as representing larger co-resident groups, potentially comprising nuclear family units (i.e. PPNA Gilgal I, PPNA Netiv Hagdud, MPPNB Shkārat Msaied and MPPNB 'Ain Abu Nekheileh) (Bar-Yosef *et al.* 1980; 1991; Henry *et al.* 2003). Where evidence exists for dwelling-based food-related activities, including private storage facilities, these dwelling units are often considered to represent economically independent households (Rosenberg 2008). However, Baird *et al.* (2016) argue that these institutionalised household units probably formed part of supra-household economies.

The shift from curvilinear to rectilinear architecture has been associated with the transition from co-resident extended family settlements engaged in communal subsistence strategies to more economically independent and competitive nuclear family units (Saidel 1993). Rectilinear architecture is more adaptable than curvilinear architecture, enabling more defined separation between residential units; greater compartmentalisation of space and activities within these units; and the ability for both horizontal and vertical expansion of structures as needed (Flannery 1972). This architectural transition has been related to a breakdown of the close ties that existed within extended family units due to population growth (Saidel 1993). It is suggested that large extended families split into smaller nuclear family units, each of whom were responsible for the risks and rewards of family-based production (Flannery 1972; 2002). Productive family units would have gained economic advantage over their less productive neighbours (Saidel 1993; Flannery 2002). The increasing separation between public and private space and restrictions on accessibility of stored goods that were kept in permanent storage facilities within these dwellings may reflect strategies to avoid jealousy and conflict with these neighbours (Wiessner 1982).

More elaborate rectilinear residential architecture (including multi-storey construction) is considered by some to reflect the emergence of extended family households, whose combined labour investments significantly increased productive outputs (Rollefson and Kafafi 2013). These units have been interpreted as families of prestigious ritual leaders and highly productive agricultural investors (Kuijt 1995). In ethnographic contexts, dwellings occupied by multi-family households usually have multiple sets of features, including hearths, kitchens and storage facilities, as well as additional rooms

constructed to house offspring and their families (Starna 1980; Kramer 1982; Flannery 2002). 'Tri-modal' structures that include (1) small, square rooms, probably for storage; (2) elongated rooms, probably for workshop activities or sleeping; and (3) large rooms, probably courtyard areas for cooking and living are also suggested to represent multi-family units (Flannery 2002, p.426).

Within PPN dwellings with rectilinear architecture, there is little evidence for multiple hearths or other multiple sets of features, except perhaps possible sleeping platforms of the type found at Catalhöyük (Mellaart 1967; Düring 2001). However, multiple storage facilities are commonplace and there is evidence to suggest 'tri-modal' structures at MPPNB Wadi Hamarash I and LPPNB Basta, and possible later additions of rooms at Wadi Hamarash I, MPPNB Ghwair I and LPPNB Ba'ja (Rollefson and Köhler-Rollefson 1989; Gebel and Hermansen 1999; Hemsley 2008; Rollefson and Kafafi 2013; Sampson 2013a). At Basta, and potentially LPPNB el-Hemmeh, horizontal addition of rooms was impossible due to building of houses on adjoining terraces and/or with shared external walls (Nissen 2006). It has been suggested that these houses were constructed based on a predetermined plan that factored in the need to house larger dwelling units. This pre-planning is also evident at Beidha Subphase C2, which comprised relatively standardised two-storey structures across the site (Byrd 2005a). In the majority of cases, there is variable evidence for second storeys and considerable variability in the size and form of structures. This has been interpreted as reflecting increasing social differentiation related to the production capacities of dwelling units of differing size and composition (Kuijt 1995).

In this investigation, dwelling unit size estimates for PPN villages with curvilinear architecture support Finlayson *et al.*'s (2011) argument regarding variability in dwelling unit composition (mean micro-level estimates: 1.2-4.8 people). Estimates derived for PPNA el-Hemmeh (0.9-1.5 people/dwelling) and MPPNB Beidha Subphase B2 (1.5-2.2 people) indicate that dwellings within these settlements may have been predominantly inhabited by individuals or pairs, possibly as part of an extended family unit, supporting assertions made by Flannery (1972; 2002) and Bar-Yosef (1998). In many ways, these settlements more closely resemble those of contemporary hunter-gatherer groups than sedentary agricultural groups, though with more durable architecture (Cook and Heizer 1968; Wiessner 1982; Whitelaw 1991; Flannery 2002). Higher estimates derived for PPNA Gilgal I (2.3-4.7 people), PPNA Netiv Hagdud (4.2-5.3 people) and MPPNB Shkārat Msaied (2.6-4.9 people) indicate larger dwelling units, potentially comprising nuclear families, or perhaps even extended family units.

Mean dwelling unit size estimates for PPN villages with rectilinear architecture (mean micro-level estimates: 2.7-5.7 people) indicate that all dwellings with rectilinear

architecture had the capacity to house nuclear family units. Dwelling unit size estimates of greater than four people could even reflect extended family units depending on the stature of individuals (i.e. MPPNB Ghwair I: 3.8-5.8 people; LPPNB Beidha Subphase C2: 3.9-6.4 people).

It must be emphasised, however, that dwelling unit size estimates relate to adults only as these are derived from SPF population size estimates. If children were factored into these estimates, or if the stature of individuals was less than the human heights employed in Hemsley's (2008) original assessment (1.65 m and 1.83 m), the population size and dwelling unit size estimates would be higher. Conversely, if animals occupied some of the residential area and this could be somehow factored into the estimates, these estimates would be lower. Further work aimed at refining the SPF method to consider the presence of children and animals is essential.

Regardless, the considerable difference between mean dwelling unit size estimates for PPN villages with curvilinear and rectilinear architecture supports arguments relating to the changing composition and function of dwelling units and the relationship between this and architectural form. However, inferences regarding dwelling composition based on these estimates are conjectural and require much more detailed analysis of the spatial distribution of domestic artefacts to determine co-residence patterns (Flannery 2002, p.420; Byrd 2005a, p.121).

Despite Byrd's (2002, p.85) suggestion that household size and composition did not profoundly change throughout the PPN, dwelling unit size estimates achieved in this investigation, together with evidence for variability in architectural forms, subsistence practices and social organisation indicates clear differences throughout the PPN, even within the use-life of individual structures. This analysis has highlighted four broad dwelling unit types, each with their own potential social implications:

- 1. Individual, paired or very small units ($P \le 3$), perhaps as part of an extended family group.
- 2. Small nuclear family units representing the transition from a co-resident extended family group to more economically independent nuclear family units.
- 3. Larger nuclear family units associated with increasing economic competition and differentiation between households.
- 4. Extended family units reflecting well established household based economic practices, social differentiation and social inequality.

An assessment of PPN central and southern Levantine settlements in association with the estimates derived from this analysis indicates that the first three types probably occurred within settlements of predominantly curvilinear residential architecture, whilst settlements with rectilinear residential architecture probably comprise types three and four only.

10.1.2 <u>The settlement population density coefficient (SPDC) method and commonly</u> <u>utilised density values</u>

Almost all pre-existing population estimates for PPN central and southern Levantine villages are based on multiplication of site extent by the same ethnographically derived population density coefficients (Rollefson and Kohler-Rollefson 1989; Kuijt 2000; 2008a; Campbell 2009). The minimum coefficient is usually 90 people per hectare based on research conducted in Iran (Jacobs 1979; Watson 1979; Kramer 1982), whilst the maximum is always based on van Beek's (1982, pp.64-65) estimate of 286 to 302 people per hectare (mean: 294 people/ha) at Tell Marib, North Yemen. Occasionally, a mid-range value of around 150 people per hectare is employed based on Kramer's (1979; 1982) research in Iran and regional ethnographic analyses that indicate general population densities of between 100 and 200 people per hectare (Sumner 1979; Shiloh 1980; Adams 1981; Aurenche 1981; Kramer 1982; Zorn 1994; Wossinik 2009). Ethnographic villages used to derive these density values usually comprise a mixture of nuclear and extended family dwelling units, though the former are more predominant.

This investigation has highlighted several theoretical and methodological issues with this technique. The use of constants derived from ethnographic analyses of mainly Southwest Asian communities is questionable, given the considerably different environmental context and the wide array of modern impacts on settlement layout, including religion, community facilities and infrastructure for health, education and transport (Adams 1981). In addition, these modern villages often accommodate multifamily households residing in compounds with large courtyard areas and rooms larger than those identified within PPN settlements (Kramer 1982). These ethnographic comparatives may be suitable for later PPN settlements that demonstrate similar architectural features and have the capacity for extended family dwelling units. However, they are not suitable for earlier PPN settlements, particularly those with curvilinear architecture.

The SPDC method is based on the assumption that population density is constant within all PPN settlements. The use of standardised density coefficients for all sites clearly does not reflect the great variability in architectural forms and spatial distribution both within and between settlements, or the underlying social conditions and
subsistence practices that influence use of space (Finkelstein 1990, p.50). In addition, application of the commonly utilised SPDC range (90-294 people/ha) produces the same population estimates for sites of equivalent estimated total site extent regardless of intra-site organisation or other impacting factors, such as topographical context, climate or perceptions relating to privacy, space and overcrowding. Further, the large range in these density values results in broad population estimate ranges that become increasingly uninformative as settlement size increases (as for Basta: Figure 10.1). These commonly utilised density coefficients produce maximum population estimates that are around 230% higher than the minimum population estimate. This is far greater than the range produced by the final proposed estimates in this investigation, where the maximum estimate is between 25% and 85% higher than the minimum estimate.

When micro-level population estimates based on the SPDC method were converted to population and dwelling unit sizes in the assessable area, it became apparent that even the maximum commonly utilised value (294 people/ha) may underestimate population (Figure 10.1). Conversion of population estimates based on this value produced dwelling unit sizes of around one or fewer people for seven of the 15 sites assessed, including 'Ain Abu Nekheileh (n = 0.68) and LPPNB el-Hemmeh (n = 1.19). Estimates of two to three people per dwelling were produced for a further six sites, including Beidha Subphase C2 (n = 2.41), Ba'ja (n = 2.29) and Basta (n = 3.19). It is highly improbable that the dwellings within these settlements were occupied by such small units given the evidence for increasing household-based economic activities and the large size of interior space (Gebel and Hermansen 1999; Byrd 2005a; Rollefson and Kafafi 2013).

The converted dwelling unit size estimate produced for Netiv Hagdud, based on the maximum density coefficient (4.36 people/dwelling), suggests that this density value may be suitable for this site. Netiv Hagdud produced the lowest density value in this analysis (286-357 people/ha) due to a combination of low structural density (31.7%) and low structural contemporaneity (60%) values. This low contemporaneity value also resulted in a comparatively lower number of dwellings used to convert the maximum SPDC population estimate to dwelling unit size, resulting in more people per dwelling.

The validity of these converted estimates depends on the accuracy of dwelling identification and structural contemporaneity values. If the number of contemporaneously occupied dwellings was actually fewer than estimated, then the dwelling unit size estimates based on the maximum commonly utilised SPDC would be higher. 'Ain Abu Nekheileh provides a good case study for examining this (see Section 7.1.8). Here, all nine large structures were identified as potential dwellings and a relatively low contemporaneity value of 65% was derived from Bayesian chronological

modelling of phase length and building use-life. At least two of the structures could be re-interpreted as being non-residential: Locus 20 contained high spherulite frequencies, indicating a change of function from a domestic structure to an animal pen at some point (Henry *et al.* 2003, p.12; Henry and Albert 2004, p.91); and Locus 11 has an atypical layout and appears to lack the built-in storage features that exist within most of the other structures. If these structures are removed from the dwelling count, this results in an estimated 4.55 contemporaneous dwellings in the assessable area and an increase in the dwelling unit size based on the maximum SPDC (294 people/ha) to 0.87 people per dwelling (previously 0.68 people/dwelling). To increase this to one person per dwelling, a further dwelling would need to be re-assigned as non-residential, resulting in around four contemporaneous dwellings in the assessable area. Alternatively, a dwelling unit size of one would be achieved if the dwelling count remained the same (n = 9) and a contemporaneity value of around 45% was applied. These adjustments increase the dwelling unit size estimate to the minimum value possible.

However, the final dwelling unit size proposed for 'Ain Abu Nekheileh in this investigation is 1.8 to 2.8 people. Consideration of children in the SPF method would have produced a larger dwelling unit size. To achieve even the minimum estimate (1.8 people), conversion of the maximum SPDC population estimate would need to be based on around 2.2 contemporaneous dwellings in the assessable area, achievable either by:

- 1. reducing the number of dwellings identified in the assessable area to 3.5;
- 2. applying a contemporaneity value of around 25% to the nine dwellings identified; or,
- 3. combining reduced values, for example five dwellings at 45% contemporaneity.

The extent of the site plan and assessment of the architectural features indicates that there were probably more than 2.2 contemporaneous dwellings in this area (see Section 7.1.8). Therefore, the maximum commonly used density coefficient (294 people/ha) appears too low to accurately estimate the population of this site.

This brief assessment provides additional support for the re-evaluation of the commonly utilised density values. As part of this re-evaluation, density values were reconstructed from the final micro-level population estimates produced in this investigation (Figure 10.1). Mean population density estimates ranged from around 320 people per hectare (PPNA Netiv Hagdud) to around 930 people per hectare (MPPNB 'Ain Abu Nekheileh), with an overall mean of around 580 people per hectare. These

density estimates would be higher if children were factored into the SPF population estimates.

The highest densities were recorded for small villages with curvilinear architecture (Type 1). In a cross-cultural analysis of forager communities, Whitelaw (1991, p.151) identified higher densities within settlements occupied by an extended family group, whose social and subsistence strategies were based on cooperative interaction. The high densities recorded in Type 1 villages could support their interpretation as extended family group compounds with a communal subsistence focus (Flannery 1972; 2002; Bar-Yosef 1998).

All except three of the minimum re-calculated SPDCs far exceed the maximum commonly used density coefficient (294 people/ha) and all but two of the maximum re-calculated SPDCs fall within the upper density limit suggested for early agricultural villages (1,000 people/ha) (Fletcher 1981). The majority fall within the range of around 400 to 750 people per hectare. These estimates are comparable to those derived for several hunter-gatherer camps, as well as enclosed Bronze Age and Iron Age settlements (Jeremias 1969; Shiloh 1980; Whitelaw 1983; Zorn 1994; Wossinik 2009; Kennedy 2013).

Figure 10.1. Micro-level estimates of population size and people per dwelling derived from commonly utilised SPDCs, and SPDCs re-calculated from final proposed estimate range.

414

Archaeologists continue to use low density values to estimate PPN village populations despite acknowledging that those with multi-storey structures, potentially occupied by large nuclear or extended families (i.e. Basta and Ghwair I), may have had higher densities than commonly recognised (Kuijt 2000, p.93; Flannery 2002, p.429). This reevaluation of commonly utilised density coefficients has revealed that these are too low to accurately estimate PPN village populations, at least in the central and southern Levant, and that higher values of around 400 to 750 should be applied. If these high densities are characteristic of these villages, this raises a number of questions about how people were able to live in such densely populated settlements without sophisticated water or transport technologies, and calls for further research into the relationship between demographic factors and the causes and consequences of developments in subsistence strategies, architecture, economic practices and social organisation.

10.2 Major methodological contributions

This research incorporates several significant contributions to the methodological framework for reconstructing demographic parameters of central and southern Levantine PPN villages, with far-reaching implications for demographic analyses of comparable settlements in other periods and locations.

A major objective of this research was to explore methods that relied predominantly on archaeological evidence, rather than on assumptions and constants derived from ethnographic research. This objective was based on the recognition that considerable variability exists within both the ethnographic and archaeological records, and that the true comparability between modern and prehistoric settlements can never be verified, making these comparisons somewhat redundant. In addition, micro-level application of commonly utilised ethnographically derived constants relating to population density (i.e. people/dwelling, RADC and SPDC) produced considerably different estimates, highlighting the potential inapplicability of one or more of these constants for estimating and assessing PPN central and southern Levantine village populations. Therefore, this investigation explored and statistically assessed methods based on empirical archaeologists to produce justifiable estimates without incorporating ethnographic assumptions or complicated statistical analyses.

The most robust and valid method identified for micro-level analysis in this investigation was the newly developed storage provisions formula (SPF). This method, combined with a more statistically robust method for establishing structural contemporaneity values from archaeological, ethnographic and experimental research and Bayesian chronological modelling of building use-life and phase length, produced population estimates that are more accurate and precise than the pre-existing estimates. From the estimates produced in this investigation, a site type classification system was developed, enabling constants to be applied to settlement sizes to produce site-specific population estimates for all villages in the PPN central and southern Levantine village database. From these estimates, a series of allometric growth formulae were constructed to estimate population size of comparable settlements in future based on an assigned site type and an estimated total site extent. These methodological contributions are outlined in detail below.

10.2.1 Storage provisions formulae (SPF)

The storage provisions formula (SPF) is a unique method established in this investigation using data produced by Hemsley (2008). Three formulae were constructed correlating available residential floor area (not including access routes, hearths and activity zones) to the maximum number of adult sleeping occupants based on three different amounts of personal annual storage in the residential floor area (none: P = 0.3944A - 0.375; moderate - 0.46 m³: P = 0.2477A + 0.0339; maximum - 2 x 0.46 m³: P = 0.1903A + 0.3976).

The SPF is considered the most valid and robust method in this investigation for several reasons. It is almost exclusively based on archaeological evidence and incorporates fewer assumptions than any other method used for reconstructing population estimates in this investigation. In addition, the SPF method generally produced tighter estimates than other methods, even when applied systematically to all sites in the PPN village database. This was particularly the case when one or more of the formulae could be removed from the final estimate range due to (1) insufficient dwelling unit sizes (i.e. less than one person per dwelling) resulting from application of the formulae; or (2) evidence for or against storage within the residential floor area. Where dwellings were associated with substantial designated storage space separate from the residential floor area (i.e. Beidha Subphase C2 and LPPNB el-Hemmeh), it was suggested that the maximum amount of storage would not occur within the residential floor area. Alternatively, where there was no evidence for permanent storage features either within or separate from structures, it was considered that there would at least have been a moderate amount of more ephemeral storage and, therefore, the formula for no storage was disregarded (i.e. Netiv Hagdud). In addition, this formula was disregarded where a substantial amount of upper storey residential floor area may have been used to access storage units or rooms on the lower floor (i.e. Beidha Subphase C2 and Basta).

An additional benefit of this method is that it is the only one that directly calculates dwelling unit size. However, estimates reflect the average of the maximum number of 1.65 m and 1.83 m tall adults that could sleep facing inwards within a structure. As such, it is possible that there may have been fewer people than estimated depending on the composition of the dwelling unit, use of residential floor area for animals or other factors affecting use of space that have not been accounted for within the formulae. Alternatively, there may have been more people than estimated if people were not concerned with conforming to this particular sleeping pattern or depending on the organisation of space during sleeping hours. In addition, larger dwelling unit sizes than estimated may have been present depending on the stature of individuals. For example, if children were present, an estimate of three people (i.e. 3 adults) could alternatively reflect two adults and two children or even one adult and four very small children. Despite this issue, the measurement of maximum occupant capacity, factoring in spatial use requirements that would have been relatively uniform within dwellings (i.e. hearths, activity zones, storage and access routes), remains a valuable tool for producing estimates of co-resident group size and total population size, and provides multiple avenues for further research of population dynamics at both the household and site level.

A major avenue for investigation relating to the SPF not addressed in this analysis is the role of animals within PPN settlements. Widespread evidence for animal domestication occurs from the MPPNB. It is possible that domesticated animals occupied some of the built area. This could explain the high spherulite frequencies identified in Locus 20 at MPPNB 'Ain Abu Nekheileh (see Section 7.1.8). Tvetmarken (2012) adapted Hemsley's (2008) method, estimating maximum capacity of both humans and animals within the Neolithic built environment in the Zagros. The results indicated a potential correlation between reduced compartmentalisation and the accommodation of animals (mainly small herds of goats) within the built area (Tvetmarken 2012, p.197). Within PPN Levantine settlements, there is a general increase in compartmentalisation, explained as representing increased distinction between public and private areas and attempts to restrict access to and within interior space (Byrd 1994; Kuijt 2000). If reduced compartmentalisation is indeed an indicator of housed domesticated animals, then the built environment at Ba'ja may provide an interesting case study for exploring this.

Faunal evidence at Ba'ja suggests rearing of domesticated goats, which may have formed as much as 80% of the meat diet (von den Driesch *et al.* 2004). Ba'ja is situated

417

within a small intra-montane basin (c. 1.5 ha), surrounded by steep cliffs and slopes, which may have been hazardous for unattended domesticated animals, especially at night or in poor weather conditions (Gebel 2003). In addition, the high altitude would have produced markedly cooler temperatures during winter. There is considerable variation in architectural forms between excavated areas at Ba'ja, with several structures in Areas C and D comprising large, non-compartmentalised roofed floor areas (Bienert and Gebel 2004). It is plausible that domesticated animals were kept within these areas, particularly during the night. Examination of evidence (i.e. spherulites) for the potential use of built area for housing domesticated animals could further help refine the SPF and provide additional avenues for exploring the relationship between humans and animals within these settlements.

10.2.2 <u>Bayesian chronological modelling of radiocarbon dates for reconstructing</u> <u>structural contemporaneity values</u>

A major component of reconstructing accurate population size estimates is the ability to account for structural contemporaneity. This is based on the recognition that all structures identified in the archaeological record may not have been in simultaneous use, even if assigned to the same building phase (Kuijt 2008a). In previous studies, structural contemporaneity values for PPN settlements are not generally proposed or sufficiently justified. In this investigation, contemporaneity values are derived by dividing building use-life by phase length, as proposed by Varien *et al.* (2007). The major contribution of the current research relates to the use of Bayesian chronological modelling of radiocarbon dates to establish span estimates for building use-life and phase length.

Bayesian chronological modelling is becoming commonplace in archaeological investigation, although the method is generally utilised to explore long term or major episodes and events using large radiocarbon datasets. By comparison, building use-life and phase length represent relatively short-term events and the quantity of radiocarbon dates relating to these events is usually small. Only a handful of dates exist for most PPN central and southern Levantine sites, with the largest collections sourced from PPNA WF16 (n dates = 46) (Wicks *et al.* 2016) and PPNA/B Jericho (n dates = 45) (Benz 2013). Unfortunately, information regarding context, sample material and pre-treatment is often omitted from publications and radiocarbon date databases reducing the number of reliable dates for chronological modelling. Further, post-depositional processes, the type of sample material and pre-treatment all create additional methodological problems.

Despite these issues, exploration of basic chronological modelling for Beidha (see Section 6.1.5) and several other villages (i.e. Gilgal I, Netiv Hagdud, Shkārat Msaied, Ghwair I, Wadi Hamarash I, 'Ain Abu Nekheileh, Basta and Ba'ja) (see contemporaneity assessments for each site in Section 7.1) revealed the potential of this method for producing more precise chronological information than that based on archaeological, ethnographic and/or experimental research alone, even with small sets of radiocarbon dates (n dates per site = 3-17). Span estimates were produced via models constructed using the OxCal software (v.4.2.4) (Bronk Ramsey 2009).

Direct contemporaneity values were derived for eight of the 15 villages/village phases assessed at the micro-level (Table 10.1; Figure 10.2). A further six were assigned contemporaneity values based on values derived for sites with comparable architectural form and layout, and an assessment of archaeological evidence for building construction, superpositioning and abandonment. The contemporaneity value for Shkārat Msaied was based on a combination of modelling, comparative analysis and architectural assessment.

Contemporaneity values vary from around 60% (Netiv Hagdud and Basta) to 80% (Nahal Oren and Shkārat Msaied). Directly derived values for sites that demonstrate similar characteristics to PPNB/PPNC 'Ain Ghazal (i.e. Ghwair I and Beidha Subphase C2) compare well with Rollefson and Köhler-Rollefson's (1989) proposed value of 80%. The reasonably limited range indicates that, in the absence of site-specific analysis, an average of around 70% may be suitable for central and southern Levantine PPN villages.

The contemporaneity values proposed in this investigation are based on basic modelling of limited numbers of radiocarbon dates. However, even this simple exploration highlights the great potential for this method to refine chronological information relating to short-term events and presents several avenues for more detailed methodological consideration. Possibly the greatest issue with modelling chronological information for PPN villages is the limited number of radiocarbon dates relating to the settlement or construction and abandonment of each phase and building. Samples are often sourced based on the quantity of the sample material in order to date a site to a specific time period, rather than strategically collected from points that enable span estimates. The collection of dates from targeted stratigraphic areas that have the greatest potential to reveal start, end and transition dates for short-term episodes will greatly improve the chronological resolution of these events.

The nature of the sample material is also important as this can distort the chronological resolution. Samples should preferably derive from short-lived plant materials, such as

seeds and nuts (although these are more susceptible to post-depositional admixture), or from wood charcoal from twigs and juvenile branches (Bayliss 2009; Wicks *et al.* 2016). Structures are often constructed with large posts from tree species that survive several centuries. Sample material collected from these posts can create an 'old wood effect' resulting from both the age of the mature wood and from the use and re-use of trees that may have been felled for a considerable period (Wicks *et al.* 2016). Wicks *et al.* (2016, pp.13-14) explored an innovative methodology for accounting for the effect of old wood on chronological models at the PPNA settlement at WF16. An old wood offset was calculated from the difference between ages derived from mature and juvenile wood charcoal samples and an offset command was incorporated into the chronological model using the OxCal software. Unfortunately, the limited number of samples per phase and structure prevented calculation of old wood effects in this analysis.

Another major issue relates to the limited information regarding context, sample material and pre-treatment provided within publications and radiocarbon date databases. Precise information regarding context (i.e. phase, structure, feature or specific location within that structure/feature) is essential as this provides the prior chronological information required for constructing models and for removing statistically divergent dates from the model based on archaeological grounds (i.e. residual or intrusive material) (Bayliss 2009). Both context and sample material affect the degree of susceptibility to post-depositional impacts within the field and in radiocarbon dating laboratories (Brock *et al.* 2010). Elaboration of useful radiocarbon date databases, such as the Platform for Neolithic Radiocarbon Dates (PPND) (Benz 2013) and the radiocarbon CONTEXT database (Böhner and Schyle 2008) will facilitate reconstruction of more informative models.

Site	Structural contemporaneity (%)							
	Modelled	<i>Combination</i> ^a	Indirect	Justification				
	estimate		estimate [⊳]					
Netiv Hagdud	60							
Beidha (A1)	71.43							
Beidha (A2)	75							
Beidha (B2)	71.43							
Ghwair I	77.78							
'Ain Abu Nekheileh	65							
Beidha (C2)	77.78							
Basta	60.47							
Shkārat Msaied		80		Modelled value (90.39%) considered too high; reduced based on comparable sites Beidha A1, A2 and B2				
Nahal Oren			80	Compared to Beidha A1, A2,				
El-Hemmeh (PPNA)			75	Shkārat Msaied: relatively high density, thick-walled, curvilinear structures; limited (Nahal Oren)/some (el-Hemmeh) superpositioning and abandonmer				
Gilgal I			60	Compared to Netiv Hagdud: relatively low density, thinner- walled, curvilinear structures; some superpositioning and abandonmen				
Wadi Hamarash I			78	Compared to Beidha C2 and				
EI-Hemmeh (LPPNB)			78	Ghwair I: agglomerated rectilinear				
Ba'ja			78	architecture, considerable remodelling and reconstruction; limited superpositioning or				

Based on a combination of modelled spans and structural contemporaneity estimates derived for comparable sites. ^b Based on structural contemporaneity estimates derived for comparable sites.

◆Modelled estimate ◆Combination ◇Indirect estimate 90 80 \diamond \diamond \sim 70 Structural contemporaneity (%) 60 \sim 50 40 30 20 10 0 Gilgal I Basta Ba'ja Nahal Oren Netiv Hagdud El-Hemmeh Shkārat Msaied Beidha (A1) Beidha (B2) Ain Abu Nekheileh Beidha (C2) El-Hemmeh Beidha (A2) Ghwair I Wadi Hamarash I PPNA MPPNB LPPNB

Figure 10.2. Contemporaneity values for central and southern Levantine PPN villages.

10.2.3 The proposed classification system

In order to extrapolate micro-level data for systematic application to all central and southern Levantine PPN villages in the database, a standardised site type classification system is required. Although classification does not reflect the full extent of variability in site layout and organisation, it is a useful analytical and organisational tool for systematically investigating large databases by dividing sites into mutually exclusive and comparable types (Gorodzov 1933, p.99; Adams 1988, p.43; 2009, p.138; Hörr *et al.* 2009, p.1).

For the purposes of estimating population parameters, site type classification was based on two main morphological characteristics that should be relatively easy to identify in the archaeological record: (1) predominant architectural form (i.e. curvilinear or rectilinear) and (2) a site size category (i.e. small, large or very large). The decision to classify sites using these two main characteristics was based on several factors. Firstly, architectural remains are often the focus of excavation programs and site plans depicting architectural features are virtually a ubiquitous output of all excavations. Secondly, there is a general recognition of differences in social organisation between settlements of different sizes and architectural forms (Flannery 1972; 2002; Wiessner 1982; Saidel 1993; Bar-Yosef 1998; Finlayson *et al.* 2011; Rollefson and Kafafi 2013). Thirdly, cross-cultural analyses of modern settlements and archaeological sites reveal strong positive correlations between settlement size and population size (Naroll 1962; Wiessner 1974; Aurenche 1981; Kramer 1982; Wossinik 2009). Finally, the use of two relatively easily discernible characteristics produces a basic classification system that can be routinely adopted by archaeologists.

Discriminant function analysis (DFA) of five potential classification schemes based on these two main attributes revealed that predominant architectural form contributes more to the classification system than site size (see Section 8.4). However, as a two type classification system was considered too broad to account for the considerable differences between sites of different sizes, a five type classification system including all size categories was considered most suitable. The final site types include (1) small and (2) large villages with predominantly curvilinear architecture; and (3) small, (4) large and (5) very large villages with predominantly rectilinear architecture.

The classification system proposed is an "open" system that can be refined by microlevel analyses of additional sites (Adams 1988, p.52). An increase in the number of cases (i.e. sites) will enable more comprehensive statistical analyses, particularly relating to the use of DFA for predicting site type (Burns and Burns 2008; Kovarovic *et al.* 2011) and analysis of variance (ANOVA) for identifying significant differences in the values of variables (i.e. people per dwelling) between site types (Drennan 1996; VanPool and Leonard 2011). This will facilitate reconstruction of more precise site type constants and formulae.

10.2.4 The new formulae for estimating PPN village population size

Universal and site type allometric growth formulae were developed to enable future reconstruction of central and southern Levantine PPN village population sizes based on estimated total site extent (see Section 9.7). Allometric growth formulae were created based on the recognition of strong positive cross-cultural correlations between population size and settlement size (Naroll 1962; Nordbeck 1971; Wiessner 1974; Aurenche 1981; Kramer 1982; Wossinik 2009) and the ability for scaling exponents to depict (and calculate) the relationship between population size and settlement size more precisely than population density coefficients. The proposal of minimum, mean and maximum formulae for each site type, with mean formulae correlating to mean structural density, allows consideration of building density in the final estimate. In addition, application of the range of formulae produces ranked population sizes that can be used to explore the relationship between conservative and more extreme group sizes and other demographic and environmental factors.

The scaling exponents achieved in this investigation provide some interesting comparisons. Those obtained for Site Types 1, 2, 4 and 5 range from 0.8638 to 1.0111. The universal scaling exponents range from 0.9256 to 0.976. These exponents fall within the range proposed by Wiessner (1974) for village settlements (b = 1) and Naroll (1962) for villages undergoing urbanisation (b = 0.84195), though they are generally closer to the former. These results, therefore, appear to support both Naroll's (1962) and Wiessner's (1974) original conclusions regarding village scaling exponents.

Scaling exponents for Site Type 3 are considerably lower (0.4768-0.6105). These exponents are more consistent with those derived from urban settlements (b = 2/3) (Nordbeck 1971; Wiessner 1974). In addition, the initial growth index range for Type 3 sites (a = 237-324) is considerably lower than those of other site types (min a = 300-438; max a = 628-825). These lower constants reflect the lower estimated population size relative to settlement size within Type 3 sites due to comparatively low proportions of (1) residential floor area in built floor area and (2) contemporaneous residential floor area in assessable area. Type 3 sites assessed at the micro-level (Wadi Hamarash I and Beidha Subphase C2) display distinctly different characteristics to most other sites with rectilinear architecture. These are compact and relatively well-structured settlements with well-defined, multi-storey, residential units, large non-residential

423

structures, large and clearly planned open areas designated for communal activities and clear access routes. Although other site types with rectilinear architecture (Types 4 and 5) have combinations of these characteristics, these are generally more haphazardly structured.

Of the 106 villages and village phases assessed in this investigation, only three were assigned to Site Type 3, reducing the ability to make meaningful conclusions regarding this site type. There are almost certainly additional Type 3 sites that have been erroneously assigned to Type 4 due to publication of inflated total site extent estimates or due to the site extent threshold applied in this investigation (Type 3 - small: ≤ 0.5 ha; Type 4 - large: 0.6-6 ha). For example, Type 4 site Ghwair I demonstrates more similarities in structure and layout to Type 3 sites than Type 4 sites and was, indeed, re-classified from a Type 4 to a Type 3 site type was partially incorporated into the final formulae by equating mean structural density to the mean formula. A site type classification system that is additionally based on structural layout would be beneficial. However, given the minimal extent of excavations at most sites, this is not an easily discernible attribute and would reduce the ability for systematic application of the formulae.

The formulae proposed in this investigation can easily be systematically applied to central and southern Levantine PPN villages and have potential for application to comparable sites in other periods and regions. However, there are some underlying issues that require consideration. The estimation of total site extent is highly problematic for several reasons (Kuijt 2000; Verhoeven 2006; Kuijt 2008a; Goring-Morris and Belfer-Cohen 2008). For example, site size is difficult to determine from surface scatters, as this requires detailed analysis of post-depositional processes, and, unfortunately, due to the time and financial constraints of many projects, large scale open plan excavation is not viable. In addition, there is a tendency to overestimate site extent, particularly where sites exhibit rectilinear architecture, or to publish maximum site extents that incorporate several occupation episodes. If published estimates are to be used, these must be critically assessed, and additional field and desk-based research should be conducted to more accurately delineate habitable areas. This could be achieved through aerial photography, sub-surface detection techniques and/or the use of geographical information systems to examine topographical setting.

A further issue with the application of the formulae to site extent is that this method produces the same population estimates for sites of the same size. This is one of the major problems with the current commonly used method (i.e. application of a density value to site extent). However, the site type formulae proposed in this investigation

result in different population estimates for many sites of the same site extent by considering the relationship between site size and architectural features.

A final issue with applying these formulae relates to the potential for compounding errors. The final formulae are derived from the regression of population estimates against estimated total site extent. These population estimates were originally reconstructed from site extent and constants derived from micro-level analysis. As such, the final formulae are twice removed from the original micro-level data. Ideally, the formulae should be reconstructed from micro-level estimates. However, the limited number of sites available for micro-level analysis has prevented this. This may be achievable in future with more detailed assessment of additional sites.

10.3 Group size thresholds

Population estimates reconstructed in this investigation were assessed against the available archaeological evidence to determine whether previously hypothesised group size thresholds (see Table 4.8) may be applicable to PPN central and southern Levantine villages and to establish additional potential thresholds specific to this period and region (Figure 10.3). The proposed thresholds are based on the assumption that population size is the major contributing factor in cultural evolution. This is problematic as there are clearly various interrelated factors that induce cultural evolution. The thresholds proposed here are, therefore, highly speculative and tentative, though do provide potential insights into the relationship between demographic parameters and cultural evolution during this period.

The proposed group size thresholds depend on the validity of the population estimates produced in this investigation and the availability of archaeological evidence for developmental processes. As such, additional excavations and published information that enable refinements of these will facilitate the production of more precise and informative group size thresholds in future.

Group size thresholds apply to the initial transition to, or adoption of, a specific stage or process. Once a developmental stage has been reached, it is expected that this development would be retained within smaller subsequent PPN settlements based on the notion of cumulative cultural evolution provided that sufficient numbers of inhabitants exist to maintain these processes (White 1959; Shennan 2001; Henrich 2004; Vaesen 2012; Castro and Toro 2014). The thresholds explored in this investigation relate to three major categories of human social development during the NDT: changing subsistence practices; the introduction of mechanisms for reducing scalar stress and promoting social cohesion; and the emergence of social complexity.

425

10.3.1 Changing subsistence practices

Increased group sizes require developments in subsistence strategies, particularly when groups decide to settle in a location permanently. The minimum previously hypothesised population size required for the transition to sedentism is around 25 people (Fletcher 1981; Binford 2001; Kuijt and Goring-Morris 2002, p.369; Bandy 2010, p.31). This threshold is based on the average number of nuclear families suggested to comprise early sedentary communities (i.e. perhaps 5-10 nuclear families) (Goring-Morris and Belfer-Cohen 2008, p.274) and the minimum labour force required to sustain the population (Binford 2001, p.438). This investigation assessed only sites that could be considered sedentary settlements (i.e. villages). The lowest population estimate derived in this investigation (Nahal Oren: P = 25-45) parallels this threshold range, indicating that this may be a suitable threshold for inferring initial sedentism in PPN communities. However, permanently settled communities of smaller sizes may not have been excavated due to a lack of targeted investigation or a lack of visibility.

The adoption of farming practices (i.e. the cultivation of wild plants) is expected to occur within settlements of at least 50 people, based the minimum labour force required for the primary mode of subsistence (Binford 2001, p.438; Drennan and Peterson 2008). The earliest villages with evidence for farming practices occur during the PPNA, where wild plants were cultivated by small communities estimated at a minimum of 80 people (i.e. Bir el-Maksur and Zahrat adh-Dhra'2). Intensified cultivation of wild grains occurs during the EPPNB, with the smallest settlement providing evidence for this estimated at a minimum of 150 people (Mujahiya) (Gopher 1990). Based on the estimates produced in this investigation and the available archaeological evidence, tentative group size thresholds of at least 80 people could be suggested for the initial transition to farming practices during the EPPNB.

The adoption of a fully agro-pastoralist subsistence strategy is expected to occur within settlements of around 100 to 750 people (Fletcher 1981; Kuijt and Goring-Morris 2002). However, given the temporal variation in the introduction of domesticated plant and animal species and the intensification of practices relating to these, thresholds relating to agricultural and pastoral practices are perhaps better defined separately.

The earliest potential evidence for agricultural practices (i.e. farming of domesticated plants) has been identified at EPPNB Tell Aswad IB, estimated at a minimum of 300 people (Tanno and Willcox 2012; Chamel 2014). From the MPPNB, the majority of villages contain evidence for domesticated emmer, barley and einkorn, with villages estimated at a minimum of around 350 people exploiting a wider repertoire of

domesticated plants, including lentil, chickpea and flax (i.e. Yiftah'el IV, 'Ain Ghazal, Jericho and Tell Aswad II) (Colledge and Conolly 2007; Weiss and Zohary 2011). Evidence for fig cultivation also occurs at MPPNB Tell Aswad II, estimated at a minimum of around 1,800 people (Stordeur and Jamous 2009).

The earliest evidence for culturally-controlled and/or potentially domesticated animals occurs during the MPPNB within villages estimated at a minimum of 80 people (Van Zeist and Bakker-Heeres 1985; Rollefson et al. 1993; Simmons et al. 2001; Henry et al. 2002; 2003; Henry and Albert 2004; Helmer and Gourichon 2008; Stordeur and Jamous 2009; Peterson et al. 2010; Gkotsinas and Karathanou 2013; Kinzel 2013; Makarewicz 2013; Martin and Edwards 2013). However, the smallest MPPNB village in this investigation with conclusive evidence for domesticated animals is Ghwair I, which was estimated at a minimum population size of 400 people (Simmons and Najjar 2006). Larger MPPNB villages demonstrate evidence for intensified pastoral practices involving the use of animals for meat and milk production (i.e. 'Ain Ghazal: $P \ge 1,500$) (Makarewicz 2013) and the introduction of domesticated pig and cattle (i.e. Tell Aswad II: $P \ge 1,800$) (Helmer and Gourichon 2008). During the LPPNB, even the smallest village (Beidha Subphase C2: P = 140-220) has yielded evidence for domesticated animals, although evidence suggests predominant reliance on hunted meat sources. This is consistent with current theory indicating a major LPPNB shift towards subsistence strategies heavily dependent on domesticated plant and animals (Kuijt and Goring-Morris 2002; Makarewicz 2009; 2013).

Based on this evidence, three major group size thresholds relating to agro-pastoralist subsistence strategies involving domesticated plants and animals are proposed for the PPN central and southern Levant:

- 1. The initial adoption of agro-pastoralist practices during the MPPNB ($P \ge 400$).
- 2. Intensified agro-pastoralist practices during the MPPNB ($P \ge 1,500$).
- 3. Predominant reliance on an agro-pastoralist subsistence strategy during the LPPNB (P \ge 550).

10.3.2 Reducing scalar stress and promoting social cohesion

Strategies for mitigating the effects of scalar stress are hypothesised to occur when populations reach around 150 people (Chagnon 1980; Kosse 1990; Bowser 2000; Kuijt and Goring-Morris 2002; Dunbar 2003). Alberti (2014, p.13) identifies several potential strategies, including fissioning into smaller groups; engaging in activities for creating community cohesion (i.e. the introduction of ritual practices and communal food-related

activities); the building of integrative facilities; reshaping of decision-making processes; and the development of leadership roles.

Community fissioning into smaller sub-units is evident within some of the larger PPNA villages ($P \ge 160$) (i.e. Gilgal I, Netiv Hagdud, Jericho), which contain dwellings associated with annexes that could be interpreted as representing emergent household economic units (Kenyon 1981; Bar-Yosef *et al.* 1991; 2010a; 2010b). The prevalence of sub-floor burials and evidence for dwelling-based specialist activities within EPPNB dwellings, particularly at Motza VI (P = 150-330) and Mujahiya (P = 150-330) (Gopher 1990; Khalaily *et al.* 2007), may reflect the increasing independence of these household units. It has been suggested that the MPPNB represents a widespread shift towards house -based societies based on evidence for more formalised and restricted access to dwellings, greater compartmentalisation within dwellings, and widespread evidence for dwelling based food- and production-related activities (Gebel 2002; Kuijt and Goring-Morris 2002). These developments are present within all MPPNB villages assessed in this investigation ($P \ge 80$).

Sectoring of the community into neighbourhoods, with open areas between clusters of structures, can help to mitigate the effects of social crowding by reducing overall population density. This segregation is apparent within larger PPNA villages ($P \ge 160$) (i.e. Gilgal I, Netiv Hagdud and Jericho), with neighbourhoods potentially occurring within most MPPNB villages ($P \ge 80$) (i.e. Beidha, Shkārat Msaied, Wadi Hamarash I and Ghwair I) (Simmons and Najjar 2006; Byrd 2005a; Kinzel 2013; Sampson 2013a). Clearly defined neighbourhoods or sectors with variable structural layout and distribution are apparent throughout the LPPNB (i.e. 'Ain Ghazal, Ba'ja and Basta) (Hermansen and Gebel 1996; Rollefson 1998a; Nissen 2006). Community segmentation is highly visible in larger PPNC villages ($P \ge 1,000$), where large walls dissect some settlements (i.e. Atlit-Yam and 'Ain Ghazal) (Goring-Morris and Belfer-Cohen 2008).

Innovative architectural developments may also reflect attempts to reduce scalar stress caused by social crowding (Kuijt 2000). The transition to rectilinear architecture appears to have occurred mainly during the EPPNB and is visible within settlements estimated at a minimum of around 300 people (i.e. Horvat Galil, Tell Qarassa and Mishmar Ha'emeq) (Hershkovitz and Gopher 1988; Ibañez *et al.* 2010; Bocquentin *et al.* 2011). Rectilinear architecture enables more efficient use of space and is easier to compartmentalise, increasing the ability for control and privacy despite higher population density (Kuijt 2000). Architectural innovations, including multi-storey structures and sub-floor channels for water or air during the MPPNB (i.e. Wadi Hamarash I: $P \ge 150$) (Sampson 2013a), would have further mitigated the effects of

scalar stress within these high density settlements by augmenting space and improving conditions within structures.

Whilst these strategies effectively split communities into more manageable groups and helped communities cope with high density living, other strategies promoted social cohesion by creating a collective cultural conscience. In the earlier PPN, the maintenance of largely egalitarian, hunter-gatherer subsistence strategies would have promoted a sense of community, particularly within smaller villages where face-to-face interaction could be sustained between all members of the society ($P \le 400$) (Kosse 1990, p.284). However, in larger villages, formal strategies would have been required to create and promote collective interests. A potential strategy for this is the formalisation and elaboration of ritual practices.

Ritual practices are prevalent within all villages from the PPNA. However, the construction of ritual buildings and the manufacture of ritual and symbolic items appear to be more elaborate and more formalised within larger PPNA villages ($P \ge 160$) (i.e. Gilgal I and Jericho) (Kenyon 1981; Bar-Yosef *et al.* 2010a; 2010b). Ritual and symbolic features developed throughout each subsequent period. Major advancements occurred within larger MPPNB villages ($P \ge 1,500$) (i.e. 'Ain Ghazal, Jericho and Tell Aswad II), which contained extensive collections of intricate and expertly crafted ritual and symbolic items (Kuijt and Chesson 2005); and in larger LPPNB villages ($P \ge 500$), which contained evidence for more elaborate ritual practices, including greater variety in grave goods, more detailed figurines and the insertion of infant bones into wall niches (Kuijt and Chesson 2005).

An assessment of the population estimates achieved in this investigation and the available archaeological evidence indicates that the threshold of 150 people often proposed as the critical group size at which communities introduce mechanisms for reducing scalar stress and promoting social cohesion may be applicable to several developments within central and southern Levantine PPN villages (Chagnon 1980; Kosse 1990; Bowser 2000; Kuijt and Goring-Morris 2002; Dunbar 2003). These include:

- sectoring of the community into potential household units and dwelling clusters, and the adoption of more formalised ritual practices during the PPNA;
- the increasing independence of household units during the EPPNB;
- the innovation of multi-storey rectilinear architecture during the MPPNB; and,
- well-established household economic functions and clearly defined neighbourhoods during the LPPNB.

Other potential thresholds relate to the transition to rectilinear architecture during the EPPNB ($P \ge 300$) and the construction of sub-floor channels for water or air during the LPPNB ($P \ge 550$); substantial efforts to segment the community during the PPNC ($P \ge 1,000$); and the adoption and production of increasingly elaborate and formalised ritual practices and symbolic items during the MPPNB ($P \ge 1,500$) and LPPNB ($P \ge 500$).

10.3.3 Emerging social complexity

There is considerable overlap between the archaeological evidence for scalar stress reduction strategies and the evidence for emerging social complexity. More complex social structures are hypothesised to occur within settlements of at least 250 people (Forge 1972; Kosse 1990), with authoritative figures occurring within settlements of at least 500 people (Naroll 1956; Kosse 1990). Social differentiation within almost all PPN villages is potentially evidenced by intra-site variations in structural forms and associated annexes, reflecting segregation of dwelling units and differential engagement with household based food- and production-related activities. This differentiation is most distinct from the MPPNB, at sites such as Wadi Hamarash I and Ghwair I ($P \ge 150$), which demonstrate considerable intra-site variations in structural layout and organisation.

Social differentiation is also potentially indicated by variable distributions of items that may have been utilised for individual or group identity, such as incised pebbles, objects of personal adornment, items made from exotic materials, and ritual and symbolic items, including figurines (Wright and Garrard 2003, p. 277; Bar-Yosef 2005; Kuijt and Chesson 2005; Edwards and House 2007). Perhaps the clearest evidence for social differentiation comes from EPPNB villages of at least 150 people, where human burials demonstrate increasingly variable association with grave goods and structures (i.e. Motza VI and Tell Qarassa) (Khalaily *et al.* 2007; Ibañez *et al.* 2010), including some bodies placed on platforms at Tell Aswad IB (Stordeur and Khawam 2008; Chamel 2014).

A major aspect of complex societies is labour differentiation, which stems from increasingly specialised knowledge. During the EPPNB, specialist knowledge is indicated by the widespread adoption of naviform core technology and the use of lime plaster within the majority of sites ($P \ge 80$); and the transition to rectilinear architecture in larger villages ($P \ge 300$). Intensified and diversified specialist activities occur throughout the MPPNB, including major developments in agro-pastoralist practices; large-scale bead production for export (Berna 1995; Fabiano *et al.* 2004); increased

use of imported materials for items of personal adornment; large-scale manufacture of lime plaster for use in architecture and in ritual and symbolic contexts; and innovative architectural developments, including the construction of multi-storey structures and sub-floor channels (i.e. Wadi Hamarash I: $P \ge 150$). During the LPPNB, the range of specialist activities increased, including large-scale sandstone ring and bead production at most sites (Byrd 2005a; Kinzel 2013); the construction of water barrages at Wadi Badda (P = 370-680) (Fujii 2007); and possible intentional irrigation at Ba'ja (P = 580-610) (Kinzel 2013) and el-Hemmeh (P = 530-800) (White 2013). Innovation in water technology also occurred during the PPNC with the construction of wells at Atlit-Yam (P = 1,090-2,040) (Galili *et al.* 2004). These specialist techniques required a high degree of technical knowledge, indicating potential labour diversification and the capacity for individuals and households to enhance their own skills, and potentially their own wealth and status.

Unequal distribution of these skills, wealth and status may have led to concentrations of power, giving rise to individuals with decision-making and authoritative roles. Such individuals may have been present as early as the PPNA, as evidenced by the construction of the tower and village wall at Jericho (P = 740-1,650) (Kenyon 1956; 1981), which would have required an organised work force and some degree of planning and management. Additional evidence for the emergence of authoritative individuals occurs during the EPPNB, with special mortuary treatment potentially reserved for individuals with higher status at Tell Aswad IB (P = 300-660) (Stordeur and Khawam 2008; Chamel 2014). Authoritative individuals would also have been required to disseminate the increasingly specialist and technical knowledge to younger generations.

Authoritative individuals may also have emerged from the increasing focus on ritual activities. Many cultures demonstrate a considerable overlap in religion and politics, with ritual figures undertaking divinely sanctioned ritual activities as a means of social control (Watts *et al.* 2016, p.231). The increasingly formalised ritual practices and space designated for such activities within PPN villages suggests the growing importance of ritual practices and centralised control of these activities. This is particularly evidenced by the tower construction at PPNA Jericho (P = 740-1,650) (Kenyon 1956; 1981); the large ritual building associated with a burial ground at EPPNB Mishmar Ha'emeq (P = 320-750) (Bocquentin *et al.* 2011); and the general presence of large, centrally-located, distinctive, non-residential structures from the MPPNB (Rollefson *et al.* 1993; Rollefson and Kafafi 1997; Byrd 2005a; Kinzel 2013; Sampson 2013a). Increasing competition between households, social differentiation,

increasingly specialist knowledge and the presence of authoritarian figures are all characteristics of an increasingly stratified community.

It has been hypothesised that settlements with populations greater than 1,500 people may have produced rival authority figures or groups, which could have initiated political stratification (Alder 1990). Possible evidence for this includes the segmentation of villages into neighbourhoods of potentially competitive or rival groups from the MPPNB (i.e. Wadi Hamarash I and Ghwair I: $P \ge 150$). However, the most substantial evidence for this is the dissecting of villages into sectors in the PPNC (i.e. Atlit-Yam and 'Ain Ghazal: $P \ge 1,090$).

An assessment of the population estimates produced in this analysis and the available archaeological evidence for social complexity has revealed several potential group size thresholds:

- Social differentiation may have occurred within all PPN villages, but is particularly evident from the EPPNB, within villages of at least 150 people, as indicated by increasingly specialist knowledge and increasing independence of household units.
- Diverse specialist activities and highly innovative technological developments occur in all villages from the MPPNB, with major developments in water technology during the LPPNB (i.e. water barrages: P ≥ 350 and intentional irrigation: P ≥ 550) and PPNC (i.e. water wells: P ≥ 1,000) (Mahasneh 1996; Fujii 2007; Kinzel 2013; White 2013).
- Authoritative individuals may have been present at PPNA Jericho (P ≥ 750), though more plausibly emerge during the EPPNB within villages of at least 300 people.
- 4. Rival authoritative individuals may have occurred during the MPPNB ($P \ge 150$), though the most substantial evidence for this occurs during the PPNC ($P \ge 1,000$).

			Population size									
		C	200	400	600	800	1000	1200	1400	1600	1800	2000
		Transition to sedentism	25+									
e	PPNA	Cultivation/harvesting of wild grains	80+									
en		Intensified cultivation/harvesting of wild grains	150+									
ubsist ices	CFFIND	Domesticated plants		300+								
		Culturally controlled wild animals	80+									
g sl		Variety of domesticated plants		350+								
b gi	MPPNB	Agro-pastoralist practices (incl. goat and sheep)		400	+							
anç	Intens	ified agro-pastoralist practices (use of animals for meat and milk)								1500+		
Ľ.		Intensified agro-pastoralist practices (incl. fig, cattle and pig)									180)0+
	LPPNB	Predominant reliance on agro-pastoralism for subsistence			550+							
	PPNA	Increasingly formalised ritual practices Dwelling clusters (possible settlement sectoring) Emerging household units	150+									
0		Increasing independence of household units										
res: xity	EPPNB											
r sti		Architectural innovations: rectilinear architecture		300+								
ala		Architectural innovations: rectilinear architecture Settlement sectoring	80+	300+								
00		Architectural innovations: rectilinear architecture Settlement sectoring Emerging household economic independence	80+	300+								
a c	MPPNB	Architectural innovations: rectilinear architecture Settlement sectoring Emerging household economic independence Elaboration of ritual practices	80+	300+								
ing s ocial	MPPNB Arc	Architectural innovations: rectilinear architecture Settlement sectoring Emerging household economic independence Elaboration of ritual practices hitectural innovations: multi-storey, rectilinear, sub-floor channels	80+	300+								
ducing s nd social	MPPNB Arc	Architectural innovations: rectilinear architecture Settlement sectoring Emerging household economic independence Elaboration of ritual practices hitectural innovations: multi-storey, rectilinear, sub-floor channels Highly elaborate ritual practices and symbolic items	80+	300+						1500+		
Reducing s (and social	MPPNB Arc	Architectural innovations: rectilinear architecture Settlement sectoring Emerging household economic independence Elaboration of ritual practices hitectural innovations: multi-storey, rectilinear, sub-floor channels Highly elaborate ritual practices and symbolic items Clearly defined neighbourhoods	80+ 150+ 150+	300+						1500+		
Reducing s (and social	MPPNB Arci LPPNB	Architectural innovations: rectilinear architecture Settlement sectoring Emerging household economic independence Elaboration of ritual practices hitectural innovations: multi-storey, rectilinear, sub-floor channels Highly elaborate ritual practices and symbolic items Clearly defined neighbourhoods Household economic independence	80+ 150+ 150+	300+						1500+		
Reducing s (and social	MPPNB Arc	Architectural innovations: rectilinear architecture Settlement sectoring Emerging household economic independence Elaboration of ritual practices hitectural innovations: multi-storey, rectilinear, sub-floor channels Highly elaborate ritual practices and symbolic items Clearly defined neighbourhoods Household economic independence Elaboration of ritual practices and symbolic items	80+ 150+ 150+	300+	500+					1500+		

Figure 10.3. Potential group size thresholds for PPN central and southern Levantine villages.

			Population size									
		0	200	400	600	800	1000	1200	1400	1600	1800	2000
		Potential social differentiation	40+									
	FFINA	Potential authoritative individuals				750-	+					
	EPPNB	Increasingly specialist knowledge (i.e. naviform, plaster)	70+									
<u>i</u>		Social differentiation	150+									
ex		Authoritative individuals		300+								
d	MPPNB	Diversified specialist knowledge (i.e. art, architecture)	80+									
COL		Distinct structural variations between neighbourhoods	150+	-								
a	LPPNB	Specialist knowledge: water barrages		350+	-							
0		Specialist knowledge: intentional irrigation			550+	-						
S		Potential rival authority figures					10	00+				
	FFING	Specialist knowledge: water wells										

Figure 9.3. Potential group size thresholds for PPN central and southern Levantine villages (continued).

10.4 Summary

This chapter highlights the major theoretical and methodological contributions of this research and provides several avenues for further analysis. This investigation has reassessed assumptions relating to dwelling unit size and composition, proposing four dwelling unit types each reflecting different social organisation: (1) very small dwelling units potentially forming a larger extended family group; (2) very small nuclear family dwelling units representing the emergence of household units; (3) larger nuclear family dwelling units representing increasing household economic independence; and (4) extended family units representing economically independent and competitive household units. The estimates achieved in this analysis indicate that settlements with curvilinear architecture comprise the first three dwelling unit types, while those with rectilinear architecture comprise the last two types only. It is not appropriate to assert that nuclear families formed the predominant dwelling unit within PPN settlements or to systematically apply ethnographically derived nuclear family sizes of five to six people, as is so often proposed (Sweet 1960; Wright 1969; Antoun 1972; Kramer 1979; 1982; van Beek 1982; Byrd 2002; 2005a). If methodologies are to employ dwelling unit sizes in reconstructions of PPN population estimates, greater effort must be taken to first ascertain dwelling unit composition by assessing residential architectural forms and features, and archaeological evidence for social organisation to determine potential coresident patterns.

Assumptions and methods relating to settlement population density were also reevaluated. To date, almost all estimates of PPN central and southern Levantine village populations have been based on the application of three standard ethnographically derived density values to total site extent (90, 150 and 294 people/ha) (Rollefson and Kohler-Rollefson 1989; Kuijt 2000; 2008a; Campbell 2009). This analysis highlighted several issues with this technique, the foremost of which were the resulting broad population estimate ranges and the apparent underestimation of population sizes of the majority of sites. This was particularly evident when population estimates based on the maximum density value resulted in apparently insufficient dwelling unit size estimates. Population density values re-calculated from population estimates achieved in this investigation generally ranged from around 400 to 750 people. If density is used to derive population size of central and southern Levantine PPN villages in future, it is proposed that these revised density values are used in place of the commonly utilised ethnographically derived values.

A major aim of this research was to explore more empirically and archaeologicallybased methods for reconstructing PPN village populations without relying on the use of ethnographic comparatives. For micro-level analyses, the storage provisions formula (SPF) presents the most empirically robust method for estimating population size by determining the maximum affordance of sleeping individuals within dwellings, factoring in common spatial elements. SPF estimates can be refined by examining archaeological evidence for the potential for storage within the residential floor area. Although this method has some underlying methodological issues (particularly relating to the use of adult sleeping space requirements), for which further work is proposed, it has the greatest potential of all of the methods explored in this analysis to produce accurate estimates of both dwelling unit size and population size without relying heavily on ethnographic assumptions and data.

Another major aspect of this research was to examine potential structural contemporaneity within PPN settlements. A technique was explored to reconstruct structural contemporaneity values based on estimates of building use-life and phase length derived from a combination of archaeological, ethnographic and experimental research, and Bayesian chronological modelling of spans of radiocarbon dates. This assessment produced contemporaneity values ranging from around 60% to 80%. An average value of around 70% is suggested for PPN central and southern Levantine villages in the absence of site-specific analysis. The basic analysis conducted in this investigation highlights the major potential of this method for refining chronological information relating to short-term episodes. However, due to issues with radiocarbon dates, the use of Bayesian chronological modelling for this purpose has not yet been widely explored.

In order to systematically produce population estimates for all PPN central and southern Levantine villages in this analysis, a site type classification system was produced. This was based on two major attributes that should be relatively easy to discern: predominant architectural form and a site size category. The five site types proposed were: (1) small sites with curvilinear architecture; (2) large sites with curvilinear architecture; (3) small sites with rectilinear architecture; (4) large sites with rectilinear architecture; and (5) very large sites with rectilinear architecture. This site type classification system was specifically developed for the purpose of estimating PPN village populations and constructed in such a way as to be easily applied and enhanced by researchers in future.

Universal and site type allometric growth formulae were developed for each of these site types to estimate minimum, mean and maximum population sizes based on estimated total site extent. Allometric growth formulae have greater ability to reflect the variable relationship between site size and population size than population density coefficients. The major issue with both methods for estimating population is the accurate estimation of site extent.

436

An assessment of population estimates achieved in this investigation together with the available archaeological evidence produced several potential group size thresholds relating to changing subsistence practices; mechanisms for reducing scalar stress and promoting social cohesion; and emerging social complexity. Major thresholds relate to the initial adoption of an agro-pastoralist subsistence strategy during the MPPNB (P \geq 400) and the predominant reliance on this strategy during the LPPNB (P \geq 550). Several developments equate to Dunbar's (2003) number of 150 people for the introduction of mechanisms for reducing scalar stress and promoting social cohesion, including initial community sectoring and formalised ritual activities during the PPNA; increasing household independence and the emergence of social differentiation during the EPPNB; multi-storey architectural innovation during the MPPNB; and well-defined neighbourhoods and independent household economic units during the LPPNB. These thresholds assume that population size is the major contributing factor to cultural evolution. The lack of consideration of other impacting factors is somewhat counteracted by focussing on the relatively restricted geographical and cultural context of the PPN central and southern Levant. There are clearly other factors that should be considered and it is hoped that the thresholds presented here provide a solid foundation for this further investigation.

11 Conclusion

The purpose of this investigation was to establish a more empirically and statistically robust method for estimating population parameters of central and southern Levantine PPN villages, and to produce a precise chronology of population parameters for this region in order to facilitate further research. A major objective of this research was to develop methods that were less reliant on ethnographic evidence. A comparison of the modern and prehistoric environmental context (Chapter 2) and an analysis of the major developments in subsistence, technology, architecture, ritual practices and social organisation throughout the PPN (Chapter 3) indicated that Southwest Asian villages are not suitable ethnographic comparisons for many PPN villages, particularly those with curvilinear architecture. Unfortunately, to date, almost all estimates of central and southern Levantine PPN village populations have been based on population density coefficients derived from ethnographic research in Southwest Asian communities (Jacobs 1979; Watson 1979; Kramer 1982; van Beek 1982; Bar-Yosef 1986; Rollefson and Köhler-Rollefson 1989; Kuijt 2000; 2008a; Ladah 2006; Campbell 2009) (see Section 4.3.1). The identification of numerous issues with this methodology, including the use of density values that were found in this investigation to be too low, justifies the complete revision of the pre-existing estimates, the underlying methodologies and related theories.

An examination of various methods for estimating population parameters highlighted several that are potentially suitable for application to early village settlements (Chapters 4 and 5). Six methods were selected for reconstructing population parameters at the micro-level (Chapters 6 and 7; Appendices B and C). Each of these methods employs a structural contemporaneity value derived from a combination of Bayesian chronological modelling of radiocarbon dates, and archaeological, ethnographic and experimental research of the building use-life of comparable structures. Of the six methods explored, the storage provisions formula (SPF) was considered the most robust and valid (see Sections 4.5 and 10.2.1). This method correlates residential floor area to maximum sleeping occupant numbers, factoring in three different amounts of personal annual residential storage. One of the major benefits of this method is that it relies almost exclusively on empirical archaeological data.

Data was extrapolated from micro-level analyses to systematically estimate the population size and density of all sites in the central and southern Levantine PPN village database (Appendix E.1). To achieve this, a site type classification system incorporating five categories was established, enabling both site type and universal constants to be reconstructed for variables utilised in systematic methodologies (i.e.

people per dwelling, residential floor area per person and people per hectare) (see Chapter 8).

Seven methods were selected for systematic application to the PPN village database (Chapter 9; Appendix E.2). These methods produced additional demographic data (i.e. the total number of contemporaneous dwellings or the total contemporaneous residential floor area) for each site. The three methods considered most valid for reconstructing the final estimates include the storage provisions formulae (SPF); the settlement population density coefficient (SPDC) method based on density estimates produced in this investigation; and the allometric growth formula (AGF2) using Wiessner's (1974) scaling exponent for village settlements (b = 1) and initial growth indices also produced in this investigation. The final estimate ranges were used to create site type and universal allometric growth formulae to estimate the minimum, mean and maximum population of central and southern Levantine PPN villages, with mean structural density per site type equating to the mean formula (see Section 9.7).

An assessment of dwelling unit sizes produced in this investigation and current theory relating to dwelling unit size and composition during the PPN highlighted variable types of dwelling unit (see Section 10.1.1). Finally, population size estimates were assessed against the available archaeological evidence to explore pre-existing and additional hypothesised group size thresholds relating to changing subsistence practices; mechanisms for reducing scalar stress and promoting social cohesion; and emerging social complexity (see Section 10.3).

11.1 Further work

This investigation provides several avenues for further research, outlined below.

1. A re-evaluation of population density values (people/ha) and the relationship between density and early village development during the NDT:

The population density values produced in this investigation (mean: 400-750 people/ha) are considerably higher than the range commonly proposed for Neolithic villages (90-294 people/ha). Investigation of additional PPN villages is required to determine whether these high densities were characteristic of this period and, if indeed they are, to explore the social and technological developments that enabled people to live in such high density settlements during this period.

2. A refinement of the storage provisions formulae (SPF) by using estimated Neolithic male and female stature:

The SPF is currently based on the lower and upper end of modern average adult height ranges of 1.65 m and 1.83 m, with average personal sleeping space allocations of 1.24 m² and 1.77 m², respectively (Hemsley 2008, p.82). Skeletal analysis has revealed that modern people are taller than Neolithic people. The SPF could, therefore, be refined by replacing the modern height estimates with average Neolithic height estimates. Hershkovitz and Gopher (2008, p.455) reconstructed human stature during the Neolithic of the southern Levant, estimating mean heights of around 164.5 cm for males and around 154.5 cm for females.

3. A refinement of the SPF to account for the presence of children:

The SPF is currently based on adult population only. However, children would certainly have been present and need to be factored into the calculations, though in a manner that does not make assumptions regarding dwelling unit composition. One method would be to consider the proportion of the population that would have comprised children. Hershkovitz and Gopher (1990) and Eshed et al. (2004, p.320) assessed skeletal samples from the Neolithic southern Levant, identifying that around 25% of the skeletal population comprised children. In an analysis of the Kfar HaHoresh skeletal remains, Eshed et al. (2008, p.95) identified that 31.5% of the burial population comprised children of less than 15 years. An average of around 27% could be used to refine the SPF method. However, the ratio of children to adult remains in the skeletal population may not represent the living population due to variable mortuary treatment, the greater potential for taphonomic impact on immature bones, and, perhaps most importantly for early sedentary communities, a high infant mortality rate. Infant mortality rates in pre-industrial populations have been averaged at around 30% to 50% (Hassan 1981, p.138), with mortality rates in PPN populations in the southern Levant estimated at around 16.5% before the age of five (Hershkovitz and Gopher 2008, p.446) and up to 50% before the age of 20 (Smith et al. 1984). These would need to be factored into estimates of the proportion of children in the living population.

4. A refinement of the SPF to account for the use of built area for domesticated animals:

It is plausible that some built area was designated for housing animals within settlements, at least from the MPPNB when domesticated animals became more

prevalent. This would potentially reduce the amount of available residential floor area used in SPF calculations, resulting in lower population estimates. An examination of evidence for the use of built area by animals could help identify structures or specific areas used for this purpose. This evidence might include high spherulite frequencies (Henry *et al.* 2003; Henry and Albert 2004); a lack of internal compartmentalisation of structures (Tvetmarken 2012); sub-floor channels that might suggest drainage; and lime plaster floors that would have been hard enough to support the weight of animals and also allow for drainage. Identification of areas used for animals would allow exclusion of these areas from estimates of available residential floor area, thus refining population estimates based on the SPF method.

5. Bayesian chronological modelling of radiocarbon dates to estimate phase length and building use-life:

An increased number of radiocarbon determinations is required in order to reconstruct more informative chronological models (including adjustments for old wood effects) to produce more precise estimates of phase length and building use-life for reconstructing structural contemporaneity values. Elaboration of radiocarbon date databases (i.e. the PPND and the radiocarbon CONTEXT database) would be useful. In addition, further determinations should be produced from sample material strategically collected from contexts relating to the start, transition and end dates for these episodes.

6. Additional micro-level analysis for refining the site type classification system, site type constants and the final formulae:

An increase in the number of sites assessed at the micro-level would enable more comprehensive statistical analyses than those achieved with the small dataset used in this analysis (n cases = 15). For all site types, except Type 1 (n = 7), the number of cases assessed at the micro-level was three or fewer. Additional cases would enhance the database of estimates required to refine the site type classification system and to produce more precise constants. In addition, the final formulae proposed for estimating central and southern Levantine PPN village populations would be more accurate if directly developed from micro-level analyses.

Ideally, additional research will be conducted on further PPN villages within the Levant and comparable settlements in other regions and periods to determine whether the methodologies explored in this investigation can be applied elsewhere and whether the patterns highlighted in this investigation extend beyond this period and region. Several sites potentially suitable for such assessment have been identified throughout the course of this research (Table 11.1). Each of these sites fulfils the criteria for the selection of sites for micro-level analysis (see Section 5.1.3), including published site plans and detailed description of archaeological features.

Site	Period	Details	Previous population estimate	Reference
Khirokitia, Cyprus	Cypro-PPNB (c. 7,000 BC)	Curvilinear stone structures; possible two- storey; courtyards and roofed corridors;	300-600	Mellaart 1967; Le Brun 1994
Çatalhöyük (East Mound), Turkey	Aceramic Neolithic (c. 7,000 BC)	egalitarian society Rectilinear, agglomerated stone structures; roof access; sleeping platforms agro-pastoralists	3500-8000 ;;	Düring 2013, p.35
Banpo, Xi'an, China	Neolithic (c. 4,000 BC)	Semi-subterranean, curvilinear and rectilinear, organic structures; agro- pastoralists; pottery	500-600	Perkins 2013, p.597
Skara Brae, Orkney Islands, UK	Neolithic (c. 3,000 BC)	Square and curvilinear stone structures; connected by roofed passageways; sleeping compartments; agro- pastoralists	50-80	Ginenthal 2015, p. 371; Clarke and Maguire 2000
Castle Rock Pueblo, Colorado, USA	Prehistoric (c. AD 1,250)	Rectilinear stone structures; agro- pastoralists; pottery	75-150	Kuckelman 2000

Table 11.1. A sample of recommended sites for extension of this research beyond the PPN central and southern Levant.

7. Research into evidence for rival authoritative figures and political stratification:

Alder (1990) hypothesised a minimum group size threshold of 1,500 people for the development of politically stratified communities. Population estimates for several villages produced in this investigation exceed this threshold (i.e. LPPNB 'Ain Jamam and Tell 'Ain el-Kerkh/Tell el-Kerkh II; LPPNB/PPNC 'Ain Ghazal and Basta; and PPNC Beisamoun). These could provide suitable case studies for exploring potential evidence for rival authority figures and political stratification during the PPN.

8. Group size thresholds and cultural evolution:

The group size thresholds proposed in this investigation present several avenues for further investigation into the relationship between demographic parameters and social, technological, economic, cultural and, potentially, political developments during the NDT. In particular, further research into changing subsistence strategies could explore the relationship between scaled population sizes and population pressure on resources or the capacity for cooperative and/or experimental human behaviour that may have led to innovative developments in food procurement strategies (i.e. the minimum population size required for specific tasks). Research relating to the introduction of mechanisms for reducing scalar stress and promoting social cohesion could explore the relationship between group size and household economic independence, architectural innovations and ritual practices. Research into emerging social complexity could explore the relationship between population size and craft specialisation, major technological developments, social and labour differentiation, and the rise of authoritative individuals.

An additional avenue for further research could involve re-examination of group size thresholds based on aggregate populations of settlements clusters. In this investigation, it appears that many developments may have occurred at lower population sizes than previously suggested. This could indicate that groups of interacting settlements may have acted as a larger regional population.

11.2 Concluding statement

The methodology for producing population estimates of PPN villages in the central and southern Levant has been completely revised in this investigation. This research presents the largest site-specific assessment of population parameters for PPN villages to date, including detailed micro-level assessment of 15 sites, and the reconstruction of individual estimates of population size, people per dwelling, residential floor area per person and people per hectare for an additional 91 sites. An assessment of the pre-existing population estimates and the underlying methodologies has suggested that these may not be suitable even for comparative analysis. Current theories reliant on these pre-existing estimates should be reviewed in light of the more empirically and statistically robust population estimates produced in this investigation.

References

- Abed, A.M. and Yaghan, R., 2000. On the palaeoclimate of Jordan during the last glacial maximum. *Palaeogeography, Palaeoclimatology, Palaeoecology,* 160, 23-33.
- Abusetta Al-Jaloudy, M., 2006. Country pasture/forage resource profiles Jordan. Food and Agriculture Organisation of the United Nations (FAO). Available from: http://www.fao.org/ag/AGP/AGPC/doc/Counprof/Jordan/Jordan.htm [Accessed 19 March 2014].
- Adams, R.McC., 1981. Heartland of cities: surveys of ancient settlement and land use on the central floodplain of the Euphrates. Chicago: University of Chicago Press.
- Adams, W.Y., 1988. Archaeological classification: theory versus practice. Antiquity, 61, 40-56.
- Adams, W.Y., 2009. Classification and typology. In: Hardesty, D.L., ed., Encyclopedia of life support systems (EOLSS), Vol. 1. Oxford: EOLSS Publishers, 136-145.
- Ahlstrom, R.V.N., 1985. The interpretation of archaeological tree-ring dates. PhD Thesis. University of Arizona.
- Alberti, G., 2014. Modeling group size and scalar stress by logistic regression from an archaeological perspective. *PLoS ONE*, 9 (3), e91510, 1-15.
- Alder, M., 1990. Community, aggregation, and land tenure: the search for a common ground. Paper presented at the meeting of the Society for American Archaeology, Las Vegas, Nevada.
- Al-Jawarneh, R., 2008. Spatial analysis of land cover and land use in evaluating land degradation in northwestern Al-Mafraq City, Jordan. Master's thesis. University of Arkansas.
- Al-Nahar, M., 2006. The Neolithic site of Tell Abu as-Sawwan, Jordan: preliminary report. *Neo-Lithics*, 1/06, 7-12.
- Alt, K.W., Benz, M., Müller, W., Berner, M.E., Schultz, M., Schmidt-Schultz, T.H., Knipper, C., Gebel, H.G.K., Nissen, H.J. and Vach, W., 2013. Earliest evidence for social endogamy in the 9,000-year-old-population of Basta, Jordan. *PLoS ONE*, 8 (6), e65649, 1-19.
- Andersson, C. and Read, D.W., 2016. The evolution of cultural complexity: not by the treadmill alone. *Current Anthropology*, 57 (3), 261-286.
- Antoun, R.T., 1972. Arab village: a social structural study of a Trans-Jordanian peasant community. Bloomington: Indiana University.
- Arensburg, B. and Hershkovitz, I., 1989. Artificial skull 'treatment' in the PPNB period: Nahal Hemar. *In:* Hershkovitz, I., ed., *People and culture in change.* British Archaeological Reports (BAR), International Series, 508. Oxford: Archaeopress, 115-131.
- Arnoldussen, S., 2008. A living landscape: Bronze Age settlement sites in the Dutch River area (c.2000-800 BC). Leiden: Sidestone Press.
- Arz, H.W., Lamy, F., Patzold, J., Muller, P.J. and Prins, M., 2003. Mediterranean moisture source for an early-Holocene humid period in the northern Red Sea. *Science*, 300 (5616), 118-121.
- Asmar, F.R., 2011. Country pasture/forage resource profiles Lebanon. Food and Agriculture Organisation of the United Nations (FAO). Available from: http://www.fao.org/ag/agp/AGPC/doc/Counprof/lebanon/lebanon.html [Accessed 19 March 2014].
- Asouti, E., 2006. Beyond the Pre-Pottery Neolithic B interaction sphere. *Journal of World Prehistory*, 20, 87-126.
- Asouti, E., 2013. Evolution, history and the origin of agriculture: rethinking the Neolithic (plant) economies of South-west Asia. *Levant*, 45 (2), 210-218.
- Asouti, E. and Fuller, D.Q., 2013. A contextual approach to the emergence of agriculture in Southwest Asia: reconstructing early Neolithic plant-food production. *Current Anthropology*, 54 (3), 299-345.

- Aurenche, O., 1981. Essai de démographie archéologique. L'exemple des villages du Proche-Orient ancien. *Paléorient*, 7 (1), 93-105.
- Aurenche, O., Galet, P., Régagnon-Caroline, E. and Evin, J., 2001. Proto-Neolithic and Neolithic cultures in the Middle East. The birth of agriculture, livestock raising, and ceramics. A calibrated ¹⁴C Chronology 12,500-5,500 cal BC. *Radiocarbon*, 43 (3), 1191-1202.
- Avni, Y., Porat, N. and Avni, G., 2012. Pre-farming environment and OSL chronology in the Negev Highlands, Israel. *Journal of Arid Environments*, 86, 12-27.
- Baggaley, A.W., Boys, R.J., Golightly, A., Sarson, G.R. and Shukurov, A., 2012. Inference for population dynamics in the Neolithic period. *The Annals of Applied Statistics*, 6 (4), 1352-1376.
- Baird, D., 1993. Neolithic chipped stone assemblages from the Azraq Basin, Jordan and the significance of the Neolithic of the arid zones of the Southern Levant. PhD thesis. University of Edinburgh.
- Baird, D., Fairbairn, A. and Martin, L., 2016. The animate house, the institutionalization of the household in Neolithic central Anatolia. *World Archaeology*, published online 28 September 2016, 1-24.
- Balbo, A.L., Iriarte, E., Arranz, A., Zapata, L., Lancelotti, C., Madella, M., Teira, L., Jiménez, M., Braemer, F. and Ibáñez, J.J., 2012. Squaring the circle: social and environmental implications of Pre-Pottery Neolithic building technology at Tell Qarassa (South Syria). *PLoS ONE*, 7 (7), e42109, 1-14.
- Bandy, M.S., 2001. *Population and history in the ancient Titicaca Basin*. PhD Thesis. University of California.
- Bandy, M.S., 2004. Fissioning, scalar stress, and social evolution in early village societies. *American Anthropologist*, 106 (2), 322-333.
- Bandy, M.S., 2005. New World settlement evidence for a two-stage Neolithic Demographic Transition. *Current Anthropology*, 46 (S), S109-S115.
- Bandy, M.S., 2006. Early village society in the Formative Period in the southern Lake Titicaca Basin. *In:* Isbell, W.R. and Silverman, H., eds., *Andean archaeology III: north and south*. New York: Springer, 210-236.
- Bandy, M.S., 2010. Population growth, village fissioning and alternative early village trajectories. In: Bandy, M.S. and Fox, J.R., eds., Becoming villagers: comparing early village societies. Tucson: University of Arizona Press, 19-36.
- Bandy, M.S. and Janusek, J.W., 2005. Settlement patterns, administrative boundaries, and internal migration in the early Colonial period. *In*: Stanish, C., Cohen, A.B. and Aldenderfer, M.S., eds., *Advances in Titicaca Basin archaeology, Vol. 1*. Los Angeles: Cotsen Institute of Archaeology at UCLA, 267-288.
- Banks, W.E., d'Errico, F. and Zilhão, J., 2013. Revisiting the chronology of the Proto-Aurignacian and the Early Aurignacian in Europe: a reply to Higham *et al.*'s reply to Banks *et al.* (2013). *Journal of Human Evolution*, 64, 39-55.
- Banning, E.B., 1998. The Neolithic period: triumphs of architecture, agriculture, and art. *Near Eastern Archaeology*, 61 (4), 188-237.
- Banning, E.B., 2003. Housing Neolithic farmers. Near Eastern Archaeology, 66 (1/2), 4-21.
- Banning, E.B. and Byrd, B.F., 1987. Houses and the changing residential unit: domestic architecture at PPNB 'Ain Ghazal, Jordan. *Proceedings of the Prehistoric Society*, 53, 309-325.
- Banning, E.B. and Najjar, M., 1999. Excavations at Tell Rakan, a Neolithic site in Wadi Ziqlab, Jordan. *Neo-Lithics*, 2/99, 1-3.
- Barkai, R., 2011. PPNA stone and flint axes as cultural markers: technological, functional and symbolic aspects. *In:* Healey, E., Campbell, S. and Maeda, O., eds., *The state of the stone: terminologies, continuities and contexts in Near Eastern lithics*. Studies in Early Near Eastern Production, Subsistence, and Environment, 13. Berlin: ex oriente, 443-448.

- Barkai, R. and Biran, N., 2011. Aviel: a new Neolithic site at the foothills of Mt. Carmel. *Neo-Lithics*, 2/11, 11-15.
- Barker, G., 2012. The desert and the sown: nomad-farmer interactions in the Wadi Faynan, southern Jordan. *Journal of Arid Environments*, 86, 82-96.
- Barth, F., 1956. Ecological relations among ethnic groups in Swat, North Pakistan. *American Anthropologist*, 58, 1079-1089.
- Bartl, K., Hijazi, M. and Haidar, A., 2006. The Late Neolithic site of Shir: preliminary report of the German-Syrian Cooperation Project 2006. *Neo-Lithics*, 2/06, 15-18.
- Baruch, U. and Bottema, S., 1999. A new pollen diagram from Lake Hula. *In:* Kawanabe, H., Coulter, G.W. and Roosevelt, A.C., eds., *Ancient lakes: their cultural and biological diversity*. Belgium: Kenboi Production, 75-86.
- Baruch, U. and Goring-Morris, A.N., 1997. The arboreal vegetation of the central Negev Highlands, Israel, at the end of the Pleistocene: evidence from archaeological charred wood remains. *Vegetation History and Archaeobotany*, 6 (4), 249-259.
- Bar-Matthews, M. and Ayalon, A., 2011. Mid-Holocene climate variations revealed by highresolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. *The Holocene*, 21, 163-171.
- Bar-Matthews, M., Ayalon, A., and Kaufman, A., 1997. A late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. *Quaternary Research*, 47, 155-168.
- Bar-Matthews, M., Ayalon, A. and Kaufman, A., 2000. Timing and hydrological conditions of sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. *Chemical Geology*, 169, 145-156.
- Bar-Matthews, M., Ayalon, A., Kaufman, A. and Wasserburg, G.J., 1999. The eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel. *Earth* and Planetary Science Letters, 166 (1-2), 85-95.
- Bar-Yosef, D.E., 2005. The exploitation of shells as beads in the Palaeolithic and Neolithic of the Levant. *Paléorient*, 31 (1), 176-185.
- Bar-Yosef, O., 1984. Seasonality among Neolithic hunter-gatherers in southern Sinai. In: Clutton-Brock, J. and Grigson, C., eds., Animals and archaeology: three early herders and their flocks. Oxford: British Archaeological Reports (BAR), International Series, 202, 145-60.
- Bar-Yosef, O., 1986. The walls of Jericho: an alternative interpretation. *Current Anthropology*, 27 (2), 157-162.
- Bar-Yosef, O., 1994. Form, function and numbers in Neolithic lithic studies. In: Gebel, H. and Kozlowski, S., eds., Neolithic chipped stone industries of the Fertile Crescent: proceedings of the first workshop on PPN chipped lithic industries. Studies in Early Near Eastern Production, Subsistence, and Environment, 1. Berlin: ex oriente, 5-14.
- Bar-Yosef, O., 1998. The Natufian culture in the Levant: threshold to the origins of agriculture. *Evolutionary Anthropology*, 6, 159-177.
- Bar-Yosef, O., 2000. The middle and early Upper Paleolithic in Southwest Asia and neighboring regions. *In:* Bar-Yosef, O. and Pilbeam, D., eds., *The geography of Neanderthals and modern humans in Europe and the greater Mediterranean*. Cambridge, Massachusetts: Peabody Museum, Harvard University, 107-156.
- Bar-Yosef, O. and Belfer-Cohen, A., 1989. The origins of sedentism and farming communities in the Levant. *Journal of World Prehistory*, 3 (4), 447-498.
- Bar-Yosef, O. and Belfer-Cohen, A., 1992. From foraging to farming in the Mediterranean Levant. *In:* Gebauer, A.B. and Price, T.D., eds., *Transitions to agriculture in prehistory*. Madison: Prehistory Press, 21-48.
- Bar-Yosef, O. and Gopher, A., eds., 1997. *An early Neolithic village in the Jordan Valley. Part I: The archaeology of Netiv Hagdud*. American School of Prehistoric Research Bulletin, 43. Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.
- Bar-Yosef, O. and Meadow, R.H., 1995. The origins of agriculture in the Near East. In: Price, T.D. and Gebauer, A.B., eds., Last hunters-first farmers: new perspectives on the prehistoric transition to agriculture. New Mexico: School of American Research Press, 39-94.
- Bar-Yosef, O., Gopher, A. and Goring-Morris, A.N., 1980. Netiv Hagdud: a "Sultanian" mound in the Lower Jordan Valley. *Paléorient*, 6, 201-206.
- Bar-Yosef, O., Gopher, A., Goring-Morris, A.N. and Kozlowski, S.K., 2010a. The stratigraphy and architecture of Gilgal I. *In*: Bar-Yosef, O., Goring-Morris, A.N. and Gopher, A., eds, *Gilgal: early Neolithic occupations in the Lower Jordan Valley. The excavations of Tamar Noy.* Oxford: Oxbow Books, 11-26.
- Bar-Yosef, O., Gopher, A., Tchernov, E. and Kislev, M.E., 1991. Netiv Hagdud: an early Neolithic village site in the Jordan Valley. *Journal of Field Archaeology*, 18, 405-424.
- Bar-Yosef, O., Goring-Morris, A.N., Gopher, A. and Kozlowski, S.K., 2010b. Gilgal and its place among early Neolithic sites in the Levant. *In*: Bar-Yosef, O., Goring-Morris, A.N. and Gopher, A., eds, *Gilgal: early Neolithic occupations in the Lower Jordan Valley. The excavations of Tamar Noy.* Oxford: Oxbow Books, 297-327
- Barzilai, O., 2013. The bidirectional blade industries of the southern Levant. In: Borrell, F., Ibáñez, J.J. and Molist, M., eds., Stone tools in transitions: from hunter-gatherers to farming societies in the Near East. 7th Conference on PPN chipped and ground stone industries of the Fertile Crescent. Universitat Autònoma de Barcelona: Servei de Publicacions, 59-72.
- Barzilai, O. and Getzov, N., 2008. Mishmar Ha'emeq: a Neolithic site in the Jezreel Valley. *Neo-Lithics*, 2/08, 12-17.
- Barzilai, O. and Goring-Morris, A.N., 2007. Bidirectional blade and tool caches and stocks in the PPNB of the Southern Levant. In: Astruc, L., Binder, D. and Briois, F., eds., Systèmes techniques et communautés du Néolithique précéramique au Proche-Orient/technical systems and Near Eastern PPN communities. Antibes: Éditions APDCA, 277-294
- Bayes, T.R., 1763. An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society*, 53, 370-418.
- Bayliss, A., 2007. Bayesian buildings: an introduction for the numerically challenged. *Vernacular Architecture*, 38, 75-86.
- Bayliss, A., 2009. Rolling out revolution: using radiocarbon dating in archaeology. *Radiocarbon*, 51 (1), 123-147.
- Bayliss, A., van der Plicht, J., Bronk Ramsey, C., McCormac, G., Healy, F. and Whittle, A., 2011. Towards generational time-scales: the quantitative interpretation of archaeological chronologies. *In*: Whittle, A., Healy, F. and Bayliss, A., eds., *Gathering time: dating the early Neolithic enclosures of southern Britain and Ireland, Vol. 1.* Oxford: Oxbow Books, 17-59.
- Belfer-Cohen, A. and Bar-Yosef, O. 2002. Early sedentism in the Near East: a bumpy ride to village life. *In*: Kuijt, I., ed., *Life in Neolithic farming communities: social organization, identity, and differentiation.* New York: Kluwer/Plenum, 19-37.
- Bennallack, K.C., 2012. Production of ritual material culture in the Pre-Pottery Neolithic period in Jordan: some methods for analytical investigation. Master's Thesis. University of California.
- Benz, M., 2013. Comments on radiocarbon dates of Epipalaeolithic and Early Neolithic sites of the Near East. Available from: http://www.exoriente.org/associated_projects/ppnd.php [Accessed 4 December 2016].
- Benz, M., Coşkun, A., Hajdas, I., Deckers, K., Riehl, S., Alt, K.W., Weninger, B. and Özkaya, V., 2012. Methodological implications of new radiocarbon dates from the early Holocene site Körtik Tepe, Southeast Anatolia. *Radiocarbon*, 54 (3-4), 291-304.
- Berna, F., 1995. La lavarazione dell'amazzonite nel villagio Neolitico di Jebel Ragref (Giordania meridionale). *L'ecologia del Quaternario*, 17, 41-54.
- Bettinger, R.L., 2016. Prehistoric hunter-gatherer population growth rates rival those of agriculturalists. *Proceedings of the National Academy of Sciences*, 113 (4), 812-814.

- Betts, A.V.G., 1998. Holocene cultural ecology and environments of the Northeastern Badia. In: Henry, D.O., ed., The prehistoric archaeology of Jordan. British Archaeological Reports (BAR), International Series, 705. Oxford: Archaeopress, 151-161.
- Bienert, H.-D., and Gebel, H.G.K., 2004. Summary on Ba'ja 1997, and insights from the later seasons. *In*: Bienert, H.-D., Gebel, H.G.K. and Neef, R., eds., *Central settlements in Neolithic Jordan: proceedings of a symposium Held in Wadi Musa, Jordan, 21st-25th of July, 1997.* Studies in Early Near Eastern Production, Subsistence, and Environment, 5. Berlin: ex oriente, 119-144.
- Binford, L.R., 2001. Constructing frames of reference: an analytical method for archaeological theory building using ethnographic and environmental data sets. Los Angeles: University of California Press.
- Bintliff, J., 1999. Settlement and territory. In: Barker, G., ed., Companion encyclopedia of archaeology, Vol. 1. London/New York: Routledge, 505-545.
- Bittles, A.H. and Black, M.L., 2010. Consanguineous marriage and human evolution. *Annual Review of Anthropology*, 39, 193-207.
- Blanton, R.E., 1972. *Prehispanic settlement patterns of the Ixtapalapa Region, Mexico.* Pennsylvania State University: Occasional Papers in Anthropology, 6.
- Boaretto, E., Bar-Yosef, O., Gopher, A., Goring-Morris, A.N. and Kozlowski, S., 2010. Radiocarbon chronology. In: Bar-Yosef, O., Goring-Morris, A.N. and Gopher, A., eds., Gilgal: early Neolithic occupations in the Lower Jordan Valley. The excavations of Tamar Noy. Oxford: Oxbow Books, 33-38.
- Bocquentin, F., Barzilai, O., Khalaily, H. and Kolska Horwitz, L., 2011. The PPNB site of Beisamoun (Hula Basin): present and past research. *In*: Healey, E., Campbell, S. and Maeda, O., eds, *The state of the stone: terminologies, continuities and contexts in Near Eastern lithics.* Studies in Early Near Eastern Production, Subsistence, and Environment, 13. Berlin: ex oriente, 197-211.
- Bocquet-Appel, J.-P. and Bar-Yosef, O., eds., 2008. *The Neolithic Demographic Transition and its consequences*. Dordtrecht: Springer.
- Bodley, J.H., 2003. The power of scale: a global history approach. London: M. E. Sharpe.
- Boerma, J.A.K., 1989-90. Palaeoenvironment and palaeo land-evaluation based on actual environment conditions of Tell Bouqras, East Syria. *Anatolica*, 16, 215-249.
- Bogaard, A. and Isaakidou, V., 2010. From mega-sites to farmsteads: community size, ideology and the nature of early faming landscapes in Western Asian and Europe. *In*: Finlayson, B. and Warren, G., eds., *Landscapes in transition*. Oxford: Oxbow Books, 192-207.
- Böhner, U. and Schyle, D., 2008. *Radiocarbon CONTEXT database*. Available from: http://context-database.uni-koeln.de/ [Accessed 15 February 2017].
- Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I. and Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. *Science*, 294, 2130-2136.
- Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I. and Bonani, G., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. *Science*, 278, 1257-1266.
- Boserup, E., 1965. The conditions of agricultural growth: the economics of agrarian change under population pressure. London: Allen & Unwin.
- Bowser, B.J., 2000. From pottery to politics: an ethnoarchaeological study of political factionalism, ethnicity, and domestic pottery style in the Ecuadorian Amazon. *Journal of Archaeological Method and Theory*, 7, 219-248.
- Boyd, B., 2006. On 'sedentism' in the Later Epipalaeolithic (Natufian) Levant. World Archaeology, 38 (2), 164-178.
- Brock, F., Higham, T., Ditchfield, P. and Bronk Ramsey, C., 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). *Radiocarbon*, 52 (1), 103-112.

- Bronk Ramsey, C., 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. *Radiocarbon*, 37 (2), 425-430.
- Bronk Ramsey, C., 2001. Development of the radiocarbon program OxCal. *Radiocarbon*, 43 (2A), 355-363.
- Bronk Ramsey, C., 2005. OxCal *Program v3.10: the manual*. Available from: https://c14.arch.ox.ac.uk/oxcal3/entire.htm#author [Accessed 15 November 2016].
- Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. *Radiocarbon*, 51 (1), 337-360.
- Broshi, M. and Gophna, R., 1984. The settlements and population of Palestine during the Early Bronze Age II-III. *Bulletin of the American Schools of Oriental Research*, 253, 41-53.
- Brown, B.McC., 1987. Population estimation from floor area: a restudy of "Naroll's Constant". *Cross-Cultural Research*, 21 (1), 1-49.
- Buck, C.E., Cavanagh, W.G. and Litton, C.D. 1996. Bayesian approach to interpreting archaeological data. Chichester: Wiley.
- Burns, R.P. and Burns, R.P., eds., 2008. Business research methods and statistics using SPSS. extension chapters on advanced techniques: discriminant analysis (Chapter 25). London: Sage Publications Ltd., 589-604.
- Byrd, B.F. and Banning E., 1988. Southern Levantine pier houses: intersite architectural patterning during the Pre-Pottery Neolithic B. *Paléorient*, 14, 65-72.
- Byrd, B.F., 1992. The dispersal of food production across the Levant. *In*: Gebauer, A.B. and Price, T.D., eds., *Transitions to agriculture in prehistory*. Madison, Wisconsin: Prehistory Press, 49-61.
- Byrd, B.F., 1994. Public and private, domestic and corporate: the emergence of the Southwest Asian village. *American Antiquity*, 59 (4), 639-666.
- Byrd, B.F., 2002. Households in transition: Neolithic social organization within Southwest Asia. In: Kuijt, I., ed., Life in Neolithic farming communities: social organization, identity and differentiation. New York: Kluwer Academic Press, 63-102.
- Byrd, B.F., 2005a. *Early village life at Beidha, Jordan: Neolithic spatial organization and vernacular architecture the excavations of Mrs Diana Kirkbride-Helbæk*. British Academy Monographs in Archaeology, 14. Oxford: Oxford University Press.
- Byrd, B.F., 2005b. Reassessing the emergence of village life in the Near East. *Journal of Archaeological Research*, 13 (3), 231-290.
- Cameron, C.M., 1990. The effect of varying estimates of pit structure use-life on prehistoric population estimates in the American Southwest. *Kiva*, 55 (2), 155-166.
- Campbell, D., 2009. Sustainable assumptions: modelling the ecological impacts of Pre-Pottery Neolithic farming communities in the Levant. PhD Thesis. University of Liverpool.
- Carmi, I., Segal, D., Goring-Morris, A.N. and Gopher, A., 1994. Dating the prehistoric site Nahal Issaron in the southern Negev, Israel. *Radiocarbon*, 36 (3), 391-398.
- Carneiro, R.L., 1967. On the relationship between size of population and complexity of social organization. *Journal of Anthropological Research*, 23 (3), 234-243.
- Carneiro, R.L. and Hilse, D.F., 1966. On determining the probable rate of population growth during the Neolithic. *American Anthropologist*, 68 (1), 177-181.
- Casselberry, S.E., 1974. Further refinement of formulae for determining population from floor area. *World Archaeology*, 6 (1), 117-122.
- Castro, L. and Toro, M.A., 2014. Cumulative cultural evolution: the role of teaching. *Journal of Theoretical Biology*, 347, 74-83.
- Cellan-Jones, R., 2011. *Domesday reloaded project: the 1086 version*. Available from: http://www.bbc.co.uk/history/domesday/dblock/GB-536000-261000/page/13 [Accessed 23 February 2017].

- Cessford, C., 2005. Estimating the Neolithic population of Çatalhöyük. *In*: Hodder, I., ed., *Inhabiting Çatalhöyük: reports from the 1995-99 seasons*. Cambridge: BIAA/McDonald Institute, 325-328.
- Chagnon, N.A., 1980. Mate competition, favoring close kin, and village fissioning among the Yanomama Indians. *In*: Chagnon, N.A. and Irons, W., eds., *Evolutionary biology and human social behavior: an anthropological perspective*. North Scituate: Duxbury Press, 86-131.
- Chamberlain, A., 2006. Demography in archaeology. Cambridge: Cambridge University Press.
- Chamel, B., 2014. Bioanthropologie et pratiques funéraires des populations Néolithiques du Proche-Orient: l'impact de la Néolithisation (Étude de sept sites Syriens - 9820-6000 cal. BC). PhD Thesis. Université Lumière Lyon 2, France.
- Chapman, J., 1981. The Vinca culture of south east Europe. Studies in chronology, economy and society. British Archaeological Reports (BAR), International Series, 117. Oxford: Archaeopress.
- Clarke, D.V. and Maguire, P., 2000. *Skara Brae: Northern Europe's best preserved Neolithic village*. Edinburgh: Historic Scotland.
- Clarke, S.K., 1974. A method for the estimation of prehistoric pueblo population. *The Kiva*, 39, 283-287.
- Cohen, J., 1988. *Statistical power analysis for the behavioral sciences*. 2nd edition. New Jersey: Lawrence Erlbaum Associates.
- Collard, M., Ruttle, A., Buchanan, B. and O'Brien, M.J., 2013. Population size and cultural evolution in nonindustrial food-producing societies. *PLoS ONE*, 8 (9), e72628, 1-6.
- Collard, M., Vaesen, K., Cosgrove, R. and Roebroeks, W., 2016. The empirical case against the 'demographic turn' in Palaeolithic archaeology. *Philosophical Transactions of The Royal Society B Biological Sciences*, 371, 20150242, 1-10.
- Colledge, S., 2001. *Plant exploitation on Epipaleolithic and early Neolithic sites in the Levant.* British Archaeological Reports (BAR), International Series, 986. Oxford: Archaeopress.
- Colledge, S. and Conolly, J., 2007. A review and synthesis of the evidence for the origins of farming on Cyprus and Crete. *In*: Colledge, S. and Conolly, J., eds., *The origins and spread of domestic plants in Southwest Asia and Europe*. California: UCL Institute of Archaeology/Left Coast Press, 53-74.
- Colledge, S., Conolly, J. and Shennan, S.J., 2004. Archaeobotanical evidence for the spread of farming in the eastern Mediterranean. *Current Anthropology*, 45, S35-S58.
- Cook, S.F., 1972. *Prehistoric demography*. McCaleb Modules in Anthropology, 16. Reading: Addison-Wesley Modular Publications.
- Cook, S.F. and Heizer, R.F., 1968. Relationships among houses, settlement areas, and population in Aboriginal California. *In*: Chang, K.-C., ed., *Settlement archaeology*. Palo Alto, California: National Press, 79-116.
- Cook, S.F. and Treganza, A.E., 1950. The quantitative investigation of Indian mounds. *University of California Publications in American Archaeology and Ethnology*, 40 (5), 223-261.
- Copeland, L., 1991. Natufian sites in Lebanon. *In*: Bar-Yosef, O. and Valla, F.R., eds., *The Natufian culture in the Levant*. Ann Arbor: International Monographs in Prehistory, Archaeological Series, 1, 27-42.
- Coqueugniot, E. and Anderson, P.C., 1996. L'industrie lithique d'El Aoui Safa, un nouveau site Khiamien à l'est du Jebel el 'Arab (Désert noir, Syrie du sud). In: Kozlowski, S.K. and Gebel, H.G., eds., Neolithic chipped stone industries of the Fertile Crescent, and their contemporaries in adjacent regions. Studies in Near Eastern Production, Subsistence and Environment, 3. Berlin: ex oriente, 421-430.
- Corradi, C., 2006. *The main soil and water conservation technologies in Syria: an overview.* International Centre for Agricultural Research in Dry Areas (ICARDA). Available from: http://www.wocat.net/fileadmin/user_upload/documents/Theses/Corradi.pdf [Accessed 6 March].

- Coward, F., 2010. Small worlds, material culture and Near Eastern social networks. *In:* Dunbar, R., Gamble, C. and Gowlett, J., eds., *Social brain, distributed mind*. Oxford: Oxford University Press, 449-480.
- Coward, F. and Dunbar, R.I.M., 2014. Communities on the edge of civilisation. *In*: Dunbar, R.I.M, Gamble, C. and Gowlett, J., eds., *Lucy to language: the benchmark papers*. Oxford: Oxford University Press, 380-405.
- Crema, E.R., Edinborough, K., Kerig, T. and Shennan, S.J., 2014. An approximate Bayesian computation approach for inferring patterns of cultural evolutionary change. *Journal of Archaeological Science*, 50, 160-70.
- Crowfoot-Payne, J., 1976. The terminology of the Aceramic Neolithic period in the Levant. *In*: Wendorf, F., ed., *Deuxième colloque sur la terminologie de la Préhistoire du Proche-Orient*. Nice: UISPP Congress, 131-137.
- Cullen, H.M., deMenocal, P.B., Hemming, S., Hemming, G., Brown, F.H., Guilderson, T. and Sirocko, F., 2000. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. *Geology* 28, 379-382.
- De Roche, C.D., 1983. Population estimates from settlement area and number of residences. *Journal of Field Archaeology*, 10 (2), 187-192.
- Dennis, S., 2008. The use of experimental archaeology to examine and interpret Pre-Pottery Neolithic architecture: a case study of Beidha in southern Jordan. PhD Thesis. University of Edinburgh.
- Diehl, M.W., 2001. Mogollon pithouse architecture and changes in residential mobility. *In*: Diehl, M.W. and LeBlanc, S.A., eds., *Early pithouse villages of the Mimbres Valley and beyond: the McAnally and Thompson sites in their cultural and ecological contexts*. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, 83. Cambridge, Massachusetts: Peabody Museum of Archaeology and Ethnology, Harvard University, 37-46.
- Dodd, C.F., 1982. Ontario Iroquois tradition longhouses. Master's Thesis. Simon Fraser University.
- Donta, S., 2013. Ground stone tools analysis. In: Sampson, A., ed., Wadi Hamarash I: an early PPNB settlement at Wadi al-Hasa, Jordan. Vol. 1. Rhodes: University of the Aegean Laboratory of Environmental Archaeology, 139-190.
- Drennan, R.D., 1988. Household location and compact versus dispersed settlement in Prehispanic Mesoamerica. *In*: Wilk, R. and Ashmore, W., eds., *House and household in the Mesoamerican Past*. Albuquerque: University of New Mexico Press, 273-293.
- Drennan, R.D., 1996. *Statistics for archaeologists: a commonsense approach. Interdisciplinary contributions to archaeology.* Pittsburgh: Springer.
- Drennan, R.D. and Peterson, C.E., 2008. Centralized communities, population and social complexity after sedentarization. *In*: Bocquet-Appel, J.-P. and Bar-Yosef, O., eds., *The Neolithic Demographic Transition and its consequences*. Dordtrecht: Springer, 359-386.
- Dunbar, R.I.M., 1992. Neocortex size as a constraint on group size in primates. *Journal of Human Evolution*, 22, 469-493.
- Dunbar, R.I.M., 2003. The social brain: mind, language and society in evolutionary perspective. *Annual Review of Anthropology*, 32, 163-181.
- Düring, B.S., 2001. Social dimensions in the architecture of Neolithic Çatalhöyük. *Anatolian Studies*, 51, 1-18.
- Düring, B.S., 2007. The articulation of houses at Neolithic Çatalhöyük, Turkey. *In:* Beck, R.A., ed., *The durable house: house society models in archaeology*. Southern Illinois University: Center for Archaeological Investigations, Occasional Paper, 35, 130-153.
- Düring, B.S., 2013. The anatomy of a prehistoric community: reconsidering Çatalhöyük. *In*: Birch, J., ed., *From prehistoric villages to cities: settlement aggregation and community transformation*. London: Routledge, 23-43.
- Durkheim, E., 1893. *The division of labor in society*. New York: Free Press.

- Edwards, P.C. and House, E., 2007. The third season of investigations at the Pre-Pottery Neolithic A site of Zahrat adh-Dhra'2 on the Dead Sea Plain, Jordan. *Bulletin of the American School of Oriental Research*, 347, 1-19.
- Edwards, P.C., 2007. The context and production of incised Neolithic stones. Levant, 39, 27-33.
- Edwards, P.C. and Sayej, G., 2007. Resolving contradictions: the PPNA-PPNB transition in the Southern Levant. *In:* Astruc, L., Binder, D. and Briois, F., eds., *Systèmes techniques et communautés du Néolithique précéramique au Proche-Orient (Technical systems and Near Eastern PPNA communities).* Antibes, France: APDCA, 117-125.
- Edwards, P.C., Meadows, J., Sayej, G. and Westaway, M., 2004. From the PPNA to the PPNB: new views from the Southern Levant after excavation at Zahrat adh-Dhra'2 in Jordan. *Paléorient*, 30 (2), 21-60.
- Eshed, V. and Galili, E., 2011. Palaeodemography of southern Levantine Pre-Pottery Neolithic populations: regional and temporal perspectives. *In*: Pinhasi, R. and Stock, J.T., eds., *Human bioarchaeology of the transition to agriculture*. Oxford: Wiley-Blackwell, 403-428.
- Eshed, V., Gopher, A., Gage, T.B. and Hershkovitz, I., 2004. Has the transition to agriculture reshaped the demographic structure of prehistoric populations? New evidence from the Levant. *American Journal of Physical Anthropology*, 124, 315-329.
- Eshed, V., Hershkovitz, I. and Goring-Morris, A.N., 2008. A re-evaluation of burial customs in the PrePottery Neolithic B in light of paleodemographic analysis of the human remains from Kfar HaHoresh, Israel. *Paléorient*, 34(1), 91-103.
- Fabiano, M., Berna, F., Borzatti von Löwenstern, E., 2004. Pre-Pottery Neolithic amazonite bead workshops in southern Jordan. *In:* Secrétariat du Congrès, ed., Acts of the XIVth World Congress of the Union of Prehistoric and Protohistoric Sciences (UISPP), Liege (Belgium), 2nd-8th September 2001. British Archaeological Reports (BAR), International Series,1303, 265-275.
- Feinman, G.M., 2000. Cultural evolutionary approaches and archaeology: past, present, and future. In: Feinman, G.M. and Manzanilla, L., eds, Cultural evolution: contemporary viewpoints. New York: Kluwer Acadmeic/Plenum Publishers, 3-12.
- Finkelstein, I., 1990. A few notes on demographic data from recent generations and ethnoarchaeology. *Palestine Exploration Quarterly*, 122, 47-62.
- Finlayson, B., Kuijt, I., Arpin, T., Chesson, M., Dennis, S., Goodale, N., Kadowaki, S., Maher, S., Smith, S., Schurr, M. and McKay, J., 2003. Dhra' excavation project, 2002 interim report. *Levant*, 25, 1-38.
- Finlayson, B., Kuijt, I., Mithen, S. and Smith. S., 2011. New evidence from southern Jordan: rethinking the role of architecture in changing societies at the beginning of the Neolithic process. *Paléorient*, 37 (1), 123-135.
- Finlayson, B., Mithen, S. and Najjar, M., 2012. WF16. Architecture, sedentism and social complexity - communal building in Pre-Pottery Neolithic A settlements: new evidence from WF16. Council for British Research in the Levant (CBRL) Bulletin, 7, 18-23.
- Finlayson, B., Mithen, S., Najjar, M., Smith, S. and Jenkins, E., 2010. Excavations at Wadi Faynan 16, a Pre-Pottery Neolithic A site in southern Jordan. *Council for British Research in the Levant (CBRL) Bulletin*, 5, 46-48.
- Fino, N., 1997. Al-Baseet, a new LPPNB Site found in Wadi Musa, southern Jordan. *Neo-Lithics*, 3/97, 13-14.
- Flannery, K.V., 1972. The origin of the village as a settlement type in Mesoamerica and the Near East: a comparative study. *In*: Ucko, P.J., Tringham, R. and Dimbleby, G.W., eds., *Man, settlement and urbanism*. London: Duckworth, 23-53.
- Flannery, K.V., 2002. The origins of the village revisited: from nuclear to extended households. *American Antiquity*, 67 (3), 417-433.
- Fletcher, R., 1981. People and space: a case study on material behaviour. In: Hodder, I., Isaac, G. and Hammond, N., eds., Pattern of the past: studies in honour of David Clarke. Cambridge: Cambridge University Press, 97-128.

- Fletcher, R., 1990. Residential densities, group sizes and social stress in Australian aboriginal settlements. *In*: Meehan, B. and White, N., eds., *Hunter-gatherer demography*. University of Sydney: Oceania Monographs, 39, 81-95.
- Fletcher, R., 1995. *The limits of settlement growth: a theoretical outline*. New York: Cambridge University Press.
- Forge, A., 1972. Normative factors in the settlement size of Neolithic cultivators (New Guinea). *In*: Ucko, P.J., Tringham, R. and Dimbleby, G.W., eds., *Man, settlement and urbanism*. London: Duckworth, 363-376.
- Fried, M.H., 1967. *The evolution of political society: an essay in political economy*. New York: Random House, Inc.
- Friedkin, N.E., 2004. Social cohesion. Annual Review of Sociology, 30, 409-425.
- Frumkin, A., Carmi, I., Zak, I. and Magaritz, M., 1994. Middle Holocene environmental change determined from the salt caves of Mount Sedom, Israel. *In:* Bar-Yosef, O. and Kra, R., eds., *Late Quaternary chronology and paleoclimates of the eastern Mediterranean*. Tuscon: The University of Arizona, 315-322.
- Frumkin, A., Kadan, G., Enzel, Y. and Eyal, Y., 2001. Radiocarbon chronology of the Holocene Dead Sea: attempting a regional correlation. *In*: Bruins, H.J., Carmi, I. and Boaretto, E., eds., *Near East chronology: archaeology and environment*. Radiocarbon, 43, 1179-1189.
- Frumkin, A., Margaritz, M., Carmi, I. and Zak, I., 1991. The Holocene climatic record of the salt caves of Mount Sedom, Israel. *The Holocene*, 1, 191-200.
- Fujii, S., 2007. Wadi Badda: a PPNB settlement below Fjaje Escarpment near Shawbak. *Neo-Lithics*, 1/07, 19-23.
- Fuller, D.Q., Willcox, G. and Allaby, R.G., 2011. Cultivation and domestication had multiple origins: arguments against the core area hypothesis for the origins of agriculture in the Near East. World Archaeology, 43 (4), 628-652.
- GADM, 2012. Global administrative areas, Version 2. Available from: http://www.gadm.org [Accessed 30 May 2014].
- Galili E. and Nir Y., 1993. The submerged Pre-Pottery Neolithic water well of 'Atlit-Yam, Northern Israel, and its palaeoenvironmental implications. *The Holocene*, 3, 265-270.
- Galili, E., Lernau, O. and Zohar, I., 2004. Fishing and coastal adaptations at `Atlit-Yam a submerged PPNC fishing village off the Carmel Coast, Israel. *Atiqot*, 48, 1-34.
- Gallagher, E.M., Shennan, S.J. and Thomas, M.G., 2015. Transition to farming more likely for small, conservative groups with property rights, but increased productivity is not essential. *Proceedings of the National Academy of Sciences*, 112 (46), 14218-14223.
- Garfinkel, Y. and Nadel, D., 1989. The Sultanian flint assemblage from Gesher and its implications for recognizing early Neolithic entities in the Levant. *Paléorient*, 15 (2), 139-151.
- Garrard, A., Baird, D., Colledge, S., Martin, L. and Wright, K., 1994. Prehistoric environment and settlement in the Azraq Basin: an interim report on the 1987 and 1988 excavation seasons. *Levant*, 26, 73-109.
- Garrard, A., Martin, L., Becker, C., Ducos, P., Tchernov, E., Horwitz L.K. and von den Driesch, A., 1999. Animal domestication in the Southern Levant. *Paléorient*, 25 (2), 63-80.
- Gebel, H.G.K., 1987. Relative and absolute chronologies of the southern Levant between 10,000 and 8,000 BP. *In*: Aurenche, O. and Hours, F., eds., *Chronologies in the Near East.* British Archaeological Reports (BAR), International Series, 379, 343-351.
- Gebel, H.G.K., 2002. The Neolithic of the Near East: an essay on "polycentric evolution" and other research problems. *In*: Hausleiter, A., Kerner, S. and Müller-Neuhof, B., eds., *Material culture and mental spheres*. Alter Orient und Altes Testament, 293. Münster: Ugarit-Verlag, 313-324.
- Gebel, H.G.K., 2003. The significance of Ba'ja for early Near Eastern Neolithic research. *Orient* & Occident. Newsletter of the German Protestant Institute of Archaeology in Amman, 8.1, 17-19.

- Gebel, H.G.K., 2004a. Central to what? The centrality issue of the LPPNB mega-site phenomenon in Jordan. *In*: Bienert, H.-D., Gebel, H.G.K. and Neef, R., eds., *Central settlements in Neolithic Jordan*. Studies in Early Near Eastern Production, Subsistence, and Environment, 5. Berlin, ex oriente, 1-20.
- Gebel, H.G.K., 2004b. The domestication of water. Evidence from Early Neolithic Ba'ja? In: Bienert, H.-D. and Häser, J., eds., Men of dikes and canals. The archaeology of water in the Middle East. International symposium, Petra, 15th-20th June 1999. Orient-Abteilung: Deutches Archäologisches Institut, 25-35.
- Gebel, H.G.K., 2006. The domestication of vertical space. The southern Jordanian case of steep-slope LPPNB architecture. *In:* Banning, E.B. and Chazan, M., eds., *Domesticating* space: construction, community, and cosmology in the late prehistoric. Studies in Early Near Eastern Production, Subsistence, and Environment, 12. Berlin: ex oriente, 65-74.
- Gebel, H.G.K., 2008. Neolithic 'Ain Jamam near Ras an-Naqb: the pre-1993 field research history. *Neo-Lithics*, 1/08, 16-25.
- Gebel, H.G.K., 2010. Commodification and the formation of Early Neolithic social identity. The issues as seen from the southern Jordanian Highlands. *In*: Benz, M., ed., *The principle of sharing.* Segregation and construction of social identities at the transition from foraging to farming. Studies in Early Near Eastern Production, Subsistence, and Environment, 14. Berlin: ex oriente, 35-80.
- Gebel, H.G.K. and Bienert, H.-D., 1997. The 1997 season of excavation at Ba'ja, southern Jordan. *Neo-Lithics*, 3/97, 14-18.
- Gebel, H.G.K. and Hermansen, B.D., 1999. Ba'ja Neolithic Project 1999: short report on architectural findings. *Neo-Lithics*, 3/99, 18-21.
- Gebel, H.G.K. and Hermansen, B.D., 2004. Ba'ja 2003: summary on the 5th season of excavation. *Neo-Lithics*, 2/04, 15-18.
- Gebel, H.G.K. and Kinzel, M., 2007. Ba'ja 2007: crawl spaces, rich room dumps, and high energy events. Results of the 7th Season of Excavations. *Neo-Lithics*, 1/07, 24-33.
- Gebel, H.G.K., Hermansen, B.D. and Kinzel, M., 2006a. Ba'ja 2005: a two-storied building and collective burials. Results of the 6th season of excavation. *Neo-Lithics*, 1/06, 12-19.
- Gebel, H.G.K., Kinzel M., Nissen H.J. and Zaid Z., 2006b. Summary and conclusions. *In*: Gebel, H.G.K., Nissen, H.J. and Zaid, Z., eds., *Basta II. The architecture and stratigraphy*. Berlin: ex oriente, 203-224.
- Geert van den Berg, R., 2014. SPSS paired samples t test. Available from: http://www.spsstutorials.com/spss-paired-samples-t-test/ [Accessed 30 January 2017].
- Geert van den Berg, R., 2016. SPSS Wilcoxon signed-ranks test simple example. Available from: http://www.spss-tutorials.com/spss-wilcoxon-signed-ranks-test-simple-example/ [Accessed 30 January 2017].
- Gillespie, S.D., 2007. When is a house? *In*: Beck, R.A., ed., *The durable house: house society models in archaeology*. Southern Illinois University: Center for Archaeological Investigations, Occasional Paper, 35, 25-50.
- Ginenthal, C., 2015. *Pillars of the past, Vol. 4: Chronology of the age of Stonehenge and the megalithic world.* New York: Ivy Press Books and Kronos Press.
- Gkotsinas, A. and Karathanou, A., 2013. The faunal and floral remains. *In*: Sampson, A., ed., *Wadi Hamarash I: an early PPNB settlement at Wadi al-Hasa, Jordan, Vol. 1.* Rhodes: University of the Aegean Laboratory of Environmental Archaeology, 125-138.
- Goldewijk, K.K., Beusen, A. and Janssen, P., 2010. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: Hyde 3.1. *Holocene*, 20 (4), 565-573.
- Goodale, N.B., 2009. Convergence in the Neolithic: human population growth at the dawn of agriculture. PhD Thesis. Washington State University.
- Goodale, N.B., Otis, H., Andrefsky Jr., W., Kuijt, I., Finlayson, B. and Bart, K., 2010. Sickle blade life-history and the transition to agriculture: an early Neolithic case study from Southwest Asia. *Journal of Archaeological Science*, 37, 1192-1201.

- Goodfriend, G.A., 1999. Terrestrial stable isotope records of late Quaternary paleoclimates in the eastern Mediterranean region. *Quaternary Science Reviews*, 18 (4-5), 501-513.
- Goodfriend, G.A. and Magaritz, M., 1988. Palaeosols and late Pleistocene rainfall fluctuations in the Negev Desert. *Nature*, 332, 144-146.
- Gopher, A., 1990. Mujahiya, an Early Pre-Pottery Neolithic B site in the Golan Heights. *Tel Aviv*, 17, 115-143.
- Gopher, A., 1994. Arrowheads of the Neolithic Levant: a seriation analysis. Winona Lake, Indiana: Eisenbrauns.
- Gopher, A., 1996. What happened to the early PPNB? In: Kozlowski, S.K. and Gebel, H.G.K, eds., Neolithic chipped lithic industries of the Fertile Crescent and their contemporaries in adjacent regions: proceedings of the second workshop on PPN chipped lithic industries. Studies in Early Near Eastern Production, Subsistence, and Environment, 3. Berlin: ex oriente, 151-158.
- Gopher A. and Goring-Morris N., 1998. Abu Salem. A Pre-Pottery Neolithic B camp in the central Negev. *Bulletin of the American Schools of Oriental Research*, 312, 1-20.
- Goren, Y., Goring-Morris, A.N. and Segal, I., 2001. The technology of skull modelling in the Pre-Pottery Neolithic B (PPNB): regional variability, the relation of technology and iconography and their archaeological implications. *Journal of Archaeological Science*, 28, 671-690.
- Goring-Morris, A.N. and Belfer-Cohen, A., 1997. The articulation of cultural processes and late Quaternary environmental changes in Cisjordan. *Paléorient*, 23 (2), 71-93.
- Goring-Morris, A.N. and Belfer-Cohen, A., 2008. A roof over one's head: developments in Near Eastern residential architecture across the Epipalaeolithic-Neolithic transition. *In:* Bocquet-Appel, J.-P. and Bar-Yosef, O., eds., *The Neolithic Demographic Transition and its consequences.* Dordtrecht: Springer, 239-286.
- Goring-Morris, A.N. and Belfer-Cohen, A., 2010. Great expectations or the inevitable collapse of the early Neolithic in the Near East. *In*: Bandy, M.S. and Fox, J., eds., *Becoming villagers*. Tuscon: University of Arizona Press, 62-80.
- Goring-Morris, A.N. and Belfer-Cohen, A., 2011. Neolithization processes in the Levant: the outer envelope. *Current Anthropology*, 52 (S4), S195-S208.
- Goring-Morris, A.N. and Belfer-Cohen, A. 2013. Houses and households: a Near Eastern perspective. *In:* Hofmann, D. and Smyth, J., eds., *Tracking the Neolithic house in Europe*. New York: Springer, 19-28.
- Goring-Morris, A.N., Burns, R., Davidzon, A., Eshed, V., Goren, Y., Hershkovitz, I., Kangas, S. and Kelecevic, J., 1998. The 1997 season of excavations at the mortuary site of Kfar HaHoresh, Galilee, Israel. *Neo-Lithics*, 3/98, 1-4.
- Gorodzov, V.A., 1933. The typological method in archaeology. *American Anthropologist*, 35 (1), 95-102.
- Groman-Yaroslavski, I., Rosenberg, D. and Nadel, D., 2014. A functional investigation of perforators from the Late Natufian/Pre-Pottery Neolithic A site of Huzuk Musa a preliminary report. *In*: Borrell, F., Ibáñez, J.J. and Molist, M., eds., *Stone tools in transition: from hunter-gatherers to farming societies in the Near East.* 7th Conference on *PPN Chipped and Ground Stone Industries of the Fertile Crescent.* Barcelona: Universitat Autònoma de Barcelona. Servei de Publicacions, 165-176.
- Guerrero, E., Molist, M., Kuijt, I. and Anfruns, J., 2009. Seated memory: new insights into Near Eastern Neolithic mortuary variability from Tell Halula, Syria. *Current Anthropology*, 50 (3), 379-391.
- Gvirtzman, G. and Wieder, M., 2001. Climate of the last 53,000 years in the eastern Mediterranean based on soil-sequence stratigraphy in the coastal plain of Israel. *Quaternary Science Reviews*, 20, 1827-1849.
- Haber, A. and Dayan, T. 2004. Analyzing the process of domestication: Hagoshrim as a case study. *Journal of Archaeological Science*, 31, 1587-1601.

- Hackman, J.R. and Vidmar, N., 1970. Effects of size and task type on group performance and member reactions. *Sociometry*, 33, 37-54.
- Halstead, P., 1981. Counting sheep in Neolithic and Bronze Age Greece. *In*: Hodder, I., Isaac, G. and Hammond, N., eds., *Pattern of the past: studies in honour of David Clarke*. Cambridge: Cambridge University Press, 307-339.
- Hammel, E.A. and Laslett, P., 1974. Comparing household structure over time and between cultures. *Comparative Studies in Society and History*, 16 (1), 73-109.
- Hassan, F.A., 1981. Demographic archaeology. New York: Academic Press.
- Haviland, W.A., 1972. Family size, prehistoric population estimates and the Ancient Maya. *American Antiquity*, 37, 135-139.
- Hayden, B., Reinhardt, G.A., MacDonald, R., Holmberg, D. and Crellin, D., 1996. Space per capita and the optimal size of housepits. *In*: Coupland, G. and Banning, E.B., eds., *People who lived in big houses: archaeological perspectives on large domestic structures*. Monographs in World Archaeology, 27. Madison: Prehistory Press, 151-163.
- Heidenreich, C.E., 1971. *Huronia: a history and geography of the Huron Indians 1600-1650.* Toronto: McClelland and Stewart Ltd.
- Helmer, D. and Gourichon, L., 2008. Premières données sur les modalités de subsistence à Tell Aswad (Syrie, PPNB moyen et récent, Néolithique céramique ancien)? Fouilles 2001-2005. Archaeozoology of the Near East, VIII, 119-151.
- Hemsley, S., 2008. The implications of early village architectures: the sensuous geographies and social experience of Near Eastern PPNA and PPNB built environments. PhD Thesis. University of Liverpool.
- Henrich, J., 2004. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case. *American Antiquity*, 69, 197-214.
- Henry, D.O., 1997. Prehistoric human ecology in the southern Levant east of the Rift from 20000-6000 BP. *Paléorient*, 23 (2), 107-119.
- Henry, D.O., ed., 1998. *The prehistoric archaeology of Jordan*. British Archaeological Reports (BAR), International Series, S705. Oxford: Archaeopress.
- Henry, D.O. and Albert, R.M., 2004. Herding and agricultural activities at the early Neolithic site of Ayn Abu Nukhayla (Wadi Rum, Jordan). The results of phytoliths and spherulite analyses. *Paléorient*, 30 (2), 81-92.
- Henry, D.O., White, J.J., Beaver, J.E., Kadowaki, S., Nowell, A., Cordova, C., Dean, R.M., Ekstrom, H., McCorriston, J., Hietala, H. and Scott-Cummings, L., 2002. Interim report: research at the PPNB site of Ayn Abu Nukhayla, Southern Jordan. *Neo-Lithics*, 2/02, 14-17.
- Henry, D.O., White, J.J., Beaver, J.E., Kadowaki, S., Nowell, A., Cordova, C., Dean, R.M., Ekstrom, H., McCorriston, J. and Scott-Cummings, L., 2003. The early Neolithic site of Ayn Abu Nukhayla, southern Jordan. *Bulletin of the American Schools of Oriental Research*, 330, 1-30.
- Hermansen, B.D. and Gebel, H.G.K., 1996. More "pillow-shaped pieces" from LPPNB Basta. *Neo-Lithics*, 2/96, 11-12.
- Hermansen, B.D. and Hoffmann Jensen, C., 2002. Notes on some features of possible ritual significance at MPPNB Shaqarat Mazyad, southern Jordan. *In*: Gebel, H.G.K., Hermansen, B.D. and Hoffmann Jensen, C., eds., *Magic practices and ritual in the Near Eastern Neolithic*. Studies in Early Near Eastern Production, Subsistence, and Environment, 8. Berlin, ex oriente, 91-101.
- Hermansen, B.D., Thuesen, I., Hoffman Jensen, C., Kinzel, M., Bille Petersen, M., Jørkov, M.L. and Lynnerup, N., 2006. Shkārat Msaied: the 2005 season of excavations. A short preliminary report. *Neo-Lithics*, 1/05, 3-7.
- Hershkovitz, I. and Gopher, A., 1988. Human burials from Horvat Galil: a Pre-Pottery Neolithic site in the Upper Galilee, Israel. *Paléorient*, 14 (1), 119-125.

- Hershkovitz, I. and Gopher, A., 1990. Paleodemography, burial customs, and food-producing economy at the beginning of the Holocene: a perspective from the southern Levant. *Mitekufat Haeven, Journal of the Israel Prehistoric Society*, 23, 9-47.
- Hershkovitz, I. and Gopher, A., 2008. Demographic, biological and cultural aspects of the Neolithic revolution: a view from the Southern Levant. *In*: Bocquet-Appel, J.-P. and Bar-Yosef, O., eds, *The Neolithic Demographic Transition and Its consequences*. London: Springer, 441-479.
- Higham, T., Basell, L., Jacobi, R., Wood, R., Bronk Ramsey, C. and Conard, N.J., 2012. Testing models for the beginnings of the Aurignacian and the advent of figurative art and music: the radiocarbon chronology of Geissenklösterle. *Journal of Human Evolution*, 62, 664-676.
- Hijmans, R.J., Cameron, S.E. and Parra, J.L., 2004. WorldClim, Version 1.2. A square kilometer resolution database of global terrestrial surface climate. Available from: http://www.worldclim.org/download [Accessed 19 March 2014].
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25, 1965-1978.
- Hill, J.N., 1970. Broken K Pueblo: prehistoric social organization in the American Southwest. Anthropological Papers, 18. Tucson: The University of Arizona Press.
- Hodder, I., 2006. Çatalhöyük: the leopard's tale, revealing the mysteries of Turkey's ancient 'town'. London: Thames and Hudson.
- Hodder, I. and Cessford, C., 2004. Daily practice and social memory at Çatalhöyük. *American Antiquity*, 69 (1), 17-40.
- Hole, F., 1984. A reassessment of the Neolithic revolution. Paléorient, 10 (2), 49-60.
- Hole, F. and Heizer, R.F., 1969. An introduction to prehistoric archeology. New York: Holt, Rinehart and Winston.
- Horne, L., 1994. Village spaces: settlement and society in northeastern Iran. Smithsonian Series in Archaeological Inquiry. Washington: Smithsonian Institution Press.
- Horowitz, A., 1976. Late Quaternary paleoenvironments of prehistoric settlements. *In:* Marks, A., ed., *Prehistory and paleoenvironments in the central Negev, Israel. The Avdat/Aqev area, Part 1, Vol. 1.* Dallas: Southern Methodist University Press, 57-68.
- Hörr, C., Lindinger, E. and Brunnett, G., 2009. *New paradigms for automated classification of pottery*. Technical Report CSR-09-06. Germany: Technische Universität Chemnitz.
- Horwitz, L.K. and Ducos, P., 2005. Counting cattle: trends in Neolithic *Bos* frequencies from the southern Levant. *Revue de Paléobiologie*, *Genève*, 10, 209-224.
- Huberty, C.J. and Olejnik, S., 2006. *Applied MANOVA and discriminant analysis*. 2nd edition. New Jersey: John Wiley and Sons, Inc.
- Hunt, C.O., El-Rishi, H.A., Gilbertson, D.D., Grattan, J., McLaren, S., Pyatt, F.B., Rushworth, G. and Barker, G.W., 2004. Early Holocene environments in the Wadi Faynan, Jordan. *Holocene*, 14 (6), 921-930.
- Huxley, J.S., 1932. Problems of relative growth. London: Methuen.
- Ibáñez, J.J., Balbo, A., Braemer, F., Gourichon, L., Iriarte, E., Santana, J. and Zapata, L., 2010. The early PPNB levels of Tell Qarassa North (Sweida, southern Syria). *Antiquity*, 84 (325), 1-5.
- Ibañez, J.J., Haïder-Boustani, M., Arrans, A., Himi, M., Khalidi, L., Teira, L. and Garcia, J., 2012. Trabajos arqueológicos en el yacimiento Neolítico de Tell Labwe sur (Bekaa norte, Líbano). *Informes y Trabajos*, 9, 434-447.
- Jacobs, L., 1979. Tell-i Nun: archaeological implications of a village in transition. *In*: Kramer, C., ed., *Ethnoarchaeology: implications of ethnography for archaeology*. New York: Columbia University Press, 175-191.

- Jensen, C.H., Hermansen, B.D., Bille Petersen, M., Kinzel, M., Hald, M.M., Bangsgaard, P., Lynnerup, N. and Thuesen, I., 2005. Preliminary report on the excavations at Shakarat al-Musay'id, 1999-2004. Annual of the Department of Antiquities of Jordan, 49, 115-134.
- Jeremias, J., 1969. *Jerusalem in the time of Jesus*. (Translated by Cave, F.H. and Cave, C.H. from German.) London: SCM.
- Johnson, A.W. and Earle, T.K., 2000. The evolution of human societies: from foraging group to agrarian state. 2nd edition. California: Stanford University Press.
- Johnson, C.N. and Brook, B.W., 2011. Reconstructing the dynamics of ancient human populations from radiocarbon dates: 10,000 years of population growth in Australia. *Proceedings of the Royal Society of Biological Sciences*, 278, 3748-3754.
- Johnson, G.A., 1982. Organizational structure and scalar stress. *In*: Renfrew, C., Rowlands, M.J. and Segraves, B.A., eds., *Theory and explanation in archaeology*. New York: Academic Press, 389-421.
- Jordan LESA, 2014. Jordan a country profile. Available from: http://www.jordanlesa.org/guide/country-profile/ [Accessed 18 March 2014].
- Kafafi, Z.A., 2010. Clans, gods and temples at the LPPNB 'Ayn Ghazal. In: Benz, M., ed., The principle of sharing. Segregation and construction of social identities at the transition from foraging to farming. Studies in Early Near Eastern Production, Subsistence, and Environment, 14. Berlin, ex oriente, 301-312.
- Kafafi, Z., Caneva, I. and Palumbo, G., 1999. The Neolithic site of es-Sayyeh: preliminary report on the 1999 season. *Neo-Lithics*, 3/99, 10-12.
- Kempe, M., and Mesoudi, A., 2014. An experimental demonstration of the effect of group size on cultural accumulation. *Evolution and Human Behavior*, 35 (4), 285-290.
- Kennedy, T.M., 2013. A demographic analysis of Late Bronze Age Canaan: ancient population estimates and insights through archaeology. PhD Thesis. University of South Africa.
- Kenyon, K.M., 1956. Excavations at Jericho. Palestine Exploration Quarterly, 88, 67-82.
- Kenyon, K.M., 1981. *Excavations at Jericho, Vol. 3: the architecture and stratigraphy of the Tell.* London: British School of Archaeology in Jerusalem.
- Kerns, C.J., 2016. Monuments from the doorstep: exploring the temporal, spatial and social relationship between chambered cairns and settlements during the Orcadian Neolithic. *In*: Nash, G. and Townsend, A., eds., *Decoding Neolithic Atlantic and Mediterranean island ritual.* Oxford: Oxbow Books, 16-52.
- Khalaily, H., Bar-Yosef, O., Barzilai, O., Boaretto, E., Bocquentin, F., Eirikh-Rose, A., Greenhut, Z., Goring-Morris, A.N., Le Doseur, G., Marder, O., Sapir-Hen, L. and Yizhaq, M., 2007. Excavations at Motza in the Judean Hills and the early Pre-Pottery Neolithic B in the southern Levant. *Paléorient*, 33, 5-37.
- Khalaily, H., Milevski, I., Getzov, N., Hershkovitz, I., Barzilai, O., Yarosevich, A., Shlomi, V., Najjar, A., Zidan, O., Smithline, H. and Liran, R., 2008. Recent excavations at the Neolithic site of Yiftahel (Khalet Khalladyiah), Lower Galilee. *Neo-Lithics*, 2/08, 3-11.
- Khalidi, L., Gratuze, B., Haidar-Boustani, M., Ibáñez, J.J. and Teira, L., 2013. Results of geochemical analyses of obsidian artefacts from the Neolithic site of Tell Labwe South, Lebanon. In: Borrell, F., Ibáñez, J.J. and Molist, M., eds., Stone tools in transition: from hunter-gatherers to farming societies in the Near East. 7th Conference on PPN Chipped and Ground Stone Industries of the Fertile Crescent. Barcelona: Universitat Autònoma de Barcelona. Servei de Publicacions, 475-494.
- Kinzel, M., 2004. Some notes on the reconstruction of PPNB architecture. *Neo-Lithics*, 2/04, 18-22.
- Kinzel, M., 2013. Am beginn des hausbaus. Studien zur PPNB-architektur von Shkārat Msaied und Ba'ja in der Petra-region, Jordanien. Studies in Early Near Eastern Production, Subsistence, and Environment, 17. Berlin: ex oriente.
- Kinzel, M., Abu-Laban, A., Hoffmann Jensen, C., Thuesen, I. and Jørkov, M.L., 2011. Insights into PPNB architectural transformation, human burials, and initial conservation works: summary on the 2010 excavation season at Shkārat Msaied. *Neo-Lithics*, 1/11, 44-49.

- Kirkbride, D., 1966. Five seasons at the Pre-Pottery Neolithic village of Beidha in Jordan. *Palestine Exploration Quarterly*, 98, 5-61.
- Kirkbride, D., 1985. The environment of the Petra region during the Pre-Pottery Neolithic. *In*: Hadidi, A., ed., *Studies in the history and archaeology of Jordan II*. London: Routledge and Kegan Paul, 117-124.
- Kline, M.A. and Boyd, R., 2010. Population size predicts technological complexity in Oceania. *Proceedings of the Royal Society B*, 277, 2559-2564.
- Kobayashi, Y. and Aoki, K., 2012. Innovativeness, population size and cumulative cultural evolution. *Theoretical Population Biology*, 82, 38-47.
- Kohler, T.A., Cockburn, D., Hooper, P.L., Bocinsky, R.K. and Kobti, Z., 2012. The coevolution of group size and leadership: an agent-based public goods model for prehispanic pueblo societies. *Advances in Complex Systems*, 15(1&2), 1150007.
- Köhler-Rollefson, I. and Rollefson, G.O., 1990. The impact of Neolithic subsistence strategies on the environment: the case of 'Ain Ghazal, Jordan. *In*: Bottema, S., Entjes-Nieborg, G. and Van Zeist, W., eds., *Man's role in shaping the eastern Mediterranean environment*. Rotterdam: A.A. Balkema/Brookfield, 3-14.
- Kolb, C.C., 1985. Demographic estimates in archaeology: contributions from ethnoarchaeology on Mesoamerican peasants. *Current Anthropology*, 26 (5), 581-599.
- Kosse, K., 1990. Group size and societal complexity: thresholds in the long-term memory. *Journal of Anthropological Archaeology*, 9, 275-303.
- Kouchoukos, N., 1998. Landscape and social change in late prehistoric Mesopotamia. PhD Thesis. Yale University.
- Kovarovic, K., Aiello, L.C., Cardini, A. and Lockwood, C.A., 2011. Discriminant function analyses in archaeology: are classification rates too good to be true? *Journal of Archaeological Science*, 38, 3006-3018.
- Kramer, C., 1979. An archaeological view of a contemporary Kurdish village: domestic architecture, household size, and wealth. *In*: Kramer, C., ed., *Ethnoarchaeology: implications of ethnography for archaeology*. New York: Columbia University Press, 139-163.
- Kramer, C., 1980. Estimating prehistoric population: an ethnoarchaeological approach. In: Barrelet, M.-T., ed., L'Archéologie de l'Iraq. Paris: Centre National de la Rechere Scientifique, 315-334.
- Kramer, C., 1982. Village ethnoarchaeology: rural Iran in archaeological perspective. London: Academic Press
- Kuckelman, K.A., 2000. Population estimates. In: Kuckelman, K.A., ed., The Archaeology of Castle Rock Pueblo: a thirteenth-century village in southwestern Colorado. Available from: http://www.crowcanyon.org/castlerock [Accessed 14 February 2017].
- Kuijt, I., 1995. New perspectives on old territories: ritual practices and the emergence of social complexity in the Levantine Neolithic. PhD thesis. Harvard University. Available from: http://proquest.umi.com/pqdweb?did=740909121&sid=1&Fmt=2&clientId=20806&RQT=3 09&VName=PQD [Accessed 10 July 2016].
- Kuijt, I., 1996. Negotiating equality through ritual: a consideration of Late Natufian and Pre-Pottery Neolithic A period mortuary practices. *Journal of Anthropological Archaeology*, 15, 313-336.
- Kuijt, I., 1997. Trying to fit round houses into square holes: re-examining the timing of the southcentral Levantine Pre-Pottery Neolithic A and Pre-Pottery Neolithic B cultural transition. *In:* Gebel, H., Kafafi, Z. and Rollefson, G.O., eds., *The prehistory of Jordan, II: perspectives from 1997.* Studies in Early Near Eastern Production, Subsistence, and Environment, 4. Berlin: ex oriente, 193-202.
- Kuijt, I., 2000. People and space in early agricultural villages: exploring daily lives, community size and architecture in the late Pre-Pottery Neolithic. *Journal for Anthropological Archaeology*, 19, 75-102.

- Kuijt, I., 2001. Lithic inter-assemblage variability and cultural-historical sequences: a consideration of the Pre-Pottery Neolithic A occupation of Dhra', Jordan. *Paléorient*, 27 (1), 107-125.
- Kuijt, I., 2003. Between foraging and farming: critically evaluating the archaeological evidence for the southern Levantine Early Pre-Pottery Neolithic B period. *Turkish Academy of Sciences - Journal of Archaeology*, 6, 7-25.
- Kuijt, I., 2004a. Pre-Pottery Neolithic A and Late Natufian at 'Iraq ed-Dubb, Jordan. *Journal of Field Archaeology*, 29, 291-308.
- Kuijt, I., 2004b. When the walls came down: social organization, ideology and the 'collapse' of the Pre-Pottery Neolithic. In: Bienert, H.-D., Gebel, H.G.K. and Neef, R., eds., Central settlements in Neolithic Jordan. Studies in Early Near Eastern Production, Subsistence, and Environment, 5. Berlin: ex oriente, 183-99
- Kuijt, I., 2008a. Demography and storage systems during the southern Levantine Neolithic Demographic Transition. *In:* Bocquet-Appel, J.-P. and Bar-Yosef, O., eds., *The Neolithic Demographic Transition and its consequences*. Dordtrecht: Springer, 287-313.
- Kuijt, I., 2008b. What mean these bones: considering scale and Neolithic mortuary variability. In: Córdoba, J.M., Molist, M., Pérez, M.C., Rubio I. and Martínez, S., eds., Proceedings of the 5th International Congress of the Archaeology of the Ancient Near East. Universidad Autónoma de Madrid, 591–602.
- Kuijt, I., 2009. Rethinking the origins of agriculture: what do we really know about food storage, surplus, and feasting in preagricultural communities? *Current Anthropology*, 50 (5), 641-644.
- Kuijt, I. and Chesson, M.S., 2005. Lumps of clay and pieces of stone: ambiguity, bodies and identity as portrayed in Neolithic figurines. *In*: Pollock, S. and Bernbeck, R., eds., *Archaeologies of the Middle East: critical perspectives*. Oxford: Blackwell, 152-183.
- Kuijt, I. and Finlayson, B., 2009. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. *Proceedings of the National Academy of Science*, 106, 10966-10970.
- Kuijt, I. and Goring-Morris, A.N., 2002. Foraging, farming, and social complexity in the Pre-Pottery Neolithic of the southern Levant: a review and synthesis. *Journal of World Prehistory*, 16 (4), 361-440.
- Kuijt, I. and Mahasneh, H., 1998. Dhra': an early Neolithic village in the southern Jordan Valley. *Journal of Field Archaeology*, 25, 153-161.
- Kuijt, I., Finlayson, B. and MacKay, J., 2007. Pottery Neolithic landscape modification at Dhra'. *Antiquity*, 81, 106-118.
- Kuijt, I., Guerrero, E., Molist, M. and Anfruns, J., 2011. The changing Neolithic household: household autonomy and social segmentation, Tell Halula, Syria. *Journal of Anthropological Archaeology*, 30, 502-522.
- Ladah, R., 2006. *The social implications of the architecture at PPNB Ghwair I.* Master's thesis. University of Nevada.
- Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D.C., Rohland, N., Mallick, S., Fernandes, D., Novak, M., Gamarra, B., Sirak, K., Connell, S., Stewardson, K., Harney, E., Fu, Q., Gonzalez-Fortes, G., Jones, E.R., Roodenberg, S.A., Lengyel, G., Bocquentin, F., Gasparian, B., Monge, J.M., Gregg, M., Eshed, V., Mizrahi, A.-S., Meiklejohn, C., Gerritsen, F., Bejenaru, L., Blüher, M., Campbell, A., Cavalleri, G., Comas, D., Froguel, P., Gilbert, E., Kerr, S.M., Kovacs, P., Krause, J., McGettigan, D., Merrigan, M., Merriwether, D.A., O'Reilly, S., Richards, M.B., Semino, O., Shamoon-Pour, M., Stefanescu, G., Stumvoll, M., Tönjes, A., Torroni, A., Wilson, J.F., Yengo, L., Hovhannisyan, N.A., Patterson, N., Pinhasi, R. and Reich, D., 2016. Genomic insights into the origin of farming in the ancient Near East. Accelerated article preview. *Nature*, doi:10.1038/nature19310, 1-9 and supplementary information.
- Le Brun, A., 1994. *Fouilles récentes à Khirokitia (Chypre), 1988-1991.* Paris: Editions Recherche sur les Civilisations.
- LeBlanc, S.A., 1971. An addition to Naroll's suggested floor area and settlement population relationship. *American Antiquity*, 36, 210-211.

- Louhaichi, M., Ghassali, F., Salkini, A.K. and Petersen, S.L., 2012. Effect of sheep grazing on rangeland plant communities: case study of landscape depressions within Syrian arid steppes. *Journal of Arid Environments*, 79, 101-106.
- Mahasneh, H.M., 1996. Es-Sifiya: a Pre-Pottery Neolithic B site in Wadi El-Mujib, Jordan. *Dirasat: Human and Social Sciences*, 23 (1), 135-151.
- Mahasneh, H.M., 1997. A PPNB settlement at as-Sifiyya in Wadi al-Mujib. *Studies in the History* and Archaeology of Jordan, 26, 117-131.
- Mahasneh, H.M. and Gebel, H.G.K., 1998. Geometric objects from LPPNB Es-Sifiya, Wadi Mujib, Jordan. *Paléorient*, 24 (2), 105-110.
- Mahoney, N.M., 2000. Redefining the scale of Chacoan communities. *In*: Kantner, J. and Mahoney, N.M., eds., *Great house communities across the Chacoan landscape*. Tucson: University of Arizona Press, 19-27.
- Makarewicz, C.A., 2009. Complex caprine harvesting practices and diversified hunting strategies: integrated animal exploitation systems at Late Pre-Pottery Neolithic B 'Ain Jamman. *Anthropozoologica*, 44 (1), 79-101.
- Makarewicz, C.A., 2010. *El-Hemmeh excavation project: 2007 season report.* Unpublished report. Submitted to the Department of Antiquities, Amman, Jordan.
- Makarewicz, C.A., 2013. More than meat: diversity in caprine harvesting strategies and the emergence of complex production systems during the Late Pre-Pottery Neolithic B. *Levant*, 45 (2), 236-261.
- Makarewicz, C.A. and Austin, A.E., 2006. Late PPNB occupation at el-Hemmeh: results from the third excavation season 2006. *Neo-Lithics*, 2/06, 19-23.
- Makarewicz, C.A. and Rose, K., 2011. Early Pre-Pottery Neolithic settlement at el-Hemmeh: a survey of the architecture. *Neo-Lithics*, 1/11, 23-29.
- Makarewicz, C.A. and Tuross, N., 2009. Changes in goat management strategies through the later Pre-Pottery Neolithic B. *In*: Shea, J.J. and Lieberman, D.E., eds., *Transitions in prehistory. Papers in Honor of Ofer Bar-Yosef.* Cambridge, Massachusetts: American School of Prehistoric Research.
- Makarewicz, C.A., Goodale, N.B., Rassmann, P., White, C., Miller, H., Haroun, J., Carlson, E., Pantos, A., Kroot, M., Kadowaki, S., Casson, A., Williams, J.T., Austin, A.E. and Fabre, B., 2006. El-Hemmeh: a multi-period Pre-Pottery Neolithic site in the Wadi el-Hasa, Jordan. *Eurasian Prehistory*, 4 (1-2), 183-220.
- Malinsky-Buller, A., Aladjem, E., Givol-Barzilai, Y., Bonnes, D., Goren, Y., Yeshurun, R. and Birkenfeld, M., 2013. Another piece in the puzzle: a new PPNA site at Bir el-Maksur (northern Israel). *Paléorient*, 39 (2), 155-172.
- Marciniak, A., Barański, M.Z., Bayliss, A., Czerniak, L., Goslar, T., Southon, J. and Taylor, R.E., 2015. Fragmenting times: interpreting a Bayesian chronology for the Late Neolithic occupation of Çatalhöyük East, Turkey. *Antiquity*, 89, 154-176.
- Marfoe, L., 1980. Review of 'The rise of an urban culture: the urbanization of Palestine in the Early Bronze Age' by A. Kempinski and 'Early Arad: the Chalcolithic settlement and Early Bronze city, Vol. 1. First-Fifth Seasons of Excavations, 1962-1966' by R. Amiran. *Journal of Near Eastern Studies*, 39, 315-322.
- Martin, L. and Edwards, Y., 2013. Diverse strategies: evaluating the appearance and spread of domestic caprines in the southern Levant. *In*: Colledge, S., Conolly, J., Dobney, K., Manning, K. and Shennan, S.J., eds., *The origins and spread of domestic animals in Southwest Asia and Europe*. Walnut Creek: Left Coast Press, 49-82.
- Masri, A., 2006. Country pasture/forage resource profiles Syrian Arab Republic. Food and Agriculture Organisation of the United Nations (FAO). Available from: http://www.fao.org/ag/AGP/AGPC/doc/counprof/PDF%20files/Syria.pdf [Accessed 19 March 2014].
- Masuda, S. and Sha'ath, S., 1983. Qminas, the Neolithic site near Tell Deinit, Idlib (Preliminary report). *Annales Archeologiques Arabes Syriennes*, 33 (i), 199-231.

- Matthews, R.J., 1996. Surface scraping and planning. *In*: Hodder, I., ed., *On the surface: Çatalhöyük 1993-95.* Cambridge: McDonald Institute, 79-99.
- Matthews, W., 2005. Micromorphological and microstratigraphic traces of uses and concepts of space. In: Hodder, I., ed., Inhabiting Çatalhöyük: reports from the 1995-99 seasons. Cambridge: BIAA/McDonald Institute, 355-398.
- McDonald, J.H., 2014. *Handbook of biological statistics*. 3rd edition. Maryland: Sparky House Publishing.
- McGarry, S., Bar-Matthews, M., Matthews, A., Vakes, A., Schilman, B. and Ayalon, A., 2004. Constraints on hydrological and paleotemperature variations in the eastern Mediterranean region in the last 140 ka given by the δD values of speleothem fluid inclusions. *Quaternary Science Reviews*, 23, 919-934.
- McLaren, S.J., Gilbertson, D.D., Grattan, J.P., Hunt, C.O., Duller, G.A.T. and Barker, G.A., 2004. Quaternary palaeogeomorphologic evolution of the Wadi Faynan area, southern Jordan. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 205, 131–154.
- McLaughlin, T., Whitehouse, N., Schulting, R.J., McClatchie, M. and Barratt, P., 2016. The changing face of Neolithic and Bronze Age Ireland: a big data approach to the settlement and burial records. *Journal of World Prehistory*, 29 (2), 117-153.
- Meadows, J., 2005. The Younger Dryas episode and the radiocarbon chronologies of the Lake Huleh and Ghab Valley pollen diagrams, Israel and Syria. *The Holocene*, 15 (4), 631-636.
- Mellaart, J., 1967. Çatal Hüyük: a Neolithic town in Anatolia. London: Thames and Hudson.
- Mesoudi, A., 2011. Variable cultural acquisition costs constrain cumulative cultural evolution. *PLoS ONE*, 6 (3), e18239, 1-10.
- Milisauskas, S., 1972. An analysis of linear culture longhouses at Olszanica BI, Poland. *World Archaeology*, 4, 57-74.
- Millard, A.R., 2014. Conventions for reporting radiocarbon determinations. *Radiocarbon*, 56 (2), 555-559.
- Mithen, S.J., 2003. After the ice: a global human history, 20,000-5,000 BC. Cambridge: Harvard University Press.
- Mithen, S.J., Finlayson, B., Smith, S., Jenkins, E., Najjar, M. and Maricevic, D., 2011. An 11,600 year-old communal structure from the Neolithic of southern Jordan. *Antiquity*, 85, 350-364.
- Mizrahi, S., 2015. Moza Tahtit. Hadashot Arkheologiyot Excavations and Surveys in Israel, 127. Available from: http://www.hadashotesi.org.il/report_detail_eng.aspx?id=24845&mag_id=122 [Accessed 2 March 2017].
- Moore, A., 1983. The first farmers in the Levant. In: Young Jr., T.C., Smith, P.E.L. and Mortensen, P., eds., The hilly flanks and beyond: essays on the prehistory of Southwestern Asia. Studies in Ancient Oriental Civilization, 36. Chicago: University of Chicago Press, 91-111.
- Murdock, G.P., 1981. Atlas of world cultures. Pittsburgh: The University of Pittsburgh Press.
- Murdock, G.P. and Provost, C., 1973. Measurement of cultural complexity. *Ethnology*, 12, 379-392.
- Nadel, D. and Nadler-Uziel, M., 2011. Is the PPNC really different? The flint assemblages from three layers at Tel Roim West, Hula Basin. *In*: Healey, E., Campbell, S. and Maeda, O., eds., *The state of the stone: terminologies, continuities and contexts in Near Eastern lithics.* Studies in Early Near Eastern Production, Subsistence, and Environment, 13. Berlin: ex oriente, 243-255.
- Nadel, D. and Rosenberg, D., 2013. The Final Epipaleolithic/PPNA site of Huzuq Musa (Jordan Valley). In: Bar-Yosef, O. and Valla, F.R., eds., Natufian foragers in the Levant: terminal Pleistocene social changes in Western Asia. Ann Arbor: International Monographs in Prehistory, Archaeological Series, 19, 382-296.
- Nadel, D., Bar-Yosef, O. and Gopher, A., 1991. Early Neolithic arrowhead types in the southern Levant: a typological suggestion. *Paléorient*, 17 (1), 109-119.

- Nadel, D., Tsatskin, A. and Zertal, A., 1999. Ein Suhun a PPNA/B site in the eastern Samarian hills. *Neo-Lithics*, 2/99, 3-4.
- Nadel, D., Zisu, N.S., Frumkin, A. and Yaroshevich, A., 2012. New prehistoric cave sites in lower Nahal Oren, Mt. Carmel, Israel. *Journal of The Israel Prehistoric Society*, 42, 75-114.
- Naroll, R., 1956. A preliminary index of social development. *American Anthropologist*, 58 (4), 687-715.
- Naroll, R., 1962. Floor area and settlement population. American Antiquity, 27 (4), 587-589.
- Nau, R., 2017. Statistical forecasting: notes on regression and time series analysis. Available from: http://people.duke.edu/~rnau/411home.htm [Accessed 30 January 2017].
- Neef, R., 2004. Vegetation and climate. A comparison between PPNB 'Ain Ghazal and Basta. In: Bienert, H.D., Gebel, H.G.K. and Neef, R., eds., Central settlements in Neolithic Jordan: proceedings of a symposium held in Wadi Musa, Jordan, 21st-25th of July, 1997. Studies in Early Near Eastern Production, Subsistence, and Environment, 5. Berlin: ex oriente, 289-299.
- Neeley, M.P. and Clark, G.A., 1993. The human food niche in the Levant over the past 150,000 years. *In*: Peterkin, G.L., Bricker, H.M. and Mellars, P., eds, *Hunting and animal exploitation in the later Palaeolithic and Mesolithic of Eurasia*. Archeological Papers of the American Anthropological Association, 4, 221-240.
- Nelson, N.C., 1909. Shellmounds of the San Francisco Bay region. University of California Publications in American Archaeology and Ethnology, 7, 309-356.
- Nesbitt, M., 2002. When and where did domesticated cereals first occur in Southwest Asia? *In*: Cappers, R. and Bottema, S., eds., *The dawn of farming in the Near East*. Berlin: ex oriente, 113-32.
- Netting, R.McC., 1982. Some home truths on household size and wealth. *American Behavioral Scientist*, 25, 641-662.
- Netting, R.McC., Wilk, R.R. and Arnould, E.J., 1984. Introduction. In: Netting, R.McC., Wilk, R.R. and Arnould, E.J., eds., Households: comparative and historical studies of the domestic group. California: University of California Press, xiii-xxxviii.
- Nishiaki, Y., 2000. *Lithic technology of Neolithic Syria.* British Archaeological Reports (BAR), International Series, 840. Oxford: Archaeopress.
- Nissen, H.J., 2006. The architecture. *In*: Gebel, H.G.K., Nissen, H.J. and Zaid, Z., eds., *Basta II. The architecture and stratigraphy*. Berlin: ex oriente, 133-180.
- Nordbeck, S., 1971. Urban allometric growth. (Geografiska Annaler, Series B.) Human Geography, 53 (1), 54-67.
- Noy, T., 1979. Stone cup-holes and querns from Gilgal I, a Pre-Pottery Neolithic A site in Israel. *Paléorient*, 5, 233-238.
- Noy, T., 1989. Gilgal I: a Pre-Pottery Neolithic site, Israel. The 1985-1987 seasons. *Paléorient*, 15 (1), 11-18.
- Noy, T., Legge, A.J. and Higgs, E.S., 1973. Recent excavations at Nahal Oren, Israel. *Proceedings of the Prehistoric Society*, 39, 75-99.
- Ortman, S.G., Varien, M.D. and Lee Gripp, T., 2007. An empirical Bayesian approach to analysis of archaeological survey data from southwest Colorado. *American Antiquity*, 72, 241-272.
- Oswalt, W.H., 1976. An anthropological analysis of food-getting technologies. New York: Wiley.
- Oxford Dictionaries Online, 2016. Village. Oxford University Press. Available from: https://en.oxforddictionaries.com/definition/village [Accessed 23 February 2017].
- Parsons, J.R., 1971. *Prehistoric settlement patterns in the Texcoco Region, Mexico*. Memoirs of the Museum of Anthropology, University of Michigan, 3. Ann Arbor: University of Michigan.
- Perkins, D., 1966. The fauna from Madamagh and Beidha. *Palestine Exploration Quarterly*, 98, 66-67.

- Perkins, D., 2013. Encyclopedia of China: the essential reference to China, its history and culture. Oxford: Routledge.
- Perlman, S.M., 1985. Group size and mobility costs. *In*: Green, S.W. and Perlman, S.M., eds., *The archaeology of frontiers and boundaries*. New York: Academic Press, 33-50.
- Peros, M.C., Munoz, S.E., Gajewski, K. and Viau, A.E., 2010. Prehistoric demography of North America inferred from radiocarbon data. *Journal of Archaeological Science*, 30, 1-9.
- Perrot, J., 1966. La troisième campagnes de fouilles à Munhata (1964). Syria, 43, 49-63.
- Peterson, C.E. and Shelach, G., 2012. Jiangzhai: social and economic organization of a middle Neolithic Chinese village. *Journal of Anthropological Archaeology*, 31, 265-301.
- Peterson, J., Neeley, M., Hill, B., Jones, J., Crawford, P., Kurzawska, A., Sullivan, N., Wasse, A. and White, C., 2010. The origins and development of agriculture in the Wadi al-Hasa region: 2006 test excavations at Khirbat al-Hammam (WHS149), TBAS 102, and TBAS 212. Annual of the Department of Antiquities of Jordan, 54, 387-412.
- Petrie, C. and Thomas, K., 2012. The topographic and environmental context of the earliest village sites in western south Asia. *Antiquity*, 86, 1055-1067.
- PMIP 2, 2008a. PMIP 2 Last Glacial Maximum 21K synthesis maps: AverageModel tas (surface air temperature). Paleoclimate Modelling Intercomparison Project Phase 2. Available from: http://pmip2.lsce.ipsl.fr/share/database/maps/21k_oa/tas_ann_0k_diff_pmip2_21k_oa_Av erageModel.jpg [Accessed 18 June 2014].
- PMIP 2, 2008b. PMIP 2 Mid-Holocene 6K synthesis maps: AverageModel tas (surface air temperature). Paleoclimate Modelling Intercomparison Project Phase 2. Available from: http://pmip2.lsce.ipsl.fr/share/database/maps/6k_oa/tas_ann_0k_diff_pmip2_6k_oa_Aver ageModel.jpg [Accessed 18 June 2014].
- PMIP 2, 2008c. PMIP 2 Last Glacial Maximum 21K synthesis maps: FGOALS-1.0g pr (precipitation). Paleoclimate Modelling Intercomparison Project Phase 2. Available from: http://pmip2.lsce.ipsl.fr/share/database/maps/21k_oa/pr_ann_0k_diff_pmip2_21k_oa_FG OALS-1.0g.jpg [Accessed 18 June 2014].
- PMIP 2, 2008d. PMIP 2 Mid-Holocene 6K synthesis maps: FGOALS-1.0g pr (precipitation). Paleoclimate Modelling Intercomparison Project Phase 2. Available from: http://pmip2.lsce.ipsl.fr/share/database/maps/6k_oa/pr_ann_0k_diff_pmip2_6k_oa_FGO ALS-1.0g.jpg [Accessed 18 June 2014].
- Porčić, M., 2012. Effects of residential mobility on the ratio of average house floor area to average household size: implications for demographic reconstructions in archaeology. *Cross-Cultural Research*, 46 (1), 72-86.
- Porčić, M. and Nikolić, M., 2016. The approximate Bayesian computation approach to reconstructing population dynamics and size from settlement data: demography of the Mesolithic-Neolithic transition at Lepenski Vir. Archaeological and Anthropological Sciences, 8 (1), 169-186.
- Portillo, M., Kadowaki, S., Nishiaki, Y. and Albert, R.M., 2014. Early Neolithic household behavior at Tell Seker al-Aheimar (Upper Khabur, Syria): a comparison to ethnoarchaeological study of phytoliths and dung spherulites. *Journal of Archaeological Science*, 42, 107-118.
- Postgate, N., 1994. How many Sumerians per hectare? Probing the anatomy of an early city. *Cambridge Archaeological Journal*, 4, 47-65.
- Powell, A., Shennan, S.J. and Thomas, M.G., 2009. Late Pleistocene demography and the appearance of modern human behavior. *Science*, 324, 1298-1301.
- Pressat, R., 1985. The dictionary of demography. Oxford: Basil Blackwell.
- Purschwitz, C. and Kinzel, M., 2007. Ba'ja 2007. Two room and ground floor fills: reconstructed house-life scenarios. *Neo-Lithics*, 2, 22-35.
- Read, D., 2008. An interaction model for resource implement complexity based on risk and number of annual moves. *American Antiquity*, 73 (4), 599-625.

- Read, D., 2012. Population size does not predict artifact complexity: analysis of data from Tasmania, Arctic hunter-gatherers and Oceania. UCLA: Human Complex Systems. Available from: http://www.escholarship.org/uc/item/61n4303q [Accessed 5 February 2017].
- Read, D. and LeBlanc, S., 2003. Population growth, carrying capacity, and conflict. *Current Anthropology*, 44 (1), 59-85.
- Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidison, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M, Southon, J.R., Staff, R.A., Turney, C.S.M. and van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. *Radiocarbon*, 55 (4), 1869-1887.
- Renfrew, C., 1972. Patterns of population growth in the prehistoric Aegean. *In*: Ucko, P.J., Tringham, R. and Dimbleby, G.W., eds., *Man, settlement and urbanism*. Duckworth: London, 383-399.
- Reynolds, P., 1995. The life and death of a posthole. *In*: Shepherd, L., ed., *Interpreting stratigraphy, Vol. 5. Proceedings of the 5th stratigraphy conference*. Norwich: Norfolk Archaeological Unit, 21-25.
- Richards, C., Jones, A.M., Macsween, A., Sheridan, A., Dunbar, E., Reimer, P., Bayliss, A., Griffiths, S. and Whittle, A., 2016. Settlement duration and materiality: formal chronological models for the development of Barnhouse, a grooved ware settlement in Orkney. *Proceedings of the Prehistoric Society*, 82, 193-225.
- Riede, F., and Edinborough, K., 2012. Bayesian radiocarbon models for the cultural transition during the Allerød in southern Scandinavia. *Journal of Archaeological Science*, 39, 744-756.
- Robb, J. and Marino, D., 2010. Introduction. In: Morter, J. and Robb, J., eds., The Chora of Croton 1: the Neolithic settlement at Capo Alfiere. Institute of Classical Archaeology, Austin: University of Texas Press.
- Robinson, S.A., Black, S., Sellwooda, B.W. and Valdes, P.J., 2006. A review of palaeoclimates and palaeoenvironments in the Levant and eastern Mediterranean from 25,000 to 5,000 years BP: setting the environmental background for the evolution of human civilisation. *Quaternary Science Reviews*, 25, 1517-1541.
- Rollefson, G.O., 1989a. The Aceramic Neolithic of the southern Levant: the view from 'Ain Ghazal. *Paléorient*, 15 (1), 135-140.
- Rollefson, G.O., 1989b. The late Aceramic Neolithic of the Levant: a synthesis. *Paléorient*, 15 (1), 168-173.
- Rollefson, G.O., 1990. Neolithic chipped stone technology at 'Ain Ghazal, Jordan: the status of the PPNC phase. *Paléorient*, 16 (1), 119-124.
- Rollefson, G.O., 1997. Changes in architecture and social organization at 'Ain Ghazal. In: Gebel, H., Kafafi, Z. and Rollefson, G.O., eds., *The prehistory of Jordan, II: perspectives from 1997.* Studies in Early Near Eastern Production, Subsistence, and Environment, 4. Berlin: ex oriente, 287-307.
- Rollefson, G.O., 1998a. 'Ain Ghazal (Jordan): ritual and ceremony III. Paléorient, 24 (1), 43-58.
- Rollefson, G.O., 1998b. The Aceramic Neolithic. *In:* Henry, D.O., ed., *The prehistoric archaeology of Jordan*. British Archaeological Reports (BAR), International Series, S705. Oxford: Archaeopress, 102-126.
- Rollefson, G.O., 1999. EI-Hemmeh: a Late PPNB PPNC village in the Wadi el-Hasa, southern Jordan. *Neo-Lithics*, 2/99, 6-8.
- Rollefson, G.O., 2008. Charming lives: human and animal figurines in the Late Epipaleolithic and Early Neolithic periods in the greater Levant and Eastern Anatolia. *In:* Bocquet-Appel, J.-P. and Bar-Yosef, O., eds., *The Neolithic Demographic Transition and its consequences*. Dordtrecht: Springer, 387-416.

- Rollefson, G.O. and Kafafi, Z., 1997. The 1996 season at 'Ayn Ghazal: preliminary report. Annals of the Department of Antiquities of Jordan, XLI, 27-48.
- Rollefson, G.O. and Kafafi, Z.A., 2013. The town of 'Ain Ghazal. *In:* Schmandt-Besserat, D., ed., *Symbols at 'Ain Ghazal.* 'Ain Ghazal Excavation Reports, 3. Berlin: ex oriente, 3-29.
- Rollefson, G.O. and Köhler-Rollefson, I., 1989. The collapse of the early Neolithic settlements in the Southern Levant. In: Hershkovitz, I., ed., People and culture in change: proceedings of the second symposium on Upper Paleolithic, Mesolithic and Neolithic populations of Europe and the Mediterranean basin (1987: Tel Aviv, Israel). British Archaeological Reports (BAR), International Series, 508. Oxford: Archaeopress, 73-90.
- Rollefson, G.O. and Köhler-Rollefson, I., 1993. PPNC adaptations in the first half of the 6th millennium B.C. *Paléorient*, 19 (1), 33-42.
- Rollefson, G.O., Kafafi, Z. and Simmons, A.H., 1993. The Neolithic village of 'Ain Ghazal, Jordan: preliminary report on the 1989 season. *Annual of the American Schools of Oriental Research*, 51, 107-126.
- Rollefson, G.O., Simmons, A.H. and Kafafi, Z., 1992. Neolithic cultures at 'Ain Ghazal, Jordan. *Journal of Field* Archaeology, 19, 443-470.
- Rosenberg, D., 2008. Serving meals making a home: the PPNA limestone vessel industry of the southern Levant and its importance to the Neolithic revolution. *Paléorient*, 34 (1), 23-32.
- Rosenberg, D. and Getzov, N., 2006. A basalt chipping floor from Level VI (PPNC) at Hagoshrim. *Journal of The Israel Prehistoric Society*, 36, 117-128.
- Rosenberg, D., Yeshurun, R., Groman-Yaroslavski, I., Winter, H., Zertal, A., Brown-Goodman, R. and Nadel, D., 2010. Huzuq Musa a preliminary report on the test excavation at a Final Epipalaeolithic/PPNA site in the Jordan Valley. *Paléorient*, 36 (2), 189-204.
- Rosenberg, M. and Redding, R.W., 2002. Hallan Çemi and early village organization in eastern Anatolia. *In*: Kuijt, I., ed., *Life in Neolithic farming communities: social organization, identity, and differentiation.* New York: Kluwer Academic/Plenum, 39-62.
- Rossignol-Strick, M., 1995. Sea-land correlation of pollen records in the eastern Mediterranean for the glacial-interglacial 'transition: biostratigraphy versus radiometric timescale. *Quaternary Science Reviews*, 14 (9), 893-915.
- Sabatinelli, G., 2008. *Near East and Levant.* Available from: http://www.glaphyridae.com/Biogeografia/NEL.html [Accessed 19 March 2014].
- Saidel, B.A., 1993. Round house or square? Architectural form and socio-economic organization in the PPNB. *Journal of Mediterranean Archaeology*, 6 (1), 65-108.
- Sampson, A., 2013a. The excavation. In: Sampson, A., ed., Wadi Hamarash I: an early PPNB settlement at Wadi al-Hasa, Jordan, Vol. 1. Rhodes: University of the Aegean Laboratory of Environmental Archaeology, 7-38.
- Sampson, A., 2013b. The finds. In: Sampson, A., ed., Wadi Hamarash I: an early PPNB settlement at Wadi Al-Hasa, Jordan, Vol. 1. Rhodes: University of the Aegean Laboratory of Environmental Archaeology, 39-84.
- Sanlaville, P., 1996. Changements climatiques dans la région Levantine à la fin du Pleistocène supérieur et au début de l'Holocène. Leurs relations avec l'évolution des societies humaines. *Paléorient*, 22 (1), 7-30.
- Sayej, G., 2005. *The lithic industries of Zahrat adh-Dhra' 2 and the Pre-Pottery Neolithic period of the southern Levant.* British Archaeological Reports (BAR), International Series, 1329. Oxford: Archaeopress.
- Schacht, R.M., 1981. Estimating past population trends. *Annual Review of Anthropology*, 10, 119-140.
- Schacht, R.M., 1984. The contemporaneity problem. American Antiquity, 49 (4), 678-695.
- Schiffer, M.B., 1987. Formation processes of the archaeological record. Albuquerque: University of New Mexico Press.
- Shelach, G., 2002. Leadership strategies, economic activity and interregional interaction: social complexity in Northeast China. New York: Kluwer Academic Publishers.

- Shennan, S.J., 2001. Demography and cultural innovation: a model and some implications for the emergence of modern human culture. *Cambridge Archaeology Journal*, 11, 5-16.
- Shennan, S.J., Downey, S.S., Timpson, A., Edinborough, K., Colledge, S., Kerig, T., Manning, K. and Thomas, M.G., 2013. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. *Nature Communications*, 4 (2486), 1-8.
- Sherratt, A., 2005. *Obsidian trade in the Near East, 14,000 to 6,500 BC. ArchAtlas, Version 4.1.* Available from: http://www.archatlas.org/ObsidianRoutes/ObsidianRoutes.php [Accessed 1 August 2014].
- Sherratt, A., 2007. Diverse origins: the regional contributions to the genesis of farming. *In*: Colledge, S. and Conolly, J., eds., *The origins and spread of domestic plants in Southwest Asia and Europe*. California: Left Coast Press, 1-20.
- Shiloh, Y., 1980. The population of Iron Age Palestine in the light of a sample analysis of urban plans, areas and population density. *Bulletin of the American Schools of Oriental Research*, 239, 25-35
- Simmons, A.H., 2002. Villages on the edge, regional settlement change and the end of the Levantine Pre-Pottery Neolithic. *In*: Kuijt, I., ed., *Life in Neolithic farming communities: social organization, identity, and differentiation.* New York: Kluwer/Plenum, 211-230.
- Simmons, A.H., 2007. The Neolithic revolution in the Near East: transforming the human landscape. Tucson: University of Arizona Press.
- Simmons, A.H. and Najjar, M., 1998. Al-Ghuwar I, a Pre-Pottery Neolithic village in Wadi Faynan, southern Jordan: a preliminary report of the 1996 and 1997/98 seasons. *Annual of the Department of Antiquities of Jordan*, 42, 91-101.
- Simmons, A.H. and Najjar, M., 2003. Ghuwayr I, a Pre-Pottery Neolithic B settlement in southern Jordan: report of the 1996-2000 campaigns. *Annual of the Department of Antiquities of Jordan*, 47, 407-430.
- Simmons, A.H. and Najjar, M., 2006. Ghwair I: a small, complex Neolithic community in southern Jordan. *Journal of Field Archaeology*, 31 (1), 77-95.
- Simmons, A.H., Rollefson, G.O., Kafafi, Z., Mandel, R.D., al-Nahar, M., Cooper, J., Köhler-Rollefson, I. and Roler Durand, K., 2001. Wadi Shu'eib, a large Neolithic community in central Jordan: final report of test investigations. *Bulletin of the American Schools of Oriental Research*, 321, 1-39.
- Smith, P., Bar-Yosef, O. and Sillen, A., 1984. Archaeological and skeletal evidence for dietary change during the Late Pleistocene/Early Holocene in the Levant. *In*: Cohen, M.N. and Armelagos, G.J., eds, *Paleopathology at the origins of agriculture*. New York: Academic Press, 101-136.
- Smith, S.J., 2005. A comparative analysis of the form and function of chipped stone artefacts from Wadi Faynan 16 and Dhra': implications for the description and interpretation of early Neolithic chipped stone variability. PhD Thesis. University of Reading.
- Spencer, H., 1898. The principles of sociology, Vol. I. New York: D. Appleton and Company.
- Starna, W.A., 1980. Mohawk Iroquois populations: a revision. *Ethnohistory*, 27 (4), Special Iroquois Issue, 371-382.
- Stekelis, M. and Yizraely, T., 1963. Excavations at Nahal Oren. *Israel Exploration Journal*, 13 (1), 1-12.
- Stevenson, A. and Waite, M., eds., 2011. *Concise Oxford English dictionary: luxury edition.* Oxford: Oxford University Press Inc.
- Steward, J.H., 1955. Theory of culture change: the methodology of multilinear evolution. Chicago: University of Illinois Press.
- Stordeur, D., 2003. Des crânes surmodelés à Tell Aswad de Damascène (PPNB Syrie). *Paléorient*, 29 (2), 109-115.
- Stordeur, D. and Jamous, B., 2009. La Damascène et la révolution Néolithique. Les Annales Archéologiques Arabes Syriennes, LI-LII, 7-16.

- Stordeur, D. and Khawam, R., 2008. Une place pour les morts dans les maisons de Tell Aswad (Syrie). (Horizon PPNB ancien et PPNB moyen). *In*: Balken, N., Molist, M. and Stordeur, D., eds., *Workshop I. Houses for the living and a place for the dead. Proceedings of the 5th International Congress on the archaeology of the ancient Near East*, Vol. III (Madrid 3-5 April 2006), 561-589.
- Sumner, W.M., 1979. Estimating population by analogy: an example. *In*: Kramer, C., ed., *Ethnoarchaeology: implications of ethnography for archaeology*. New York: Columbia University Press, 164-174.
- Sumner, W.M., 1990. An archaeological estimate of population trends since 6000 BC in the Kur River Basin, Fars Province, Iran. *In*: Taddei, M., ed., *South Asian archaeology 1987:* proceedings of the ninth international conference of the Association of South Asian Archaeologists in Western Europe. Rome: Serie orientale Roma, 66, 3-16.
- Suriano, M.J., 2013. Historical geography of the ancient Levant. *In:* Steiner, M.L. and Killebrew, A.E., eds., *The Oxford handbook of the archaeology of the Levant: c. 8000-332 BCE.* Oxford: Oxford University Press, 9-23.
- Sweet, L.E., 1960. *Tell Togaan: a Syrian village*. Museum of Anthropology Anthropological Papers, 14. Ann Arbor: University of Michigan.
- Tabachnick, B.G. and Fidell, L.S., 1996. Using multivariate statistics. New York: Harper Collins College Publishers.
- Talamo, S., Soressi, M., Roussel, M., Richards, M. and Hublin, J.-J., 2012. A radiocarbon chronology for the complete Middle to Upper Palaeolithic transitional sequence of Les Cottés (France). *Journal of Archaeological Science*, 39, 175-183.
- Tampakopoulou, G., 2013. The chipped stone industry from 2008 season. In: Sampson, A., ed., Wadi Hamarash I: an early PPNB settlement at Wadi al-Hasa, Jordan, Vol. 1. Rhodes: University of the Aegean Laboratory of Environmental Archaeology, 191-203.
- Tanno, K. and Willcox, G., 2012. Distinguishing wild and domestic wheat and barley spikelets from early Holocene sites in the Near East. *Vegetation History and Archaeobotany*, 21 (2), 107-115.
- Tchernov, E., 1976. Some late Quaternary faunal remains from the Avdat/Aqev area. *In:* Marks, A.E., ed., *Prehistory and paleoenvironments in the central Negev, Israel. The Avdat/Aqev area, Part 1, Vol. 1.* Dallas: Southern Methodist University Press, 74-96.
- Tchernov, E., 1991. Biological evidence for human sedentism in southwest Asia during the Natufian. *In*: Bar-Yosef, O. and Valla, F.R., eds., *The Natufian Culture in the Levant*. Ann Arbor: International Monographs in Prehistory, 315-340.
- Thorpe, S. and Edwards, P.C., 1986. Surface lithic finds from Kharaysin, Jordan. *Paléorient*, 12 (2), 85-87.
- Trigger, B.G., 1981. Prehistoric social and political organization: an Iroquoian case study. *In*: Snow, D.R., ed., *Foundations in northeast archaeology*. New York: Academic Press, 1-50.
- Tsuneki, A., 2012. Tell el-Kerkh as a Neolithic mega site. Orient, XLVII, 29-66.
- Tsuneki, A., Arimura, M., Maeda, O., Tanno, K. and Anezaki, T., 2006. The Early PPNB in the North Levant: a new perspective from Tell 'Ain el-Kerkh, Northwest Syria. *Paléorient*, 32 (1), 47-71.
- Turner, C.G. and Lofgren, L., 1966. Household size of prehistoric western Pueblo Indians. *Southwestern Journal of Anthropology*, 22, 117-132.
- Tvetmarken, C.L., 2012. Visualising social space: investigating the use of space and humananimal interaction in Neolithic built environments in the Zagros Mountains and adjacent lowlands. PhD Thesis. University of Liverpool.
- Twiss, K.C., 2001. Ritual, change, and the Pre-Pottery Neolithic figurines of the central-southern Levant. *Kroeber Anthropological Society Papers*, 85, 16-48.
- Twiss, K.C., 2007. The zooarchaeology of Tel Tif'dan (Wadi Fidan 001), southern Jordan. *Paléorient*, 33 (2), 127-145.

- Twiss, K.C., 2008. Transformations in an early agricultural society: feasting in the southern Levantine Pre-Pottery Neolithic. *Journal of Anthropological Archaeology*, 27, 418-442.
- Underwood, A.J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press.
- University of Oregon, n.d. *The ancient Near East: the geography and the geographical imperative.* University of Oregon. Available from: http://pages.uoregon.edu/klio/wc07/02-ane1.htm [Accessed 18 June 2014].
- Vaesen, K., 2012. Cumulative cultural evolution and demography. *PLoS One*, 7 (7), e40989, 1-9.
- Vaesen, K., Collard, M., Cosgrove, R. and Roebroeks, W., 2016. Population size does not explain past changes in cultural complexity. *Proceedings of the National Academy of Sciences*, 113 (16), E2241-E22417.
- Van Beek, G.W., 1982. A population estimate for Marib: a contemporary tell village in North Yemen. *Bulletin of the American Schools of Oriental Research*, 248, 61-67.
- Van Zeist, W., and Bakker-Heeres, J.A.H., 1985. Archaeobotanical studies in the Levant: Neolithic sites in the Damascus Basin: Aswad, Ghoraife, Ramad. *Prehistoria*, 24, 165-256.
- VanPool, T.L. and Leonard, R.D., 2011. *Quantitative analysis in archaeology*. Oxford: John Wiley and Sons, Ltd.
- Varien, M.D., 2012. Occupation span and the organisation of residential activities: a crosscultural model and cast study from the Mesa Verde region. *In*: Douglas, J.G. and Gonlin, N., eds., *Ancient households of the Americas: conceptualising what households do.* Colorado: University Press of Colorado, 47-78.
- Varien, M.D. and Potter, J.N., 1997. Unpacking the discard equation: simulating the accumulation of artifacts in the archaeological record. *American Antiquity*, 62, 194-213.
- Varien, M.D., Ortman, S.G., Köhler, T.A., Glowacki, D.M. and Johnson, C.D., 2007. Historical ecology in the Mesa Verde region: results from the village ecodynamics project. *American Antiquity*, 72 (2), 273-299.
- Verhoeven, M., 2004. Beyond boundaries: nature, culture and a holistic approach to domestication in the Levant. *Journal of World Prehistory*, 18 (3), 179-282.
- Verhoeven, M., 2006. Megasites in the Jordanian Pre-Pottery Neolithic B: evidence for 'protourbanism'? In: Banning, E.B. and Chazan, M., eds., Domesticating space construction, community, and cosmology in the Late Prehistoric Near East. Studies in Early Near Eastern Production, Subsistence, and Environment, 6. Berlin: ex oriente, 75-79.
- Verwiebe, R., 2014. Social institutions. *In*: Michalon, A.C., ed., *Encyclopedia of quality of life research*. New York: Springer, 6101-6104.
- von den Driesch, A., Cartajena, I. and Manhart, H., 2004. The Late PPNB site of Ba'ja, Jordan: the faunal remains (1997 season). *In*: Bienert, H.-D., Gebel, H.G.K. and Neef, R., eds., *Central settlements in Neolithic Jordan: proceedings of a symposium held in Wadi Musa, Jordan, 21st-25th July, 1997.* Studies in Early Near Eastern Production, Subsistence, and Environment, 5. Berlin: ex oriente, 271-288.
- Waheeb, M. and Fino, N., 1997. 'Ayn el-Jammam: a Neolithic site near Ras en Naqb, southern Jordan. In: Gebel, H., Kafafi, Z. and Rollefson, G.O., eds., The prehistory of Jordan, II: perspectives from 1997. Studies in Early Near Eastern Production, Subsistence, and Environment, 4. Berlin: ex oriente, 215-219.
- Ward, G.K. and Wilson, S.R., 1978. Procedures for comparing and combining radiocarbon agedeterminations - critique. *Archaeometry*, 20, 19-31.
- Warrick, G., 1983. *Reconstructing Ontario Iroquoian village organisation*. Master's Thesis. Simon Fraser University.
- Wasse, A., 2002. Final results of an analysis of the sheep and goat bones from 'Ain Ghazal, Jordan. *Levant*, 34, 59-82.
- Watkins, T., 1990. The origins of house and home? World Archaeology, 21 (3), 336-347.

- Watkins, T., 1992. The beginning of the Neolithic: searching for meaning in material culture change. *Paléorient*, 18 (1), 63-75.
- Watkins, T., 1996. Excavations at Pinarbaşi: the early stages. In: Hodder, I., ed., On the surface: Çatalhöyük 1993-1995. Cambridge: McDonald Institute for Archaeological Research and British Institute of Archaeology at Ankara, 45-57.
- Watson, P.J., 1978. Architectural differentiation in some Near Eastern communities, prehistoric and contemporary. *In*: Redman, C.L., Berman, M.J., Curtin, E.V., Laghorne, W.T., Versaggi, N.H. and Wanser, J.C., eds., *Social archeology: beyond subsistence and dating*. New York: Academic Press, 131-158.
- Watson, P.J., 1979. Archaeological ethnography in Western Iran. Tucson: University of Arizona Press.
- Watts, J., Sheehan, O., Atkinson, Q.D., Bulbulia, J. and Gray, R.D., 2016. Ritual human sacrifice promoted and sustained the evolution of stratified societies. *Nature*, 532, 228-231.
- Weiss, E. and Zohary, D., 2011. The Neolithic Southwest Asian founder crops: their biology and archaeobotany. *Current Anthropology*, 52 (S4), S237-S254.
- Weiss, E., Kislev, M.E. and Hartmann, A., 2006. Autonomous cultivation before domestication. *Science*, 312, 1608-1610.
- Wendt, K.P. and Zimmermann, A., 2009. Transforming archaeological data between different geographical scales: a GIS application for the estimation of population density. *In*: Velho, A. and Kamermans, H., eds., *Technology and methodology for archaeological practice: practical applications for the past reconstruction.* British Archaeological Reports (BAR), International Series, 2029. Oxford: Archaeopress, 49-59.
- White, C.E., 2013. The emergence and intensification of cultivation practices at the Pre-Pottery Neolithic site of el-Hemmeh, Jordan: an archaeobotanical study. PhD thesis. Boston University.
- White, C.E. and Makarewicz, C.A., 2012. Harvesting practices and early Neolithic barley cultivation at el-Hemmeh, Jordan. *Vegetation History and Archaeobotany*, 21, 85-94.
- White, C.E. and Wolff, N.P., 2012. Beyond the house and into the fields: cultivation practices in the Late PPNB. *In*: Parker, B.J. and Foster, C.P., eds., *New perspectives on household archaeology*. Indiana: Eisenbrauns, 267-228.
- White, L.A., 1959. The evolution of culture: the development of civilization to the fall of Rome. New York: McGraw-Hill.
- Whitehouse, N.J., Schulting, R.J., McClatchie, M., Barratt, P., McLaughlin, T.R., Bogaard, A., Colledge, S., Marchant, R., Gaffrey, J. and Bunting, M.J., 2014. Neolithic agriculture on the European western frontier: the boom and bust of early farming in Ireland. *Journal of Archaeological Science*, 51, 181-205.
- Whitelaw, T., 1983. People and space in hunter-gatherer camps: a generalising approach in ethnoarchaeology. *Archaeological Review from Cambridge*, 2 (2), 48-66.
- Whitelaw, T., 1991. Some dimensions of variability in the social organisation of community space among foragers. *In*: Gamble, C.S. and Boismier, W.A., eds., *Ethnoarchaeological approaches to mobile campsites: hunter-gatherer and pastoralist case studies*. Ann Arbor: International Monographs in Prehistory, Ethnoarchaeological Series, 1, 139-188.
- Whittle, A., Healy, F. and Bayliss, A., eds., 2011. *Gathering time: dating the Early Neolithic enclosures of southern Britain and Ireland*. Oxford: Oxbow Books.
- Wicks, K. and Mithen, S., 2014. The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: a Bayesian chronological analysis using 'activity events' as a population proxy. *Journal of Archaeological Science*, 45, 240-269.
- Wicks, K., Finlayson, B., Maričević, D., Smith, S., Jenkins, E. and Mithen, S., 2016. Dating WF16: exploring the chronology of a Pre-Pottery Neolithic A settlement in the southern Levant. *Proceedings of the Prehistoric Society*, 82, 73-123.
- Wiessner, P., 1974. A functional estimator of population from floor area. *American Antiquity*, 39 (2), 343-350.

- Wiessner, P., 1982. Beyond willow smoke and dogs' tails: a comment on Binford's analysis of hunter-gatherer settlement systems. *American Antiquity*, 47 (1), 171-178.
- Wilk, R.R. and Rathje, W.L., 1981. Household archaeology. *American Behavioral Scientist*, 25, 617-639.
- Wills, W.H., 1992. Plant cultivation and the evolution of risk-prone economies in the prehistoric American Southwest. In: Gebauer, A.B. and Price, T.D., ed., Transitions to agriculture in Prehistory. Monographs in World Archaeology, 4. Madison: Prehistory Press, 153-176.
- Winterhalder, B., 1990. Open field, common pot: harvest variability and risk avoidance in agricultural and foraging societies. *In*: Cashdan, E., ed., *Risk and uncertainty in tribal and peasant economies*. Colorado: Westview Press, 67-88.
- Woodburn, J., 1982. Egalitarian societies. Man, 17 (3), 431-451.
- Wossinik, A., 2009. Challenging climate change: competition and cooperation among pastoralists and agriculturalists in northern Mesopotamia (c. 3000-1600 BC). Leiden: Sidestone Press.
- Wright, H.T., 1969. The administration of rural production in an early Mesopotamian town. Ann Arbor: University of Michigan, Museum of Anthropology. Museum of Anthropology Anthropological Papers, 38.
- Wright, J.V., 1974. *The Nodwell site*. Ottawa: National Museum of Man Mercury Series Paper, 22.
- Wright, K.I., 1993. Early Holocene ground stone assemblages in the Levant. *Levant*, 25, 93-111.
- Wright, K.I., 2000. The social origins of cooking and dining in early villages of Western Asia. *Proceedings of the Prehistoric Society*, 66, 89-121.
- Wright, K.I, and Garrard, A., 2003. Social identities and the expansion of stone bead-making in Neolithic Western Asia: new evidence from Jordan. *Antiquity*, 77 (296), 267-284.
- Wright, K.I., Critchley, P., Garrard, A., Baird, D., Bains, R. and Groom, S., 2008. Stone bead technologies and early craft specialization: insights from two Neolithic sites in eastern Jordan. *Levant*, 40 (2), 131-165.
- Yasuda, Y., Kitagawa, H. and Nakagawa, T., 2000. The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: a palynological study. *Quaternary International*, 73/74, 127-136.
- Yechieli, Y., Magaritz, M., Levy, Y., Weber, U., Woelfil, W. and Bonani, G., 1993. Late Quaternary geological history of the Dead Sea area, Israel. *Quaternary Research*, 39 (1), 59-67.
- Zahid, H.J., Robinson, E. and Kelly, R.L., 2016. Agriculture, population growth, and statistical analysis of the radiocarbon record. *Proceedings of the National Academy of Sciences*, 113, 931-935.
- Zeder, M., 2009. The Neolithic macroevolution: macroevolutionary theory and the study of culture change. *Journal of Archaeological Research*, 17, 1-63.
- Zhou, W.-X., Sornette, D., Hill, R.A. and Dunbar, R.I.M., 2005. Discrete hierarchical organization of social group sizes. *Proceedings of the Royal Society B*, 272, 439-444.
- Zielhofer, C., Clare, L., Rollefson, G., Wächter, S., Hoffmeister, D., Bareth, G., Roettig, C., Bullmann, H., Schneider, B., Berke, H. and Weninger, B., 2012. The decline of the early Neolithic population center of 'Ain Ghazal and corresponding earth-surface processes, Jordan Rift Valley. *Quaternary Research*, 78 (3), 427-441.
- Zimmermann, A., Hilpert, J. and Wendt, K.P., 2009. Estimations of population density for selected periods between the Neolithic and AD 1800. *Human Biology*, 81 (2-3), 357-380.
- Zohary, M., 1942. The vegetational aspects of Palestine soils. *Palestine Journal of Botany Rehovot, 2,* 200-246.
- Zorn, J.R., 1994. Estimating the population size of ancient settlements: methods, problems, solutions and a case study. *Bulletin of the American Schools of Oriental Research*, 295, 31-48.

Appendix A: Data used to construct storage provisions formulae

Site	Structure	Estimated floor area (m ²)	Maxi	mum number per stru	of 1.65 m and cture based o	1.83 m tall sle n amount of st	eping occup orage	oants
			Na	ne	0.46 m ³ p	per person	2 x 0.46 m	n ³ per person
			Range	Mid-point	Range	Mid-point	Range	Mid-point
Jericho (PPNA) (p.141)	E5 (xvib)	10.88	2-5	3.5	2	2	2	2
	E5 & E6	11.74	3-8	5.5	2-3	2.5	2	2
	E5 (x)	8.50	2-4	3	2	2	2	2
	MH (xxxvii)	9.20	3-5	4	2	2	2	2
	MH & MJ	30.60	8-17	12.5	6-7	6.5	4-5	4.5
	MJ (xliii)	20.00	4-6	5	4-5	4.5	2-3	2.5
Netiv Hagdud (PPNA) (p.180)	L50	6.07	1	1			1	1
	L26	6.9	2-3	2.5			2	2
	L37	7.55	2-3	2.5			2	2
	L08x	8.4	2-3	2.5			2	2
	L55	9.76	2-4	3			2	2
	L57	10.38	3-5	4			2	2
	L22	16.28	5-9	7			3	3
	L08y	16.8	3-8	5.5			3	3
	L21	25.96	7-13	10			6	6
	L40	36.61	9-19	14			7	7
	L08x/y total	24.48	5-11	8			4-5	4.5
Jericho (MPPNB) (p.243)	Trench I Stage XVI: A	21.7	6-11	8.5	5-8	6.5	6-11	8.5
	Trench M Stage XV: A	17.5	5-8	6.5	5-8	6.5	5-8	6.5
Basta (LPPNB) (p.288)	10/16	22.40	7-13	10				
	19/20	8.19	2-5	3.5				
	27b	6.27	1-3	2				
	17	4.45	1-2	1.5				
	18	2.97	0-2	1				

Data from Hemsley (2008): data highlighted in grey utilised to create formulae

Subphase A1					
Assessable area (m²)	Assessable area Unassessable area Total	132.17 - 132.17	Built area (m²)	Potential residential built area Potential non-residential built area Total	74.85 11.92 86.77
Potential residential built area (m ²)	Building 18* Building 41 Building 48* Building 49 Total Mean SD (±)	17.76 12.77 23.51 20.81 74.85 18.71 4.61	Potential residential floor area (m ²)	Building 18* Building 41 Building 48* Building 49 Total *Mean residential floor area: complete dwellings	9.23 6.50 13.88 9.23 38.84 11.56
Potential non- residential built area (m ²)	*Mean residential built area: complete dwellings Building 17 Building 50 Total	20.64 5.82 6.10 11.92	Built floor area (m ²)	Building 17 Building 18* Building 41 Building 48* Building 49 Building 50*	3.08 9.23 6.50 13.88 9.23 3.31
				Total	45.23

Appendix B.1: Beidha site data and micro-level estimates

Assessable area	Assessable area	298.22	Potential	Building 33*	3.68
(m ²)	Baulk	4.69	residential floor	Building 38	10.31
	Unassessable area	-	area (m²)	Building 51	4.98
	Total	293.53		Building 53	7.02
				Building 54*	10.03
Potential	Building 33*	12.53		Building 55	4.82
residential built	Building 38	17.66		Building 56	4.45
area (m²)	Building 51	9.87		Building 74*	8.07
	Building 53	13.44		Building 83	4.77
	Building 54*	17.17		Total	58.13
	Building 55	7.63		*Mean residential floor area: complete dwellings	7.26
	Building 56	12.31			
	Building 74*	14.72	Built floor area	Building 21	4.34
	Building 83	11.47	(m²)	Building 29	1.29
	Total	116.81		Building 33	3.68
	Mean	12.98		Building 37	18.17
	SD (±)	3.24		Building 38	10.31
	*Mean residential built area: complete dwellings	14.81		Building 51	4.98
				Building 52	0.89
Potential non-	Building 21	8.85		Building 53	7.02
residential built	Building 37	30.60		Building 54	10.03
area (m²)	Buildings 29	4.07		Building 55	4.82
	Buildings 52	1.78		Building 56	4.45
	Building ?(a)	2.46		Building 74	8.07
	Building ?(b)	3.37		Building 83	4.77
	Total	51.13		Building ?(a)	1.40
				Building ?(b)	3.15
Built area (m ²)	Potential residential built area	116.81		Total	87.37
	Potential non-residential built area	51.13			
	Total	167.94			

Subphase A2

474

Storage provisions formula (SPF)

				Residential storage provisions (m ³ per person)							
			Non	е		Moder	ate (0.46) Maxir			mum (2 x 0.46)	
			P = 0.3944	4 <i>– 0.375</i>		P = 0.247	77A + 0.0339		P = 0.1903A + 0.3976		
Method	l 1: Tot	al population estim	nate (P) based on total	contempo	raneous r	esidential floor are	a (A)				
A	=	297.07	0.3944 x 297.07	=	117.16	0.2477 x 297.07	=	73.58	0.1903 x 297.07	=	56.53
Р	=	?	117.16 - 0.375	=	116.79	73.58 + 0.0339	=	73.62	56.53 + 0.3976	=	56.93
			Р	=	116.79	Р	=	73.62	Р	=	56.93
Method	l 2: Peo	ople per dwelling (F	P) and total population	estimates	based on	mean residential f	loor area of cor	nplete	dwellings (A)		
A	=	7.26	0.3944 x 7.26	=	2.86	0.2477 x 7.26	=	1.80	0.1903 x 7.26	=	1.38
Р	=	?	2.86 - 0.375	=	2.49	1.8 + 0.0339	=	1.83	1.38 + 0.3976	=	1.74
			Р	=	2.49	Р	=	1.83	Р	=	1.74
					To	tal number of conter	mporaneous dwe	əllings			45.99
		Total population			114.44			84.27			80.07
Mean to	otal po	pulation			115.62			78.94			68.50

Naroll's (1962) AGF1

	Data required									
SPF p	oopula	tion estima	ate (I	P) based on	amount of storage:	None	115.62			
					-	Moderate	78.94			
						Maximum	68.50			
Resid	lential	floor area	as a	proportion c	of built floor area (%)		66.54			
				Total built	floor area (m²) (A)	0	595.31			
					Built floor area in assessa	ble area (m^2)	87.37			
					Proportion of site as	sessable (%)	14.68			
				Total resid	dential floor area (m²) (RADC meti	hod)	396.09			
Built floor area per person (m ²) derived from SPF population estimates None										
and to	otal bu	ilt floor are	a ba	ised on amo	unt of storage:	Moderate	7.54			
						Maximum	8.69			
RADO	C deriv	ed from SI	PF p	opulation es	timates and total	None	2.57			
conte	mpora	ineous resi	dent	tial floor area	a based on amount of storage:	Moderate	3.76			
		Ta			rac receiver the floor area (m2) (D		4.34			
		10	arco	ontemporane	eous residential noor area (m.) (R.	ADC methoa)	297.07			
					$A = a \times P^{b}$					
		Method	1: To	otal built flo	oor area (m ²) (A), built floor area	per person a	nd RADC			
		Α	=	?	A = 21.7 x	115.62 ^{0.84195}				
		Р	=	115.62	115.62 ^{0.84195}	=	54.57			
		а	=	21.7	21.7 x 54.57	=	1184.18			
		b	=	0.84195	Α	=	1184.18			
	ø	Built floo	or ar	ea per pers	son (m²)		10.24			
	lon	RADC (n	RADC (m ² per person)							
	<			Resider	ntial floor area as a proportion of b	uilt floor area	66.54			
		Method	2: R	e-calculated	d initial growth index (<i>a</i>)					
		А	=	595.31	595.31 = a x	115.62 ^{0.84195}				
		Р	=	115.62	115.62 ^{0.84195}	=	54.57			
		а	=	?	595.31/54.57	=	10.91			
		b	=	0.84195	A	=	10.91			
		Method 1: Total built floor area (m ²) (A), built floor area per person a								
		Α	=	?	A = 21.7 x	78.94 ^{0.84195}				
		Р	=	78.94	78.94 ^{0.84195}	=	39.58			
ge		а	=	21.7	21.7 x 39.58	=	858.81			
ora	۵)	b	=	0.84195	A	=	858.81			
ste	rati	Built floo	or ar	ea per pers	son (m²)		10.88			
of	de	RADC (n	n² pe	er person)			7.24			
Int	Mo			Resider	ntial floor area as a proportion of b	uilt floor area	66.54			
Ŋ		Method 2	2: R	e-calculated	d initial growth index (<i>a</i>)					
₩		Α	=	595.31	595.31 = a x	78.94 ^{0.84195}				
		Р	=	78.94	78.94 ^{0.84195}	=	39.58			
		а	=	?	595.31/39.58	=	15.04			
		b	=	0.84195	а	=	15.04			
		Method	1: To	otal built flo	oor area (m ²) (A), built floor area	per person a	nd RADC			
		Α	=	?	A = 21.7 x	68.5 ^{0.84195}				
		Р	=	68.50	68.5 ^{0.84195}	=	35.12			
		а	=	21.7	21.7 x 35.12	=	762.09			
	2	b	=	0.84195	A	=	762.09			
	un	Built floo	or ar	ea per pers	son (m²)		11.13			
	xin	RADC (n	n ² pe	er person)			7.40			
Residential floor area as a proportion of built floor area							66.54			
	-	Method 2	2: R	e-calculated	d initial growth index (a)					
		А	=	595.31	595.31 = a	x 68.5 ^{0.84195}				
		Р	=	68.50	68.5 ^{0.84195}	=	35.12			
		а	=	?	595.31/35.12	=	16.95			
		b	_	0.84195	<u>a</u>	=	<u> 16.95</u>			

				Data required				
Total SPF p	site exte populati	ent (m²) on estin) (A) nate (P) base	d on amount of storage:	None Moderate	2000 115.62 78.94		
					Maximum	68.50		
				$A = \alpha \times D^b$				
		One	n settlement	<u>A = d X F</u>	$2000 - a \times 115 62^2$			
		Δ	– 2000		2000 - 0 x 113.02			
		P	= 115.6	115.62^2	=	13367 12		
		a	= ?	2000/13367.12	=	0.15		
		b	= 2	a	=	0.15		
		Villa	ige settlemei	nts	$2000 = a \times 115.62^{1}$			
	0	A	= 2000					
	one	P	= 115.6	115.62^{1}	=	115.62		
	Z	а	= ?	2000/115.62	=	17.3		
		b	= 1	а	=	17.30		
		Urba	an settlemen	ts 2	$2000 = a \times 115.62^{0.6667}$			
		A	= 2000					
		Р	= 115.6	115.62 ^{0.6667}	=	23.74		
		а	= ?	2000/23.74	=	84.26		
		b	= 0.666	67 a	=	84.26		
		Ope	n settlement	S	$2000 = a \times 78.94^2$			
		A	= 2000	-				
		Р	= 78.94	78.94 ²	=	6231.86		
		а	= ?	2000/6231.86	=	0.32		
ie:		b	= 2	а	=	0.32		
raç		Villa	ige settlemei	nts	2000 = <i>a</i> x 78.94 ¹			
sto	ate	А	= 2000					
of	der	Р	= 78.94	78.94 ¹	=	78.94		
nt	Mo	а	= ?	2000/78.94	=	25.3		
nor		b	= 1	а	=	25.34		
Αm		Urban settlements		ts	2000 = <i>a</i> x 78.94 ^{0.6667}			
		А	= 2000					
		Р	= 78.94	78.94 ^{0.6667}	=	18.40		
		а	= ?	2000/18.4	=	108.67		
		b	= 0.666	57 a	=	108.67		
		Ope	n settlement	S	2000 = <i>a</i> x 68.5 ²			
		A	= 2000	2				
		Р	= 68.50	68.5^2	=	4691.98		
		а	= ?	2000/4691.98	=	0.43		
		b	= 2	а	=	0.43		
	E	Villa	ige settlemei	nts	2000 = <i>a</i> x 68.5 ¹			
	unu	А	= 2000	4				
	nxi	Р	= 68.50	68.5	=	68.50		
	Ма	a	= ?	2000/68.5	=	29.2		
		b	= 1	а	=	29.20		
		Urba	an settlemen	ts	$2000 = a \ge 68.5^{0.6667}$			
		А	= 2000	0 6667				
		Ρ	= 68.50	$68.5^{0.0007}$	=	16.74		
		a	= ?	2000/16.74	=	119.45		
		b	= 0.666	5/ a	=	119.45		

Wiessner's (1974) AGF2

Sub	phase	B2
-----	-------	-----------

	Assessable area	Assessable area	610.86	Potential	Building 25*	7.69
	(m ²)	Baulks	10.94	residential	Building 34*	5.84
		Unassessable area	-	floor area (m ²)	Building 36*	6.74
		Total	599.92		Building 44	2.25
					Building 47*	6.29
	Potential	Building 25*	11.97		Building 60*	6.02
	residential built	Building 34	10.92		Building 61	9.17
	area (m²)	Building 36*	14.71		Building 82	5.82
		Building 44	4.01		Total	49.82
		Building 47*	10.47		*Mean residential floor area: complete dwellings	6.52
		Building 60*	12.72			
		Building 61	14.25	Built floor area	Building 15	1.06
		Building 82	11.77	(m²)	Building 25	7.69
		Total	90.82		Building 26	26.06
		Mean	11.35		Building 31	11.96
		SD (±)	3.32		Building 32	3.84
		*Mean residential built area: complete dwellings	12.47		Building 34	5.84
4					Building 36	6.74
8	Potential non-	Building 15	2.73		Building 43	1.37
	residențial built	Building 26	31.41		Building 44	2.25
	area (m²)	Building 31	19.98		Building 47	6.29
		Building 32	6.73		Building 60	6.02
		Building 43	5.17		Building 61	9.17
		Building 81	14.14		Building 81	8.18
		Total	80.16		Building 82	5.82
					Total	102.29
	Built area (m ²)	Potential residential built area	90.82			
		Potential non-residential built area	80.16			
		Total	170.98			

Storage provisions formula (SPF)

				Residential storage provisions (m ³ per person)									
			Non	е		Moder	Moderate (0.46)			Maximum (2 x 0.46)			
			P = 0.3944A	A <i>– 0.</i> 375		P = 0.247	P = 0.2477A + 0.0339			$P = 0.1903 \text{\AA} + 0.3976$			
Metho	od 1: Tot	al population estim	ate (P) based on total	contempor	aneous r	esidential floor are	a (A)						
A	=	282.91	0.3944 x 282.91	=	111.58	0.2477 x 282.91	=	70.08	0.1903 x 282.91	=	53.84		
Р	=	?	111.58 - 0.375	=	111.20	70.08 + 0.0339	=	70.11	53.84 + 0.3976	=	54.23		
			Р	=	111.20	Р	=	70.11	Р	=	54.23		
Metho	od 2: Peo	ople per dwelling (P) and total population	estimates	based on	mean residential f	loor area of co	mplete	dwellings (A)				
Α	=	6.52	0.3944 x 6.52	=	2.57	0.2477 x 6.52	=	1.62	0.1903 x 6.52	=	1.24		
Р	=	?	2.57 - 0.375	=	2.20	1.62 + 0.0339	=	1.65	1.24 + 0.3976	=	1.60		
			Р	=	2.20	Р	=	1.65	Р	=	1.60		
					То	tal number of conter	mporaneous dw	ellings			50.07		
		Total population			109.98			82.57			80.12		
Mean total population					110.59			76.34			67.18		

479

Naroll's (1962) AGF1

	Data required								
SPF	popula	tion estin	nate (P) based on	amount of storage:	None	110.59		
				,	Ũ	Moderate	76.34		
						Maximum	67.18		
Resid	lential	floor area	a as a	proportion of	of built floor area (%)		66.52		
				Total built	t floor area (m^2) (A)		595.40		
				Subr	phase B2 built floor area in assess	sahle area (%)	20 77		
				Subp		d = a + b =	2000		
				Total real	$r_{\rm class}$		2000		
D	Hooro		~ r ~ ~ ~ ~		dential 1100r area (m) (RADC me	(1100) Nono	390.00		
Built	loor a	rea per pe	erson	(m) derived	a from SPF population estimates	None	5.38		
and to	otal du	liit fioor ai	rea ba	ased on amo	bunt of storage:	Movimum	7.00		
Maximum (
conto	moor		oidon	tial floor area	a based on amount of storage:	Moderate	2.50		
come	mpore	aneous re	Siden		a based on amount of storage.	Maximum	4 21		
		T	ntal c	ontomnoran	eous residential floor area (m^2) (F	PADC method)	282.01		
					$A = a \times P^{2}$				
		Method	11: T	otal built flo	oor area (m²) (A), built floor area	a per person a	nd RADC		
		A	=	?	A = 21.7 x	110.59 ^{0.84195}			
		Р	=	110.59	110.59 ^{0.84195}	=	52.57		
		а	=	21.7	21.7 x 52.57	=	1140.72		
		b	=	0.84195	Α	=	1140.72		
		Built fl	oor a	rea per pers	son (m ²)		10.31		
	ыe		$(m^2 n)$	or poreon)	5011 (III)		6 96		
	No	RADC	(m þ		sticl floor area on a proportion of	huilt floor area	0.00		
				Reside	nuar noor area as a proportion of	ount noor area	00.32		
		Method	12: R	e-calculate	d initial growth index (<i>a</i>)	0.04405			
		А	=	595.40	595.40 = <i>a</i> >	c 110.59 ^{0.84195}			
		Р	=	110.59	110.59 ^{0.84195}	=	52.57		
		а	=	?	595 40/52 57	=	11 33		
		ĥ	=	0 84195	Δ	=	11.33		
		Methor	1 1 · T	otal built flo	$(m^2)(\Lambda)$ built floor area	ner nerson a			
		$\Lambda = 21.7 \times 76.34^{0.84195}$							
		A	=	? 7 0.04	A = 21.7	10.34	00.47		
		Р	=	76.34	76.34	=	38.47		
ge		а	=	21.7	21.7 x 38.47	=	834.89		
ors	Ø	b	=	0.84195	A	=	834.89		
st	rat	Built fle	oor a	rea per pers	son (m²)		10.94		
of	de	RADC	(m² p	er person)			7.28		
nt	Ŷ			Reside	ntial floor area as a proportion of	built floor area	66.52		
no	-	Method	12: R	e-calculate	d initial growth index (a)				
Ę		Δ		595 40	595 40 = a	x 76 34 ^{0.84195}			
◄			_	76.24	$76.24^{0.84195}$	× / 0.54	20 17		
		Г	=	70.34	70.34	=	30.47		
		a	=	?	595.40/38.47	=	15.48		
		b	=	0.84195	a	=	15.48		
		Method	11: T	otal built flo	oor area (m²) (A), built floor area	a per person a	nd RADC		
		A	=	?	A = 21.7 x	(67.18 ^{0.84195}			
		Р	=	67.18	67.18 ^{0.84195}	=	34.55		
		а	=	21.7	21.7 x 34.55	=	749.70		
	-	b	=	0.84195	A	=	749.70		
	Ę	Built fl	oor a	rea per pers	son (m ²)		11.16		
	Ĩ	RADC	$(m^2 n)$	er person)	<u>, , , , , , , , , , , , , , , , , , , </u>		7 / 2		
Residential floor area as a proportion of huilt floor area							66 52		
							00.02		
Method 2: Re-calculated initial growth index (a)									
		A	=	595.40	595.40 = <i>a</i>	x 67.18 ^{0.84195}			
		Р	=	67.18	67.18 ^{0.84195}	=	34.55		
		а	=	?	595.40/34.55	=	17.23		
		b	=	0.84195	a	=	17.23		

Wiessner's	(1974) AGF2
------------	-------	--------

Data required									
Total SPF p	site exte population	ent (m ²) on estir) (A) nate (I	P) based on	amount of storage:	None Moderate Maximum	2000 110.59 76.34 67.18		
					$A = a \times P^b$				
		Ope	n sett	lements	M-WAT	2000 = <i>a</i> x 110.59 ²			
		A	=	2000					
		Р	=	110.59	110.59 ²	=	12231.01		
		а	=	?	2000/12231.01	=	0.16		
		b	=	2	а	=	0.16		
		Villa	nae se	ttlements		$2000 = a \times 110.59^{1}$			
	۵.	A	=	2000					
	one	Р	=	110.59	110.59 ¹	=	110.59		
	Z	а	=	?	2000/110.59	=	18.1		
		b	=	1	а	=	18.08		
		Urb	an set	tlements	20	000 = <i>a</i> x 110.59 ^{0.6667}			
		A	=	2000					
		Р	=	110.59	110.59 ^{0.6667}	=	23.04		
		а	=	?	2000/23.04	=	86.79		
		b	=	0.6667	а	=	86.79		
		Ope	n sett	lements		$2000 = a \times 76.34^2$			
		A	=	2000					
		Р	=	76.34	76.34 ²	=	5827.43		
		а	=	?	2000/5827.43	=	0.34		
ie:		b	=	2	а	=	0.34		
raç		Villa	iqe se	ttlements		$2000 = a \times 76.34^{1}$			
sto	ate	Α	=	2000					
of	Jer	Р	=	76.34	76.34 ¹	=	76.34		
nt	Noc	а	=	?	2000/76.34	=	26.2		
no	~	b	=	1	а	=	26.20		
Am		Urb	an set	tlements	2				
		A	=	2000					
		Р	=	76.34	76.34 ^{0.6667}	=	18.00		
		а	=	?	2000/18.00	=	111.12		
		b	=	0.6667	а	=	111.12		
		Ope	n sett	lements		$2000 = a \times 67.18^2$			
		A	=	2000					
		Р	=	67.18	67.18 ²	=	4512.76		
		а	=	?	2000/4512.76	=	0.44		
		b	=	2	а	=	0.44		
	_	Villa	iqe se	ttlements		2000 = <i>a</i> x 67.18 ¹			
	Шn	А	=	2000					
	kim	Р	=	67.18	67.18 ¹	=	67.18		
	Vlav	а	=	?	2000/67.18	=	29.8		
	~	b	=	1	а	=	29.77		
		Urba	an set	tlements	2	000 = <i>a</i> x 67.18 ^{0.6667}			
		A	=	2000	_	-			
		Р	=	67.18	67.18 ^{0.6667}	=	16.53		
		а	=	?	2000/16.53	=	121.01		
		b	=	0.6667	а	=	121.01		

Subphase C2

Assessable	Ass	Assessable area							Adjusted			Adjusted
area (m²)	Baulks			5.94	Potential	Building 1	10.62	8.76	Building 14*	15.23	13.48	
	Unassessable area			-	residential	>> Building 2*	30.81	25.42	Building 19*	25.95	21.41	
	Total				957.64	floor area	Building 3*	21.79	18.39	Building 71	6.32	5.21
						(m²)	ស៊ី Building 4*	13.14	10.84	Building 72	12.86	10.61
Potential		Building 1	13.08	Building 14*	21.54		ັອ Building 5*	16.95	13.98	Building 73(*)	13.10	12.02
residential	>	Building 2(*)	39.91	Building 19*	33.17		Building 10*	23.02	18.99	Building W of 14	7.17	5.91
built area	Je	Building 3*	32.75	Building 71	8.63		\supset Building 12*	19.43	16.03	Building W of 19	5.35	4.42
(m²)	sto	Building 4*	29.11	Building 72	15.90		Building 13*	25.43	20.98	-		
	er	ษั Building 5* 2		Building 73	21.64		Total				247.16	206.45
	습 Building 10* 29.92 Building W of 14			10.07		*Mean residential floor area: complete dwellings				21.31	17.15	
		Building 12*	25.17	Building W of 19	7.57							
		Building 13(*)	30.62			Built floor	Building 1	6.43		Building 13	13.43	
	Total			342.65	area (m²)	Building 2	15.63		Building 14	9.98		
	Mean			22.84		ັວ Building 3	15.51		Building 19	12.23		
	SD (±)				9.99			4.44		Building 71	3.21	
	*Mean residential built area: complete 29.53						Building 5	8.60		Building 72	7.70	
	dwellings ((*) marginally incomplete building)						ට Building 8	95.69		Building 73	8.36	
Potential		Building 1	13.08	Building 13	30.62			10.89		Structures 75/76	35.94	
non-		Building 2	39.91	Building 14	21.54		Building 11	4.18		Building W of 14	3.32	
residential	õ	Building 3	32.75	Building 19	33.17		Building 12	10.86		Building W of 19	2.81	
built area	Πf	Building 4	29.11	Building 71	8.63		Building 1	10.62	8.76	Building 14	15.23	13.48
(m²)	our	Building 5	23.57	Building 72	15.90		्र Building 2	30.81	25.42	Building 19	25.95	21.41
	ы Б	Building 8	155.35	Building 73	21.64		Building 3	21.79	18.39	Building 71	6.32	5.21
	G	Building 10	29.92	Structures 75/76	54.38		ಕ Building 4	19.77	10.84	Building 72	12.86	10.61
		Building 11	15.97	Building W of 14	10.07		ັອ Building 5	16.95	13.98	Building 73	13.10	12.02
		Building 12	25.17	Building W of 19	7.57		츠 Building 10	23.02	18.99	Building W of 14	7.17	5.91
	To	al			568.35		Building 12	19.43	16.03	Building W of 19	5.35	4.42
							Building 13	25.43	20.98			
Built area	Potential residential built area (ground floor)				-		Total				523.00	475.66
(m²)	Potential non-residential built area				568.35							
	Total				568.35							
Storage provisions formula (SPF)

				Residential storage provisions (m ³ per person)									
			None			Modera	ate (0.46)		Maximum	Maximum (2 x 0.46)			
			P = 0.3944A - 0.375		P = 0.2477A + 0.0339			P = 0.1903A + 0.3976					
Metho	d 1: To	tal population estin	nate (P) based on total	contemp	oraneous	s residential floor are	ea (A)						
А	=	503.04	0.3944 x 503.04	=	198.40	0.2477 x 503.04	=	124.60	0.1903 x 503.04	=	95.73		
Р	=	?	198.40 - 0.375	=	198.02	124.60 + 0.0339	=	124.64	95.73 + 0.3976	=	96.13		
			Р	=	198.02	Р	=	124.64	Р	=	96.13		
Metho	d 2: Pe	ople per dwelling (I	P) and total population	estimates	s based o	on mean residential	floor area of	complete	e dwellings (A)				
А	=	17.15	0.3944 x 17.15	=	6.76	0.2477 x 17.15	=	4.25	0.1903 x 17.15	=	3.26		
Р	=	?	6.76 - 0.375	=	6.39	4.25 + 0.0339	=	4.28	3.26 + 0.3976	=	3.62		
			Р	=	6.39	Р	=	4.28	Р	=	3.62		
					Т	otal number of conter	mporaneous a	lwellings			36.55		
	-	Total population			233.51			156.50			132.42		
									-				
Mean t	total po	pulation			215.77			140.57			114.27		

Naroll's (1962) AGF1

					Data required		
SPF	popula	ation estir	nate (P) based on	amount of storage:	None	215.77
						Moderate	140.57
						Maximum	114.27
Resid	lential	floor area	a as a	proportion of	of built floor area (%)		43.40
				Total built	t floor area (m²) (A)	0	1490.10
					Built floor area in assessa	able area (m^2)	475.66
					Proportion of site as	ssessable (%)	31.92
				Total resid	dential floor area (m²) (RADC meti	hod)	646.75
Built f	floor a	rea per p	erson	(m ²) derived	d from SPF population estimates	None	6.91
and to	otal bu	uilt floor a	rea ba	ased on amo	ount of storage:	Moderate	10.60
						Maximum	13.04
RAD	C deriv	/ed from	SPF p	population es	stimates and total	None	2.33
conte	mpora	aneous re	siden	tial floor are	a based on amount of storage:	Moderate	3.58
		7	-		$racial anticle floor area (m^2)$		4.40
		I	otal c	ontemporan	eous residentiar noor area (m.) (R	ADC method)	503.04
			_		$A = a \times P'$		
		Metho	d 1: T	otal built flo	oor area (m²) (A), built floor area	per person ar	nd RADC
		A	=	?	A = 21.7 x 2	215.77	
		Р	=	215.77	215.77 ^{0.84195}	=	92.28
		а	=	21.7	21.7 x 92.28	=	2002.44
		b	=	0.84195	Α	=	2002.44
	Φ	Built fl	oor a	rea per pers	son (m²)		9.28
	ou	RADC	$(m^2 p)$	er person)			4.03
	Z		•••	Reside	ntial floor area as a proportion of k	ouilt floor area	43.40
		Metho	1 2. B	e-calculate	d initial growth index (a)		
		Λ	u	1/00 10	$\frac{1}{400} \frac{10}{10} = 2$	215 77 ^{0.84195}	
			=	1490.10	1490.10 = a x	213.77	00.00
		Р	=	215.77	215.77	=	92.28
		a	=	?	1490.10/92.28	=	16.15
		D	=	0.84195	<u>a</u>	=	16.15
		Metho	d 1: T	otal built flo	oor area (m ⁻) (A), built floor area	per person ar	nd RADC
		A	=	?	$A = 21.7 x^{2}$	40.57	
		Р	=	140.57	140.570.84195	=	64.33
lge		а	=	21.7	21.7 x 64.33	=	1395.97
ora	۵.	b	=	0.84195	A	=	1395.97
ste	rati	Built fl	oor a	rea per pers	son (m²)		9.93
of	de	RADC	(m² p	er person)			4.31
nt	Мо			Reside	ntial floor area as a proportion of k	ouilt floor area	43.40
no		Metho	d 2: R	e-calculate	d initial growth index (a)		
E L		А	=	1490.10	1490.10 = ax	140.57 ^{0.84195}	
-		Р	=	140.57	140.57 ^{0.84195}	=	64.33
		a	_	?	1490 10/64 33	_	23.16
		h	_	0.84195	a	=	23.16
•		Metho		otal built flo	$\frac{1}{1}$	ner nerson al	
		A			$\Delta = 21.7 \text{ m}^2$	11/ 27 ^{0.84195}	
			-	:	A = 21.7 A	114.27	E4 04
		Р	=	114.27	114.27	=	54.04
		a	=	21.7	21.7 x 54.04	=	11/2.5/
	Е	D	=	0.84195	A	=	11/2.5/
	nu	Built II	$\frac{\text{oor } a}{\sqrt{2}}$	rea per pers	son (m.)		10.26
	axi	RADC	(m⁻ p	er person)			4.45
	Ма			Reside	ntial floor area as a proportion of k	ouilt floor area	43.40
		Metho	d 2: R	e-calculate	d initial growth index (<i>a</i>)		
		А	=	1490.10	1490.10 = <i>a</i> x	114.27 ^{0.84195}	
		Р	=	114.27	114.27 ^{0.84195}	=	54.04
		а	=	?	1490.10/54.04	=	27.58
		b	=	0.84195	а	=	<u>27.58</u>

Wiessner's (1974) AGF2

					Data required		
Total s SPF p	site exte population	ent (m²) on estin) (A) nate (I	P) based on	amount of storage:	None Moderate Maximum	3000 215.77 140.57 114.27
					$A = a \times P^{b}$		
		Ope	n sett	lements	300	$0 = a \times 215.77^2$	
		A.	=	3000			
		Р	=	215.77	215.77 ²	=	46555.65
		а	=	?	3000/46555.65	=	0.06
		b	=	2	а	=	0.06
		Villa	ae se	ettlements	300	$0 = a \times 215.77^{1}$	
	۵.	A	=	3000		• • • • • • • • • • • •	
	οue	P	=	215.77	215.77 ¹	=	215.77
	Ž	а	=	?	3000/215.77	=	13.9
		b	=	1	a	=	13.90
		Urb	an sot	tlomonts	3000	- ax 215 77 ^{0.6667}	
			an set _	3000	5000		
			_	215 77	215 77 ^{0.6667}	_	35.08
		Г 2	_	210.77	210.77	=	20.90
		a b	_	: 0.6667	3000/33.90 a	-	83.38
		0		0.0007	a	-	05.50
		Оре	n sett	lements	300	$0 = a \times 140.57^{-1}$	
		A	=	3000	440 572		40750 70
		P	=	140.57	140.37	=	19759.76
		a h	=	í D	3000/19/59.76	=	0.15
age		0	=	2	a	=	0.15
ora	<u>e</u>	Villa	ige se	ettlements	300	0 = <i>a</i> x 140.57 [°]	
f st	erai	A	=	3000	4.401		4 4 9 5 7
đ	эрс	Р	=	140.57	140.57	=	140.57
'n	Ň	a	=	?	3000/140.57	=	21.3
â		Ø	=	1	а	=	21.34
A		Urba	an set	tlements	3000	= <i>a</i> x 140.57 ^{0.0007}	
		А	=	3000	0.6667		
		Р	=	140.57	140.57	=	27.04
		а	=	?	3000/27.04	=	110.95
		b	=	0.6667	а	=	110.95
		Оре	n sett	lements	300	0 = <i>a</i> x 114.27 ²	
		Α	=	3000	_		
		Р	=	114.27	114.27 ²	=	13057.84
		а	=	?	3000/13057.84	=	0.23
		b	=	2	а	=	0.23
	~	Villa	ige se	ettlements	300	0 = <i>a</i> x 114.27 ¹	
	un	А	=	3000			
	kim	Р	=	114.27	114.27 ¹	=	114.27
	Way	а	=	?	3000/114.27	=	26.3
	<u> </u>	b	=	1	а	=	26.25
		Urba	an set	tlements	3000	= <i>a</i> x 114.27 ^{0.6667}	
		A	=	3000			
		P	=	114.27	114.27 ^{0.6667}	=	23.55
		а	=	?	3000/23.55	=	127.38
		b	=	0.6667	a	=	127.38

-			Site	Beidha (A1)	Beidha (A2)	Beidha (B2)	Beidha (C2)
			Settlement type	1	1	1	3
			Period	MPPNB	MPPNB	MPPNB	LPPNB
			Site extent (hectares)	0.1	0.2	0.2	0.3
	C		Site extent (hectares) used in calculations of population size	-	-	-	-
	tio		Site extent category (hectares)	<0.4	<0.4	<0.4	≤0.5
	ma		Structural contemporaneity value (%)	71.43	75	71.43	77.78
	ori		Environment	Restricted	Restricted	Restricted	Restricted
	lnf		Subsistence (H-Hunt; G-Gath; C-Cult; P-Past)	H, G	H, G	H, G, C	H, G, C, P
	te		Dwelling architecture: predominant shape	Curvilinear	Curvilinear	Curvilinear	Rectilinear
	Si		Dwelling architecture: predominant number of storeys	Single	Single	Single	Multiple
			Dwelling architecture: degree of compartmentalisation	Limited	Limited	Limited	High
			Economy: household economic independence	Limited-Mod	Limited-Mod	Limited-Mod	Moderate
			Ritual	Established	Established	Established	Established
_			Complexity in community organisation	Limited	Limited	Evident	Evident
		Data	Dwelling count	4	9	8	15
			Assessable area (m ²)	132.17	293.53	599.92	957.64
			Proportion of site assessable (%)	13.22	14.68	30	31.92
			Total number of dwellings	30.26	61.32	70.1	46.99
,	þ		Mean residential built area (m ²)	18.71	12.98	11.35	22.84
,	tho		Assessable built area (m ²)	86.77	167.94	170.98	568.35
	Vet		Proportion of built area in assessable area (%)	65.65	57.21	28.5*	59.35
	Ľ.		Total built area (m ²)	656.5	1144.28	1144.18	1780.47
	Un		Assessable residential built area (m ²)	74.85	116.81	90.82	342.65
	lg l		Proportion of residential built area in built area (%)	86.26	69.55	53.12*	60.29
	sin		Total residential built area (m ²)	566.32	795.89	795.82	1073.42
	no .		Proportion of residential built area in assessable area (%)	56.63	39.79	15.14*	35.78
	Ĭ	Estimates	Total number of contemporaneous dwellings	21.62	45.99	50.07	36.55
			Total population (3 people)	64.85	137.98	150.22	109.65
			Total population (5.5 people)	118.9	252.96	275.4	201.02
			Total population (8 people)	172.94	367.94	400.58	292.39
_			Suitable family sizes	All	3 people	3 people	All

Appendix B.2: Beidha micro-level estimate database

			Site		Beidha (A1)	Beidha (A2)	Beidha (B2)	Beidha (C2)
Ħ	1	Data	Assessable residential floor area (m ²)		38.84	58.13	49.82	206.45
ea ier			Total residential floor area (m ²)		293.88	396.09	396.06	646.75
fici			Proportion of residential floor area in built area	a (%)	44.76	34.61	29.14*	36.32
efi	ро		Proportion of residential floor area in assessal	ole area (%)	29.39	19.8	8.3*	21.56
C II	ţ,	Estimates	Total contemporaneous residential floor area	(m²)	209.92	297.07	282.91	503.04
t e	Σ		Total population (1.77 m² per person)		118.6	167.84	159.83	284.2
isi Si			Total population (3.3 m ² per person)		63.61	90.02	85.73	152.44
ୁ କୁ			Total population (5 m ² per person)		41.98	59.41	56.58	100.61
			Suitable RADCs		All	All	All	All
ð	Data	l	Total contemporaneous residential floor area	(m ²)	209.92	297.07	282.91	503.04
lla			Mean residential floor area of complete dwelling	ngs (m²)	11.56	7.26	6.52	17.15
ľ			Total number of contemporaneous dwellings		21.62	45.99	50.07	36.55
-io			Probable amount of interior residential storage	е	None-moderate	None-moderate	None-moderate	None-moderate
с С		Total population	No storage (min)		82.42	114.44	109.98	198.02
ü		(SPF1 and 2)	No storage (max)		90.45	116.79	111.2	233.51
isi	S		0.46 ³ storage per person (min)		52.03	73.62	70.11	124.64
2	ate		0.46 ³ storage per person (max)		62.63	84.27	82.57	156.5
Ĩ.	Ĕ		2 x 0.46 ³ storage per person (min)		40.35	56.93	54.23	96.13
e	sti		2 x 0.46 ³ storage per person (max)		55.32	80.07	80.12	132.42
raç	ш	People per dwelling	No storage		4.18	2.49	2.2	6.39
ę		(SPF2)	0.46 ³ storage per person		2.9	1.83	1.65	4.28
0			2 x 0.46 ³ storage per person		2.56	1.74	1.6	3.62
		Data	Total built floor area (m ²)		342.21	595.31	595.4	1490.1
ae			Proportion of residential floor area in built floor	r area (%)	85.88	66.54	66.52	43.4
n		Naroll (AGF1)	Total built floor area (m ²)	No storage	926.96	1140.72	1140.72	2002.44
E				Mod storage	656.06	834.89	834.89	1395.97
Ŗ				Max storage	563.27	749.7	749.7	1172.57
÷			Built floor area per person (m ²)	No storage	10.72	10.31	10.31	9.28
ž				Mod storage	11.44	10.94	10.94	9.93
2 C				Max storage	11.78	11.16	11.16	10.26
с с			RADC (m ² residential floor area per person)	No storage	9.21	6.86	6.86	4.03
itri				Mod storage	9.83	7.28	7.28	4.31
me				Max storage	10.11	7.42	7.42	4.45
<u>o</u>			Re-calculated initial growth index	No storage	8.01	11.33	11.33	16.15
A				Mod storage	11.32	15.48	15.48	23.16
				Max storage	13.18	17.23	17.23	27.58

		Site		Beidha (A1)	Beidha (A2)	Beidha (B2)	Beidha (C2)
	Wiessner (AGF2 initial growth indices)	Predominant settlement type/s		Open/village	Open/village	Open/village	Village/urban
ے		Open	No storage	0.13	0.15	0.16	0.06
¥t.			Mod storage	0.3	0.32	0.34	0.15
àro ae			Max storage	0.44	0.43	0.44	0.23
		Village	No storage	11.57	17.3	18.08	13.9
r ti		-	Mod storage	17.44	25.34	26.2	21.34
Бо Бо			Max storage	20.91	29.2	29.77	26.25
ell o		Urban	No storage	51.15	84.26	86.79	83.38
∢			Mod storage	67.25	108.67	111.12	110.95
			Max storage	75.88	119.45	121.01	127.38
_	Total population based on:	90 people/ha		9	18	18	27
t io		150 people/ha		15	30	30	45
lat		294 people/ha		29.4	58.8	58.8	88.2
h Tio	Population in assessable area:	90 people/ha		1.19	2.64	5.4	8.62
Po Poel		150 people/ha		1.98	4.4	9	14.36
et C t		294 people/ha		3.89	8.63	17.64	28.15
sit) ≥	Contemporaneous dwellings in assessa	ble area		2.86	6.75	15.02	11.67
ens	People per dwelling in assessable	90 people/ha		0.42	0.39	0.36	0.74
Dğ	area:	150 people/ha		0.69	0.65	0.6	1.23
0)		294 people/ha		1.36	1.28	1.17	2.41

		Site	Beidha (A1)	Beidha (A2)	Beidha (B2)	Beidha (C2)
	Total population	HUM	64.85-172.94	137.98	150.22	109.65-292.39
		RADC	41.98-118.6	59.41-167.84	56.58-159.83	100.61-284.2
		SPF	57.33-86.44	78.94-115.62	76.34-110.59	140.57-215.77
		SPDC	9-29.4	18-58.8	18-58.8	27-88.2
	People per dwelling	HUM	3-8	3	3	3-8
		RADC	1.94-5.49	1.29-3.65	1.13-3.19	2.75-7.78
s		SPF1	2.65-4	1.72-2.51	1.52-2.21	3.85-5.9
ate		SPF2	2.9-4.18	1.83-2.49	1.65-2.2	4.28-6.39
Ĕ		SPDC	0.42-1.36	0.39-1.28	0.36-1.17	0.74-2.41
sti	Residential floor area density coefficient	HUM	1.21-3.24	2.15	2.15	1.72-4.59
inal E		RADC	1.77-5	1.77-5	1.77-5	1.77-5
	(m ² per person)	SPF	2.43-3.66	2.57-3.76	2.56-3.71	2.33-3.58
ίΞ		AGF1	9.21-9.83	6.81-7.24	6.86-7.28	4.03-4.31
		SPDC	7.14-23.32	5.05-16.5	4.81-15.72	5.7-18.63
5	Settlement population density coefficient	HUM	648.53-1729.41	689.9	751.1	365.49-974.65
5		RADC	419.84-1185.99	297.05-839.18	282.91-799.17	335.36-947.34
	(people per hectare)	SPF	573.32-864.36	394.71-578.08	381.69-552.97	468.56-719.23
		SPDC	90-294	90-294	90-294	90-294
	Mean residential built area: complete dwe	llings (m ²)	20.64	14.81	12.47	29.53
	Built floor area in:	site area (%)	34.22	29.77	17.05*	49.67
"		assessable built area (%)	52.13	52.02	59.83*	83.69
ea	Contemporaneous:	built area in site area (%)	46.89	42.91	40.87	46.16
P i A		residential built area in assessable area (%)	40.45	29.84	28.42	27.83
al Do		built floor area in assessable area (%)	24.44	22.32	21.26	38.63
Lin C		residential floor area in assessable area (%)	20.99	14.85	14.14	16.77
Δ.	Residential floor area in built floor area (%	b)	85.88	66.54	66.52	43.4
	Built area in site area (structural density) (%)	65.65	57.21	57.21	59.35

*Denotes original Subphase B2 proportions replaced by Subphase A2 proportions in calculations.

Appendix B.3: Birch-Chapman, S., Jenkins, E., Coward, F. and Maltby, M., 2017. Estimating population size, density and dynamics of Pre-Pottery Neolithic villages in the central and southern Levant: an analysis of Beidha, southern Jordan. Levant, 49(1), 1-23.

Estimating population size, density and dynamics of Pre-Pottery Neolithic villages in the central and southern Levant: an analysis of Beidha, southern Jordan

Shannon Birch-Chapman O, Emma Jenkins O, Fiona Coward O and Mark Maltby

An understanding of population dynamics is essential for reconstructing the trajectories of central and southern Levantine Pre-Pottery Neolithic (PPN) villages. The aim of this investigation was to derive more empirically and statistically robust absolute demographic data than currently exists. Several methodologies were explored, including those based on dwelling unit size and the number of dwellings; residential floor area per person; population density; and allometric growth formulae. The newly established storage provisions formulae based on the affordance of sleeping individuals within structures was found to be the most viable method. Estimates were adjusted to reflect potential structural contemporaneity calculated from building use-life and phase length estimates based on archaeological, ethnographic and experimental research, and Bayesian chronological modelling of radiocarbon dates. The application of methodologies to the PPNB site of Beidha in southern Jordan is presented. The analysis highlights inconsistencies with current theory relating to population density at Beidha. In particular, the results suggest that nuclear families probably did not form the predominant dwelling unit type during Subphases A2 and B2. In addition, population density was estimated at anywhere between 350 and 900 people per ha. This range far exceeds the ethnographically derived density values commonly utilized for reconstructing PPN village populations (c. 90 to 294 people per ha).

Keywords Pre-Pottery Neolithic (PPN), Beidha, population estimates, contemporaneity, population density.

Introduction

Absolute estimates of population size, density and dynamics are essential for reconstructing human social development. Population estimates enable more precise explorations of the relationship between groups of people and developments in subsistence, architecture, technology, economic practices, community organization and ritual practices, in all areas and periods. Demographic data is critical for investigating

episodes of settlement aggregation, migration and dispersal; and for exploring the underlying causes, processes and consequences of major transitional episodes. Given the pivotal role that the central and southern Levantine Pre-Pottery Neolithic (PPN) played in the Neolithic Demographic Transition (NDT), and the importance of this region for understanding early village development, the methodological and theoretical limitations of existing absolute population estimates of these villages must be addressed.

This investigation assesses existing estimates, methodologies and underlying theories in order to establish a more empirically robust methodological framework for estimating the population size, density and

¹Department of Archaeology, Anthropology and Forensic Science, Bournemouth University, Poole, UK

Shannon Birch-Chapman (corresponding author), Department of Archaeology, Anthropology and Forensic Science, Bournemouth University, Fern Barrow, Poole, BH12 5BB, UK. Email: SBirch@bourne mouth.ac.uk

^{© 2017} The Author(s). Published by informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/ Licenses/by-nc-nd/4.o/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. Levant 2017 DOI 10.1080/00758914.2017.1287813

Assassable area	Assessable area	326.36	Potential	Building 5*	11 33
(m ²)	Linassessable area	520.50	residential floor	Building 8*	6 70
()	Total	326 36	area (m ²)	Building 9*	11 84
	lotal	020.00	area (m)	Building 11*	8.06
Potential	Building 5*	22.98		Building 12	6 95
residential built	Building 8*	10.07		Building 14*	8.00
area (m ²)	Building 9*	21 12		Building 16*	14 58
area (m)	Building 11*	12 32		Building 18	8 68
	Building 12	0.80		Building 19*	6.52
	Building 1/*	11.88		Building 20*	0.52
	Building 16*	23.26		Total	92 44
	Building 18	1/ 16		*Mean residential floor area: complete dwellings	9 2.77 0.60
	Building 19*	10.09		mean residential noor area. complete dwenings	5.00
	Building 20*	14 98	Built floor area	Building 5	11 33
	Total	150 77	(m^2)	Building 7	5 72
	Mean	15.08	(111)	Building 8	6 70
	SD (+)	5 39		Building 9	11 84
	*Mean residential built area: complete dwellings	16 34		Building 10	4 47
	Mean residential bailt area. complete awenings	10.04		Building 11	8.06
Potential non-	Building 7	9.56		Building 12	6 95
residential huilt	Building 10	8 92		Building 13	3 79
area (m ²)	Building 13	7.63		Building 14	8.00
	Building 19 annex	1.00		Building 16	14 58
		27 71		Building 18	8 68
	l'otal	27.77		Building 19	6.52
Built area (m ²)	Potential residential built area	150 77		Building 19 Building 19 appey	0.52
	Potential non-residential built area	27 71		Building 20	0.47
	Total	178.48		Total	106.90

Appendix C.1: Site data and micro-level estimates

Method 1: Total potential dwelling number15.31Number of potential dwellings in the assessable area10Assessable area (m^2) 326.36Estimated total site extent (m^2) 500Assessable area (proportion)0.6527Method 2: Total potential dwelling number15.31Mean potential residential built area (m^2) 15.08Potential residential built area (m^2) 15.08Building 522.98Building 14 (m^2) Building 5Building 921.11Building 1112.32Building 19Building 129.89Building 20Total built area estimate (m^2) 273.44Assessable area (m^2) 273.44	Housing unit method (HUM)				
Number of potential dwellings in the assessable area10Assessable area (m^2) 326.36Estimated total site extent (m^2) 500Assessable area (proportion)0.6527Method 2: Total potential dwelling number15.31Mean potential residential built area (m^2) 15.08Potential residential built area (m^2) 15.08 (m^2) Building 5 22.98 Building 14 (m^2) Building 8 10.07 Building 16 23.26 Building 11 12.32 Building 18 14.15 Building 11 12.32 Building 20 14.98 Total built area estimate (m^2) 273.44Assessable area (m^2) 273.44Assessable area (m^2) 273.44Assessable area (m^2) 326.36	Method 1: Total potential dwellin	g number			15.31
Assessable area (m^2) 326.36Estimated total site extent (m^2) 500Assessable area (proportion)0.6527Method 2: Total potential dwelling number15.31Mean potential residential built area (m^2) 15.08Potential residential built area (m^2) 15.08 (m^2) Building 5 22.98 Building 14 (m^2) Building 8 10.07 Building 16 23.26 $Building 9$ 21.11 $Building 11$ 12.32 $Building 12$ 9.89 $Building 20$ 14.98Total built area estimate (m^2) 273.44Assessable area (m^2) 326.36	Number of potential dwellings in the	e assessable ar	ea		10
Estimated total site extent (m^2) 500Assessable area (proportion)0.6527Method 2: Total potential dwelling number15.31Mean potential residential built area (m^2) 15.08Potential residential built area (m^2) 15.08 (m^2) Building 5 22.98 Building 14 (m^2) Building 8 10.07 Building 16 23.26 $Building 9$ 21.11 $Building 11$ 12.32 $Building 12$ 9.89 $Building 20$ 14.98Total built area estimate (m^2) 273.44Assessable area (m^2) 326.36	Assessable area (m ²)				326.36
Assessable area (proportion) 0.6527 Method 2: Total potential dwelling number15.31Mean potential residential built area (m²) 15.08 Potential residential built area (m²) 15.08 Potential residential built area (m²) 22.98 Building 5 22.98 Building 6 23.26 Building 9 21.11 Building 11 12.32 Building 12 9.89 Building 20 14.98 Total built area estimate (m²) 273.44 Assessable area $(m²)$ 326.36	Estimated total site extent (m ²)				500
Method 2: Total potential dwelling number15.31Mean potential residential built area (m^2) 15.08Potential residential built area (m^2) 15.08 (m^2) Building 5 (m^2) Building 8Building 921.11Building 1112.32Building 129.89Building 2014.98Total built area estimate (m^2) Total built area estimate (m^2) 273.44Assessable area (m^2) 326.36	Assessable area (proportion)				0.6527
Method 2: Total potential dwelling number15.31Mean potential residential built area (m^2) 15.08Potential residential built areaBuilding 522.98Building 14 (m^2) Building 810.07Building 1623.26Building 921.11Building 1814.15Building 1112.32Building 1910.05Building 129.89Building 2014.95Total built area estimate (m^2) 273.44Assessable area (m^2) 326.36					
Mean potential residential built area (m^2) 15.08Potential residential built area (m^2) Building 5 Building 822.98Building 1411.88 (m^2) Building 8 Building 9 Building 1110.07Building 16 Building 1823.26 14.15Building 9 Building 1121.11Building 18 12.3214.15 Building 19Total built area estimate (m^2) 273.44 Assessable area (m^2) 273.44 326.36	Method 2: Total potential dwellin	g number			15.31
Potential residential built area (m^2) Building 5 Building 8 Building 8 Building 9 Building 11 Building 1222.98 Building 16 Building 16 12.32 Building 19 Building 19 10.09 14.98Total built area estimate (m^2) 273.44 Assessable area (m^2) 273.44 326.36	Mean potential residential built area	a (m²)			15.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Potential residential built area	Building 5	22.98	Building 14	11.88
Building 9 Building 11 Building 12 21.11 Building 18 Building 19 Building 19 Building 12 14.15 Building 19 Building 19 10.05 9.89Total built area estimate (m²) 273.44 Assessable area $(m²)$ 273.44 326.36	(<i>m</i> ²)	Building 8	10.07	Building 16	23.26
Building 1112.32Building 1910.09Building 129.89Building 2014.98Total built area estimate (m²)273.44Assessable area $(m²)$ 326.36		Building 9	21.11	Building 18	14.15
Building 129.89Building 2014.98Total built area estimate (m²)273.44Assessable area $(m²)$ 326.36		Building 11	12.32	Building 19	10.09
Total built area estimate (m ²) 273.44 Assessable area (m^2) 326.36		Building 12	9.89	Building 20	14.98
Total built area estimate (m²)273.44Assessable area $(m²)$ 326.36					
Assessable area (m^2) 326.36	Total built area estimate (m ²)				273.44
			Assess	able area (m²)	326.36
Assessable built area (m ²) 178.48			Assessable	built area (m²)	178.48
Assessable built area as a proportion of assessable area 0.5469	Assessable k	built area as a p	proportion of as	sessable area	0.5469
Estimated total site extent (m ²) 500		Es	stimated total s	tite extent (m^2)	500
Residential built area as a proportion of assessable built area 0.8446	Residential built area as a proportion	on of assessable	e built area		0.8446
Potential residential built area (m ²) 150.74		Poten	tial residential	built area (m²)	150.74
Total potential residential built area (m ²) 230.94	Total potential residential built area	(m ²)			230.94
Method 3: Total potential dwelling number 15.31	Method 3: Total potential dwellin	g number			15.31
Potential residential built area as a proportion of assessable area 0.4619	Potential residential built area as a	proportion of as	ssessable area		0.4619
Total number of contemporaneous dwellings (80%) 12.25	Total number of contemporaneous	dwellings (80%)		12.25
Total population estimate based on nuclear Minimum 3 36.74	Total population estimate based	on nuclear	Minimum	3	36.74
family size: Average 5.5 67.36	family size:		Average	5.5	67.36
Maximum 8 97.98			Maximum	8	97.98

Residential area density coefficient (RADC)								
Method 1: Total potential	residential floo	or area (m²)		141.62				
Potential residential floor are	ea (m²)			92.44				
Potential residential floor	Building 5	11.33	Building 14	8.00				
area (m²)	Building 8	6.70	Building 16	14.58				
	Building 9	11.84	Building 18	8.68				
	Building 11	8.06	Building 19	6.52				
	Building 12	6.95	Building 20	9.77				
Assessable area (m ²)				326.36				
Estimated total site extent (m²)			500				
Assessable area (proportion	ı)			0.6527				
Method 2: Total potential	residential floo	or area (m²)		141.62				
Total built area estimate (m	²)	• •		273.44				
		Asse	essable area (m²)	326.36				
		Assessab	ole built area (m²)	178.48				
Asses	ssable built area	a as a proportion of	assessable area	0.5469				
		Estimated tota	al site extent (m²)	500				
Potential residential floor an	ea as a proport	ion of assessable b	uilt area	0.5179				
		Potential residenti	ial floor area (m²)	92.44				
Method 3: Total potential	residential floo	or area (m ²)		141.62				
Potential residential floor ar	ea as a proport	ion of assessable a	rea	0.2832				
Total contemporaneous res	idential floor are	ea (m ²) (80%)		113.30				
Total population estimate	based on	Minimum	1.77	64.01				
RADC (m ²):		Average	3.3	34.33				
		Maximum	5	22.66				

Storage provisions formula (SPF)

					Res	idential storage pro	ovisions (m ³	³ per pei	rson)		
			No	ne		Modera	te (0.46)		Maximur	n (2 x 0.46)	
			P = 0.3944	4A – 0.375		P = 0.2477	7A + 0.0339		P = 0.1903	BA + 0.3976	
Metho	d 1: Tot	al population e	estimate (P) based on total	contempo	raneous	residential floor are	ea (A)				
А	=	113.30	0.3944 x 113.3	=	44.69	0.2477 x 113.3	=	28.06	0.1903 x 113.3	=	21.56
Р	=	?	44.69 - 0.375	=	44.31	28.06 + 0.0339	=	28.10	21.56 + 0.3976	=	21.96
			Р	=	44.31	Р	=	28.10	Р	=	21.96
Metho	d 2: Peo	ople per dwellin	ng (P) and total population	estimates	based or	n mean residential	floor area o	f comple	ete dwellings (A)		
А	=	9.6	0.3944 x 9.6	=	3.79	0.2477 x 9.6	=	2.38	0.1903 x 9.6	=	1.83
Р	=	?	3.79 - 0.375	=	3.41	2.38 + 0.0339	=	2.41	1.83 + 0.3976	=	2.19
			Р	=	3.41	Р	=	2.41	Р	=	2.19
					Tota	I number of contemp	oraneous d	wellings			12.25
		Total popul	ation		41.79			29.54			26.78
Mean	total po	pulation			43.05			28.82			24.37

⁴ Naroll's (1962) AGF1

Summary of estimates based on:		Naroll's (1962) form	nula		Archaeological evidence				
	SPF population estimate based on amount of storage:				SPF population	n estimate based on	amount of storage:		
	None (43.05)	Moderate (28.82)	Maximum (24.37)		None (43.05)	Moderate (28.82)	Maximum (24.37)		
Total built floor area (m ²)	515.44	367.68	319.24	163.78					
Built floor area per person (m ²)	11.97	12.76	13.10		3.80	5.68	6.72		
RADC (m ² per person)	10.35	11.03	11.33		2.63	3.93	4.65		
Initial growth index	6.90	9.67	11.13						

		Data required								
SPF	popul	ation estimate (P) based on amount of storage:	None	43.05						
			Moderate	28.82						
	Residential floor area as a proportion of built floor area (%)									
Resid	Residential floor area as a proportion of built floor area (%) Total built floor area $(m^2) (\Delta)$									
	Total built floor area (m ²) (A)									
		Built 1007 area in a	f site seeseble (///)	106.90						
		Proportion o	I SITE ASSESSADIE (%)	00.27						
D:14	<u> </u>	(m^2) derived from CDE period	Nere	141.02						
Bullt	TIOOF 8	irea per person (m) derived from SPF population	None	3.80						
stora	10162 (1162 (Moderale	0.00 6.70						
	go. C dari	und from SDE population actimates and total	Nono	0.72						
conte		aneous residential floor area based on amount of	Moderate	2.03						
stora	ae:		Maximum	J.95						
	3	Total contemporaneous residential floor area	(m^2) (RADC method)	113 30						
				113.30						
		$\mathbf{A} = a \mathbf{x} \mathbf{P}^{b}$								
		Method 1: Total built floor area (m ²) (A), built	floor area per person	and RADC						
		A = ? $A = 2$ $A = 2$	21.7 x 43.05	~~						
		$P = 43.05$ $43.05^{-0.0100}$	=	23.75						
		$a = 21.7$ 21.7×23.75	=	515.44						
		$D = 0.84195 \qquad \text{A}$	=	515.44						
	пе	Built floor area per person (m)		11.97						
	No	RADC (III per person)	tion of built floor area	10.33						
				00.47						
		Method 2: Re-calculated Initial growth index ($(a) = 0 \times 43.05^{0.84195}$							
		A = 103.70 103.70	b = a x 43.00	22.75						
		P = 43.05 43.05	=	23.75						
		a = ? 105.70/25.75 b = 0.84195 a	=	6.90						
		Method 1: Total built floor area (m ²) (A), built	floor area per person	and RADC						
		$A = ? \qquad A = 2$	21.7 x 28.82 ^{0.84195}							
		$P = 28.82$ $28.82^{0.84195}$	=	16.94						
je:		a = 21.7 21.7 x 16.94	=	367.68						
raç	۵.	<i>b</i> = 0.84195 A	=	367.68						
sto	rate	Built floor area per person (m²)		12.76						
đ	de	RADC (m ² per person)		11.03						
It	Mo	Residential floor area as a propor	tion of built floor area	86.47						
nor		Method 2: Re-calculated initial growth index ((a)							
Am		A = 163.78 163.78	$B = a \ge 28.82^{0.84195}$							
		$P = 28.82$ $28.82^{0.84195}$	=	16.94						
		a = ? 163.78/16.94	=	9.67						
		b = 0.84195 a	=	9.67						
		Method 1: Total built floor area (m ²) (A), built	floor area per person	and RADC						
		A = ? A = 2	21.7 x 24.37 ^{0.84195}							
		$P = 24.37 \qquad 24.37^{0.84195}$	=	14.71						
		a = 21.7 21.7 x 14.71	=	319.24						
	Ξ	b = 0.84195 A	=	319.24						
	nu	Built floor area per person (m ⁻)		13.10						
	axii	RADC (m per person)	tion of built floor area	11.33						
	M			86.47						
		method 2: Re-calculated initial growth index ($\Lambda = 162.79$	$a) = 2 \times 24 27^{0.84195}$							
		A = 103.70 163.70	$a = a \times 24.57$	A A 74						
		$\Gamma = 24.31$ 24.31	=	14./1						
		b = 0.84195 a	=	11.13						

Wiessner's (1974) AGF2

Data required							
Total	l site e	extent (m ²) (A)			500		
SPF	popula	ation estimate (P) based	d on amount of storage	: None	43.05		
				Moderate	28.82		
				Maximum	24.37		
		Onen estilemente	$A = a \times P^{a}$	500 ox 42 05 ²			
		Open settlements		$500 = a \times 43.05$			
		A = 500	40.0 ⁻²		4050.00		
		P = 43.05	43.05	=	1853.23		
		a = ?	500/1853.23	=	0.27		
		D = 2	а	=	0.27		
		Village settlements		500 = <i>a</i> x 43.05'			
	ЭС	A = 500	1				
	Vor	P = 43.05	43.05'	=	43.05		
		a = ?	500/43.05	=	11.6		
		b = 1	а	=	11.6		
		Urban settlements	5	500 = <i>a</i> x43.05 ^{0.6667}			
		A = 500					
		P = 43.05	43.05 ^{0.6667}	=	12.28		
		a = ?	500/12.28	=	40.70		
		b = 0.6667	а	=	40.70		
		Open settlements		$500 = a \times 28.82^2$			
		A = 500					
		P = 28.82	28.82 ²	=	830.68		
		a = ?	500/830.68	=	0.60		
.: 6		b = 2	а	=	0.60		
ag		Village settlements		500 - a x 28 82 ¹			
for	ite	$\Delta = 500$		500 - a x 20.02			
fs	era	P = 28.82	28.82 ¹	_	28.82		
it o	lod	2 - 2	500/28 82	-	17.3		
nu	Z	a = : b = 1	300/20.02 a	-	17.3		
Ĕ			u -	-	17.5		
A		Urban settlements	5	$00 = a \times 28.82$			
		A = 500	aa aa ^{0,6667}		0.40		
		P = 28.82	28.82	=	9.40		
		a = ?	500/9.4	=	53.18		
		D = 0.6667	а	=	53.18		
		Open settlements		$500 = a \ge 24.37^2$			
		A = 500	a t a= ²				
		P = 24.37	24.37	=	593.88		
		a = ?	500/593.88	=	0.84		
		b = 2	а	=	0.84		
	~	Village settlements		$500 = a \ge 24.37^{1}$			
	un	A = 500					
	xin	P = 24.37	24.37 ¹	=	24.37		
	Ma.	a = ?	500/24.37	=	20.5		
		<i>b</i> = 1	а	=	20.5		
		Urban settlements	5	00 = <i>a</i> x 24.37 ^{0.6667}			
		A = 500					
		P = 24.37	24.37 ^{0.6667}	=	8.41		
		a = ?	500/8.41	=	59.48		
		<i>b</i> = 0.6667	а	=	59.48		

Initial growth indices									
Settlement type	lement type SPF population estimate based on amount of storage:								
	None (43.05)	Moderate (28.82)	Maximum (24.37)						
Open	0.27	0.60	0.84						
Village	11.61	17.35	20.52						
Urban	40.70	53.18	59.48						

Settlement population density coefficient (SPDC)

Data required							
Total site extent (ha)	0.05						
Proportion of site assessable (%)	65.27						
Number of contemporaneous dwellings in the assessable area	8.00						
Dwellings in assessable area	10						
Contemporaneity value (%)	80						

Method 1: Total population based on commonly utilised SPDCs							
	SPE	DC (people/h	a)				
	Minimum	Average	Maximum				
	90	150	294				
Total population	4.5	7.5	14.7				
Population in the assessable area	2.94	4.90	9.59				
People per dwelling in the assessable area	0.37	0.61	1.20				

Method 2: SPDCs based on HUM, RADC and SPF population estimates										
Method	Total	population estir	mate	SPDC (people/ha)						
	Minimum	Average	Maximum	Minimum	Average	Maximum				
HUM	36.74	-	67.36	734.80	-	1347.20				
RADC	22.66	34.33	64.01	453.19	686.66	1280.21				
SPF	24.37	28.82	43.05	487.39	576.43	860.98				

Assessab	le area	Assessable area	214.66	Potential	Locus 3*	18.42
(m ²)		Unassessable area	-	residential floor	Locus 4*	11.36
		Total	214.66	area (m²)	Locus 5	5.09
					Locus 7*	10.70
Potential	residential	Locus 3*	22.17		Locus 10*	10.61
built area	(m ²)	Locus 4*	14.59		Locus 12	3.14
		Locus 5	7.10		Total	59.31
		Locus 7*	14.15		*Mean residential floor area: complete dwellings	12.77
		Locus 10*	12.89			
		Locus 12	4.11	Built floor area	Locus 3	18.42
		Total	75.01	(m²)	Locus 4	11.36
		Mean	12.50		Locus 5	5.09
		SD (±)	6.33		Locus 6	1.20
		*Mean residential built area: complete dwellings	15.95		Locus 7	10.70
					Locus 8	3.91
Potential	non-	Locus 6	2.20		Locus 10	10.61
residentia	al built	Locus 8	5.20		Locus 11	18.20
area (m²)		Locus 11	21.78		Locus 12	3.14
		Locus 13	3.50		Locus 13	1.62
		Locus 14	2.62		Locus 14	1.64
		Total	35.30		Total	85.89
Built area	(m²)	Potential residential built area	75.01			
		Potential non-residential built area	35.30			
		Total	110.31			

Gilgal I

Housing unit method (HUM)				
Method 1: Total potential dwellin	g number			111.80
Number of potential dwellings in the	e assessable a	area		6
Assessable area (m ²)				214.66
Estimated total site extent (m ²)				4000
Assessable area (proportion)				0.0537
Method 2: Total potential dwellin	g number			111.80
Mean potential residential built area	a (m²)			12.50
Potential residential built area	Locus 3	22.17	Locus 7	14.15
(m^2)	Locus 4	14.59	Locus 10	12.89
	Locus 5	7.10	Locus 12	4.11
Total built area estimate (m ²)				2055.53
		Assess	able area (m²)	214.66
		Assessable	built area (m²)	110.31
Assessable	built area as a	proportion of as	sessable area	0.5139
	l	Estimated total s	site extent (m^2)	4000
Residential built area as a proportion	on of assessat	ole built area		0.6800
	Pote	ential residential	built area (m²)	75.01
Total potential residential built area	(m ²)			1397.75
Method 3: Total potential dwellin	g number			111.80
Potential residential built area as a	proportion of a	assessable area	l	0.3494
Total number of contemporaneous	dwellings (609	%)		67.08
Total population estimate based	on nuclear	Minimum	3	201 25
family size:		Average	5.5	368.96
-		Maximum	8	536.66

Residential area density	coefficien	t (RADC)		
Method 1: Total potential	esidential fl	oor area (m²)		1105.27
Potential residential floor are	ea (m²)			59.31
Potential residential floor	Locus 3	18.42	Locus 7	10.70
area (m²)	Locus 4	11.36	Locus 10	10.61
	Locus 5	5.09	Locus 12	3.14
Assessable area (m ²)				214.66
Estimated total site extent (r	n²)			4000
Assessable area (proportion)			0.0537
Method 2: Total potential	esidential fl	oor area (m²)		1105.27
Total built area estimate (m ²	·)			2055.53
	,	Asse	essable area (m^2)	214.66
		Assessab	ble built area (m^2)	110.31
Asses	sable built ar	rea as a proportion of	assessable area	0.5139
		Estimated tota	al site extent (m²)	4000
Potential residential floor are	a as a propo	rtion of assessable b	uilt area	0.5377
		Potential residenti	ial floor area (m²)	59.31
Method 3: Total potential	esidential fl	oor area (m²)		1105.27
Potential residential floor are	ea as a propo	rtion of assessable a	rea	0.2763
Total contemporaneous resi	dential floor a	area (m²) (60%)		663.16
Total population estimate	based on	Minimum	1.77	374.67
RADC (m ²):		Average	3.3	200.96
		Maximum	5	132.63

■Method 1 ■Method 2 350 300 250 200 150 100 100 286.9 People per dwelling 156.9 6 4.7 4 • T • 2 2.8 0 None Mod (0.46) Max (0.92) Estimate range Residential storage (m³ p/p)

Storage provisions formula (SPF)

					Re	sidential storage pro	ovisions (m ³	³ per pers	on)		
			No	ne		Modera	te (0.46)		Maximum	(2 x 0.46)	
			P = 0.3944	A – 0.375		P = 0.2477	7A + 0.0339		P = 0.1903	8A + 0.3976	1
Methe	od 1: To	tal population	estimate (P) based on tota	al contemp	oraneous	s residential floor are	ea (A)				
А	=	663.16	0.3944 x 663.16	=	261.55	0.2477 x 663.16	=	164.26	0.1903 x 663.16	=	126.20
Р	=	?	261.55 - 0.375	=	261.18	164.26 + 0.0339	=	164.30	126.2 + 0.3976	=	126.60
			Р	=	261.18	Р	=	164.30	Р	=	126.60
А	=	12.77	0.3944 x 12.77	=	5.04	0.2477 x 12.77	=	3.16	0.1903 x 12.77	=	2.43
А	=	12.77	0.3944 x 12.77	=	5.04	0.2477 x 12.77	=	3.16	0.1903 x 12.77	=	2.43
Р	=	?	5.04 - 0.375	=	4.66	3.16 + 0.0339	=	3.20	2.43 + 0.3976	=	2.79
			P	=	4.66	P	=	3.20	Р	=	2.79
					7	otal number of conten	nporaneous	dwellings			67.08
		Total populat	tion		312.69			214.46			187.12
Mean total population				286.93			189.38			156.86	

Naroll's (1962) AGF1

Summary of estimates based on:	Naroll's (1962) formula				Archaeological evidence			
	SPF population estimate based on amount of storage:				SPF population estimate based on amount of storage:			
	None (286.93)	Moderate (189.38)	Maximum (156.86)		None (286.93)	Moderate (189.38)	Maximum (156.86)	
Total built floor area (m ²)	2545.59	1794.14	1530.95	1599.44				
Built floor area per person (m ²)	8.87	9.47	9.76		5.57	8.45	10.20	
RADC (m ² per person)	6.13	6.55	6.74		2.31	3.50	4.23	
Initial growth index	13.63	19.35	22.67					

			Data required						
SPF	popu	ation estimate (P)	based on amount of storage:	None	286.93				
	• •		5	Moderate	189.38				
				Maximum	156.86				
Resi	Residential floor area as a proportion of built floor area (%)								
	Total built floor area (m²) (A)								
			Built floor area in as	sessable area (m²)	85.89				
			Proportion of s	ite assessable (%)	5.37				
		Total re	esidential floor area (m²) (RADC n	nethod)	1105.27				
Built	floor	rea per person (m	²) derived from SPF population	None	5.57				
estin	nates	and total built floor	area based on amount of	Moderate	8.45				
stora	age:			Maximum	10.20				
RAD	C der	ved from SPF pop	ulation estimates and total	None	2.31				
cont	empo	aneous residential	floor area based on amount of	Moderate	3.50				
stora	age:			Maximum	4.23				
		Total contemp	oraneous residential floor area (m	1 ²) (RADC method)	663.16				
			$\mathbf{A} = \mathbf{a} \mathbf{x} \mathbf{P}^{\mathbf{b}}$						
		Method 1: Total	built floor area (m ²) (A), built fl	oor area per person	and RADC				
		A = ?	A = 21.	7 x 286.93 ^{0.84195}					
		P = 286.93	286.93 ^{0.84195}	=	117.31				
		a = 21.7	21.7 x 117.31	=	2545.59				
		b = 0.8419	5 A	=	2545.59				
	θ	Built floor area	per person (m²)		8.87				
	lon	RADC (m ² per p	person)		6.13				
	<	Re	esidential floor area as a proportio	n of built floor area	69.10				
		Method 2: Re-ca	alculated initial growth index (a						
		A = 1599.4	4 1599.44 :	<i>a</i> x 286.93 ^{0.84195}					
		P = 286.93	286.93 ^{0.84195}	=	117.31				
		a = ?	1599.44/117.31	=	13.63				
		b = 0.8419	5 a	=	13.63				
		Method 1: Total	l built floor area (m²) (A), built fl	oor area per person	and RADC				
		A = ?	A = 21.	7 x 189.38 ^{0.84195}					
		P = 189.38	189.38	=	82.68				
age		a = 21.7	21.7 x 82.68	=	1794.14				
o	fe	b = 0.8419	5 A	=	1/94.14				
fst	erai	Built floor area	per person (m)		9.47				
t O	ode	RADC (m per p	person)	n of built floor area	6.33				
n	Z				09.10				
Ĕ		Method 2: Re-C	alculated Initial growth Index (a)					
۲		A = 1599.4	4 1099.44 :	= a x 109.30	00.00				
		P = 109.30	109.30	=	02.00				
		a = ? $b = 0.8/10^{3}$	1599.44/02.00 5 a	=	19.30				
-		Method 1: Total	$\frac{3}{2}$ built floor area (m ²) (A) built fl	oor area ner nerson	and RADC				
		A = 2	$\Delta = 21$	7 x 156 86 ^{0.84195}					
		P = 156.86	156 86 ^{0.84195}	-	70 55				
		a = 217	21 7 x 70 55	-	1530.95				
		b = 0.8419	5 A	=	1530.95				
	шn	Built floor area per person (m ²)							
	еiт	RADC (m ² per p	person)		6.74				
	<i>la</i>	\tilde{R}	esidential floor area as a proportio	n of built floor area	69.10				
	4	Method 2: Re-ca	alculated initial growth index (a)					
		A = 1599.4	4 1599.44 :	, = <i>a</i> x 156.86 ^{0.84195}					
		P = 156.86	156.86 ^{0.84195}	=	70.55				
		a = ?	1599.44/70.55	=	22.67				
		<u>b = 0.84</u> 19	5 a	=	22.67				

Wiessner's (1974) AGF2

			Data required		
Tota SPF	l site popu	extent (m ²) (A) lation estimate (P) bas	ed on amount of storage:	None Moderate Maximum	4000 286.93 189.38 156.86
			$A = a \times P^{b}$		
		Open settlements	4000	$a = a \times 286.93^2$	
		A = 4000			
		P = 286.93	286.93 ²	=	82331.10
		a = ?	4000/82331.1	=	0.05
		<i>b</i> = 2	а	=	0.05
		Village settlements	4000	$a = a \times 286.93^{1}$	
	e	A = 4000			
	Von	P = 286.93	286.93 ¹	=	286.93
	<	a = ?	4000/286.93	=	13.9
		b = 1	а	=	13.9
		Urban settlements	4000 =	= <i>a</i> x 286.93 ^{.6667}	
		A = 4000	0.0007		
		P = 286.93	286.93	=	43.51
		a = ?	4000/43.51	=	91.93
		b = 0.6667	а	=	91.93
		Open settlements	4000	$a = a \times 189.38^2$	
		A = 4000			
	erate	P = 189.38	189.38	=	35863.90
		a = ?	4000/35864.78	=	0.11
ge		D = Z	a	=	0.11
ora		Village settlements	4000) = <i>a</i> x 189.38'	
fst		A = 4000	400.001		400.00
ţ	ode	P = 189.38	189.38	=	189.38
n	Z	a =	4000/189.38	=	21.1 21 1
Ĕ			4000	-	21.1
∢			4000 =	: a x 189.38	
		A = 4000 P = 180.28	180 28 ^{0.6667}	_	22.08
		F = 109.30	109.30	=	121.90
		$a = \frac{1}{2}$	a	=	121.27
		Open cettlemente	4000	- 0 × 156 96 ²	
		$\Delta = 4000$	4000	$a = a \times 100.00$	
		P = 156.86	156.86^2	_	24603.80
		a = ?	4000/24603.8	=	0.16
		b = 2	a	=	0.16
		Village settlements	4000	$= a \times 156 \ 86^{1}$	
	ш	A = 4000			
	im	P = 156.86	156.86 ¹	=	156.86
	/ax	a = ?	4000/156.86	=	25.5
	<	b = 1	а	=	25.5
		Urban settlements	4000 =	a x 156.86 ^{0.6667}	
		A = 4000			
		P = 156.86	156.86 ^{0.6667}	=	29.09
		a = ?	4000/29.09	=	137.51
		b = 0.6667	а	=	137.51

Initial growth indices								
Settlement type SPF population estimate based on amount of storage:								
None (286.93) Moderate (189.38) Maximum (156.86)								
Open	0.05	0.11	0.16					
Village	13.94	21.12	25.50					
Urban	91.93	121.27	137.51					

Settlement population density coefficient (SPDC)

Data required						
Total site extent (ha)	0.4					
Proportion of site assessable (%)	5.37					
Number of contemporaneous dwellings in the assessable area						
Dwellings in assessable area	6					
Contemporaneity value (%)	60					

Method 1: Total population based on commonly utilised SPDCs						
	SPDC (people/ha)					
	Minimum	Average	Maximum			
	90	150	294			
Total population	36	60	117.6			
Population in the assessable area	1.93	3.22	6.32			
People per dwelling in the assessable area	0.54	0.90	1.75			

Method 2: SPDCs based on HUM, RADC and SPF population estimates									
Method	Total	population estima	SPDC (people/ha)						
	Minimum	Average	Maximum	Minimum	Average	Maximum			
HUM	201.25	368.96	536.66	503.12	922.39	1341.66			
RADC	132.63	200.96	374.67	331.58	502.39	936.67			
SPF	156.86	189.38	286.93	392.14	473.44	717.33			

Netiv Hagdud

Assessable area (m ²)	Assessable area	533.82	Potential residential	Locus 8	23.63
	Unassessable area	-	floor area (m ²)	Locus 9	22.47
	Total	533.82		Locus 10	21.74
				Locus 20	20.40
Potential residential built	Locus 8	31.49		Locus 22	16.01
area (m²)	Locus 9	27.97		Locus 30	23.74
	Locus 10	27.58		Total	127.99
	Locus 20	25.44		Mean residential floor area (all complete)	21.33
	Locus 22	22.33			
	Locus 30	34.42	Built floor area (m ²)	Locus 8	23.63
	Total	169.23		Locus 9	22.47
	Mean	28.21		Locus 10	21.74
	SD (±)	4.29		Locus 20	20.40
	Mean residential built area (all complete)	28.21		Locus 22	16.01
				Locus 30	23.74
Built area (m ²)	Potential residential built area	169.23		Total	127.99
	Potential non-residential built area	-			
	Total	169.23			

Housing unit method (HUM)						
Method 1: Total potential dwellin	g number			84.30		
Number of potential dwellings in the		6				
Assessable area (m ²)				533.82		
Estimated total site extent (m ²)				7500		
Assessable area (proportion)				0.0712		
Method 2: Total potential dwellin	g number			84.30		
Mean potential residential built area	a (m²)			28.21		
Potential residential built area	Locus 8	31.49	Locus 20	25.44		
(m ²)	Locus 9	27.97	Locus 22	22.33		
	Locus 10	27.58	Locus 30	34.42		
Total built area estimate (m ²)		2377.63				
	able area (m²)	533.82				
		Assessable	built area (m²)	169.23		
Assessable l	sessable area	0.3170				
	E	Estimated total s	tite extent (m^2)	7500		
Residential built area as a proportion	on of assessab	le built area		1.0000		
	Pote	ntial residential	built area (m²)	169.23		
Total potential residential built area	(m ²)			2377.63		
Method 3: Total potential dwellin	g number			84.30		
Potential residential built area as a		0.3170				
Total number of contemporaneous		50.58				
Total population estimate based	on nuclear	Minimum	3	151.74		
family size:		Average	5.5	278.18		
		Maximum	8	404.63		

Residential area density	/ coefficient (F	RADC)			
Method 1: Total potential	residential floor	r area (m²)		1798.22	
Potential residential floor are	ea (m²)			127.99	
Potential residential floor	Locus 8	23.63	Locus 20	20.40	
area (m²)	Locus 9	22.47	Locus 22	16.01	
	Locus 10	21.74	Locus 30	23.74	
Assessable area (m ²)	•			533.82	
Estimated total site extent (r	m²)			7500	
Assessable area (proportion	ı)			0.0712	
Mothod 2: Total potential	residential floor	(m^2)		1709 22	
Total built area astimate (m		alea (III)		0077.60	
Total built area estimate (m)	1000	$mapha area (m^2)$	2377.03	
		Asse	essable area (m ²)	233.02	
4000	andla built area	ASSESSAL		109.23	
ASSES		as a proportion of	dssessable died	0.3170	
		Estimated tota	ar she extern (m)	7500	
Potential residential floor are	ea as a proportic	on of assessable b	uilt area	0.7563	
		Potential residenti	al floor area (m²)	127.99	
Method 3: Total potential	residential floor	r area (m²)		1798.22	
Potential residential floor are	ea as a proportio	on of assessable a	rea	0.2398	
Total contemporaneous residential floor area (m ²) (60%)					
Total population estimate	based on	Minimum	1.77	609.57	
RADC (m ²):		Average	3.3	326.95	
		Maximum	5	215.79	

Storage provisions formula (SPF)

			Residential storage provisions (m ³ per person)								
			None	Modera	te (0.46)		Maximum (2 x 0.46)				
			P = 0.3944A	- 0.375		P = 0.2477	7A + 0.0339		P = 0.190	03A + 0.3976	
Meth	od 1: T	otal population est	imate (P) based on total	contem	poraneou	s residential floor are	ea (A)				
А	=	1078.93	0.3944 x 1078.93	=	425.53	0.2477 x 1078.93	=	267.25	0.1903 x 1078.93	=	205.32
Р	=	?	425.53 - 0.375	=	425.16	267.25 + 0.0339	=	267.29	205.32 + 0.3976	=	205.72
			Р	=	425.16	Р	=	267.29	Р	=	205.72
Meth	od 2: P	eople per dwelling	(P) and total population	estimat	es based	on mean residential	floor area of	complet	e dwellings (A)		
А	=	21.33	0.3944 x 21.33	=	8.41	0.2477 x 21.33	=	5.28	0.1903 x 21.33	=	4.06
Р	=	?	8.41 - 0.375	=	8.04	5.28 + 0.0339	=	5.32	4.06 + 0.3976	=	4.42
			Р	=	8.04	Р	=	5.32	Р	=	4.42
					7	otal number of conten	nporaneous d	dwellings			50.58
		Total population			406.54			268.95			223.48
Mean	total p	population			415.85			268.1			214.6

So Naroll's (1962) AGF1

Summary of estimates based on:	Naroll's (1962) formula				Archaeological evidence			
	SPF population estimate based on amount of storage:				SPF population estimate based on amount of storage			
	None (415.85)	Moderate (268.12)	Maximum (214.6)		None (415.85)	Moderate (268.12)	Maximum (214.6)	
Total built floor area (m ²)	3479.13	2404.30	1993.32	1798.22				
Built floor area per person (m ²)	8.37	8.97	9.29		4.32	6.71	8.38	
RADC (m ² per person)	8.37	8.97	9.29		2.59	4.02	5.03	
Initial growth index	11.22	16.23	19.58					

		Data	a required				
SPF	popul	ation estimate (P) based on amou	nt of storage: Nor	ne 415.85			
			Moo	derate 268.12			
Naximum							
Residential floor area as a proportion of built floor area (%)							
i otal dullt floor area (m^-) (A)							
		Ви	Dreportion of oite oor	Die area (111) 127.99			
			Proportion of site ass (m^2) (DADO manths as)	Sessable (%) 7.12			
			a (m) (RADC method)	1798.22			
Built		rea per person (m ⁻) derived from	SPF population Nor	1e 4.32			
esum	ales a			derate 6.71			
	ye. 			kimum 8.38			
RADU		/ed from SPF population estimate	s and total Nor	1e 2.59			
stora	ao.	aneous residential noor area base		derate 4.02			
Siora	ye.	Total contamporana sua recida	IVIA)	$\frac{1000}{1000}$			
		I otal contemporaneous reside	ntial floor area (m) (RA	DC method) 1078.93			
		Α	$= a \mathbf{x} \mathbf{P}^{b}$				
		Method 1: Total built floor area	a (m²) (A), built floor ar	rea per person and RADC			
		A = ?	A = 21.7 x 41	5.85 ^{0.84195}			
		$P = 415.85 \qquad 415.85^{0.8}$	195	= 160.33			
		<i>a</i> = 21.7 21.7 x 16	0.33	= 3479.13			
		b = 0.84195 A		= 3479.13			
	ЭC	Built floor area per person (m ²)	8.37			
	No	RADC (m ² per person)		8.37			
		Residential floor a	rea as a proportion of bu	uilt floor area 100.00			
		Method 2: Re-calculated initial	growth index (<i>a</i>)	0.8/195			
		A = 1798.22	1798.22 = <i>a</i> x 4	15.85			
		$P = 415.85 415.85^{\circ.6}$	190	= 160.33			
		a = ? 1798.22/	160.33	= 11.22			
		b = 0.84195 a	(m ²) (A) built floor or	= 11.22			
		Method 1: Total built floor area $\Lambda = 2$	$A = 21.7 \times 26^{\circ}$	e a per person and RADC			
		A = ? P = 269.12 269.12 ^{0.8}	A = 21.7 X 200	– 110.90			
<u>e</u> :		F = 200.12 200.12	0.0	= 110.00			
ag		$a = 21.7$ 21.7×11 b = 0.84195 A	0.8	= 2404.30 - 2404.30			
sto	ate	Built floor area per person (m ²)	8.97			
J 8	lera	RADC (m ² per person)	/	8.97			
ut e	100	Residential floor a	ea as a proportion of bu	uilt floor area 100.00			
Ino	~	Method 2: Re-calculated initial	growth index (a)				
Ĕ		A = 1798.22	$1798.22 = a \times 2$	68.12 ^{0.84195}			
4		P = 268.12 268.12 ^{0.8}	1195	= 110.80			
		a = ? 1798 22/	110.8	= 16.23			
		b = 0.84195 a		= 16.23			
		Method 1: Total built floor area	a (m²) (A), built floor ar	rea per person and RADC			
		A = ?	A = 21.7 x 21	4.6 ^{0.84195}			
		$P = 214.60$ $214.6^{0.841}$	95	= 91.86			
		a = 21.7 21.7 x 91	.86	= 1993.32			
	5	<i>b</i> = 0.84195 A		= 1993.32			
	unu	Built floor area per person (m ²)	9.29			
	xin	RADC (m ² per person)		9.29			
	Ma	Residential floor a	ea as a proportion of bι	uilt floor area 100.00			
		Method 2: Re-calculated initial	growth index (a)				
		A = 1798.22	1798.22 = <i>a</i> x 2	214.6 ^{0.84195}			
		$P = 214.60$ $214.6^{0.841}$	95	= 91.86			
		a = ? 1798.22/	91.86	= 19.58			
		<i>b</i> = 0.84195 <i>a</i>		= 19.58			

Wiessner's (1974) AGF2

Total site extent (m ²) (A) 75 SPF population estimate (P) based on amount of storage: None 415. Moderate 268. Maximum 214. A = $a \times P^b$ Open settlements 7500 = $a \times 415.85^2$ A = 7500 = 172929. P = 415.85 415.85 ² = 172929. a = ? 7500/172929.06 = 0. b = 2 a = 0. Village settlements 7500 = $a \times 415.85^1$ = 172929. a = ? 7500/172929.06 = 0. b = 2 a = 0. Village settlements 7500 = $a \times 415.85^1$ = 18. b = 1 a = 18. b = 1 a = 18. Urban settlements 7500 = $a \times 415.85^{0.6667}$ = A = 7500 = 134.	Data required							
Moderate Maximum268. Maximum214.A = a x P ^b A = a x P ^b Open settlements7500 = a x 415.85 ² A = 7500=P = 415.85415.85 ² a = ?7500/172929.06b = 2aa = ?7500/172929.06b = 2aa = ?7500 = a x 415.85 ¹ Village settlements7500 = a x 415.85 ¹ A = 7500=P = 415.85415.85 ¹ b = 1aa = ?7500/415.85b = 1aa = ?7500P = 415.85415.85 ^{0.6667} A = 7500=P = 415.85415.85 ^{0.6667} A = 7500=P = 415.85415.85 ^{0.6667} a = ?7500/55.72a = ?134.	7500 415.85							
A = a x P ^b Open settlements 7500 = a x 415.85 ² A = 7500 = 172929. P = 415.85 415.85 ² = 0. b = 2 a = 0. b = 2 a = 0. Village settlements 7500 = a x 415.85 ¹ = 0. Village settlements 7500 = a x 415.85 ¹ = 415. A = 7500 = 18. 5. 18. b = 1 a = 18. Urban settlements 7500 = a x 415.85 ^{0.6667} 18. A = 7500 = 18. P = 415.85 415.85 ^{0.6667} = 55. a = ? 7500/55.72 = 134.	268.12 214.60							
A = $a \times P$ Open settlements 7500 = $a \times 415.85^2$ A = 7500 = 172929. P = 415.85 415.85^2 = 0. b = 2 a = 0. b = 2 a = 0. Village settlements 7500 = $a \times 415.85^1$ = 0. Village settlements 7500 = $a \times 415.85^1$ = 0. P = 415.85 415.85^1 = 415. a = ? 7500/415.85 = 18. b = 1 a = 18. Urban settlements 7500 = $a \times 415.85^{0.6667}$ = 55. a = ? 7500/55.72 = 134.								
A = 7500 P = 415.85 415.85 ² = 172929. a = ? 7500/172929.06 = 0. b = 2 a = 0. Village settlements 7500 = a x 415.85 ¹ A = 7500 P = 415.85 415.85 ¹ = 415. a = ? 7500/415.85 = 18. b = 1 a = 18. Urban settlements 7500 = a x 415.85 ^{0.6667} A = 7500 P = 415.85 415.85 ^{0.6667} = 55. a = ? 7500/55.72 = 134.								
$P = 415.85 415.85^2 \qquad = 172929.$ $a = ? 7500/172929.06 \qquad = 0.$ $b = 2 a \qquad = 0.$ Village settlements $7500 = a \times 415.85^1$ $A = 7500$ $P = 415.85 415.85^1 \qquad = 415.$ $a = ? 7500/415.85 \qquad = 18.$ $b = 1 a \qquad = 18.$ Urban settlements $7500 = a \times 415.85^{0.6667}$ $A = 7500$ $P = 415.85 415.85^{0.6667} \qquad = 55.$ $a = ? 7500/55.72 \qquad = 134.$								
a = ?	172929.06							
$b = 2 \qquad a \qquad = 0.$ $b = 2 \qquad a \qquad = 0.$ Village settlements $7500 = a \times 415.85^{1}$ $A = 7500$ $P = 415.85 \qquad 415.85^{1} \qquad = 415.$ $a = ? \qquad 7500/415.85 \qquad = 18.$ $b = 1 \qquad a \qquad = 18.$ Urban settlements $7500 = a \times 415.85^{0.6667}$ $A = 7500$ $P = 415.85 \qquad 415.85^{0.6667} \qquad = 55.$ $a = ? \qquad 7500/55.72 \qquad = 134.$	0.04							
Village settlements 7500 = $a \ge 415.85^1$ A = 7500 P = 415.85 = 415. a = ? 7500/415.85 = 18. b = 1 a = 18. Urban settlements 7500 = $a \ge 415.85^{0.6667}$ = 18. P = 415.85 415.85^{0.6667} = 55. a = ? 7500/55.72 = 134.	0.04							
$A = 7500$ $P = 415.85$ $A = 7500/415.85$ $A = 7500/415.85$ $A = 7500$ $A = 7500$ $P = 415.85$ $A = 7500$ $P = 415.85$ $415.85^{0.6667}$ $A = 7500$ $P = 415.85$ $415.85^{0.6667}$ $A = 7500$ $A = 7500$ $A = 7500$ $A = 7500 = a \times 415.85^{0.6667}$ $A = 7500$ $A = 7500 = a \times 415.85^{0.6667}$ $A = 7500$ $A = 7500 = a \times 415.85^{0.6667}$ $A = 7500 = a \times 415.85^{0.667}$ $A = 7500 = a \times 415.85^{0.667}$ $A = 7500 = a \times 415.85^{0.667}$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
a = ? 7500/415.85 = 18.b = 1 a = 18.Urban settlements 7500 = a x 415.850.6667A = 7500P = 415.85 415.850.6667 = 55.a = ? 7500/55.72 = 134.	415 85							
a a	18.04							
Urban settlements7500 = $a \ge 415.85^{0.6667}$ A = 7500=P = 415.85415.85^{0.6667}a = ?7500/55.72=134.	18.04							
A = 7500 $7500 = a \times 415.05$ P = 415.85 $415.85^{0.6667}$ = 55.a = ?7500/55.72= 134.								
$P = 415.85$ $415.85^{0.6667}$ =55. $a = ?$ 7500/55.72=134.								
a = ? 7500/55.72 = 134.	55 72							
u = : 1300/30.12 = 134.	134 59							
b = 0.6667 a = 134.	134.59							
$\frac{7500}{2} = 2 \times 369 \times 10^2$								
$\Delta = 7500$								
$P = 268.12 = 268.12^2 = 71887$	71887 33							
a = 2 7500/71887 33 = 0	0.10							
a = 2 $a = 0$	0.10							
$\overline{0}$ Villago sottlomonto $\overline{7500} - 3 \times 268 \times 12^1$	0110							
$\begin{array}{c} 0 \\ $								
$s_{1} = 7500$	268 12							
z = 200.12 $z = 200.12$ $z = 200.12$ $z = 200.12$	200.12							
b = 1 a = 27.	27.07							
E [Irban sattlements 7500 – 2 x 268 12 ^{0.6667}								
$\Delta = 7500$								
$P = 268.12 \qquad 268.12^{0.6667} \qquad = \qquad 11$	11 50							
a = 2 $7500/2159$ $=$ 180	180.34							
b = 0.6667 a = 180.	180.34							
$\frac{1}{2}$								
$\Delta = 7500$								
$P = 214.60 \qquad 214.6^2 \qquad = \qquad 46053$	46053 33							
a = ? 7500/46053.33 = 0	0.16							
b = 2 a = 0.	0.16							
$\frac{1}{1000} = \frac{1}{1000} = 1$	••							
$\frac{8}{5} \Delta = 7500$								
$E = 214.60 = 214.6^1 = 214.6^1$	214 60							
a = 2 7500/214.6 = 34	34 95							
a = 1 $a = 34$.	34.95							
=	0.00							
$\Delta = 7500$								
$P = 214.60 \qquad 214.6^{0.6667} \qquad = 25$	25 Q5							
a = ? 7500/35.85 - 200	200 20							
b = 0.6667 a = 209 .	209.20							

Initial growth indices											
Settlement type	SPF population estimate based on amount of storage:										
	None (415.85) Moderate (268.12) Maximum (214.6)										
Open	0.04	0.10	0.16								
Village	18.04	27.97	34.95								
Urban	134.59	180.34	209.20								

Settlement population density coefficient (SPDC)

Data required	
Total site extent (ha)	0.75
Proportion of site assessable (%)	7.12
Number of contemporaneous dwellings in the assessable area	3.60
Dwellings in assessable area	6
Contemporaneity value (%)	60

Method 1: Total population based on commonly utilised SPDCs									
	SPDC (people/ha)								
	Minimum	Average	Maximum						
	90	150	294						
Total population	67.5	112.5	220.5						
Population in the assessable area	4.80	8.01	15.69						
People per dwelling in the assessable area	1.33	2.22	4.36						

Method 2: SPDCs based on HUM, RADC and SPF population estimates											
Method	Total	population esti	mate	SF	DC (people/h	na)					
	Minimum	Average	Maximum	Minimum	Average	Maximum					
HUM	151.74	278.18	404.63	202.32	370.91	539.51					
RADC	215.79	326.95	609.57	287.71	435.93	812.75					
SPF	214.60	-	268.12	286.13	-	357.49					

EI-Hemmeh (PPNA)

Assessable area	Assessable area	80.12	Potential	Structure 1	1.89
(m ²)	Unassessable area	18.63	residential floor	Structure 2*	3.93
	Total	61.49	area (m²)	Structure 3	2.54
				Structure 4	3.13
Potential residential	Structure 1	3.22		Structure 5	1.42
built area (m²)	Structure 2*	6.80		Structure 10*	5.72
	Structure 3	3.68		Total	18.64
	Structure 4	4.80		*Mean residential floor area: complete dwellings	4.83
	Structure 5	2.59			
	Structure 10*	8.32	Built floor area	Structure 1	1.89
	Total	29.41	(m²)	Structure 2	3.93
	Mean	4.90		Structure 3	2.54
	SD (±)	2.23		Structure 4	3.13
	*Mean residential built area: complete dwellings	7.56		Structure 5	1.42
				Structure 8	2.62
Potential non-	Structure 8	4.24		Structure 10	5.72
residential built area (m ²)	Total	4.24		Total	21.26
Built area (m ²)	Potential residential built area	29.41			
	Potential non-residential built area	4.24			
	Total	33.65			

512

Housing unit method (HUM)						
Method 1: Total potential dwelling number	er			97.58		
Number of potential dwellings in the assess	able area			6		
Assessable area (m ²)				61.49		
Estimated total site extent (m ²)				1000		
Assessable area (proportion)				0.0615		
Method 2: Total potential dwelling number	er			97.58		
Mean potential residential built area (m ²)				4.90		
Potential residential built area (m^2)	Structure 1	3.22	Structure 4	4.80		
	Structure 2	6.80	Structure 5	2.59		
	Structure 3	3.68	Structure 10	8.32		
$\mathbf{T}_{\mathbf{r}}$				E 47 0 4		
I otal built area estimate (m ⁻)						
Assessable area (m)						
Assessable b	uilt area an a pr	Assessable L		0 5470		
Assessable b	uni area as a pro Est	imated total si	$\frac{1}{100}$	1000		
	L30			1000		
Residential built area as a proportion of ass	essable built are	ea		0.8741		
	Potenti	al residential b	built area (m²)	29.41		
Total potential residential built area (m ²)				478.32		
Method 3: Total potential dwelling number	er			97.58		
Potential residential built area as a proportion of assessable area						
Total number of contemporaneous dwellings	s (75%)			73.18		
Total population estimate based on nucle	ear family	Minimum	3	219.55		
size:		Average	5.5	402.50		
		Maximum	8	585.46		

Method 1: Total potential residential flo	oor area (m ²)			303.08
Potential residential floor area (m ²)				18.64
Potential residential floor area (m^2)	Structure 1	1.89	Structure 4	3.13
	Structure 2	3.93	Structure 5	1.42
	Structure 3	2.54	Structure 10	5.72
Assessable area (m ²)				61.49
Estimated total site extent (m ²)				1000
Assessable area (proportion)				0.0615
Method 2: Total potential residential flo	oor area (m ²)			303.08
Total built area estimate (m ²)	()			547.24
		Asses	sable area (m²)	61.49
		Assessable	built area (m^2)	33.65
Assessable	built area as a p	proportion of a	ssessable area	0.5472
	E	stimated total	site extent (m ²)	1000
Potential residential floor area as a propo	rtion of assessa	ble built area		0.5538
	Poter	ntial residential	floor area (m²)	18.64
Method 3: Total potential residential flo	oor area (m ²)			303.08
Potential residential floor area as a propo	rtion of assessa	ble area		0.3031
Total contemporaneous residential floor a	rea (m²) (75%)			227.31
Total population estimate based on RA	DC (m ²):	Minimum	1.77	128.42
		Average	3.3	68.88
		Maximum	5	45.46

Residential area density coefficient (RADC)

Storage provisions formula (SPF)

					Res	idential storage provi	isions (m ³ p	er perso	on)		
			No	one		Moderate	e (0.46)		Maximum	(2 x 0.46)	
			P = 0.394	4A – 0.375		P = 0.2477A	A + <i>0.0339</i>		P = 0.1903A	4 + <i>0.3</i> 976	
Meth	od 1: To	tal population estin	nate (P) based on tota	al contempora	aneous i	residential floor area	(A)				
А	=	227.31	0.3944 x 227.31	=	89.65	0.2477 x 227.31	=	56.30	0.1903 x 227.31	=	43.26
Р	=	?	89.65 - 0.375	=	89.28	56.3 + 0.0339	=	56.34	43.26 + 0.3976	=	43.65
			Р	=	89.28	Р	=	56.34	Р	=	43.65
A	od 2: Pe	4 83	2) and total population 0.3944 x 4 83	n estimates b	ased on	0 2477 x 4 83	or area of c =	omplete 1 20	0 1903 x 4 83	=	0.92
А	=	4.83	0.3944 x 4.83	=	1.90	0.2477 x 4.83	=	1.20	0.1903 x 4.83	=	0.92
Р	=	?	1.9 - 0.375	=	1.53	1.2 + 0.0339	=	1.23	0.92 + 0.3976	=	1.28
			Р	=	1.53	Ρ	=	1.23	Ρ	=	1.28
					Тс	otal number of contemp	oraneous d	wellings			73.18
		Total population			111.96			90.03			93.56

Naroll's (1962) AGF1

Summary of estimates based on:		Naroll's (1962) form	nula	Archa	eological evidence		
	SPF populatior	n estimate based on	amount of storage:	SPF populatior	n estimate based on a	amount of storage:	
	None (100.62)	Moderate (73.19)	Maximum (68.61)		None (100.62)	Moderate (73.19)	Maximum (68.61)
Total built floor area (m ²)	1053.46	805.77	763.10	345.75			
Built floor area per person (m ²)	10.47	11.01	11.12		3.44	4.72	5.04
RADC (m ² per person)	9.18	9.65	9.75		2.26	3.11	3.31
Initial growth index	7.12	9.31	9.83				

					Data required						
SPF p	opula	tion estir	mate (I) based on	amount of storage:	None	100.62				
•	PF population estimate (P) based on amount of storage: None Moderate										
Residential floor area as a proportion of built floor area (%)											
Residential floor area as a proportion of built floor area (%)											
Total built floor area (m^2) (A)											
Built floor area in assessable area (m^2)											
Proportion of site assessable (%)											
$r_{10}p_{01101101101101101101101101101010101010$											
D:14.4	I otal residential floor area (m ⁻) (RADC method)										
Built	loor ar	ea per p	erson	(m) derived	trom SPF population estimates	None	3.44				
and to	Dtai du	lit floor a	irea ba	sed on amo	bunt of storage:	Movimum	4.72				
Maximum											
RADU			SPF p	opulation es	sumates and total	None	2.20				
conte	mpora	neous re	esideni	lai noor are	a based on amount of storage:	Movimum	3.11				
		г	Total or	ntomporan	a_{0} (m^{2}) (E	Maximum	0.01 227 21				
		1	Ulai Cl	Jillemporan		ADC memou)	227.31				
					$\mathbf{A} = a \mathbf{x} \mathbf{P}^{b}$						
		Metho	d 1: To	otal built flo	oor area (m²) (A), built floor area	i per person ar	nd RADC				
		А	=	?	A = 21.7 x	100.62 ^{0.84195}					
		Р	=	100 62	100 62 ^{0.84195}	=	48 55				
		2	_	21 7	21.7×18.55	_	1053 46				
		a h	-	21.7	21.7 × 40.00	_	1055.40				
		D	=	0.64195	A	=	1033.40				
	ы	Built fi	oor ar	ea per pers	son (m ⁻)		10.47				
	ΙΟΛ	RADC	(m² pe	er person)			9.18				
	-			Reside	ntial floor area as a proportion of	built floor area	87.66				
		Metho	d 2: R	e-calculate	d initial growth index (<i>a</i>)						
		А	=	345.75	345.75 = a x	100.62 ^{0.84195}					
		Р	=	100 62	100 62 ^{0.84195}	=	48 55				
		a	_	2	345 75/48 55	_	7 12				
		b b	_	: 0.94105	2	-	7.12				
-			-	0.04195		-	1.12				
		Metho	a 1: To	otal built fic	oor area (m ⁻) (A), built floor area	i per person ar					
		A	=	?	A = 21.7 x	73.19					
		Р	=	73.19	73.19	=	37.13				
ge		а	=	21.7	21.7 x 37.13	=	805.77				
ra		b	=	0.84195	Α	=	805.77				
sto	ate	Built fl	loor ar	ea per pers	son (m²)		11.01				
đ	ler	RADC	$(m^2 perturbative)$	er person)			9.65				
ž	Joc		(··· P	Reside	ntial floor area as a proportion of	built floor area	87.66				
Inc	2	Motho	4 2. P		d initial growth index (a)		01100				
Ĕ			u 2. K		$\frac{1}{245} \frac{1}{75} = 0$	x 72 10 ^{0.84195}					
۲		A	=	345.75	343.75 = a	x / 3.19	07.40				
		Р	=	73.19	73.19	=	37.13				
		а	=	?	345.75/37.13	=	9.31				
_		b	=	0.84195	a	=	9.31				
		Metho	d 1: To	otal built flo	oor area (m ²) (A), built floor area	i per person ar	nd RADC				
		А	=	?	A = 21.7 x	68.61 ^{0.84195}					
		Р	=	68.61	68.61 ^{0.84195}	=	35.17				
		a	_	21 7	21 7 x 35 17	_	763 10				
		b b	_	21.1 0.9/10F	Λ	_	762 10				
	Е	D	=	0.04190	<u> </u>	=	103.10				
	nu	BUILT	$\frac{100r}{2}$ ar	ea per pers	son (m)		11.12				
	ixir	RADC	(m⁻ pe	er person)			9.75				
	Ma			Reside	ntial floor area as a proportion of	built floor area	87.66				
		Metho	d 2: R	e-calculate	d initial growth index (a)						
		А	=	345.75	345.75 = <i>a</i>	x 68.61 ^{0.84195}					
		Р	=	68.61	68.61 ^{0.84195}	=	35.17				
		а	=	?	345 75/35 17	=	9 83				
		b	=	0 84195	a	=	9.83				
				0.01100	-	_	3.00				

Wiessner's (1974) AGF2

Data required										
Total s	site exte	ent (m ²)	(A)				1000			
SPF p	opulatio	on estim	nate (F) based on	amount of storage:	None	100.62			
	•			,	Ŭ	Moderate	73.19			
						Maximum	68.61			
						Maximum	00.01			
					$A = a \times P^b$					
		Oper	n sett	lements		1000 = <i>a</i> x 100.62 ²				
		А	=	1000						
		Р	=	100.62	100.62^2	=	10124.18			
		а	=	?	1000/10124.18	=	0.10			
		b	=	2	а	=	0.10			
		Ville	ao	- ttlomonto	-	$1000 - 2 \times 100 \text{ G2}^{1}$				
		villa ^	ye se	1000		$1000 = a \times 100.02$				
	ne	A	=	1000	100 co ¹		100.00			
	No	Р	=	100.62	100.62	=	100.62			
		a	=	?	1000/100.62	=	9.9			
		b	=	1	а	=	9.9			
		Urba	an set	tlements		1000 = <i>a</i> x 100.62 ^{0.6667}				
		А	=	1000						
		Р	=	100.62	100.62 ^{0.6667}	=	21.64			
		а	=	?	1000/21.64	=	46.22			
		b	=	0.6667	a	=	46.22			
		~ 		lamanta	•	$4000 - x 72 40^2$				
		Ope	n sett	lements		$1000 = a \times 73.19$				
		A	=	7000	$\overline{}$		5050 44			
		Р	=	73.19	73.19	=	5356.14			
		а	=	?	1000/5356.14	=	0.19			
.: Ge:		b	=	2	а	=	0.19			
ra		Villa	ge se	ttlements		1000 = <i>a</i> x 73.19 ¹				
sto	ate	А	=	1000						
Ę.	len	Р	=	73.19	73.19 ¹	=	73.19			
ţ	Joc Moc	а	=	?	1000/73 19	=	137			
Inc	2	b	=	1	a	=	13.7			
Ĕ		~			u		lon			
∢		Urba	an set	tiements		$1000 = a \times 73.19$				
		A	=	1000						
		Р	=	73.19	73.19 ^{0.0007}	=	17.50			
		а	=	?	1000/17.5	=	57.15			
		b	=	0.6667	а	=	57.15			
		Ope	n sett	lements		$1000 = a \times 68.61^2$				
		A	=	1000						
		P	=	68 61	68.61^2	=	4706 76			
		י א	_	2	1000/4706 76	_	0.21			
		h	_	: 2	a	-	0.21			
			-	2	a	-	0.21			
	F	Villa	ge se	ttlements		$1000 = a \times 68.61^{\circ}$				
	Inu	A	=	1000	1					
	xir	Р	=	68.61	68.61'	=	68.61			
	Ma	а	=	?	1000/68.61	=	14.6			
		b	=	1	а	=	14.6			
		Urba	an set	tlements		1000 = <i>a</i> x 68.61 ^{0.6667}				
		А	=	1000		-				
		P	=	68.61	68.61 ^{0.6667}	=	16.76			
		a	=	?	1000/16 76	=	59.66			
		b	=	0.6667	a	=	59.66			

Initial growth indices										
Settlement type	SPF population estimate based on amount of storage:									
	None (100.62)	Moderate (73.19)	Maximum (68.61)							
Open	0.10	0.19	0.21							
Village	9.94	13.66	14.58							
Urban	46.22	57.15	59.66							

Settlement population density coefficient (SPDC)

Data required					
Total site extent (ha)	0.1				
Proportion of site assessable (%)	6.15				
Number of contemporaneous dwellings in the assessable area	4.50				
Dwellings in assessable area	6				
Contemporaneity value (%)	75				

Method 1: Total population based on commonly utilised SPDCs						
	SPDC (people/ha)					
	Minimum	Average	Maximum			
	90	150	294			
Total population	9	15	29.4			
Population in the assessable area	0.55	0.92	1.81			
People per dwelling in the assessable area	0.12	0.20	0.40			

Method 2: SPDCs based on HUM, RADC and SPF population estimates								
Method	Total population estimate			SF	PDC (people/l	na)		
	Minimum	Average	Maximum	Minimum	Average	Maximum		
HUM	219.55	-	-	2195.48	-	-		
RADC	45.46	68.88	128.42	454.62	688.82	1284.23		
SPF	68.61	73.19	100.62	686.06	731.86	1006.19		

Assessable area	Assessable area			717.34	Potential	Unit A*	9.44	Unit K*	17.24
(m ²)	Unassessable area			37.43	residential floor	Unit B*	8.59	Unit L*	9.30
、	Total			679.91	area (m ²)	Unit C*	12.94	Unit R*	8.65
						Unit D*	10.30	Unit T*	16.07
Potential	Unit A(*)	20.54	Unit K*	33.60		Unit E*	13.24	Unit X	0.68
residential built	Unit B(*)	17.67	Unit L*	21.67		Unit H*	25.81	Unit Y	10.14
area (m²)	Unit C*	23.01	Unit R*	18.48		Unit J*	16.44		
	Unit D*	22.35	Unit T*	26.44		Total			158.85
	Unit E*	26.30	Unit X	3.66		*Mean resi	dential floor are	a: complete dwellings	13.46
	Unit H*	45.80	Unit Y	18.97					
	Unit J*	33.65			Built floor area	Unit A	9.44	Unit L	9.30
	Total			312.15	(m²)	Unit B	8.59	Unit R	8.65
	Mean			24.01		Unit C	12.94	Unit T	16.07
	SD (±)			10.01		Unit D	10.30	Unit U	4.40
	*Mean residential buil	t area: co	mplete dwellings	26.32		Unit E	13.24	Unit X	0.68
	((*) marginally incomp	lete build	ing)			Unit F	24.36	Unit Y	10.14
Potential non-	Unit F			44.73		Unit H	25.81	Enclosure b	4.52
residential built	Unit U			13.19		Unit J	16.44	Enclosure g	8.24
area (m²)	Enclosure b			7.69		Unit K	17.24		
	Enclosure g			17.48		Total			200.37
	Total			83.08					
Built area (m ²)	Potential residential built area								
	Potential non-resident	ial built a	rea	83.08					
	Total			395.23					

Shkārat Msaied

Method 1: Total potential dwelling number38.24Number of potential dwellings in the assessable area13Assessable area (m²)679.91Estimated total site extent (m²)2000Assessable area (proportion)0.3400
Number of potential dwellings in the assessable area13Assessable area (m²)679.91Estimated total site extent (m²)2000Assessable area (proportion)0.3400
Assessable area (m²)679.91Estimated total site extent (m²)2000Assessable area (proportion)0.3400
Estimated total site extent (m ²) 2000 Assessable area (proportion) 0.3400 Method 2: Total potential dwalling number 22.24
Assessable area (proportion) 0.3400
Mothed 2: Total potential dwalling number
Mothed 2: Total potential dwalling number
method 2. rotal potential dwelling number 38.24
Mean potential residential built area (m ²) 24.01
Potential residential built area (m^2) Unit A 20.54 Unit K 33.60
Unit B 17.67 Unit L 21.67
Unit C 23.01 Unit R 18.48
Unit D 22.35 Unit T 26.44
Unit E 26.30 Unit X 3.66
Unit H 45.80 Unit Y 18.97
Unit J 33.65
Total built area estimate (m ²) 1162.60
Assessable area (m^2) 679.91
Assessable built area (m^2) 395.23
Assessable built area as a proportion of assessable area 0.5813
Estimated total site extent (m^2) 2000
Residential built area as a proportion of assessable built area 0.7898
Potential residential built area (m^2) 312.15
l otal potential residential built area (m ²) 918.22
Mothed 2: Total notantial dwalling number
Method 3: Total potential dwelling number 38.24
Potential residential built area as a proportion of assessable area 0.4591
Total number of contemporaneous dwellings (80%) 30.59
Total population estimate based on nuclear family size: Minimum 3 91 78
Average 5.5 168.26
Maximum 8 244.74

Residential area density coefficient (RADC)										
Method 1: Total potential residential floor a	rea (m²)			467.27						
Potential residential floor area (m ²)				158.85						
Potential residential floor area (m^2)	Unit A	9.44	Unit K	17.24						
	Unit B	8.59	Unit L	9.30						
	Unit C	12.94	Unit R	8.65						
	Unit D	10.30	Unit T	16.07						
	Unit E	13.24	Unit X	0.68						
	Unit H	25.81	Unit Y	10.14						
	Unit J	16.44								
Assessable area (m ²)				679.91						
Estimated total site extent (m^2)				2000						
Assessable area (proportion)				0.3400						
Method 2: Total potential residential floor area (m ²)										
Total built area estimate (m ²)										
		Assessable	area (m²)	679.91						
		Assessable built	tarea (m²)	395.23						
Assessable built a	rea as a pr	oportion of asses	sable area	0.5813						
	Est	timated total site e	extent (m ²)	2000						
Potential residential floor area as a proportion	of assessa	ble built area	2	0.4019						
	Potenti	al residential floor	∙area (m²)	158.85						
Method 3: Total potential residential floor a	rea (m ²)			467 27						
Potential residential floor area as a proportion	of assessa	ble area		0 2336						
	01 0000000			0.2000						
Total contemporaneous residential floor area (m ²) (80%)										
Total population estimate based on RADC (m ²): Minimum 1.77										
•••	. ,	Average	3.3	113.28						
		Maximum	5	74.76						

Storage provisions formula (SPF)

				Residential storage provisions (m ³ per person)											
			No	one		Modera	ate (0.46)	Maximum	Maximum (2 x 0.46)						
			P = 0.394		P = 0.247	7A + 0.0339		P = 0.1903	A + 0.3976						
Metho	od 1: To	tal population	estimate (P) based on tota	al contempo	oraneous	residential floor are	a (A)								
А	=	373.81	0.3944 x 373.81	=	147.43	0.2477 x 373.81	=	92.59	0.1903 x 373.81	=	71.14				
Р	=	?	147.43 - 0.375	=	147.06	92.59 + 0.0339	=	92.63	71.14 + 0.3976	=	71.53				
			Р	=	147.06	Р	=	92.63	Р	=	71.53				
Metho	od 2: Pe	ople per dwell	ing (P) and total populatio	on estimates	s based o	n mean residential f	loor area of c	omplete	dwellings (A)						
А	=	13.46	0.3944 x 13.46	=	5.31	0.2477 x 13.46	=	3.33	0.1903 x 13.46	=	2.56				
Р	=	?	5.31 - 0.375	=	4.93	3.33 + 0.0339	=	3.37	2.56 + 0.3976	=	2.92				
			Р	=	4.93	Р	=	3.37	Р	=	2.92				
					7	otal number of conte	mporaneous d	wellings			30.59				
	Total population				150.92			103.03			89.35				
Mean	total po	opulation			148.99			97.83			80.44				

ភូ	Naroll's (1962) AGF1										
22	Summary of estimates based on:	1	Naroll's (1962) forn	nula	Archaeological evidence						
		SPF population	estimate based on	amount of storage:		SPF population estimate based on amount of storag					
		None (148.99)	Moderate (97.83)	Maximum (80.44)		None (148.99)	Moderate (97.83)	Maximum (80.44)			
	Total built floor area (m ²)	1466.03	1028.78	872.51	589.32						
	Built floor area per person (m ²)	9.84	10.52	10.85		3.96	6.02	7.33			
	RADC (m ² per person)	7.80	8.34	8.60		2.51	3.82	4.65			
	Initial growth index	8.72	12.43	14.66							

					Data required						
SPF	popula	ation estim	ate (F) based or	n amount of storage:	None	148.99				
					-	Moderate	97.83				
						Maximum	80.44				
Resid	dential	floor area	as a	proportion	of built floor area (%)	,	79.29				
				Total bui	It floor area (m^2) (A)		589.32				
					Built floor area in assessa	ble area (m^2)	200.37				
					Proportion of site as	sessable (%)	34.00				
Total residential floor area (m^2) (RADC method)											
$\frac{1}{1}$ Built floor area per person (m ²) derived from SPE population estimates. None											
and t	otal bi	uilt floor are	a ba	sed on am	ount of storage.	Moderate	6.02				
RAD	C deriv	ed from S	PF n	onulation e	stimates and total	None	2.51				
conte	empor	aneous res	ident	ial floor are	a based on amount of storage.	Moderate	3.82				
oonte	mpore				a sabba on annoant or otorago.	Maximum	4 65				
		Тс	tal co	ntemnorar	peous residential floor area (m^2) (R	$\Delta DC method)$	373.81				
		10		memperar			070.01				
					$\mathbf{A} = a \mathbf{x} \mathbf{P}^{b}$						
		Method	1: To	otal built fl	oor area (m²) (A), built floor area	per person a	nd RADC				
		A	=	?	$A = 21.7 x^{-1}$	148.99					
		Р	=	148.99	148.990.84195	=	67.56				
		а	=	21.7	21.7 x 67.56	=	1466.03				
		b	=	0.84195	Α	=	1466.03				
	e	Built flo	or ar	ea per per	son (m²)		9.84				
	Vor	RADC (m ² per person)									
	~			Reside	ential floor area as a proportion of b	uilt floor area	79.29				
		Method	2: R	e-calculate	ed initial growth index (<i>a</i>)						
		А	=	589.32	589.32 = <i>a</i> x	148.99 ^{0.84195}					
		Р	=	148.99	148.99 ^{0.84195}	=	67.56				
		а	=	?	589.32/67.56	=	8.72				
		b	=	0.84195	а	=	8.72				
		Method	1: To	otal built fl	oor area (m ²) (A), built floor area	per person a	nd RADC				
		А	=	?	A = 21.7 x	97.83 ^{0.84195}					
		Р	=	97.83	97.83 ^{0.84195}	=	47.41				
ge		а	=	21.7	21.7 x 47.41	=	1028.78				
ra	~	b	=	0.84195	Α	=	1028.78				
sto	'at∈	Built flo	or ar	ea per per	son (m²)		10.52				
of	qei	RADC (I	m² pe	er person)			8.34				
Int	Ŵ			Reside	ential floor area as a proportion of b	uilt floor area	79.29				
nor		Method	2: R	e-calculate	ed initial growth index (<i>a</i>)						
Αu		А	=	589.32	589.32 = <i>a</i> x	3 97.83^{0.84195}					
		Р	=	97.83	97.83 ^{0.84195}	=	47.41				
		а	=	?	589.32/47.41	=	12.43				
		b	=	0.84195	а	=	12.43				
		Method	1: To	otal built fl	oor area (m ²) (A), built floor area	per person a	nd RADC				
		А	=	?	A = 21.7 x	80.44 ^{0.84195}					
		Р	=	80.44	80.44 ^{0.84195}	=	40.21				
		а	=	21.7	21.7 x 40.21	=	872.51				
	~	b	=	0.84195	Α	=	872.51				
	un.	Built flo	or ar	ea per per	son (m²)		10.85				
	ćim	RADC (I	m² pe	er person)			8.60				
	/ax	•	•	Reside	ential floor area as a proportion of b	uilt floor area	79.29				
	<	Method	2: R	e-calculate	ed initial growth index (a)						
		A	=	589.32	589.32 = a x	(80.44 ^{0.84195}					
		Р	=	80.44	80.44 ^{0.84195}	=	40.21				
		а	=	?	589.32/40.21	=	14.66				
		b	=	0.84195	а	=	14.66				

Wiessner's (1974) AGF2

Total site extent (m ³) (A) 2000 None 148.99 Moderate 4000 Set (memonts 2000 = a x 148.99 ² A = 22197.31 a 2 a 2113.4 b a 2000/2 a 148.99 a a 211.3 a 2000/28.11 a a a a a a <th colspan<="" th=""><th></th><th colspan="12">Data required</th></th>	<th></th> <th colspan="12">Data required</th>		Data required											
SPF population estimate (P) based on amount of storage: None 148.99 Moderate 2000 P = 148.99 148.92 A = a 2000 P = 148.99 148.92 a = ? 2000/22197.31 = 0.09 b = 2 a = 0.09 Village settlements 2000 = a x 148.93 ¹ a = ? 2000/148.99 = 13.4 b = 1 a = 13.4 Urban settlements 2000 = a x 148.99 ^{.6667} A = 2000 P = 148.99 148.99 ^{0.6667} = 28.11 a = ? 2000/28.11 = 71.15 b = 0.6667 a = 71.15 De = 97.83 97.83 ² = 9569.92 a = ? 2000/9569.92 = 0.21 b = 2 a = 0.09 P = 97.83 97.83 ² = 9569.92 a = ? 2000/9569.92 = 0.21 b = 2 a = 0.21 Village settlements 2000 = a x 97.83 ² A = 2000 P = 97.83 97.83 ² = 9569.92 a = ? 2000/9569.92 = 0.21 b = 2 a = 0.21 Village settlements 2000 = a x 97.83 ³ A = 2000 P = 97.83 97.83 ² = 9569.92 a = ? 2000/9569.92 = 0.21 b = 2 a = 0.21 Village settlements 2000 = a x 97.83 ³ A = 2000 P = 97.83 97.83 ³ = 20.4 Village settlements 2000 = a x 97.83 ³ A = 2000 P = 97.83 97.83 ³ = 20.4 Village settlements 2000 = a x 97.83 ^{0.6667} A = 2000 P = 97.83 97.83 ^{0.6667} = 21.23 a = ? 2000/97.83 = 20.4 Village settlements 2000 = a x 97.83 ^{0.6667} A = 2000 P = 80.44 80.44 ² = 6470.51 a = ? 2000/6470.51 = 0.31 b = 0.6667 a = 2000 P = 80.44 80.44 ² = 6470.51 a = ? 2000/6470.51 = 0.31 b = 2 a = 0.31 Village settlements 2000 = a x 80.44 ² A = 2000 P = 80.44 80.44 ^{0.6667} = 24.9 Urban settlements 2000 = a x 80.44 ² A = 2000 P = 80.44 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ^{0.6667} A = 24.9 Urban settlements 2000 = a x 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ^{0.6667} A = 24.9 Urban settlements 2000 = a x 80.44 ^{0.6667} A = 24.9 Urban settlements 2000 = a x 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ^{0.6667} A = 18.64 A = 7 2000/18.64 = 1	Total s	site exte	ent (m ²)	(A)				2000						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SPF p	opulatio	on estim	nate (P) based on	amount of storage:	None	148.99						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•				,	Ū	Moderate	97.83						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							Maximum	80 44						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							Maximan	00.11						
						$A = a \times P^{b}$	0							
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} A \\ P \\ P \\ = 148.99 \\ a \\ = ? \\ 2000/22197.31 \\ = 0.09 \\ b \\ b \\ = 2 \\ a \\ = ? \\ 2000/22197.31 \\ = 0.09 \\ \hline \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} A \\ a \\ \end{array} \\ = 2000 \\ P \\ = 148.99 \\ a \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 148.99 \\ 148.99 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 148.99 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 2000 \\ a \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} A \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 2000 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} A \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 2000 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} A \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} 2000 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} A \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} 2000 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $			Ope	n sett	lements		2000 = <i>a</i> x 148.99 ²							
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} P\\ a\\ a\\ a\\ \end{array} \end{array} = \begin{array}{c} P\\ a\\ a\\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} 22197.31\\ a\\ a\\ \end{array} \end{array} = \begin{array}{c} 2000/22197.31\\ \end{array} = \begin{array}{c} 0.09\\ 0\\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0\\ 0\\ 0\\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} 2000 \\ P\\ \end{array} = \begin{array}{c} 2000\\ \end{array} = \begin{array}{c} 2000 \\ P\\ \end{array} = \begin{array}{c} 148.99\\ 148.99 \end{array} \begin{array}{c} 148.99^{1} \\ \end{array} = \begin{array}{c} 148.99\\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} 0\\ 0\\ \end{array} = \begin{array}{c} 2000 \\ P\\ \end{array} = \begin{array}{c} 148.99\\ \end{array} \begin{array}{c} 148.99 \\ a\\ \end{array} \end{array} = \begin{array}{c} 2000 \\ 2000/148.99 \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0\\ \end{array} = \begin{array}{c} 0\\ 148.99 \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} 0\\ 0\\ \end{array} = \begin{array}{c} 2000 \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0\\ \end{array} \\ $			А	=	2000	0								
Bertian equation is a set of the set			Р	=	148.99	148.99 ²	=	22197.31						
Box b = 2 a a = 0.09 Village settlements 2000 = a x 148.991 A = 2000 P = 148.99 148.991 = 148.99 a = ? 2000/148.99 = 13.4 Urban settlements 2000 = a x 148.990.6667 A = 2000 P = 148.99 148.990.6667 A = 2000 P = 148.99 148.990.6667 A = 2000 P = 148.99 148.990.6667 A = 2000 P = 0.6667 a = 71.15 $b = 0.6667$ a = 71.15 $b = 22$ a 000 = a x 97.83 ² A = 2000 P = 97.83 97.83 ² = 9569.92 a = ? 2000/9569.92 = 0.21 Village settlements 2000 = a x 97.83 ⁴ A = 2000 P = 97.83 97.83 ¹ = 97.83 A = 2000 P = 97.83 97.83 ¹ = 0.21 Village settlements 2000 = a x 97.83 ⁴ A = 2000 P = 97.83 97.83 ¹ = 97.83 A = 2000 P = 97.83 97.83 ¹ = 0.21 Village settlements 2000 = a x 97.83 ⁴ A = 2000 P = 97.83 97.83 ¹ = 0.44 Urban settlements 2000 = a x 97.83 ⁶⁶⁶⁶⁷ A = 2000 P = 97.83 97.83 ^{0.6667} = 21.23 a = ? 2000/97.83 = 20.4 b = 1 a 2000 = a x 97.83 ^{0.6667} A = 2000 P = 97.83 97.83 ^{0.6667} = 0.31 b = 0.6667 a = 0.31 b = 0.6667 a = 2000 = a x 80.44 ² A = 2000 P = 80.44 80.44 ² = 6470.51 a = 0.31 b = 0.6667 a = 2000 = a x 80.44 ⁰ A = 2000 P = 80.44 80.44 ¹ = 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ¹ = 80.44 a = ? 2000/6470.51 = 0.31 b = 0.6667 a = 2000 = a x 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ¹ = 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ¹ = 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ^{0.6667} A = 24.9 b = 1 a = 24.9 Urban settlements 2000 = a x 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ^{0.6667} A = 24.9 b = 1 a = 24.9 Urban settlements 2000 = a x 80.44 ^{0.6667} A = 2000 P = 80.44 80.44 ^{0.6667} A			а	=	?	2000/22197.31	=	0.09						
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$			b	=	2	а	=	0.09						
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$			Villa	ge se	ettlements		2000 = <i>a</i> x 148.99 ¹							
$ \underbrace{\tilde{S}} $		(D)	А	=	2000									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ou	Р	=	148.99	148.99 ¹	=	148.99						
$ \begin{array}{c} \begin{array}{c} b & = 1 & a & = 13.4 \\ \mbox{Urban settlements} & 2000 = a \times 148.99^{0.6667} \\ P & = 148.99 & 148.99^{0.6677} & = 28.11 \\ a & = ? & 2000/28.11 & = 71.15 \\ \hline b & = 0.6667 & a & = 71.15 \\ \hline b & = 0.6667 & a & = 71.15 \\ \hline 0 \mbox{pen settlements} & 2000 = a \times 97.83^2 \\ A & = 2000 \\ P & = 97.83 & 97.83^2 & = 9569.92 \\ a & = ? & 2000/9569.92 & = 0.21 \\ b & = 2 & a & = 0.21 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Z	а	=	?	2000/148.99	=	13.4						
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{Urban settlements} \\ A & = & 2000 \\ P & = & 148.99 \\ P & = & 148.99 \\ a & = & ? \\ 2000/28.11 \\ = & 71.15 \\ b & = & 0.6667 \\ a \\ P & = & 97.83 \\ a & = & ? \\ 2000/9569.92 \\ a & = & 0.21 \\ \hline \\ \hline \\ \mbox{Willage settlements} \\ A & = & 2000 \\ P & = & 97.83 \\ P & = & 97.83 \\ P & = & 2000/9569.92 \\ a & = & 0.21 \\ \hline \\ \mbox{Willage settlements} \\ A & = & 2000 \\ P & = & 97.83 \\ P & = & 97.83 \\ P & = & 97.83 \\ P & = & 2000/97.83 \\ a & = & ? \\ 2000/97.83 \\ a & = & 2000 \\ P & = & 97.83 \\ P & = & 2000 \\ P & = & 97.83 \\ P & = & 2000 \\ P & = & 97.83 \\ P & = & 2000 \\ P & = & 97.83 \\ P & = & 2000 \\ P & = & 97.83 \\ P & = & 2000 \\ P & = & 97.83 \\ P & = & 2000 \\ P & = & 80.44 \\ A & = & 2000 \\ P & = & 80.44 \\ B & 0.44^2 \\ A & = & & 2000 \\ P & = & 80.44 \\ B & 0.44^2 \\ A & = & & & & & & & & \\ 2000 & = a \times 80.44^2 \\ A & = & & & & & & & \\ 0 & p & = & 80.44 \\ B & = & ? \\ 2000/6470.51 \\ a & = & & & & & & & & \\ 0 & p & = & 80.44 \\ B & = & 2 \\ 0 & 2 \\ P & = & 80.44 \\ B & 0.44^1 \\ P & = & & & & & & & \\ A & = & & & & & & & \\ 2000 & = a \times 80.44^1 \\ A & = & & & & & & & \\ A & = & & & & & & & & \\ 2000 & = a \times 80.44^1 \\ A & = & & & & & & & & \\ A & = & & & & & & & & \\ A & = & & & & & & & & & \\ 2000 & B & = & & & & & & & \\ A & = & & & & & & & & & \\ 2000/80.44 \\ A & = & & & & & & & & & & \\ A & = & & & & & & & & & & \\ A & = & & & & & & & & & & \\ A & & & & & & & &$			b	=	1	а	=	13.4						
$ \textbf{Village settlements} 2000 = a \times 140.39 $ $ A = 2000 $ $ P = 148.99 148.99^{0.6667} = 28.11 $ $ a = ? 2000/28.11 = 71.15 $ $ b = 0.6667 a = 71.15 $ $ A = 2000 $ $ P = 97.83 97.83^{2} = 9569.92 $ $ a = ? 2000/9569.92 = 0.21 $ $ b = 2 a = 0.21 $ $ Village settlements 2000 = a \times 97.83^{1} $ $ A = 2000 $ $ P = 97.83 97.83^{1} = 97.83 $ $ a = ? 2000/97.83 = 20.4 $ $ b = 1 a = 2000 $ $ P = 97.83 97.83^{0.6667} = 20.4 $ $ b = 1 a = 2000 $ $ P = 97.83 97.83^{0.6667} = 20.4 $ $ b = 1 a = 2000 $ $ P = 97.83 97.83^{0.6667} = 21.23 $ $ a = ? 2000/21.23 = 94.19 $			Urba	n coi	tlomonte		$2000 - 2 \times 148 00^{0.6667}$							
$ P = 148.99 148.99^{0.6667} = 28.11 a = ? 2000/28.11 = 71.15 b = 0.6667 a = 71.15 b = 0.6667 a = 71.15 b = 0.6667 a = 71.15 Deen settlements 2000 = a x 97.832 A = 2000 P = 97.83 97.832 = 9569.92 a = ? 2000/9569.92 = 0.21 b = 2 a = 0.21 Village settlements 2000 = a x 97.831 A = 2000 P = 97.83 97.831 = 97.83 a = ? 2000/97.83 = 20.4 b = 1 a = 2000 P = 97.83 97.830.6667 = 21.23 a = ? 2000/97.83 = 20.4 b = 1 a = 2000 P = 97.83 97.830.6667 = 21.23 a = ? 2000/21.23 = 94.19 b = 0.6667 a = 94.19 b = 2 a = 0.31 courden ax 80.440.6667 A = 2000 P = 80.44 80.441 = 80.44 a = ? 2000/80.44 = 24.9 b = 1 a = 24.9 Urban settlements 2000 = a x 80.440.6667 A = 2000 P = 80.44 80.440.6667 = 18.64 a = ? 2000/18.64 = 107.31 b = 0.6667 a = 107.31 courden ax 80.440.6667 courden a = 107.31 courden a = 107.31 $							$2000 = a \times 140.33$							
IIIOPEFICIENTS = 140.393 = 2.0.11 = 2.0.11 = 71.15 =				_	2000	149 000.6667	_	20.11						
$ \textbf{v} = 0.6667 \textbf{a} = 7.1.15 \\ b = 0.6667 \textbf{a} = 71.15 \\ b = 0.6667 \textbf{a} = 71.15 \\ \hline \textbf{Dpen settlements} \\ A = 2000 \\ P = 97.83 97.83^2 = 9569.92 \\ a = ? 2000/9569.92 = 0.21 \\ b = 2 \textbf{a} = 0.21 \\ b = 2 \textbf{a} = 0.21 \\ b = 2 \textbf{a} = 0.21 \\ village settlements 2000 = \textbf{a} \times 97.83^1 \\ A = 2000 \\ P = 97.83 97.83^1 = 97.83 \\ a = ? 2000/97.83 = 20.4 \\ b = 1 \textbf{a} = 2000 = \textbf{a} \times 97.83^{0.6667} \\ A = 2000 \\ P = 97.83 97.83^{0.6667} = 21.23 \\ a = ? 2000/21.23 = 94.19 \\ b = 0.6667 \textbf{a} = 94.19 \\ b = 0.6667 \textbf{a} = 0.31 \\ b = 2 \textbf{a} = 2000 \\ P = 80.44 80.44^2 = 6470.51 \\ a = ? 2000/6470.51 = 0.31 \\ b = 2 \textbf{a} = 0.31 \\ village settlements 2000 = \textbf{a} \times 80.44^1 \\ A = 2000 \\ P = 80.44 80.44^1 = 80.44 \\ a = ? 2000/6470.51 = 0.31 \\ b = 2 \textbf{a} = 0.31 \\ village settlements 2000 = \textbf{a} \times 80.44^1 \\ A = 2000 \\ P = 80.44 80.44^1 = 24.9 \\ b = 1 \textbf{a} = 2000 = \textbf{a} \times 80.44^1 \\ A = 2000 \\ P = 80.44 80.44^1 = 107.31 \\ b = 0.6667 \textbf{a} = 107.$			F	=	140.99	140.99	=	20.11						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			a b	=	(0.6667	2000/28.11	=	71.13						
Open settlements 2000 = a x 97.83 ² A = 2000 P = 97.83 97.83 ² = 9569.92 a = ? 2000/9569.92 = 0.21 b = 2 a = 0.21 b = 2 a = 0.21 b = 2 a = 0.21 Village settlements 2000 = a x 97.83 ¹ = 0.21 b = 1 a = 20.4 b = 1 a = 20.4 Urban settlements 2000/12.23 = 97.83 97.83 ^{0.6667} a = ? 2000/21.23 = 94.19 b =			D	=	0.0007	a	=	/1.15						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Oper	n set	lements		$2000 = a \times 97.83^2$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A	=	2000	2								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Р	=	97.83	97.83 ²	=	9569.92						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			а	=	?	2000/9569.92	=	0.21						
Village settlements $2000 = a \times 97.83^{1}$ A = 2000 P = 97.83 97.83^{1} = 97.83 a = ? $2000/97.83$ = 20.4 b = 1 a = 20.4 b = 1 a = 20.4 Urban settlements $2000/97.83$ = 20.4 Village settlements $2000 = a \times 97.83^{0.6667}$ = 21.23 a = 2000 = 21.23 = 94.19 b = 0.6667 a = 94.19 b = 0.6667 a = 94.19 Dependent $2000/21.23$ = 94.19 b = 0.6667 a = 94.19 Open settlements $2000/6470.51$ = 0.31 b b = 2 a = 0.31 b Village settlements $2000/80.44^{0.667$ = a	ge:		b	=	2	а	=	0.21						
P = 97.83 $P = 97.83$ $P = 97.84$ $P =$	ra		Villa	ge se	ettlements		2000 = <i>a</i> x 97.83 ¹							
$ P = 97.83 97.83^1 = 97.83 97.83^1 = 97.83 2000/97.83 = 20.4 $	sto	ate	А	=	2000									
Y = 2000	đ	Jer	Р	=	97.83	97.83 ¹	=	97.83						
	ъ	Moi	а	=	?	2000/97.83	=	20.4						
	no	-	b	=	1	а	=	20.4						
$A = 2000$ $P = 97.83 97.83^{0.6667} = 21.23$ $a = ? 2000/21.23 = 94.19$ $b = 0.6667 a = 94.19$ $b = 0.6667 a = 94.19$ $Copen settlements 2000 = a \times 80.44^2$ $A = 2000$ $P = 80.44 80.44^2 = 6470.51$ $a = ? 2000/6470.51 = 0.31$ $b = 2 a a = 0.31$ $Village settlements 2000 = a \times 80.44^1$ $A = 2000$ $P = 80.44 80.44^1 = 80.44$ $a = ? 2000/80.44 = 24.9$ $b = 1 a = 24.9$ $Urban settlements 2000 = a \times 80.44^{0.6667}$ $A = 2000$ $P = 80.44 80.44^{0.6667} = 18.64$ $a = ? 2000/18.64 = 107.31$ $b = 0.6667 a = 107.31$	E A		Urba	n sei	tlements		$2000 = a \times 97.83^{0.6667}$							
$P = 97.83 97.83^{0.6667} = 21.23 = 94.19 = 94.$	-		Δ	-	2000		2000 - 4 × 57.00							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Þ	_	07.83	97 83 ^{0.6667}	_	21.23						
$b = 0.6667 a = 94.19$ $contrast = 0.6667$ $contrast = 0.000 = a \times 80.44^{2}$ $contrast = 0.31$ $b = 2 a = 0.31$ $b = 2 a = 0.31$ $contrast = 0.31$			י 2	_	37.00	2000/21 23	_	0/ 10						
D = 0.0007 a = 34.13 Open settlements 2000 = a x 80.44 ² A = 2000 P = 80.44 80.44 ² = 6470.51 a = ? 2000/6470.51 = 0.31 b = 2 a = 0.31 b = 2 a = 0.31 Village settlements 2000 = a x 80.44 ¹ = 0.31 Village settlements 2000 = a = 0.31 Village settlements 2000 = a = 0.31 Village settlements 2000 = a = 0.31 D = 1 a = 24.9 b = 0.000 = a x 80.44 ^{0.6667} = 18.64 a = 2000 = 1 80.44 107.31 = 107.31 b = 0.6667 a = 107.31			a h	_	: 0.6667	2000/21.20	-	04.19 04.10						
Open settlements $2000 = a \times 80.44^{-1}$ A = 2000 P = 80.44 80.44^2 = 6470.51 a = ? $2000/6470.51$ = 0.31 b = 2 a = 0.31 b = 2 a = 0.31 Village settlements $2000 = a \times 80.44^{1}$ = 0.31 A = 2000 = $a \times 80.44^{1}$ = 0.31 A = 2000 = $a \times 80.44^{1}$ = 80.44 A = 2000 = $a \times 80.44^{0.6667}$ = 24.9 b = 0.6667 = 18.64 = 107.31 b = 0.6667 a = 107.31			0		0.0007	a	-	34.13						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ope	n set	lements		$2000 = a \times 80.44^{-1}$							
$P = 80.44 = 80.44 = 6470.51$ $a = ? = 2000/6470.51 = 0.31$ $b = 2 = a = 0.31$ $Village settlements = 2000 = a \times 80.44^{1}$ $A = 2000 = a \times 80.44 = 80.44^{1}$ $a = ? = 2000/80.44 = 24.9$ $b = 1 = a = 2000 = a \times 80.44^{0.6667}$ $A = 107.31$ $b = 0.6667 = 107.31$			A	=	2000	$aa 44^2$		0.470 54						
$a = ? 2000/64/0.51 = 0.31$ $b = 2 a = 0.31$ $Village settlements 2000 = a \times 80.44^{1}$ $A = 2000$ $P = 80.44 80.44^{1} = 80.44$ $a = ? 2000/80.44 = 24.9$ $b = 1 a = 24.9$ $Urban settlements 2000 = a \times 80.44^{0.6667}$ $A = 2000$ $P = 80.44 80.44^{0.6667} = 18.64$ $a = ? 2000/18.64 = 107.31$ $b = 0.6667 a = 107.31$			Р	=	80.44	80.44	=	6470.51						
b = 2 $a = 0.31$ Village settlements $A = 2000$ $P = 80.44$ $a = ?$ $b = 1$ $a = 2000/80.44$ $B = 24.9$ $b = 1$ $a = 2000/80.44$ $B = 24.9$ $b = 1$ $a = 24.9$ $C = 24.9$ $C = 24.9$ $C = 2000$ $P = 80.44$ $R = 2000/18.64$ $R = 107.31$ $R = 107.31$			a	=	?	2000/6470.51	=	0.31						
Village settlements $2000 = a \times 80.44^1$ A= 2000 P= 80.44 a=? $2000/80.44$ =b=1a=2000ab=1aa=2000=a=2000P=80.44 $80.44^{0.6667}$ a=1107.31b=0.6667aa=107.31			b	=	2	а	=	0.31						
$A = 2000$ $P = 80.44 = 80.44^{1} = 80.44$ $a = ? 2000/80.44 = 24.9$ $b = 1 \qquad a = 24.9$ $Urban settlements \qquad 2000 = a \times 80.44^{0.6667}$ $A = 2000$ $P = 80.44 = 80.44^{0.6667} = 18.64$ $a = ? 2000/18.64 = 107.31$ $b = 0.6667 \qquad a = 107.31$		5	Villa	ge se	ettlements		$2000 = a \times 80.44^{1}$							
$P = 80.44 = 80.44^{1} = 80.44^{1}$ $a = ? = 2000/80.44 = 24.9$ $b = 1 = 2000 = a \times 80.44^{0.6667}$ $A = 2000$ $P = 80.44 = 80.44^{0.6667} = 18.64$ $a = ? = 2000/18.64 = 107.31$ $b = 0.6667 = 107.31$		un	А	=	2000									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		xin	Р	=	80.44	80.44 ¹	=	80.44						
b =1 a =24.9Urban settlements2000 = $a \times 80.44^{0.6667}$ 2000 = $a \times 80.44^{0.6667}$ 18.64A=2000=18.64P=80.4480.44^{0.6667}=18.64a=?2000/18.64=107.31b=0.6667 a =107.31		Ma.	а	=	?	2000/80.44	=	24.9						
Urban settlements $2000 = a \times 80.44^{0.6667}$ A= 2000 P= 80.44 $80.44^{0.6667}$ a=? $2000/18.64$ =b= 0.6667 a=107.31a=107.31		-	b	=	1	а	=	24.9						
A=2000P= 80.44 $80.44^{0.6667}$ =a=?2000/18.64=b= 0.6667 a=107.31			Urba	an set	tlements		2000 = <i>a</i> x 80.44 ^{0.6667}							
P= 80.44 $80.44^{0.6667}$ = 18.64 a=? $2000/18.64$ = 107.31 b= 0.6667 a= 107.31			A	=	2000									
a = ? 2000/18.64 = 107.31 b = 0.6667 a = 107.31			P	=	80.44	80.44 ^{0.6667}	=	18.64						
b = 0.6667 a = 107.31			а	=	?	2000/18.64	=	107.31						
			b	=	0.6667	a	=	107.31						

Initial growth indices										
Settlement type	tlement type SPF population estimate based on amount of storage:									
	None (148.99)	Moderate (97.83)	Maximum (80.44)							
Open	0.09	0.21	0.31							
Village	13.42	20.44	24.86							
Urban	71.15	94.19	107.31							

Settlement population density coefficient (SPDC)

Data required								
Total site extent (ha)	0.2							
Proportion of site assessable (%)	34.00							
Number of contemporaneous dwellings in the assessable area								
Dwellings in assessable area	13							
Contemporaneity value (%)	80							

Method 1: Total population based on commonly utilised SPDCs										
	SPDC (people/ha)									
	Minimum	Average	Maximum							
	90	150	294							
Total population	18	30	58.8							
Population in the assessable area	6.12	10.20	19.99							
People per dwelling in the assessable area	0.59	0.98	1.92							

Method 2:	Method 2: SPDCs based on HUM, RADC and SPF population estimates											
Method	Total	population esti	mate	SPDC (people/ha)								
	Minimum	Average	Maximum	Minimum	Average	Maximum						
HUM	91.78	168.26	244.74	458.88	841.29	1223.69						
RADC	74.76	113.28	211.19	373.81	566.39	1055.97						
SPF	80.44	97.83	148.99	402.20	489.13	744.94						

	Ghwair I													
	Assessable	Assessa	ble area			588.7		Adjusted ^a					Adjusted	
	area (m²)	Unasses	sable area			147.95	Potential	Ground	Unit I: ro	om 5			13.57	
		Total				440.75	residential	floor	Unit II: ro	om 17			13.95	
							(m ²)	Upper	Unit III	18.83	15.54	Unit V	15.68	12.94
	Potential	Ground	Unit I: room 5			23.28	()	storey	Unit IV	21.65	17.86	Unit VI	20.60	17.00
	residential	floor	Unit II: room 17			20.05		Total					76.77	90.85
	built area	Upper	Unit III	24.78	Unit V	20.05		Mean re	sidential flo	oor area ((all comple	ete)	19.19	15.14
	()	storey	Unit IV	31.68	Unit VI	24.44								
		Total				144.27	Built floor	Ground	Unit I	18.80		Room 11	1.22	
		Mean				24.04	area (m²)	floor	Unit II	16.30		Room 10	0.63	
		SD (±)				4.28			Unit III	10.03		Room 12	1.58	
		Mean res	sidential built area (all c	complete	e)	24.04			Unit IV	14.56		Room 49	2.60	
									Unit V	6.90		Room 50	11.98	
	Potential	Ground	Unit I: rooms 1-4	12.60	Room 6	5.66			Unit VI	11.31		Room 51	0.67	
	non-	floor	Unit II: rooms 14-16	7.46	Room 8	5.74			Room 6	3.27		Room 52	0.45	
	residential		Unit III	24.78	Rooms 9-12	14.76			Room 8	3.09		Room 53	3.02	
52	built area		Unit IV	31.68	Room 50	16.48			Room 9	0.82				
တ	(m ⁻)		Unit V	28.49	Communal	11.29								
				33.70	staircase	45.00		Upper	Unit III	18.83	15.54	Unit V	15.68	12.94
		Total	Water management v	valls and	d corridors (?)	45.69 238 34		storey Total	Unit IV	21.65	17.86	Unit VI	20.60 184 01	17.00 170 57
		iotai				200.07		Total					107.01	110.01
	Built area	t area Potential residential built area (ground floor) Potential non-residential built area Total			43.33									
	(m²)				238.34 281.67									

^a Upper storey interior area reduced by 17.5% based on proportion derived for Beidha Subphase C2 (17.42%) (see Section 5.2.2).

Housing unit method (HUM)							
Method 1: Total potential dwelling number				136.13			
Number of potential dwellings in the assessable are	ea			6			
Assessable area (m ²)				440.75			
Estimated total site extent (m ²)				10000			
Assessable area (proportion)				0.0441			
Method 2: Total potential dwelling number				136.13			
Mean potential residential built area (m ²)				24.04			
Potential residential built area (m ²)	Unit I	23.28	Unit IV	31.68			
	Unit II	20.05	Unit V	20.05			
	Unit III	24.78	Unit VI	24.44			
Total built area estimate (m ²)				6390.70			
		Assessable a	area (m²)	440.75			
	As	sessable built a	area (m²)	281.67			
Assessable built area as a proportion of assessable area							
	Estima	ted total site ex	tent (m ²)	10000			
Residential built area as a proportion of assessable	e built area			0.5122			
	Potential re	esidential built a	area (m²)	144.27			
Total potential residential built area (m ²)				3273.20			
Method 3: Total potential dwelling number				136.13			
Potential residential built area as a proportion of as	sessable a	rea		0.3273			
Total number of contemporaneous dwellings (77.78	8%)			105.88			
Total population estimate based on nuclear fam	nilv size:	Minimum	3	317.65			
		Average	5.5	582.36			
		Maximum	8	847.07			

Method 1: Total potential residential floor	area (m²)			2061.31					
Potential residential floor area (m ²)				90.85					
Potential residential floor area (m ²)	Potential residential floor area (m ²) Unit I 13.57 Unit IV								
	Unit II	13.95	Unit V	12.94					
	Unit III	15.54	Unit VI	17.00					
Assessable area (m ²)				440.75					
Estimated total site extent (m ²)				10000					
Assessable area (proportion)				0.0441					
	. 2.								
Method 2: Total potential residential floor	area (m²)			2061.31					
Total built area estimate (m²)			2	6390.70					
Assessable area (m ²)									
Assessable built area (m ²)									
Assessable built area as a proportion of assessable area									
	Es	timated total site e	extent (m^2)	10000					
Potential residential floor area as a proportior	n of assessa	ble built area		0.3225					
	Potenti	al residential flooi	r area (m²)	90.85					
	-								
Method 3: Total potential residential floor	area (m²)			2061.31					
Potential residential floor area as a proportion	n of assessa	ble area		0.2061					
Total contemporaneous residential floor area (m ²) (77.78%)									
Total population estimate based on RADC	(m ²):	Minimum	1.77	905.81					
		Average	3.3	485.84					
		Maximum	5	320.66					

Residential area density coefficient (RADC)

Storage provisions formula (SPF)

				Residential storage provisions (m ³ per person)							
			None			Modera	ate (0.46)		Maximun	n (2 x 0.46)	
			P = 0.3944A	- 0.375		P = 0.247	7A + 0.0339		P = 0.190	3A + 0.3976	
Meth	od 1: T	otal population esti	imate (P) based on total	contemp	ooraneou	s residential floor a	rea (A)				
А	=	1603.29	0.3944 x 1603.29	=	632.34	0.2477 x 1603.29	=	397.13	0.1903 x 1603.29	=	305.11
Р	=	?	632.34 - 0.375	=	631.96	397.13 + 0.0339	=	397.17	305.11 + 0.3976	=	305.50
			Р	=	631.96	Р	=	397.17	Р	=	305.50
Meth	od 2: P	eople per dwelling	(P) and total population	estimate	es based	on mean residential	l floor area of	complet	e dwellings (A)		
А	=	15.14	0.3944 x 15.14	=	5.97	0.2477 x 15.14	=	3.75	0.1903 x 15.14	=	2.88
Р	=	?	5.97 - 0.375	=	5.60	3.75 + 0.0339	=	3.78	2.88 + 0.3976	=	3.24
			Р	=	5.60	Р	=	3.78	Р	=	3.24
					7	otal number of conte	mporaneous d	lwellings			105.88
		Total population			592.54	-		400.67			343.11
		· •									
Mean	total p	oopulation			612.25			398.9			324.3

Naroll's (1962) AGF1

529

Summary of estimates based on:	Naroll's (1962) formula				Archaeological evidence			
	SPF population estimate based on amount of storage:				SPF population estimate based on amount of storage:			
	None (612.25)	Moderate (398.92)	Maximum (324.31)		None (612.25)	Moderate (398.92)	Maximum (324.31)	
Total built floor area (m ²)	4818.55	3359.50	2822.01	3869.99				
Built floor area per person (m ²)	7.87	8.42	8.70		6.32	9.70	11.93	
RADC (m ² per person)	4.19	4.49	4.63		2.62	4.02	4.94	
Initial growth index	17.43	25.00	29.76					

					Data required			
SPF	popula	ation esti	mate (P) based on	amount of storage:	None	612.25	
	-		,		-	Moderate	398.92	
						Maximum	324.31	
Resi	dential	floor are	a as a	proportion of	of built floor area (%)		53.26	
	Total built floor area (m^2) (A)							
	Built floor area in assessable area (m ²)							
					Proportion of site as	sessable (%)	4.41	
				Total resid	lential floor area (m²) (RADC meth	od)	2061.31	
3uilt	floor a	rea per p	person	(m ²) derived	d from SPF population estimates	None	6.32	
and t	otal bu	uilt floor a	area ba	ased on amo	ount of storage:	Moderate	9.70	
						Maximum	11.93	
RAD	C deri	ved from	SPF p	opulation es	stimates and total	None	2.62	
conte	empora	aneous re	esiden	tial floor area	a based on amount of storage:	Moderate	4.02	
					2	Maximum	4.94	
		-	Total c	ontemporane	eous residential floor area (m²) (R/	ADC method)	1603.29	
					$A = a \times P^{b}$			
		Metho	d 1: T	otal built flo	oor area (m ²) (A), built floor area	per person a	nd RADC	
		А	=	?	A = 21.7 x 6	12.25 ^{0.84195}		
		Р	=	612.25	612.25 ^{0.84195}	=	222.05	
		а	=	21.7	21.7 x 222.05	=	4818.55	
		b	=	0.84195	Α	=	4818.55	
	Φ	Built f	loor a	rea per pers	son (m²)		7.87	
	lon	RADC	(m ² p	er person)			4.19	
	<			Reside	ntial floor area as a proportion of b	uilt floor area	53.26	
		Metho	d 2: R	e-calculated	d initial growth index (<i>a</i>)			
		А	=	3869.99	3869.99 = <i>a</i> x	612.25 ^{0.84195}		
		Р	=	612.25	612.25 ^{0.84195}	=	222.05	
		а	=	?	3869.99/222.05	=	17.43	
		b	=	0.84195	а	=	17.43	
		Metho	d 1: T	otal built flo	oor area (m ²) (A), built floor area	per person a	nd RADC	
		A	=	?	$A = 21.7 \times 3$	98.92		
		Р	=	398.92	398.92	=	154.82	
age		a	=	21.7	21.7 x 154.82	=	3359.50	
or	e	b	=	0.84195	A	=	3359.50	
ţ	erat	Built f	loor a	rea per pers	son (m ⁻)		8.42	
ŏ	pde	RADC	(m ⁻ p	er person)	utial floor area as a properties of b		4.49	
n	Ŵ	Martha		Resider	nual noor area as a proportion of b	unit noor area	33.20	
ñ			a 2: R	e-calculated	a initial growth index (a)	200 020.84195		
∢		A D	=	200 02	3009.99 = a X	JJO.JZ	164.00	
		۲ م	=	398.92 2	398.92 2860 00/154 92	=	154.82	
		d h	=	۲ ۵ 8/105	3009.99/104.82	=	25.00	
		N atta	= 	0.04190				
			a 1: 1		oor area (m.) (A), built floor area	per person al 24 21 ^{0.84195}		
		A D	=	? 201 21	$A = 21.7 \times 3$	24.31	120.05	
		۲ م	=	ऽ∠4.ऽ1 २१ र	324.31 21 7 v 120 05	=	130.05	
		d b	=	21.1 0.91105	21.7 X 130.00 A	=	2022.01	
	Ę	Duil4 4	= loor c	0.04190	(m^2)	=	2022.01	
	nm		(m ² n	er person)			0.70	
	ахі	RADU	(m þ	ei personij Rosida	ntial floor area as a proportion of h	uilt floor area	4.03	
	N	Moth -	4 2. 5		d initial growth index (a)		03.20	
			u 2: K		u mitiai growth index (a)	324 34 0.84195		
		A D	=	3009.99 301 21	$304 21^{0.84195}$	J24.JI _	120 05	
		Г Э	=	७८4.७। १	324.3 1 3860 00/120 05	=	20.00	
		a h	=	: በ 8/105	3003.33/130.00	=	29.70 20.7 6	
		N	=	0.04190	a	=	23.10	

Data required Total site extent (m^2) (A) 13250 SPF population estimate (P) based on amount of storage: None 612.25 Moderate 398.92 Maximum 324.31 <u>A = a x</u> P^b $13250 = a \times 612.25^2$ **Open settlements** А 13250 = 612.25² Ρ 612.25 374853.93 = = а ? 13250/374853.93 0.04 = 0.04 b 2 а = = Village settlements $13250 = a \ge 612.25^{1}$ 13250 А = None 612.25¹ Ρ 612.25 612.25 = = 13250/612.25 ? 21.6 а = = b 21.6 = 1 а 13250 = *a* x 612.25^{0.6667} **Urban settlements** 13250 A _ 612.25^{0.6667} Ρ 612.25 72.12 = = ? 13250/72.12 183.73 а = = 0.6667 183.73 b = а = $13250 = a \times 398.92^2$ **Open settlements** А 13250 = 398.92² Ρ 398.92 159136.43 = = 13250/159136.43 а ? 0.08 = = 2 0.08 Amount of storage: b = а $13250 = a \times 398.92^{1}$ Village settlements Moderate А 13250 Ρ 398.92 398.92¹ 398.92 = = 13250/398.92 а ? 33.2 = = 33.2 b 1 = а 13250 = *a* x 398.92^{0.6667} **Urban settlements** 13250 A = 398.92^{0.6667} Ρ 398.92 54.20 = = 13250/54.2 244.46 а ? = = 244.46 b 0.6667 = а = **Open settlements** $13250 = a \times 324.31^2$ 13250 А = 324.31² Ρ 324.31 105174.15 = = а ? 13250/105174.15 0.13 = = b 2 0.13 = а Village settlements $13250 = a \times 324.31^{1}$ Maximum 13250 А = 324.31¹ Ρ 324.31 324.31 = = 13250/324.31 40.9 а = ? = 40.9 b = 1 а = 13250 = *a* x 324.31^{0.6667} **Urban settlements** A = 13250 324.31^{0.6667} Ρ 324.31 47.21 = = 13250/47.21 а ? 280.65 = = b 0.6667 280.65 = а =

Wiessner's (1974) AGF2

Initial growth indices										
Settlement type	SPF population estimate based on amount of storage:									
	None (612.25)	Moderate (398.92)	Maximum (324.31)							
Open	0.04	0.08	0.13							
Village	21.64	33.21	40.86							
Urban	183.73	244.46	280.65							

Settlement population density coefficient (SPDC)

Data required	
Total site extent (ha)	1.325
Proportion of site assessable (%)	4.41
Number of contemporaneous dwellings in the assessable area	4.67
Dwellings in assessable area	6
Contemporaneity value (%)	77.78

Method 1: Total population based on commonly utilised SPDCs								
	SPDC (people/ha)							
	Minimum	Average	Maximum					
	90	150	294					
Total population	119.25	198.75	389.55					
Population in the assessable area	5.26	8.76	17.18					
People per dwelling in the assessable area	1.13	1.88	3.68					

Method 2: SPDCs based on HUM, RADC and SPF population estimates											
Method	Total µ	population es	timate	SPDC (people/ha)							
	Minimum	Average	Maximum	Minimum	Average	Maximum					
HUM	317.65	582.36	847.07	239.74	439.51	639.29					
RADC	320.66	485.84	905.81	242.01	366.68	683.63					
SPF	-	398.92	612.25	-	301.07	462.08					

vvaui mamarasin i	Wadi	Hamarash	L
-------------------	------	----------	---

Assessable area (m ²)	sessable area Area 1 249.35 Built area Potential residential built area (ground floor) Area 2 206.34 (m ²) Potential non-residential built area Area 3 171.97 Total					211.05 578.12 789.16		
	Unassessable area Total	312.7 1249.48	Potential residential floor area		Area 1 Unit I: locus 16* 15.17 Unit II: locus 20* 8.45	<i>Area 3</i> Unit I: loci 4/5 Unit II: locus 13	9.25 3.02	
Potential residential built area (m ²)	Area 1 Unit I: locus 16(*) 22.55 Unit I: locus 20* Unit II: locus 20* Unit II: locus 13 Unit III: locus 10* Unit III: locus 13 Area 3 Unit I: locu 4/5 Unit II: locus 13	16.97 4.50	(m ²)	Ground floor	Unit III: locus 10* 17.51 Unit IV: locus 1* 12.61 Area 2 Unit I: locus 22* 11.58	Area 5	22.70	
	Area 2 Area 5				Unit III: locus 23 11.56 Unit III: locus 1* 11.95 Unit IV: locus 7 4.71	Unit II: locus 19 Unit IV: locus 13*	10.98 10.70	
	Unit I: locus 23(*) 14.49 Unit I: loci 11/12* Unit III: locus 1* 21.19 Unit II: locus 19 Unit IV: locus 7 7.37 Unit IV: locus 13*	35.82 14.10 19.13		Jpper storey	Area 1: Unit V: loci 2/18* Area 2: Unit II: locus 20* Area 3: Unit III: loci 11/12*		19.39 5.81 9.35	15.99 4.80 7.72
	Area 1: Unit V: loci 2/18* a a Area 2: Unit II: locus 20* a c Area 3: Unit III: loci 11/12*	23.07 7.17 12.21		Total *Mear	Area 5: Unit III: loci 2/5/7* n residential floor area: com	plete dwellings	17.32 190.60 12.97	14.29 181.52 12.22
	Area 5: Unit III: loci 2/5/7*	21.15					407.04	
	l otal Mean	274.65 17.17	Built floor area (m ²)	_	Area 1 Area 2		107.04	
	SD (±) *Mean residential built area: complete dwellings	7.77 21.01	aroa (iii)	Bround floor	Area 3		39.54	
Deterritet	((*) marginally incomplete building)	440.04		0	Area 4: Communal building	9	92.65	
Potential	Area 1 2. Area 2	113.91 131.46			Area 5 Area 1: Unit V: loci 2/18		19 39	15 99
residential	o o Area 3	54.91		per rey	Area 2: Unit II: locus 20		5.81	4.80
built area	ö [™] Area 4	132.47		Up sto	Area 3: Unit III: loci 11/12		9.35	7.72
(m²)	Area 5 Total	145.37 578.12		Total	Area 5: Unit III: loci 2/5/7		17.32 465.93	14.29 456.85

^a Upper storey interior area reduced by 17.5% based on proportion derived for Beidha Subphase C2 (17.42%) (see Section 5.2.2).

Housing unit method (HUM)										
Method 1: Total potential dwelli	ng number			64.03						
Number of potential dwellings in the assessable area										
Assessable area (m ²)										
Estimated total site extent (m ²)										
Assessable area (proportion)										
Method 2: Total potential dwelling number										
Mean potential residential built area (m ²)										
Potential residential built area Area 1 Area 3										
(m ²)	Unit I: locus 16	22.55	Unit I: loci 4/5	16.97						
	Unit II: locus 20	13.53	Unit II: locus 13	4.50						
	Unit III: locus 10	24.08	Unit III: loci 11/12	12.21						
	Unit IV: locus 1	17.32								
	Unit V: loci 2/18	23.07								
	Area 2		Area 5							
	Unit I: locus 23	14.49	Unit I: loci 11/12	35.82						
Unit III: locus 1 21.19 Unit II: locus 19										
	Unit IV: locus 7	7.37	Unit IV: locus 13	19.13						
	Unit II: locus 20	7.17	Unit III: loci 2/5/7	21.15						
Total built area estimate (m ²)			_	3157.95						
		As	sessable area (m ²)	1249.48						
		Assess	able built area (m^2)	789.16						
Asse	ssable built area as	a proportion	of assessable area	0.6316						
		Estimated to	otal site extent (m^2)	5000						
Residential built area as a proport	ion of assessable b	uilt area		0.3480						
	Po	tential reside	ntial built area (m²)	274.65						
Total potential residential built are	a (m²)			1099.06						
	()									
Method 3: Total potential dwelli	ng number			64.03						
Potential residential built area as a	a proportion of asses	ssable area		0.2198						
Total number of contemporaneous	s dwellings (78%)			49.94						
Total population estimate based	d on nuclear	Minimum	3	149.82						
family size:		Average	5.5	274.67						
		Maximum	8	399.53						

Residential area density coe	fficient (RADC)						
Method 1: Total potential residential floor area (m ²)							
Potential residential floor area (m ²)							
Potential residential floor area	Area 1		Area 3				
(m^2)	Unit I: locus 16	15.17	Unit I: loci 4/5	9.25			
	Unit II: locus 20	8.45	Unit II: locus 13	3.02			
	Unit III: locus 10	17.51	Unit III: Ioci 11/12	1.12			
	Unit V: loci 2/18	12.01					
		15.55					
	Area 2		Area 5				
	Unit I: locus 23	11.58	Unit I: loci 11/12	22.79			
	Unit II: locus 20	4.80	Unit II: locus 19	10.98			
	Unit III: locus 1	11.95	Unit III: loci 2/5/7	14.29			
	Unit IV: locus 7	4.71	Unit IV: locus 13	10.70			
Assessable area (m ²)				1249.48			
Estimated total site extent (m^2)				5000			
Assessable area (proportion)				0.2499			
Method 2: Total potential reside	ential floor area (m	1 ²)		726.38			
Total built area estimate (m ²)				3157.95			
		As	sessable area (m^2)	1249.48			
		Assess	able built area (m ²)	789.16			
Asses	ssable built area as	a proportion	of assessable area	0.6316			
		Estimated t	otal site extent (m ²)	5000			
Potential residential floor area as	a proportion of ass	essable built	area	0.2300			
	Po	tential reside	ntial floor area (m^2)	181.52			
		0					
Method 3: Total potential reside	ential floor area (m	l ²)		726.38			
Potential residential floor area as	a proportion of ass	essable area		0.1453			
Total contemporaneous residential floor area (m ²) (78%)							
Total population estimate base	d on RADC (m ²).	Minimum	1.77	320 10			
population ootiniato buoo		Average	3.3	171.69			
		Maximum	5	113.32			
			-				

Storage provisions formula (SPF)

				Residential storage provisions (m ³ per person)							
			Non	None Moderate (0.46)					Maximun	n (2 x 0.46)	
_			P = 0.3944	A <i>– 0.</i> 375		P = 0.247	77A + 0.0339		P = 0.1903	3A + 0.3976	
Metho	od 1: To	tal population estir	nate (P) based on tota	l contemp	oraneous	s residential floor a	rea (A)				
А	=	566.58	0.3944 x 566.58	=	223.46	0.2477 x 566.58	=	140.34	0.1903 x 566.58	=	107.82
Р	=	?	223.46 - 0.375	=	223.08	140.34 + 0.0339	=	140.38	107.82 + 0.3976	=	108.22
			Р	=	223.08	Р	=	140.38	Ρ	=	108.22
Metho	od 2: Pe	ople per dwelling (P) and total population	n estimate	s based o	on mean residential	l floor area of	complete	e dwellings (A)		
А	=	12.22	0.3944 x 12.22	=	4.82	0.2477 x 12.22	=	3.03	0.1903 x 12.22	=	2.33
Р	=	?	4.82 - 0.375	=	4.44	3.03 + 0.0339	=	3.06	2.33 + 0.3976	=	2.68
			Р	=	4.44	Р	=	3.06	Р	=	2.68
			-		Т	otal number of conte	mporaneous d	dwellings			49.94
		Total population			221.97	-		152.86			134.08
Mean	total po	opulation			222.52			146.62			121.15

Naroll's (1962) AGF1

Summary of estimates based on:		Naroll's (1962) forn	nula		Archa	aeological evidence	
	SPF populatio	n estimate based on	amount of storage:		SPF populatio	n estimate based on	amount of storage:
	None (222.52)	None (222.52) Moderate (146.62) Maximum (121.15)				Moderate (146.62)	Maximum (121.15)
Total built floor area (m ²)	2055.10	1446.36	1231.70	1828.16			
Built floor area per person (m ²)	9.24	9.86	10.17		8.22	12.47	15.09
RADC (m ² per person)	3.67	3.92	4.04		2.55	3.86	4.68
Initial growth index	19.30	27.43	32.21				

					Data required			
SPF	popula	ation estima	ate (F) based on a	amount of storage:	None	222.52	
	Moderate							
						Maximum	121.15	
Resid	Residential floor area as a proportion of built floor area (%)							
				Total built f	floor area (m^2) (A)		1828 16	
				i otai bailt i	Built floor area in assessa	ble area (m^2)	456.85	
					Proportion of site as	sessable (%)	24 00	
				Total residu	r roportion of site as	and)	726.28	
D						Nono	120.00	
Built	noor a	rea per per	son	(m) derived	int of storage.	None	8.22	
and t	otal bi	unt noor are	a ba	sed on amou	ini or storage.	Moderate	12.47	
						Maximum	15.09	
RAD	C deriv	ved from SI	PFp	opulation est	imates and total	None	2.55	
conte	empora	aneous resi	ident	ial floor area	based on amount of storage:	Moderate	3.86	
					2	Maximum	4.68	
		Tot	tal co	ontemporane	ous residential floor area (m²) (R/	ADC method)	566.58	
					$A = a \times P^b$			
		Method [•]	1: Tc	otal built floo	or area (m^2) (A), built floor area	per person a	nd RADC	
		A	=	?	$A = 21.7 \times 2$	22.52 ^{0.84195}		
		Р	=	222.52	222.52 ^{0.84195}	=	94.70	
		а	=	21.7	21.7 x 94.7	=	2055.10	
		b	=	0.84195	Δ	=	2055 10	
	-	Built floo	nr ar	es per perso	$\frac{1}{2}$	_	Q 2/	
	ne		$n^2 nc$	ea per perso	511 (111)		3.27	
	Ž		n pe	Residen	tial floor area as a proportion of h	uilt floor area	30.73	
		Mothod	21 D/		initial growth index (a)		00.70	
			2. הנ		$\frac{1929}{16} \frac{16}{16} = 0$	222 E20.84195		
		A	=	1020.10	1020.10 = dX	222.32	04 70	
		Р	=	222.52	222.52	=	94.70	
		a	=	?	1828.16/94.7	=	19.30	
		b	=	0.84195	a	=	19.30	
		Method '	1: To	otal built floo	or area (m²) (A), built floor area	per person al	nd RADC	
		A	=	?	$A = 21.7 \times 1$	46.62	~~~~	
		Р	=	146.62	146.62	=	66.65	
ıge		a	=	21.7	21.7 x 66.65	=	1446.36	
ora	(D	b	=	0.84195	Α	=	1446.36	
st	rat	Built floo	or ar	ea per perso	on (m²)		9.86	
of	qe	RADC (n	n' pe	er person)			3.92	
T	Mc			Residen	tial floor area as a proportion of b	uilt floor area	39.73	
Ю		Method 2	2: Re	e-calculated	initial growth index (<i>a</i>)	0.04405		
An		А	=	1828.16	1828.16 = <i>a</i> x	146.62 ^{0.84195}		
		Р	=	146.62	146.62 ^{0.84195}	=	66.65	
		а	=	?	1828.16/66.65	=	27.43	
		b	=	0.84195	а	=	27.43	
		Method '	1: To	otal built floo	or area (m ²) (A), built floor area	per person a	nd RADC	
		А	=	?	A = 21.7 x 1	21.15 ^{0.84195}		
		Р	=	121.15	121.15 ^{0.84195}	=	56.76	
		а	=	21.7	21.7 x 56.76	=	1231.70	
	-	b	=	0.84195	Α	=	1231.70	
	um	Built floo	or ar	ea per perso	on (m²)		10.17	
S RADC (m ² per person)							4.04	
Residential floor area as a proportion of built floor area							39.73	
	<	Method 2	2: Re	e-calculated	initial growth index (a)			
		A	=	1828.16	1828.16 = a x	121.15 ^{0.84195}		
		Р	=	121.15	121.15 ^{0.84195}	=	56.76	
		а	=	?	1828.16/56.76	=	32.21	
		b	=	0.84195	a	=	32.21	

Wiessner's (1974) AGF2

Data required											
Total site extent (m ²) (A) 5000											
SPF population estimate (P) based on amount of storage: None 222.											
	•		``	,	Ū	Moderate	146.62				
Maximum											
						Maximam	121.10				
					$A = a \times P^{b}$	2					
		Oper	n sett	lements	50	$000 = a \ge 222.52^2$					
		Α	=	5000	0						
		Р	=	222.52	222.52 ²	=	49516.46				
		а	=	?	5000/49516.46	=	0.10				
		b	=	2	а	=	0.10				
		Villag	ge se	ttlements	50	$000 = a \ge 222.52^{1}$					
	Ø	Α	=	5000							
	uo.	Р	=	222.52	222.52 ¹	=	222.52				
	Z	а	=	?	5000/222.52	=	22.5				
		b	=	1	а	=	22.47				
		Urba	n	tiomonto	500	0 - a x 222 52 ^{0.6667}					
			n sei	FOOD	500	$0 = \mathbf{d} \mathbf{X} \mathbf{Z} \mathbf{Z} \mathbf{Z} . \mathbf{J} \mathbf{Z}$					
		A	=	5000	000 F0 ^{0.6667}		00.70				
		Р	=	222.52	222.52	=	30.73				
		a	=	? 0.0007	5000/36.73	=	136.14				
		D	=	0.6667	а	=	136.14				
		Oper	n sett	lements	50	000 = <i>a</i> x 146.62 ²					
		А	=	5000	2						
		Р	=	146.62	146.62^2	=	21496.22				
		а	=	?	5000/21496.22	=	0.23				
;e		b	=	2	а	=	0.23				
raç		Villad	ae se	ttlements	50	$000 = a \times 146.62^{1}$					
sto	ate	A	=	5000							
Ĵ,	lera	Р	=	146.62	146.62 ¹	=	146.62				
f	400	а	=	?	5000/146.62	=	34.1				
Ino	<	b	=	1	а	=	34.10				
Ĕ		Urba	n	tiomonto	500	0 - ax 146 62 ^{0.6667}					
٩			n sei		500	$0 = a \times 140.02$					
		A	=	5000	440,000.6667		07.04				
		Р	=	146.62	146.62	=	27.81				
		a	=	? 0.0007	5000/27.81	=	179.79				
		D	=	0.6667	а	=	179.79				
		Oper	n sett	lements	50	$000 = a \times 121.15^2$					
		А	=	5000	0						
		Р	=	121.15	121.15 ²	=	14676.72				
		а	=	?	5000/14676.72	=	0.34				
		b	=	2	а	=	0.34				
		Villad	ae se	ttlements	50	$000 = a \times 121.15^{1}$					
	шп	A	=	5000							
	i	Р	=	121.15	121.15 ¹	=	121.15				
	1ax	а	=	?	5000/121.15	=	41.3				
	~	b	=	1	a	=	41.27				
		Lirba	n coi	tlamonte	500	0 - av 121 15 ^{0.6667}					
				5000	500	u = a x 121.13					
		A	=		101 150.6667		04.40				
		۲ -	=	121.15	TZT.15	=	24.49				
		a	=	(0.0007	5000/24.49	=	204.19				
		b	=	0.6667	а	=	204.19				

Initial growth indices											
Settlement type	SPF population estimate based on amount of storage:										
	None (222.52) Moderate (146.62) Maximum (121.15)										
Open	0.10	0.23	0.34								
Village	22.47	34.10	41.27								
Urban	136.14	179.79	204.19								

Settlement population density coefficient (SPDC)

Data required							
Total site extent (ha)	0.5						
Proportion of site assessable (%)	24.99						
Number of contemporaneous dwellings in the assessable area	12.48						
Dwellings in assessable area	16						
Contemporaneity value (%)	78						

Method 1: Total population based on commonly utilised SPDCs

	SPDC (people/ha)				
	Minimum Average Maxii				
	90	150	294		
Total population	45	75	147		
Population in the assessable area	11.25	18.74	36.73		
People per dwelling in the assessable area	0.90	1.50	2.94		

Method 2: SPDCs based on HUM, RADC and SPF population estimates												
Method	Total	population esti	mate	SPDC (people/ha)								
	Minimum	Average	Maximum	Minimum	Average	Maximum						
HUM	149.82	274.67	399.53	299.64	549.34	799.05						
RADC	113.32	171.69	320.10	226.63	343.38	640.20						
SPF	146.62	-	222.52	293.24	-	445.04						

Assessable area	Assessable area	136.02	Potential	Locus 1	4.36
(m²)	Unassessable area	0.72	residential floor	Locus 2*	7.04
	Total	135.30	area (m²)	Locus 3	7.97
				Locus 4	2.85
Potential residential	Locus 1	6.22		Locus 5*	8.19
built area (m ²)	Locus 2	13.97		Locus 11	11.82
	Locus 3	14.05		Locus 20*	9.37
	Locus 4	5.09		Locus 22*	6.28
	Locus 5*	15.30		Locus 25*	9.01
	Locus 11 ^a	16.75		Total	66.88
	Locus 20*	14.83		*Mean residential floor area: complete dwellings	7.98
	Locus 22*	13.27			
	Locus 25	14.10	Built floor area	Locus 1	4.36
	Total	113.59	(m ²)	Locus 2	7.04
	Mean	12.62		Locus 3	7.97
	SD (±)	4.08		Locus 4	2.85
	*Mean residential built area: complete dwellings	14.47		Locus 5	8.19
				Locus 11	11.82
Potential non-	Loci 21/23/26	12.66		Locus 20	9.37
residential built	Undesignated loci	2.91		Locus 21	2.56
area (m ²)	Total	15.57		Locus 22	6.28
. ,				Locus 23	1.05
Built area (m ²)	Potential residential built area	113.59		Locus 25	9.01
	Potential non-residential built area	15.57		Locus 26	1.69
	Total	129.16		Undesignated loci	0.84
				Total	73.02

'Ain Abu Nekheileh

^a Northern boundary of Locus 11 is not defined in the original site plan and, therefore, cannot be assessed as a complete structure.

Housing unit method (HUM)				
Method 1: Total potential dwelling number				79.82
Number of potential dwellings in the assessable	area			9
Assessable area (m ²)				135.3
Estimated total site extent (m ²)				1200
Assessable area (proportion)				0.1128
Method 2: Total potential dwelling number				79.82
Mean potential residential built area (m ²)				12.62
Potential residential built area (m^2)	Locus 1	6.22	Locus 11	16.75
	Locus 2	13.97	Locus 20	14.83
	Locus 3	14.05	Locus 22	13.27
	Locus 4	5.09	Locus 25	14.10
	Locus 5	15.30		
Total built area estimate (m ²)				1145.54
		Assessable	e area (m²)	135.3
	A	ssessable buil	t area (m^2)	129.16
Assessable built ar	ea as a propo	ortion of asses	sable area	0.9546
	Estima	ated total site	extent (m^2)	1200
Residential built area as a proportion of assessa	able built area	1		0.8794
	Potential r	residential buil	t area (m²)	113.59
Total potential residential built area (m ²)				1007.41
Method 3: Total potential dwelling number				79.82
Potential residential built area as a proportion of	assessable a	area		0.8395
Total number of contemporaneous dwellings (65	5%)			51.88
Total population estimate based on nuclear f	family size:	Minimum	3	155.65
		Average	5.5	285.37
		Maximum	8	415.08

Method 1: Total potential residential floor area (m ²)							
Potential residential floor area (m ²)				66.88			
Potential residential floor area (m ²)	Locus 1	4.36	Locus 11	11.82			
	Locus 2	7.04	Locus 20	9.37			
	Locus 3	7.97	Locus 22	6.28			
	Locus 4	2.85	Locus 25	9.01			
	Locus 5	8.19					
Assessable area (m ²)				135.3			
Estimated total site extent (m ²)				1200			
Assessable area (proportion)				0.1128			
Method 2: Total potential residential floc	or area (m²)			593.16			
Total built area estimate (m ²)				1145.54			
		Assessa	ble area (m²)	135.3			
		Assessable b	uilt area (m²)	129.16			
Assessable bui	ilt area as a pi	roportion of ass	essable area	0.9546			
	Es	timated total sit	e extent (m^2)	1200			
Potential residential floor area as a proporti	on of assessa	able built area		0.5178			
	Potent	ial residential flo	oor area (m²)	66.88			
Method 3: Total potential residential floo	or area (m ²)			593.16			
Potential residential floor area as a proporti	on of assessa	able area		0.4943			
Total contemporaneous residential floor are	ea (m²) (65%)			385.56			
Total population estimate based on RAD	0C (m²):	Minimum	1.77	217.83			
		Average	3.3	116.83			
		Maximum	5	77.11			

Residential area density coefficient (RADC)

Storage provisions formula (SPF)

					Res	sidential storage prov	visions (m ³	per perso	on)		
			No	ne		Moderate (0.46)			Maximum (2 x 0.46)		
			P = 0.3944	P = 0.3944A - 0.375			P = 0.2477A + 0.0339			P = 0.1903A + 0.3976	
Metho	od 1: Tot	tal population	estimate (P) based on tota	al contemp	oraneous	residential floor area	a (A)				
А	=	385.56	0.3944 x 385.56	=	152.06	0.2477 x 385.56	=	95.50	0.1903 x 385.56	=	73.37
Р	=	?	152.06 - 0.375	=	151.69	95.5 + 0.0339	=	95.54	73.37 + 0.3976	=	73.77
			Р	=	151.69	Р	=	95.54	Р	=	73.77
A	=	7.98	0.3944 x 7.98	=	3.15	0.2477 x 7.98	=	1.98	0.1903 x 7.98	=	1.52
			0.2044×7.09		S Daseu O					_	1 5 2
Р	=	?	3.15 - 0.375	=	2.77	1.98 + 0.0339	=	2.01	1.52 + 0.3976	=	1.88
			P	=	2.77	P	=	2.01	Ρ	=	1.88
					7	otal number of conten	nporaneous	dwellings			51.88
		Total popula	ition		143.84			104.32			97.43
Mean	Mean total population				147.76			99.93			85.6

Naroll's (1962) AGF1

Summary of estimates based on	Ν	Naroll's (1962) formu	ıla		Archaeological evidence					
	SPF population	estimate based on a	mount of storage:	SPF population estimate based on amount of storage:						
	None (147.76)	Moderate (99.93)	Maximum (85.6)		None (147.76)	Moderate (99.93)	Maximum (85.6)			
Total built floor area (m ²)	1455.89	1047.35	919.42	647.63						
Built floor area per person (m ²)	9.85	10.48	10.74		4.38	6.48	7.57			
RADC (m ² per person)	9.02	9.60	9.84		2.61	3.86	4.50			
Initial growth index	9.65	13.42	15.29							

Data required										
SPF population estimate (P) based on amount of storage: None 1 Moderate										
-						Moderate	99.93			
						Maximum	85.60			
Resid	lential	floor are	a as a	proportion c	of built floor area (%)		91.59			
				Total built	floor area (m^2) (Å)		647.63			
					Built floor area in assessa	ble area (m²)	73.02			
					Proportion of site as	sessable (%)	11.28			
				Total resid	dential floor area (m ²) (RADC meth	nod)	593.16			
Built f	loor a	rea per p	erson	(m ²) derived	from SPF population estimates	None	4.38			
and to	otal bu	ilt floor a	area ba	sed on amo	unt of storage:	Moderate	6.48			
					3	Maximum	7.57			
RADO	C deriv	ed from	SPF p	opulation es	timates and total	None	2 61			
conte	mpora	ineous re	esident	ial floor area	a based on amount of storage:	Moderate	3.86			
						Maximum	4 50			
		7	Total co	ntemnorane	Pous residential floor area (m^2) (R	ADC method)	385 56			
				momporant			000.00			
					$\mathbf{A} = \mathbf{a} \mathbf{x} \mathbf{P}^{\mathbf{b}}$					
		Metho	d 1: To	otal built flo	oor area (m²) (A), built floor area	per person al	nd RADC			
		A	=	?	A = 21.7 x 1	47.76				
		Р	=	147.76	147.76 ^{0.84195}	=	67.09			
		а	=	21.7	21.7 x 67.09	=	1455.89			
		b	=	0.84195	Α	=	1455.89			
	Ø	Built f	loor ar	ea per pers	son (m²)		9.85			
	lon	RADC	(m ² pe	er person)			9.02			
	<			Resider	ntial floor area as a proportion of b	uilt floor area	91.59			
		Metho	d 2: Re	e-calculated	d initial growth index (<i>a</i>)					
		А	=	647.63	647.63 = <i>a</i> x	147.76 ^{0.84195}				
		Р	=	147.76	147.76 ^{0.84195}	=	67.09			
		а	=	?	647.63/67.09	=	9.65			
		b	=	0.84195	а	=	9.65			
-		Metho	d 1: To	tal built flo	oor area (m ²) (A), built floor area	per person a	nd RADC			
		$A = ?$ $A = 21.7 \times 99.93^{0.84195}$								
		Р	=	99.93	99.93 ^{0.84195}	=	48.26			
:e		а	=	21.7	21.7 x 48.26	=	1047.35			
raç		b	=	0.84195	Α	=	1047.35			
sto	ate	Built f	loor ar	ea per pers	son (m ²)		10.48			
of s	lera	RADC (m ² per person)								
nt c	100		po	Resider	ntial floor area as a proportion of b	uilt floor area	91.59			
Ino	2	Metho	d 2: R4	e-calculater	d initial growth index (a)					
Ĕ		A	=	647,63	647.63 = a x	99.93 ^{0.84195}				
4		P	=	99.93	99 93 ^{0.84195}	= =	48 26			
		a	=	20.00 ?	647 63/48 26	=	13 42			
		с b	_	0.84195	a	_	13 42			
		Mothe	– d 1. Ta		$\frac{1}{1}$	nor person of				
			u i. it	0 אמו איזער ווט 2	∇i area (iii <i>j</i> (A), built hour drea $\Lambda = 24.7 \text{ s}$	85 6 ^{0.84195}				
		D D	_	: 85 60	A = 21.7 X		∕ 10 27			
		г 2	=	00.00 01 7	00.0 01 7 v 40 07	=	42.31			
		a b	=	21.1 0.9110E	21.1 X 42.31 A	=	919.4Z			
	Е	D:14 4	=	0.04195	$\frac{A}{(m^2)}$	=	319.42			
	nu		100r ar	ea per pers	ion (m.)		10.74			
	axi	RADC	(m⁻ pe	er person)	ntial floor area as a properties of t		9.84			
	Ŵ		1.6 -	Residei	nual floor area as a proportion of b	uiit fioor area	91.59			
		Metho	d 2: Re	e-calculated	d initial growth index (a)	OF 00.84195				
		A	=	647.63	647.63 = a	K 85.6				
		Р	=	85.60	85.6	=	42.37			
		a	=	?	647.63/42.37	=	15.29			
		b	=	0.84195	а	=	15.29			

Wiessner's (1974) AGF2

	Data required									
Total s	site exte	ent (m ²)	(A)				1200			
SPF p	opulatio	on estim	nate (I	P) based on	amount of storage:	None	147.76			
						Moderate	99.93			
						Maximum	85.60			
		0		lamanta	$A = a \times P^{*}$	$4200 - 2 \times 447.70^2$				
		Open settlements				$1200 = a \times 147.76$				
		A	=	1200	$4.47.70^{2}$		04004.07			
		Р	=	147.76	147.76	=	21834.27			
		a	=	?	1200/21834.27	=	0.05			
		D	=	2	а	=	0.05			
		Villa	ge se	ttlements		1200 = <i>a</i> x 147.76'				
	ы	A	=	1200	1					
	Vor	Р	=	147.76	147.76'	=	147.76			
		а	=	?	1200/147.76	=	8.1			
		b	=	1	а	=	8.1			
		Urba	an set	tlements	1	200 = <i>a</i> x 147.76 ^{0.6667}				
		А	=	1200						
		Р	=	147.76	147.76 ^{0.6667}	=	27.95			
		а	=	?	1200/27.95	=	42.93			
		b	=	0.6667	а	=	42.93			
		Oper	n sett	lements		$1200 = a \times 99.93^2$				
		Α	=	1200						
		P	=	99.93	99 93 ²	=	9985 25			
		a	=	?	1200/9985 25	=	0.12			
		b	=	2	a	=	0.12			
ag		~ Villo	ao	- ttlomonto		$1200 - 2 \times 00.02^{1}$	•••=			
tor	ite	villa;	ye se	1200		$1200 = a \times 55.55$				
fs	era		_	1200	00.021	_	00.02			
to	po	Г О	=	99.93	99.93 1200/00 02	=	99.93			
n	N	a b	=	؛ ۱	1200/99.93	=	12.0			
o E		D	=	1	a	= 0.6667	12.0			
Ā		Urba	an set	tlements		$1200 = a \times 99.93^{0.0007}$				
		A	=	1200	0.6667					
		Р	=	99.93	99.93 ^{0.0007}	=	21.54			
		а	=	?	1200/21.54	=	55.72			
		b	=	0.6667	а	=	55.72			
		Ореі	n sett	lements		1200 = <i>a</i> x 85.6 ²				
		А	=	1200						
		Р	=	85.60	85.6 ²	=	7327.59			
		а	=	?	1200/7327.59	=	0.16			
		b	=	2	а	=	0.16			
		Villa	ae se	ttlements		$1200 = a \times 85.6^{1}$				
	шп	A	=	1200						
	ü	Р	=	85.60	85.6 ¹	=	85.60			
	<i>l</i> lax	а	=	?	1200/85.6	=	14.0			
	2	b	=	1	а	=	14.0			
		Hrba	an cot	tlemente		1200 - a x 85 6 ^{0.6667}	-			
			-	1200		$1200 = a \times 03.0$				
		D	_	85 60	85 6 ^{0.6667}	_	10 / 2			
		г э	_	2	1200/10 /2	=	19.43 61 77			
		a h	_	: 0 6667	1200/18.43 a	=	61.77			
		5	-	0.0007	a		01.77			

Initial growth indices									
Settlement type	type SPF population estimate based on amount of storage:								
	None (147.76)	Moderate (99.93)	Maximum (85.6)						
Open	0.05	0.12	0.16						
Village	8.12	12.01	14.02						
Urban	42.93	55.72	61.77						

Settlement population density coefficient (SPDC)

Data required							
Total site extent (ha)	0.12						
Proportion of site assessable (%)	11.28						
Number of contemporaneous dwellings in the assessable area							
Dwellings in assessable area	9						
Contemporaneity value (%)	65						

Method 1: Total population based on commonly utilised SPDCs								
	SPDC (people/ha)							
	Minimum	Average	Maximum					
	90	150	294					
Total population	10.8	18	35.28					
Population in the assessable area	1.22	2.03	3.98					
People per dwelling in the assessable area	0.21	0.35	0.68					

Method 2: SPDCs based on HUM, RADC and SPF population estimates										
Method	Total	population esti	mate	SPDC (people/ha)						
	Minimum	Average	Maximum	Minimum	Average	Maximum				
HUM	155.65	-	285.37	1297.12	-	2378.05				
RADC	77.11	116.83	217.83	642.59	973.62	1815.23				
SPF	85.60	99.93	147.76	713.34	832.72	1231.37				

	El-Hemme	eh (LPP	NB)									
-	Assessable area (m ²)	Assessa Unasses Total	able area ssable area	126.82 25.44 101.38	Built area (m²)	Potentia Potentia Total	l residential built area (groun l non-residential built area	'ea (ground floor) - uilt area 101.24 101.24 101.24				
-	Potential	Upper	Unit 1*	20.23					Adjusted ^a			Adjusted
	residential	storey	Unit 2*	10.40	Potential	Upper	Unit 1	16.95	13.98	Unit 3	7.76	6.40
	built area		Unit 3	10.32	residential	storey	Unit 2	8.75	7.22	Unit 4	8.55	7.05
	(m²)		Unit 4	11.96	floor area	Total					42.01	34.66
		Total		52.91	(m²)	Mean residential floor area (all complete)					10.50	8.66
		Mean		13.23								
		SD (±)		4.73	Built floor	Ground	Unit 1: spaces 13-15/32/?	9.36		Space 21	1.94	
		Mean re	sidential built area:	15.32	area (m²)	floor	Unit 2: spaces 12/19/?	9.45		Space 23	2.56	
ζī		complet	e dwellings				Unit 3: spaces 16/17/?	7.54		Space 27	0.87	
47	Potential	Ground	Unit 1: spaces 13-15/32	20.23			Unit 4: space 20	5.02		Space 30	1.45	
	non-	floor	Unit 2: space 12/19	20.82			Undesignated space	3.40		Space 31	1.20	
	residential		Unit 3: space 16/17	17.71		Upper	Unit 1	16.95	13.98	Unit 3	7.76	6.40
	built area		Unit 4: space 20	11.96		storey	Unit 2	8.75	7.22	Unit 4	8.55	7.05
	(m²)		Spaces 21/23/27/30-31 and undesignated space	30.52		Total					84.80	77.45
		Total		101.24								

^a Upper storey interior area reduced by 17.5% based on proportion derived for Beidha Subphase C2 (17.42%) (see Section 5.2.2).

Housing unit method (HUM)							
Method 1: Total potential dwelling number			315.64				
Number of potential dwellings in the assessable area			4				
Assessable area (m ²)			101.38				
Estimated total site extent (m ²)			8000				
Assessable area (proportion)			0.0127				
Method 2: Total potential dwelling number			315.64				
Mean potential residential built area (m ²)			13.23				
Potential residential built area (m^2) Unit 1	20.23	Unit 3	10.32				
Unit 2	10.40	Unit 4	11.96				
Total built area estimate (m^2)			7088 05				
	Assassable a	$roa(m^2)$	101 38				
Assessable built area (m^2)							
Fstimate	of total site ext	$rac{1}{2}$	8000				
		on (m)	0000				
Residential built area as a proportion of assessable built area			0.5226				
Potential res	idential built ar	rea (m²)	52.91				
Total potential residential built area (m ²)			4175.18				
Method 3: Total potential dwelling number			315.64				
Potential residential built area as a proportion of assessable are	ea		0.5219				
T							
I otal number of contemporaneous dwellings (78%)			246.20				
Total population estimate based on nuclear family size:	Minimum	2	738 61				
	Maximum	8	1060 62				
	maximum	0	1303.02				

Residential area density coefficient (RADC)									
Method 1: Total potential residential floor a	rea (m²)			2734.66					
Potential residential floor area (m ²)				34.66					
Potential residential floor area (m^2)	Unit 1	13.98	Unit 3	6.40					
	Unit 2	7.22	Unit 4	7.05					
Assessable area (m ²)				101.38					
Estimated total site extent (m ²)				8000					
Assessable area (proportion)				0.0127					
Method 2: Total potential residential floor area (m ²)									
Total built area estimate (m ²)									
Assessable area (m ²)									
Assessable built area (m ²)									
Assessable built area as a proportion of assessable area									
	Est	imated total site e	xtent (m ²)	8000					
Potential residential floor area as a proportion	of assessa	ble built area		0.3423					
	Potentia	al residential floor	area (m²)	34.66					
Method 3: Total potential residential floor a	rea (m²)			2734.66					
Potential residential floor area as a proportion	of assessa	ble area		0.3418					
Total contemporaneous residential floor area (m²) (78%)			2133.04					
Total population estimate based on RADC (m²):	Minimum	1.77	1205.11					
		Average	3.3	646.37					
		Maximum	5	426.61					

Storage provisions formula (SPF)

				Residential storage provisions (m ³ per person)									
			None	1		Moderate (0.46)			Maximum (2 x 0.46)				
			P = 0.3944A	P = 0.3944A - 0.375			7A + 0.0339		P = 0.1903A + 0.3976				
Meth	od 1: T	otal population esti	imate (P) based on total	contemp	poraneou	s residential floor ar	ea (A)						
А	=	2133.04	0.3944 x 2133.04	=	841.27	0.2477 x 2133.04	=	528.35	0.1903 x 2133.04	=	405.92		
Р	=	?	841.27 - 0.375	=	840.89	528.35 + 0.0339	=	528.39	405.92 + 0.3976	=	406.31		
			Р	=	840.89	Р	=	528.39	Р	=	406.31		
Meth	od 2: P	People per dwelling	(P) and total population	estimate	es based	on mean residential	floor area of	complet	e dwellings (A)				
А	=	8.66	0.3944 x 8.66	=	3.42	0.2477 x 8.66	=	2.15	0.1903 x 8.66	=	1.65		
Р	=	?	3.42 - 0.375	=	3.04	2.15 + 0.0339	=	2.18	1.65 + 0.3976	=	2.01		
			Р	=	3.04	Р	=	2.18	Р	=	2.01		
					7	otal number of conter	mporaneous d	dwellings			246.20		
		Total population			748.58			536.47			494.20		
Mear	n total p	population			794.74			532.43			450.26		

Maroll's (1962) AGF1

Summary of estimates based on:		Naroll's (1962) forn	nula		Archaeological evidence			
	SPF populatio	n estimate based on	amount of storage:		SPF population estimate based on amount of storage:			
	None (794.74)	Moderate (532.43)	Maximum (450.26)		None (794.74)	Moderate (532.43)	Maximum (450.26)	
Total built floor area (m ²)	6002.09	4283.86	3719.99	6111.66				
Built floor area per person (m ²)	7.55	8.05	8.26		7.69	11.48	13.57	
RADC (m ² per person)	3.38	3.60	3.70		2.68	4.01	4.74	
Initial growth index	22.10	30.96	35.65					

					Data required			
SPF	SPF population estimate (P) based on amount of storage: None						794.74	
	Moderate							
						Maximum	450.26	
Residential floor area as a proportion of built floor area (%)								
	Total built floor area (m^2) (Å)							
	Built floor area in assessable area (m^2)							
					Proportion of site as	ssessable (%)	1.27	
				Total resid	lential floor area (m²) (RADC metl	hod)	2734.66	
Built	floor a	rea per	person	(m ²) derived	from SPF population estimates	None	7.69	
and t	otal bu	uilt floor	area ba	ased on amo	ount of storage:	Moderate	11.48	
					-	Maximum	13.57	
RAD	C deriv	ved from	SPF	population es	stimates and total	None	2.68	
conte	empora	aneous r	esiden	tial floor area	a based on amount of storage:	Moderate	4.01	
					5	Maximum	4.74	
			Total c	ontemporan	eous residential floor area (m²) (R	ADC method)	2133.04	
					$A = a \times P^{2}$			
		Metho	od 1: I	otal built flo	oor area (m ⁻) (A), built floor area	per person al	nd RADC	
		A	=	?	$A = 21.7 \times 10^{-84195}$	94.74	070 50	
		Р	=	794.74	/94./4	=	276.59	
		а	=	21.7	21.7 x 276.59	=	6002.09	
		b	=	0.84195	A	=	6002.09	
	ЭС	Built	floor a	rea per pers	son (m²)		7.55	
	Vor	RADC	; (m² p	er person)			3.38	
				Reside	ntial floor area as a proportion of l	built floor area	44.74	
		Metho	od 2: R	e-calculated	d initial growth index (<i>a</i>)	0.04405		
		А	=	6111.66	6111.66 = <i>a</i> x	794.74 ^{0.84195}		
		Р	=	794.74	794.74 ^{0.84195}	=	276.59	
		а	=	?	6111.66/276.59	=	22.10	
		b	=	0.84195	а	=	22.10	
		Metho	od 1: T	otal built flo	oor area (m²) (A), built floor area	per person a	nd RADC	
		А	=	?	A = 21.7 x 5	5 32.43^{0.84195}		
		Р	=	532.43	532.43 ^{0.84195}	=	197.41	
ge:		а	=	21.7	21.7 x 197.41	=	4283.86	
ra		b	=	0.84195	Α	=	4283.86	
sto	ate	Built f	floor a	rea per pers	son (m²)		8.05	
of	der	RADC	; (m² p	er person)			3.60	
nt	Moi			Reside	ntial floor area as a proportion of l	built floor area	44.74	
no		Metho	od 2: R	e-calculated	d initial growth index (a)			
₩		А	=	6111.66	6111.66 = <i>a</i> x	532.43 ^{0.84195}		
		Р	=	532.43	532.43 ^{0.84195}	=	197.41	
		а	=	?	6111.66/197.41	=	30.96	
		b	=	0.84195	а	=	30.96	
		Metho	d 1: T	otal built flo	oor area (m ²) (A), built floor area	per person a	nd RADC	
		A	=	?	$A = 21.7 \times 4$	50.26 ^{0.84195}		
		P	=	450 26	450 26 ^{0.84195}	=	171 43	
		a	_	21.7	21 7 x 171 43	_	3719 99	
		h	_	0 84195	Δ	_	3719 99	
	ш		floor a	rea ner ners	(m^2)		8 26	
	im	RADC	: (m ² n	er nerson)			3 70	
	lax.		, in b	Resider	ntial floor area as a proportion of l	built floor area	44 74	
	Ň	Mothe	vd 2. D		d initial growth index (a)		77.17	
			JU Z. K		מ וווונמו פוטענוז ווועפג (מ) גער – גער אווונפג (מ)	450 26 ^{0.84195}		
			=	450.26	$450.2e^{0.84195}$		171 /0	
		г 2	=	400.20 2		=	1/1.43 25 65	
		d h	=	(0.94405	0111.00/171.43	=	30.00 25 65	
		U	=	0.04195	a	=	30.60	

Wiessner's (1974) AGF2

Total site extent (m ²) (A) 10000 SPF population estimate (P) based on amount of storage: None Moderate 532.43 Maximum 450.26 A = a X P ² A = 10000 P = 794.74 794.74 ² = 631606.77 a = ? 10000/631606.77 = 0.02 b = 2 a = 0.02 Village settlements 10000 = a x 794.74 ¹ A = 10000 P = 794.74 794.74 ¹ = 794.74 a = ? 10000/794.74 = 12.6 b = 1 a = 12.58 Urban settlements 10000 = a x 794.74 ^{0.6667} A = 10000 P = 794.74 794.74 ^{0.6667} = 85.82 a = ? 10000/85.82 = 116.53 b = 0.6667 a = 116.53 b = 0.6667 a = 0.04 Village settlements 10000 = a x 532.43 ¹ A = 10000 P = 532.43 532.43 ¹ = 532.43 ¹ A = 10000 P = 532.43 532.43 ¹ = 0.04 Village settlements 10000 = a x 532.43 ¹ A = 10000 P = 532.43 532.43 ¹ = 18.8 B = 0.04 Village settlements 10000 = a x 532.43 ¹ A = 10000 P = 532.43 532.43 ¹ = 532.43 ¹ A = 10000 P = 532.43 532.43 ¹ = 18.78 Urban settlements 10000 = a x 532.43 ^{0.6667} A = 10000 P = 532.43 532.43 ^{0.6667} A = 10000 P = 532.43 532.43 ^{0.6667} A = 10000 P = 4532.43 532.43 ^{0.6667} A = 0000 P = 450.26 450.26 ² = 202732.25 0 = 0.6667 a = 152.20 b = 2 a = 0.05 Village settlements 10000 = a x 450.26 ^{0.6667} A = 10000 P = 450.26 450.26 ¹ = 450.26 b = 2 a = 0.05 Village settlements 10000 = a x 450.26 ^{0.6667} A = 10000 P = 450.26 450.26 ¹ = 450.26 b = 2 a = 0.05 b = 2 a = 0.05 C = 1 a = 22.21 C = 0.6667 a = 20000 = 0.6667 C = 0.050 C = 0.6667 a = 170.19 C = 0.6667 C = 0.71,19 C = 0.6667 C = 0.71,19 C = 0.666						Data required		
SPF population estimate (P) based on amount of storage: None 794.74 Moderate 532.43 Maximum 450.26 $A = a x P^{b}$ $A = a 10000$ P = 794.74 794.74 ² = 631606.77 a = ? 10000/631606.77 = 0.02 b = 2 a = 0.02 Village settlements 10000 = a x 794.74 ¹ A = 10000 P = 794.74 794.74 ¹ = 794.74 ¹ A = 10000 P = 794.74 794.74 ² = 12.6 b = 1 a = 12.6 Urban settlements 10000 = a x 794.74 ^{0.6667} A = 10000 P = 794.74 794.74 ^{0.6667} = 85.82 a = ? 10000/85.82 = 116.53 b = 0.6667 a = 116.53 Dopen settlements 10000 = a x 532.43 ² A = 10000 P = 532.43 532.43 ² = 283480.40 a = ? 10000/283480.4 = 0.04 Village settlements 10000 = a x 532.43 ² A = 10000 P = 532.43 532.43 ² = 16.53 D = 0.6667 a = 10000 P = 532.43 532.43 ¹ = 532.43 ² A = 10000 P = 532.43 532.43 ¹ = 532.43 ¹ A = 10000 P = 532.43 532.43 ¹ = 532.43 ¹ A = 10000 P = 532.43 532.43 ¹ = 532.43 ¹ A = 10000 P = 532.43 532.43 ¹ = 0.04 Village settlements 10000 = a x 532.43 ^{0.6667} A = 10000 P = 450.26 450.26 ² = 202732.25 a = ? 10000/65.71 = 152.20 b = 0.6667 a = 12.20 b = 0.6667 a = 2.22 b = 1 a = 2 A = 10000 P = 450.26 450.26 ² = 202732.25 A = 2.22 b = 1 a = 2 Urban settlements 10000 = a x 450.26 ¹ A = 10000 P = 450.26 450.26 ² = 202732.25 A = 2.22 b = 1 a = 2 0.05 Village settlements 10000 = a x 450.26 ¹ A = 10000 P = 450.26 450.26 ¹ = 450.26 ¹ A = 2.22 b = 1 a = 2.22 b = 1 a = 2.22 Urban settlements 10000 = a x 450.26 ^{0.6667} A = 10000 P = 450.26 450.26 ¹ = 450.26 ^{0.6677} A = 2.22 b = 1 a = 2.22	Total	site ex	tent (m	²) (A)				10000
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	SPF p	populat	ion est	imate	(P) based on	amount of storage:	None	794.74
$ \begin{array}{c} \mbox{Maximum} & 450.26 \\ \hline \mbox{Maximum} & 10000 = a \times 794.74^2 \\ \mbox{Maximum} & 450.26 \\ \hline \mbox{Maximum} & 10000 = a \times 794.74^3 \\ \mbox{Maximum} & 450.26 \\ \hline \mbox{Maximum} & 10000 = a \times 794.74^3 \\ Maxi$		•		Moderate	532.43			
$\frac{A = a \times P^{b}}{10000 = a \times 794.74^{2}}$ $A = 10000$ $P = 794.74$ $A = 10000 = a \times 794.74^{2}$ $A = 10000 = a \times 794.74^{1}$ $A = 10000 = a \times 532.43^{2}$ $A = 10000 = a \times 532.43^{2}$ $A = 10000 = a \times 532.43^{2}$ $A = 10000 = a \times 532.43^{1}$ $A = 10000 = a \times 6532.43^{1}$ $A = 10000 = $							Maximum	450.26
P = 794.74 P = 532.43 S32.432 P = 532.43 S32.431 P = 100000 P = 450.26 450.261 P = 450.26 S2.21							in a share a sh	100120
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					-	$A = a \times P^{b}$	2	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			Оре	en set	tlements	10000) = <i>a</i> x 794.74 ²	
P = 794.74 794.74 = 631606.77 = 0.02 b = 2 a = 0.02 Village settlements 10000 = a x 794.741 A = 10000 P = 794.74 794.741 = 794.741 a = ? 10000/794.74 = 12.6 b = 1 a = 12.58 Urban settlements 10000 = a x 794.740.6667 A = 10000 P = 794.74 794.740.6667 = 85.82 a = ? 10000/85.82 = 116.53 b = 0.6667 a = 116.53 Open settlements 10000 = a x 532.432 A = 10000 P = 532.43 532.432 = 283480.40 a = ? 10000/283480.4 = 0.04 b = 2 a = 0.04 Village settlements 10000 = a x 532.431 A = 10000 P = 532.43 532.431 = 532.43 a = ? 10000/283480.4 = 0.04 b = 2 a = 10000 P = 532.43 532.431 = 532.431 A = 10000 P = 532.43 532.431 = 18.78 Urban settlements 10000 = a x 532.430.6667 A = 10000 P = 532.43 532.431 = 18.78 Urban settlements 10000 = a x 532.430.6667 A = 10000 P = 532.43 532.430.6667 = 65.71 a = ? 10000/55.71 = 152.20 b = 0.6667 a = 20.72 b = 0.6667 a = 0.05 b = 2 a = 0.05 Village settlements 10000 = a x 450.262 A = 10000 P = 450.26 450.262 = 202732.25 a = ? 10000/20732.25 = 0.05 b = 2 a = 0.05 b = 2 a = 0.05 b = 1 a = 20000 P = 450.26 450.261 = 450.261 A = 10000 P = 450.26 450.261 = 450.261 A = 10000 P = 450.26 450.261 = 450.261 A = 10000 P = 450.26 450.261 = 22.21 Urban settlements 10000 = a x 450.260.6667 A = 10000 P = 450.26 450.260.6667 = 22.22 b = 1 a = 22.21 Urban settlements 10000 = a x 450.260.6667 A = 10000 P = 450.26 450.260.6667 = 58.76 a = ? 10000/58.76 = 22.21 Urban settlements 10000 = a x 450.260.6667 A = 10000 P = 450.26 450.260.6667 = 58.76 a = ? 10000/58.76 = 170.19 Content = 170.19			A	=	10000	2		
$ \begin{array}{c} \begin{array}{c} a & = ? \\ b & = 2 \\ b & = 2 \\ a & = 0.02 \\ \hline b & = 2 \\ a & = 0.02 \\ \hline b & = 1 \\ a & = 10000 \\ \hline P & = 794,74 \\ a & = ? \\ 10000/794.74 \\ = 12.6 \\ \hline b & = 1 \\ a & = 12.58 \\ \hline \ Urban settlements \\ \hline 10000 = a x 794.74^{0.6667} \\ A & = 10000 \\ \hline P & = 794,74 \\ 794.74^{0.6667} \\ a & = 1 \\ a & = 116.53 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			Р	=	794.74	794.74 ²	=	631606.77
b = 2 a = 0.02 Village settlements 10000 = a x 794.74 A = 10000 P = 794.74 794.74 794.74 a = 7 10000/794.74 = 12.6 b = 1 a = 12.5 Urban settlements 10000 = a x 794.74 A = 10000 P = 794.74 794.740.6667 A = 10000 P = 794.74 794.740.6667 A = 10000 P = 794.74 794.740.6667 A = 10000 P = 532.43 532.43 532.432 = 283480.40 a = 7 10000/283480.4 = 0.04 b = 2 a = 7 10000/283480.4 = 0.04 b = 2 a = 7 10000/283480.4 = 0.04 b = 2 a = 7 10000/283480.4 = 0.04 b = 2 a = 7 10000/283480.4 = 0.04 b = 1 a = 18.78 Urban settlements 10000 = a x 532.431 A = 10000 P = 532.43 532.43 532.431 = 532.43 b = 1 a = 18.78 Urban settlements 10000 = a x 532.430.6667 A = 10000 P = 450.26 450.262 A = 10000 P = 450.26 450.262 A = 10000 P = 450.26 450.261 = 2 a 0.05 Village settlements 10000 = a x 450.261 A = 10000 P = 450.26 450.261 = 2 22 b = 1 a = 2 0.05 Village settlements 10000 = a x 450.260.6667 A = 10000 P = 450.26 450.261 = 222 b = 1 a = 2 0.05 Village settlements 10000 = a x 450.260.6667 A = 10000 P = 450.26 450.261 = 222 b = 1 a = 2 0.05 Village settlements 10000 = a x 450.260.6667 A = 10000 P = 450.26 450.261 = 222 b = 1 a = 2 0.05 Village settlements 10000 = a x 450.260.6667 A = 10000 P = 450.26 450.260.6667 = 22.21 Urban settlements 10000 = a x 450.260.6667 A = 10000 P = 450.26 450.260.6667 = 22.21 Urban settlements 10000 = a x 450.260.6667 A = 10000 P = 0.6667 A = 10000 P			а	=	?	10000/631606.77	=	0.02
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$			b	=	2	а	=	0.02
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$			Villa	age se	ettlements	10000) = <i>a</i> x 794.74 ¹	
$ \underbrace{ S} \\ P = 794.74 794.74^{1} = 794.74 = 794.74 \\ a = ? 10000/794.74 = 12.6 \\ b = 1 a = 12.58 \\ Urban settlements 10000 = a x 794.74^{0.6667} \\ A = 10000 \\ P = 794.74 794.74^{0.6667} = 85.82 \\ a = ? 10000/85.82 = 116.53 \\ b = 0.6667 a = 116.53 \\ Den settlements 10000 = a x 532.43^{2} \\ A = 10000 \\ P = 532.43 532.43^{2} = 283480.40 \\ a = ? 10000/283480.4 = 0.04 \\ b = 2 a = 0.04 \\ b = 2 a = 0.04 \\ b = 2 a = 0.04 \\ b = 1 0000 \\ P = 532.43 532.43^{1} = 532.43^{1} \\ A = 10000 \\ P = 532.43 532.43^{1} = 532.43^{1} \\ A = 10000 \\ P = 532.43 532.43^{1} = 18.8 \\ b = 1 a = 18.78 \\ Urban settlements 10000 = a x 532.43^{0.6667} \\ A = 10000 \\ P = 532.43 532.43^{0.8667} = 65.71 \\ a = ? 10000/65.71 = 152.20 \\ b = 0.6667 a = 152.20 \\ Village settlements 10000 = a x 450.26^{2} \\ A = 10000 \\ P = 450.26 450.26^{2} = 202732.25 \\ a = ? 10000/202732.25 = 0.05 \\ b = 2 a = 0.05 \\ Village settlements 10000 = a x 450.26^{1} \\ A = 10000 \\ P = 450.26 450.26^{1} = 450.26^{1} \\ A = 10000 \\ P = 450.26 450.26^{1} = 22.22 \\ b = 1 a = 2 \\ D = 1 0 a = 22.22 \\ b = 1 a = 2.22 \\ D = 1 0 a = 22.22 \\ D = 1 0 000 \\ P = 450.26 450.26^{0.0667} = 58.76 \\ a = ? 10000/58.76 = 170.19 \\ b = 0.6667 a = 170.19 \\ $		Ð	А	=	10000			
Interpretation of the settlements is the settlement is the set		Ŭ0	Р	=	794.74	794.74 ¹	=	794.74
B = 1 a a = 12.58 Urban settlements 10000 = a x 794.74 0.6667 A = 10000 P = 794.74 79 794.74 79 794.74 79 794.74 79 7		2	а	=	?	10000/794.74	=	12.6
$\begin{tabular}{ c c c c c } \hline Urban settlements & 10000 = a x 794.74^{0.6667} \\ A & = 10000 \\ P & = 794.74 & 794.74^{0.6667} & = 85.82 \\ a & = ? & 10000/85.82 & = 116.53 \\ b & = 0.6667 & a & = 116.53 \\ \hline Open settlements & 10000 = a x 532.43^2 \\ A & = 10000 \\ P & = 532.43 & 532.43^2 & = 283480.40 \\ a & = ? & 10000/283480.4 & = 0.04 \\ \hline Willage settlements & 10000 = a x 532.43^1 \\ P & = 532.43 & 532.43^1 & = 532.43 \\ a & = ? & 10000/532.43 & = 18.78 \\ \hline Urban settlements & 10000 = a x 532.43^{0.6667} \\ A & = 10000 \\ P & = 532.43 & 532.43^{0.6667} & = 18.78 \\ \hline Urban settlements & 10000 = a x 450.26^2 \\ A & = 10000 \\ P & = 450.26 & 450.26^2 & = 202732.25 \\ a & = ? & 10000/65.71 & = 152.20 \\ \hline Depen settlements & 10000 = a x 450.26^2 \\ A & = 10000 \\ P & = 450.26 & 450.26^2 & = 202732.25 \\ a & = ? & 10000/20732.25 & = 0.05 \\ b & = 2 & a & = 0.05 \\ \hline Uillage settlements & 10000 = a x 450.26^1 \\ A & = 10000 \\ P & = 450.26 & 450.26^1 & = 450.26 \\ A & = 10000 \\ P & = 450.26 & 450.26^1 & = 450.26 \\ \hline Uillage settlements & 10000 = a x 450.26^1 \\ A & = 10000 \\ P & = 450.26 & 450.26^1 & = 22.2 \\ \hline Urban settlements & 10000 = a x 450.26^1 \\ A & = 10000 \\ P & = 450.26 & 450.26^1 & = 22.22 \\ \hline Urban settlements & 10000 = a x 450.26^{1} \\ A & = 10000 \\ P & = 450.26 & 450.26^{1} & = 450.26 \\ A & = 10000 \\ P & = 450.26 & 450.26^{1} & = 22.22 \\ \hline Urban settlements & 10000 = a x 450.26^{1} \\ A & = 10000 \\ P & = 450.26 & 450.26^{1} & = 450.26 \\ A & = 10000 \\ P & = 450.26 & 450.26^{1} & = 22.22 \\ \hline Urban settlements & 10000 = a x 450.26^{1} \\ A & = 10000 \\ P & = 450.26 & 450.26^{1} & = 450.26 \\ A & = 10000 \\ P & = 450.26 & 450.26^{1} & = 450.26 \\ A & = 10000 \\ P & = 450.26 & 450.26^{1} & = 22.22 \\ \hline Urban settlements & 10000 = a x 450.26^{1} \\ A & = 10000 \\ P & = 450.26 & 450.26^{1} & = 58.76 \\ A & = 10000 \\ P & = 450.26 & 450.26^{1.6667} & = 170.19 \\ B & = 0.6667 & a & = 170.19 \\ \hline \end{bmatrix}$			b	=	1	а	=	12.58
P = 10000 P = 794.74 794.74 794.740.6667 = 85.82 a = ? 10000/85.82 = 1116.53 b = 0.6667 a = 116.53 b = 0.6667 a = 116.53 Copen settlements 10000 = a x 532.432 A = 10000 P = 532.43 532.432 = 283480.40 a = ? 10000/283480.4 = 0.04 b = 2 a = 0.04 Village settlements 10000 = a x 532.431 A = 10000 P = 532.43 532.431 = 532.43 b = 1 a = 18.78 Urban settlements 10000 = a x 532.430.6667 A = 10000 P = 532.43 532.430.6667 = 65.71 a = ? 10000/65.71 = 152.20 b = 0.6667 a = 152.20 b = 0.6667 a = 10000 P = 450.26 450.262 = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 0.05 b = 2 a = 0.05 b = 1 a = 2.21 Urban settlements 10000 = a x 450.261 A = 10000 P = 450.26 450.261 = 450.26 A = 10000 P = 450.26 450.261 = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 0.05 b = 1 a = 22.21 Urban settlements 10000 = a x 450.261 A = 10000 P = 450.26 450.261 = 450.26 A = 10000 P = 450.26 450.261 = 22.22 b = 1 a = 22.21 Urban settlements 10000 = a x 450.261 A = 10000 P = 450.26 450.261 = 22.22 b = 1 a = 22.21 Urban settlements 10000 = a x 450.260.6667 A = 10000 P = 450.26 450.260.6667 = 58.76 a = ? 10000/58.76 = 170.19 b = 0.6667 a = 170.19			Urb	an so	ttlements	10000 -	- a x 794 74 ^{0.6667}	
P = 10000 P = 794.74 794.7 794.74				un 30	10000	10000 -		
$ P = 194.74 194.74 = 0.0.02 a = ? 10000/85.82 = 116.53 b = 0.6667 a = 116.53 Den settlements 10000 = a x 532.43^2 A = 10000 P = 532.43 532.43^2 = 283480.40 a = ? 10000/283480.4 = 0.04 b = 2 a = 0.04 village settlements 10000 = a x 532.43^1 A = 10000 P = 532.43 532.43 = 532.43 a = 0.04 village settlements 10000 = a x 532.43^1 A = 10000 P = 532.43 532.43 = 18.8 b = 1 a = 18.78 Urban settlements 10000 = a x 532.43^{0.6667} A = 10000 P = 532.43 532.43 532.43^{0.6667} A = 10000 P = 450.26 450.26^2 = 202732.25 a = 0.05 village settlements 10000 = a x 450.26^2 A = 10000 P = 450.26 450.26^1 = 450.26 A = 10000 P = 450.26 450.26^1 = 22.21 village settlements 10000 = a x 450.26^1 A = 10000 P = 450.26 450.26^1 = 22.21 urban settlements 10000 = a x 450.26^1 A = 10000 P = 450.26 450.26^1 = 22.22 b = 1 a = 22.21 urban settlements 10000 = a x 450.26^0 A = 10000 P = 450.26 450.26^1 = 22.21 urban settlements 10000 = a x 450.26^0 A = 10000 P = 450.26 450.26^{0.6667} = 22.21 urban settlements 10000 = a x 450.26^{0.6667} A = 10000 P = 450.26 450.26^{0.6667} = 22.21 urban settlements 10000 = a x 450.26^{0.6667} A = 10000 P = 450.26 450.26^{0.6667} = 22.21 urban settlements 10000 = a x 450.26^{0.6667} A = 10000 P = 450.26 450.26^{0.6667} = 22.21 urban settlements 10000 = a x 450.26^{0.6667} A = 10000 P = 450.26 450.26^{0.6667} = 58.76 A = 10000 P = 450.26 450.26^{0.6667} = 170.19 b = 0.6667 a = 170.19 b = 0.6667 a = 170.19 b = 0.6667 a $				_	704 74	704 740.6667	_	95 92
$ Berline 1 = 1 \\ b = 0.6667 a = 116.53 b = 0.6667 a = 116.53 b = 0.6667 a = 116.53 Compensatilements 10000 = a x 532.432 A = 10000 P = 532.43 532.432 = 283480.40 a = ? 10000/283480.4 = 0.04 b = 2 a = 0.04 Village settlements 10000 = a x 532.431 A = 10000 P = 532.43 532.431 = 532.43 a = ? 10000/532.43 = 18.8 b = 1 a = 18.78 Urban settlements 10000 = a x 532.430.6667 A = 10000 P = 532.43 532.430.6667 A = 10000 P = 450.26 450.262 A = 10000 P = 450.26 450.262 A = 0.05 Village settlements 10000 = a x 450.261 A = 10000 P = 450.26 450.261 A = 222 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 0.05 Village settlements 10000 = a x 450.261 A = 10000 P = 450.26 450.261 = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 0.05 Village settlements 10000 = a x 450.261 A = 10000 P = 450.26 450.261 = 2.22 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 202732.25 b = 1 a = 202732.25 c = 1 a = 202732.25 c$			Г О	_	794.74	194.74	=	116 52
$ \textbf{F} = 0.0007 \textbf{a} = 100.00 = \textbf{a} \times 532.43^{2} A = 10000 P = 532.43 532.43^{2} = 283480.40 a = ? 10000/283480.4 = 0.04 b = 2 \textbf{a} = 0.04 c = 0.04 b = 2 \textbf{a} = 0.04 c = 0.04 c = 0.04 b = 2 \textbf{a} = 0.04 c = 0.05 c = 0.05$			a b	_	: 0.6667	10000/85.82	=	110.00
Open settlements $10000 = a \times 532.43^2$ A = 10000 P = 532.43^2 = 283480.40 a = ? $10000/283480.4$ = 0.04 b = 2 a = 0.04 b = 2 a = 0.04 b = 2 a = 0.04 Village settlements $10000/283480.4$ = 0.04 Village settlements $10000/532.43$ = 18.78 Urban settlements $10000/532.43$ = 18.78 Urban settlements $10000/532.43$ = 18.78 Open settlements $10000/65.71$ = 152.20 b = 0.6667 a = 152.20 b = 0.6667 a = $0.27732.25$ a 0.05 b = 2 a = 0.05 b a			D		0.0007	a	=	110.55
$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			Ope	en set	tlements	10000	$a = a \times 532.43^{2}$	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$			A	=	10000	2		
$ \begin{array}{rcrcrcrc} a &=& ? & 10000/283480.4 &=& 0.04 \\ b &=& 2 & a &=& 0.04 \\ b &=& 2 & a &=& 0.04 \\ Village settlements & 10000 = a x 532.43^1 & A &=& 10000 \\ P &=& 532.43 & 532.43^1 &=& 532.43 \\ a &=& ? & 10000/532.43 &=& 18.8 \\ b &=& 1 & a &=& 18.78 \\ Urban settlements & 10000 = a x 532.43^{0.6667} & A &=& 10000 \\ P &=& 532.43 & 532.43^{0.6667} &=& 65.71 \\ a &=& ? & 10000/65.71 &=& 152.20 \\ b &=& 0.6667 & a &=& 152.20 \\ \hline P &=& 450.26 & 450.26^2 &=& 202732.25 \\ a &=& ? & 10000/202732.25 &=& 0.05 \\ b &=& 2 & a &=& 0.05 \\ b &=& 2 & a &=& 0.05 \\ Village settlements & 10000 = a x 450.26^1 & A &=& 10000 \\ P &=& 450.26 & 450.26^1 &=& 450.26^1 \\ A &=& 10000 & P &=& 22.22 \\ b &=& 1 & a &=& 22.21 \\ Urban settlements & 10000 = a x 450.26^{0.6667} & A &=& 22.22 \\ b &=& 1 & a &=& 22.22 \\ b &=& 1 & a &=& 22.21 \\ Urban settlements & 10000 = a x 450.26^{0.6667} & A &=& 10000 \\ P &=& 450.26 & 450.26^{0.6667} &=& 22.22 \\ b &=& 1 & a &=& 22.21 \\ Urban settlements & 10000 = a x 450.26^{0.6667} & A &=& 10000 \\ P &=& 450.26 & 450.26^{0.6667} &=& 22.22 \\ b &=& 1 & a &=& 22.21 \\ Urban settlements & 10000 = a x 450.26^{0.6667} & A &=& 10000 \\ P &=& 450.26 & 450.26^{0.6667} &=& 58.76 \\ a &=& ? & 10000/58.76 &=& 170.19 \\ b &=& 0.6667 & a &=& 170.19 \\ \end{array} $			Р	=	532.43	532.43	=	283480.40
$ b = 2 a = 0.04 Village settlements 10000 = a x 532.43^{1} A = 10000 P = 532.43 532.43^{1} = 532.43 a = ? 10000/532.43 = 18.8 b = 1 a = 18.78 Urban settlements 10000 = a x 532.43^{0.6667} A = 10000 P = 532.43 532.43^{0.6667} = 65.71 a = ? 10000/65.71 = 152.20 b = 0.6667 a = 152.20 vert the thements 10000 = a x 450.26^{2} A = 10000 P = 450.26 450.26^{2} = 202732.25 a = ? 10000/202732.25 = 0.05 b = 2 a = 0.05 Village settlements 10000 = a x 450.26^{1} A = 10000 P = 450.26 450.26^{1} = 450.26 a = ? 10000/202732.25 = 0.05 b = 2 a = 0.05 Village settlements 10000 = a x 450.26^{1} A = 10000 P = 450.26 450.26^{1} = 450.26 A = 10000 P = 450.26 450.26^{1} = 450.26 A = 10000 P = 450.26 450.26^{1} = 450.26^{1} A = 10000 P = 450.26 450.26^{1} = 450.26^{1} A = 10000 P = 450.26 450.26^{1} = 450.26^{1} A = 10000 P = 450.26 450.26^{1} = 450.26^{0.6667} A = 10000 P = 450.26 450.26^{1} = 450.26^{0.6667} A = 10000 P = 450.26 450.26^{1} = 450.26^{0.6667} A = 10000 P = 450.26 450.26^{1} = 450.26^{0.6667} A = 10000 P = 450.26 450.26^{0.6667} = 22.21 Urban settlements 10000 = a x 450.26^{0.6667} A = 10000 P = 450.26 450.26^{0.6667} = 58.76 a = ? 10000/58.76 = 170.19 b = 0.6667 a = 170.19 b = 0.6667 $	ge:		а	=	?	10000/283480.4	=	0.04
$Village settlements 10000 = a x 532.43^{1}$ $A = 10000$ $P = 532.43 532.43^{1} = 532.43$ $a = ? 10000/532.43 = 18.8$ $b = 1 a = 18.78$ $Urban settlements 10000 = a x 532.43^{0.6667}$ $A = 10000$ $P = 532.43 532.43^{0.6667} = 65.71$ $a = ? 10000/65.71 = 152.20$ $b = 0.6667 a = 152.20$ $Dpen settlements 10000 = a x 450.26^{2}$ $A = 10000$ $P = 450.26 450.26^{2} = 202732.25$ $a = ? 10000/202732.25 = 0.055$ $b = 2 a = 0.055$ $Village settlements 10000 = a x 450.26^{1}$ $A = 10000$ $P = 450.26 450.26^{1} = 450.26$ $A = 10000$ $P = 450.26 450.26^{1} = 22.22$ $b = 1 a = 22.21$ $Urban settlements 10000 = a x 450.26^{0.6667}$ $A = 10000$ $P = 450.26 450.26^{1} = 22.22$ $b = 1 a = 22.21$ $Urban settlements 10000 = a x 450.26^{0.6667}$ $A = 10000$ $P = 450.26 450.26^{1} = 22.22$ $b = 1 a = 22.21$ $Urban settlements 10000 = a x 450.26^{0.6667}$ $A = 10000$ $P = 450.26 450.26^{0.6667} = 58.76$ $a = ? 10000/58.76 = 170.19$ $b = 0.6667 a = 170.19$			b	=	2	а	=	0.04
$P = 532.43 = 10000 = 532.43^{1} = 532.43 = 18.8 = 532.43 = 18.8 = 1 = 18.8 = 18.78 = 10000 = a \times 532.43^{0.6667} = 18.78 = 10000 = a \times 532.43^{0.6667} = 18.78 = 10000 = a \times 532.43^{0.6667} = 65.71 = 152.20 = 0.6667 = 10000/65.71 = 152.20 = 0.6667 = 152.20 = 0.6667 = 152.20 = 0.6667 = 10000 = a \times 450.26^{2} = 202732.25 = 0.05 = 0.65 = 2 = a = 7 = 10000/202732.25 = 0.05 = 0.05 = 2 = a = 7 = 0.055 = 0.05 = 2 = 0.05 = 0.05 = 2 = 0.05 = 0.05 = 0.05 = 2 = 0.05 = 0.05 = 0.05 = 2 = 0.05 = 0.05 = 2 = 0.05 = 0.05 = 0.05 = 2 = 0.05 = 0.05 = 2 = 0.05 = 0.05 = 2 = 0.05 = 0.05 = 2 = 0.05 $	ra		Villa	age se	ettlements	10000	$a = a \times 532.43^{1}$	
$ \mathbf{y} = \mathbf{y} = 532.43 532.43^{1} = 532.43 \\ a = ? 10000/532.43 = 18.8 \\ b = 1 a = 18.78 \\ Urban settlements 10000 = a \times 532.43^{0.6667} \\ A = 10000 \\ P = 532.43 532.43^{0.6667} = 65.71 \\ a = ? 10000/65.71 = 152.20 \\ b = 0.6667 a = 152.20 \\ b = 0.6667 a = 152.20 \\ Copen settlements 10000 = a \times 450.26^{2} \\ A = 10000 \\ P = 450.26 450.26^{2} = 202732.25 \\ a = ? 10000/202732.25 = 0.05 \\ b = 2 a = 0.05 \\ b = 2 a = 0.05 \\ b = 2 a = 0.05 \\ b = 1 a = 22.21 \\ Urlage settlements 10000 = a \times 450.26^{1} \\ A = 10000 \\ P = 450.26 450.26^{1} = 450.26 \\ a = ? 10000/450.26 = 22.2 \\ b = 1 a = 22.21 \\ Urban settlements 10000 = a \times 450.26^{0.6667} \\ A = 10000 \\ P = 450.26 450.26^{1} = 450.26 \\ A = 10000 \\ P = 450.26 450.26^{1} = 58.76 \\ a = ? 10000/58.76 = 170.19 \\ b = 0.6667 a = 170.19 \\ b = 0.6667 a $	stc	ate	Α	=	10000			
$ \underbrace{\tilde{\nabla}}_{Vivee} A = ? 10000/532.43 = 18.8 \\ b = 1 a a = 18.78 \\ Urban settlements 10000 = a x 532.43^{0.6667} \\ A = 10000 \\ P = 532.43 532.43^{0.6667} = 65.71 \\ a = ? 10000/65.71 = 152.20 \\ b = 0.6667 a = 152.20 \\ b = 0.6667 a = 152.20 \\ \hline P = 450.26 450.26^2 = 202732.25 \\ a = ? 10000/202732.25 = 0.05 \\ b = 2 a a = 0.05 \\ b = 2 a a = 0.05 \\ Village settlements 10000 = a x 450.26^1 \\ A = 10000 \\ P = 450.26 450.26^1 = 450.26^1 \\ A = 10000 \\ P = 450.26 450.26^1 = 22.2 \\ b = 1 a a = 22.21 \\ Urban settlements 10000 = a x 450.26^{0.6667} \\ A = 10000 \\ P = 450.26 450.26^1 = 22.2 \\ b = 1 a a = 22.21 \\ Urban settlements 10000 = a x 450.26^{0.6667} \\ A = 10000 \\ P = 450.26 450.26^{0.6667} = 58.76 \\ a = ? 10000/58.76 = 170.19 \\ b = 0.6667 a = 170.19 $	ę	der	Р	=	532.43	532.43 ¹	=	532.43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ц	Noi	а	=	?	10000/532.43	=	18.8
	no	-	b	=	1	а	=	18.78
$A = 10000$ $P = 532.43 532.43^{0.6667} = 65.71$ $a = ? 10000/65.71 = 152.20$ $b = 0.6667 a = 152.20$ $Copen settlements 10000 = a \times 450.26^2$ $A = 10000$ $P = 450.26 450.26^2 = 202732.25$ $a = ? 10000/202732.25 = 0.05$ $b = 2 a = 0.05$ $Village settlements 10000 = a \times 450.26^1$ $A = 10000$ $P = 450.26 450.26^1 = 450.26^1$ $A = 10000$ $P = 450.26 450.26^1 = 22.2$ $b = 1 a = 22.21$ $Urban settlements 10000 = a \times 450.26^{0.6667}$ $A = 10000$ $P = 450.26 450.26^{1} = 22.21$ $Drban settlements 10000 = a \times 450.26^{0.6667}$ $A = 10000$ $P = 450.26 450.26^{0.6667} = 58.76$ $a = ? 10000/58.76 = 170.19$ $b = 0.6667 a = 170.19$	E A		Urb	an se	ttlements	10000 =	a x 532 43 ^{0.6667}	
$P = 532.43 532.43^{0.6667} = 65.71$ $a = ? 10000/65.71 = 152.20$ $b = 0.6667 a = 152.20$ Open settlements 10000 = a x 450.26 ² $A = 10000$ $P = 450.26 450.262 = 202732.25$ $a = ? 10000/202732.25 = 0.05$ $b = 2 a = 0.05$ Village settlements 10000 = a x 450.26 ¹ $A = 10000$ $P = 450.26 450.26^{1} = 450.26^{1}$ $A = 10000$ $P = 450.26 450.26^{1} = 450.26^{1}$ $A = 10000$ $P = 450.26 450.26^{1} = 22.22$ $b = 1 a = 22.21$ Urban settlements 10000 = a x 450.26 ^{0.6667} $A = 10000$ $P = 450.26 450.26^{0.6667} = 58.76$ $a = ? 10000/58.76 = 170.19$	-			un 50 _	10000	10000 -	u x 002.40	
$ I = 302.45 302.45 - 00.11 \\ a = ? 10000/65.71 = 152.20 \\ b = 0.6667 a = 152.20 \\ \hline b = 0.6667 a = 152.20 \\ \hline b = 0.6667 a = 152.20 \\ \hline b = 450.26 450.26^2 = 202732.25 \\ a = ? 10000/202732.25 = 0.05 \\ b = 2 a = 0.05 \\ \hline b = 2 a = 0.05 \\ \hline village settlements 10000 = a \times 450.26^1 \\ A = 10000 \\ P = 450.26 450.26^1 = 450.26^1 \\ A = 10000 \\ P = 450.26 450.26^1 = 22.2 \\ b = 1 a = 22.21 \\ Urban settlements 10000 = a \times 450.26^{0.6667} \\ A = 10000 \\ P = 450.26 450.26^{0.6667} = 58.76 \\ a = ? 10000/58.76 = 170.19 \\ b = 0.6667 a = 170.19 $			P	_	532 /3	532 43 ^{0.6667}	_	65 71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			і О	_	2	10000/65 71	_	152.20
b a			a b	_	: 0.6667	10000/03.71	_	152.20
Open settlements $10000 = a \times 450.26^{\circ}$ A = 10000 P = 450.26° = 202732.25 a = ? $10000/202732.25$ = 0.05 b = 2 a = 0.05 Village settlements $10000/202732.25$ = 0.05 Village settlements $10000 = a \times 450.26^{1}$ = 0.05 Village settlements $10000 = a \times 450.26^{1}$ = 450.26 A = 10000 = = 22.2 b = $10000/450.26$ = 22.2 b = $10000/450.26$ = 22.21 Urban settlements $10000/450.26^{0.6667}$ = 58.76 a = 10000 = 58.76 b = 0.6667 a = 170.19			D	=	0.0007	a	=	152.20
$A = 10000$ $P = 450.26 + 450.26^{2} = 202732.25$ $a = ? + 10000/202732.25 = 0.05$ $b = 2 + a = 0.05$ $Village settlements + 10000 = a \times 450.26^{1}$ $A = 10000$ $P = 450.26 + 450.26^{1} = 450.26$ $a = ? + 10000/450.26 = 22.2$ $b = 1 + a = 22.21$ $Urban settlements + 10000 = a \times 450.26^{0.6667}$ $A = 10000$ $P = 450.26 + 450.26^{0.6667} = 58.76$ $a = ? + 10000/58.76 = 170.19$ $b = 0.6667 + a = 170.19$			Ope	en set	tlements	10000) = <i>a</i> x 450.26 ²	
$P = 450.26 + 450.26^{-1} = 202732.25$ $a = ? + 10000/202732.25 = 0.05$ $b = 2 + a = 0.05$ $Village settlements + 10000 = a \times 450.26^{-1}$ $A = 10000$ $P = 450.26 + 450.26^{-1} = 450.26$ $a = ? + 10000/450.26 = 22.2$ $b = 1 + a = 22.21$ $Urban settlements + 10000 = a \times 450.26^{0.6667}$ $A = 10000$ $P = 450.26 + 450.26^{0.6667} = 58.76$ $a = ? + 10000/58.76 = 170.19$ $b = 0.6667 + a = 170.19$			A	=	10000	4 - 0.00 ²		
$a = ? 10000/202732.25 = 0.05$ $b = 2 a = 0.05$ Village settlements 10000 = a x 450.26 ¹ $A = 10000$ $P = 450.26 450.26^{1} = 450.26$ $a = ? 10000/450.26 = 22.2$ $b = 1 a = 22.21$ Urban settlements 10000 = a x 450.26 ^{0.6667} $A = 10000$ $P = 450.26 450.26^{0.6667} = 58.76$ $a = ? 10000/58.76 = 170.19$ $b = 0.6667 a = 170.19$			Р	=	450.26	450.26	=	202732.25
$b = 2 \qquad a \qquad = \qquad 0.05$ Village settlements $10000 = a \times 450.26^{1}$ A = 10000 P = 450.26 $450.26^{1} = 450.26$ a = ? $10000/450.26 = 22.2$ b = 1 $a = 22.21$ Urban settlements $10000 = a \times 450.26^{0.6667}$ A = 10000 P = 450.26 $450.26^{0.6667} = 58.76$ a = ? $10000/58.76 = 170.19$ b = 0.6667 $a = 170.19$			а	=	?	10000/202732.25	=	0.05
Village settlements $10000 = a \times 450.26^1$ A= 10000 P= 450.26 a=? b = $10000/450.26$ b= 1 a=22.2b=1aa=22.21Urban settlements $10000 = a \times 450.26^{0.6667}$ A=10000P=450.26 $450.26^{0.6667}$ a=? $10000/58.76$ b=0.6667aa=170.19			b	=	2	а	=	0.05
$A = 10000$ $P = 450.26 450.26^{1} = 450.26$ $a = ? 10000/450.26 = 22.2$ $b = 1 a = 22.21$ $Urban settlements 10000 = a \times 450.26^{0.6667}$ $A = 10000$ $P = 450.26 450.26^{0.6667} = 58.76$ $a = ? 10000/58.76 = 170.19$ $b = 0.6667 a = 170.19$		6	Villa	age se	ettlements	10000) = <i>a</i> x 450.26 ¹	
$P = 450.26 + 450.26^{1} = 450.26$ $a = ? + 10000/450.26 = 22.2$ $b = 1 + a = 22.21$ $Urban settlements + 10000 = a \times 450.26^{0.6667}$ $A = 10000$ $P = 450.26 + 450.26^{0.6667} = 58.76$ $a = ? + 10000/58.76 = 170.19$ $b = 0.6667 + a = 170.19$		un	А	=	10000			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		xin	Р	=	450.26	450.26 ¹	=	450.26
b = 1 a = 22.21 Urban settlements 10000 = $a \times 450.26^{0.6667}$ 2 22.21 A = 10000 = 58.76 A = 10000/58.76 = 58.76 a = 10000/58.76 = 170.19 b = 0.6667 a = 170.19		Ma:	а	=	?	10000/450.26	=	22.2
Urban settlements $10000 = a \times 450.26^{0.6667}$ A= 10000 P= $450.26^{0.6667}$ =a=? $10000/58.76$ =b= 0.6667 a=170.19			b	=	1	а	=	22.21
A=10000P= 450.26 $450.26^{0.6667}$ = 58.76 a=? $10000/58.76$ = 170.19 b= 0.6667 a= 170.19			Urb	an se	ttlements	10000 =	a x 450.26 ^{0.6667}	
P= $450.26^{0.6667}$ = 58.76 a=? $10000/58.76$ = 170.19 b= 0.6667 a= 170.19			Α	=	10000			
a = ? 10000/58.76 = 170.19 b = 0.6667 a = 170.19			P	=	450 26	450.26 ^{0.6667}	=	58 76
b = 0.6667 a = 170.19			a	=	?	10000/58.76	=	170 19
			b	=	0.6667	a	=	170.19

552

Initial growth indices									
Settlement type	SPF population estimate based on amount of storage:								
	None (794.74) Moderate (532.43) Maximum (450.26)								
Open	0.02	0.04	0.05						
Village	12.58	18.78	22.21						
Urban	116.53	152.20	170.19						

Settlement population density coefficient (SPDC)

Data required					
Total site extent (ha)	1				
Proportion of site assessable (%)					
Number of contemporaneous dwellings in the assessable area					
Dwellings in assessable area	4				
Contemporaneity value (%)	78				

Method 1: Total population based on commonly utilised SPDCs							
	SPDC (people/ha)						
	Minimum	Average	Maximum				
	90	150	294				
Total population	90	150	294				
Population in the assessable area	1.14	1.90	3.73				
People per dwelling in the assessable area	0.37	0.61	1.19				

Method 2: SPDCs based on HUM, RADC and SPF population estimates									
Method	Total population estimate SPDC (people/ha)								
	Minimum	Average	Maximum	Minimum	Average	Maximum			
HUM	738.61	-	1354.11	738.61	-	1354.11			
RADC	426.61	646.37	1205.11	426.61	646.37	1205.11			
SPF	532.43	-	794.74	532.43	-	794.74			

Basta

Scenario 1: Residential floor area located in the ground floor central room/s only

Assessable area (m²)	Assessable area Unassessable area Total		440.90 138.39 302.51	Built area (m ²)	Pote Pote Tota	86.71 215.80 302.51	
Potential residential built area (m ²)	House I* House II* House III* House IV House V* House VII* Total Mean SD (1)		23.91 15.37 14.93 7.06 13.52 11.93 86.71 14.45 5.52	Potential residential floor area (m ²)	House I* House II* House III* House IV House V* House VII* Total *Mean residential floor area: complete dwellings		16.74 10.14 11.10 5.27 8.75 8.48 60.48 11.68
	*Mea	an residential built area: complete dwellings	16.18	Built floor area (m ²)	Ļ	House I House II	43.44 30.21
Potential non- residential built area (m ²)	Ground floor	House I House II House III House IV House V House VII Rooms 20-21/Corridor Rooms north and west of House III	60.56 36.27 28.73 6.58 28.72 21.25 16.98 16.70 215.80		Cround floo	House III House IV House V House VII Rooms 20-21 Rooms north and west of House III	21.09 7.61 19.88 20.03 4.01 10.19 156.46
Housing unit method (HUM)							
---	-----------------	-----------------	--------------------------	-----------	--	--	
Method 1: Total potential dwelling number							
Number of potential dwellings in the assessa	able area			6			
Assessable area (m ²)				302.51			
Estimated total site extent (m ²)				100000			
Assessable area (proportion)				0.0030			
Method 2: Total potential dwelling numbe	r			1983.41			
Mean potential residential built area (m ²)				14.45			
Potential residential built area (m ²)	House I	23.91	House IV	7.06			
	House II	15.37	House V	13.52			
	House III	14.93	House VII	11.93			
Total built area estimate (m ²)				100000.00			
		Assessabl	le area (m²)	302.51			
	A	ssessable bu	ilt area (m^2)	302.51			
Assessable built a	rea as a prop	ortion of asses	ssable area	1.0000			
	Estim	ated total site	extent (m ²)	100000			
Residential built area as a proportion of asse	essable built a	rea		0.2866			
	Potential	residential bui	ilt area (m²)	86.71			
Total potential residential built area (m^2)				28663 58			
Method 3: Total potential dwelling numbe	r			1983.41			
Potential residential built area as a proportion	n of assessab	le area		0.2866			
Total number of contemporaneous dwellings	(60.47%)			1199.37			
;	. ,						
Total population estimate based on nucle	ar family	Minimum	3	3598.10			
size:	-	Average	5.5	6596.51			
		Maximum	8	9594.92			

This method produces the same estimates for Scenario 2 and 3, as it is based on the total number of contemporaneous dwellings, which remains the same for each scenario.

Method 1: Total potential residential flo	or area (m ²)			19992.73
Potential residential floor area (m ²)				60.48
Potential residential floor area (m ²)	House I	16.74	House IV	5.27
	House II	10.14	House VII	8.75
	House III	11.1	House VIII	8.48
Assessable area (m ²)				302.51
Estimated total site extent (m ²)				100000
Assessable area (proportion)				0.0030
Method 2: Total potential residential flo	or area (m ²)			19992.73
Total built area estimate (m ²)			0	100000.00
		Assessa	ble area (m²)	302.51
		Assessable b	uilt area (m²)	302.51
Assessable built	area as a pro	portion of ass	essable area	1.0000
	Estir	nated total site	e extent (m^2)	100000
Potential residential floor area as a proport	tion of assess	able built area	۱	0.1999
	Potentia	l residential flo	oor area (m²)	60.48
Method 3: Total potential residential flo	or area (m²)			19992.73
Potential residential floor area as a proport	tion of assess	able area		0.1999
Total contemporaneous residential floor ar	rea (m²) (60.47	7%)		12089.60
Total population estimate based on RAI	DC (m ²):	Minimum	1.77	6830.28
		Average	3.3	3663.52
		Maximum	5	2417.92

Residential area density coefficient (RADC)

Storage provisions formula (SPF)

				Residential storage provisions (m ³ per person)							
			Nor	ne		Mode	rate (0.46)		Maximum	n (2 x 0.46)	
			P = 0.3944	A <i>– 0.3</i> 75		P = 0.24	77A + 0.0339		P = 0.1903	3A + 0.3976	6
Meth	od 1: '	Total population es	timate (P) based on to	tal conter	mporaneou	us residential floor	area (A)				
А	=	12089.60	0.3944 x 12089.6	=	4768.14	0.2477 x 12089.6	=	2994.59	0.1903 x 12089.6	=	2300.65
Р	=	?	4768.14 - 0.375	=	4767.76	2994.59 + 0.0339	=	2994.63	2300.65 + 0.3976	=	2301.05
			Ρ	=	4767.76	Ρ	=	2994.63	Р	=	2301.05
Meth	od 2:	People per dwelling	(P) and total populati	on estima	ates based	on mean residenti	al floor area	of complet	e dwellings (A)		
А	=	11.68	0.3944 x 11.68	=	4.61	0.2477 x 11.68	=	2.89	0.1903 x 11.68	=	2.22
Р	=	?	4.61 - 0.375	=	4.23	2.89 + 0.0339	=	2.93	2.22 + 0.3976	=	2.58
			Ρ	=	4.23	Ρ	=	2.93	Р	=	2.58
					7	otal number of conte	emporaneous	dwellings			1199.37
		Total population			5075.22			3510.59			3096.77
Mear	n total	population			4921.49			3252.61			2698.91

Naroll's (1962) AGF1							
Summary of estimates based	Naro	oll's (1962) formi	ula		Archaeologic	al evidence	
on:							
	SPF population estimate based on amount of storage:				SPF population estimate based on amount of storage:		
	None	Moderate	Maximum		None	Moderate	Maximum
	(4921.49)	(3252.61)	(2698.91)		(4921.49)	(3252.61)	(2698.91)
Total built floor area (m ²)	27862.55	19659.98	16801.52	51720.60			
Built floor area per person (m ²)	5.66	6.04	6.23		10.51	15.90	19.16
RADC (m ² per person)	2.19	2.34	2.41		2.46	3.72	4.48
Initial growth index	40.28	57.09	66.80				

					Data required		
SDE	nonul	ation act	imeto	(P) based or	amount of storage.	None	4021 40
JFF	popul	2001 691	male		amount of storage.	Moderate	7921.49 3252 R1
						Maximum	2609 01
Residential floor area as a proportion of built floor area (%)							
Residential noor area as a proportion of built floor area (%) $T_{atal} h_{w} = \frac{1}{2} \frac{1}$							
				i otai built i	nuur area (III) (A) Duilt floor oroo in coocces	$blo oros (m^2)$	01/20.00 456.40
					Built floor area in assessa	ue area (m)	150.40
				Total	Proportion of site as	sessadie (%)	10000 70
					ential floor area (m) (RADC meth	0a)	19992.73
Built	floor a	rea per	perso	n (m ⁻) derive	ed from SPF population estimates	None	10.51
and to	otal di	liit fioor	area	based on am	ount of storage:	Moderate	15.90
						Maximum	19.16
RAD	C deri	ved from	ו SPF	population e	stimates and total	None	2.46
conte	empor	aneous	reside	ential floor are	ea based on amount of storage:	Moderate	3.72
		_	_			Maximum	4.48
		7	otal c	ontemporane	eous residential floor area (m²) (RA	ADC method)	12089.60
					$\Delta - a x P^b$		
		Metho	od 1: 1	Total built flo	por area (m^2) (A), built floor area	per person a	nd RADC
		A	=	?	$A = 21.7 \times 4$	921.49 ^{0.84195}	
		P	=	4921 49	4921 49 ^{0.84195}	=	1283 99
		a	=	21.7	21 7 x 1283 99	=	27862 55
		h	_	0 84195	Δ	_	27862 55
		Built f	- loor :	area per per	son (m^2)	-	5 66
	ne		(m^2)	area per person)			2 10
	N	NADO	, (111 - 1		atial floor area as a proportion of h	uilt floor aroa	2.13
				Resider		unit noor area	30.00
		Metho	od 2: I	Re-calculate	d initial growth index (a)	4004 400.84195	
		A	=	51720.60	51/20.6 = a X	4921.49	
		Р	=	4921.49	4921.49	=	1283.99
		а	=	?	51720.6/1283.99	=	40.28
		b	=	0.84195	a	=	40.28
		Metho	od 1: 1	Fotal built flo	oor area (m²) (A), built floor area	per person a	Ind RADC
		А	=	?	$A = 21.7 \times 3$	252.61 ^{0.84195}	
		Р	=	3252.61	3252.61 ^{0.84195}	=	905.99
ge		а	=	21.7	21.7 x 905.99	=	19659.98
ora	~	b	=	0.84195	Α	=	19659.98
stc	ate.	Built f	loor a	area per pers	son (m²)		6.04
of	qei	RADC	; (m²	per person)			2.34
Пt	Mo			Resider	ntial floor area as a proportion of b	uilt floor area	38.66
no		Metho	od 2: I	Re-calculate	d initial growth index (<i>a</i>)		
Am		А	=	51720.60	51720.6 = <i>a</i> x	3252.61 ^{0.84195}	
-		Р	=	3252.61	3252.61 ^{0.84195}	=	905.99
		а	=	?	51720.6/905.99	=	57.09
		b	=	0.84195	а	=	57.09
		Metho	od 1: 1	Total built flo	oor area (m²) (A). built floor area	per person a	and RADC
		A	=	?	$A = 21.7 \times 2$	698.91 ^{0.84195}	· · · · · · · · · · · · · · · · · · ·
		P	=	2698.91	2698.91 ^{0.84195}	=	774.26
		а	=	21.7	21.7 x 774.26	=	16801.52
		b	=	0.84195	Α	=	16801.52
	ш	- Built f	loor :	area ner ner	son (m^2)	—	6 23
	im	RADC	(m ²)	per person)	(/		2 41
	lax,		, (I	Resider	ntial floor area as a proportion of h	uilt floor area	38.66
	Ň	Matha	4 2 . 1		d initial growth index (a)		00.00
			u 2: I			2608 01 0.84195	
		A D	=	01720.00	51/20.0 = a X	2030.31	774.00
		٢	=	2098.91 2	2098.91	=	(74.26
		a	=	?	51/20.6///4.26	=	66.80
		b	=	0.84195	а	=	66.80

Wiessner's (1974) AGF2 Data required Total site extent (m^2) (A) 130000 SPF population estimate (P) based on amount of storage: None 4921.49 3252.61 Moderate Maximum 2698.91 <u>A = a x</u> P^b $130000 = a \times 4921.49^2$ **Open settlements** А 130000 = 4921.49² Ρ = 4921.49 24221107.18 = ? а 130000/24221107.18 0.01 = = 2 0.01 b = а = $130000 = a \times 4921.49^{1}$ Village settlements 130000 А = None Ρ 4921.49 4921.49¹ 4921.49 = = ? 130000/4921.49 26.4 а = = b 1 26.41 = а = $130000 = a \ge 4921.49^{0.6667}$ **Urban settlements** 130000 A _ 4921.49^{0.6667} Ρ 4921.49 289.42 = = ? 130000/289.42 449.18 а = = b 0.6667 449.18 = а = $130000 = a \times 3252.61^2$ **Open settlements** А 130000 = 3252.61² Ρ 10579451.77 3252.61 = = 130000/10579451.77 а ? = 0.01 = 2 0.01 Amount of storage: b = а = $130000 = a \times 3252.61^{1}$ **Village settlements** Moderate А = 130000 Ρ 3252.61 3252.61¹ 3252.61 = = 130000/3252.61 а ? = 40.0 = 39.97 b 1 а = 130000 = *a* x 3252.61^{0.6667} **Urban settlements** 130000 A 3252.61^{0.6667} Ρ 3252.61 219.59 = = 130000/219.59 592.02 а ? = = 592.02 b 0.6667 = а = **Open settlements** $130000 = a \times 2698.91^2$ А 130000 = 2698.91² Ρ 2698.91 7284101.56 = = а ? 130000/7284101.56 0.02 = = b 2 0.02 = а Village settlements $130000 = a \times 2698.91^{1}$ Maximum 130000 А = Ρ 2698.91 2698.91¹ 2698.91 = = 130000/2698.91 48.2 а = ? = 48.17 1 b = а 130000 = *a* x 2698.91^{0.6667} **Urban settlements** A = 130000 2698.91^{0.6667} Ρ 2698.91 193.90 = = ? 130000/193.9 а 670.46 = = 0.6667 670.46

=

а

b

=

Initial growth indices								
Settlement type	SPF population estimate based on amount of storage:							
	None (4921.49)	Moderate (3252.61)	Maximum (2698.91)					
Open	0.01	0.01	0.02					
Village	26.41	39.97	48.17					
Urban	449.18	592.02	670.46					

Settlement population density coefficient (SPDC)

Data required						
Total site extent (ha)	13					
Proportion of site assessable (%)	0.30					
Number of contemporaneous dwellings in the assessable area	3.63					
Dwellings in assessable area	6					
Contemporaneity value (%)	60.47					

Method 1: Total population based on commonly utilised SPDCs							
		SP	DC (people	/ha)			
		Minimum	Average	Maximum			
		90	150	294			
Total population		1170	1950	3822			
	Population in the assessable area	3.54	5.90	11.56			
	People per dwelling in the assessable area	0.98	1.63	3.19			

Method 2: SPDCs based on HUM, RADC and SPF population estimates									
Method	Total popula	Total population estimate				e/ha)			
	Minimum	Average	Maximum	Minimum	Average	Maximum			
HUM	3598.10	6596.51	9594.92	276.78	507.42	738.07			
RADC	2417.92	3663.52	6830.28	185.99	281.81	525.41			
SPF	3252.61	-	4921.49	250.20	-	378.58			

Summary of estimates

Method	Total population	People per dwelling	RADC	SPDC	
			(m ⁻ /person)	(people/ha)	
		Based on total number of contemporaneous dwellings:	Based on total contemporaneous residential floor area (m ²):	Based on total site extent (ha):	
		1199.37	12089.60	13	
HUM	3598.1-9594.92	3-8	1.26-3.36	276.78-738.07	
RADC	2417.92-6830.28	2.02-5.69	1.77-5.00	185.99-525.41	
SPF1	3252.61-4921.49	2.71-4.1	2.46-3.72	250.2-378.58	
SPF2 ^a	-	2.93-4.23	-	-	
AGF1 ^a	-	-	2.19-2.34	-	
SPDC	1170-3822	0.98-3.19	3.16-10.33	90-294	
a Diana ta a la di	- 4				

^a Direct calculations.

Initial growth indices derived from SPF population estimates:		A	Amount of storage:			
		None (4921.49)	Moderate (3252.61)	Maximum (2698.91)		
Naroll's (1962) AGF1		40.2	8 57.09	66.80		
Wiessner's (1974) AGF2	Open settlements	0.0	1 0.01	0.02		
	Village settlements	26.4	1 39.97	48.17		
	Urban settlements	449.1	8 592.02	670.46		

Additional demographic data			
			Contemporaneous (60.47%)
Proportion (%) of site comprising:	Built area	76.92	46.52
	Residential built area	22.05	13.33
	Built floor area	39.79	24.06
	Residential floor area	15.38	9.3
Proportion (%) of assessable built	Residential built area	28.66	
area comprising:	Built floor area ^b	51.72	
	Residential floor area	19.99	
Proportion (%) of built floor area comprising residential floor area		38.66	
Mean residential floor area of complet	te dwellings (m ²)	11.68	
^b Based on assessable built area (302.51	m^2) and built floor area (156.46 m^2).		

Assessable	Assessable	e area	440.90					Adjusted ^a
area (m²)	Unassessa	ble area	138.39	Potential	Upper	House I*	53.98	44.54
	Total		302.51	residential	Storey	House II	32.78	27.04
				floor area		House III*	23.40	19.31
Potential	Upper	House I*	60.56	(m²)		House IV	5.17	4.27
residential	storey	House II	36.27			House V	24.90	20.54
built area		House III	28.73			House VII *	17.91	14.77
(m²)		House IV	6.58		Total		158.14	130.47
		House V	28.72		*Mean resi	dential floor area: complete dwellings	31.76	26.21
		House VII *	21.25					
	Total		182.12	Built floor	Ground	House I	43.44	
	Mean		30.35	area (m²)	floor	House II	30.21	
	SD (±)		17.89			House III	21.09	
	*Mean resi	dential built area: complete dwellings	40.91			House IV	7.61	
						House V	19.88	
Potential	Ground	House I	84.47			House VII	20.03	
non-	floor	House II	51.64			Rooms 20-21	4.01	
residential		House III	43.66			Rooms north and west of House III	10.19	
built area		House IV	13.64		Upper	House I	53.98	44.54
(m²)		House V	42.24		Storey	House II	32.78	27.04
		House VII	33.18			House III	23.40	19.31
		Rooms 20-21/Corridor	16.98			House IV	5.17	4.27
		Rooms north and west of House III	16.70			House V	24.90	20.54
	Total		302.51			House VII	17.91	14.77
					Total		314.60	286.92
Built area	Potential res	sidential built area (ground floor)	-					
(m²)	Potential nor	n-residential built area	302.51					
	Total		302.51					

Scenario 2: Residential floor area located in a second storey covering the smaller compartments only

^a Upper storey interior area reduced by 17.5% based on proportion derived for Beidha Subphase C2 (17.42%) (see Section 5.2.2).

Method 1: Total potential residential flo	or area (m ²)			43129.15				
Potential residential floor area (m ²)				130.47				
Potential residential floor area (m ²)	House I	44.54	House IV	4.27				
	House II	27.04	House VII	20.54				
	House III	19.31	House VIII	14.77				
Assessable area (m ²)				302.51				
Estimated total site extent (m ²)				100000				
Assessable area (proportion)				0.0030				
Method 2: Total potential residential flo	or area (m ²)			43129 15				
Total built area estimate (m^2)				100000.00				
Assessable area (m^2)								
Assessable built area (m^2)								
Assessable built area as a proportion of assessable area								
	Estir	nated total site	e extent (m ²)	100000				
Potential residential floor area as a proport	tion of assess	able built area	1	0.4313				
	Potentia	l residential flo	oor area (m²)	130.47				
Method 3: Total potential residential flo	or area (m ²)			43129.15				
Potential residential floor area as a proport	tion of assess	able area		0.4313				
Total contemporaneous residential floor ar	rea (m²) (60.4	7%)		26080.20				
Total population estimate based on RAI	DC (m²):	Minimum	1.77	14734.58				
		Average	3.3	7903.09				
		Maximum	5	5216.04				

Residential area density coefficient (RADC)

Storage provisions formula (SPF)

					Res	sidential storage pro	visions (m ³	per perso	n)		
			No	one		Moderate (0.46)			Maximum (2 x 0.46)		
			P = 0.3944	4A – 0.375	5	P = 0.2477	7A + 0.0339		P = 0.1903	8A + 0.3976	6
Meth	od 1:	Total population es	stimate (P) based on to	otal conte	emporaneou	s residential floor ar	ea (A)				
А	=	26080.20	0.3944 x 26080.2	=	10286.03	0.2477 x 26080.2	=	6460.07	0.1903 x 26080.2	=	4963.06
Р	=	?	10286.03 - 0.375	=	10285.66	6460.07 + 0.0339	=	6460.10	4963.06 + 0.3976	=	4963.46
			Р	=	10285.66	Р	=	6460.10	Р	=	4963.46
Meth	od 2:	People per dwelling	g (P) and total populat	tion estim	nates based	on mean residential	floor area o	of complet	e dwellings (A)		
А	=	26.21	0.3944 x 26.21	=	10.34	0.2477 x 26.21	=	6.49	0.1903 x 26.21	=	4.99
Р	=	?	10.34 - 0.375	=	9.96	6.49 + 0.0339	=	6.53	4.99 + 0.3976	=	5.35
			Р	=	9.96	Р	=	6.53	Р	=	5.35
					7	otal number of conter	nporaneous	dwellings			1199.37
Total population 119				11948.35			7827.20			6413.08	
Mea	n total	l population			11117.00			7143.65			5688.27

Naroll's (1962) AGF1

Summary of estimates based on:	Na	aroll's (1962) formu	la		Archaeological evidence				
	SPF population e	stimate based on ar	mount of storage:		SPF population estimate based on amount of storage:				
	None	Moderate	Maximum		None	Moderate	Maximum		
	(11117)	(7143.65)	(5688.27)		(11117)	(7143.65)	(5688.27)		
Total built floor area (m ²)	55332.34	38130.08	31474.97	94846.45					
Built floor area per person (m ²)	4.98	5.34	5.53		8.53	13.28	16.67		
RADC (m ² per person)	2.26	2.43	2.52		2.35	3.65	4.58		
Initial growth index	37.20	53.98	65.39						

					Data required					
SPF	popul	ation esti	mate	e (P) based on	amount of storage:	None	11117.00			
				-	-	Moderate	7143.65			
						Maximum	5688.27			
Resi	dentia	l floor are	ea as	a proportion	of built floor area (%)		45.47			
				Total built fl	loor area (m²) (A)		94846.45			
					Built floor area in assessal	ble area (m ²)	286.92			
					Proportion of site ass	sessable (%)	0.30			
		Total residential floor area (m ²) (RADC method)								
Built	floor a	area per person (m ²) derived from SPF population estimates None								
and t	otal b	uilt floor a	area	based on amo	ount of storage:	Moderate	13.28			
						Maximum	16.67			
RAD	C deri	ved from	SPF	population es	stimates and total	None	2.35			
conte	empor	aneous r	esid	ential floor are	a based on amount of storage:	Moderate	3.65			
					2	Maximum	4.58			
		Te	otal (contemporane	eous residential floor area (m²) (RA	DC method)	26080.20			
					$A = a \times P^{b}$					
		Metho	d 1:	Total built flo	or area (m ²) (A), built floor area	per person a	nd RADC			
		A	=	?	$A = 21.7 \times 1$	1117				
		Р	=	11117.00	11117 ^{0.64195}	=	2549.88			
		а	=	21.7	21.7 x 2549.88	=	55332.34			
		b	=	0.84195	A	=	55332.34			
	e	Built fl	oor	area per pers	son (m²)		4.98			
	Vor	RADC	(m²	per person)			2.26			
				Residen	ntial floor area as a proportion of bu	uilt floor area	45.47			
		Method	d 2:	Re-calculated	d initial growth index (a)					
		A	=	94846.45	94846.45 = a x	111170.04135				
		Р	=	11117.00	11117 ^{0.64195}	=	2549.88			
		а	=	?	94846.45/2549.88	=	37.20			
		b	=	0.84195	a	=	37.20			
		Method 1: Total built floor area (m ²) (A), built floor area per person at $A = 21.7 \times 7143 65^{0.84195}$								
		A	=	(74.40.05	$A = 21.7 \times 71$	43.00	4757 45			
		P	=	7143.05	7 143.00 01 7 x 1757 15	=				
age		a b	=	21.7	21.7 X 1757.15	=	30130.00			
0	te		=	0.84195	A	=	30130.00			
f Si	era		$\frac{00r}{m^2}$	area per pers	on (m)		D.34			
to	od	RADC	(m	per person)	tial floor area as a proportion of b	ult floor area	2.43 15 17			
n	N	Mother	1 0.		d initial growth index (a)		40.47			
Ĕ			ב ג _		$\frac{1}{9484645} = 2 \times \frac{1}{2}$	7143 65 ^{0.84195}				
⋖			_	7142 65	$3+0+0.+J = a \times 1$	143.05	1757 15			
			_	7 143.00	7 143.03	=	52.09			
		a h	_	: 0.84105	94640.45/1757.15	_	53.90 53.90			
		Mothor	-		$\frac{\alpha}{\alpha}$	- por porcon a				
			ит. —	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\Delta = 21.7 \text{ v}$	27 ^{0.84195}				
		P	_	5688 27	5688 27 ^{0.84195}	_	1450 46			
		' a	_	2000.27 21 7	21 7 x 1450 46	_	3147/ 07			
		h h	_	0 84105	Δ	_	3147/ 07			
	Щ	Built fl	_ 00r	area ner nere	$rac{1}{2}$	-	5 52			
	imt		(m ²	ner nerson)			2.55			
	laxi	NADO	(III	Residen	ntial floor area as a proportion of bu	uilt floor area	45.47			
	2	Metho	d 2:	Re-calculater	d initial growth index (a)					
		A	=	94846 45	94846.45 = a x	5688.27 ^{0.84195}				
		P	=	5688 27	5688.27 ^{0.84195}	= =	1450 46			
		a	=	2000.27 ?	94846 45/1450 46	=	65 30			
		b	_	0.84195	a	_	65.39			
		~	-	0.01100	u	-	03.33			

Data required Total site extent (m^2) (A) 130000 SPF population estimate (P) based on amount of storage: None 11117.00 Moderate 7143.65 Maximum 5688.27 <u>A = a x</u> P^b $130000 = a \times 11117^{2}$ **Open settlements** 130000 Α = 11117² Ρ 11117.00 123587702.72 = ? 130000/123587702.72 0.00 а 0.00 b 2 а = $130000 = a \times 11117^{1}$ Village settlements 130000 A = None 11117¹ 11117.00 11117.00 Ρ = = 130000/11117 ? 11.7 а = 1 11.69 b = а 130000 = *a* x 11117^{0.6667} **Urban settlements** 130000 Α _ 11117^{0.6667} Ρ 11117.00 498.26 = = ? 130000/498.26 260.91 а = = 0.6667 260.91 b = а $130000 = a \times 7143.65^{2}$ **Open settlements** 130000 Α = 7143.65² Ρ 7143.65 51031717.11 = = 130000/51031717.11 а ? 0.00 = = 2 0.00 Amount of storage: b = а $130000 = a \times 7143.65^{1}$ **Village settlements** Moderate Α 130000 Ρ 7143.65 7143.65¹ 7143.65 = = 130000/7143.65 а ? 18.2 = = 18.20 b 1 = а $130000 = a \times 7143.65^{0.6667}$ **Urban settlements** 130000 А = 7143.650.6667 Ρ 7143.65 371.03 = = 130000/371.03 350.38 а ? = = b 0.6667 350.38 = а = **Open settlements** $130000 = a \times 5688.27^{2}$ 130000 А = 5688.27² Ρ 5688.27 32356422.88 = = ? 130000/32356422.88 0.00 а = = b 2 0.00 = а $130000 = a \ge 5688.27^{1}$ Village settlements Maximum 130000 Α = 5688.27¹ 5688.27 5688.27 Ρ = = 130000/5688.27 22.9 а = ? = 22.85 b = 1 а 130000 = *a* x 5688.27^{0.6667} **Urban settlements** А = 130000 5688.27^{0.6667} Ρ 5688.27 318.75 = = 407.85 а ? 130000/318.75 = = b 0.6667 407.85 = а =

Wiessner's (1974) AGF2

Initial growth indices								
Settlement type	SPF population estimate based on amount of storage:							
	None (11117)	Moderate (7143.65)	Maximum (5688.27)					
Open	0.00	0.00	0.00					
Village	11.69	18.20	22.85					
Urban	260.91	350.38	407.85					

Settlement population density coefficient (SPDC)

Data required	
Total site extent (ha)	13

Method 2: SPDCs based on HUM, RADC and SPF population estimates										
Method	Total popula	ation estima	SPDC (people/ha)							
	Minimum	Average	Maximum	Minimum	Average	Maximum				
HUM	3598.10	6596.51	9594.92	276.78	507.42	738.07				
RADC	5216.04	7903.09	14734.58	401.23	607.93	1133.43				
SPF	6460.10	-	7827.20	496.93	-	602.09				

Summary of estimates

Method	Total population	People per dwelling		RADC	SP	DC		
				(m²/person)	(peop	ole/ha)		
		Based on total number of	Base	ed on total contemporaneous	Based on total	site extent (ha):		
		contemporaneous dwellings:	I	residential floor area (m²):				
		1199.37	26080.20			13		
HUM	3598.1-9594.92	3	3-8	2.72-7.25		276.78-738.07		
RADC	5216.04-14734.58	4.35-12.2	29	1.77-5.00		401.23-1133.43		
SPF1	6460.10-7827.20	5.39-6.4	53	3.33-4.04		496.93-602.09		
SPF2 ^ª	-	6.	53	-		-		
AGF1 ^ª	-		-	2.39-2.47		-		
SPDC	1170-3822	0.98-3.	19	6.82-22.29		90-294		
^a Direct calcul	lations.							
Initial grow	al growth indices derived from SPF population estimates: Amount of storage:							
				None (11117)	Moderate (7143.65)	Maximum (5688.27)		
Naroll's (196	62) AGF1			37.20	53.98	65.39		
Wiessner's ((1974) AGF2	Open settlements		0.00	0.00	0.00		
		Village settlements		11.69	18.20	22.85		
		Urban settlements		260.91	350.38	407.85		
Additional	demographic data							
	5 1				Contemporan	eous (60.47%)		
Proportion (%) of site comprising:	Built area		76.92		46.52		
	, , , ,	Residential built area		46.31		28.00		
		Built floor area		72.96		44.12		
		Residential floor area		33.18		20.06		
Proportion (%) of assessable built	Residential built area		60.20				
area compris	sing:	Built floor area ^b		94.85				
	C C	Residential floor area		43.13				
Proportion (%) of built floor area compri	sing residential floor area		45.47				
Mean reside	ential floor area of complete	dwellings (m ²)		26.21				
^b Based on as	ssessable built area (302.51 m	²) and built floor area (286.92 m ²).						

-	Assessable	Assessa	ble area			440.90					Adjusted ^a
	area (m²)	Unasses	sable area			138.39	Potential	Ground	House I*	16.74	
		Total				302.51	residential	floor	House II	10.14	
_							floor area		House III	11.10	
_	Potential	Ground	House I*	23.91	House IV	7.06	(m²)		House IV	5.27	
	residential	floor	House II	15.37	House V	13.52			House V	8.75	
	built area		House III	14.93	House VII*	11.93			House VII*	8.48	
	(m ²)	Upper	House I*	23.31	House V	15.32		Upper	House I*	20.53	16.94
		storey	House II	22.40	House VII*	15.06		storey	House II	20.04	16.53
		Total				162.80			House V	12.81	10.57
		Mean				16.28			House VII*	12.67	10.45
		SD (±)				5.39		Total		126.53	114.97
~ 5		*Mean residential built area: complete dwellings		37.11		*Mean re	esidential floor area: complete dwellings	29.21	26.30		
571	Potential	Ground	House I	60.56	House IV	6.82	Built floor	Ground	House I	43.44	
	non-	floor	House II	36.19	House V	28.52	area (m ²)	floor	House II	30.21	
	residential		House III	28.80	House VII	21.23			House III	21.09	
	built area		Rooms 20-2	1/Corridor		16.98			House IV	7.61	
	(m ²)		Rooms north	n and west	t of House III	16.70			House V	19.88	
		Total				215.80			House VII	20.03	
									Rooms 20-21	4.01	
	Built area	Potentia	l residential bu	uilt area (g	round floor)	86.71			Rooms north and west of House III	10.19	
	(m ²)	Potentia	l non-residenti	ial built are	ea	215.80		Upper	House I*	20.53	16.94
		Total				302.51		storey	House II*	20.04	16.53
								-	House V*	12.81	10.57
									House VII*	12.67	10.45
_								Total		222.51	210.95

Scenario 3: Residential floor area located in the ground floor central room/s and a partial second storey; and (4) a full second storey

^a Upper storey interior area reduced by 17.5% based on proportion derived for Beidha Subphase C2 (17.42%) (see Section 5.2.2).

Method 1: Total potential residential floor area (m ²)	38004.63
Potential residential floor area (m ²)	114.97
Potential residential floor area (m ²) House I 33.67 House IV	5.27
House II 26.67 House VII	19.32
House III 11.10 House VIII	18.93
Assessable area (m ²)	302.51
Estimated total site extent (m ²)	100000
Assessable area (proportion)	0.0030
Method 2: Total potential residential floor area (m ²)	38004.63
Total built area estimate (m ²)	100000.00
Assessable area (m ²)	302.51
Assessable built area (m^2)	302.51
Assessable built area as a proportion of assessable area	1.0000
Estimated total site extent (m ²)	100000
Potential residential floor area as a proportion of assessable built area	0.3800
Potential residential floor area (m2)	114.97
Method 3: Total potential residential floor area (m ²)	38004.63
Potential residential floor area as a proportion of assessable area	0.3800
Total contemporaneous residential floor area (m ²) (60.47%)	22981.40
Total population estimate based on RADC (m ²): Minimum 1.77	12983.84
Average 3.3	6964.06
Maximum 5	4596.28

Residential area density coefficient (RADC)

Storage provisions formula (SPF)

				Residential storage provisions (m ³ per person)								
			No	ne		Modera	ate (0.46)		Maximum (2 x 0.46)			
			P = 0.3944	4A – 0.375		P = 0.2477	7A + 0.0339		P = 0.1903	BA + 0.3976	5	
Method 1: Total population estimate (P) based on total contemporaneous						s residential floor ar	ea (A)					
А	=	22981.40	0.3944 x 22981.4	=	9063.86	0.2477 x 22981.4	=	5692.49	0.1903 x 22981.4	=	4373.36	
Р	=	?	9063.86 - 0.375	=	9063.49	5692.49 + 0.0339	=	5692.53	4373.36 + 0.3976	=	4373.76	
			Р	=	9063.49	Р	=	5692.53	Р	=	4373.76	
_												
Meth	od 2:	People per dwelling	g (P) and total populat	ion estimation	ates based	on mean residential	floor area o	of complet	e dwellings (A)			
А	=	26.3	0.3944 x 26.23	=	10.37	0.2477 x 26.23	=	6.51	0.1903 x 26.23	=	5.00	
Р	=	?	10.37 - 0.375	=	10.00	6.51 + 0.0339	=	6.55	5.00 + 0.3976	=	5.36	
			Р	=	10.00	Р	=	6.55	Р	=	5.36	
					Т	otal number of conter	nporaneous	dwellings			1199.37	
	Total population				11990.92			7853.94			6433.62	
		- •										
Mea	n total	population			10527.20			6773.23			5403.69	

Naroll's (1962) AGF1

Summary of estimates based on:	Naroll's (1962) formula				Archaeological evidence			
	SPF population estimate based on amount of storage:				SPF population estimate based on amount of storage:			
	None	Moderate	Maximum		None	Moderate	Maximum	
	(10527.30)	(6773.23)	(5403.69)		(10527.30)	(6773.23)	(5403.69)	
Total built floor area (m ²)	52850.14	36458.46	30143.83	69733.23				
Built floor area per person (m ²)	5.02	5.38	5.58		6.62	10.30	12.90	
RADC (m ² per person)	2.74	2.93	3.04		2.18	3.39	4.25	
Initial growth index	28.63	41.51	50.20					

					Data required		
SPF	popula	ation est	imate	(P) based or	n amount of storage:	None	10527.20
Moderate Maximum							
						Maximum	5403.69
Resi	dentia	floor ar	ea as	a proportion	of built floor area (%)		54.50
				Total built f	floor area (m^2) (A)		69733.23
Built floor area in assessable area (m^2)							
Proportion of site assessable (%)							
				Total reside	ential floor area (m²) (RADC metho	d)	38004.63
Built	floor a	rea per	perso	on (m ²) derive	ed from SPF population estimates	None	6.62
and	total b	uilt floor	area	based on am	ount of storage:	Moderate	10.30
					3	Maximum	12.90
RAD	C deri	ved from	SPF	population e	estimates and total	None	2 18
conte	empor	aneousi	reside	ential floor are	ea based on amount of storage:	Moderate	3 39
						Maximum	4 25
		7	otal c	ontemporan	eous residential floor area (m^2) (RA	DC method)	22981 40
				iontomporant			22001.10
					$A = a \times P^{b}$		
		Metho	d 1: 1	Fotal built flo	oor area (m²) (A), built floor area	per person a	nd RADC
		A	=	?	A = 21.7 x 105	527.20	
		Р	=	10527.20	10527.20	=	2435.49
		а	=	21.7	21.7 x 2435.49	=	52850.14
	е	b	=	0.84195	<u>A</u>	=	52850.14
		Built f	loor a	area per pers	son (m²)		5.02
	lor	RADC	(m² µ	per person)			2.74
	<			Resider	ntial floor area as a proportion of bu	uilt floor area	54.50
		Metho	d 2: F	Re-calculate	d initial growth index (<i>a</i>)		_
		А	=	69733.23	69733.23 = <i>a</i> x 1	0527.20 ^{0.84195}	5
		Р	=	10527.20	10527.20 ^{0.84195}	=	2435.49
		а	=	?	69733.23/2435.49	=	28.63
		b	=	0.84195	а	=	28.63
		Metho	d 1: 1	Fotal built flo	oor area (m²) (A), built floor area	per person a	nd RADC
		А	=	?	A = 21.7 x 67	73.23 ^{0.84195}	
		Р	=	6773.23	6773.23 ^{0.84195}	=	1680.11
ge:		а	=	21.7	21.7 x 1680.11	=	36458.46
ra	_	b	=	0.84195	Α	=	36458.46
sto	ate	Built f	loor a	area per pers	son (m²)		5.38
đ	der	RADC	(m ² p	per person)			2.93
Ť	Мос			Resider	ntial floor area as a proportion of bu	uilt floor area	54.50
no		Metho	d 2: F	Re-calculate	d initial growth index (a)		
Am		А	=	69733.23	69733.23 = <i>a</i> x 6	6773.23 ^{0.84195}	
		Р	=	6773.23	6773.23 ^{0.84195}	=	1680.11
		а	=	?	69733.23/1680.11	=	41.51
		b	=	0.84195	a	=	41.51
		Metho	d 1: 1	Fotal built flo	oor area (m²) (A), built floor area	per person a	nd RADC
		A	=	?	A = 21.7 x 54	03.69 ^{0.84195}	-
		Р	=	5403.69	5403.69 ^{0.84195}	=	1389.12
		а	=	21.7	21.7 x 1389.12	=	30143.83
		b	=	0.84195	Α	=	30143.83
	шп	Built f	loor a	area per pers	son (m²)		5.58
	im	RADC	(m ² r	per person)			3.04
	<i>l</i> lax	-	· ·	Resider	ntial floor area as a proportion of bu	ilt floor area	54.50
	<	Metho	d 2: F	Re-calculate	d initial growth index (a)		
		A	=	69733.23	69733.23 = <i>a</i> x 5	5403.69 ^{0.84195}	
		P	=	5403.69	5403.69 ^{0.84195}	=	1389.12
		a	=	?	69733.23/1389.12	=	50.20
		b	=	0.84195	a	=	50.20

Wiessner's (1974) AGF2

			Data required		
Tota	l site e	extent (m ²) (A)			130000
SPF	popul	ation estimate (P) based	on amount of storage:	None	10527.20
			-	Moderate	6773.23
				Maximum	5403.69
			- <u>-</u> b		
		On an a stillam anta	$A = a \times P^{\sim}$	a w 40507 00 ²	
		Open settlements	130000 =	= a x 10527.20	
		A = 130000	1050700^{2}		44000004405
		P = 10527.20	10527.20-	=	110822014.85
		a = ?	130000/110822014.85	=	0.00
		b = 2	а	=	0.00
		Village settlements	130000 =	= <i>a</i> x 10527.20 ¹	
	Φ	A = 130000			
	lon	P = 10527.20	10527.20 ¹	=	10527.20
	2	a = ?	130000/10527.20	=	12.3
		b = 1	а	=	12.35
		l Irhan settlements	130000 -	a x 10527 20 ^{0.666}	7
			150000 = 1	a x 10527.20	
		A = 130000	10527 200.6667		400.40
		P = 10527.20	10527.20	=	480.48
		a = ?	130000/480.48	=	270.56
		b = 0.6667	а	=	270.56
		Open settlements	130000	= <i>a</i> x 6773.23 ²	
		A = 130000	_		
		P = 6773.23	6773.23 ²	=	45876658.89
		a = ?	130000/45876658.89	=	0.00
e:		b = 2	а	=	0.00
ag		Village settlements	130000	– a x 6773 23 ¹	
ţ	te	$\Lambda = 130000$	100000	- 4 × 0// 5.25	
fs	era	P = 6772.22	6772 22 ¹	_	6772 22
to	po	F = 0775.25	120000/6772 22	=	0773.23
n	Σ	a =	130000/6773.23	=	19.2
ой Д		D = 1	a	=	, 19.19
Ā		Urban settlements	130000 =	a x 6773.23 ^{0.0007}	
		A = 130000	0.0007		
		P = 6773.23	6773.23 ^{0.6667}	=	358.09
		a = ?	130000/358.09	=	363.04
		b = 0.6667	а	=	363.04
		Open settlements	130000	= <i>a</i> x 5403.69 ²	
		A = 130000			
		P = 5403.69	5403.69 ²	=	29199871.79
		a = ?	130000/29199871 79	_	0.00
		a = 2	a	_	0.00
		$\sim - 2$	420000	- 	0100
	З	village settlements	130000	= a x 5403.69	
	nu	A = 130000	- 400.00 ¹		
	axir	P = 5403.69	5403.69	=	5403.69
	Ma	a = ?	130000/5403.69	=	24.1
		b = 1	а	=	24.06
		Urban settlements	130000 =	<i>a</i> x 5403.69 ^{0.6667}	,
		A = 130000			
		P = 5403.69	5403.69 ^{0.6667}	=	308.02
		a = ?	130000/308.02	=	422.04
		b = 0.6667	а	=	422.04

Initial growth indices							
Settlement type	Settlement type SPF population estimate based on amount of storage:						
None (10527.20) Moderate (6773.23) Maximum (5403							
Open	0.00	0.00	0.00				
Village	12.35	19.19	24.06				
Urban	270.56	363.04	422.04				

Settlement population density coefficient (SPDC)

	Data required	
Total site extent (ha)		13

Method 2: SPDCs based on HUM, RADC and SPF population estimates								
Method	Total	population est	SPDC (people/ha)					
	Minimum	Average	Maximum	Minimum	Average	Maximum		
HUM	3598.10	6596.51	9594.92	276.78	507.42	738.07		
RADC	4596.28	6964.06	12983.84	353.56	535.70	998.76		
SPF	5692.53	-	7853.94	437.89	-	604.15		

Assessable	Assessabl	e area	440.90					Adjusted ^a
area (m²)	Unassess	able area	138.39	Potential	Upper	House I*	77.38	63.84
	Total		302.51	residential	Storey	House II	47.33	39.05
				floor area		House III*	45.29	37.36
Potential	Upper	House I*	84.47	(m²)		House IV	11.69	9.64
residential	storey	House II	51.64			House V	37.75	31.15
built area		House III	43.66			House VII*	28.71	23.69
(m²)		House IV	13.64		Total		248.16	204.73
		House V	42.24		*Mean res	idential floor area: complete dwellings	50.46	41.63
		House VII*	33.18					
	Total		268.83	Built floor	Ground	House I	43.44	
	Mean		44.80	area (m²)	floor	House II	30.21	
	SD (±)		23.39			House III	21.09	
	*Mean res	idential built area: complete dwellings	58.82			House IV	7.61	
						House V	19.88	
Potential	Ground	House I	84.47			House VII	20.03	
non-	floor	House II	51.64			Rooms 20-21	4.01	
residential		House III	43.66			Rooms north and west of House III	10.19	
built area		House IV	13.64		Upper	House I	77.38	63.84
(m²)		House V	42.24		Storey	House II	47.33	39.05
		House VII	33.18			House III	45.29	37.36
		Rooms 20-21/Corridor	16.98			House IV	11.69	9.64
		Rooms north and west of House III	16.70			House V	37.75	31.15
	Total		302.51			House VII	28.71	23.69
					Total		404.61	361.19
Built area	Potential r	esidential built area (ground floor)	-					
(m ²)	Potential r	non-residential built area	302.51					
	Total		302.51					

Scenario 4: Residential floor area located in a full second storey

^a Upper storey interior area reduced by 17.5% based on proportion derived for Beidha Subphase C2 (17.42%) (see Section 5.2.2).

Method 1: Total potential residential floo	or area (m ²)			67677.10
Potential residential floor area (m ²)				204.73
Potential residential floor area (m ²)	House I	63.84	House IV	9.64
	House II	39.05	House VII	31.15
	House III	37.36	House VIII	23.69
Assessable area (m ²)				302.51
Estimated total site extent (m ²)				100000
Assessable area (proportion)				0.0030
Method 2: Total potential residential floo	or area (m ²)			67677.10
Total built area estimate (m ²)				100000.00
		Assessal	ble area (m^2)	302.51
		Assessable b	uilt area (m²)	302.51
Assessable built a	area as a proj	portion of asse	essable area	1.0000
	Estin	nated total site	e extent (m^2)	100000
Potential residential floor area as a proportion	on of assess	able built area	۱ ر	0.6768
	Potential	residential flo	oor area (m²)	204.73
Method 3: Total potential residential floo	or area (m²)			67677.10
Potential residential floor area as a proporti	on of assess	able area		0.6768
Total contemporaneous residential floor are	ea (m²) (60.47	7%)		40924.34
Total population estimate based on RAD	C (m ²):	Minimum	1.77	23121.10
		Average	3.3	12401.32
		Maximum	5	8184.87

Residential area density coefficient (RADC)

Storage provisions formula (SPF)

					Re	sidential storage pro	visions (m	³ per perso	n)		
			No	one		Modera	ate (0.46)		Maximum (2 x 0.46)		
	P = 0.3944A - 0.375				P = 0.247	7A + 0.0339	9	$P = 0.1903 \text{\AA} + 0.3976$			
Me	thod 1:	Total populatio	n estimate (P) based on t	total conte	emporaneou	is residential floor a	rea (A)				
Α	=	40924.34	0.3944 x 26080.2	=	16140.56	0.2477 x 26080.2	=	10136.96	0.1903 x 26080.2	=	7787.90
Ρ	=	?	10286.03 - 0.375	=	16140.19	6460.07 + 0.0339	=	10136.99	4963.06 + 0.3976	=	7788.30
			Р	=	16140.19	Ρ	=	10136.99	Р	=	7788.30
Me	thod 2	People per dwe	lling (P) and total popula	tion estin	nates based	on mean residential	floor area	of complete	e dwellings (A)		
A	=	41.63	0.3944 x 26.21	=	16.42	0.2477 x 26.21	=	10.31	0.1903 x 26.21	=	7.92
Ρ	=	?	10.34 - 0.375	=	16.04	6.49 + 0.0339	=	10.35	4.99 + 0.3976	=	8.28
			Р	=	16.04	Р	=	10.35	Р	=	8.28
						Total number of conte	mporaneou	s dwellings			1199.37
		Total populati	on		19242.46			12408.21			9932.53
Me	an tota	population			17691.32			11272.60			8860.42

Naroll's (1962) AGF1

Summary of estimates based on:		Naroll's (1962) for	mula		Archaeological evidence			
	SPF populat	ion estimate based or	amount of storage:		SPF population estimate based on amount of storage:			
	None	Moderate	Maximum		None	Moderate	Maximum	
	(17691.32)	(11272.6)	(8860.42)		(17691.32)	(11272.6)	(8860.42)	
Total built floor area (m ²)	81820.39	55983.70	45710.79	119397.71				
Built floor area per person (m ²)	4.62	4.97	5.16		6.75	10.59	13.48	
RADC (m ² per person)	2.62	2.82	2.92		2.31	3.63	4.62	
Initial growth index	31.67	46.28	56.68					

					Data required			
SPF	popul	ation es	stima	te (P) based	on amount of storage:	None	17691.32	
	Moderate Maximum							
						Maximum	8860.42	
Residential floor area as a proportion of built floor area (%)								
Total built floor area (m^2) (A)								
					Built floor area in assessab	le area (m²)	361.19	
					Proportion of site ass	essable (%)	0.30	
				Total reside	ential floor area (m²) (RADC method)	67677.10	
Built	floor a	area pe	r pers	son (m ²) deriv	ved from SPF population estimates	None	6.75	
and	total b	uilt floo	r area	a based on a	mount of storage:	Moderate	10.59	
					C	Maximum	13.48	
RAD	C der	ived fro	m SP	PE population	estimates and total	None	2.31	
cont	empor	aneous	s resid	dential floor a	area based on amount of storage:	Moderate	3.63	
						Maximum	4 62	
		7	Total d	rontemporan	eous residential floor area (m ²) (RAI	C method)	40924 34	
		1	otart	ontemporan			40324.04	
					$A = a x P^{b}$			
		Metho	od 1:	Total built f	loor area (m²) (A), built floor area	per person a	nd RADC	
		А	=	?	$A = 21.7 \times 176$	591.32 ^{0.04195}		
		Р	=	17691.32	17691.32 ^{0.84195}	=	3770.53	
		а	=	21.7	21.7 x 3770.53	=	81820.39	
		b	=	0.84195	Α	=	81820.39	
	θ	Built	floor	area per per	rson (m²)		4.62	
	lon	RADO	C (m²	per person)			2.62	
	<			Reside	ntial floor area as a proportion of bu	ilt floor area	56.68	
		Metho	od 2:	Re-calculate	ed initial growth index (a)			
		А	=	119397.71	119397.71 = a x 2	17691.32 ^{0.8419}	5	
		Р	=	17691.32	17691.32 ^{0.84195}	=	3770.53	
		а	=	?	119397.71/3770.53	=	31.67	
		b	=	0.84195	а	=	31.67	
		Metho	od 1.	Total built f	loor area (m ²) (A) built floor area	per person a		
		A	=	?	$A = 21.7 \times 11$	272.6 ^{0.84195}		
		P	_	11272 60	11272 6 ^{0.84195}		2579 89	
e:		' a	_	21.7	21 7 x 2570 80	_	55083 70	
ag		h h	_	0.8/105	Δ	_	55983 70	
Į	te	Built	- floor	0.04195	$r_{\rm con}$ (m ²)		4 07	
fs	era		$\sim (m^2)$	area per per			4.37	
it o	po	RADU	5 (III	Per person	ntial floor area as a proportion of bu	ilt floor area	2.02 56.68	
n	N	Moth	ad 2.	Re seleviet	ad initial growth index (a)		00.00	
ŭ			ou 2:	110207 74	$\frac{140207}{74} = 2$	11070 0.8419	5	
۲		A D	=	11939/./1	119397.71 = a X	1 1212.0	2570.00	
		r c	=	11272.0U 2	11212.0	=	2019.09	
		a h	=	(0.94405	1 19397.7 1/2579.89 A	=	40.20	
		D	=	0.84195	A	=	46.28	
		Metho	od 1:	i otal built f	loor area (m ⁻) (A), built floor area	per person a	IND RADC	
		A	=	?	$A = 21.7 \times 88$	60.42		
		Р	=	8860.42	8860.42	=	2106.49	
		a	=	21.7	21.7 x 2106.49	=	45710.79	
	۲	b	=	0.84195	A	=	45710.79	
	Inr	Built	floor	area per per	rson (m²)		5.16	
	ixin	RADO	C (m²	per person)			2.92	
	Ма			Reside	ntial floor area as a proportion of bu	ilt floor area	56.68	
	-	Metho	od 2:	Re-calculate	ed initial growth index (<i>a</i>)			
		А	=	119397.71	119397.71 = <i>a</i> x	8860.42 ^{0.84195})	
		Р	=	8860.42	8860.42 ^{0.84195}	=	2106.49	
		а	=	?	119397.71/2106.49	=	56.68	
		b	=	0.84195	а	=	56.68	

Wiessner's (1974) AGF2 Data required Total site extent (m^2) (A) 130000 SPF population estimate (P) based on amount of storage: None 17691.32 11272.60 Moderate Maximum 8860.42 <u>A = a</u>x P^b $130000 = a \times 17691.31^2$ **Open settlements** 130000 А = 17691.31² Ρ 17691.32 312982971.89 = ? 130000/312982971.89 0.00 а 0.00 b 2 а = $130000 = a \times 17691.31^{1}$ Village settlements 130000 А = None 17691.32 17691.31¹ 17691.32 Ρ = = ? 130000/17691.31 7.3 а = 7.35 1 b = а 130000 = *a* x 17691.31^{0.6667} **Urban settlements** 130000 Α _ 17691.31^{0.6667} Ρ 17691.32 679.18 = = ? 130000/679.18 191.41 а = = 0.6667 191.41 b = а $130000 = a \times 11272.6^{2}$ **Open settlements** 130000 Α = 11272.6² Ρ 11272.60 127071608.42 = = 130000/127071608.42 а ? 0.00 = = 2 0.00 Amount of storage: b = а $130000 = a \times 11272.6^{1}$ **Village settlements** Moderate Α 130000 Ρ 11272.60 11272.6¹ 11272.60 = = а ? 130000/11272.6 11.5 = = 11.53 b 1 = а 130000 = *a* x 11272.6^{0.6667} **Urban settlements** 130000 А = 11272.6^{0.6667} Ρ 11272.60 502.90 = = 130000/502.9 258.50 а ? = = b 0.6667 258.50 = а **Open settlements** $130000 = a \times 8860.42^{2}$ 130000 А = 8860.42² Ρ 8860.42 78506960.70 = = ? 130000/78506960.70 0.00 а = = b 2 0.00 = а $130000 = a \times 8860.42^{1}$ Village settlements Maximum 130000 Α = 8860.42 8860.42¹ 8860.42 Ρ = = 130000/8860.42 14.7 а = ? = 14.67 b = 1 а 130000 = *a* x 8860.42^{0.6667} **Urban settlements** А = 130000 8860.420.6667 Ρ 8860.42 428.32 = = 130000/428.32 303.51 а ? = = b 0.6667 303.51 = а =

Initial growth indices							
Settlement type	SPF population estimate based on amount of storage:						
	None (17691.32) Moderate (11272.6) Maximum (8860.42)						
Open	0.00	0.00	0.00				
Village	7.35	11.53	14.67				
Urban	191.41	258.50	303.51				

Settlement population density coefficient (SPDC)

Data required	
Total site extent (ha)	13

Method 2: SPDCs based on HUM, RADC and SPF population estimates											
Method	Total popul	Total population estimate SPDC (people									
	Minimum	Average	Minimum	Average	Maximum						
HUM	3598.10	6596.51	9594.92	276.78	507.42	738.07					
RADC	8184.87	12401.32	23121.10	629.61	953.95	1778.55					
SPF	10136.99	-	12408.21	779.77	-	954.48					

Summary of estimates

Method Total population		People per dwelling		RADC	SP	DC
		Based on total number of contemporaneous dwellings:		(m ² /person) Based on total contemporaneous residential floor area (m ²): 40924-34	(peop Based on total 1	l e/ha) site extent (ha):
ним	3508 1-9594 92	1100.07	3-8	A 27-11 37	1	276 79-738 07
RADC	8184 87-23121 1	6 82-10	3 28	1 77-5 00		629 61-1778 55
SPE1	10136 99-12408 21	8 45-10	0.20	3 30-4 04		779 77-954 48
SPF2 ^a		1(0.35	-		-
AGF1 ^a	<u> </u>		-	2 77-2 86		-
SPDC	1170-3822	0.98-3	3.19	10.71-34.98		90-294
^a Direct calcu	lations.					
Initial grow	th indices derived from S	PF population estimates:		Am	ount of storage:	
J				None (17691.32)	Moderate (11272.6)	Maximum (8860.42)
Naroll's (196	62) AGF1			31.67	46.28	56.68
Wiessner's	(1974) AGF2	Open settlements		0.00	0.00	0.00
		Village settlements		7.35	11.53	14.67
		Urban settlements		191.41	285.50	303.51
Additional	demographic data					
	0				Contemporan	eous (60.47%)
Proportion (%) of site comprising:	Built area		76.92		46.52
		Residential built area		68.36		41.34
		Built floor area		91.84		55.54
		Residential floor area		52.06		31.48
Proportion (%) of assessable built	Residential built area		88.87	-	
area comprising:		Built floor area ^b		119.40		
	-	Residential floor area		67.68		
Proportion (%) of built floor area compr	sing residential floor area		56.68		
Mean residential floor area of complete dwellings (m^2)				41.63		
^b Based on as	ssessable built area (302.51 m	²) and built floor area (361.19 m ²).				

Ba'ja

Assessable area (m²)	Assessable	area	Area B Area C Area D	North	149.85 288.92 198.51	Built area (m²)	Potential residential built area (ground floor) Potential non-residential built area Total						34.44 442.71 477.15
	Unassessab Total	le area			150.59 486.69					Adjusted ^a			Adjusted
	i otai					Potential	Ground	Unit BVI	5.55	, lajuotoa			<i>i</i> lajaotoa
Potential	Ground	Unit BVI	7.48			residential	floor	Unit CV*	19.04				
residential	floor	Unit CV*	26.96			floor area	Upper	Unit BI*	7.93	6.54	Unit CII*	32.09	26.47
built area	Upper	Unit BI*	11.66	Unit CII(*)	44.90	(m²)	storey	Unit BIII*	16.69	13.77	Unit CVI	32.32	26.66
(m²)	storey	Unit BIII*	21.89	Unit CVI	47.41			Unit BIV*	15.21	12.55	Unit CVII	23.56	19.44
		Unit BIV	19.54	Unit CVII	26.91			Unit BV*	3.39	2.80	Unit DI*	18.46	15.23
		Unit BV*	5.45	Unit DI*	26.22			Unit BVIII	13.50	11.14	Unit DII*	13.92	11.48
		Unit BVIII	15.21	Unit DII*	25.34		Total					201.66	170.67
	Total				278.97		*Mean re	esidential flo	or area:	complete dv	vellings	15.72	13.48
	Mean				23.25								
	SD (±)				13.05	Built floor	Ground	Unit BI	3.80		Unit CII	37.47	
	*Mean resid	ential built are	a: compl	ete dwellings	23.20	area (m⁻)	floor	Unit BII	10.55		Unit CV	26.20	
	((*) marginal	lly incomplete	building)					Unit BIII	15.98		Unit CVI	27.79	
Potential	Ground	Unit BI	11.66	Unit CII	59.49			Unit BIV	12.36		Unit CVII	34.49	
non-	floor	Unit BII	17.37	Unit CV	18.18			Unit BV	3.30		Unit DI	29.46	
residential		Unit BIII	34.41		50.02				9.00			31.25	
built area		Unit BIV	26.87		46.11				11.81		Area D: W	17.25	
(m⁻)		Unit BV	7.06		3.38		Upper	Unit BI	7.93	6.54		32.09	26.47
			6.32		53.35		storey		16.69	13.77		32.32	26.67
			17.62		5/ /2				18.86	15.56		23.56	19.44
				Area D: W	33.15				3.39	2.79		18.46	15.23
	upper				5.24		Tatal		13.50	11.14		18.59	15.33
	Storey Total				4.07 452.62		iotai					430.10	423.00
	i Ulai				4JZ.0Z								

^a Upper storey interior area reduced by 17.5% based on proportion derived for Beidha Subphase C2 (17.42%) (see Section 5.2.2).

Housing unit method (HUM)				
Method 1: Total potential dwelling number				221.91
Number of potential dwellings in the assessabl	e area			12
Assessable area (m ²)				486.69
Estimated total site extent (m ²)				9000
Assessable area (proportion)				0.0541
Method 2: Total potential dwelling number				221.91
Mean potential residential built area (m ²)				23.25
Potential residential built area (m^2)	Unit Bl	11.66	Unit CII	44.90
	Unit BIII	21.89	Unit CV	26.96
	Unit BIV	19.54	Unit CVI	47.41
	Unit BV	5.45	Unit CVII	26.91
	Unit BVI	7.48	Unit DI	26.22
	Unit BVIII	15.21	Unit DII	25.34
~				
Total built area estimate (m²)			2	8823.58
		Assessable	e area (m²)	486.69
	As	ssessable built	t area (m²)	477.15
Assessable built a	area as a propo	ortion of asses	sable area	0.9804
	Estima	ated total site e	extent (m ²)	9000
Residential built area as a proportion of assess	sable built area	l 	. 2.	0.5847
	Potential r	esidential built	t area (m²)	278.97
Total potential residential built area (m ²)				5158.87
Method 3: Total potential dwelling number				221 01
Potential residential built area as a proportion	of accessable a	aroa		0 5732
	JI 239532016 C	aica		0.3732
Total number of contemporaneous dwellings (7	78%)			173.09
Total population estimate based on nuclear	family size:	Minimum	3	519.26
	-	Average	5.5	951.98
		Maximum	8	1384.70

Residential area density coefficient (RADC)							
Method 1: Total potential residential floor area (m ²)								
Potential residential floor area (m ²)				170.67				
Potential residential floor area (m ²)	Unit Bl	6.54	Unit CII	26.47				
	Unit BIII	13.77	Unit CV	19.04				
	Unit BIV	12.55	Unit CVI	26.66				
	Unit BV	2.80	Unit CVII	19.44				
	Unit BVI	5.55	Unit DI	15.23				
	Unit BVIII	11.14	Unit DII	11.48				
Assessable area (m ²)				486.69				
Estimated total site extent (m ²)				9000				
Assessable area (proportion)				0.0541				
Method 2: Total potential residential floo	r area (m²)			3156.07				
Total built area estimate (m ²)			_	8823.58				
		Assessab	ole area (m²)	486.69				
		Assessable bu	ıilt area (m²)	477.15				
Assessable built	t area as a pro	oportion of asse	essable area	0.9804				
	Est	imated total site	e extent (m^2)	9000				
Potential residential floor area as a proportion	on of assessa	ble built area		0.3577				
	Potentia	al residential flo	or area (m²)	170.67				
Method 3: Total potential residential floo	r area (m²)			3156.07				
Potential residential floor area as a proportion	on of assessa	ble area		0.3507				
Total contemporaneous residential floor are	a (m²) (78%)			2461.74				
	2							
Total population estimate based on RAD	C (m²):	Minimum	1.77	1390.81				
		Average	3.3	745.98				
		Maximum	5	492.35				

Storage provisions formula (SPF)

	Residential storage provisions (m ³ per person)										
			None)		Modera	Moderate (0.46) Ma			n (2 x 0.46)	
			P = 0.3944A	- 0.375		P = 0.2477	7A + 0.0339		P = 0.1903	BA + 0.3976	
Meth	od 1: T	Total population est	timate (P) based on tota	l contem	poraneou	s residential floor are	ea (A)				
А	=	2461.74	0.3944 x 2461.74	=	970.91	0.2477 x 2461.74	=	609.77	0.1903 x 2461.74	=	468.47
Р	=	?	970.91 - 0.375	=	970.53	609.77 + 0.0339	=	609.81	468.47 + 0.3976	=	468.87
			Р	=	970.53	Р	=	609.81	Ρ	=	468.87
Meth	od 2: F	People per dwelling	(P) and total population	n estimat	es based	on mean residential	floor area of	^c complet	e dwellings (A)		
А	=	13.48	0.3944 x 13.48	=	5.32	0.2477 x 13.48	=	3.34	0.1903 x 13.48	=	2.57
Р	=	?	5.32 - 0.375	=	4.94	3.34 + 0.0339	=	3.37	2.57 + 0.3976	=	2.92
			Р	=	4.94	Р	=	3.37	Ρ	=	2.92
					7	otal number of conten	nporaneous d	dwellings			173.09
		Total population			855.31			583.81			506.20
Mear	n total j	population			912.92			596.81			487.53

Naroll's (1962) AGF1

Summary of estimates based on:		Naroll's (1962) forn	nula		Archaeological evidence			
	SPF populatio	n estimate based on	amount of storage:		SPF populatio	n estimate based on	amount of storage:	
	None (912.92)	Moderate (596.81)	Maximum (487.53)		None (912.92)	Moderate (596.81)	Maximum (487.53)	
Total built floor area (m ²)	6745.25	4715.99	3977.64	7834.43				
Built floor area per person (m ²)	7.39	7.90	8.16		8.58	13.13	16.07	
RADC (m ² per person)	2.98	3.18	3.29		2.70	4.12	5.05	
Initial growth index	25.20	36.05	42.74					

				Dat	ta required			
SPF	popula	ation estir	nate	(P) based on amou	int of storage:	None	912.92	
						Moderate	596.81	
						Maximum	487.53	
Residential floor area as a proportion of built floor area (%)								
				Total built floor a	area (m^2) (A)		7834.43	
					Built floor area in assessa	ble area (m^2)	423.66	
					Proportion of site as	sessable (%)	5.41	
				Total residential	$floor area (m^2) (RADC meth)$	od)	3156.07	
Built	floor a	rea ner n	arear	(m^2) derived from	SPE population estimates	None	8 58	
and	total hi	ilt floor a	rea h	ased on amount of	storage.	Moderate	12 12	
anu					storage.	Movimum	16.07	
						Nazimum	0.07	
RAD			SPF	population estimate	es and total	None	2.70	
cont	empora	aneous re	sider	illai noor area base	ed on amount of storage.	Moderate	4.12	
		-				Maximum	5.05	
		1	otal d	contemporaneous i	residential floor area (m ⁻) (RA	ADC method)	2461.74	
				Δ	$A = a \times P^{b}$			
		Metho	d 1: T	otal built floor ar	ea (m ²) (A), built floor area	per person a	nd RADC	
		А	=	?	A = 21.7 x 9	12.92 ^{0.84195}		
		Р	=	912.92	912.92 ^{0.84195}	=	310.84	
		a	=	21 7	21 7 x 310 84	=	6745 25	
		h	_	0 84195	Δ	_	6745 25	
		Ruilt fl		rea per person (n	n ²)	_	7 30	
	ne		$(m^2 r)$	nea per person (il	• /		2 08	
	Ň	INADO	(iii F	Residential fl	or area as a proportion of h	uilt floor area	10.28	
		Matha	J 0. F		ol growth index (a)		40.20	
		wiethod			al growth index (a) $7924.42 - 6$	042 020.84195		
		A	=	7834.43	7834.43 = a x	912.92		
		Р	=	912.92	912.92	=	310.84	
		a	=	?	7834.43/310.84	=	25.20	
		b	=	0.84195	a	=	25.20	
		Method	d 1: T	otal built floor are	ea (m²) (A), built floor area	per person al	nd RADC	
		A	=	?	$A = 21.7 \times 55$	96.81 ^{0.04135}		
		Р	=	596.81	596.81 ^{0.84195}	=	217.33	
ge		а	=	21.7	21.7 x 217.33	=	4715.99	
ora	0	b	=	0.84195	Α	=	4715.99	
stc	'att	Built fl	oor a	rea per person (n	n²)		7.90	
of	qei	RADC	(m² p	per person)			3.18	
nt	Mo			Residential fl	oor area as a proportion of b	uilt floor area	40.28	
noi		Method	d 2: F	Re-calculated initi	al growth index (<i>a</i>)			
₽		А	=	7834.43	7834.43 = a x	596.81 ^{0.84195}		
		Р	=	596.81	596.81 ^{0.84195}	=	217.33	
		а	=	?	7834.43/217.33	=	36.05	
		b	=	0.84195	а	=	36.05	
		Methor	4 1 · T	Total built floor ar	$\frac{1}{2}$ (m ²) (A) built floor area	ner nerson a		
		Δ		2	$\Delta = 21.7 \text{ y} 43$	87 53 ^{0.84195}		
		D	_	: 187 53	$A = 21.7 \times 10^{-2}$	_	183 30	
		Г О	_	407.00	407.00	=	2077 64	
		a b	_	21.7	21.7 × 185.5	=	2077 64	
	Е	Duille	=	0.04190	A	=	3977.04	
	nm		$\frac{1}{m^2}$	nea per person (n	<u>1)</u>		0.10 0.00	
	ixe	RADU	(m þ	per person)	loor area of a properties of t		3.29	
	M			Residential fl	our area as a proportion of b	uiit noor area	40.28	
		Method	d 2: F	Re-calculated initi	al growth index (a)			
		A	=	7834.43	7834.43 = a x	487.53		
		Р	=	487.53	487.53	=	183.30	
		а	=	?	7834.43/183.3	=	42.74	
			_					

Wiessner's (1974) AGF2

					Data required					
Total	site ex	tent (m	²) (A)				13500			
SPF population estimate (P) based on amount of storage: None										
	•			()	5	Moderate	596 81			
						Maximum	487 53			
						Maximum	407.00			
					$A = a \times P^{b}$					
		Оре	n set	tlements	13500	$= a \times 912.92^2$				
		А	=	13500						
		Р	=	912.92	912.92 ²	=	833431.13			
		а	=	?	13500/833431.13	=	0.02			
		b	=	2	а	=	0.02			
		Villa	ae se	ettlements	13500	$= a \times 912.92^{1}$				
	۵.	A	=	13500						
	9UC	Р	=	912.92	912.92 ¹	=	912.92			
	Ž	a	=	?	13500/912 92	=	14.8			
		h	_	1	a	-	14 79			
		~		, , , , , , , , , , , , , , , , , , , ,	40500	-	14.10			
		Urba	an se	ttiements	13500 =	a x 912.92				
		A	=	13500	0 6667					
		Р	=	912.92	912.92	=	94.13			
		а	=	?	13500/94.13	=	143.42			
		b	=	0.6667	а	=	143.42			
		Оре	n set	tlements	13500	= <i>a</i> x 596.81 ²				
		А	=	13500						
		Р	=	596.81	596.81 ²	=	356177.95			
ge:		а	=	?	13500/356177.95	=	0.04			
		b	=	2	а	=	0.04			
rag		Villa	ae se	ettlements	13500	= <i>a</i> x 596.81 ¹				
ţ	ate	Α	=	13500						
đ	lerä	P	=	596 81	596 81 ¹	=	596 81			
Ĕ	100	а	=	?	13500/596 81	=	22.6			
n	2	h	_	1	a	=	22.62			
Ĕ		~			40500	-	22.02			
◄		Urba	an se	ttiements	13500 =	a x 596.81				
		A	=	13500						
		Р	=	596.81	596.81	=	70.90			
		а	=	?	13500/70.9	=	190.41			
		b	=	0.6667	а	=	190.41			
		Оре	n set	tlements	13500	= <i>a</i> x 487.53 ²				
		Α	=	13500						
		Р	=	487.53	487.53 ²	=	237689.73			
		а	=	?	13500/237689.73	=	0.06			
		b	=	2	а	=	0.06			
		Villa	ae se	ettlements	13500	= <i>a</i> x 487.53 ¹				
	ш	А	=	13500						
	imi	P	=	487.53	487.53 ¹	=	487.53			
	lax	а	=	?	13500/487.53	=	27.7			
	2	h	=	1	a	=	27 69			
		~	-	Hlomont-		- 	21100			
			an se		13300 =	a X 401.JJ				
		A	=	13500	407 50.6667		04.00			
		۲	=	487.53	407.03	=	61.96			
		a	=	?	13500/61.96	=	217.89			
		b	=	0.6667	а	=	217.89			
Initial growth indices										
---	--	--------	--------	--	--	--	--			
Settlement type SPF population estimate based on amount of storage:										
	None (912.92) Moderate (596.81) Maximum (487.53)									
Open	0.02	0.04	0.06							
Village	14.79	22.62	27.69							
Urban	143.42	190.41	217.89							

Settlement population density coefficient (SPDC)

Data required					
Total site extent (ha)	1.35				
Proportion of site assessable (%)	5.41				
Number of contemporaneous dwellings in the assessable area	9.36				
Dwellings in assessable area	12				
Contemporaneity value (%)	78				

Method 1: Total population based on commonly utilised SPDCs

	SPDC (people/ha)			
	Minimum	Average	Maximum	
	90	150	294	
Total population	121.5	202.5	396.9	
Population in the assessable area	6.57	10.95	21.46	
People per dwelling in the assessable area	0.70	1.17	2.29	

Method 2: SPDCs based on HUM, RADC and SPF population estimates									
Method	Total population estimate SPDC (people/ha								
	Minimum	Average	Maximum	Minimum	Average	Maximum			
HUM	519.26	951.98	1384.70	384.64	705.17	1025.70			
RADC	492.35	745.98	1390.81	364.70	552.58	1030.23			
SPF	583.81	-	609.81	432.45	-	451.71			

		Site	Nahal Oren	Gilgal I	Netiv Hagdud	EI-Hemmeh (PPNA)
		Settlement type	1	2	2	1
		Period	PPNA	PPNA	PPNA	PPNA
		Site extent (hectares)	0.05	0.4	0.75	0.1
n		Site extent (hectares) used in calculations of population size	-	-	-	-
Itic		Site extent category (hectares)	<0.4	≥0.4	≥0.4	<0.4
mã		Structural contemporaneity value (%)	80	60	60	75
õ		Environment	Restricted	Restricted	Unrestricted	Restricted
<u>I</u>		Subsistence (H-Hunt; G-Gath; C-Cult; P-Past)	H, G, C	H, G, C	H, G, C	H, G, C
te		Dwelling architecture: predominant shape	Curvilinear	Curvilinear	Curvilinear	Curvilinear
Si		Dwelling architecture: predominant number of storeys	Single	Single	Single	Single
		Dwelling architecture: degree of compartmentalisation	Absent	Present	Present	Absent
		Economy: household economic independence	Limited-Mod	Limited	Limited-Mod	Limited-Mod
		Ritual	Incipient	Incipient	Established	Incipient
		Complexity in community organisation	Evident	Evident	Evident	Unknown
	Data	Dwelling count	10	6	6	6
		Assessable area (m ²)	326.36	214.66	533.82	61.49
		Proportion of site assessable (%)	65.27	5.37	7.12	6.15
		Total number of dwellings	15.32	111.8	84.3	97.58
pq		Mean residential built area (m ²)	15.08	12.5	28.21	4.9
Ę		Assessable built area (m ²)	178.48	110.31	169.23	33.65
Me		Proportion of built area in assessable area (%)	54.69	51.39	31.7	54.72
Ë		Total built area (m ²)	273.44	2055.53	2377.63	547.24
٩		Assessable residential built area (m ²)	150.74	75.01	169.23	29.41
<u> </u>		Proportion of residential built area in built area (%)	84.46	68	100	87.41
sin		Total residential built area (m ²)	230.94	1397.75	2377.63	478.32
ŝ		Proportion of residential built area in assessable area (%)	46.19	34.94	31.7	47.83
Ť	Estimates	Total number of contemporaneous dwellings	12.25	67.08	50.58	73.18
		Total population (3 people)	36.74	201.25	151.74	219.55
		Total population (5.5 people)	67.36	368.96	278.18	402.5
		Total population (8 people)	97.98	536.66	404.63	585.46
		Suitable family sizes	3-5.5	All	All	3

Appendix C.2: Micro-level estimate database

			Site		Nahal Oren	Gilgal I	Netiv Hagdud	El-Hemmeh (PPNA)
	Ţ	Data	Assessable residential floor area (m ²)	82.67	59.31	127.99	18.64
ea.	Total residential floor area (m ²)				126.65	1105.27	1798.22	303.08
al Ar effici od			Proportion of residential floor area	in built area (%)	51.79	53.77	75.63	55.38
			Proportion of residential floor area	in assessable area (%)	28.32	27.63	23.98	30.31
, ti	S ਦ	Estimates Total contemporaneous residential floor area (m ²)		113.3	663.16	1078.93	227.31	
de ,	Z₹		Total population (1.77 m ² per perso	on)	64.01	374.67	609.57	128.42
ŝsi.	JSI		Total population (3.3 m ² per person	Total population (3.3 m^2 per person)		200.96	326.95	68.88
Ľ,	le C		Total population (5 m ² per person)		22.66	132.63	215.79	45.46
			Suitable RADCs		All	All	All	All
Ð	Data		Total contemporaneous residentia	l floor area (m ²)	113.3	663.16	1078.93	227.31
rla			Mean residential floor area of com	plete dwellings (m ²)	9.6	12.77	21.33	4.83
Ĕ			Total number of contemporaneous	dwellings	12.25	67.08	50.58	73.18
ē			Probable amount of interior reside	ntial storage	None-max	None-max	Mod-max	None-max
isions F		Total population	No storage (min)		41.79	261.18	406.54	89.28
		(SPF1 and 2)	No storage (max)	No storage (max)		312.69	425.16	111.96
	S		0.46 ³ storage per person (min)		28.1	164.3	267.29	56.34
8	ate	0.46 ³ storage per person (max)			29.54	214.46	268.95	90.03
ሻ	<u>ä</u>		2 x 0.46 ³ storage per person (min)		21.96	126.6	205.72	43.65
ge	Est		2 x 0.46 ³ storage per person (max)		26.78	187.12	223.48	93.56
ra		People per dwelling	No storage		3.41	4.66	8.04	1.53
ğ		(SPF2)	0.46° storage per person		2.41	3.2	5.32	1.23
			2 x 0.46° storage per person	2 x 0.46 ³ storage per person			4.42	1.28
		Data	Total built floor area (m ²)		163.78	1599.44	1798.22	345.75
ae			Proportion of residential floor area	in built floor area (%)	86.47	69.1	100	87.66
In		Naroll (AGF1)	Total built floor area (m ²)	No storage	515.44	2545.59	3479.13	1053.46
ru				Mod storage	367.68	1794.14	2404.3	805.77
ц				Max storage	319.24	1530.95	1993.32	763.1
ţ			Built floor area per person (m ²)	No storage	11.97	8.87	8.37	10.47
Š				Mod storage	12.76	9.47	8.97	11.01
ō				Max storage	13.1	9.76	9.29	11.12
<u>.</u>			RADC (m ² residential floor area	No storage	10.35	6.13	8.37	9.18
etr			per person)	Mod storage	11.03	6.55	8.97	9.65
Ĕ				Max storage	11.33	6.74	9.29	9.75
Ĩ			Re-calculated initial growth index	No storage	6.9	13.63	11.22	7.12
4				Mod storage	9.67	19.35	16.23	9.32
				Max storage	11.13	22.67	19.58	9.83

		Site		Nahal Oren	Gilgal I	Netiv Hagdud	El-Hemmeh (PPNA)
	Wiessner	Predominant se	ttlement type/s	Open/village	Open/village	Open/village	Open/village
vth	(AGF2 initial	Open	No storage	0.27	0.05	0.04	0.1
Š	growth		Mod storage	0.6	0.11	0.1	0.19
ae	indices)		Max storage	0.84	0.16	0.16	0.21
S and S		Village	No storage	11.61	13.9	18.04	9.94
r n			Mod storage	17.35	21.12	27.97	13.66
Бъ			Max storage	20.52	25.5	34.95	14.58
Alloi		Urban	No storage	40.7	91.93	134.59	46.22
			Mod storage	53.18	121.27	180.34	57.15
			Max storage	59.48	137.51	209.2	59.66
c	Total population	on based on:	90 people/ha	4.5	36	67.5	9
ut ti			150 people/ha	7.5	60	112.5	15
cie			294 people/ha	14.7	117.6	220.5	29.4
d ∰i	Population in a	assessable area:	90 people/ha	2.94	1.93	4.8	0.55
P e P			150 people/ha	4.9	3.22	8.01	0.92
let C t			294 people/ha	9.59	6.32	15.69	1.81
≥ ĭť	Contemporaneous dwellings in assessable area		8	3.6	3.6	4.5	
ilei	People per dw	elling in	90 people/ha	0.37	0.54	1.33	0.12
Def	assessable are	ea:	150 people/ha	0.61	0.9	2.22	0.2
S			294 people/ha	1.2	1.75	4.36	0.4

-			Sito	Nahal Oren	Gilgal I	Netiv Handud	El-Hommoh (PPNA)
		Total population		36 74-67 36	201 25-536 66	151 74-404 63	210 55
			RADC	22 66-64 01	132 63-374 67	215 79-609 57	45 46-128 42
			SPF	24 37-43 05	156 86-286 93	214 6-268 12	68 62-100 62
			SPDC	4.5-14.7	36-117.60	67.5-220.5	9-29.4
		People per dwelling	HUM	3-5.5	3-8	3-8	3
			RADC	1.85-5.23	1.98-5.59	4.27-12.05	0.62-1.75
	S		SPF1	1.99-3.51	2.34-4.28	4.24-5.3	0.94-1.37
	ate		SPF2	2.19-3.41	2.79-4.66	4.42-5.32	1.23-1.53
	<u>n</u>		SPDC	0.37-1.2	0.54-1.75	1.33-4.36	0.12-0.4
	sti	Residential floor area density	HUM	1.68-3.08	1.24-3.30	2.67-7.11	1.04
	ш =	coefficient	RADC	1.77-5	1.77-5.00	1.77-5.00	1.77-5.00
	ina	_	SPF	2.63-4.65	2.31-4.23	4.02-5.03	2.26-3.31
	١ <u>ـ</u>	(m ² per person)	AGF1	10.35-11.3	6.13-6.74	8.97-9.29	8.19-8.72
			SPDC	7.71-25.18	5.64-18.42	4.89-15.98	7.73-25.26
сл		Settlement population density	HUM	734.8-1347.2	503.13-1341.65	202.32-539.51	2195.48
ő		coefficient	RADC	453.19-1280.21	331.58-936.67	287.71-812.75	454.62-1284.23
0.			SPF	487.39-860.98	392.14-717.33	286.13-357.49	686.06-1006.19
		(people per hectare)	SPDC	90-294	90-294	90-294	90-294
_		Mean residential built area: complete	dwellings (m ²)	16.34	15.95	28.21	7.56
		Built floor area in:	site area (%)	32.76	40.01	23.98	34.57
	_ o .		assessable built area (%)	59.89	77.86	75.63	63.18
	on	Contemporaneous:	built area in site area (%)	43.75	30.83	19.02	41.04
	<u>Ā</u> Ē		residential built area in assessable area (%)	36.95	20.97	19.02	35.87
	nal po		built floor area in assessable area (%)	26.2	24.01	14.39	25.93
	Ë2.		residential floor area in assessable area (%)	22.66	16.58	14.39	22.73
	· · ·	Residential floor area in built floor are	ea (%)	86.47	69.1	100	87.66
_		Built area in site area (structural dens	sity) (%)	54.69	51.39	31.70	54.72

		Site	Shkārat Msaied	Ghwair I	Wadi Hamarash I	'Ain Abu Nekheileh
		Settlement type	1	4	3	1
		Period	MPPNB	MPPNB	MPPNB	MPPNB
		Site extent (hectares)	0.2	1.2-1.45	0.5	0.12
no		Site extent (hectares) used in calculations of population size	-	1	-	-
atic		Site extent category (hectares)	<0.4	0.6-6.9	≤0.5	<0.4
Ĕ		Structural contemporaneity value (%)	80	77.78	78	65
<u>o</u>		Environment	Restricted	Restricted	Restricted	Restricted
Ē		Subsistence (H-Hunt; G-Gath; C-Cult; P-Past)	H, G, C, P	H, G, C, P	H, G, C, P	H, G, C, P
ite		Dwelling architecture: predominant shape	Curvilinear	Rectilinear	Rectilinear	Curvilinear
S		Dwelling architecture: predominant number of storeys	Single	Multiple	Multiple	Single
		Dwelling architecture: degree of compartmentalisation	Present	Present	Present	Present
		Economy: household economic independence	Limited-Mod	High	High	Moderate
		Ritual	Established	Established	Established	Unknown
		Complexity in community organisation	Evident	Well-established	Well-established	Evident
	Data	Dwelling count	13	6	16	9
		Assessable area (m ²)	679.91	440.75	1249.49	135.3
		Proportion of site assessable (%)	34	4.41	24.99	11.28
		Total number of dwellings	38.24	136.13	64.03	79.82
po		Mean residential built area (m ²)	24.01	24.04	17.17	12.62
Ţ		Assessable built area (m ²)	395.23	281.67	789.16	129.16
Ř		Proportion of built area in assessable area (%)	58.13	63.91	63.16	95.46
ij		Total built area (m ²)	1162.6	6390.7	3157.95	1145.54
Ŀ		Assessable residential built area (m ²)	312.15	144.27	274.65	113.59
g		Proportion of residential built area in built area (%)	78.98	51.22	34.8	87.94
Sir		I otal residential built area (m ²)	918.22	3273.2	1099.06	1007.41
no		Proportion of residential built area in assessable area (%)	45.91	32.73	21.98	83.95
Т	Estimates	I otal number of contemporaneous dwellings	30.59	105.88	49.94	51.88
		Total population (3 people)	91.78	317.65	149.82	155.65
		I otal population (5.5 people)	168.26	582.36	274.67	285.37
		I otal population (8 people)	244.74	847.07	399.53	415.08
		Suitable family sizes	All	All	All	3-5.5

			Site		Shkārat Msaied	Ghwair I	Wadi Hamarash I	'Ain Abu Nekheileh
+	-	Data	Assessable residential floor area (m ²)		158.85	90.85	181.52	66.88
ea	D		Total residential floor area (m ²)		467.27	2061.31	726.38	593.16
Ă,	2		Proportion of residential floor area in built area	ı (%)	40.19	32.25	23	51.78
al	po _		Proportion of residential floor area in assessat	ole area (%)	23.36	20.61	14.53	49.43
5 E	۲.	Estimates	Total contemporaneous residential floor area (m²)	373.81	1603.29	566.58	385.56
de	Šξ		Total population (1.77 m ² per person)	211.19	905.81	320.1	217.83	
ŝŝ	0		Total population (3.3 m ² per person)	113.28	485.84	171.69	116.83	
و تق	E C		Total population (5 m ² per person)	74.76	320.66	113.32	77.11	
	4		Suitable RADCs		All	All	All	All
e	Data	1	Total contemporaneous residential floor area (m²)	373.81	1603.29	566.58	385.56
lla			Mean residential floor area of complete dwellir	ngs (m²)	13.46	15.14	12.22	7.98
Ĕ			Total number of contemporaneous dwellings		30.59	105.88	49.94	51.88
ē			None-max	None-mod	None-mod	None-max		
ŝ		Total population	No storage (min)		147.06	592.54	221.97	143.84
ü		(SPF1 and 2)	No storage (max)		150.92	631.96	223.08	151.69
isi	S		0.46 ³ storage per person (min)		92.63	397.17	140.38	95.54
2	ate		0.46 ³ storage per person (max)		103.03	400.67	152.86	104.32
L L	<u>Ĕ</u>		2 x 0.46 ³ storage per person (min)		71.53	305.5	108.22	73.77
ge	Ist		2 x 0.46 ³ storage per person (max)		89.35	343.11	134.08	97.43
rag	ш	People per dwelling	No storage		4.93	5.6	4.44	2.77
ŝto		(SPF2) 0.46 ³ storage per person		3.37	3.78	3.06	2.01	
0,			2 x 0.46 ³ storage per person		2.92	3.24	2.68	1.88
		Data	Total built floor area (m ²)		589.32	3869.99	1828.16	647.63
ae			Proportion of residential floor area in built floor	rarea (%)	79.29	53.26	39.73	91.59
n		Naroll (AGF1)	Total built floor area (m ²)	No storage	1466	4818.55	2055.1	1455.89
Ĕ				Mod storage	1028.8	3359.5	1446.36	1047.35
Ъ				Max storage	872.51	2822.01	1231.7	919.42
th			Built floor area per person (m²)	No storage	9.84	7.87	9.24	9.85
Š				Mod storage	10.52	8.42	9.86	10.48
Ğ				Max storage	10.85	8.7	10.17	10.74
<u> </u>			RADC (m ² residential floor area per person)	No storage	7.8	4.19	3.67	9.02
<u>stri</u>				Mod storage	8.34	4.19	3.92	9.6
Ĕ				Max storage	8.6	4.63	4.04	9.84
el l			Re-calculated initial growth index	No storage	8.72	17.43	19.3	9.65
◄				Mod storage	12.43	25	27.43	13.42
				Max storage	14.66	29.76	32.21	15.29

		Site		Shkārat Msaied	Ghwair I	Wadi Hamarash I	'Ain Abu Nekheileh
	Wiessner (AGF2 initial growth indices)	Predomina	ant settlement type/s	Open/village	Village-urban	Village-urban	Village
£		Open	No storage	0.09	0.04	0.1	0.05
Ň			Mod storage	0.21	0.08	0.23	0.12
ae			Max storage	0.31	0.13	0.34	0.16
		Village	No storage	13.42	21.64	22.47	8.12
i i i			Mod storage	20.44	33.21	34.1	12.01
Бол			Max storage	24.86	40.86	41.27	14.02
<u>o</u>		Urban	No storage	71.15	183.73	136.14	42.93
∢			Mod storage	94.19	244.46	179.79	55.72
			Max storage	107.31	280.65	204.19	61.77
2	Total population based on:		90 people/ha	18	119.25	45	10.8
int tio			150 people/ha	30	198.75	75	18
ula cie			294 people/ha	58.8	389.55	147	35.28
d jj b	Population in assessable area:		90 people/ha	6.12	5.26	11.25	1.22
Po e e			150 people/ha	10.2	8.76	18.74	2.03
let C t			294 people/ha	19.99	17.18	36.73	3.98
≥it)	Contemporaneous dwellings in assessable area		10.4	4.67	16	5.85	
ilei	People per dwelling in assessable area:		90 people/ha	0.59	1.13	0.9	0.21
ĎĘ	-		150 people/ha	0.98	1.88	1.5	0.35
S			294 people/ha	1.92	3.68	2.94	0.68

		Site	Shkārat Msaied	Ghwair I	Wadi Hamarash I	'Ain Abu Nekheileh
	Total population	HUM	91.78-244.74	317.65-847.07	149.82-399.53	155.65-285.37
		RADC	74.76-211.19	320.66-905.81	113.32-320.10	77.11-217.83
		SPF	80.44-148.99	398.92-612.25	146.62-222.52	85.6-147.76
		SPDC	18-58.8	119.25-389.55	45-147	10.8-35.28
	People per dwelling	HUM	3-8	3-8	3-8	3-5.5
		RADC	2.44-6.9	3.03-8.55	2.27-6.41	1.49-4.2
S		SPF1	2.63-4.87	3.77-5.78	2.94-4.46	1.65-2.85
ate		SPF2	2.92-4.93	3.78-5.6	3.06-4.44	1.88-2.77
<u> </u>		SPDC	0.59-1.92	1.13-3.68	0.9-2.94	0.21-0.68
st	Residential floor area density	HUM	1.53-4.07	1.89-5.05	1.42-3.78	1.35-2.48
<u> </u>	coefficient	RADC	1.77-5	1.77-5	1.77-5.00	1.77-5
ina		SPF	2.51-4.65	2.62-4.02	2.55-3.86	2.61-4.5
ίΞ	(m ² per person)	AGF1	7.8-8.6	4.19-4.49	3.67-3.92	9.02-9.84
		SPDC	6.36-20.77	4.12-13.44	3.85-12.59	10.93-35.7
	Settlement population density	HUM	458.88-1223.69	317.65-847.07	299.64-799.05	1297.12-2378.05
	coefficient	RADC	373.81-1055.97	320.66-905.81	226.63-640.2	642.59-1815.23
		SPF	402.2-744.94	398.92-612.25	293.23-445.05	713.34-1231.37
	(people per hectare)	SPDC	90-294	90-294	90-294	90-294
	Mean residential built area: complete	e dwellings (m ²)	26.32	24.04	14.47	14.29
	Built floor area in:	site area (%)	29.47	29.21	36.56	53.97
_ ഗ		assessable built area (%)	50.7	60.56	57.89	56.53
ea où	Contemporaneous:	built area in site area (%)	46.5	37.51	49.26	62.05
ĄĘ		residential built area in assessable area (%)	36.73	19.21	17.15	54.57
pa po		built floor area in assessable area (%)	23.58	22.72	28.52	35.08
μË S		residential floor area in assessable area (%)	18.69	12.1	11.33	32.13
ш.	Residential floor area in built floor ar	ea (%)	79.29	53.26	39.73	91.59
	Built area in site area (structural den	sity) (%)	59.13	48.23	63.16	95.46

		Site	EI-Hemmeh (LPPNB)	Basta	Ba'ja
		Settlement type	4	5	4
		Period	LPPNB	LPPNB	LPPNB
		Site extent (hectares)	1	12-14	1.2-1.5
on		Site extent (hectares) used in calculations of population size	0.8	10	0.9
atio		Site extent category (hectares)	0.6-6	≥7	0.6-6
Ë		Structural contemporaneity value (%)	78	60.47	78
õ		Environment	Restricted	Unrestricted	Restricted
<u>i</u>		Subsistence (H-Hunt; G-Gath; C-Cult; P-Past)	H, G, C, P	H, G, C, P	H, G, C, P
ite		Dwelling architecture: predominant shape	Rectilinear	Rectilinear	Rectilinear
S		Dwelling architecture: predominant number of storeys	Multiple	Single/Multiple	Multiple
		Dwelling architecture: degree of compartmentalisation	Present	Present	Present
		Economy: household economic independence	High	High	High
		Ritual	Established	Well-established	Established
		Complexity in community organisation	Well-established	Well-established	Well-established
	Data	Dwelling count	4	6	12
		Assessable area (m ²)	101.38	302.51	486.69
		Proportion of site assessable (%)	1.27	0.3	5.41
		Total number of dwellings	315.64	1983.41	221.91
ро		Mean residential built area (m ²)	13.23	27.14	23.25
Г.		Assessable built area (m ²)	101.24	302.51	477.15
Ř		Proportion of built area in assessable area (%)	99.86	100	98.04
j		l otal built area (m ²)	7988.95	100000	8823.58
5		Assessable residential built area (m ²)	52.91	162.81	278.97
g		Proportion of residential built area in built area (%)	52.26	53.82	58.47
Sir		I otal residential built area (m ⁻)	4175.18	53819.71	5158.87
no	Fatimates	Proportion of residential built area in assessable area (%)	52.19	53.82	57.32
Т	Estimates	Total number of contemporaneous dwellings	240.2	1199.37	173.09
		Total population (3 people)	738.61	3598.1	519.26
		Total population (3.5 people)	1354.11	0590.51	901.98
		Suitable family sizes	3-5.5	9094.92 All	<u>1384.7</u> ΔΙΙ
		Ounable faiting SIZES	5-5.5	All	All

			Site		EI-Hemmeh (LPPNB)	Basta	Ba'ja
t	,	Data	Assessable residential floor area (m ²)		34.66	114.94	170.67
en	5		Total residential floor area (m ²)		2734.66	38004.63	3156.07
ici Ar			Proportion of residential floor area in built area (%)	1	34.23	38	35.77
eff –	po		Proportion of residential floor area in assessable a	rea (%)	34.18	38	35.07
C Ŧ	ľt (Estimates	Total contemporaneous residential floor area (m ²)		2133.04	22981.4	2461.74
t e	ςĔ		Total population (1.77 m ² per person)		1205.11	12983.84	1390.81
isi Si	5		Total population (3.3 m ² per person)		646.37	6964.06	745.98
ୁ ନୁ	5		Total population (5 m ² per person)		426.61	4596.28	492.35
			Suitable RADCs		All	All	All
e	Data	a	Total contemporaneous residential floor area (m ²)	_	2133.04	22981.4	2461.74
ıla			Mean residential floor area of complete dwellings ((m ²)	8.66	26.3	13.48
Ĕ			Total number of contemporaneous dwellings		246.2	1199.37	173.09
ō			Probable amount of interior residential storage	None-mod	Mod	Mod	
ŝ		Total population	No storage (min)		748.58	9063.49	855.31
ü		(SPF1 and 2)	No storage (max)		840.89	11990.92	970.53
isi	s		0.46 ³ storage per person (min)		528.39	5692.53	596.81
Š	ate		0.46 ³ storage per person (max)		536.47	7853.94	609.81
۲.	<u>Ë</u>		2 x 0.46 ³ storage per person (min)		406.31	4373.76	468.87
ge	Est		2 x 0.46 ³ storage per person (max)		494.2	6433.62	506.2
ra	ш	People per dwelling	No storage		3.04	10	4.94
ş		(SPF2)	0.46 ³ storage per person		2.18	6.55	3.37
			2 x 0.46 ³ storage per person		2.01	5.36	2.92
		Data	Total built floor area (m ²)		6111.66	69733.23	7834.43
ae			Proportion of residential floor area in built floor area	a (%)	44.74	54.5	40.28
n		Naroll (AGF1)	Total built floor area (m ²)	No storage	6002.09	52850.14	6745.25
Ľ				Mod storage	4283.86	36459.46	4715.99
Ъ			·····	Max storage	3719.99	30143.83	3977.64
ţ			Built floor area per person (m ²)	No storage	7.55	5.02	7.39
Š				Mod storage	8.05	5.38	7.9
Ğ				Max storage	8.26	5.58	8.16
<u>.</u>			RADC (m ² residential floor area per person)	No storage	3.38	2.74	2.98
etri				Mod storage	3.6	2.93	3.18
Ĕ				Max storage	3.7	3.04	3.29
ell'			Re-calculated initial growth index	No storage	22.1	28.63	25.2
A				Mod storage	30.96	41.51	36.05
				Max storage	35.65	50.2	42.74

		Site		EI-Hemmeh (LPPNB)	Basta	Ba'ja
	Wiessner (AGF2 initial growth indices)	Predomina	nt settlement type/s	Village-urban	Village-urban	Village-urban
ţ		Open	No storage	0.02	0.00	0.02
Š			Mod storage	0.04	0.00	0.04
ae			Max storage	0.05	0.00	0.06
		Village	No storage	12.58	12.35	14.79
ž ri			Mod storage	18.78	19.19	22.62
llome Fo			Max storage	22.21	24.06	27.69
		Urban	No storage	116.53	270.56	143.42
<			Mod storage	152.20	363.04	190.41
			Max storage	170.19	422.04	217.89
ç	Total population based on:		90 people/ha	90	1170	121.5
int tio			150 people/ha	150	1950	202.5
ula cie			294 people/ha	294	3822	396.9
d ∰ p	Population in assessable area:		90 people/ha	1.14	3.54	6.57
P S S			150 people/ha	1.9	5.9	10.95
let C u			294 people/ha	3.73	11.56	21.46
sit)	Contemporaneous dwellings in assessable area	a		3.12	3.63	9.36
ens	People per dwelling in assessable area:		90 people/ha	0.37	0.98	0.7
Ď Ę			150 people/ha	0.61	1.63	1.17
S			294 people/ha	1.19	3.19	2.29

		Site	EI-Hemmeh (LPPNB)	Basta	Ba'ja
	Total population	HUM	738.61-1354.11	3598.1-9594.92	519.26-1384.7
		RADC	426.61-1205.11	4596.28-12983.84	492.35-1390.81
		SPF	532.43-794.74	5692.53-7853.94	583.81-609.81
		SPDC	90-294	1170-3822	121.5-396.9
	People per dwelling	HUM	3-5.5	3-8	3-8
		RADC	1.73-4.89	3.83-10.83	2.84-8.04
S		SPF1	2.16-3.23	4.75-6.55	3.37-3.52
ate		SPF2	2.18-3.04	6.55	3.37
<u>e</u>		SPDC	0.37-1.19	0.98-3.19	0.7-2.29
Ist	Residential area density coefficient	HUM	1.58-2.89	2.4-6.39	1.78-4.74
E		RADC	1.77-5.00	1.77-5.00	1.77-5.00
iņ		SPF	2.68-4.01	2.93-4.04	4.04-4.22
ш		AGF1	3.38-3.6	2.87-3.02	3.18
		SPDC	7.26-23.7	6.01-19.64	6.2-20.26
o o	Settlement population density coefficient	HUM	923.26-1692.64	276.79-738.07	576.96-1538.56
သ		RADC	533.26-1506.38	353.56-998.76	547.05-1545.35
		SPF	665.54-993.42	437.89-604.15	648.67-677.56
		SPDC	90-294	90-294	90-294
	Mean residential built area: complete dwelli	ngs (m²)	15.32	37.11	23.20
	Built floor area in:	site area (%)	61.12	53.64	58.03
_ ഗ		assessable built area (%)	76.5	69.73	88.79
rea on	Contemporaneous:	built area in site area (%)	62.31	46.52	50.98
Ţ Ā		residential built area in assessable area (%)	32.57	25.03	29.81
lan		built floor area in assessable area (%)	47.67	32.44	45.27
i E	·	residential floor area in assessable area (%)	21.33	17.68	18.24
	Residential floor area in built floor area (%)		44.74	54.5	40.28
	Built area in site area (structural density) (%	5)	79.89	76.92	65.36

Appendix D: Statistical tests for micro-level analyses

Discriminant function analysis

Process in SPSS

Description of outputs

Output	Purpose	Interpretation
Eigenvalues	Indicates the order of	Functions with the highest Eigenvalues
	importance of discriminant	and Canonical Correlations have the
	functions (i.e. linear	greatest impact on variance and
	combinations of discriminating	classification.
	variables) for explaining	
	variance.	
Wilks' Lambda	Indicates which discriminant	Functions with a Wilks' Lambda closest to
statistics	functions contribute most and	'0' contribute most to classification. The
	least to classification.	Chi-square test significance (<i>p</i>) value of <
		.05 indicates a significant contribution.
Structure	Reveals correlations between	Variables with a correlation of 0.3/-0.3 or
matrix	each variable and the	more are considered important within the
	discriminant function.	function. These are essentially factor
		loadings of variables within the
		discriminant functions that indicate which
		variables contribute most to variances and
Casavias	Diaplaya actual and prodicted	Classification.
Casewise	draupa, and provides a Squared	prodicted groups column. A D ² volue
Statistics	Mahalanohis Distance to	closest to '0' reflects a higher probability
	Controid (D^2) value (a massure	that the case fits within the predicted
	of the distance from the centroid	droup
	of the group)	group.
Discriminant	Plots cases in relation to group	A visual representation of centroids and D^2
functions	centroids based on the two	values.
(graph)	functions which contribute most	
	to classification.	
Classification	Indicates the number and	Comparison of values between groups
results	percentage of correctly	indicate where cases have been incorrectly
	classified cases.	classified.

Tests for normality, homogeneity of variance and analysis of variance (ANOVA and Kuskal-Wallis)

Process in SPSS

Description of outputs

Output	Purpose	Interpretation
Hypothesis test	Identifies whether data is normally	A significance (<i>p</i>) value of >
summary	distributed.	.05 indicates normal
		distribution.
Test of	Identifies whether data displays equal	A significance (<i>p</i>) value of >
homogeneity of	variance between groups.	.05 indicates equal variance.
variance		
One-way ANOVA	Identifies whether there are significant	A significance (<i>p</i>) value of <
	differences in the mean values of variables	.05 indicates significant
	between groups (i.e. site type).	difference.
Kruskal-Wallis test	Identifies whether there are significant	A significance (<i>p</i>) value of <
statistics	differences in the median values of	.05 indicates significant
	variables between groups (i.e. site type).	difference.

Effect size (ETA squared/eta²) test

Process in SPSS

Appendix E.1: The central and southern Levantine PPN village database

ID	Site name	Site	Period	Predominant	Site	Latitude	Longitude	Country	References
		type		architectural	extent		U	-	
		-		form	(ha)				
1	'Ain Darat	1	PPNA	Curvilinear	0.08	31.512	35.288	Israel	Bar-Yosef 1994; Gopher 1995; Gopher 1996
2	Bir el-Maksur	1	PPNA	Curvilinear	0.20	32.777	35.221	Israel	Malinsky-Buller et al. 2009; Malinsky-Buller and Aladjem 2011
3	Borj Barajne	1	PPNA	Curvilinear	0.20 [°]	33.820	35.510	Lebanon	Copeland 1991
4	Ein Suhun	1	PPNA	Curvilinear	0.30	32.330	35.370	Palestine	Nadel <i>et al.</i> 1999; Sayej 2004
5	El Aoui Safa	1	PPNA	Curvilinear	0.20 [°]	33.030	37.150	Syria	Coqueugniot and Anderson 1996
6	El Hemmeh	1	PPNA	Curvilinear	0.10	30.970	35.730	Jordan	Makarewicz and Austin 2006; White and Makarewicz 2012
7	Gesher	1	PPNA	Curvilinear	0.15	32.650	35.510	Israel	Garfinkel 1989; Kuijt and Bar-Yosef 1994
8	Gilgal III	1	PPNA	Curvilinear	0.10	31.990	35.450	Palestine	Noy 1985; Hours 1994; Kuijt and Bar-Yosef 1994
9	Gilgal IV	1	PPNA	Curvilinear	0.10	31.990	35.460	Palestine	Noy 1985; Hours 1994; Kuijt and Bar-Yosef 1994
10	Hatoula	1	PPNA	Curvilinear	0.20	31.780	35.150	Israel	Lechevallier and Ronen 1985; Davis et al. 1994
11	Nahal Oren	1	PPNA	Curvilinear	0.05	32.710	34.960	Israel	Flannery 1969; Noy 1973; 1975; Fellner 1995; Byrd 2000
12	Zahrat Adh-Dhra' 2	1	PPNA	Curvilinear	0.20	31.280	35.530	Jordan	Edwards 2002; Sayej 2004
13	Dhra'	2	PPNA	Curvilinear	0.45	31.270	35.580	Jordan	Kuijt 1998
14	Gilgal I	2	PPNA	Curvilinear	0.40	31.990	35.440	Palestine	Noy 1985; Hours 1994; Kuijt and Bar-Yosef 1994
15	Huzuq Musa	2	PPNA	Curvilinear	1.00	32.305	35.501	Palestine	Winter 2005; Zertal 2005; Nadel and Rosenberg 2013
16	Jericho	2	PPNA	Curvilinear	2.50	31.850	35.430	Palestine	Aurenche 1981; Kenyon 1981; Hopf 1983; Hours <i>et al.</i> 1994
17	Netiv Hagdud	2	PPNA	Curvilinear	0.75	32.000	35.420	Palestine	Bar-Yosef 1980; Kislev 1997
18	Tell Aswad IA	2	PPNA	Curvilinear	1.00	33.590	36.380	Syria	de Contenson 1979; Moore 1983; Stordeur 2003
19	'Ain Abu Hudhud	1	EPPNB	Curvilinear ^a	0.20	31.070	35.870	Jordan	Rollefson 1996; Kuijt and Goring-Morris 2002; Sayej 2004
20	Ein Suhun	1	EPPNB	Curvilinear	0.30	32.330	35.370	Palestine	Nadel <i>et al.</i> 1999; Sayej 2004
21	El Hemmeh	1	EPPNB	Curvilinear	0.10	30.970	35.730	Jordan	Makarewicz and Austin 2006; White and Makarewicz 2012
22	Motza VI	2	EPPNB	Curvilinear ^a	0.50 ^b	31.790	35.170	Israel	Yizhaq <i>et al.</i> 2005; Khalaily <i>et al.</i> 2007; Kroot 2014
23	Mujahiya	2	EPPNB	Curvilinear	0.50 ^b	32.820	35.680	Israel	Gopher 1990; Kuijt and Goring-Morris 2002; Sayej 2004
24	Tell Aswad IB	2	EPPNB	Curvilinear ^a	1.00	33.590	36.380	Syria	de Contenson 1979; Moore 1983; Stordeur 2003
25	Horvat Galil	4	EPPNB	Rectilinear ^a	1.00	32.950	35.320	Israel	Gopher 1997; Edwards 2004; Sayej 2004
26	Tell Qarassa	4	EPPNB	Rectilinear ^a	1.00 ^b	32.798	36.278	Syria	Ibanez <i>et al.</i> 2010
27	Mishmar Ha'emeq	-	EPPNB	Unknown	1.00	32.609	35.142	Israel	Barzilai and Getzov 2008
28	Adh-Dhaman I	1	MPPNB	Curvilinear	0.20	30.270	35.400	Jordan	Moore 1978; Gebel 1988
29	'Ain Abu Nekheileh	1	MPPNB	Curvilinear ^a	0.12	29.550	35.400	Jordan	Henry et al. 2002; Henry et al. 2003
30	Beidha	1	MPPNB	Curvilinear ^a	0.20	30.370	35.450	Jordan	Helbaek 1966; Aurenche 1981; Byrd 1989; 1994; Colledge 2001
31	Jebel Arqa	1	MPPNB	Curvilinear	0.20	29.745	35.351	Jordan	Fabiano et al. 2004; Wright 2008
32	Jebel Rabigh	1	MPPNB	Curvilinear	0.06	29.950	35.517	Jordan	Fabiano <i>et al.</i> 2004; Wright 2008
33	Jebel Ragref	1	MPPNB	Curvilinear	0.15 ^b	29.540	35.390	Jordan	Fabiano <i>et al.</i> 2004; Wright 2008
34	Jebel Salaqa	1	MPPNB	Curvilinear	0.10	29.800	35.400	Jordan	Fabiano <i>et al.</i> 2004; Wright 2008

ID	Site name	Site	Period	Predominant	Site	Latitude	Longitude	Country	References
		type		architectural	extent		5		
				form	(ha)				
35	Shkārat Msaied	1	MPPNB	Curvilinear	0.20 ^b	30.450	35.450	Jordan	Gebel 1988; Jensen 2004; Kinzel 2004; Hermansen <i>et al.</i> 2006
36	Tell Eli IV	2	MPPNB	Curvilinear ^a	2.00	32.680	35.550	Israel	de Vaux 1976
37	Abu Gosh	3	MPPNB	Rectilinear	0.25	31.800	35.120	Israel	Lechevallier 1978; Khalaily <i>et al.</i> 2003; Kroot 2014
38	Wadi Hamarash I	3	MPPNB	Rectilinear	0.50	31.010	35.540	Jordan	Politis et al. 2009; Sampson 2012; Kroot 2014
39	'Ail IV	4	MPPNB	Rectilinear	1.00	29.967	35.367	Jordan	Gebel 2004b; 2008; Asouti 2006; Purschwitz 2013
40	'Ain Ghazal	4	MPPNB	Rectilinear	4.00	31.988	35.976	Jordan	Banning 1984; Rollefson 1986; 1992; 2000; Campbell 2009
41	Beisamoun	4	MPPNB	Rectilinear	5.00 ⁰	33.120	35.570	Israel	Lechevallier 1978
42	Ghwair I	4	MPPNB	Rectilinear	1.325	30.600	35.520	Jordan	Simmons and Najjar 1998
43	Horvat Galil	4	MPPNB	Rectilinear ^a	2.50	32.950	35.320	Israel	Gopher 1997; Edwards 2004; Sayej 2004
44	Jericho	4	MPPNB	Rectilinear	4.00	31.850	35.430	Palestine	Aurenche 1981; Kenyon 1981; Hopf 1983; Hours <i>et al.</i> 1994
45	Khirbet Hammam	4	MPPNB	Rectilinear	3.00	31.020	35.650	Jordan	Rollefson 1985; Peterson 2003; Peterson <i>et al.</i> 2010
46	Motza V	4	MPPNB	Rectilinear	1.00 ⁰	31.790	35.170	Israel	Yizhaq <i>et al.</i> 2005; Khalaily <i>et al.</i> 2007
47	Tell Abu es-Sawwan	4	MPPNB	Rectilinear	3.00	32.219	35.895	Jordan	Al-Nahar 2006; Kroot 2014
48	Tell Aswad II	4	MPPNB	Rectilinear ^a	5.00	33.590	36.380	Syria	Contenson 1979; Stordeur 2003 Chamel 2014
49	Tell Ghoraifé I	4	MPPNB	Rectilinear	3.00	33.830	37.250	Syria	van Zeist and Bakker-Heeres 1982; de Contenson 1995
50	Wadi Shu'eib	4	MPPNB	Rectilinear	3.00	31.920	35.640	Jordan	Simmons 2001; Kroot 2014
51	Yiftah'el IV	4	MPPNB	Rectilinear ^a	1.00	32.720	35.180	Israel	Kislev 1985; Garfinkel <i>et al.</i> 1988; Braun 1994; Wright 1992
52	Mishmar Ha'emeq	-	MPPNB	Unknown	0.50	32.609	35.142	Israel	Barzilai and Getzov 2008
53	Munhata IV-VI	-	MPPNB	Unknown ^a	0.20	32.620	35.550	Israel	Cauvin 1978; Kuijt and Bar-Yosef 1994
54	Nahal Betzet I	-	MPPNB	Unknown	0.50	33.070	35.200	Israel	Gopher 1989; Wright 1992
55	Tel Roim West V	-	MPPNB	Unknown	0.50 ^b	33.233	35.571	Israel	Nadel and Nadler-Uziel 2011; Rosenberg and Nadel 2014
56	Beidha	3	LPPNB	Rectilinear	0.30	30.370	35.450	Jordan	Helbaek 1966; Aurenche 1981; Byrd 1989; 1994; Colledge 2001
57	'Ail IV	4	LPPNB	Rectilinear	2.00 ^b	29.967	35.367	Jordan	Gebel 2004b; 2008; Asouti 2006; Purschwitz 2013
58	Ba'ja	4	LPPNB	Rectilinear	1.35	30.240	35.270	Jordan	Gebel and Hermansen 2001; 2004; Kinzel 2004; Gebel et al. 2006
59	El Hemmeh	4	LPPNB	Rectilinear	1.00	30.970	35.730	Jordan	Makarewicz and Austin 2006; White and Makarewicz 2012
60	Er-Rahib	4	LPPNB	Rectilinear	3.00	32.390	35.730	Jordan	Palumbro and Mabry 1990; Vries and Bikai 1993; Peterman 1994
61	Jericho	4	LPPNB	Rectilinear	4.00	31.850	35.430	Palestine	Aurenche 1981; Kenyon 1981; Hopf 1983; Hours et al. 1994
62	Motza Tahtit	4	LPPNB	Rectilinear	2.00 ^b	31.791	35.164	Israel	Mizrahi 2015
63	Qminas	4	LPPNB	Rectilinear	1.50	35.894	36.674	Syria	Masuda and Sha'ath 1983; Hours et al. 1994; Akkermans 2003
64	Tell Aray	4	LPPNB	Rectilinear	5.00	35.949	36.535	Syria	Tsuneki 2012
65	Tell el-Ghafar I	4	LPPNB	Rectilinear	1.50	35.971	36.468	Svria	Tsuneki 2012
66	Tell Eli III	4	LPPNB	Rectilinear	5.00 ^b	32.680	35.550	Israel	Garfinkel 1993; Kroot 2014
67	Tell Ghoraifé II	4	LPPNB	Rectilinear	5.00	33.830	37.250	Syria	van Zeist and Bakker-Heeres 1982; de Contenson 1995
68	Tell Labwé	4	LPPNB	Rectilinear	5.00 ^b	34.150	36.350	Lebanon	Ibanez et al. 2012; Haidar-Boustani et al. 2007
69	Tell Rakan I	4	LPPNB	Rectilinear	1.00	30.802	35.650	Jordan	Banning and Najjar 1999; Banning 2001
70	Tell Ramad I	4	LPPNB	Rectilinear ^a	1.50	33.420	36.100	Syria	Bar-Yosef 1995; Goring-Morris 2000; de Contenson 2000
71	Tell Ras Shamra V C	4	LPPNB	Rectilinear	5.00	35.620	35.780	Syria	van Zeist and Bakker-Heeres 1984

ID	Site name	Site	Period	Predominant	Site	Latitude	Longitude	Country	References
		type		architectural	extent		-	-	
72	Tel Tif'dan	4		Rectilinear	3.00	30 670	35 370	lordan	Adams 1991: Colledge 2001: Twiss 2007: Moreno 2009: Kroot 2014
73	Wadi Badda	4	LPPNB	Rectilinear	1.00	30.600	35.620	Jordan	Fujii 2007
74	Yiftah'el III	4	LPPNB	Rectilinear	1.50	32.720	35.180	Israel	Kislev 1985: Garfinkel <i>et al.</i> 1988: Braun 1994: Wright 1992
75	'Ain Ghazal	5	LPPNB	Rectilinear	10.00	31.988	35.976	Jordan	Banning 1984: Rollefson 1986: 1992: 2000: Campbell 2009
76	'Ain Jamam	5	LPPNB	Rectilinear	7.00	30.017	35.517	Jordan	Waheeb and Fino 1997; Henry 2003; Rollefson 2005
77	Al-Baseet	5	LPPNB	Rectilinear	7.50	30.350	35.467	Jordan	Rollefson 2002; Gebel 2004b; Kinzel 2004
78	Basta	5	LPPNB	Rectilinear	13.00	30.230	35.530	Jordan	Nissen 1987; Gebel 1988; Vries 1992
79	Beisamoun	5	LPPNB	Rectilinear	13.50	33.120	35.570	Israel	Lechevallier 1978
80	Es-Sifiya	5	LPPNB	Rectilinear	8.00	31.470	35.570	Jordan	Mahasneh 1997; Kuijt and Goring-Morris 2002
81	Kharaysin	5	LPPNB	Rectilinear	10.00 ^b	32.210	36.000	Jordan	Edwards and Thorpe 1986; Edwards 2004
82	Khirbet Hammam	5	LPPNB	Rectilinear	7.00	31.020	35.650	Jordan	Rollefson 1985; Peterson 2003; Peterson et al. 2010
83	Tell Abu es-Sawwan	5	LPPNB	Rectilinear	10.50	32.219	35.895	Jordan	Al-Nahar 2006; Kroot 2014
84	Tell 'Ain el-Kerkh/II	5	LPPNB	Rectilinear	16.00	35.810	36.460	Syria	Tsuneki et al. 2006; Akkermans 2010; Tsuneki 2012
85	Wadi Shu'eib	5	LPPNB	Rectilinear	8.00 ^b	31.920	35.640	Jordan	Simmons 2001; Kroot 2014
86	Aviel	-	LPPNB	Unknown	3.00 ^b	32.580	34.980	Israel	Barkai and Biran 2011; Kroot 2014
87	Es-Sayyeh	-	LPPNB	Unknown	3.50 ^b	32.192	35.809	Jordan	Kafafi et al. 1999; Kuijt and Goring-Morris 2002
88	Atlit-Yam	4	PPNC	Rectilinear	3.00	32.700	34.940	Israel	Galili 1993
89	El Hemmeh	4	PPNC	Rectilinear	1.00	30.970	35.730	Jordan	Makarewicz and Austin 2006; White and Makarewicz 2012
90	Es-Sifiya	4	PPNC	Rectilinear	5.00	31.470	35.570	Jordan	Mahasneh 1997; Kuijt and Goring-Morris 2002
91	Hagoshrim VI	4	PPNC	Rectilinear	3.50 ^b	33.183	35.633	Israel	Haber and Dayan 2004; Rosenberg and Getzov 2006
92	Tell Abu es-Sawwan	4	PPNC	Rectilinear	5.00	32.219	35.895	Jordan	Al-Nahar 2006
93	Tell 'Ain el-Kerkh/II	4	PPNC	Rectilinear	6.00	35.810	36.460	Syria	Tsuneki <i>et al.</i> 2006; Akkermans 2010; Tsuneki 2012
94	Tell Eli III	4	PPNC	Rectilinear	3.50 ^b	32.680	35.550	Israel	Garfinkel 1993; Kroot 2014
95	Tell Labwé	4	PPNC	Rectilinear	3.50 ^b	34.150	36.350	Lebanon	Ibanez <i>et al.</i> 2012
96	Tell Ramad II	4	PPNC	Rectilinear ^a	2.60	33.420	36.100	Syria	Bar-Yosef 1995; Goring-Morris 2000; de Contenson 2000
97	Tell Ras Shamra V B	4	PPNC	Rectilinear	3.00	35.620	35.780	Syria	van Zeist and Bakker-Heeres 1984
98	Tell Teov	4	PPNC	Rectilinear	3.50 ^b	33.067	35.517	Israel	Eisenberg et al. 2001; Horwitz 2001; Horwitz and Ducos 2005
99	Tel Roim West IV	4	PPNC	Rectilinear	1.00	33.233	35.571	Israel	Nadel and Nadler-Uziel 2011; Rosenberg and Nadel 2014
100	Wadi Shu'eib	4	PPNC	Rectilinear	6.00 ^b	31.920	35.640	Jordan	Simmons 2001; Kroot 2014
101	Yiftah'el III (?)	4	PPNC	Rectilinear	1.50	32.720	35.180	Israel	Kislev 1985; Garfinkel <i>et al.</i> 1988; Braun 1994; Wright 1992
102	'Ain Ghazal	5	PPNC	Rectilinear	8.00	31.988	35.976	Jordan	Banning 1984; Rollefson 1986; 1992; 2000; Campbell 2009
103	Basta (?)	5	PPNC	Rectilinear	7.00	30.230	35.530	Jordan	Nissen 1987; Gebel 1988; Vries 1992
104	Beisamoun	5	PPNC	Rectilinear	7.00	33.120	35.570	Israel	Lechevallier 1978
105	Es-Sayyeh	-	PPNC	Unknown ^a	2.00 ^b	32.192	35.809	Jordan	Kafafi et al. 1999; Kuijt and Goring-Morris 2002
106	Wadi Fidan C	-	PPNC	Unknown	1.50 ^b	30.620	35.500	Jordan	Colledge 2001

^a Transitional. ^b Site size suggested based on site size analysis.

	Appendix E.2: Data	produced from s	ystematic	methodologies
--	--------------------	-----------------	-----------	---------------

Regiona	population	density	coefficient	method	(RPDC	;)
---------	------------	---------	-------------	--------	-------	----

Period	ID	Site name	Site type	Site extent (ha)	Total numb	er of conter	mporaneous	dwellings		Population e	stimates	
						Site type		Universal		Site type		Universal
					Min	Max	Mean		Min	Max	Mean	
PPNA	1	Ain Darat	1	0.08	6	35	18	14	7	126	45	47
	2	Bir el-Maksur	1	0.20	15	86	46	35	18	316	112	118
	3	Borj Barajne	1	0.20	15	86	46	35	18	316	112	118
	4	Ein Suhun	1	0.30	22	130	69	52	27	474	168	177
	5	El Aoui Safa	1	0.20	15	86	46	35	18	316	112	118
	6	El Hemmeh	1	0.10	7	43	23	17	9	158	56	59
	7	Gesher	1	0.15	11	65	34	26	13	237	84	89
	8	Gilgal III	1	0.10	7	43	23	17	9	158	56	59
	9	Gilgal IV	1	0.10	7	43	23	17	9	158	56	59
	10	Hatoula	1	0.20	15	86	46	35	18	316	112	118
	11	Nahal Oren	1	0.05	4	22	11	9	4	79	28	30
	12	Zahrat Adh-Dhra' 2	1	0.20	15	86	46	35	18	316	112	118
	13	Dhra'	2	0.45	30	75	53	78	102	364	216	266
	14	Gilgal I	2	0.40	27	67	47	69	90	323	192	236
	15	Huzuq Musa	2	1.00	67	168	118	174	226	808	480	590
	16	Jericho	2	2.50	169	419	294	434	565	2021	1201	1475
	17	Netiv Hagdud	2	0.75	51	126	88	130	169	606	360	443
	18	Tell Aswad IA	2	1.00	67	168	118	174	226	808	480	590
EPPNB	19	Ain Abu Hudhud	1	0.20	15	86	46	35	18	316	112	118
	20	Ein Suhun	1	0.30	22	130	69	52	27	474	168	177
	21	El Hemmeh	1	0.10	7	43	23	17	9	158	56	59
	22	Motza VI	2	0.50	34	84	59	87	113	404	240	295
	23	Mujahiya	2	0.50	34	84	59	87	113	404	240	295
	24	Tell Aswad IB	2	1.00	67	168	118	174	226	808	480	590
	25	Horvat Galil	4	1.00	80	246	151	174	212	1165	546	590
	26	Tell Qarassa	4	1.00	80	246	151	174	212	1165	546	590
	27	Mishmar Ha'emeq	-	1.00	67	432	174	174	81	2853	590	590

Period	ID	Site name	Site type	Site extent (ha)	Total numb	er of conter	nporaneous	dwellings		Population e	stimates	
						Site type		Universal		Site type		Universal
					Min	Max	Mean		Min	Max	Mean	
MPPNB	28	Adh-Dhaman I	1	0.20	15	86	46	35	18	316	112	118
	29	Ain Abu Nekheileh	1	0.12	9	52	27	21	11	190	67	71
	30	Beidha	1	0.20	15	86	46	35	18	316	112	118
	31	Jebel Arqa	1	0.20	15	86	46	35	18	316	112	118
	32	Jebel Rabigh	1	0.06	4	26	14	10	5	95	34	35
	33	Jebel Ragref	1	0.15	11	65	34	26	13	237	84	89
	34	Jebel Salaqa	1	0.10	7	43	23	17	9	158	56	59
	35	Shkārat Msaied	1	0.20	15	86	46	35	18	316	112	118
	36	Tell Eli IV	2	2.00	135	335	235	347	452	1617	960	1180
	37	Abu Gosh	3	0.25	25	30	28	43	93	155	122	148
	38	Wadi Hamarash I	3	0.50	50	61	55	87	186	311	245	295
	39	Ail IV	4	1.00	80	246	151	174	212	1165	546	590
	40	'Ain Ghazal	4	4.00	320	985	606	694	848	4661	2186	2360
	41	Beisamoun	4	5.00	400	1231	757	868	1060	5826	2732	2951
	42	Ghwair I	4	1.325	106	326	201	230	281	1544	724	782
	43	Horvat Galil	4	2.50	200	616	379	434	530	2913	1366	1475
	44	Jericho	4	4.00	320	985	606	694	848	4661	2186	2360
	45	Khirbet Hammam	4	3.00	240	739	454	521	636	3495	1639	1770
	46	Motza V	4	1.00	80	246	151	174	212	1165	546	590
	47	Tell Abu es-Sawwan	4	3.00	240	739	454	521	636	3495	1639	1770
	48	Tell Aswad II	4	5.00	400	1231	757	868	1060	5826	2732	2951
	49	Tell Ghoraifé I	4	3.00	240	739	454	521	636	3495	1639	1770
	50	Wadi Shu'eib	4	3.00	240	739	454	521	636	3495	1639	1770
	51	Yiftah'el IV	4	1.00	80	246	151	174	212	1165	546	590
	52	Mishmar Ha'emeq	-	0.50	34	216	87	87	40	1427	295	295
	53	Munhata IV-VI	-	0.20	13	86	35	35	16	571	118	118
	54	Nahal Betzet I	-	0.50	34	216	87	87	40	1427	295	295
	55	Tel Roim West V	-	0.50	34	216	87	87	40	1427	295	295

Period	ID	Site name	Site type	Site extent (ha)	Total numb	er of conter	nporaneous	dwellings		Population e	stimates	
						Site type		Universal		Site type		Universal
					Min	Max	Mean		Min	Max	Mean	
LPPNB	56	Beidha	3	0.30	30	37	33	52	112	187	147	177
	57	Ail IV	4	2.00	160	492	303	347	424	2330	1093	1180
	58	Ba'ja	4	1.35	108	332	204	234	286	1573	738	797
	59	El Hemmeh	4	1.00	80	246	151	174	212	1165	546	590
	60	Er-Rahib	4	3.00	240	739	454	521	636	3495	1639	1770
	61	Jericho	4	4.00	320	985	606	694	848	4661	2186	2360
	62	Mo <u>z</u> a Tahtit	4	2.00	160	492	303	347	424	2330	1093	1180
	63	Qminas	4	1.50	120	369	227	260	318	1748	820	885
	64	Tell Aray	4	5.00	400	1231	757	868	1060	5826	2732	2951
	65	Tell el-Ghafar I	4	1.50	120	369	227	260	318	1748	820	885
	66	Tell Eli III	4	5.00	400	1231	757	868	1060	5826	2732	2951
	67	Tell Ghoraifé II	4	5.00	400	1231	757	868	1060	5826	2732	2951
	68	Tell Labwé	4	5.00	400	1231	757	868	1060	5826	2732	2951
	69	Tell Rakan I	4	1.00	80	246	151	174	212	1165	546	590
	70	Tell Ramad I	4	1.50	120	369	227	260	318	1748	820	885
	71	Tell Ras Shamra V C	4	5.00	400	1231	757	868	1060	5826	2732	2951
	72	Tel Tif'dan	4	3.00	240	739	454	521	636	3495	1639	1770
	73	Wadi Badda	4	1.00	80	246	151	174	212	1165	546	590
	74	Yiftah'el III	4	1.50	120	369	227	260	318	1748	820	885
	75	'Ain Ghazal	5	10.00	-	-	923	1736	4428	6089	5259	5901
	76	Ain Jamam	5	7.00	-	-	646	1215	3100	4262	3681	4131
	77	Al-Baseet	5	7.50	-	-	692	1302	3321	4567	3944	4426
	78	Basta	5	13.00	-	-	1199	2256	5757	7916	6836	7671
	79	Beisamoun	5	13.50	-	-	1245	2343	5978	8220	7099	7966
	80	Es-Sifiya	5	8.00	-	-	738	1388	3543	4871	4207	4721
	81	Kharaysin	5	10.00	-	-	923	1736	4428	6089	5259	5901
	82	Khirbet Hammam	5	7.00	-	-	646	1215	3100	4262	3681	4131
	83	Tell Abu es-Sawwan	5	10.50	-	-	969	1822	4650	6394	5522	6196
	84	Tell 'Ain el-Kerkh/II	5	16.00	-	-	1476	2777	7086	9743	8414	9442
	85	Wadi Shu'eib	5	8.00	-	-	738	1388	3543	4871	4207	4721
	86	Aviel	-	3.00	202	1297	521	521	243	8560	1770	1770
	87	Es-Sayyeh	-	3.50	236	1513	607	607	283	9987	2065	2065

Period	ID	Site name	Site type	Site extent (ha)	Total number	er of conten	nporaneous	dwellings		Population e	stimates	
						Site type		Universal		Site type		Universal
					Min	Max	Mean		Min	Max	Mean	
PPNC	88	Atlit-Yam	4	3.00	240	739	454	521	636	3495	1639	1770
	89	El Hemmeh	4	1.00	80	246	151	174	212	1165	546	590
	90	Es-Sifiya	4	5.00	400	1231	757	868	1060	5826	2732	2951
	91	Hagoshrim VI	4	3.50	280	862	530	607	742	4078	1913	2065
	92	Tell Abu es-Sawwan	4	5.00	400	1231	757	868	1060	5826	2732	2951
	93	Tell 'Ain el-Kerkh/II	4	6.00	479	1477	909	1041	1272	6991	3279	3541
	94	Tell Eli III	4	3.50	280	862	530	607	742	4078	1913	2065
	95	Tell Labwé	4	3.50	280	862	530	607	742	4078	1913	2065
	96	Tell Ramad II	4	2.60	208	640	394	451	551	3029	1421	1534
	97	Tell Ras Shamra V B	4	3.00	240	739	454	521	636	3495	1639	1770
	98	Tell Teo	4	3.50	280	862	530	607	742	4078	1913	2065
	99	Tel Roim West IV	4	1.00	80	246	151	174	212	1165	546	590
	100	Wadi Shu'eib	4	6.00	479	1477	909	1041	1272	6991	3279	3541
	101	Yiftah'el III (?)	4	1.50	120	369	227	260	318	1748	820	885
	102	'Ain Ghazal	5	8.00	-	-	738	1388	3543	4871	4207	4721
	103	Basta (?)	5	7.00	-	-	646	1215	3100	4262	3681	4131
	104	Beisamoun	5	7.00	-	-	646	1215	3100	4262	3681	4131
	105	Es-Sayyeh	-	2.00	135	865	347	347	162	5707	1180	1180
	106	Wadi Fidan C	-	1.50	101	649	260	260	121	4280	885	885

Period	ID	Site name	Site	Site	Total contemporaneous residential t built area (m ²)				Total	number	of		Populati	on estin	nates	
			type	extent		built a	area (m²)		con	tempora	aneous d	wellings				
				(ha)		Site type		Universal		Site type	9	Universal		Site type)	Universal
					Min	Max	Mean		Min	Max	Mean		Min	Max	Mean	
PPNA	1	Ain Darat	1	0.08	239	437	313	250	17	32	19	12	20	115	48	42
	2	Bir el-Maksur	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	3	Borj Barajne	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	4	Ein Suhun	1	0.30	895	1637	1172	938	62	118	73	46	76	433	179	156
	5	El Aoui Safa	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	6	El Hemmeh	1	0.10	298	546	391	313	21	39	24	15	25	144	60	52
	7	Gesher	1	0.15	448	819	586	469	31	59	36	23	38	216	89	78
	8	Gilgal III	1	0.10	298	546	391	313	21	39	24	15	25	144	60	52
	9	Gilgal IV	1	0.10	298	546	391	313	21	39	24	15	25	144	60	52
	10	Hatoula	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	11	Nahal Oren	1	0.05	149	273	195	156	10	20	12	8	13	72	30	26
	12	Zahrat Adh-Dhra' 2	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	13	Dhra'	2	0.45	856	944	900	1408	33	54	41	69	112	259	166	233
	14	Gilgal I	2	0.40	761	839	800	1251	30	48	36	61	100	230	148	208
	15	Huzuq Musa	2	1.00	1902	2097	2000	3128	74	119	91	153	249	575	370	519
	16	Jericho	2	2.50	4755	5243	4999	7820	186	298	226	381	622	1437	925	1297
	17	Netiv Hagdud	2	0.75	1427	1573	1500	2346	56	89	68	114	187	431	277	389
	18	Tell Aswad IA	2	1.00	1902	2097	2000	3128	74	119	91	153	249	575	370	519
EPPNB	19	Ain Abu Hudhud	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	20	Ein Suhun	1	0.30	895	1637	1172	938	62	118	73	46	76	433	179	156
	21	El Hemmeh	1	0.10	298	546	391	313	21	39	24	15	25	144	60	52
	22	Motza VI	2	0.50	951	1049	1000	1564	37	60	45	76	124	287	185	259
	23	Mujahiya	2	0.50	951	1049	1000	1564	37	60	45	76	124	287	185	259
	24	Tell Aswad IB	2	1.00	1902	2097	2000	3128	74	119	91	153	249	575	370	519
	25	Horvat Galil	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	26	Tell Qarassa	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	27	Mishmar Ha'emeq	-	1.00	1715	5457	3128	3128	185	226	153	153	222	1489	519	519

Residential built area proportions method (RBAP)

Period	ID	Site name	Site	Site	Total o	contempo	raneous i	esidential		Total	number	of		Populati	on estim	ates
			type	extent		built a	area (m²)		con	tempora	aneous d	wellings				
				(ha)		Site type		Universal		Site type	9	Universal		Site type)	Universal
					Min	Max	Mean		Min	Max	Mean		Min	Max	Mean	
MPPNB	28	Adh-Dhaman I	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	29	Ain Abu Nekheileh	1	0.12	358	655	469	375	25	47	29	18	30	173	71	62
	30	Beidha	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	31	Jebel Arqa	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	32	Jebel Rabigh	1	0.06	179	327	234	188	12	24	15	9	15	87	36	31
	33	Jebel Ragref	1	0.15	448	819	586	469	31	59	36	23	38	216	89	78
	34	Jebel Salaqa	1	0.10	298	546	391	313	21	39	24	15	25	144	60	52
	35	Shkārat Msaied	1	0.20	597	1091	781	626	41	79	49	31	51	288	119	104
	36	Tell Eli IV	2	2.00	3804	4194	3999	6256	149	238	181	305	498	1150	740	1038
	37	Abu Gosh	3	0.25	429	696	562	782	24	20	22	38	88	104	98	130
	38	Wadi Hamarash I	3	0.50	858	1392	1125	1564	47	41	44	76	175	208	196	259
	39	Ail IV	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	40	'Ain Ghazal	4	4.00	7684	13028	10879	12512	542	502	522	610	1438	2374	1883	2075
	41	Beisamoun	4	5.00	9605	16285	13598	15640	677	627	652	763	1797	2967	2353	2594
	42	Ghwair I	4	1.325	2545	4316	3604	4145	180	166	173	202	476	786	624	687
	43	Horvat Galil	4	2.50	4803	8143	6799	7820	339	313	326	381	898	1484	1177	1297
	44	Jericho	4	4.00	7684	13028	10879	12512	542	502	522	610	1438	2374	1883	2075
	45	Khirbet Hammam	4	3.00	5763	9771	8159	9384	406	376	391	458	1078	1780	1412	1556
	46	Motza V	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	47	Tell Abu es-Sawwan	4	3.00	5763	9771	8159	9384	406	376	391	458	1078	1780	1412	1556
	48	Tell Aswad II	4	5.00	9605	16285	13598	15640	677	627	652	763	1797	2967	2353	2594
	49	Tell Ghoraifé I	4	3.00	5763	9771	8159	9384	406	376	391	458	1078	1780	1412	1556
	50	Wadi Shu'eib	4	3.00	5763	9771	8159	9384	406	376	391	458	1078	1780	1412	1556
	51	Yiftah'el IV	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	52	Mishmar Ha'emeq	-	0.50	858	2729	1564	1564	92	113	76	76	111	745	259	259
	53	Munhata IV-VI	-	0.20	343	1091	626	626	37	45	31	31	44	298	104	104
	54	Nahal Betzet I	-	0.50	858	2729	1564	1564	92	113	76	76	111	745	259	259
	55	Tel Roim West V	-	0.50	858	2729	1564	1564	92	113	76	76	111	745	259	259

Period	ID	Site name	Site	Site	Total o	contempo	raneous	residential		Total	number	of		Populati	ion estin	nates
			type	extent		built	area (m²)		cor	ntempora	aneous d	lwellings				
				(ha)		Site type		Universal		Site type	Э	Universal		Site type	Э	Universal
					Min	Max	Mean		Min	Max	Mean		Min	Max	Mean	
LPPNB	56	Beidha	3	0.30	515	835	675	938	28	24	27	46	105	125	118	156
	57	Ail IV	4	2.00	3842	6514	5439	6256	271	251	261	305	719	1187	941	1038
	58	Ba'ja	4	1.35	2593	4397	3672	4223	183	169	176	206	485	801	635	700
	59	El Hemmeh	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	60	Er-Rahib	4	3.00	5763	9771	8159	9384	406	376	391	458	1078	1780	1412	1556
	61	Jericho	4	4.00	7684	13028	10879	12512	542	502	522	610	1438	2374	1883	2075
	62	Mo <u>z</u> a Tahtit	4	2.00	3842	6514	5439	6256	271	251	261	305	719	1187	941	1038
	63	Qminas	4	1.50	2882	4886	4080	4692	203	188	196	229	539	890	706	778
	64	Tell Aray	4	5.00	9605	16285	13598	15640	677	627	652	763	1797	2967	2353	2594
	65	Tell el-Ghafar I	4	1.50	2882	4886	4080	4692	203	188	196	229	539	890	706	778
	66	Tell Eli III	4	5.00	9605	16285	13598	15640	677	627	652	763	1797	2967	2353	2594
	67	Tell Ghoraifé II	4	5.00	9605	16285	13598	15640	677	627	652	763	1797	2967	2353	2594
	68	Tell Labwé	4	5.00	9605	16285	13598	15640	677	627	652	763	1797	2967	2353	2594
	69	Tell Rakan I	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	70	Tell Ramad I	4	1.50	2882	4886	4080	4692	203	188	196	229	539	890	706	778
	71	Tell Ras Shamra V C	4	5.00	9605	16285	13598	15640	677	627	652	763	1797	2967	2353	2594
	72	Tel Tif'dan	4	3.00	5763	9771	8159	9384	406	376	391	458	1078	1780	1412	1556
	73	Wadi Badda	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	74	Yiftah'el III	4	1.50	2882	4886	4080	4692	203	188	196	229	539	890	706	778
	75	'Ain Ghazal	5	10.00	-	-	36950	31280	783	1369	996	1526	3758	9032	5677	5188
	76	Ain Jamam	5	7.00	-	-	25865	21896	548	958	697	1068	2630	6323	3974	3632
	77	Al-Baseet	5	7.50	-	-	27713	23460	587	1026	747	1144	2818	6774	4258	3891
	78	Basta	5	13.00	-	-	48035	40664	1018	1779	1295	1984	4885	11742	7380	6744
	79	Beisamoun	5	13.50	-	-	49883	42228	1057	1848	1345	2060	5073	12194	7664	7004
	80	Es-Sifiya	5	8.00	-	-	29560	25024	626	1095	797	1221	3006	7226	4542	4150
	81	Kharaysin	5	10.00	-	-	36950	31280	783	1369	996	1526	3758	9032	5677	5188
	82	Khirbet Hammam	5	7.00	-	-	25865	21896	548	958	697	1068	2630	6323	3974	3632
	83	Tell Abu es-Sawwan	5	10.50	-	-	38798	32844	822	1437	1046	1602	3946	9484	5961	5447
	84	Tell 'Ain el-Kerkh/II	5	16.00	-	-	59120	50048	1253	2190	1594	2441	6012	14452	9083	8301
	85	Wadi Shu'eib	5	8.00	-	-	29560	25024	626	1095	797	1221	3006	7226	4542	4150
	86	Aviel	-	3.00	5145	16371	9384	9384	555	677	458	458	666	4468	1556	1556
	87	Es-Sayyeh	-	3.50	6003	19100	10948	10948	647	790	<u>534</u>	534	777	5213	1816	1816

Period	ID	Site name	Site	Site	Total o	ontempo	raneous r	esidential		Total	number	of		Populati	on estim	ates
			type	extent		built a	area (m²)		con	tempora	aneous d	wellings				
				(ha)		Site type		Universal		Site type	;	Universal		Site type	;	Universal
					Min	Max	Mean		Min	Max	Mean		Min	Max	Mean	
PPNC	88	Atlit-Yam	4	3.00	5763	9771	8159	9384	406	376	391	458	1078	1780	1412	1556
	89	El Hemmeh	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	90	Es-Sifiya	4	5.00	9605	16285	13598	15640	677	627	652	763	1797	2967	2353	2594
	91	Hagoshrim VI	4	3.50	6724	11400	9519	10948	474	439	457	534	1258	2077	1647	1816
	92	Tell Abu es-Sawwan	4	5.00	9605	16285	13598	15640	677	627	652	763	1797	2967	2353	2594
	93	Tell 'Ain el-Kerkh/II	4	6.00	11526	19542	16318	18768	813	752	783	916	2156	3561	2824	3113
	94	Tell Eli III	4	3.50	6724	11400	9519	10948	474	439	457	534	1258	2077	1647	1816
	95	Tell Labwé	4	3.50	6724	11400	9519	10948	474	439	457	534	1258	2077	1647	1816
	96	Tell Ramad II	4	2.60	4995	8468	7071	8133	352	326	339	397	934	1543	1224	1349
	97	Tell Ras Shamra V B	4	3.00	5763	9771	8159	9384	406	376	391	458	1078	1780	1412	1556
	98	Tell Teo	4	3.50	6724	11400	9519	10948	474	439	457	534	1258	2077	1647	1816
	99	Tel Roim West IV	4	1.00	1921	3257	2720	3128	135	125	130	153	359	593	471	519
	100	Wadi Shu'eib	4	6.00	11526	19542	16318	18768	813	752	783	916	2156	3561	2824	3113
	101	Yiftah'el III (?)	4	1.50	2882	4886	4080	4692	203	188	196	229	539	890	706	778
	102	'Ain Ghazal	5	8.00	-	-	29560	25024	626	1095	797	1221	3006	7226	4542	4150
	103	Basta (?)	5	7.00	-	-	25865	21896	548	958	697	1068	2630	6323	3974	3632
	104	Beisamoun	5	7.00	-	-	25865	21896	548	958	697	1068	2630	6323	3974	3632
	105	Es-Savveh	-	2.00	3430	10914	6256	6256	370	451	305	305	444	2979	1038	1038
	106	Wadi Fidan C	-	1.50	2573	8186	4692	4692	277	338	229	229	333	2234	778	778

Period	ID	Site name	Site type	Site extent (ha)	Total con	temporaneou	is residential fl	oor area (m ²)		Populat	ion estim	ates
						Site type		Universal		Site type)	Universal
					Min	Max	Mean		Min	Max	Mean	
PPNA	1	Ain Darat	1	0.08	119	257	176	149	32	89	53	43
	2	Bir el-Maksur	1	0.20	297	643	440	372	79	222	132	108
	3	Borj Barajne	1	0.20	297	643	440	372	79	222	132	108
	4	Ein Suhun	1	0.30	446	964	660	558	119	333	198	162
	5	El Aoui Safa	1	0.20	297	643	440	372	79	222	132	108
	6	El Hemmeh	1	0.10	149	321	220	186	40	111	66	54
	7	Gesher	1	0.15	223	482	330	279	60	167	99	81
	8	Gilgal III	1	0.10	149	321	220	186	40	111	66	54
	9	Gilgal IV	1	0.10	149	321	220	186	40	111	66	54
	10	Hatoula	1	0.20	297	643	440	372	79	222	132	108
	11	Nahal Oren	1	0.05	74	161	110	93	20	56	33	27
	12	Zahrat Adh-Dhra' 2	1	0.20	297	643	440	372	79	222	132	108
	13	Dhra'	2	0.45	648	746	697	837	143	223	177	243
	14	Gilgal I	2	0.40	576	663	619	744	127	198	157	216
	15	Huzuq Musa	2	1.00	1439	1658	1549	1861	318	495	393	541
	16	Jericho	2	2.50	3598	4145	3871	4653	795	1238	983	1352
	17	Netiv Hagdud	2	0.75	1079	1244	1161	1396	238	372	295	406
	18	Tell Aswad IA	2	1.00	1439	1658	1549	1861	318	495	393	541
EPPNB	19	Ain Abu Hudhud	1	0.20	297	643	440	372	79	222	132	108
	20	Ein Suhun	1	0.30	446	964	660	558	119	333	198	162
	21	El Hemmeh	1	0.10	149	321	220	186	40	111	66	54
	22	Motza VI	2	0.50	720	829	774	931	159	248	197	270
	23	Mujahiya	2	0.50	720	829	774	931	159	248	197	270
	24	Tell Aswad IB	2	1.00	1439	1658	1549	1861	318	495	393	541
	25	Horvat Galil	4	1.00	1210	2133	1722	1861	293	643	479	541
	26	Tell Qarassa	4	1.00	1210	2133	1722	1861	293	643	479	541
	27	Mishmar Ha'emeq	-	1.00	1133	3213	1861	1861	250	1112	541	541

Residential floor area proportions method (RFAP)

Period	ID	Site name	Site type	Site extent (ha)	Total cor	ntemporaneou	us residential fl	oor area (m²)		Populat	ion estim	ates
						Site type		Universal		Site type	;	Universal
					Min	Max	Mean		Min	Max	Mean	
MPPNB	28	Adh-Dhaman I	1	0.20	297	643	440	372	79	222	132	108
	29	Ain Abu Nekheileh	1	0.12	178	386	264	223	48	133	79	65
	30	Beidha	1	0.20	297	643	440	372	79	222	132	108
	31	Jebel Arqa	1	0.20	297	643	440	372	79	222	132	108
	32	Jebel Rabigh	1	0.06	89	193	132	112	24	67	40	32
	33	Jebel Ragref	1	0.15	223	482	330	279	60	167	99	81
	34	Jebel Salaqa	1	0.10	149	321	220	186	40	111	66	54
	35	Shkārat Msaied	1	0.20	297	643	440	372	79	222	132	108
	36	Tell Eli IV	2	2.00	2878	3316	3097	3722	636	991	787	1082
	37	Abu Gosh	3	0.25	283	419	351	465	88	142	114	135
	38	Wadi Hamarash I	3	0.50	567	839	703	931	177	284	228	270
	39	Ail IV	4	1.00	1210	2133	1722	1861	293	643	479	541
	40	'Ain Ghazal	4	4.00	4840	8532	6889	7444	1172	2571	1915	2164
	41	Beisamoun	4	5.00	6050	10665	8612	9305	1465	3213	2393	2705
	42	Ghwair I	4	1.325	1603	2826	2282	2466	388	852	634	717
	43	Horvat Galil	4	2.50	3025	5333	4306	4653	732	1607	1197	1352
	44	Jericho	4	4.00	4840	8532	6889	7444	1172	2571	1915	2164
	45	Khirbet Hammam	4	3.00	3630	6399	5167	5583	879	1928	1436	1623
	46	Motza V	4	1.00	1210	2133	1722	1861	293	643	479	541
	47	Tell Abu es-Sawwan	4	3.00	3630	6399	5167	5583	879	1928	1436	1623
	48	Tell Aswad II	4	5.00	6050	10665	8612	9305	1465	3213	2393	2705
	49	Tell Ghoraifé I	4	3.00	3630	6399	5167	5583	879	1928	1436	1623
	50	Wadi Shu'eib	4	3.00	3630	6399	5167	5583	879	1928	1436	1623
	51	Yiftah'el IV	4	1.00	1210	2133	1722	1861	293	643	479	541
	52	Mishmar Ha'emeq	-	0.50	567	1607	931	931	125	556	270	270
	53	Munhata IV-VI	-	0.20	227	643	372	372	50	222	108	108
	54	Nahal Betzet I	-	0.50	567	1607	931	931	125	556	270	270
-	55	Tel Roim West V	-	0.50	567	1607	931	931	125	556	270	270

Period	ID	Site name	Site type	Site extent (ha)	Total cor	temporaneo	us residential f	loor area (m ²)		Populat	ion estim	ates
						Site type		Universal		Site type	;	Universal
					Min	Max	Mean		Min	Max	Mean	
LPPNB	56	Beidha	3	0.30	340	503	422	558	106	170	137	162
	57	Ail IV	4	2.00	2420	4266	3445	3722	586	1285	957	1082
	58	Ba'ja	4	1.35	1634	2880	2325	2512	396	868	646	730
	59	El Hemmeh	4	1.00	1210	2133	1722	1861	293	643	479	541
	60	Er-Rahib	4	3.00	3630	6399	5167	5583	879	1928	1436	1623
	61	Jericho	4	4.00	4840	8532	6889	7444	1172	2571	1915	2164
	62	Mo <u>z</u> a Tahtit	4	2.00	2420	4266	3445	3722	586	1285	957	1082
	63	Qminas	4	1.50	1815	3200	2584	2792	439	964	718	811
	64	Tell Aray	4	5.00	6050	10665	8612	9305	1465	3213	2393	2705
	65	Tell el-Ghafar I	4	1.50	1815	3200	2584	2792	439	964	718	811
	66	Tell Eli III	4	5.00	6050	10665	8612	9305	1465	3213	2393	2705
	67	Tell Ghoraifé II	4	5.00	6050	10665	8612	9305	1465	3213	2393	2705
	68	Tell Labwé	4	5.00	6050	10665	8612	9305	1465	3213	2393	2705
	69	Tell Rakan I	4	1.00	1210	2133	1722	1861	293	643	479	541
	70	Tell Ramad I	4	1.50	1815	3200	2584	2792	439	964	718	811
	71	Tell Ras Shamra V C	4	5.00	6050	10665	8612	9305	1465	3213	2393	2705
	72	Tel Tif'dan	4	3.00	3630	6399	5167	5583	879	1928	1436	1623
	73	Wadi Badda	4	1.00	1210	2133	1722	1861	293	643	479	541
	74	Yiftah'el III	4	1.50	1815	3200	2584	2792	439	964	718	811
	75	'Ain Ghazal	5	10.00	-	-	17680	18610	4420	6097	5051	5410
	76	Ain Jamam	5	7.00	-	-	12376	13027	3094	4268	3536	3787
	77	Al-Baseet	5	7.50	-	-	13260	13958	3315	4572	3789	4057
	78	Basta	5	13.00	-	-	22984	24193	5746	7926	6567	7033
	79	Beisamoun	5	13.50	-	-	23868	25124	5967	8230	6819	7303
	80	Es-Sifiya	5	8.00	-	-	14144	14888	3536	4877	4041	4328
	81	Kharaysin	5	10.00	-	-	17680	18610	4420	6097	5051	5410
	82	Khirbet Hammam	5	7.00	-	-	12376	13027	3094	4268	3536	3787
	83	Tell Abu es-Sawwan	5	10.50	-	-	18564	19541	4641	6401	5304	5680
	84	Tell 'Ain el-Kerkh/II	5	16.00	-	-	28288	29776	7072	9754	8082	8656
	85	Wadi Shu'eib	5	8.00	-	-	14144	14888	3536	4877	4041	4328
	86	Aviel	-	3.00	3399	9639	5583	5583	750	3335	1623	1623
	87	Es-Sayyeh	-	3.50	3966	11246	6514	6514	875	3891	1893	1893

Period	ID	Site name	Site type	Site extent (ha)	Total con	Itemporaneou	us residential f	loor area (m ²)		Populat	ion estim	ates
						Site type		Universal		Site type)	Universal
					Min	Max	Mean		Min	Max	Mean	
PPNC	88	Atlit-Yam	4	3.00	3630	6399	5167	5583	879	1928	1436	1623
	89	El Hemmeh	4	1.00	1210	2133	1722	1861	293	643	479	541
	90	Es-Sifiya	4	5.00	6050	10665	8612	9305	1465	3213	2393	2705
	91	Hagoshrim VI	4	3.50	4235	7466	6028	6514	1025	2249	1675	1893
	92	Tell Abu es-Sawwan	4	5.00	6050	10665	8612	9305	1465	3213	2393	2705
	93	Tell 'Ain el-Kerkh/II	4	6.00	7260	12798	10334	11166	1758	3856	2872	3246
	94	Tell Eli III	4	3.50	4235	7466	6028	6514	1025	2249	1675	1893
	95	Tell Labwé	4	3.50	4235	7466	6028	6514	1025	2249	1675	1893
	96	Tell Ramad II	4	2.60	3146	5546	4478	4839	762	1671	1245	1407
	97	Tell Ras Shamra V B	4	3.00	3630	6399	5167	5583	879	1928	1436	1623
	98	Tell Teo	4	3.50	4235	7466	6028	6514	1025	2249	1675	1893
	99	Tel Roim West IV	4	1.00	1210	2133	1722	1861	293	643	479	541
	100	Wadi Shu'eib	4	6.00	7260	12798	10334	11166	1758	3856	2872	3246
	101	Yiftah'el III (?)	4	1.50	1815	3200	2584	2792	439	964	718	811
	102	'Ain Ghazal	5	8.00	-	-	14144	14888	3536	4877	4041	4328
	103	Basta (?)	5	7.00	-	-	12376	13027	3094	4268	3536	3787
	104	Beisamoun	5	7.00	-	-	12376	13027	3094	4268	3536	3787
	105	Es-Sayyeh	-	2.00	2266	6426	3722	3722	500	2224	1082	1082
	106	Wadi Fidan C	-	1.50	1700	4820	2792	2792	375	1668	811	811

Period	ID	Site name	Site	Site extent	extent Total contemporaneous residential floc (ha) (A variable)					Populati	on estimat	es
			type	(ha)		(A)	variable)			(mean of N	lethods 1 ai	nd 2)
						Site type		Universal		Site type		Universal
					Min	Max	Mean		Min	Max	Mean	
PPNA	1	Ain Darat	1	0.08	119	257	176	149	34	69	47	45
	2	Bir el-Maksur	1	0.20	297	643	440	372	84	173	119	112
	3	Borj Barajne	1	0.20	297	643	440	372	84	173	119	112
	4	Ein Suhun	1	0.30	446	964	660	558	126	260	178	168
	5	El Aoui Safa	1	0.20	297	643	440	372	84	173	119	112
	6	El Hemmeh	1	0.10	149	321	220	186	42	86	59	55
	7	Gesher	1	0.15	223	482	330	279	63	130	89	84
	8	Gilgal III	1	0.10	149	321	220	186	42	86	59	55
	9	Gilgal IV	1	0.10	149	321	220	186	42	86	59	55
	10	Hatoula	1	0.20	297	643	440	372	84	173	119	112
	11	Nahal Oren	1	0.05	74	161	110	93	21	43	29	29
	12	Zahrat Adh-Dhra' 2	1	0.20	297	643	440	372	84	173	119	112
	13	Dhra'	2	0.45	648	746	697	837	133	298	208	240
	14	Gilgal I	2	0.40	576	663	619	744	118	264	184	212
	15	Huzuq Musa	2	1.00	1439	1658	1549	1861	295	664	463	533
	16	Jericho	2	2.50	3598	4145	3871	4653	737	1651	1155	1329
	17	Netiv Hagdud	2	0.75	1079	1244	1161	1396	221	495	346	398
	18	Tell Aswad IA	2	1.00	1439	1658	1549	1861	295	664	463	533
EPPNB	19	Ain Abu Hudhud	1	0.20	297	643	440	372	84	173	119	112
	20	Ein Suhun	1	0.30	446	964	660	558	126	260	178	168
	21	El Hemmeh	1	0.10	149	321	220	186	42	86	59	55
	22	Motza VI	2	0.50	720	829	774	931	148	330	231	266
	23	Mujahiya	2	0.50	720	829	774	931	148	330	231	266
	24	Tell Aswad IB	2	1.00	1439	1658	1549	1861	295	664	463	533
	25	Horvat Galil	4	1.00	1210	2133	1722	1861	427	679	545	607
	26	Tell Qarassa	4	1.00	1210	2133	1722	1861	427	679	545	607
	27	Mishmar Ha'emeq	-	1.00	1133	3213	1861	1861	355	751	546	546

Storage provisions formulae (SPF)

Period	ID	Site name	Site	Site extent	Total contemporaneous residential floor area (m ²)				Population estimates			
			type	(ha)	(A variable)			(mean of Methods 1 and 2)				
						Site type		Universal		Site type		Universal
-					Min	Max	Mean		Min	Max	Mean	
MPPNB	28	Adh-Dhaman I	1	0.20	297	643	440	372	84	173	119	112
	29	Ain Abu Nekheileh	1	0.12	178	386	264	223	51	104	71	67
	30	Beidha	1	0.20	297	643	440	372	84	173	119	112
	31	Jebel Arqa	1	0.20	297	643	440	372	84	173	119	112
	32	Jebel Rabigh	1	0.06	89	193	132	112	26	52	36	33
	33	Jebel Ragref	1	0.15	223	482	330	279	63	130	89	84
	34	Jebel Salaqa	1	0.10	149	321	220	186	42	86	59	55
	35	Shkārat Msaied	1	0.20	297	643	440	372	84	173	119	112
	36	Tell Eli IV	2	2.00	2878	3316	3097	3722	590	1321	924	1064
	37	Abu Gosh	3	0.25	283	419	351	465	87	138	113	146
	38	Wadi Hamarash I	3	0.50	567	839	703	931	174	277	225	293
	39	Ail IV	4	1.00	1210	2133	1722	1861	427	679	545	607
	40	'Ain Ghazal	4	4.00	4840	8532	6889	7444	1707	2717	2183	2424
	41	Beisamoun	4	5.00	6050	10665	8612	9305	2133	3396	2728	3031
	42	Ghwair I	4	1.325	1603	2826	2282	2466	565	900	723	803
	43	Horvat Galil	4	2.50	3025	5333	4306	4653	1067	1698	1364	1515
	44	Jericho	4	4.00	4840	8532	6889	7444	1707	2717	2183	2424
	45	Khirbet Hammam	4	3.00	3630	6399	5167	5583	1280	2037	1636	1819
	46	Motza V	4	1.00	1210	2133	1722	1861	427	679	545	607
	47	Tell Abu es-Sawwan	4	3.00	3630	6399	5167	5583	1280	2037	1636	1819
	48	Tell Aswad II	4	5.00	6050	10665	8612	9305	2133	3396	2728	3031
	49	Tell Ghoraifé I	4	3.00	3630	6399	5167	5583	1280	2037	1636	1819
	50	Wadi Shu'eib	4	3.00	3630	6399	5167	5583	1280	2037	1636	1819
	51	Yiftah'el IV	4	1.00	1210	2133	1722	1861	427	679	545	607
	52	Mishmar Ha'emeq	-	0.50	567	1607	931	931	177	374	272	272
	53	Munhata IV-VI	-	0.20	227	643	372	372	71	152	110	110
	54	Nahal Betzet I	-	0.50	567	1607	931	931	177	374	272	272
	55	Tel Roim West V	-	0.50	567	1607	931	931	177	374	272	272

Period	ID	Site name	Site	Site extent	Total co	Population estimates						
			type	(ha)	(A variable)				(mean of Methods 1 and 2)			
						Site type		Universal		Site type		Universal
					Min	Max	Mean		Min	Max	Mean	
LPPNB	56	Beidha	3	0.30	340	503	422	558	104	166	136	176
	57	Ail IV	4	2.00	2420	4266	3445	3722	853	1358	1091	1212
	58	Ba'ja	4	1.35	1634	2880	2325	2512	576	917	736	818
	59	El Hemmeh	4	1.00	1210	2133	1722	1861	427	679	545	607
	60	Er-Rahib	4	3.00	3630	6399	5167	5583	1280	2037	1636	1819
	61	Jericho	4	4.00	4840	8532	6889	7444	1707	2717	2183	2424
	62	Mo <u>z</u> a Tahtit	4	2.00	2420	4266	3445	3722	853	1358	1091	1212
	63	Qminas	4	1.50	1815	3200	2584	2792	640	1019	818	909
	64	Tell Aray	4	5.00	6050	10665	8612	9305	2133	3396	2728	3031
	65	Tell el-Ghafar I	4	1.50	1815	3200	2584	2792	640	1019	818	909
	66	Tell Eli III	4	5.00	6050	10665	8612	9305	2133	3396	2728	3031
	67	Tell Ghoraifé II	4	5.00	6050	10665	8612	9305	2133	3396	2728	3031
	68	Tell Labwé	4	5.00	6050	10665	8612	9305	2133	3396	2728	3031
	69	Tell Rakan I	4	1.00	1210	2133	1722	1861	427	679	545	607
	70	Tell Ramad I	4	1.50	1815	3200	2584	2792	640	1019	818	909
	71	Tell Ras Shamra V C	4	5.00	6050	10665	8612	9305	2133	3396	2728	3031
	72	Tel Tif'dan	4	3.00	3630	6399	5167	5583	1280	2037	1636	1819
	73	Wadi Badda	4	1.00	1210	2133	1722	1861	427	679	545	607
	74	Yiftah'el III	4	1.50	1815	3200	2584	2792	640	1019	818	909
	75	'Ain Ghazal	5	10.00	-	-	17680	18610	4379	6283	5331	4763
	76	Ain Jamam	5	7.00	-	-	12376	13027	3066	4397	3731	3333
	77	Al-Baseet	5	7.50	-	-	13260	13958	3285	4712	3998	3572
	78	Basta	5	13.00	-	-	22984	24193	5693	8166	6930	6191
	79	Beisamoun	5	13.50	-	-	23868	25124	5912	8480	7196	6429
	80	Es-Sifiya	5	8.00	-	-	14144	14888	3504	5026	4265	3810
	81	Kharaysin	5	10.00	-	-	17680	18610	4379	6283	5331	4763
	82	Khirbet Hammam	5	7.00	-	-	12376	13027	3066	4397	3731	3333
	83	Tell Abu es-Sawwan	5	10.50	-	-	18564	19541	4598	6598	5598	5000
	84	Tell 'Ain el-Kerkh/II	5	16.00	-	-	28288	29776	7007	10052	8529	7619
	85	Wadi Shu'eib	5	8.00	-	-	14144	14888	3504	5026	4265	3810
	86	Aviel	-	3.00	3399	9639	5583	5583	1063	2249	1635	1635
	87	Es-Sayyeh	-	3.50	3966	11246	6514	6514	1240	2621	1906	1906

Period	ID	Site name	Site	Site extent	Total contemporaneous residential floor area (m ²)					Population estimates			
			type	(ha)	(A variable)				(mean of Methods 1 and 2)				
						Site type		Universal		Site type		Universal	
					Min	Max	Mean		Min	Max	Mean		
PPNC	88	Atlit-Yam	4	3.00	3630	6399	5167	5583	1280	2037	1636	1819	
	89	El Hemmeh	4	1.00	1210	2133	1722	1861	427	679	545	607	
	90	Es-Sifiya	4	5.00	6050	10665	8612	9305	2133	3396	2728	3031	
	91	Hagoshrim VI	4	3.50	4235	7466	6028	6514	1493	2377	1910	2121	
	92	Tell Abu es-Sawwan	4	5.00	6050	10665	8612	9305	2133	3396	2728	3031	
	93	Tell 'Ain el-Kerkh/II	4	6.00	7260	12798	10334	11166	2560	4075	3274	3637	
	94	Tell Eli III	4	3.50	4235	7466	6028	6514	1493	2377	1910	2121	
	95	Tell Labwé	4	3.50	4235	7466	6028	6514	1493	2377	1910	2121	
	96	Tell Ramad II	4	2.60	3146	5546	4478	4839	1109	1766	1419	1576	
	97	Tell Ras Shamra V B	4	3.00	3630	6399	5167	5583	1280	2037	1636	1819	
	98	Tell Teo	4	3.50	4235	7466	6028	6514	1493	2377	1910	2121	
	99	Tel Roim West IV	4	1.00	1210	2133	1722	1861	427	679	545	607	
	100	Wadi Shu'eib	4	6.00	7260	12798	10334	11166	2560	4075	3274	3637	
	101	Yiftah'el III (?)	4	1.50	1815	3200	2584	2792	640	1019	818	909	
	102	'Ain Ghazal	5	8.00	-	-	14144	14888	3504	5026	4265	3810	
	103	Basta (?)	5	7.00	-	-	12376	13027	3066	4397	3731	3333	
	104	Beisamoun	5	7.00	-	-	12376	13027	3066	4397	3731	3333	
	105	Es-Sayyeh	-	2.00	2266	6426	3722	3722	709	1498	1089	1089	
	106	Wadi Fidan C	-	1.50	1700	4820	2792	2792	532	1123	817	817	
Period	ID	Site name	Site	Site extent	F	Populati	on estin	nates					
--------	----------	-----------------------	------	-------------	-----------	------------------	------------	-----------					
			type	(ha)	Min	Site type Max	e Mean	Universal					
PPNA	1	Ain Darat	1	0.08	37	74	52	46					
	2	Bir el-Maksur	1	0.20	93	185	131	115					
	3	Borj Barajne	1	0.20	93	185	131	115					
	4	Ein Suhun	1	0.30	140	278	197	173					
	5	El Aoui Safa	1	0.20	93	185	131	115					
	0 7	El Hemmen	1	0.10	47	93	00	58					
	י 8		1	0.15	/0 /7	139	50 66	58					
	q	Gilgal IV	1	0.10	47	93	66	58					
	10	Hatoula	1	0.10	93	185	131	115					
	11	Nahal Oren	1	0.05	23	46	33	29					
	12	Zahrat Adh-Dhra' 2	1	0.20	93	185	131	115					
	13	Dhra'	2	0.45	145	237	191	259					
	14	Gilgal I	2	0.40	129	211	170	230					
	15	Huzuq Musa	2	1.00	322	528	425	576					
	16	Jericho	2	2.50	805	1319	1062	1440					
	17	Netiv Hagdud	2	0.75	241	396	319	432					
	18	Tell Aswad IA	2	1.00	322	528	425	576					
EPPNB	19	Ain Abu Hudhud	1	0.20	93	185	131	115					
	20	Ein Suhun	1	0.30	140	278	197	173					
	21	El Hemmeh	1	0.10	47	93	66 040	58					
	22		2	0.50	161	264	212	288					
	23	Mujaniya	2	0.50	101	204 500	Z1Z 425	288					
	24 25	Lenvet Colil	2	1.00	322	020 664	425	576					
	20		4	1.00	382	664	569	576					
	20	Mishmar Ha'emen	-	1.00	322	926	576	576					
MPPNB	28	Adh-Dhaman I	1	0.20	93	185	131	115					
	29	Ain Abu Nekheileh	1	0.12	56	111	79	69					
	30	Beidha	1	0.20	93	185	131	115					
	31	Jebel Arqa	1	0.20	93	185	131	115					
	32	Jebel Rabigh	1	0.06	28	56	39	35					
	33	Jebel Ragref	1	0.15	70	139	98	86					
	34	Jebel Salaqa	1	0.10	47	93	66	58					
	35	Shkārat Msaied	1	0.20	93	185	131	115					
	36		2	2.00	644	1055	849	1152					
	37	Abu Gosh	3	0.25	92 105	148	120	144					
	30 20		3	0.50	201	297	241 560	200					
	39 40	All IV 'Ain Ghazal	4	1.00	1526	2654	2278	2304					
	40 41	Beisamoun	4	5.00	1908	2004	2847	2880					
	42	Ghwair I	4	1 325	506	879	754	763					
	43	Horvat Galil	4	2.50	954	1659	1424	1440					
	44	Jericho	4	4.00	1526	2654	2278	2304					
	45	Khirbet Hammam	4	3.00	1145	1991	1708	1728					
	46	Motza V	4	1.00	382	664	569	576					
	47	Tell Abu es-Sawwan	4	3.00	1145	1991	1708	1728					
	48	Tell Aswad II	4	5.00	1908	3318	2847	2880					
	49	Tell Ghoraifé I	4	3.00	1145	1991	1708	1728					
	50	Wadi Shu'eib	4	3.00	1145	1991	1708	1728					
	51	Yiftah'el IV	4	1.00	382	664	569	576					
	52	Mishmar Ha'emeq	-	0.50	161	463	288	288					
	53	Munhata IV-VI	-	0.20	64	185	115	115					
	54 55	Nanal Betzet I	-	0.50	161	463	288	288					
	55	I EI KOIM WEST V	-	0.50	101	463	200	288					

Settlement population density coefficient method (SPDC)

Period	ID	Site name	Site	Site extent	I	Populati	on estin	nates
			type	(ha)		Site tvn	e.	Universal
					Min	Max	Mean	ennerea
LPPNB	56	Beidha	3	0.30	111	178	144	173
	57	Ail IV	4	2.00	763	1327	1139	1152
	58	Ba'ia	4	1.35	515	896	769	778
	59	El Hemmeh	4	1.00	382	664	569	576
	60	Er-Rahib	4	3.00	1145	1991	1708	1728
	61	Jericho	4	4.00	1526	2654	2278	2304
	62	Moza Tahtit	4	2.00	763	1327	1139	1152
	63	Qminas	4	1.50	572	995	854	864
	64	Tell Aray	4	5.00	1908	3318	2847	2880
	65	Tell el-Ghafar I	4	1.50	572	995	854	864
	66	Tell Eli III	4	5.00	1908	3318	2847	2880
	67	Tell Ghoraifé II	4	5.00	1908	3318	2847	2880
	68	Tell Labwé	4	5.00	1908	3318	2847	2880
	69	Tell Rakan I	4	1.00	382	664	569	576
	70	Tell Ramad I	4	1.50	572	995	854	864
	71	Tell Ras Shamra V C	4	5.00	1908	3318	2847	2880
	72	Tel Tif'dan	4	3.00	1145	1991	1708	1728
	73	Wadi Badda	4	1.00	382	664	569	576
	74	Yiftah'el III	4	1.50	572	995	854	864
	75	'Ain Ghazal	5	10.00	4380	6040	5210	5760
	76	Ain Jamam	5	7.00	3066	4228	3647	4032
	77	Al-Baseet	5	7.50	3285	4530	3908	4320
	78	Basta	5	13.00	5694	7852	6773	7488
	79	Beisamoun	5	13.50	5913	8154	7034	7776
	80	Es-Sifiya	5	8.00	3504	4832	4168	4608
	81	Kharaysin	5	10.00	4380	6040	5210	5760
	82	Khirbet Hammam	5	7.00	3066	4228	3647	4032
	83	Tell Abu es-Sawwan	5	10.50	4599	6342	5471	6048
	84	Tell 'Ain el-Kerkh/II	5	16.00	7008	9664	8336	9216
	85	Wadi Shu'eib	5	8.00	3504	4832	4168	4608
	86	Aviel	-	3.00	966	2778	1728	1728
	87	Es-Sayyeh	-	3.50	1127	3241	2016	2016
PPNC	88	Atlit-Yam	4	3.00	1145	1991	1708	1728
	89	El Hemmeh	4	1.00	382	664	569	576
	90	Es-Sillya	4	5.00	1908	3318	2847	2880
	91	Hagoshrim VI	4	3.50	1336	2323	1993	2016
	92	Tell Abu es-Sawwan	4	5.00	1908	3318	2847	2880
	93	I ell 'Ain el-Kerkh/ll	4	6.00	2289	3981	3417	3456
	94		4	3.50	1336	2323	1993	2016
	95		4	3.50	1336	2323	1993	2016
	96	Tell Ramad II	4	2.60	992	1/25	1481	1498
	97	Tell Ras Shamra V B	4	3.00	1145	1991	1708	1/28
	98		4	3.50	1336	2323	1993	2016
	99		4	1.00	382	064	269 2447	5/6
	100	vvadi Shu'eib	4	6.00	2289	3981	3417	3456
	101		4	1.50	5/2	995	854	864
	102	Ain Ghazal	5	8.00	3504	4832	4168	4608
	103	Basta (?)	5	7.00	3066	4228	3041	4032
	104	Beisamoun	5	7.00	3066	4228	3041 1150	4032
	105		-	2.00	044 102	1002	1152	1152
	100		-	1.50	; 4 03	1009	004	004

Period	ID	Site name	Site type	Site extent (ha)	То	tal built floor	area (m²)	(A)	Population estimate (P)			
						Site type		Universal		Site type		Universal
					Minimum	Maximum	Mean		Minimum	Maximum	Mean	
PPNA	1	Ain Darat	1	0.08	236	432	286	324	30	102	46	29
	2	Bir el-Maksur	1	0.20	589	1079	716	810	89	304	138	86
	3	Borj Barajne	1	0.20	589	1079	716	810	89	304	138	86
	4	Ein Suhun	1	0.30	884	1619	1074	1215	145	493	223	140
	5	El Aoui Safa	1	0.20	589	1079	716	810	89	304	138	86
	6	El Hemmeh	1	0.10	295	540	358	405	39	134	61	38
	7	Gesher	1	0.15	442	810	537	607	64	216	98	61
	8	Gilgal III	1	0.10	295	540	358	405	39	134	61	38
	9	Gilgal IV	1	0.10	295	540	358	405	39	134	61	38
	10	Hatoula	1	0.20	589	1079	716	810	89	304	138	86
	11	Nahal Oren	1	0.05	147	270	179	202	17	59	27	17
	12	Zahrat Adh-Dhra' 2	1	0.20	589	1079	716	810	89	304	138	86
	13	Dhra'	2	0.45	1079	1800	1440	1822	125	239	179	226
	14	Gilgal I	2	0.40	959	1600	1280	1620	108	208	156	197
	15	Huzuq Musa	2	1.00	2398	4001	3200	4050	322	617	463	584
	16	Jericho	2	2.50	5995	10003	7999	10125	956	1832	1375	1733
	17	Netiv Hagdud	2	0.75	1799	3001	2400	3037	229	438	329	415
	18	Tell Aswad IA	2	1.00	2398	4001	3200	4050	322	617	463	584
EPPNB	19	Ain Abu Hudhud	1	0.20	589	1079	716	810	89	304	138	86
	20	Ein Suhun	1	0.30	884	1619	1074	1215	145	493	223	140
	21	El Hemmeh	1	0.10	295	540	358	405	39	134	61	38
	22	Motza VI	2	0.50	1199	2001	1600	2025	141	271	203	256
	23	Mujahiya	2	0.50	1199	2001	1600	2025	141	271	203	256
	24	Tell Aswad IB	2	1.00	2398	4001	3200	4050	322	617	463	584
	25	Horvat Galil	4	1.00	2921	6112	4945	4050	185	834	468	584
	26	Tell Qarassa	4	1.00	2921	6112	4945	4050	185	834	468	584
	27	Mishmar Ha'emeq	-	1.00	2398	6112	4050	4050	104	2386	584	584

Naroll's (1962) allometric growth formula (AGF1)

Period	ID	Site name	Site type	Site extent (ha)	To	tal built floor	area (m²)	(A)		Population es	timate (P)	
						Site type		Universal		Site type		Universal
					Minimum	Maximum	Mean		Minimum	Maximum	Mean	
MPPNB	28	Adh-Dhaman I	1	0.20	589	1079	716	810	89	304	138	86
	29	Ain Abu Nekheileh	1	0.12	354	648	430	486	49	166	75	47
	30	Beidha	1	0.20	589	1079	716	810	89	304	138	86
	31	Jebel Arqa	1	0.20	589	1079	716	810	89	304	138	86
	32	Jebel Rabigh	1	0.06	177	324	215	243	21	73	33	21
	33	Jebel Ragref	1	0.15	442	810	537	607	64	216	98	61
	34	Jebel Salaqa	1	0.10	295	540	358	405	39	134	61	38
	35	Shkārat Msaied	1	0.20	589	1079	716	810	89	304	138	86
	36	Tell Eli IV	2	2.00	4796	8002	6399	8100	734	1405	1055	1330
	37	Abu Gosh	3	0.25	914	1242	1078	1012	78	138	104	113
	38	Wadi Hamarash I	3	0.50	1828	2484	2156	2025	177	313	238	256
	39	Ail IV	4	1.00	2921	6112	4945	4050	185	834	468	584
	40	'Ain Ghazal	4	4.00	11684	24448	19781	16199	959	4328	2428	3029
	41	Beisamoun	4	5.00	14605	30560	24727	20249	1251	5642	3164	3949
	42	Ghwair I	4	1.325	3870	8098	6553	5366	258	1165	654	815
	43	Horvat Galil	4	2.50	7303	15280	12363	10125	549	2477	1389	1733
	44	Jericho	4	4.00	11684	24448	19781	16199	959	4328	2428	3029
	45	Khirbet Hammam	4	3.00	8763	18336	14836	12150	682	3076	1725	2153
	46	Motza V	4	1.00	2921	6112	4945	4050	185	834	468	584
	47	Tell Abu es-Sawwan	4	3.00	8763	18336	14836	12150	682	3076	1725	2153
	48	Tell Aswad II	4	5.00	14605	30560	24727	20249	1251	5642	3164	3949
	49	Tell Ghoraifé I	4	3.00	8763	18336	14836	12150	682	3076	1725	2153
	50	Wadi Shu'eib	4	3.00	8763	18336	14836	12150	682	3076	1725	2153
	51	Yiftah'el IV	4	1.00	2921	6112	4945	4050	185	834	468	584
	52	Mishmar Ha'emeq	-	0.50	1199	3056	2025	2025	46	1047	256	256
	53	Munhata IV-VI	-	0.20	480	1222	810	810	15	353	86	86
	54	Nahal Betzet I	-	0.50	1199	3056	2025	2025	46	1047	256	256
	55	Tel Roim West V	-	0.50	1199	3056	2025	2025	46	1047	256	256

Period	ID	Site name	Site type	Site extent (ha)	То	tal built floor	area (m²)	(A)	Population estimate (P)			
						Site type		Universal		Site type		Universal
					Minimum	Maximum	Mean		Minimum	Maximum	Mean	
LPPNB	56	Beidha	3	0.30	1097	1490	1293	1215	97	171	130	140
	57	Ail IV	4	2.00	5842	12224	9891	8100	421	1900	1066	1330
	58	Ba'ja	4	1.35	3943	8251	6676	5467	264	1191	668	834
	59	El Hemmeh	4	1.00	2921	6112	4945	4050	185	834	468	584
	60	Er-Rahib	4	3.00	8763	18336	14836	12150	682	3076	1725	2153
	61	Jericho	4	4.00	11684	24448	19781	16199	959	4328	2428	3029
	62	Mo <u>z</u> a Tahtit	4	2.00	5842	12224	9891	8100	421	1900	1066	1330
	63	Qminas	4	1.50	4382	9168	7418	6075	299	1350	757	945
	64	Tell Aray	4	5.00	14605	30560	24727	20249	1251	5642	3164	3949
	65	Tell el-Ghafar I	4	1.50	4382	9168	7418	6075	299	1350	757	945
	66	Tell Eli III	4	5.00	14605	30560	24727	20249	1251	5642	3164	3949
	67	Tell Ghoraifé II	4	5.00	14605	30560	24727	20249	1251	5642	3164	3949
	68	Tell Labwé	4	5.00	14605	30560	24727	20249	1251	5642	3164	3949
	69	Tell Rakan I	4	1.00	2921	6112	4945	4050	185	834	468	584
	70	Tell Ramad I	4	1.50	4382	9168	7418	6075	299	1350	757	945
	71	Tell Ras Shamra V C	4	5.00	14605	30560	24727	20249	1251	5642	3164	3949
	72	Tel Tif'dan	4	3.00	8763	18336	14836	12150	682	3076	1725	2153
	73	Wadi Badda	4	1.00	2921	6112	4945	4050	185	834	468	584
	74	Yiftah'el III	4	1.50	4382	9168	7418	6075	299	1350	757	945
	75	'Ain Ghazal	5	10.00	-	-	53640	40499	4163	5759	4849	8995
	76	Ain Jamam	5	7.00	-	-	37548	28349	2725	3770	3175	5888
	77	Al-Baseet	5	7.50	-	-	40230	30374	2958	4092	3446	6391
	78	Basta	5	13.00	-	-	69732	52648	5685	7864	6622	12283
	79	Beisamoun	5	13.50	-	-	72414	54673	5945	8225	6926	12846
	80	Es-Sifiya	5	8.00	-	-	42912	32399	3194	4418	3720	6900
	81	Kharaysin	5	10.00	-	-	53640	40499	4163	5759	4849	8995
	82	Khirbet Hammam	5	7.00	-	-	37548	28349	2725	3770	3175	5888
	83	Tell Abu es-Sawwan	5	10.50	-	-	56322	42524	4411	6102	5138	9531
	84	Tell 'Ain el-Kerkh/II	5	16.00	-	-	85824	64798	7275	10064	8474	15719
	85	Wadi Shu'eib	5	8.00	-	-	42912	32399	3194	4418	3720	6900
	86	Aviel	-	3.00	7194	18336	12150	12150	383	8798	2153	2153
	87	Es-Sayyeh	-	3.50	8393	21392	14175	14175	460	10565	2585	2585

Period	ID	Site name	Site type	Site extent (ha)	То	tal built floor	area (m²)	(A)	I	Population estimate (P)		
						Site type		Universal		Site type		Universal
					Minimum	Maximum	Mean		Minimum	Maximum	Mean	
PPNC	88	Atlit-Yam	4	3.00	8763	18336	14836	12150	682	3076	1725	2153
	89	El Hemmeh	4	1.00	2921	6112	4945	4050	185	834	468	584
	90	Es-Sifiya	4	5.00	14605	30560	24727	20249	1251	5642	3164	3949
	91	Hagoshrim VI	4	3.50	10224	21392	17309	14175	819	3694	2072	2585
	92	Tell Abu es-Sawwan	4	5.00	14605	30560	24727	20249	1251	5642	3164	3949
	93	Tell 'Ain el-Kerkh/II	4	6.00	17526	36672	29672	24299	1553	7006	3929	4903
	94	Tell Eli III	4	3.50	10224	21392	17309	14175	819	3694	2072	2585
	95	Tell Labwé	4	3.50	10224	21392	17309	14175	819	3694	2072	2585
	96	Tell Ramad II	4	2.60	7595	15891	12858	10530	575	2595	1455	1816
	97	Tell Ras Shamra V B	4	3.00	8763	18336	14836	12150	682	3076	1725	2153
	98	Tell Teo	4	3.50	10224	21392	17309	14175	819	3694	2072	2585
	99	Tel Roim West IV	4	1.00	2921	6112	4945	4050	185	834	468	584
	100	Wadi Shu'eib	4	6.00	17526	36672	29672	24299	1553	7006	3929	4903
	101	Yiftah'el III (?)	4	1.50	4382	9168	7418	6075	299	1350	757	945
	102	'Ain Ghazal	5	8.00	-	-	42912	32399	3194	4418	3720	6900
	103	Basta (?)	5	7.00	-	-	37548	28349	2725	3770	3175	5888
	104	Beisamoun	5	7.00	-	-	37548	28349	2725	3770	3175	5888
	105	Es-Sayyeh	-	2.00	4796	12224	8100	8100	237	5435	1330	1330
	106	Wadi Fidan C	-	1.50	3597	9168	6075	6075	168	3862	945	945

Period	ID	Site name	Site	Site	Site	Po	opulatio	on estim	ate (P)
			type	extent	extent		Site typ	е	Universal
				(ha)	(m⁻) (A)	Min	Max	Mean	
PPNA	1	Ain Darat	1	0.08	800	36	70	47	40
	2	Bir el-Maksur	1	0.20	2000	90	176	119	100
	3	Borj Barajne	1	0.20	2000	90	176	119	100
	4	Ein Suhun	1	0.30	3000	136	264	1/8	149
	5	El Aoul Safa	1	0.20	2000	90	176	119	100
	0 7	El Hemmen Coobor	1	0.10	1000	45	400	29	50
	0	Gesher	1	0.15	1000	00 45	132	09 50	75
	0	Gilgal IV	1	0.10	1000	45	88	59	50
	10	Hatoula	1	0.10	2000	90	176	119	100
	11	Nahal Oren	1	0.20	500	23	44	30	25
	12	Zahrat Adh-Dhra' 2	1	0.20	2000	90	176	119	100
	13	Dhra'	2	0.45	4500	143	223	174	224
	14	Gilgal I	2	0.40	4000	127	198	155	199
	15	Huzuq Musa	2	1.00	10000	318	495	387	498
	16	Jericho	2	2.50	25000	795	1238	968	1244
	17	Netiv Hagdud	2	0.75	7500	238	372	290	373
	18	Tell Aswad IA	2	1.00	10000	318	495	387	498
EPPNB	19	Ain Abu Hudhud	1	0.20	2000	90	176	119	100
	20	Ein Suhun	1	0.30	3000	136	264	178	149
	21	El Hemmeh	1	0.10	1000	45	88	59	50
	22	Motza VI	2	0.50	5000	159	248	194	249
	23	Mujahiya	2	0.50	5000	159	248	194	249
	24	Tell Aswad IB	2	1.00	10000	318	495	387	498
	25	Horvat Galil	4	1.00	10000	365	638	456	498
	26	Tell Qarassa	4	1.00	10000	365	638	456	498
	27	Mishmar Ha'emeq	-	1.00	10000	317	877	498	498
MPPNB	28	Adh-Dhaman I	1	0.20	2000	90	1/6	119	100
	29	Ain Abu Neknellen	1	0.12	1200	54	105	110	60 100
	21		1	0.20	2000	90	170	119	100
	32	Jebel Rahigh	1	0.20	2000	90 27	53	36	30
	32		1	0.00	1500	68 68	132	89	50 75
	34	Jebel Salada	1	0.10	1000	45	88	59	50
	35	Shkārat Msaied	1	0.10	2000	90	176	119	100
	36	Tell Eli IV	2	2.00	20000	636	991	774	995
	37	Abu Gosh	3	0.25	2500	88	142	109	124
	38	Wadi Hamarash I	3	0.50	5000	177	284	218	249
	39	Ail IV	4	1.00	10000	365	638	456	498
	40	'Ain Ghazal	4	4.00	40000	1459	2551	1826	1990
	41	Beisamoun	4	5.00	50000	1823	3189	2282	2488
	42	Ghwair I	4	1.325	13250	483	845	605	659
	43	Horvat Galil	4	2.50	25000	912	1594	1141	1244
	44	Jericho	4	4.00	40000	1459	2551	1826	1990
	45	Khirbet Hammam	4	3.00	30000	1094	1913	1369	1493
	46	Motza V	4	1.00	10000	365	638	456	498
	47	Tell Abu es-Sawwan	4	3.00	30000	1094	1913	1369	1493
	48	Tell Aswad II	4	5.00	50000	1823	3189	2282	2488
	49	Tell Ghoraifé I	4	3.00	30000	1094	1913	1369	1493
	50	Wadi Shu'eib	4	3.00	30000	1094	1913	1369	1493
	51	Yiftah'el IV	4	1.00	10000	365	638	456	498
	52	wishmar Ha'emeq	-	0.50	5000	159	439	249	249
	つづ 54	Nobol Potrot	-	0.20	2000	63 150	1/5	240	100
	54 55	Tel Roim West V	-	0.50	5000	159	439 130	249	249 240
	00		-	0.50	5000	109	439	249	249

Wiessner's (1974) allometric growth formula (AGF2)

Period	ID	Site name	Site	Site	Site	Р	opulatio	n estim	ate (P)
			type	extent	extent		Site tvp	е	Universal
				(ha)	(m²) (A)	Min	Max	Mean	
LPPNB	56	Beidha	3	0.30	3000	106	170	131	149
	57	Ail IV	4	2.00	20000	729	1276	913	995
	58	Ba'ja	4	1.35	13500	492	861	616	672
	59	El Hemmeh	4	1.00	10000	365	638	456	498
	60	Er-Rahib	4	3.00	30000	1094	1913	1369	1493
	61	Jericho	4	4.00	40000	1459	2551	1826	1990
	62	Moza Tahtit	4	2.00	20000	729	1276	913	995
	63	Qminas	4	1.50	15000	547	957	685	746
	64	Tell Aray	4	5.00	50000	1823	3189	2282	2488
	65	Tell el-Ghafar I	4	1.50	15000	547	957	685	746
	66	Tell Eli III	4	5.00	50000	1823	3189	2282	2488
	67	Tell Ghoraifé II	4	5.00	50000	1823	3189	2282	2488
	68	Tell Labwé	4	5.00	50000	1823	3189	2282	2488
	69	Tell Rakan I	4	1.00	10000	365	638	456	498
	70	Tell Ramad I	4	1.50	15000	547	957	685	746
	71	Tell Ras Shamra V C	4	5.00	50000	1823	3189	2282	2488
	72	Tel Tif'dan	4	3.00	30000	1094	1913	1369	1493
	73	Wadi Badda	4	1.00	10000	365	638	456	498
	74	Yiftah'el III	4	1.50	15000	547	957	685	746
	75	'Ain Ghazal	5	10.00	100000	4386	6024	5076	4975
	76	Ain Jamam	5	7.00	70000	3070	4217	3553	3483
	77	Al-Baseet	5	7.50	75000	3289	4518	3807	3731
	78	Basta	5	13.00	130000	5702	7831	6599	6468
	79	Beisamoun	5	13.50	135000	5921	8133	6853	6716
	80	Es-Sifiva	5	8.00	80000	3509	4819	4061	3980
	81	Kharaysin	5	10.00	100000	4386	6024	5076	4975
	82	Khirbet Hammam	5	7.00	70000	3070	4217	3553	3483
	83	Tell Abu es-Sawwan	5	10.50	105000	4605	6325	5330	5224
	84	Tell 'Ain el-Kerkh/II	5	16.00	160000	7018	9639	8122	7960
	85	Wadi Shu'eib	5	8.00	80000	3509	4819	4061	3980
	86	Aviel	-	3.00	30000	952	2632	1493	1493
	87	Es-Sayyeh	-	3.50	35000	1111	3070	1741	1741
PPNC	88	Atlit-Yam	4	3.00	30000	1094	1913	1369	1493
	89	El Hemmeh	4	1.00	10000	365	638	456	498
	90	Es-Sifiya	4	5.00	50000	1823	3189	2282	2488
	91	Hagoshrim VI	4	3.50	35000	1276	2232	1597	1741
	92	Tell Abu es-Sawwan	4	5.00	50000	1823	3189	2282	2488
	93	Tell 'Ain el-Kerkh/II	4	6.00	60000	2188	3827	2738	2985
	94	Tell Eli III	4	3.50	35000	1276	2232	1597	1741
	95	Tell Labwé	4	3.50	35000	1276	2232	1597	1741
	96	Tell Ramad II	4	2.60	26000	948	1658	1187	1294
	97	Tell Ras Shamra V B	4	3.00	30000	1094	1913	1369	1493
	98	Tell Teo	4	3.50	35000	1276	2232	1597	1741
	99	Tel Roim West IV	4	1.00	10000	365	638	456	498
	100	Wadi Shu'eib	4	6.00	60000	2188	3827	2738	2985
	101	Yiftah'el III (?)	4	1.50	15000	547	957	685	746
	102	'Ain Ghazal	5	8.00	80000	3509	4819	4061	3980
	103	Basta (?)	5	7.00	70000	3070	4217	3553	3483
	104	Beisamoun	5	7.00	70000	3070	4217	3553	3483
	105	En Sourch	Ũ	2.00	20000	625	1754	005	005
	10.5	ES-SAVVEI	-	2.00		0.55	1/:04	333	990

Appendix E.3: Statistical tests for systematic methodologies

Paired-samples t test and Wilcoxon signed-rank test

Process in SPSS

Regression analysis (Pearson's correlation coefficient)

Process in SPSS

1. Go to 'Analyse' – 'Regression' – 'Linear'
2.
Select 'Independent' variable (i.e. a variable which may be impacted by other variables: the degree of difference between micro-level and systematic estimates)
3
5.
Select 'Dependent' variable/s (i.e. variables which might impact the independent variable: structural density)
4.
Select 'Model fit' and 'Descriptives' in 'Statistics'
5.
Select 'Include constant in equation' in 'Options'
6.
Assess outputs:
- Pearson's correlation coefficient (r)
- <i>p</i> value < .05 indicates significant correlation
 r² value: proportion of variation in independent variable due to variations in dependent variable

Appendix E.4: Data used to derive potential group size thresholds

Pre-Pottery Neolithic A (PPNA)

Site name	Population	Potential evidence for developments in:							
	estimate	Subsistence strate	gies	Mechanism	s for social cohesion (and social com	plexity)			
		Farming/agriculture	Hunting/pastoralism	Ritual	Communal vs house-based activities	Community sectoring			
Nahal Oren	25-45	Harvesting of wild plants	Hunting of gazelle, pig, goat, deer	Figurines	Some dwelling based consumption and processing; communal storage, processing and cooking				
Gilgal IV	40-90			Figurines					
El Hemmeh	70-100	Harvesting of wild barley		Figurine; potential ritual structure	Some dwelling based storage, processing, cooking				
Bir el-Maksur	80-190	Cultivation of wild plants; conditions not ideal for natural plant growth	Hunting of gazelle, boar, cape hare and fox	Secondary burial with grave goods					
Zahrat Adh-Dhra' 2	80-190	Major food plants from highlands and/or cultivated on site; conditions not ideal for natural plant growth		Figurine; skull removal; a multiple burial					
Ein Suhun	130-280								
Dhra'	130-300	Potential deliberate cultivation of wild plants		Human figurine; one phallus	Communal storage				
Gilgal I	160-290	Cultivation of wild barley	Hunting of gazelle and birds	Figurines; ritual building; miniature grinding tools	Communal storage and cooking; dwelling-based production, processing and consumption				
Netiv Hagdud	220-270	Cultivation of wild barley and lentils		Burials; adult skull removal; symbolic items; figurines	Communal and residential storage; dwelling-based processing and consumption				
Huzuq Musa	300-660				·				
Jericho	740-1650			Burials	Annexes on dwellings; communal storage; cooperative labour force				

Site name	Population	Potential evidence for developments in:							
	estimate			Social complexity					
		Innovative ideas	Authoritative roles and potential hierarchy	Craft specialisation	Formalised communication				
Nahal Oren	25-45			Workshops					
Gilgal IV	40-90								
El Hemmeh	70-100								
Bir el-Maksur	80-190			Burnt clay lumps interpreted as first known potential lime production					
Zahrat Adh-Dhra' 2	80-190		Items of personal adornment	Potential workshop for incised pebbles; stone and shell beads	Incised pebbles/stones				
Ein Suhun	130-280				Incised pebble				
Dhra'	130-300				-				
Gilgal I	160-290		Items of personal adornment	Stone vessels, tools and figurines					
Netiv Hagdud	220-270		Items of personal adornment	Decorative items; figurines	Incised pebbles				
Huzuq Musa	300-660			Bead production					
Jericho	740-1650		Items of personal adornment; organised labour force						

Site name	References
Nahal Oren	Stekelis and Yizraely 1963, Noy et al. 1973, Twiss 2001; Kuijt and Chesson 2005; Nadel et al. 2012
Gilgal IV	Twiss 2001
El Hemmeh	Wright 2000; Makarewicz and Austin 2006; Makarewicz et al. 2006; Makarewicz and Rose 2011; White and Makarewicz 2012; White 2013
Bir el-Maksur	Malinksy-Buller <i>et al.</i> 2013
Zahrat Adh-Dhra' 2	Edwards et al. 2004; Edwards 2007; Edwards and House 2007
Ein Suhun	Nadel <i>et al.</i> 1999
Dhra'	Kuijt and Mahasneh 1998; Kuijt 2001; Finlayson <i>et al.</i> 2003; Kuijt and Chesson 2005
Gilgal I	Noy 1989; Kuijt and Chesson 2005 ;Rosenberg 2008; Bar-Yosef <i>et al.</i> 2010a; 2010b; Weiss and Zohary 2011
Netiv Hagdud	Bar-Yosef <i>et al.</i> 1980; 1991; Bar-Yosef and Gopher 1997; Weiss and Zohary 2011
Huzuq Musa	Nadel and Rosenberg 2013; Groman-Yaroslavski <i>et al.</i> 2014
Jericho	Kenyon 1956; Kenyon 1981; Kuijt and Finlayson 2009

Site name	Population	Potential evidence for developments in:				
	estimate	Subsistenc	e strategies	Mechanisms for social cohesion (and social com		
		Farming/agriculture	Hunting/pastoralism	Ritual	Communal vs house-based activities	Community sectoring
El Hemmeh	70-100			Mortuary installations beneath floor of structure; one covered with lime or gypsum plaster	Large bin in one structure	
Motza VI	150-330		Hunting of gazelle, fox, aurochs, wild boar and goat	Nine graves - primary, flexed burials; some variety; associated with plaster; subfloor and courtyard burials; skull removal; stone and clay figurines; stone figurnine broken and used as a pendant		
Mujahiya	150-330	Intensive harvesting of wild plants (sickle blades and many grinding and pounding tools)	Hunting of gazelle, bovids, goat and pig	Yellow and red ochre		
Mishmar Ha'emeq	320-750		Hunting of cattle, then gazelle, wild boar and goat	Burial ground and ritual building		
Tell Aswad IB	300-660	Domesticated (?) emmer and barley		Primary and secondary burials, individual and collective burials, skull removal and plastering; sub-floor and courtyard burials, and grave goods; platform burials		
Horvat Galil	370-680			Burials; beneath dwelling floors		
Tell Qarassa	370-680		Hunting of goat, gazelle, pig, cattle and deer	24 individuals; primary and secondary; associated with structures; individual and collective; skull removal; clay figurines and ornamental objects		

Early Pre-Pottery Neolithic B (EPPNB)

Site name	Population	Potential evidence for developments in:				
	estimate			Social complexity		
		Innovative ideas	Authoritative roles and potential hierarchy	Craft specialisation	Formalised communication	
El Hemmeh	70-100					
Motza VI	150-330		Items of personal adornment; variable mortuary treatment	Lime plaster floors; naviform technology and Helwan points; blade cache (58 elongated blades)	Incised bone	
Mujahiya	150-330			Very small quantities of plaster-like material; naviform core technology		
Mishmar Ha'emeq	320-750					
Tell Aswad IB	300-660		Variable mortuary treatment			
Horvat Galil	370-680			Plasterd floors		
Tell Qarassa	370-680		Items of personal adornment; different grave goods and burials	Figurines; items of personal adornment	Mud tokens	

Site name	References
El Hemmeh	Makarewicz and Rose 2011
Motza VI	Khalaily <i>et al.</i> 2007
Mujahiya	Gopher 1990
Mishmar Ha'emeq	Bocquentin <i>et al.</i> 2011
Tell Aswad IB	Stordeur and Jamous 2009; Tanno and Willcox 2012; Chamel 2014
Horvat Galil	Hershkovitz and Gopher 1988
Tell Qarassa	Ibañez <i>et al.</i> 2010

Site name	Population	Potential evidence for developments in:							
	estimate	Subsistend	ce strategies	Mechanisms for social cohesion (and social complexity)					
		Farming/agriculture	Hunting/pastoralism	Ritual	Communal vs house-based activities	Community sectoring			
Jebel Rabigh Jebel Salaqa	30-60 40-90								
Munhata IV-VI	60-1 4 0 60-150			Anthropomorphic figurines					
Beidha (A2)	80-120	Domesticated barley and emmer	Culturally controlled wild goats	Ritual structures; mortuary practices; clay anthropomorphic figurines	Dwelling based production, processing and consumption; communal and dwelling based cooking; more formalised and resticted access to dwellings	Possible neighbourhoods			
Shkārat Msaied	80-150	Cultivation of (wild?) plants	Possibly domesticated goat and sheep	Central ritual structures; mortuary building; 15 burials; feasting; grave goods; possible household-based ritual	Dwelling-based storage, processing, consumption, cooking; possible communal processing; possible household-based ritual	Possible neighbourhoods			
Jebel Arqa	80-190								
Abu Gosh	90-150		Management of wild goats	Burials	Dwelling-based storage, production, processing and consumption				
'Ain Abu Nekheileh	90-150	Barley cultivation; 300+ grinding implements/sickles	Potential goat and sheep pastoralism	Items of personal adornment	Residential storage, production, processing; possible communal consumption				
Wadi Hamarash I	150-220	Cultivation of einkorn, emmer, barley; 900+ ground stone tools	(Domesticated?) goat and sheep	Large, central communal/ritual building with symbolic items; incised stones: figurine	Dwelling-based storage, production, processing and consumption	Possible neighbourhoods			
Mishmar Ha'emeq	160-370		Hunting (management?) cattle, gazelle, boar and goat	Large paved flagstone ritual structure with burial ground;					
Yiftah'el IV	370-680	Domesticated lentil	Hunting (management?) of gazelle, goat and boar	Burials; skull removal and plastering; burials beneath dwelling floors; primary and secondary burials	Dwelling-based storage, production, processing and consumption				
Ghwair I	400-610	Cultivation of (domesticated?) barely, emmer, einkorn, pea	Domesticated goats	Burials; skull removal and plastering; figurines; infant burial with grave goods	Dwelling-based storage, production, processing and consumption	Possible neighbourhoods			

Middle Pre-Pottery Neolithic B (MPPNB)

Site name	Population			Potential evidence for developments in: Mechanisms for social cohesion (and social complexity)		
	estimate	Subsistend	ce strategies			
		Farming/agriculture	Hunting/pastoralism	Ritual	Communal vs house-based activities	Community sectoring
Tell Ghoraifé I	1090-2040		Domesticated (?) sheep			
Wadi Shu'eib	1090-2040		Domesticated (?) sheep and goat	Burials; skull removal and plastering		
'Ain Ghazal	1460-2720	Possible domesticated chickpea	Domesticated goat and sheep; pastoralism for meat and milk	Ritual structures; burials; skull removal and plastering; cache of anthropomorphic and zoomorphic, figurines		
Jericho	1460-2720	Domesticated plants; possible domesticated chickpea and flax		Burials; skull removal and plastering; anthropomorphic and zoomorphic figurines		Possible neighbourhoods
Beisamoun	1820-3400			Burials; skull removal and plastering		
Tell Aswad II	1820-3400	Domesticated barley, fig cultivation	Domesticated goat, sheep, pig and cattle; pastoralism for meat and milk	Burials; skull removal and plastering; anthropomorphic and zoomorphic figurines		

Site name	Population	Potential evidence for developments in:				
	estimate			Social complexity		
		Innovative	Authoritative roles and potential hierarchy	Craft specialisation	Formalised communication	
		ideas				
Jebel Rabigh	30-60			Amazonite bead workshops		
Jebel Salaqa	40-90			Amazonite bead workshops		
Jebel Ragref	60-140			Amazonite bead workshops		
Munhata IV-VI	60-150			Bidirectional blade technology		
Beidha (A2)	80-120			Plaster		
Shkārat Msaied	80-150		Items of personal adornment; vairable	Plaster; bead workshops; naviform core	Incised pebbles, stones and	
			grave goods; differeng strucutral associations	technology; worked shell, bone, etc.	slabs	
Jebel Arqa	80-190			Amazonite bead workshops		
Abu Gosh	90-150					
'Ain Abu Nekheileh	90-150		Items of personal adornment	Naviform core technology		
Wadi Hamarash I	150-220	Two-storey	Items of personal adornment	Small scale production of stone, shell and	Incised stones	
		building		bone objects and jewellery, specialist activity		
Mishmar Ha'amaa	160-370			Bidirectional blade technology		
Viftah'al IV	370-680			Plaster use and production: naviform core		
Thanerry	570-000			technology: flint knapping workshops		
Ghwair I	400-610	Two-storev	Clav tokens: incised stones: mother of	Plasers, tools: symbolic items	Clav tokens: incised stones:	
		building	pearl; variable grave goods	······	large public staircase and plaza	
Tell Ghoraifé I	1090-2040	U				
Wadi Shu'eib	1090-2040		Items of personal adornment	Plaster; beads; pendant		
'Ain Ghazal	1460-2720	Potential	Well-established ritual - structures;	Plaster		
		retaining wall	variable grave goods			
Jericho	1460-2720			Plaster		
Beisamoun	1820-3400			Plaster		
Tell Aswad II	1820-3400			Plaster		

Site name	References
Jebel Rabigh	Fabiano <i>et al.</i> 2004
Jebel Salaqa	Fabiano <i>et al.</i> 2004
Jebel Ragref	Berna 1995
Munhata IV-VI	Perrot 1966
Beidha (A2)	Byrd 2005a; Colledge and Conolly 2007; Martin and Edwards 2013
Shkarat Msaied	Byrd 1994; Hermansen and Hoffman Jensen 2002; Bartl et al. 2006; Jensen et al. 2005; Hermansen et al. 2006; Edwards 2007; Kinzel 2013
Jebel Arqa	Fabiano <i>et al.</i> 2004
Abu Gosh	Grindell 1998; Ducos and Horwitz 2003; Martin and Edwards 2013
Ain Abu Nekheileh	Henry et al. 2002; 2003; Fabiano et al. 2004; Henry and Albert 2004
Wadi Hamarash I	Donta 2013; Gkotsinas and Karathanou 2013; Sampson 2013; Tampakopoulou 2013
Mishmar Ha'emeq	Bocquentin <i>et al.</i> 2011
Yiftah'el IV	Barzilai and Getzov 2008; Kuijt 2008b; Weiss and Zohary 2011
Ghwair I	Simmons and Najjar 2006; Kuijt 2008b
Tell Ghoraifé I	Van Zeist and Bakker-Heeres 1985; Martin and Edwards 2013
Wadi Shu'eib	Simmons <i>et al.</i> 2001; Kuijt 2008b
'Ain Ghazal	Rollefson <i>et al.</i> 1993; Kuijt and Chesson 2005; Kuijt 2008b; Weiss and Zohary 2011; Martin and Edwards 2013
Jericho	Kuijt and Chesson 2005; Colledge and Conolly 2007; Kuijt 2008b; Weiss and Zohary 2011
Beisamoun	Kuijt and Chesson 2005; Kuijt 2008b; Bocquentin 2011
Tell Aswad II	Stordur 2003; Colledge and Conolly 2007; Stordeur and Jamous 2009; Kuijt 2008b; Weiss and Zohary 2011; Makarewicz 2013a

Site name Population Potential evidence for developments in: estimate Subsistence strategies Mechanisms for social cohesion (and social complexity) Farming/agriculture Hunting/pastoralism Ritual Communal vs house-based Community activities sectoring Beidha (C2) 140-220 Domesticated barley Domesticated goats Large non-residential structure in Dwelling-based storage, Possible centre of site; circular ritual and emmer production, processing and neighbourhoods structures nearby consumption Wadi Badda 370-680 530-800 Cultivation of wild Domesticated goat and Anthropomorphic figurine; burial Dwelling-based storage, El Hemmeh barley; domesticated sheep; pastoralism for with grave goods production, processing and emmer and smallmeat and milk production consumption; possible seeded legumes household inherited agricultural knowledge Yiftah'el III 550-1020 **Domesticated lentil** Primary and secondary burials; Dwelling-based storage, plastered skulls; two large cooking and processing communal buildings; red paint 580-610 Probable Domesticated goat and Anthropomorphic figurines: burials: Dwelling-based storage. Possible Ba'ja domesticated emmer sheep grave goods; collective burials; red production, processing and neighbourhoods consumption; household pigment on bones; painting on chamber wall; ritual related based production of sandstone rings imagery Motza Tahtit 730-1360 Burial with fox mandible: burial beneath building; figurine; ritual structure Tel Tif'dan Many figurines; wall niches with 1090-2040 Domesticated goats: culturally controlled infant bones sheep and cattle: possile cattle domestication; pastoralism for meat and some milk production Tell Labwé 1820-3400 Domesticated lentils, Domestic goat, sheep Burials beneath dwelling floors; secondary burial; multiple burial in and cattle(?) emmer and barley pit; decorated grave walls; red pigment Tell Ras Shamra V C 1820-3400 Pastoralism for meat and milk

Late Pre-Pottery Neolithic B (LPPNB)

Site name	Population	ation Potential evidence for developments in:				
	estimate	Subsister	nce strategies	Mechanisms for social cohesion (and social complexity)		
		Farming/agriculture	Hunting/pastoralism	Ritual	Communal vs house-based activities	Community sectoring
'Ain Jamam	3070-4400		Domesticated goat and sheep for meat and milk production		Dwelling-based storage, cooking and processing	
Al Basit	3290-4710					
Es Sifiya	3500-5030	Domesticated(?) barley and emmer	Domesticated goat and sheep; also hunted; pastoralism for meat and milk production	Skull removal and caching; geometric and zoomorphic figurines	Dwelling-based storage, cooking and processing	
'Ain Ghazal	4380-6280		Domesticated goat, sheep and cattle; pastoralism for meat and milk production	Skull removal; burials; ritual buildings; clay anthropomorphic figurine		
Basta	5690-7850		Culling of wild goats; domesticated goat, sheep and cattle; mixture of domesticated and wild cattle	Zoomorphic figurines	Dwelling-based storage, cooking and processing	Possible neighbourhoods
Beisamoun	5910-8480			Skull removal	Dwelling-based storage, cooking and processing	Possible neighbourhoods
Tell Ain el-Kerkh/II	7010-10050	Large scale cereal cultivation		Infant burials		5

Site name	Population estimate	Potential evidence for developments in: Social complexity				
		Innovative ideas	Authoritative roles and potential hierarchy	Craft specialisation	Formalised communication	
Beidha (C2) Wadi Badda	140-220 370-680	Heat treatment for lithic production; two storey buildings Water management: barrage around 15-20m long across the wadi, below the site	Central management of resources; items of personal adornment; dwellings of different layout and size	Plaster; bone tool and bead production		

Site name	Population	Potential evidence for developments in:						
	estimate		Social complexity					
		Innovative ideas	Authoritative roles and potential hierarchy	Craft specialisation	Formalised communication			
El Hemmeh	530-800	Possible intentional irrigation; sub-floor channels (water or air?)	Items of personal adornment; different architectural forms and displays of wealth; variable grave goods	Bead workshops; centre for agricultural activities				
Yiftah'el III	550-1020			Plaster; naviform core technology; flint knapping workshops				
Ba'ja	580-610	Possible harvesting of rain water/intentional irrigation	Items of personal adornment; different architectural forms; variable grave goods	Jewelry and tools; sandstone ring production centre				
Motza Tahtit	730-1360		Variable grave goods	Lime kilns and ash pits; plaster				
Tel Tif'dan	1090-2040		Items of personal adornment	Bead production site; figurines: animal, human, animals with flint blades, small tokens: plaster not common	Tokens			
Tell Labwé	1820-3400		Items of personal adornment; variable skeletal treatment and grave goods	Plaster; lime plaster floors green stone and shell beads				
Tell Ras Shamra V C	1820-3400		9.4.0 90040					
'Ain Jamam	3070-4400	Subfloor channels (water or air?); two storey buildings	Corporate organization; differentiation in labor, subsistence, household and communal tasks	Plaster; drills for bead production				
Al Basit	3290-4710			Bead production workshops				
Es Sifiya	3500-5030	Heat treatment for lithic production; subfloor channels (water or air?); terraced walls	Corporate organization; differentiation in labor, subsistence, household and communal tasks	Clay geometric objects and human figurines; plaster; wood-working workshops: axes, adzes and chisels 18% of assemblage; human figurine made of white quartz crystal with red ochre incised eves, neck and head	Clay geometric objects			
ʻAin Ghazal	4380-6280	Apsidal and circular ritual buildings; retaining wall; heat treatment for lithic production; two storey buildings	Items of personal adornment corporate organization; differentiation in labor, subsistence, household and communal tasks	Plaster; bracelets				
Basta	5690-7850	Heat treatment for lithic production; subfloor channels (water or air?); two storey buildings	Corporate organization; differentiation in labor, subsistence, household and communal tasks		Grooved stones; incised tokens			

Site name	Population estimate	Potential evidence for developments in: Social complexity				
		Innovative ideas	Authoritative roles and potential hierarchy	Craft specialisation	Formalised communication	
Beisamoun	5910-8480		Corporate organization; differentiation in labor, subsistence, household and communal tasks			
Tell Ain el-Kerkh/II	7010-10050		Corporate organization; differentiation in labor, subsistence, household and communal tasks	Uni-directional blade manufacture for sickle production		

Site name	References
Beidha (C2)	Mahasneh 1996; Byrd 2005a; Martin and Edwards 2013
Wadi Badda	Fujii 2007
El Hemmeh	Wright 2000; Makarewicz and Austin 2006; Makarewicz <i>et al.</i> 2006; Makarewicz and Rose 2011; White and Makarewicz 2012; Makarewicz 2013; White 2013
Yiftah'el III	Barzilai and Getzov 2008; Weiss and Zohary 2011
Ba'ja	Horwitz and Ducos 2005; Kinzel 2013; Makarewicz 2013; Martin and Edwards 2013
Mo <u>z</u> a Tahtit	Mizrahi 2015; Lazaridis <i>et al.</i> 2016
Tel Tif'dan	Twisss 2007; Bennallack 2012; Makarewicz 2013
Tell Labwé	Ibañez e <i>t al.</i> 2012; Khalidi et al. 2013
Tell Ras Shamra V C	Makarewicz 2013
'Ain Jamam	Mahasneh 1996; Kuijt 2000; Gebel 2002a,b; Rollefson 2002; Makarewicz 2009; 2013
Al Basit	Rollefson 2002
Es Sifiya	Mahasneh 1996; Mahasneh and Gebel 1998; Gebel 2002a,b; Kuijt and Chesson 2005; Makarewicz 2013
'Ain Ghazal	Mahasneh 1996; Rollefson and Kafafi 1997; Kuijt 2000; Gebel 2002a,b; Horwitz and Ducos 2005; Kuijt and Chesson 2005; Makarewicz 2013
Basta	Hermansen and Gebel 1996; Mahasneh 1996; Kuijt 2000; Gebel 2002a,b; Ducos and Horwitz 2003; Horwitz and Ducos 2005; Kuijt and Chesson 2005;
	Martin and Edwards 2013
Beisamoun	Gebel 2002a,b; Bocquentin 2011
Tell Ain el-Kerkh/II	Gebel 2002a,b; Arimura 2011; Tsuneki 2012

Pre-Pottery	/ Neolithic	С	(PPNC)	
-------------	-------------	---	--------	--

Site name	Population		Potential evi	evidence for developments in:									
	estimate	Subsist	tence strategies	Mechanisms for social of	cohesion (and soc	ial complexity)							
		Farming/agriculture	Hunting/pastoralism	Ritual	Communal vs house-based activities	Community sectoring							
Wadi Fidan C	480-1120	Domesticated barley, einkorn	Domesticated goat and sheep										
Tell Ramad II	950-1770	Domesticated plants chickpea and flax											
Atlit-Yam	1090-2040	Domesticated emmer and naked wheat, cereals, flax, legumes; weeds	Domesticated goat, sheep, pig, dogs, cat and early domesticted cattle; major concentrations of fish bones	90+ burials; primary and secondary; circular ritual installations		Possible neighbourhoods; massive wall segmening community							
Hagoshrim VI	1280-2380		High pig bone frequencies - possible domestication										
Tell Labwé	1280-2380	Domesticated lentils, emmer and barley	Domestic goat, sheep and cattle(?)	Burials beneath dwelling floors; secondary burial; multiple burial in pit; decorated grave walls; red pigment									
Tell Teo	1280-2380		High cattle bone frequencies - possible domestication										
'Ain Ghazal	3500-5030		High pig bone frequencies - possible domestication	Ritual buildings; burials with intact skulls; human figurines		Massive wall segmening community							

Site name	Population estimate		Potential evidence for developments in: Social complexity												
		Innovative ideas	Authoritative roles and potential hierarchy	Craft specialisation	Formalised communication										
Wadi Fidan C	480-1120														
Tell Ramad II	950-1770														
Atlit-Yam	1090-2040	Water wells	Items of personal adornment												
Hagoshrim VI	1280-2380														
Tell Labwé	1280-2380		Items of personal adornment; variable mortuary treatment	Plaster; green stone and shell beads											
Tell Teo	1280-2380														
'Ain Ghazal	3500-5030		Items of personal adornment; variable mortuary treatment	Mother of pearl pendant and button	Game board										

Site name	References
Wadi Fidan C	Martin and Edwards 2013; Lovell 2014
Tell Ramad II	Colledge and Conolly 2007; Kuijt 2008b; Weiss and Zohary 2011
Atlit-Yam	Galili et al. 2004
Hagoshrim VI	Haber and Dayan 2004
Tell Labwé	Ibañez <i>et al.</i> 2012; Khalidi <i>et al</i> . 2013
Tell Teo	Bocquentin <i>et al.</i> 2011
'Ain Ghazal	Rollefson <i>et al.</i> 1993; Rollefson and Kafafi 1997

Period	ID		Site	Site extent	Fin	al populat	ion	Peop	le per d	wellina	RADC	(residentia	l floor	SPDC		
			type	(ha)		estimates					ar	ea/person m	1 ²)	(/elgoeg	ha)
				(··/	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean
PPNA	1	'Ain Darat	1	0.08	34	74	49	1.2	4.9	2.4	1.61	7.56	3.62	425	925	608
	2	Bir el-Maksur	1	0.20	84	185	123	1.2	4.9	2.4	1.61	7.65	3.58	420	925	615
	3	Borj Barajne	1	0.20	84	185	123	1.2	4.9	2.4	1.61	7.65	3.58	420	925	615
	4	Ein Suhun	1	0.30	126	278	184	1.2	4.9	2.4	1.60	7.65	3.58	420	927	614
	5	El Aoui Safa	1	0.20	84	185	123	1.2	4.9	2.4	1.61	7.65	3.58	420	925	615
	6	El Hemmeh	1	0.10	69	101	81	1.0	1.5	1.2	2.26	3.31	2.79	686	1006	846
	7	Gesher	1	0.15	63	139	92	1.2	4.9	2.4	1.60	7.65	3.59	420	927	613
	8	Gilgal III	1	0.10	42	93	61	1.2	4.9	2.4	1.60	7.65	3.59	420	930	613
	9	Gilgal IV	1	0.10	42	93	61	1.2	4.9	2.4	1.60	7.65	3.59	420	930	613
	10	Hatoula	1	0.20	84	185	123	1.2	4.9	2.4	1.61	7.65	3.58	420	925	615
	11	Nahal Oren	1	0.05	24	43	32	2.0	3.5	2.8	2.63	4.65	3.64	490	860	675
	12	Zahrat Adh-Dhra' 2	1	0.20	84	185	123	1.2	4.9	2.4	1.61	7.65	3.58	420	925	615
	13	Dhra'	2	0.45	133	298	191	2.8	8.0	4.7	2.17	5.61	3.65	296	662	424
	14	Gilgal I	2	0.40	157	287	211	2.3	4.7	3.5	2.31	4.23	3.27	392	717	555
	15	Huzuq Musa	2	1.00	295	664	425	2.8	8.0	4.7	2.17	5.62	3.64	295	664	425
	16	Jericho	2	2.50	737	1651	1062	2.8	8.0	4.7	2.18	5.62	3.65	295	660	425
	17	Netiv Hagdud	2	0.75	215	268	241	4.2	5.3	4.8	4.02	5.03	4.53	286	357	322
	18	Tell Aswad IA	2	1.00	295	664	425	2.8	8.0	4.7	2.17	5.62	3.64	295	664	425
EPPNB	19	'Ain Abu Hudhud	1	0.20	84	185	123	1.2	4.9	2.4	1.61	7.65	3.58	420	925	615
	20	Ein Suhun	1	0.30	126	278	184	1.2	4.9	2.4	1.60	7.65	3.58	420	927	614
	21	El Hemmeh	1	0.10	69	101	81	1.0	1.5	1.2	2.26	3.31	2.79	686	1006	846
	22	Motza VI	2	0.50	148	330	212	2.8	8.0	4.7	2.18	5.60	3.65	296	660	425
	23	Mujahiya	2	0.50	148	330	212	2.8	8.0	4.7	2.18	5.60	3.65	296	660	425
	24	Tell Aswad IB	2	1.00	295	664	425	2.8	8.0	4.7	2.17	5.62	3.64	295	664	425
	25	Horvat Galil	4	1.00	365	679	523	2.2	5.6	3.8	1.78	5.84	3.29	365	679	523
	26	Tell Qarassa	4	1.00	365	679	523	2.2	5.6	3.8	1.78	5.84	3.29	365	679	523
	27	Mishmar Ha'emeq	-	1.00	317	751	546	1.2	8.0	3.5	1.51	10.14	3.41	317	751	546

Appendix E.5: Population and density estimates for all central and southern Levantine PPN villages

Period	ID	Site name	Site	Site extent	Final population			Peop	le per d	welling	RADC (residential floor				SPDC (nearla(he))		
			туре	(na)	Min	Max	Mean	Min	Max	Mean	ar Min	ea/person m Max	i) Mean	Min	people/ Max	na) <i>Mean</i>	
MPPNB	28	Adh-Dhaman I	1	0.20	84	185	123	12	4.9	2.4	1 61	7 65	3.58	420	925	615	
	29	'Ain Abu Nekheileh	1	0.12	86	148	111	1.7	2.9	2.3	2.61	4.50	3.56	713	1231	972	
	30	Beidha (A2)	1	0.20	79	116	97	1.7	2.5	2.1	2.57	3.76	3.17	395	578	487	
	31	Jebel Arga	1	0.20	84	185	123	1.2	4.9	2.4	1.61	7.65	3.58	420	925	615	
	32	Jebel Rabigh	1	0.06	26	56	37	1.2	4.9	2.4	1.59	7.41	3.57	433	933	617	
	33	Jebel Ragref	1	0.15	63	139	92	1.2	4.9	2.4	1.60	7.65	3.59	420	927	613	
	34	Jebel Salaqa	1	0.10	42	93	61	1.2	4.9	2.4	1.60	7.65	3.59	420	930	613	
	35	Shkārat Msaied	1	0.20	80	149	109	2.6	4.9	3.8	2.51	4.65	3.58	402	745	574	
	36	Tell Eli IV	2	2.00	590	1321	849	2.8	8.0	4.7	2.18	5.62	3.65	295	661	425	
	37	Abu Gosh	3	0.25	87	148	114	3.1	6.4	4.5	1.91	4.82	3.08	348	592	456	
	38	Wadi Hamarash I	3	0.50	147	223	185	2.9	4.5	3.7	2.55	3.86	3.21	294	445	370	
	39	'Ail IV	4	1.00	365	679	523	2.2	5.6	3.8	1.78	5.84	3.29	365	679	523	
	40	'Ain Ghazal	4	4.00	1459	2717	2096	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	41	Beisamoun	4	5.00	1823	3396	2619	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	42	Ghwair I	4	1.325	399	612	506	3.8	5.8	4.8	2.62	4.02	3.32	301	462	382	
	43	Horvat Galil	4	2.50	912	1698	1310	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	44	Jericho	4	4.00	1459	2717	2096	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	45	Khirbet Hammam	4	3.00	1094	2037	1571	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	46	Motza V	4	1.00	365	679	523	2.2	5.6	3.8	1.78	5.84	3.29	365	679	523	
	47	Tell Abu es-Sawwan	4	3.00	1094	2037	1571	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	48	Tell Aswad II	4	5.00	1823	3396	2619	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	49	Tell Ghoraifé I	4	3.00	1094	2037	1571	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	50	Wadi Shu'eib	4	3.00	1094	2037	1571	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	51	Yiftah'el IV	4	1.00	365	679	523	2.2	5.6	3.8	1.78	5.84	3.29	365	679	523	
	52	Mishmar Ha'emeq	-	0.50	159	374	272	1.2	8.0	3.5	1.51	10.10	3.42	318	748	544	
	53	Munhata IV-VI	-	0.20	63	152	110	1.2	8.0	3.5	1.49	10.20	3.38	315	760	550	
	54	Nahal Betzet I	-	0.50	159	374	272	1.2	8.0	3.5	1.51	10.10	3.42	318	748	544	
	55	Tel Roim West V	-	0.50	159	374	272	1.2	8.0	3.5	1.51	10.10	3.42	318	748	544	

Period	ID	Site name	Site	Site extent	Final po	pulation e	stimates	Peop	le per d	welling	RADC	(residentia	l floor	SPDC		
			type	(ha)	A dia	Max	Maan	A dia	Maria	Maan	ar	ea/person n	n ⁻)	(F	beople/l	na) Maan
	50			0.00	IVIIN	Max	wean	IVIII	Max	wean	MIN	Max	wean	IVIIN	Max	iviean
LPPNB	56	Beidha (C2)	3	0.30	141	216	1/8	3.9	6.4	5.2	2.33	3.58	2.96	469	/19	594
	57	'Ail IV	4	2.00	729	1358	1048	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	58	Ba'ja	4	1.35	584	610	603	3.4	3.5	3.5	4.04	4.22	4.13	649	678	664
	59	El Hemmeh	4	1.00	532	795	664	2.2	3.2	2.7	2.68	4.01	3.35	532	795	664
	60	Er-Rahib	4	3.00	1094	2037	1571	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	61	Jericho	4	4.00	1459	2717	2096	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	62	Motza Tahtit	4	2.00	729	1358	1048	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	63	Qminas	4	1.50	547	1019	786	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	64	Tell Aray	4	5.00	1823	3396	2619	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	65	Tell el-Ghafar I	4	1.50	547	1019	786	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	66	Tell Eli III	4	5.00	1823	3396	2619	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	67	Tell Ghoraifé II	4	5.00	1823	3396	2619	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	68	Tell Labwé	4	5.00	1823	3396	2619	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	69	Tell Rakan I	4	1.00	365	679	523	2.2	5.6	3.8	1.78	5.84	3.29	365	679	523
	70	Tell Ramad I	4	1.50	547	1019	786	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	71	Tell Ras Shamra V C	4	5.00	1823	3396	2619	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	72	Tel Tif'dan	4	3.00	1094	2037	1571	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	73	Wadi Badda	4	1.00	365	679	523	2.2	5.6	3.8	1.78	5.84	3.29	365	679	523
	74	Yiftah'el III	4	1.50	547	1019	786	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524
	75	'Ain Ghazal	5	10.00	4379	6283	5206	4.7	8.4	6.5	-	-	3.40	438	628	521
	76	'Ain Jamam	5	7.00	3066	4397	3644	4.7	8.4	6.5	-	-	3.40	438	628	521
	77	Al-Baseet	5	7.50	3285	4712	3904	4.7	8.4	6.5	-	-	3.40	438	628	521
	78	Basta	5	13.00	5693	7854	6773	4.8	6.6	5.7	2.93	4.04	3.49	438	604	521
	79	Beisamoun	5	13.50	5912	8480	7028	4.7	8.4	6.5	-	-	3.40	438	628	521
	80	Es-Sifiya	5	8.00	3504	5026	4165	4.7	8.4	6.5	-	-	3.40	438	628	521
	81	Kharaysin	5	10.00	4379	6283	5206	4.7	8.4	6.5	-	-	3.40	438	628	521
	82	Khirbet Hammam	5	7.00	3066	4397	3644	4.7	8.4	6.5	-	-	3.40	438	628	521
	83	Tell Abu es-Sawwan	5	10.50	4598	6598	5466	4.7	8.4	6.5	-	-	3.40	438	628	521
	84	Tell 'Ain el-Kerkh/II	5	16.00	7007	10052	8329	4.7	8.4	6.5	-	-	3.40	438	628	521
	85	Wadi Shu'eib	5	8.00	3504	5026	4165	4.7	8.4	6.5	-	-	3.40	438	628	521
	86	Aviel	-	3.00	952	2249	1635	1.2	8.0	3.5	1.51	10.13	3.41	317	750	545
	87	Es-Sayyeh	-	3.50	1111	2621	1906	1.2	8.0	3.5	1.51	10.12	3.42	317	749	545

Period	ID	Site name	Site	Site extent	Final po	Final population estimates			le per d	welling	RADC	(residentia	SPDC				
			type	(ha)					area/perse			ea/person m	າ໌)	((people/ha)		
					Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	
PPNC	88	Atlit-Yam	4	3.00	1094	2037	1571	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	89	El Hemmeh	4	1.00	532	795	664	2.2	3.2	2.7	2.68	4.01	3.35	532	795	664	
	90	Es-Sifiya	4	5.00	1823	3396	2619	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	91	Hagoshrim VI	4	3.50	1276	2377	1833	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	92	Tell Abu es-Sawwan	4	5.00	1823	3396	2619	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	93	Tell 'Ain el-Kerkh/II	4	6.00	2188	4075	3143	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	94	Tell Eli III	4	3.50	1276	2377	1833	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	95	Tell Labwé	4	3.50	1276	2377	1833	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	96	Tell Ramad II	4	2.60	948	1766	1362	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	97	Tell Ras Shamra V B	4	3.00	1094	2037	1571	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	98	Tell Teo	4	3.50	1276	2377	1833	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	99	Tel Roim West IV	4	1.00	365	679	523	2.2	5.6	3.8	1.78	5.84	3.29	365	679	523	
	100	Wadi Shu'eib	4	6.00	2188	4075	3143	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	101	Yiftah'el III (?)	4	1.50	547	1019	786	2.2	5.6	3.8	1.78	5.85	3.29	365	679	524	
	102	'Ain Ghazal	5	8.00	3504	5026	4165	4.7	8.4	6.5	-	-	3.40	438	628	521	
	103	Basta (?)	5	7.00	3066	4397	3644	4.7	8.4	6.5	-	-	3.40	438	628	521	
	104	Beisamoun	5	7.00	3066	4397	3644	4.7	8.4	6.5	-	-	3.40	438	628	521	
	105	Es-Sayyeh	-	2.00	635	1498	1089	1.2	8.0	3.5	1.51	10.12	3.42	318	749	545	
	106	Wadi Fidan C	-	1.50	476	1123	817	1.2	8.0	3.5	1.51	10.13	3.42	317	749	545	