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Abstract

Biomedical signals are records from human and animal bodies. These records are

considered as nonlinear time series, which hold important information about the

physiological activities of organisms, and embrace many subjects of interest. How-

ever, biomedical signals are often corrupted by artifacts and noise, which require

separation or signal extraction before any statistical evaluation. Another challenge

in analysing biomedical signals is that their data is often non-stationary, particu-

larly when there is an abnormal event observed within the signal, such as epileptic

seizure, and can also present chaotic behaviour. The literature suggests that dis-

tinguishing chaos from noise continues to remain a highly contentious issue in the

modern age, as it has been historically. This is because chaos and noise share com-

mon properties, which in turn make them indistinguishable. We seek to provide a

viable solution to this problem by presenting a novel approach for the separability

between signal and noise components and the differentiation of noise from chaos.

Several methods have been used for the analysis of and discrimination between dif-

ferent categories of biomedical signals, but many of these are based on restrictive

assumptions of the normality, stationarity and linearity of the observed data. There-

fore, an improved technique which is robust in its analysis of non-stationary time

series is of paramount importance in accurate diagnosis of human diseases. The

SSA (Singular Spectrum Analysis) technique does not depend on these assump-

tions, which could be very helpful for analysing and modelling biomedical data.

Therefore, the main aim of the thesis is to provide a novel approach for developing

the SSA technique, and then apply it to the analysis of biomedical signals.

SSA is a reliable technique for separating an arbitrary signal from a noisy time series

(signal+noise). It is based upon two main selections: window length, L; and the

number of eigenvalues, r. These values play an important role in the reconstruction

and forecasting stages. However, the main issue in extracting signals using the

SSA procedure lies in identifying the optimal values of L and r required for signal

reconstruction. The aim of this thesis is to develop theoretical and methodological

aspects of the SSA technique, to present a novel approach to distinguishing between
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deterministic and stochastic processes, and to present an algorithm for identifying

the eigenvalues corresponding to the noise component, and thereby choosing the

optimal value of r relating to the desired signal for separability between signal and

noise. The algorithm used is considered as an enhanced version of the SSA method,

which decomposes a noisy signal into the sum of a signal and noise. Although the

main focus of this thesis is on the selection of the optimal value of r, we also provide

some results and recommendations to the choice of L for separability. Several

criteria are introduced which characterise this separability.

The proposed approach is based on the distribution of the eigenvalues of a scaled

Hankel matrix, and on dynamical systems, embedding theorem, matrix algebra and

statistical theory. The research demonstrates that the proposed approach can be

considered as an alternative and promising technique for choosing the optimal values

of r and L in SSA, especially for biomedical signals and genetic time series.

For the theoretical development of the approach, we present new theoretical results

on the eigenvalues of a scaled Hankel matrix, provide some properties of the eigen-

values, and show the effect of the window length and the rank of the Hankel matrix

on the eigenvalues. The new theoretical results are examined using simulated and

real time series. Furthermore, the effect of window length on the distribution of

the largest and smallest eigenvalues of the scaled Hankel matrix is also considered

for the white noise process. The results indicate that the distribution of the largest

eigenvalue for the white noise process has a positive skewed distribution for different

series lengths and different values of window length, whereas the distribution of the

smallest eigenvalue has a different pattern with L; the distribution changes from

left to right when L increases. These results, together with other results obtained

by the different criteria introduced and used in this research, are very promising for

the identification of the signal subspace.

For the practical aspect and empirical results, various biomedical signals and ge-

netics time series are used. First, to achieve the objectives of the thesis, a compre-

hensive study has been made on the distribution, pattern; and behaviour of scaled
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Hankel matrix eigenvalues using simulated data, including symmetric and nonsym-

metric distributions, trend and sine wave series. The study includes comparison

between the distribution of eigenvalues, the effect of the length of the series on the

mean, the variance, and the coefficient of variation of the eigenvalues. Furthermore,

the normal distribution with different parameters is considered and the effect of scale

and shape parameters are evaluated. The correlation between eigenvalues is also

assessed, using parametric and non-parametric association criteria. In addition, the

distribution of eigenvalues for synthetic time series generated from some well known

low dimensional chaotic systems are analysed in-depth. The results yield several

important properties with broad application, enabling the distinction between chaos

and noise in time series analysis. At this stage, the main result of the simulation

study is that the findings related to the series generated from normal distribution

with mean zero (white noise process) are totally different from those obtained for

other series considered in this research, which makes a novel contribution to the

area of signal processing and noise reduction.

Second, the proposed approach and its criteria are applied to a number of simu-

lated and real data with different levels of noise and structures. Our results are

compared with those obtained by common and well known criteria in order to eval-

uate, enhance and confirm the accuracy of the approach and its criteria. The results

indicate that the proposed approach has the potential to split the eigenvalues into

two groups; the first corresponding to the signal and the second to the noise compo-

nent. In addition, based on the results, the optimal value of L that one needs for the

reconstruction of a noise free signal from a noisy series should be the median of the

series length. The results confirm that the performance of the proposed approach

can improve the quality of the reconstruction step for signal extraction.

Finally, the thesis seeks to explore the applicability of the proposed approach for

discriminating between normal and epileptic seizure electroencephalography (EEG)

signals, and filtering the signal segments to make them free from noise. Various

criteria based on the largest eigenvalue are also presented and used as features to

distinguish between normal and epileptic EEG segments. These features can be

considered as useful information to classify brain signals. In addition, the approach
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is applied to the removal of nonspecific noise from Drosophila segmentation genes.

Our findings indicate that when extracting signal from different genes, for optimised

signal and noise separation, a different number of eigenvalues need to be chosen for

each gene.
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Chapter 1

Introduction

1.1 Overview of singular spectrum analysis and

separability

Time series analysis is an important subject in various areas of science and engi-

neering. The subject plays a significant role, for example, in system identification,

prediction and pattern classification. However, the observed time series or the signal

is often nonlinear and contaminated by noise [1]–[4], which needed to be removed or

reduced for a proper analysis. Thus, separability in time series analysis is an initial

and important task, which can be done by decomposing the original time series into

sums of series, so that each component in the sum can be identified as either a main

component (signal) or noise [5]. In this regard, the concept of separability between

signal and noise components in time series characterises how well those different

components can be separated from each other. In practice, exact separability of

time series components rarely happens, but approximate separability can very of-

ten be attained [6]. Therefore, for analysing and filtering noisy real-life time series

we can only suppose approximate separability to produce less noisy series.

The issue of filtering time series to be less noisy with minimum loss of information

has been widely studied; see, for example, [5], [7]–[9]. There exist several approaches

which can be implemented in order to reduce noise from measured time series data

1
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and to extract the signal which we are interested in. For example, the traditional

method to reduce noise is to use the linear filter [1]. However, it is suggested that

such a method is not suitable in some cases; for example, in the case of discontin-

uously varying data [1]. Furthermore, it is difficult to separate the noise from the

signal with traditional methods, which may distort the signal and make the situa-

tion even worse [10]. There are several nonlinear noise reduction methods such as

simple nonlinear filtering [11], local average [12], local projective [13], chaos-based

smoothing [2, 14], wavelet thresholding [15, 16], adaptive wavelet thresholding [17],

adaptive filtering and wavelet shrinkage [18], the structural function method [19],

the factorised Hankel optimization method [20], and singular value decomposition

(SVD) [5], [21]–[23].

Recently, it has been accepted that the singular spectrum analysis (SSA) technique,

which is based on SVD, can be used as an alternative to traditional digital filtering

methods [5]. For example, it has been shown that the SSA technique outperforms

other traditional methods in filtering biomedical data [24]. Furthermore, the effect of

noise reduction on the linear and nonlinear measure of dependencies was considered

in [25]. The results indicate that the SSA-based technique can be used as a noise

reduction method for filtering either noisy financial or chaotic series. The efficiency

of noise reduction for curve fitting in nonlinear growth curve models was also studied

in [5]. The results confirm that SSA can be used as a powerful tool for noise

reduction in longitudinal measurements. Moreover, in [26], the SVD based approach

was used for clustering and outlier detection in biomedical data. In addition, [27]

suggested a new approach for the separation of murmurs from heart sound, based

on SSA.

The appearance of SSA is usually associated with publication of the papers [28, 29]

in 1986. There are five books dedicated to SSA [6],[30]–[33]. Two books, [30] and

[31], only provide an elementary introduction to SSA. The book [32] develops the

main methodological principles, and considers several theoretical issues. Its aim is

to establish SSA as an important technique for time series analysis, which indeed

helped to attract the attention of researchers from different scientific communities

to SSA. [6] was published in 2013, is fully devoted to the methodology of SSA and
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also includes some new topics. [33] was recently published in late December 2015,

and is the latest book that focuses on SSA, an effective approach for single channel

biomedical signal analysis, and its bivariate, multivariate, tensor-based, complex-

valued, quaternion-valued and robust variants. Furthermore, SSA as a powerful

approach in time series analysis, has been developed and applied to many practical

problems; see, for example, [34]–[36] and references therein.

The SSA approach is a non-parametric technique that combines elements of clas-

sical time series analysis, multivariate statistics, multivariate geometry, dynamical

systems and signal processing. It decomposes the original time series into a sum of

small numbers of interpretable components, such as slowly varying trend, oscillatory

component and noise. SSA is based on the use of the singular value decomposition

approach for calculating eigenvalues and eigenvectors of the trajectory or Hankel

matrix H of the data. Note that the random Hankel matrix is one of the main ma-

trices that play a significant role in various fields of mathematics and statistics [37].

It naturally appears in multivariate analysis and signal processing, particularly in

SSA, context where H is a data matrix, the column vectors of which represent the

L-lagged vector of observations in RL [27, 38].

The SSA technique consists of two complementary stages: decomposition (embed-

ding and SVD), and reconstruction (grouping and diagonal averaging). A short de-

scription of the SSA technique as follows (more details are given in Chapter 3). Con-

sider a one-dimensional series YN = (y1, . . . , yN) of lengthN . Transferring this series

into the multi-dimensional series H1, . . . , HK with vectors Hi = (yi, . . . , yi+L−1)
T ∈

RL provides the following trajectory matrix:

H = [H1, . . . , HK ] = (hi,j)
L,K
i,j=1 =


y1 y2 y3 . . . yK

y2 y3 y4 . . . yK+1

...
...

...
. . .

...

yL yL+1 yL+2 . . . yN

 , (1.1)
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where L (2 6 L 6 N − 1) is the window length and K = N − L + 1. Obviously,

hij = yi+j−1, so the trajectory matrix H is a Hankel matrix, which means all the

elements along the diagonal i + j = const are equal. Define HHT , where HT

is the conjugate transpose. Denote by γi (i = 1, . . . , L) the eigenvalues of HHT

taken in decreasing order of magnitude ( γ1 ≥ . . . ≥ γL ≥ 0) and by U1, . . . , UL

the orthonormal system of the eigenvectors of the matrix HHT corresponding to

these eigenvalues. The square root of the eigenvalues of the matrix HHT are called

singular values of H. Set

d = rankH = max(i, such that γi > 0),

note that in real-life series we usually have d = L∗ with L∗ = min{L,K}.

The SVD of the trajectory matrix can be written as:

H = H1 + · · ·+Hd, (1.2)

where Hi = Ui
√
γiV

T
i , Ui is the eigenvector corresponding to the eigenvalue γi

(i = 1, . . . , L) ofHHT , and Vi is the principle component defined as Vi = HTUi/
√
γi.

The collection (
√
γi, Ui, Vi) is called the i -th eigentriple of the SVD. The grouping

procedure partitions the set of indices {1, . . . , d} into m disjoints subsets I1, . . . , Im.

Let I = {i1, . . . , ip}. Then the resultant matrix HI corresponding to the group I is

defined as HI = Hi1 + · · · +Hip . The resultant matrices are calculated for groups

I = I1, . . . , Im and the expansion (1.2) can be rewritten as:

HI = HI1 + · · ·+HIm . (1.3)

The way of selecting the sets is called eigentriple grouping. In the final step of

analysis we use the diagonal averaging procedure to transform each matrix HIj to

the form of a Hankel matrix, which can be subsequently transformed into a new

time series. The reconstructed series produced by the elementary grouping will be

called elementary reconstructed series.
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The description of SSA above can be summarised in two main stages: decomposition

and reconstruction. These stages depend upon two main selections; namely, window

length L and the number of required eigenvalues/singular values, denoted by r, for

reconstruction. It is mentioned in [6] that for optimal values of L, the weighted

correlation or w -correlations (a common measure for approximate separability) be-

tween two reconstructed series is approximately zero. Furthermore, since the signal

components are often dominating, the number r of the leading components related

to the signal can be estimated using the matrix of w -correlations between the el-

ementary reconstructed components [6]. Thus, an appropriate choice of L and r

leads to a perfect analysis and separability between time series components.

Auxiliary information about the original time series is always helpful in selecting

L and r [6, 32]. For example, if it is known that the time series has a periodic

component with integer period, then it is advisable to take L proportional to that

period. Furthermore, there are several rules for the selection of L that have a prac-

tical basis (see section. 2.4.3 [6]). It was discussed in [30] that for a series of length

N , selecting L = N/4 is common practice. It was also recommended that L should

be large enough but not larger than half of the series [32]. In 2010, Golyandina [39]

provided general recommendations on the selection of L to attain minimal error,

and the paper demonstrated that optimal selection depends on the particular prob-

lem. It was shown that the error behaviour depends on the type of noise, and the

selection of the window length to one-half of N was approved as suitable in most

cases. A minimum description length (MDL) criterion was presented in [40], which

can be applied to automatically choose both the window length and the signal. The

authors showed that under general conditions the criterion will determine the true

signal dimension with probability one as the sample size increases, and will select

the smallest L consistent with the embedding theorem. The application of the rule

L = βN was examined by [39] and it was concluded that the use of a value of β

close to 0.5 will provide optimal separation and reconstruction.

In 2012, Hassani et al. [41] found that for a series of length N and the optimal choice

of the number of the eigenvalues r for reconstructing the signal, the suitable value of

L is the median of {1, . . . , N}. Moreover, [42] established numerical bounds on the



Chapter 1. Introduction 6

mean squared reconstruction error and presented asymptotic bounds for the mean

squared separation error to show how optimal evaluation for the window length

can be made practically. According to the literature, previous studies only consider

L-separability; however, the results of [41] indicate that we also need to consider

r for optimal separability. Despite various attempts that have been applied, there

is no universal rule for obtaining optimal selections of L and r. In this thesis, we

are interested in the signal as a whole; separability of signal components is not

important to us and is not our goal. Golyandina and Zhigljavsky [6] point out that

for signal extraction as a whole the importance of the selection of the value of L is

diminished. For example, for a signal including a periodic component, divisibly of

L by its period is not essential for separating the whole signal from the noise. All

these motivations led us to focus on the study of r-separability. Although our focus

is on the optimality of selection of the value of r, we also briefly consider the best

choice of the value of the window length.

Accordingly, the goal is to determine the accurate dimension of the system, which

is the smallest dimension with which the filtered series is reconstructed from a noisy

signal. In this case, the main analysis is based on the study of the eigenvalues and

corresponding eigenvectors. If the signal component dominates the noise compo-

nent, then the singular values of the Hankel matrix have a few large singular values

and many small ones, suggesting that the variations of the data take place mainly in

the eigenspace corresponding to these few large singular values. A similar situation

happens if the length of the series is large.

Although SSA has been applied widely in the analysis of various data from dif-

ferent disciplines, its use in biomedical signals has received little attention. SSA

applications in biomedical signals, include: extraction of a weak fetal heart signal

from a noisy maternal electrocardiogram (ECG) [34], separation of biomedical data

such as Electromyography (EMG) affected by an ECG signal [43]; image processing

[44]; DNA microarray gene expressions [35]; infant electroencephalography (EEG)

seizure detection [45]; and analysing sleep EEG data [46].
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Here we develop the SSA approach for analysing and filtering biomedical signals.

The task in analysing biomedical signals is to remove noise and extract important

information from biomedical data. However, analysing biomedical signals is not an

easy task, as its data is often nonstationary, particularly when the signal includes

an abnormal event [47]. Although several methods have been applied for analysing

and discriminating between different categories of biomedical signals [47], many of

them are based on restrictive assumptions of normality, stationarity and linearity

of the observed data. An improved version of the SSA technique is used here, as it

is applicable for analysing nonlinear and nonstationary time series, which could be

robust for analysing and modelling biomedical data.

1.2 Biomedical signals and chaos

Biomedical signals are observations that carry significant information about the

physiological activities of organisms and embrace many subjects of interest, ranging

from gene and protein sequences [48], to neuromuscular control [49], neural and

cardiac rhythms [50], tissue and organ images [51, 52], and sensory perception,

control and coordination [53].

The human body is considered as a complex system which is affected by its envi-

ronment, but is able to adapt itself to any change in life. To understand such a

system, structure and the functions of the human body, which help in the diagnosis,

treatment and monitoring of diseases, and in making decisions, we need to study

the biomedical measurements, which can be in the form of time series that reflect

functions such as heart, brain, blood pressure, muscles, respiration, eye pressure,

skin impedance, body temperature, enzymes, and many other biometrics. An ex-

ample of an electrocardiogram (ECG) recording machine is illustrated in Figure 1.1,

which prints a record of our heartbeat onto a paper strip.

Statisticians and engineers are proposing new approaches to the analysis of these

signals, using various mathematical formulae and algorithms. These signals can

be calculated using different software and medical devices to provide doctors with
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Figure 1.1: Illustration of an ECG recording machine, adopted from [54].

real time data and significant insights to aid in clinical evaluations. Real time ob-

servations can lead to proper assessment and management of chronic diseases, and

earlier identification of negative events such as heart attacks, epileptic seizures and

strokes. Thus, the observations are used and analysed for earlier diagnosis of dif-

ferent diseases. Alzheimer’s disease, for instance, is one of the main diseases that

can be diagnosed in a timely fashion using biomedical signal processing. Physicians

combine EEG records with other testing parameters to attempt to detect patterns

that can distinguish Alzheimer’s patients from people who have other mental ill-

nesses. In this case, biomedical signal processing is mainly beneficial in the serious

care setting, where patients’ data has to be analysed in real time.

Biomedical signals of interest are often corrupted by noise due to the randomness

of the world around them, which makes them complex signals. This also hides and

distorts the necessary information involved in the signal. In this case, it is vital to

understand these signals and how to obtain the important information.

Furthermore, biomedical signals are different in their nature. Measured biomedical

data includes different types of noise and nonlinear trends which require separation

before any statistical evaluation of the signal can be carried out. For example, EEG

and EMG recordings contain sum of semi sinusoid components, noise, and also other

related signals. To identify such signal sources, separation and noise removal have

been widely used. In many cases, the connectivity of the sources and the trend of the

signal rhythms is subject to change. For EMG sources, for instance, the challenging
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task is to detect actively connected potentials from noisy signals. The separation of

such sources and classification of these signals have also been extensively studied.

However, the methods used do not mimic the original data features and therefore

are not efficient [33]. Many of the physiological measurements have a small number

of channels; the SSA technique can analyse the data to determine the frequency

signature of the signal over time. In addition, SSA is a subspace approach, since

cases can be well explained by a small number of distinct orthogonal bases.

The proposed approach for SSA is not limited to any assumption such as the sta-

tionarity of the data. The ability to identify eigenvalues corresponding to noise

components is a novel feature of the proposed approach presented in this thesis.

This provides a certain confidence in the identification of the biomedical signal

subspace.

As mentioned above, the human body system is a complex system. Chaos theory

is a complicated mathematical theory that can be applied to studying complex

dynamical systems. Some dynamical systems, such as logistic maps are chaotic

everywhere, but in several situations chaos can be found only in a subset of phase

space. The most interesting cases appear when the chaotic behaviour takes place on

an attractor. The attractor that occurs from chaotic systems is known as a strange

attractor. The first and most known complex attractor is Lorenz attractor [55],

which gives a very interesting and strange pattern which looks like the wings of a

butterfly (see Figure. 1.2).
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Figure 1.2: Plot of the Lorenz attractor.
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An EEG signal, for example, is considered as a nonlinear time series [2, 56], particu-

larly during an epileptic seizure, and can also be characterised as being chaotic [57].

Chaotic behaviour can be found in many nonlinear dynamical systems in nature

[56]. Therefore, there has been critical attempts to differentiate strange attractors

in brain signals [58]. Furthermore, as decomposing brain signals is a necessary

tool for detecting chaotic behaviour or epileptic activity, the extracted information

from EEG recordings or detection of epileptic seizure is helpful for diagnosing and

treating epilepsy patients.

During biomedical signal problem processing, chaos theory can provide a poten-

tial explanation for the various, erratic, and complex patterns that arise in most

biomedical signals [59]. Generally, several applications of nonlinear techniques are

applied to biomedical problems, which span from heartbeat studies [60]–[63], to

brain systems [64]–[66], blood pressure regulation [67, 68], nervous and muscles

systems [69]–[73], breathing rhythms [74], cardio-respiratory coordination [75], ge-

nomic, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sequences [75, 76],

and complex physiological systems of human and animal bodies [77, 78].

As stated earlier, observed time series often contain noise which needs to be re-

moved or reduced for better analysis. Noise reduction for chaotic time series has

also been widely studied; see, for example, [1], [79]–[81]. There are several noise re-

duction methods suitable for chaotic time series; see [82]–[85] and references therein.

Many of those methods are based on statistical and dynamical aspects which use

embedding methods such as SVD method [28] and delays [86]. The SVD-based

method is considered as a very effective approach to noise reduction from chaotic

signals [87, 88]. However, the main problem is that the deterministic system, chaos,

and stochastic process, noise, have several common properties that can make them

undistinguishable [89]. The distinction between them is considered as one of the

most important topics; see, for example, [90]–[96]. Figure. 1.3 (left) illustrates an

example of a chaotic Henon series, which looks random, but transferring this series

to a two dimensional map gives us an attractive pattern (see Figure. 1.3 (right)).

The proposed approach provides a valuable solution to this problem. Figure. 1.4
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shows an example of our results for analysing real ECG and EEG data; details can

be found in Chapters 5 and 7.
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1.3 Aims, objectives, contributions and organisa-

tion of the thesis

The main aim of this research is to introduce a new approach to the selection of

the optimal value of r for SSA, which can make a novel contribution to the area

of noise reduction and filtering in signal processing and time series analysis. The

proposed approach is mainly used to identify the required number of eigenvalues

corresponding to the signal component, which relies on the distribution of the scaled

Hankel matrix eigenvalues. The approach does not need any assumption; for ex-

ample, stationarity of the series or linearity of the residual. This shows that the

proposed approach can be considered as a promising one for the extraction of any

biomedical signal contaminated in linear, nonlinear, stationary, or non-stationary

noise, or buried in other signals.

First, to achieve the objectives of the thesis, the distribution of the scaled Hankel

matrix eigenvalues generated from symmetric and nonsymmetric distributions with

various criteria are studied in depth. Furthermore, we present the theoretical and

methodological aspects of the proposed approach, and demonstrate that it can be

considered as an alternative one for time series analysis and forecasting. Second,

the eigenvalue distribution is considered as a novel approach to the differentiation

between and identification of chaos from noise. Third, since the main issue in

extracting signals using the SSA procedure lies in identifying the number of eigen-

values needed for signal reconstruction, the proposed approach has been developed

to select an optimal value of r. In addition, we also consider the selection of the

value of the window length.

This thesis also seeks to explore the applicability of the proposed approach to eigen-

value identification in several simulated and real biomedical signals with different

structures and signal to noise ratios. Another objective is to apply the approach to

eigenvalue identification to four different gene expression protein profiles. In addi-

tion, the performance of the approach in filtering EEG signals, extracting strange
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patterns, and discriminating between normal and abnormal EEG signals is dis-

cussed.

The proposed approach and results of the thesis make a novel contribution to:

• The selection of the optimal value of r for the separability between signal and

noise components in SSA, with applications in biomedical and genetic time

series.

• Improving the quality of the reconstruction step in SSA for signal extraction.

• The area of distinction between deterministic and stochastic processes.

• The application area of classification of brain signals.

The thesis is organised into eight chapters, which can be summarised as follows:

• Chapter 1: An overview of the problems to be addressed in this thesis and

presentation of the aims and objectives of the work. We also provide a brief

introduction to biomedical signals and chaos, decomposition these signals and

extraction of the sources of interest.

• Chapter 2: This chapter includes a general overview of applications in biomed-

ical signals and genetic studies with SSA.

• Chapter 3: The theoretical aspects of singular spectrum analysis and a brief

mathematical background are presented. This chapter includes new theoret-

ical results on the eigenvalues of A = HHT divided by its trace, with new

proposals on the eigenvalues, proofs of their properties, the effect of window

length and rank of Hankel matrix on the eigenvalues, and the asymptotical

behaviour of the determinant and eigenvalues of the scaled Hankel matrix.

The chapter also includes several examples related to the theoretical results

obtained, particularly the effect of window length and rank of the Hankel

matrix on the eigenvalues.
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• Chapter 4: A comprehensive study on the distribution of the scaled Hankel

matrix eigenvalues using simulated data, including symmetric and nonsym-

metric distributions, trend series, and sine waves. The chapter also includes

the effect of the sample size or the length of the series on the eigenvalues,

the patterns of the mean and variance, the coefficient of the variations for

each eigenvalue, the empirical distribution for each eigenvalue, the effect of

the mean and variance of Gaussian distribution on the eigenvalues, and some

examples related to the effect of the window length on the distribution of the

largest and smallest eigenvalues for the white noise process.

• Chapter 5: The distribution of Hankel matrix eigenvalues is consider as a

novel approach for distinguishing chaos from noise. The applicability of the

proposed approach is examined using ECG data.

• Chapter 6: The chapter includes the main results of the thesis together with

the theoretical results in chapter 3 and the study in chapter 4. The principle of

the algorithm for selecting the optimal value of r is presented. The algorithm

is applied to a number of simulated and real data with different structures

and signal to noise ratio. Furthermore, the best choice of L is briefly studied.

• Chapter 7: This chapter provide successful applications of the proposed ap-

proach. The approach is applied to remove noise from Drosophila segmenta-

tion genes. Four different types of gene data are used, analysed and evaluated

by using different criteria. In addition, the chapter presents another appli-

cation of the approach. It includes analysis of EEG signals, removing noise,

discrimination between EEG signals and extraction of strange patterns. Sev-

eral criteria based on the largest eigenvalue are introduced and used as features

to distinguish between normal and epileptic EEG segments.

• Chapter 8: Presents the general conclusions of the thesis and proposes possible

improvements and directions for future research work.

• Finally, Appendix A includes the linear and nonlinear measures of dependence

between two series, Appendix B presents a description of the measures of
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accuracy and statistical significance of noise free time series reconstruction,

and Appendix C gives a description of the measures for normality.



Chapter 2

Literature Review of SSA

2.1 Literature review

Singular spectrum analysis (SSA) is a technique of time series analysis and forecast-

ing. It combines elements of classical time series analysis, multivariate statistics,

multivariate geometry, dynamical systems and signal processing. The aim of the

SSA technique is to decompose the main series into a sum of a small number of

interpretable components such as a slowly varying trend, oscillatory components

and a structureless noise. It is based on the singular value decomposition (SVD) of

a specific matrix constructed upon the time series. Neither a parametric model nor

stationarity-type conditions have to be assumed for the time series, which makes

it a model-free method and hence allows this method to have a broad range of

applicability.

The basic SSA method includes two complementary stages: decomposition and

reconstruction; each one contains two steps. At the first stage the series is decom-

posed and at the second one the original series is reconstructed, then it is used for

forecasting purpose. The general concept that we study the properties of SSA is

separability, which characterizes how well we can separate mixed components from

each other. The approximate separability is often absent in the observed series that

has a complex structure. For series with complex and special structures, there are

16
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various ways of adapting SSA leading to diverse versions such as SSA with single

and double centering, sequential SSA and Toeplitz SSA [32]. In addition, two ver-

sions of SSA, based on the perturbation theory and minimum variance estimator,

were proposed in [97].

Furthermore, SSA can be used for analyzing relatively short series, which is a very

important feature of this method. It has been illustrated that SSA works very

well for both short and long time series in forecasting macro-economics data [98].

Note that despite some probabilistic and statistical concepts are used in the SSA-

based methods, no statistical assumptions need to be made such as normality of

the residuals and stationarity of the series.

Additionally, SSA is a capable tool which can be applied for solving many problems

such as; smoothing, finding trends of different resolution, simultaneous extraction of

cycles with small and large periods, extraction of seasonality components, extraction

of periodicities with varying amplitudes and simultaneous extraction of complex

trends and periodicities.

The commencement of the SSA method is generally associated with publication in

1986 of the papers [28, 29] by Broomhead and King. Since the publication of that

papers SSA has received a very good attention in literature. In addition to [28, 29]

the list of most cited papers on SSA published in the 1980s and 1990s includes [84],

[99]–[101].

There are five books dedicated to SSA [6],[30]–[33]. Two books, [30] and [31], give

a primary introduction to SSA. The book [32] develops the main methodological

principles, and considers several theoretical issues. The aim of the book is to intro-

duce SSA as a very powerful technique for time series analysis, which really aided

to attract the attention of researchers from different scientific communities to SSA.

[6] was published in 2013, is fully devoted to the methodology of SSA and contains

other different topics. [33] was recently published in late December 2015, and is the

latest book that focuses on SSA, an effective approach for single channel biomed-

ical signal analysis, and its bivariate, multivariate, tensor-based, complex-valued,

quaternion-valued and robust variants. During the last 14 years the SSA method
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has been developed and new successful applications of it across different fields have

been reported; see for example, [34]–[36] and references therein.

Links between SSA and other methods of time series analysis. The SSA

technique is not linked with GARCH, ARIMA, wavelets and other methods of this

type. However, it has close links with few methods of multivariate statistics and

with methods of signal such as projection pursuit and principal component analysis

(PCA); see [6]

Theory of SSA. We usually refer to the book [32] for the basic theory of SSA.

Since 2001, a number of effective studies on theoretical aspects of SSA have been

published. The important theoretical monograph on perturbations in SSA and

subspace-based methods of signal processing is [102]. There is also an important

theoretical paper that is [103], where the separability concept is further studied and

developed for the signal plus noise model. [39] also discussed the elements of the

theory of SSA.

SSA for change-point detection and subspace tracking. Assume that the

points y1, y2, . . . , of the series arrive sequentially in time and we use basic SSA for

the series at hand. Then the distances can be monitored from the sequence of the

trajectory matrices to the r-dimensional subspaces, and the distances between these

r-dimensional subspaces can also be constructed. Any significant change in these

distances may show a change in the mechanism generating the time series. It is

worth mentioning that this change in the mechanism does not have to influence the

whole series structure but rather only a few of its components. For more details;

see [32] (chapter 3), and [104].

Monte-Carlo SSA. A general assumption of SSA about the noise in the signal+noise

model is the association of noise with a series that cannot be well approximated by

a time series of finite rank. If the noise is assumed to be stochastic and red then

the so-called Monte Carlo SSA is a common technique to be applied. This version

has special tests, which are based on the Monte Carlo simulations and are devised

for evaluating the hypothesis of the presence of a weak signal on the background of

a large noise, see [100].
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SSA for density estimation. It was shown in [105] that SSA can be applied for

the estimation of nonparametric density and also could give estimates that are more

precise than the celebrated Kernel density estimates.

SSA for multivariate time series. Multivariate SSA (MSSA) [30, 31] is an

extension of the basic SSA for simultaneous analysis of different time series. This

method could be useful for decomposing various series with common structure. It

could also be applied for introducing a causality between two time series. In [6],

it is mentioned that the absence of Granger [106] causality of two series Y
(1)
N and

Y
(2)
N means that the information of Y

(1)
N does not improve the quality of forecasts

of Y
(2)
N . The discussion of MSSA causality is shown in [107].

2D-SSA for image processing. 2D-SSA is an extension version of both basic

and multivariate SSA for decomposing images. There is only one difference between

these three versions, which is in the construction of the Hankel matrix, see [31, 44,

108]. However, it should be noted that the moving window in 2D-SSA is a rectangle

and the window length becomes a result of two numbers. This means that the the

Hankel matrix could be large and a very good implementation of the SVD becomes

important.

Comparison of SSA with other techniques. [39, 102] compare the SSA tech-

nique with some subspace-based techniques of signal processing. Most of these

techniques are based on the assumption that the original series is random and sta-

tionary; they include some techniques that are famous in signal processing, such

as Karhunen-Loeve decomposition (for signal processing references see, for example

[36]). It has been accepted that SSA, which is based on SVD, can be used as an al-

ternative to traditional digital filtering methods [29]. It has been shown that SSA is

better that others such as smoothing method, digital butterworth filters, and splines

in filtering biomedical signals [109]. Numerical comparison of SSA with ARIMA,

ARAR algorithm, Holt-Winter and other classical methods of time series analysis

can be found in many papers of the volume [110] and in several papers devoted

to applications of SSA, see for example [35, 36, 107, 111–113]. Moreover, the SSA

method has also been used for signal extraction and forecasting of the UK tourism
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income. The results indicated that SSA is better than SARIMA and time-varying

parameter State Space models in terms of several forecasting accuracy criteria [32].

Application areas. It has been proven that SSA is a very useful and used as a

standard method in the analysis of climatic, meteorological and geophysical time

series; see, for example, [99, 101] (climatology), [114] (meteorology), [115] (marine

science), [116] (geophysics); for more researches, see [30–32, 84, 99–101, 116, 117]

and the studies in [110]. There are recent areas of application of SSA including

engineering, image processing, medicine, actuarial science and many other fields;

see, for example, [111, 118, 119] and different papers in [110]. Econometrics and

medicine are special cases as SSA was fundamentally unknown only a few years ago

in these two fields, however, it has recently made a tremendous advancement and

has become more popular; see, for example, [34, 43, 46, 107, 113, 120].

As stated above, the description of SSA above can be summarised in two main

stages: decomposition and reconstruction. These stages depend upon two main se-

lections; namely, window length L and the number of required eigenvalues/singular

values, denoted by r, for reconstruction. It is mentioned in [6] that for optimal

values of L, the weighted correlation or w -correlations (a common measure for

approximate separability) between two reconstructed series is approximately zero.

Furthermore, since the signal components are often dominating, the number r of

the leading components related to the signal can be estimated using the matrix

of w -correlations between the elementary reconstructed components [6]. Thus, an

appropriate choice of L and r leads to a perfect analysis and separability between

time series components.

It is always useful using the auxiliary information about the original time series

for the choice of the values of L and r [6, 32]. For instance, if we know that the

original time series has a periodic component with integer period, then we should

take L proportional to that period. In addition, there are different ways for the

selection of L that have a practical basis (see section. 2.4.3 [6]). It was suggested

in [30] that for a series of length N , the choice of L = N/4 is an appropriate and

common in practice. [32] recommend that L should be large enough but not larger
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than half of the series. Golyandina [39] recommends some ways for the selection

of L to attain minimal error, and the results showed that the optimality of the

selection is based on the main problem. The results also showed that the residual

behaviour depends on the noise type, and the selection of the window length to

one-half of N was shown to be suitable in most cases. [40] present a minimum

description length (MDL) criterion, which can be applied to automatically choose

both the window length and the signal. The results showed that under general

conditions the criterion will determine the true signal dimension with probability

one as the sample size increases, and will select the smallest L consistent with the

embedding theorem. The application of the rule L = βN was examined by [39], and

the author points out that the use of a value of β close to 0.5 will give optimality

in the separation and reconstruction.

Recently, Hassani et al. [41] suggest that the appropriate value of L is the median

of {1, . . . , N} for reconstruction. In addition, [42] show numerical bounds on the

mean squared reconstruction error and present asymptotic bounds for the mean

squared separation error to indicate how the evaluation for the selection of the

window length can be made in practice.

Based on the literature, previous researches only focus on L-separability; but, [41]

show that the value of r should be considered for good separability. Although several

studied that have been done, there is no general rule for selecting L and r. In this

thesis, the interest is in the signal as a whole; separability of signal components is

not our aim. Golyandina and Zhigljavsky [6] point out that for signal extraction

as a whole the importance of the selection of the value of L is diminished. For

instance, if the signal contains a periodic component, divisibly of L by its period is

not important for extracting the whole signal. Thus, we focus here on the study of

r-separability. Despite we mainly focus on the optimality of selection of the value

of r, the best choice of the value of the window length will be considered briefly.

Here we develop the SSA in the selection of the values of r, then apply it for

analysing and filtering biomedical signals. As we mentioned earlier, the applica-

tions of SSA in biomedical data has received little attention despite it has been
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widely used in different disciplines. In the following subsections, we give a review

of publications in biomedical and genetic studies with SSA.

2.2 A Review of Applications in Biomedical Sig-

nals and Genetic Studies with SSA

2.2.1 Applications in biomedical signals with SSA

In biomedical processing, the important feature of the SSA technique is that it can

be used for analysing biomedical signals and separate these signals from each other

and also remove unwanted component of noise. For example, in the decomposition

of EEG records, it is important to obtain neurophysiologically useful information in

applications such as seizure detection, brain computer interfacing (BCI), and sleep

analysis, which can be done by using SSA [46].

For multichannel biomedical data, use of the blind source separation (BSS) ap-

proach is traditional and can help in separating the mixed signals into their con-

stituent sources [121]–[123]. Blind source separation (BSS), also known as blind

signal separation, is the separation of a set of source signals from a set of mixed sig-

nals, without the help of information about the source signals or the mixing process.

There are different methods of blind signal separation such as principal components

analysis, independent component analysis, singular value decomposition, dependent

component analysis and stationary subspace analysis. However, BSS fails to analyse

single channel recordings [46]. There are many applications where only one channel

is used; for instance, restoring EMG mixed with ECG artifact [124, 125]; separating

noise from the neuronal spikes, which is considered as a hard task [126]; several BCI

applications; and various sleep stages in a recorded channel [127, 128]. The desired

information in such applications can be only retrieved from special channels. On

the other hand, the use of BSS for separability in recordings with a small number

of channels is often weak [46].
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Among the many methods used, SSA is a relatively new technique that has been

proven to be a successful approach. Recently, SSA has been used for analysing

biomedical signals and has shown its strong potential for such studies [34]. Below

we give a review of publications in biomedical studies with SSA.

In 2004, SSA was applied to backscattered ultrasound signals from in vitro hu-

man cancellous bone specimens [129]. The authors explained that there are many

approaches, such as temporal and spectral autocorrelation, higher order statistics,

power spectrum and cepstrum, and quadratic transformation, which can be used

for mean scatterer spacing (MSS) estimation; this is used to detect variations in

quasiperiodic tissue microstructures. However, those approaches characterise sig-

nals that include only a mixture of periodic and nonperiodic structures, while SSA is

often used in nonlinear dynamics to mainely identify components of signals related

to periodic contributions and then identify dominant acyclicity. Thus, SSA can be

more effective than other methods for separability between periodic, nonperiodic

and noise components. The results showed that applying SSA to backscattered

ultrasound signals may be beneficial for presenting information related to tissue

microarchitecture that is not obvious in clinical images.

Moreover, SSA was used in [109] for the smoothing of biomechanical signals, partic-

ularly kinematic ones. Four examples were presented in this study to illustrate the

capability of SSA smoothing and show its superiority over other techniques used in

biomechanical analysis such as digital butter worth filter, splines and filter based

on spectral analysis. The authors also showed that SSA works effectively on both

stationary and nonstationary time series. They mentioned that its only drawback

was that there are no general rules for selecting window length; however, it was

shown in their examples that the results were similar for different values of window

length. The authors recommended that in some cases using sequential SSA can be

better than the basic SSA for better separability between signal trend and noise.

Furthermore, EEG recordings can include artifacts created by ocular activity, es-

pecially those signals recorded from frontal channels. The blinking or movements

of eyes produce an electrical signal or artifact called the electrooculogram (EOG).
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This artifact (EOG) can appear in the recorded EEG signals, which need to be re-

moved. In 2005, a method based on SSA was presented in [130] for removing EOG

from EEG signals. In the study, the feature vectors were clustered and the prin-

ciple components (PCs) were calculated locally within each cluster. Note that in

pattern recognition and machine learning, a feature vector an n-dimensional vector

of a numerical features that represents some objects. Subsequently, the EOG signal

was assumed to be related to the PCs corresponding to the largest eigenvalues. The

minimum description length (MDL) criterion; which is a formula in which the best

hypothesis for a given set of data is the one that lead to the best compression of

the data, was applied to determine the number of eigenvectors required to represent

the EOG artifact. Thus, the authors first extracted the EOG artifact and then

deducted it from the original EEG signal to attain the corrected EEG signal. The

MDL criterion was selected to be used to the EOG artifact removal as it yielded

the most consistent results compared to the results of the variance criterion and

Akaike’s information criterion (AIC). Note that given a collection of models of the

data, AIC estimates the quality of each model and provides a means of model collec-

tion. The results also illustrated that a development method of SSA by combining

a clustering step works very well with EEG data where EOG signals display large

amplitudes.

In some recent published researches, such as [34] and [131]–[134], the choice of pe-

riodic components has been considered by clustering the eigentriples [131], or by

proposing different criteria [132]–[134]. Furthermore, Ghodsi et al. [26], for exam-

ple, present a new approach based on SSA for the detection of temporomandibular

disorders (TMDs) which appear as a result of issues with the jaw, temporomandibu-

lar joint (TMJ); and facial muscles, which are responsible of chewing and moving the

jaw [135, 136]. In this approach, the movement data of markers located on points

of special interest on the faces of many cases was extracted and analysed. The par-

ticipant were grouped into a set of healthy subjects and one of individuals with the

temporomandibular disorder in order to extract the components corresponding to

the signal and to separate the noise. The results verified that the SSA method can

be used as a detection and noise reduction method for analysing biomedical signals



Chapter 2. Literature review 25

with abnormal behaviour, such as the data of temporomandibular disorder analysis.

The outcomes also illustrated that the extracted noise can be used for detection.

In particular, a helpful pattern was extracted for classification of the volunteers

with TMD and healthy participants using the noise series. Thus, it was proposed

that the extracted noise includes useful information which can be considered for

detection.

Fetal heart rate (FHR) and variability of its beats are of the most useful indicators

of the health of the fetus [34]. The record of the maternal electrocardiogram signal

is a mixture of mother’s and the fetal heart signals, and it is often very noisy. The

fetal electrocardiogram (FECG) provides information about FHR and its health.

For example, when we have information about FHR, we can detect any arrhythmia

or variations in the fetal heart rate. Furthermore, the heart waveform includes

helpful diagnostic information. For instance, the position and the sign of each

part in the cardiac waveform is very important to distinguish between different

forms of supraventricular tachycardia. Several researches have been devoted to

fetal electrocardiogram extraction. For example, the method based on SVD [22, 23];

neural networks [137]; cross-correlation techniques [138]; adaptive filtering combined

with genetic algorithms [139]; adaptive filtering [140, 141]; decomposition into an

orthogonal basis [142]; fuzzy logic [143]; independent component analysis for blind

source separation [144, 145]; the frequency based technique [146]; real-time signal

processing [147]; wavelet based techniques [148]–[150]; and principal component

analysis and projective filtering [151]. However, some of the mentioned studies have

many major drawbacks [34].

In 2010, Ghodsi et al. [34] proposed a multivariate singular spectrum analysis

(MSSA) technique for separating and extracting the mother’s electrocardiogram

(MECG) signal, the fetal electrocardiogram (FECG) signal and the noise component

from the mixed ECGs. In fact, MSSA was used to capture the fetal heart signal,

which is a classical problem in biomedical engineering. A significant feature of

MSSA for the combined signal is that; in MSSA the dynamic structure between the

FECG and MECG signals can be captured in order to extract the FECG signal,

since the SSA method consists of the elements of multivariate geometry, multivariate
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statistics and dynamical systems. The results confirmed the capability of the SSA

technique for extraction of the FECG signal and removal of the noise component.

The results also illustrated that SSA can be easily adapted to a broad class of

biomedical signals.

Recordings of respiratory sounds are often mixed with heart sound interference. In

some of the heart sound cancellation techniques, the important preprocessing task

is to localise essential components of the heart sound. SSA was used in [134] to

localise heart sounds in respiratory signals. The results of the SSA technique were

compared with some techniques that use the wavelet transform and entropy (ENT)

of the signal to detect the components of the heart sound. Error in localisation and

the correlation between the primary heart sound and outputs of the techniques used

were applied to assess the performance of the techniques on synthetic data. False

positive and negative detections were considered as a measurement tool that can be

applied to both synthetic and real data. The results indicated that SSA was sig-

nificantly better than the wavelet-based method for false detection and correlation

with the underlying heart sounds. Furthermore, efficiency of the SSA technique was

slightly better than that of the ENT method. In addition, the execution time of

the SSA method was much lower than that of the entropy method.

Adaptive line enhancer (ALE) is a method that is used as an effective filter for

filtering measured cyclic signals from contaminated Gaussian white noise. However,

it depends fundamentally on second order similarity between the signal and its

delayed form, and is more valuable and successful for the narrowband signal [43].

In 2012, Sanei et al. [43] proposed a new ALE based on SSA. In the SSA-based

ALE, the eigentriples were adaptively selected for the reconstruction stage using

the delayed form of the data. In that research, both the main ALE and SSA-

based ALE were examined against various noise levels. The results illustrated that

the proposed algorithm based on SSA is more effective than the main ALE. The

authors mentioned that the approach can be used for the signals with some periodic

components. However, biomedical signals do not often have a precise period and

their periods are different; such signals are called quasiperiodic. They overcame

this issue by providing some solutions. The most simple one by selection of shorter
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segments, within which the signals remain periodic. A more comprehensive solution

is by warping the cycle intervals around average for each segment of the signal. The

results demonstrated that the technique based on SSA is powerful for the extraction

of several physiological signals mixed with stationary, or nonstationary noise, or

burned in other periodic or non-periodic signals. The results also showed that

the technique enhances the quality of surface electromyography. In addition, the

approach was able to identify the EMG noise from the ECG signal.

Heart and lung sounds are recorded from approximately the same region of the

human body. It is difficult to diagnose the lung sound due to the involved heart

sound. Thus, the separation of the two sounds is a required step for a precise

diagnosis. In 2013, the SSA-based ALE method was also used for separation of

the heart sound artifact from respiratory signals [152]. This method is a new noise

reduction technique that has the feature of adaptive selection of needed eigentriples

in the reconstruction stage of SSA. In the study, the method was evaluated using

synthetically mixed and real respiratory signals. The result of the SSA-based ALE

method was compared with the traditional ALE technique. The performance of the

SSA-based ALE method outperformed the traditional ALE one with respect to the

output signal to noise ratio and correlation coefficient.

The study by [153] is an attempt to show the value of the SSA method in the analysis

of the cardiac RR time series data of a healthy, congestive heart failure, and atrial

fibrillation subjects. The author used SSA and the Monte Carlo SSA (MCSSA)

test to identify the noise component existing in the series. Furthermore, SSA was

applied in [154] to an exponential-cosine sequence and measured 64-channel EEG

data (see Figure. 2.1). The authors showed that SSA is able to extract important

information from the data series. Figure. 2.2 illustrates the results of w -correlation.

They also showed that the use of SSA can identify the characteristics of EEG data.

In addition, they discussed that it is possible to find the optimal parameters in the

sense of the forecast by applying SSA forecasting performed by using the linear

recurrence formula (LRF).
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Figure 2.1: Recording positions of 64-channel EEG data on a head. The top
signifies a forehead, and projections on the right and left sides mean ears [154].

Figure 2.2: w -correlation of 4 EEG channels [154].

Murmur is an indicator of diverse heart abnormalities. In 2011, Sanei et al. [27]

suggested an adaptive singular spectrum analysis (ASSA) technique as a technique

for separability between murmur and heart sound (HS). In that article, SSA was

adapted to the variations in the statistical properties of the data and successfully

applied to detect murmur from heart sound. The results indicated a precise separa-

bility of normal heart sound from the murmur segment. Furthermore, a comparison

between ASSA and the other general methods such as neural networks, sup-optimal

transform and PCA, clearly illustrates that ASSA is better in terms of accuracy of

the results and the overall computation speed or cost [27]. Those methods ignored

the overlap and the correlation between the two sounds. The authors pointed out

that one of the main features of ASSA is that it effectively separates the heart and
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mummer signals even over the temporally overlapped regions, which is indicated by

the low values of the correlation in most types of murmurs. They also pointed out

that clinicians can use those separated signals for diagnosis of other heart problems.

In 2015, the performance of the basic SSA algorithm was improved in [46] by using

tensor decomposition instead of the traditional SVD method for decomposition of

the EEG single channel signal. The frequency diversity of the data was used to

determine the subspace of interest. In that study, sleep EEG data, and the stages

of sleep for the subjects in normal condition, with sleep extension, and with sleep

restriction, were precisely estimated and compared with the results of sleep scoring

by clinical experts. The results showed that the method can help in analysis and

understanding of sleep EEG data.

2.2.2 Applications in genetic studies with SSA

In resent years, SSA has been accepted as a valuable technique in quantitative ge-

netic studies. Presented here is a review of recent publications in genetic research

with SSA. Since SVD is a main stage of SSA, some SVD applications in gene expres-

sion data are also presented briefly. According to the review, the most important

areas of using SSA in genetics are denoising and signal extraction, which indicates

that SSA can be used as a reliable and promising approach for genetic analysis.

Nowadays, there are a huge number of datasets in the area of genetics and ex-

pression measurement, and there exist several diverse approaches and methods for

decomposing genetic datasets [155]–[157]. Validity of expression measurements are

no longer accepted as the main issues in working with these types of data, but with-

out using proper decomposition tools, the accuracy of the inferences from the data

is hard to understand [158]. If the study results are achieved from an inadequate

model, the result can not be interpreted in a scientific format [159].

Parametric methods have been applied historically for analysis of such data [160,

161]. However, the restricting pre-assumptions required for parametric methods

reduces their use and increases the use of nonparametric techniques. In recent
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years, it has been widely accepted that nonparametric approaches can be used as

an alternative method for decomposing genetic data due to their innate nature [6],

and thus the applications in genetic and biomedical areas have been developed and

expanded. The SSA method, as a nonparametric method, is considered to be very

successful approach; it has been recently applied to genetic data and has shown its

capability in such studies [162, 163].

The capabilities of signal extraction and filtering, derivation of an analytical formula

of the signal, together with batch processing of a set of similar series, are the major

features of the SSA technique in the field of genetics [164]. It is in researchers’

interest to use SSA for signal extraction in gene expression data and filtering in

microarrays. The reason behind their main interest in the SSA technique is its

potential for noise reduction, and because of the fact that genetic data is often

mixed with considerable noise. Denoising of such data is considered as a hard task

when analysing genetic data [165, 166].

Several researches have been conducted to obtain quantitative data in genetics using

the microarray method. The microarray is a capable method for analysing large

amounts of genes simultaneously, which makes it a very useful. However, microar-

ray data are often contaminated with a significant level of noise, which can affect

the performance of the statistical results and make extraction of signals a very

challenging task [167].

In the following part we detail the available applications of the SSA technique for

noise reduction and signal extraction in genetics, which can also be found in [168].

In 2006, the first application of SSA was reported; its use was for signal extraction

from Drosophila melanogaster’s gene expression profile [164]. Similar study was

then used in [169], showing an improved result. A study of signal extraction from

the noisy Bicoid (Bcd) protein profile in Drosophila melanogaster was presented in

[117]. The issue under study was complex for two reasons; the data are extremely

noisy and include outliers, and the structure of the noise is unknown. In this study,

a small window length was used with addition of a constant to the original series

to improve separability and reconstruct the signal. Furthermore, SSA was used for
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reduction of the two types of noise; the noise was detected because of variability in

the nuclear order and experimental noise [170].

The SSA technique based on minimum variance was proposed in [97], which was

then used in [118] for filtering and extracting the bcd gene expression signal. The

results indicated that SSA based on minimum variance is able to outperform the

other methods used for denoising Bcd [118].

Furthermore, one of the important applications of the microarray method is the

study of rhythmic cellular processes, which can exhibit cyclic behaviours [168, 171].

Consequently, one of the main tasks in gene expression data analysis is to detect

subset of genes that display cyclicity in their gene expression time series profiles.

However, the time series of gene expression are commonly of short length, with

very few durations and highly contaminated with noise [171]–[173]. Various gene

products regulate those rhythmic cellular processes, which can be measured by

using multiple deoxyribonucleic acid (DNA) microarray experiments. Time series

expression data corresponding to the rhythmic behaviour of a specific gene can be

obtained from a group of gene experiments over a time period.

In 2008, a new procedure was proposed in [162] for analysing the cyclicity of gene

expression profiles, and extracting the trend using SSA and the Autoregressive (AR)

model. The useful combination of SSA and the AR model enabled the authors to

extract more periodic genes than in the use of the classical Fourier analysis technique

in [174]. Subsequently, the procedure was used and developed in four research papers

[35], [163], [175, 176], and showed its capability and success in detecting periodicity

from 60% to 80%. For more information about the combination of SSA and AR for

detecting periodic profiles, see also [177].

Despite SVD being a step in the SSA technique, it has been applied independently as

an important and useful technique for analysing microarray data; see, for example,

[178]. The authors considered the elimination of cross-hybridization in real-time

microarray data. The authors also proposed techniques such as SVD for separating

the components of the composite signal in order to obtain an estimation of the

amounts of hybridising and cross-hybridising targets.
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Although the topology of gene networks can be obtained from measurements of

variation in gene expression over time, measurement devices such as microarrays

yield information on thousands of genes over few biological replicates, which are

complicated to analyse. In 2010, an iterative empirical Bayesian procedure and

algorithm were presented in [179] for inferring the structure of gene networks, and

the SVD of the Hankel matrix was used for selecting the model. This method allowed

them to minimise the needed computation time for running the algorithm, as it

reduced the requirement to run it over a huge number of values for the hidden state

dimension. Furthermore, it was discussed in [180] that the use of SVD for analysing

microarray data is not time extensive. Moreover, in this study, SVD was applied

to a Hankel matrix of gene expression data, and the singular values corresponding

to the large magnitude were used as an estimate for the most correct state space

dimension. In particular, the singular values of the estimated Hankel autocovariance

matrix were computed and standardised to a 0− 1 scale. Those singular values of

magnitude larger than the threshold were performed as an estimation for the state

space dimension.

In addition, two dimensional SSA (2D-SSA) has been considered for decomposing

two-dimensional scalar fields [6]. In the 2D-SSA approach, it is necessary to select

two different values of the window length, whereas in univariate SSA only one

window length is needed (for more information see [108]). In 2012, the 2D-SSA

approach was used for measuring between the nucleus variability or noise observed

in the gradient of Bcd in Drosophila embryos [181].

According to the literature discussed above, SSA is a reliable and flexible technique

for signal extraction and gene expression modelling. The studies of the extraction of

the signal from the segmentation gene profile in Drosophila embryos and the studies

of the rhythmic behaviour of a particular gene recommend that this approach can

be of general use in assessing other expressional systems. Therefore, this technique

can be helpful in analysing any noisy data [168]. However, as we already mentioned

that the main issue in extracting signals using the SSA method lies in identifying

the optimal values of L and r needed for signal reconstruction. According to the

literature, despite several attempts that have been applied, there is no general rule
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for selecting the optimal values of L and r. Furthermore, most of these attempts

are based in some assumptions. In this thesis, the proposed approach is totally

different than others, and can be applied universally without any assumptions.

2.3 Summary

According to the literature, previous studies only consider L-separability; however,

the results of [41] indicate that we also need to consider r for optimal separability.

Despite various successful attempts that have been applied, there is no universal rule

for obtaining optimal selections of L and r. In this thesis, we are interested in the

signal as a whole; separability of signal components is not important to us and is not

our goal. It was pointed in [6] that for signal extraction as a whole the importance

of the selection of the value of L becomes less. For example, for a signal including

a periodic component, divisibly of L by its period is not essential for separating

the whole signal from the noise. All these motivations led us to focus on the study

of r-separability. Although our focus is on the optimality of selection of the value

of r, we also briefly consider the best choice of the value of the window length.

The proposed approach has several advantages in terms of both the quality of the

results and computational speed. The main advantage of the proposed approach

compared to other approaches for the selection of the values of L and r in SSA, is

that our approach can be used universally without any assumption. To conclude

this chapter, the main aim of this thesis is to develop the SSA method then apply

it to biomdeical signals.



Chapter 3

Theoretical Framework

3.1 White noise

While signals can have various structures and forms, noise is often like white noise

(WN) [6]. A white noise series is often part of time series in the form of an error, an

unpredictable randomness. It is a weak stationary process which has a zero mean

and is uncorrelated over time [182]. If the white noise process is normally distributed

it is called a Gaussian white noise process [183]. White noise is important because

more complicated stochastic processes are generally defined and modeled in terms

of white noise [183]. Therefore, Gaussian white noise is considered as the type of

noise in our simulation study.

A white noise series YN = (y1, . . . , yN), where:

yt ∼ WN(0, σ2), (3.1)

has the following characteristics for every t, s ∈ N . Thus, yt is a WN process

∀t ∈ N :

1. E[yt]= 0.

2. E[y2t ]= σ2.

34



Chapter 3. Theoretical framework 35

3. E[ytys] = 0, for s ̸=t,

where E is the expectation operator [182].

3.2 Singular spectrum analysis

The SSA technique consists of two main stages: decomposition and reconstruction.

Each stage includes two separate steps:

• Decomposition: Embedding and SVD.

• Reconstruction: Grouping and Diagonal Averaging.

In the first stage we decompose the series and in the second we reconstruct the

original series and use the reconstructed series (which is without noise) to forecast

new data points. Below we provide a brief discussion of the methodology of the

SSA technique (for more information see [32], chapters 1 and 2, and [6], chapter 2).

3.2.1 Embedding

The role of this step is to transfer a one-dimensional time series YN = (y1, . . . , yN)

into the multi-dimensional series H1, . . . , HK with vectors Hi = (yi, . . . , yi+L−1)
T ∈

RL, where K = N −L+1. Vectors Hi are called lagged vectors. The window length

L is the parameter that defines the embedding procedure, which is an integer such

that 1 < L < N . The result of the embedding step is the trajectory matrix defined

in (1.1), which is H = [H1, . . . , HK ] = (hij)
L,K
i,j=1. It should be noted that the (1.1)

process is a clear symmetry property: the transposed matrix HT is the trajectory

matrix of the same series YN with window length K instead of L.

The embedding procedure is a standard technique in time series analysis, the anal-

ysis of nonlinear dynamical systems and signal processing. In SSA, the window

length L should be sufficiently large. In particular, this is necessary so that each
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L-lagged vector includes an important part of the structure of the initial series.

Large values of L allow us to consider each L-lagged vector Hj as a separate series

and investigate the dynamics of certain characteristics for this collection of series.

For more information and discussion on the choice of L we refer to [6], section 2.4.3.

3.2.2 Singular value decomposition

Singular value decomposition is a method that decomposes real or complex matri-

ces into sub-matrices, which have numerous applications in signal processing and

statistics. It is closely related to eigendecomposition. The eigendecomposition of

the matrix HHT or the SVD of the matrix H yields a collection of L eigenvalues and

eigenvectors. We start with the general properties of the SVD, which are essential

for SSA.

It has already been mentioned that the SVD of an arbitrary nonzero L×K matrix

H is a decomposition of H in the form

H =
d∑

i=1

√
γiUiV

T
i , (3.2)

where γi (i = 1 . . . , d) are the eigenvalues of the matrix A = HHT arranged in

decreasing order, d = rankH = max(i, such that γi > 0), {U1, . . . , Ud} is the

corresponding orthonormal system of the eigenvectors of the matrix A and Vi =

HTUi
√
γi. Note that we call

√
γi the singular value, while Ui and Vi are the left

and right singular vectors of the matrix H, respectively. If Hi is defined as Hi =
√
γiUiV

T
i , then Eq. (3.2) can be rewritten in the form of Eq. (1.2), i.e. as the

representation of H as a sum of the elementary matrices Hi. If all the eigenvalues

have multiplicity one, then the expansion (1.2) is uniquely defined.

The expansion (3.2) demonstrates that the SVD possesses the following symmetrical

property: V1, . . . , Vd form an orthonormal system of eigenvectors for the matrix

HTH corresponding to the same eigenvalues γi. The columns and rows of H are
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subseries of the original time series. Consequently, the left and right singular vectors

also have a temporal structure and hence can also be regarded as time series.

The SVD in the expansion (1.2) is optimal in the sense that among all the matri-

ces H(r) of rank r < d, the matrix
∑r

i=1Hi gives the best approximation to the

trajectory matrix H, so that ||H − H(r)||F is minimum. Note that the Frobenius

norm of a matrix Z is ||Z||F =
√
⟨Z,Z⟩F where the inner product of two matrices

Z = {zij}s,qi,j=1 and Y = {yij}s,qi,j=1 is defined as ⟨Z,Y⟩F =
∑q,s

i,j=1 zijyij. Note that

||H||2F =
∑d

1 γi and ||Hi||2F = γi for i = 1, . . . , d. Thus, the ratio γi/
∑d

i=1 γi can be

considered as the characteristic of the contribution of the matrix Hi to expansion

(1.2). Hence,
∑r

i=1 γi/
∑d

i=1 γi the sum of the first r ratios, is the characteristic of

the best approximation of the trajectory matrix by the matrices of rank r. Note that

for a fixed value of L and a series with length N , the trace of matrix AL,N = HHT ,

tr(AL,N), is as follows:

TL,N
H = ||H||2F = tr(AL,N) =

L∑
i=1

γi. (3.3)

Consider now the trajectory matrix H as a sequence of L-lagged vectors. Denote

by H(L) ⊂ R(L) the linear space spanned by the vectors H1, . . . , HK . We shall call

this space the trajectory space of the series YN . The Eq. (3.2) demonstrates that

U = (U1, . . . , Ud) is an orthonormal basis in the d -dimensional trajectory space

H(L).

Introducing Yi =
√
γiVi, we can rewrite the expansion (3.2) in the form H =∑d

i=1 UiY
T
i , and for lagged vectors Hj =

∑d
i=1 yjiUi, where the yji are the compo-

nents of the vector Yi. This means that vector Yi is composed of the i -th components

of lagged vectors Hj represented in the basis U . Consider now the transposed tra-

jectory matrix HT . Setting Zi =
√
γiUi we yield the expansion HT =

∑d
i=1 ViZ

T
i ,

which corresponds to the representation of the sequence of K -lagged vectors in the

orthonormal basis V1, . . . , Vd. Consequently, the SVD presents two dual geometric

descriptions of the matrix H.
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The feature considered above may be reformulated in the language of multivariate

geometry for the L-lagged vectors as follows. Assuming r < d, then among all r -

dimensional subspaces Lr of RL, the subspace spanned by U1, . . . , Ur approximates

these vectors in the best way, which is obtained at Lr = span(U1, ..., Ur). The ratio∑r
i=1 γi/

∑d
1 γi is the characteristic of the best r -dimensional approximation of the

lagged vectors.

Another optimal characteristic of the SVD corresponds to the properties of the

directions determined by the eigenvectors U1, . . . , Ud. Specifically, U1 determines

the direction such that the variation of the projections of the lagged vectors into

this direction is maximum. Every subsequent eigenvector determines the direction

that is orthogonal to all previous directions, and the variation of the projection of

the lagged vectors onto this direction is also maximum. Therefore, it is natural to

call the direction of the i -th eigenvector Ui the i -th principal direction. Note that

the elementary matrices Hi = UiY
T
i are built up from the projections of the lagged

vectors onto the i -th particular directions.

The view above on the SVD of H composed of L-lagged vectors and an appeal to

association with the principal component analysis lead us to the following termi-

nology. We shall call vector Ui the i -th eigenvector, vector Vi the i -th factor vector

and vector Yi =
√
γiVi the i -th principal component, respectively.

3.2.3 Grouping

The grouping step corresponds to splitting the elementary matrices Hi in (1.2) into

several groups, as in (1.3), and adding up the matrices within each group. Let us

assume that m = 2 in (1.3), I1 = I = {i1, . . . , ir}, and I2 = {1, . . . , d} \ I, where

1 ≤ i1 < · · · < ir ≤ d.

The purpose of this step is to separate the additive components of the time series.

We discuss here the very interesting concept of separability. Assume that the time

series YN is a sum of two time series Y
(1)
N and Y

(2)
N ; that is, yi = y

(1)
i + y

(2)
i for
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i = 1, . . . , N . Assume also that L is fixed and denote by H, H(1) and H(2), the

L-trajectory matrices of the series YN , Y
(1)
N and Y

(2)
N , respectively.

Consider now an SVD (1.2) of the trajectory matrix H. If there is a collection of

indices I ⊂ {1, . . . , d}, such that H(1) =
∑

i∈I and H(2) =
∑

i/∈I , we can say that

the series Y
(1)
N and Y

(2)
N are separable by the decomposition (1.2). In the study of

separability between two matrices H(1) and H(2) in the expansion H = H(1) +H(2),

the contribution of H(1) is measured by the share of the corresponding eigenvalues:∑
i∈I γi/

∑d
i=1 γi.

We can look at the separation of the series by the decomposition (1.2) from different

perspectives. Suppose the set of indices is fixed I = I1, and HI1 is the corresponding

resultant matrix. If HI1 and HI2 , where HI2 = H−HI1 , are Hankel matrices, then

they are necessarily the trajectory matrices of certain time series that are separable

by the expansion (1.2).

Furthermore, if the two matrices HI1 and HI2 are approximate Hankel matrices,

then there exist series such that YN = Y
(1)
N + Y

(2)
N and the trajectory matrices of

these series are close to HI1 and HI2 , respectively; we can say that the series are

approximately separable.

Accordingly, the goal of the grouping step is to find the groups I1, . . . , Im such that

the matrices HI1 , . . . ,HIm satisfy expansion (1.3) and are close to certain Hankel

matrices.

Let us now move to the grouping step from the view point of multivariate geometry.

Consider H as the trajectory matrix of a time series YN , YN = Y
(1)
N + Y

(2)
N , and the

series Y
(1)
N and Y

(2)
N are separable by the decomposition (1.2), which coincides with

splitting the index set {1, . . . , d} into I and {1, . . . , d} \ I.

Assuming m = 2 in expansion (1.3), this means that U1, . . . , Ud, the basis in the

trajectory space H(L), is split into two groups of basis vectors. This coincides with

the representation of H(L) as a product of two orthogonal subspaces (eigenspaces)

H(L,1) = span(Ui, i ∈ I) and H(L,2) = span(Ui, i /∈ I), spanned by Ui, i ∈ I, and

Ui, i /∈ I, respectively.
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Separability of Y
(1)
N and Y

(2)
N means that matrix HI , whose columns are the projec-

tions of the lagged vectors H1, . . . , HK onto the eigenspace H(L,1), is precisely the

trajectory matrix of the series Y
(1)
N .

The grouping procedure is based on the analysis of the eigenvectors Ui and Vi, and

eigenvalues γi in the SVD expansion. The principles and methods of identifying the

SVD components for their inclusion into different groups are described in [6], section

2.4. Note that each matrix of the SVD is exactly determined by the corresponding

eigentriple, so we shall talk about grouping of the eigentriples rather than that of

the elementary matrices Hi.

It should be noted that the case of two series components (m = 2) considered above

is often regarded as the issue of separating out a single component rather than

that of separating two terms. This means only one group of indices, namely I, is

interesting to us.

In signal processing, the series Y
(1)
N is considered as a signal. Therefore, we often

select I1 = {1, . . . , r} for some r and call H(1) the signal subspace.

3.2.4 Diagonal averaging

The idea of using diagonal averaging or the Hankelization procedure is to convert a

matrix into the form of a Hankel matrix which can be transferred to a time series.

If zij stands for an element of a matrix Z, then the n-th term of the resulting series

is obtained by averaging zij over all i, j such that i + j = n + 1. The result of

the Hankelization of a matrix Z is the Hankel matrix HZ, which is the trajectory

matrix corresponding to the series obtained as a result of the diagonal averaging.

Note that Hankelization is an optimal procedure in the sense that the matrix HZ is

the nearest to Z (with respect to the matrix norm) among all the Hankel matrices

of the corresponding size (for more information see [32], chapter. 6, section. 2). In

turn, the Hankel matrix HZ uniquely defines the series by relating the value in the

diagonals to the values in the series. By applying the Hankelization procedure to
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all matrix components in Eq. 1.3, we obtain this expansion:

H = H̃I1 + . . .+ H̃Im (3.4)

where H̃I1 = HHI1 . This is equivalent to the decomposition of the initial series

YN = (y1, . . . , yN) into a sum of m series:

yn =
m∑
k=1

ỹ(k)n (3.5)

where Ỹ
(k)
N = (ỹ

(k)
1 , . . . , ỹ

(k)
N ) corresponds to matrix Hk.

Note that if z̃ij is the (i,j)-th entry of the estimated matrix Z̃, then applying the

diagonal averaging formula it follows that:

ỹj =
1

s2 − s1 + 1

s2∑
i=s1

z̃i,j+1−i, (3.6)

where s1 = max{1, j+1−K}, s2 = min{L, j} and ỹj is the j -th of the reconstructed

series ỸN .

Properties of the Hankel Matrix

The behaviour of TL,N
H defined in Eq. (3.3) with respect to different values of L is

considered in the following theorem.

Theorem 3.1. Consider the trajectory matrix H. Then,

TL,N
H =

N∑
j=1

wL,N
j y2j ,

where

wL,N
j = min{ min{L,K}, j,K + L− j } = wK,N

j .

Proof. Using the definition of H (1.1), we have;

TL,N
H =

L∑
i=1

N−L+i∑
j=i

y2j .
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Changing the order of the double summation above gives the following equation:

TL,N
H =

N∑
j=1

Cj,L,N y2j ,

where Cj,L,N = min{j, L}−max{1, j−N+L}+1. Therefore, we only need to show

that Cj,L,N = wL,N
j for all j and L. We consider both cases, L ≤ K and L > K.

For L ≤ K, we obtain

Cj,L,N =


j for 1 ≤ j ≤ L,

L for L+ 1 ≤ j ≤ K,

N − j + 1 for K + 1 ≤ j ≤ N,

which is exactly equal to wL,N
j . Similarly, for L > K, we have

Cj,L,N =


j for 1 ≤ j ≤ K,

K for K + 1 ≤ j ≤ L,

N − j + 1 for L+ 1 ≤ j ≤ N,

which is also equal to wL,N
j for L greater than K.

Theorem 3.2. Let F denote the Hankelized form of the arbitrary L × K matrix

Z. Then:

TL,N
Z−F = TL,N

Z − TL,N
F ,

where TL
Z = tr(ZZT ).

Proof. It is sufficient to prove that tr(ZFT ) = tr(FFT ).

tr(ZFT ) =
N+1∑
s=1

s2∑
l=s1

zl,s−lfl,s−l =
N+1∑
s=1

s2∑
l=s1

zl,s−lzs =
N+1∑
s=1

wL,N
s−1 z

2
s = tr(FFT ),

where s1 and s2 are defined as above and wL,N
j = min{ L, j,N − j + 1 }.

Corollary 3.3. Let Z be an arbitrary L × K matrix and F be its corresponding

Hankelized form. Then: tr(ZZT ) ≥ tr(FFT ).
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Corollary 3.4. Matrix F is the nearest matrix to Z among all the Hankel matrices

of dimension L × K with respect to TL,N
Z .

3.3 Separability

As mentioned earlier, ‘separability’ is the main concept in studying SSA properties.

A decomposition of the series YN using the SSA method can only be successful if the

resulting additive components of the series are approximately separable from each

other. The following quantity (called the weighted correlation or w-correlation) is

a common measure of dependence between the two series Y
(1)
N and Y

(2)
N :

ρw(Y
(1)
N , Y

(2)
N ) =

(
Y

(1)
N , Y

(2)
N

)
w

∥ Y
(1)
N ∥w∥ Y

(2)
N ∥w

where ∥ Y
(1)
N ∥w =

√(
Y

(1)
N , Y

(1)
N

)
w
, ∥ Y

(2)
N ∥w =

√(
Y

(2)
N , Y

(2)
N

)
w
,
(
Y

(1)
N , Y

(2)
N

)
w
=∑N

j=1wjy
(1)
j y

(2)
j , and wj=min{L, j,N + 1− j} (here we assume L ≤ N/2) [112].

The matrix of the absolute values of the w -correlations is considered as a natural

hint for grouping, which corresponds to the full decomposition (each group in this

decomposition corresponds to only one matrix component of the SVD). If the ab-

solute value of the w -correlations is small, then the corresponding series are almost

w -orthogonal; however, if its value is large, then those series are far from being w -

orthogonal and the separability is therefore bad. Thus, if the value of w -correlation

between two reconstructed components is zero, this means that the two components

are separable. If the values of w -correlations between reconstructed components are

large, this indicates that those components should be gathered into one group and

related to the same component in SSA decomposition. In the following, we will

provide the results obtained by Hassani et al. [41], which show that the minimum

value of the w -correlations is obtained at L = (N + 1)/2, as our empirical results

coincide with their results regarding the optimal choice of L.
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Theorem 3.5. For a fixed value of L, let S̃r
L be the reconstructed series based on

the first r singular values of the trajectory matrix Hr
L. Then:

1. S̃r
L = S̃r

K,

2. Ẽr
L = Ẽr

K, where Ẽr
L = YN − S̃r

L.

Proof. Here, we only give the proof for the first equality as the second can be easily

obtained by the first. Let S̃r
L and S̃r

K be the constructed series by diagonal averaging

of the matrices Hr
L and Hr

K , respectively, where:

Hr
L =

∑r
i=1

√
γiUiV

T
i , Hr

K =
∑r

i=1

√
γiViU

T
i .

Consequently, the results can be attained by equality Hr
L = (Hr

K)
T . The vectors

Ẽr
L and Ẽr

K are usually called the noise vectors. The separability between S̃r
L and

Ẽr
L (or between S̃r

K and Ẽr
K) is an important task for the reconstruction stage, and

also for the forecasting procedure.

Corollary 3.6. Let ρL,rw denote the w-correlation between S̃r
L and Ẽr

L. Then, ρ
L,r
w =

ρK,r
w which confirms that we need only to consider L ∈ {2, . . . , (N + 1)/2}.

Theorem 3.7. Let H be the trajectory matrix as defined before and H = S+ E =

S̃+ Ẽ where S =
∑r

i=1

√
γiUiV

T
i , E =

∑L
j=r+1

√
γjUjV

T
j , and matrices S̃ and Ẽ are

Hankelized matrices of S and E, respectively. Furthermore, consider the following

assumptions based on the SVD of the matrices S and E for all i, j = 1, . . . , L:

UiU
T
j = 0, ViV

T
j = 0. (3.7)

Then:

TL,N

S̃ẼT
= tr(S̃ẼT ) > 0. (3.8)

Proof. Using the orthogonality feature of eigenvectors with the definition of matrices

S and E confirm that tr(SET ) = 0. Furthermore, the equality

tr((S+ E)(S+ E)T ) = tr((S̃+ Ẽ)(S̃+ Ẽ)T ),
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follows that:

tr(S̃ẼT ) =
(tr(SST )− tr(S̃S̃T )) + (tr(EET )− tr(ẼẼT ))

2
. (3.9)

Let us now show that tr(SST )− tr(S̃S̃T ) = tr(EET )− tr(ẼẼT ) :

tr(EET )− tr(ẼẼT ) =
N+1∑
s=2

s2∑
l=s1

(el,s−l − es)
2

=
N+1∑
s=2

s2∑
l=s1

(
el,s−l −

1

wL
j−1

s2∑
l=s1

el,s−l

)2

=
N+1∑
j=2

s2∑
i=s1

(
yj−1 − si,j−i −

1

wL
j−1

s2∑
l=s1

(yj−1 − sl,j−l)

)2

=
N+1∑
j=2

s2∑
i=s1

(si,j−i − sj)
2 = tr

(
SST

)
− tr

(
S̃S̃T

)
.

It follows that:

tr
(
S̃ẼT

)
= −

N+1∑
j=2

s2∑
i=s1

(si,j−i − sj) ((ei,j−i − ej) . (3.10)

Corollary 3.3 confirms that the right side of Eq. (3.9) is non-negative, which com-

pletes the proof. These relations show that if tr
(
S̃S̃T

)
increases and tr(SST ) −

tr(S̃S̃T ) decreases, then the w-correlation decreases. In addition, the following

equality holds:

tr
(
S̃ẼT

)
= tr(EET )− tr

(
ẼẼT

)
= tr(SST )− tr

(
S̃S̃T

)
.

Theorem 3.8. TL
S̃L

is an increasing function of L on L ∈ {2, . . . , (N + 1)/2}

provided that there exists a Hankel matrix Z such that:

TL
SL−Z ≤ TL

SL
− TL−m

S̃L−m
, (3.11)
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where m ∈ {1, . . . , L−2}. Thus, the maximum values of these functions are obtained

at L = (N + 1)/2.

Proof. We will only consider the proof for TL
S̃L
. Similar proofs and results can be

obtained for TL
ẼL

. Recall from Theorem 3.2 and Corollary 3.4 that for every Hankel

matrix Z of dimension L×K:

TL
SL

− TL
S̃L

= TL
SL−S̃L

≤ TL
SL−Z. (3.12)

Let us now assume that Z is a Hankel matrix that satisfies Eq. (3.11). Consequently,

the proof is now completed using Eqs. (3.11) and (3.12).

Theorem 3.9. TL
SL−S̃L

is a decreasing function of L on L ∈ {2, . . . , (N + 1)/2},

provided that there exists a Hankel matrix Z of dimension L×K such that:

TL
SL−Z ≤ TL−m

SL−m
− TL−m

S̃L−m
, (3.13)

where m ∈ {1, . . . , L− 2}. Thus, the minimum value of this function is obtained at

L = (N + 1)/2.

Proof. The proof here can be obtained by employing an approach similar to that

used in Theorem 3.8.

Corollary 3.10. The minimum value of w-correlation attains at L = (N + 1)/2,

provided that the value of N is large enough and there exists a Hankel matrix Z of

dimension L×K such that inequality (3.13) is fulfilled.

Proof. To prove this, it is sufficient to show that TL,N
SL

is an increasing function of

L. For a large N , we have:

TL,N
SL

=
r∑

j=1

γ
(L,N)
j ≥

r∑
j=1

γ
(L−1,N−1)
j ≈ TL−1,N

SL−1
, (3.14)
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where γL,N
j denotes the j -th eigenvalue of HHT , and H is the Hankel matrix L×K

corresponding to the series YN . Note that every Hankel matrix Z of dimension

L × K satisfies both inequalities (3.13) and (3.11). Consequently, the proof is

completed.

It can be noticed from Corollary 3.10 that the reconstructed signal and noise using

the leader r eigentriples are almost w -orthogonal for the choice of L = (N + 1)/2.

A Hankel matrix Z that satisfies inequality (3.13) can not be easily found, but we

can find some equivalent conditions.

Theorem 3.11. Let σ2
l (SL) be the l-th secondary diagonal variance of the matrix

SL. If σ2
l (SL) ≤ σ2

l (SL−m), then Theorem 3.9 is satisfied and inequality 3.13 has

infinite solutions with respect to Z.

Proof. The first part of the theorem is satisfied by using Corollary 3.3 and Theorem

3.2. For the second part, using inequality 3.13, we have:

N+1∑
j=2

s2∑
i=s1

(sLi,j−i − zj−1)
2 ≤

N+1∑
j=2

s2∑
i=s1

(sL−m
i,j−i − s̄L−m

j−1 )2 =
N+1∑
j=2

σ2
j−1(SL−m). (3.15)

If the following inequality satisfies for j = 2, . . . , (N + 1):

s2∑
i=s1

(sLi,j−i − zj−1)
2 − σ2

j−1(SL−m) ≤ 0, (3.16)

then; inequality (3.15) is fulfilled. However, the left side of inequality (3.16) is a

quadratic form of zj−1, which has the following discriminant:

△j−1=
σ2
j−1(SL−m)− σ2

j−1(SL)

wL
j−1

≥ 0. (3.17)

Thus, it is possible to find infinite real zj−1 that satisfies inequality (3.16). This

completes the proof.
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Note that Theorem 3.11 provides enough conditions, as it is obvious from Theorem

3.2 and inequality (3.3) that TL
SL−S̃L

≤ TL−m

SL−m−S̃L−m
is equivalent to

∑N+1
j=2 σ2

j−1(SL) ≤∑N+1
j=2 σ2

j−1(SL−m).

3.4 Determinants of a matrix

We consider the determinant of matrix A because of its importance in the calcula-

tion of its eigenvalues. The determinant is a value obtained from a square matrix

A. The determinant of the matrix A, det(A) can be calculated from its entries by a

particular arithmetic expression, or its value can also be determined in other ways.

It is a nonzero number if, and only if, the matrix is invertible. Furthermore, one of

its uses is to define the characteristic polynomial of a matrix, which is an essential

tool in eigenvalue problems in linear algebra. One of the ways of computing the

determinant of a matrix is the Laplace formula.

Before we introduce the Laplace expansion formula, we need to define the minor of

a matrix.

Definition 3.12. For any L × L matrix A, the determinant det(Aij) of the L −

1 × L − 1 matrix obtained from A by deleting the i -th row and the j -th column

is called the (i, j) minor of A. Using minors we can show one way to calculate

the determinant of an L× L matrix. The technique is called Laplace expansion by

cofactors.

Definition 3.13 (The Laplace Expansion formula). The determinant of an L× L

matrix A = (aij), where L ≥ 2, is a scalar and can be computed as

det(A) = ai1ci1 + ai2ci2 + · · ·+ aiLciL =
L∑

j=1

aijcij, i = 1, . . . , L (3.18)

which is the cofactor expansion along the i -th row, and also as

det(A) = a1jc1j + a2jc2j + · · ·+ aLjcLj =
L∑
i=1

aijcij, (3.19)
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the cofactor expansion along the j -th column. Since

cij = (−1)i+jdet(Aij), (3.20)

each cofactor is plus or minus the corresponding minor, with the correct sign given

by the term (−1)i+j. Note that this procedure reduces the problem of calculating

the determinant of an L× L matrix to the problem of computing the determinant

of an (L−1)× (L−1) matrix. Using this technique can minimise the main problem

to one of computing the determinants of 2× 2 matrices.

3.5 Theoretical results

3.5.1 The problem

Consider a one-dimensional series YN = (y1, . . . , yN) of length N . Let YN =

SN + EN , where SN represents the signal component and EN represents the noise

component. Transferring this series into the multi-dimensional series H1, . . . , HK

with vectors Hi = (yi, . . . , yi+L−1)
T ∈ RL provides the following trajectory Hankel

matrix H = (hi,j)
L,K
i,j=1. It is clear that H = S+E, where S and E respectively repre-

sent Hankel matrices of the signal SN and noise EN series. Note that L is in fact an

embedding dimension, the matrix HHT is similar to a correlation matrix, and the

procedure of constructing the Hankel matrix is a special case of delay embedding.

There exists a huge volume of research devoted to the analysis of experimental data

by means of the tools of nonlinear dynamics, and in relation to the crucial concept

of embedding, including the delayed embedding which we use in this thesis (see for

example [184, 185]).

The Hankel matrix H and its corresponding singular values play a pivotal role in

various fields including time series analysis [107, 186], biomedical signal processing

[27, 43, 118], mathematics [37], econometrics [187] and physics [188]. The distri-

bution of eigenvalues/singular values and their closed form are of great interest,
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but this issue has not been considered adequately [189]. We have already men-

tioned that the singular values of the trajectory matrix H are the square root of

the eigenvalues of the L by L matrix A = HHT , where Hi = Ui
√
γiV

T
i , Ui is the

eigenvector corresponding to the eigenvalue γi (i = 1, . . . , L) of A (L ≤ K), and

Vi = HTUi/
√
γi. The ratio of each eigenvalue γi is the contribution of the matrix

Hi to H, since ||H||2F =
L∑
i=1

γi and ||Hi||2F = γi. We also mentioned that for a

fixed value of L; L ≤ K, and a series with length N , the trace of A, tr(A), is

TL,N
H = ||H||2F = tr(A) =

L∑
i=1

γi.

Let us now assume that X is an L × v rectangular matrix whose entries are inde-

pendent identically distributed random variables, then the matrix X will be called a

random matrix. Currently, the random matrix theory (RMT) (or the spectral anal-

ysis of large dimensional random matrices), is the only methodical theory that can

be used as a powerful tool to solve problems in the analysis of large dimensional

data, which has become a hot topic in statistics and diverse disciplines in which

statistics is applicable. The roots of RMT go back to the development of quantum

mechanics (QM) in the 1940’s and 1950’s. In 1955, [190] proved and established the

well known semi-circular law. Since then, researchers from mathematics, physics

and statistics fields have developed the concepts and results of random matrix the-

ory. The statistics show that the number of publications on random matrix theory

has been rapidly increasing [191].

A brief review of Random Matrix Theory

As mentioned above, RMT can be traced back to the the 1940’s and early 1950’s

in the development of quantum mechanics [191]. The eigenvalues of a Hermitian

operator on a Hilbert space, which is called Hamiltonian, describe the energy levels

of a system in QM. For more information on RMT and its applications in various

areas, we refer to [192]–[194].

In [190, 195], it was proved that the anticipated spectral distribution of a large

dimensional Winger matrix tends to semicircular law. Subsequently, this research

was developed and generalised in different aspects (see [196, 197]). It was also

proved that if the sample size is greater than the dimension of the Winger matrix,
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then the spectral distribution of a sample covariance matrix tends to semicircular

law [198]. Furthermore, Marchenko and Pastur [199], and Pastur [200, 201] studied

the asymptotic theory of spectral analysis of large dimensional sample covariance

matrices; this was developed by many authors (see [202–206]). In addition, the

limiting spectral distribution of products of random matrices were investigated in

[202, 206–209]. Recently, studies on RMT have focused on limiting theorems; for

example, the central limit theorem and limiting distributions of spectral spacings

and largest eigenvalues [191].

Suppose now that P = XXT is an L×L matrix with eigenvalues λi (i = 1, . . . , L),

and all the eigenvalues are real, then the one-dimensional distribution function can

be defined as follows:

FP(y) = 1
L
#{i ≤ L : λi ≤ y}.

This function is called the empirical spectral distribution (ESD) of the matrix X,

and # denotes the cardinality of the set E.

For a given sequence of random matrices PL, random matrix theorem is used to

study the convergence of the sequence of empirical spectral distributions FPL . The

limit distribution F is called the limiting spectral distribution (LSD) of those ran-

dom matrices. It is also worth mentioning that ESD is important in multivariate

statistics because many important statistics can be expressed as functions of the

ESD of some random matrices.

If P is an L× L positive definite matrix, then we can define the determinant of P

as follows.

det(P) =
L∏
i=1

λi = exp(L

∫ ∞

0

log y FP(dy)). (3.21)

Let us return back to the rectangular random matrix X, and Xi, a random vector

in X. It is defined that Xi is a random vector from an L-variate normal distribution

with zero mean if every linear combination of its L components has a univariate
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normal distribution, which can be written in the following notation [193], [210, 211];

Xi = (yi, . . . , yi+L−1)
T ∼ NL(0,G), (3.22)

where 0 is an L-dimensional mean vector, and G is an L×L covariance matrix. The

multivariate normal distribution is often used to describe any set of possibly cor-

related real-valued random variables, each of which clusters around a mean value.

Note that every covariance matrix is positive semi-definite. It is also worth men-

tioning that the importance of a random vector is derived from the multivariate

central limit theorem.

The sample covariance forms often lead to the Wishart distribution [212], which is

a generalisation of the univariate chi-square distribution to multivariables. It is of

great importance in the estimation of covariance matrices; it is parameterised for

these matrices, the diagonal elements of which are each chi-square random variables.

This type of distribution is often used as a model for the distribution of the sample

covariance matrix for multivariate random normal data, after scaling the data by

its size.

Then, the Wishart distribution is the probability distribution of the L×L random

matrix XXT :

XXT ∼ WL(G, v), (3.23)

where the positive integer v is the number of degrees of freedom that are analogous

to the degrees of freedom parameter of a univariate chi-square distribution (see, for

example, [213]). For L ≤ v the matrix XXT is invertible with probability 1 if G

is invertible. Note that when L = 1, this distribution is a chi-squared distribution

with v degrees of freedom.

Based on the limit central theorem, asymptotic results in the following theorem for

large samples provide beneficial distributions for the eigenvalues and eigenvectors

of the sample covariance matrix.
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Theorem 3.14. Let G be a positive-definite matrix with distinct eigenvalues. Let

XXT ∼ WL(G, v) where X(L× v), and set J = v−1XXT . Consider spectral decom-

position G = ZΛZT and J = QΓQT , and let η and φ be the vectors of diagonal

elements in Λ and Γ. Consequently, the following asymptotic distributions hold as

v → ∞:

• φ ∼ NL(η, 2Λ
2/v), where the eigenvalues of J are asymptotically normal,

unbiased, and independent, with φi having variance 2η2i /v.

• Qi ∼ NL(Υi,C/v), where

Ci = φi

∑
i̸=j

φi

(φi − φj)2
ΥiΥ

T
i , (3.24)

that is, the eigenvectors of J are asymptotically normal, unbiased, and have

the stated asymptotic covariance matrix C/v.

• The covariance between the the r -th element of Qi and the s-th element of

Qj is −φiφjΥrjΥsi/v(φi − φj)
2.

• The elements of φ are asymptotically independent of the elements of Q [214].

We will now turn our attention to Marchenko-Pastur distribution [199]. Marchenko-

Pastur distribution describes the asymptotic behavior of singular values of large

rectangular random matrices. Let X and J be as above, where xij are independent

and identically distributed (iid), E(xij) = 0 and E(x2
ij) = 1, and let φ1, . . . , φL be

the eigenvalues of J. Then, consider the random spectral measure:

ϖv =
1

L

L∑
i=1

ϱφi
. (3.25)

We can now state the Marchenko-Pastur distribution as in [191].

Theorem 3.15. Assume that J follows W (I/v, v), where I is the L × L identity

matrix. If L and v go to infinity in such a way that L/v leads y ∈ (0, 1) then µv →
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ϖ where ϖ is a deterministic measure which converges weakly to the Marchenko-

Pastur distribution with density:

dµ

dx
=

√
(a2 − x)(x− a1)

2πxy
1(a1≤x≤a2), (3.26)

where

a1 = (1−√
y)2, a2 = (1 +

√
y)2. (3.27)

The above theorems hold for the situation in which the vectors Xi are distributed

independently, whilst for the Hankel matrix this is not applicable, as the lagged

vectors Hi and Hj are correlated. For example, Hi and Hi+1 (i = 1, . . . , K − 1)

have L− 1 similar observations with the following covariance matrix:

Cov(Hi, Hi+1) = σ2

 01×(L−1) 0(L−1)×1

I(L−1)×(L−1) 0

 (3.28)

where σ2 is the variance of yi, I is the identity matrix or unit matrix of size L− 1

with ones on the main diagonal and zeros elsewhere, and 0 is a vector of size L− 1

with all its entries zero.

Moreover, it is always of interest to have bounded eigenvalues, whilst in the above

case the magnitude of eigenvalues changes with the series length; increasing the

sample size N leads to an increase in γi.

3.5.2 The solution

To overcome the issue above, we divide A by its trace

(
L∑
i=1

γi

)
. This in turn

provides several important properties.

Proposition 1. Let ζ1, . . . , ζL denote the eigenvalues of the matrix B = A/
L∑
i=1

γi,

where A = HHT, and γi (i = 1, . . . , L) are the eigenvalues of A. In this case, we

have the following properties:



Chapter 3. Theoretical framework 55

1. 0 ≤ ζL ≤ . . . ≤ ζ1 ≤ 1,

2.
∑L

i=1 ζi = 1,

3. ζ1 ≥ 1
L
,

4. ζL ≤ 1
L
,

5. ζi ∈ ( 1
L
− a, 1

L
+ b) (i = 2, . . . , L− 1), where a, b ∈ [0, 1].

Proof. The first property is simply obtained from matrix algebra and the fact that

there is a rational number between two real numbers.

Theorem 3.16. (∀ζ1), (∀ζL), (ζ1 > 0 and ζL > 0)⇒ (∃ζi) (ζi is rational and (ζL < ζi < ζ1)).

Another way to prove the first property:

Proof. ∵ γi ≥ 0 and ζi =
γi∑
γi
,

∴ ζi ≥ 0.

Furthermore,

γ1 ≥ γ2 ≥ · · · ≥ γL ≥ 0 ⇒ γ1
γ1

≥ γi
γ1
⇒1 ≥ γi∑

γi
= ζi.

Thus, 0 ≤ ζi ≤ 1.

To prove the second property, We have

ζ1 =
γ1∑
γi
, ζ2 =

γ2∑
γi
, . . . , ζL = γL∑

γi
⇒ ζ1 + ζ2 + · · ·+ ζL =

∑
γi∑
γi

= 1.

To prove the third property, the first two properties are used as follows. The second

part confirms

ζ1 + ζ2 + ...+ ζL = 1.

Thus, using the first property, ζ1 ≥ ζi (i = 2, ..., L), we obtain
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ζ1 + ζ1 + ...+ ζ1︸ ︷︷ ︸
L elements

= Lζ1 ≥ 1 ⇒ ζ1 ≥ 1/L.

Similarly, for the fourth property, it is straightforward to show that

ζL + ζL + ...+ ζL︸ ︷︷ ︸
L elements

= LζL ≤ 1 ⇒ ζL ≤ 1/L,

since ζL ≤ ζi, i = (1, 2, ..., L− 1), and
∑L

i=1 ζi = 1.

To prove part 5, let us first prove that there exists ζ2 between real numbers ζ1 and

ζL. It is clear that ζL < ζ1 for L > 2. Since ζ1−ζL > 0, we can then choose a natural

number n, large enough to make 1
n
< ζ1−ζL. Now, from the numbers 1

n
, 2
n
, . . . , k

n
we

select the largest possible natural number k such that k
n
≤ ζL. Therefore, ζL < k+1

n
.

Note that k+1
n

< ζ1 since if we assume k+1
n

≤ ζ1 then 1
n
= k+1

n
− k

n
≥ ζ1 − ζL, which

is false as n was picked such that 1
n
< ζ1− ζL. Thus, ζ2 =

k+1
n

satisfies ζL < ζ2 < ζ1.

This approach can be used for other ζi.

Let us first compare the distribution of the eigenvalues, λi, of the matrix XXT ,

and the distribution of the eigenvalues, ζi, of B for white noise series of length

N = 105. For the purpose of visualisation, let us consider L = 10 for m = 5 × 103

simulation. Note that the dimension of X is 10 × 104, whilst 10 × 99991 for H as

previously defined. Figure. 3.1 (left) illustrates the distribution of λi (i = 1, 5, 10)

for XXT , and Figure. 3.1 (right) shows the distribution of ζi (i = 1, 5, 10) for B.

It can be seen that there are some similarities and dissimilarities. For example,

the distributions of λ1 and ζ1 are skewed to the right, whilst the distribution tail

for λ1 is shorter than the case of ζ1; the skewness coefficient for ζ1 is greater than

the corresponding value for λ1. Furthermore, for the middle ζi and λi, particularly

i = 5, both distributions are symmetric.

The results indicate that the distribution of the first and last eigenvalues ofB tend to

have a skewed distribution, whilst the middle eigenvalue may have an asymptotically

symmetric distribution. Let us now evaluate the asymptotical behaviour of the

largest and smallest eigenvalues, for different values of N , generated from a white
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Figure 3.1: Histogram of ζi (i = 1, 5, 10) for matrixB (right), and the histogram
of λi (i = 1, 5, 10) for matrix XXT (left).

noise series. Figure. 3.2 (left) displays the results for ζi (i = 1, 10), and Figure. 3.2

(right) shows the the results for λi (i = 1, 10).
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Figure 3.2: Plot of ζi and λi (i = 1, 10) for different sample size N for a white
noise series.

As the results indicate, the gap between ζ1 and ζ10 becomes smaller as the sample

size N increases and both asymptotically converge to 1
L
. Thus, according to the

above proposition, other ζi tend to 1
L
. However, both λ1 and λ10 increase following

an increase in sample size N and the discrepancy between them becomes larger.

In this research, we only consider ζi as there is no adequate information about

the empirical distribution of ζi, whilst there is much about λi (see for example

[193, 199, 215]).
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Proposition 2. For the A and B symmetric matrices, where A = HHT and

B = A/trA, then we have:

i) log (det (exp (B))) = 1

ii) det (B) < tr(B)
L

= 1
L

Proof. i) We have ζ1, . . . , ζL, the eigenvalues of B. Let D = exp(B), then:

D = exp (B) = U diag
(
eζ1 , . . . , eζL

)
U−1,

where d1 = eζ1 , . . . , dL = eζL are the eigenvalues of D.

Consequently, the determinant of D is the product of all the eigenvalues,

which can be written as follows,

det (D) =
∏L

i=1 di =
∏L

i=1 e
ζi = eζ1eζ2 . . . eζL ,

where
∏

i=1 is notation for the product. Now take the logarithm

log (det (D)) = log
(∏L

i=1 di

)
= log

(∏L
i=1 e

ζi

)
= log

(
eζ1eζ2 . . . eζL

)
This yields

log (det(D)) = log(eζ1) + log(eζ2) + · · ·+ log(eζL)

= ζ1 + ζ2 + · · ·+ ζL =
L∑
i=1

ζi = tr(B) = 1

Another way to prove 1 = tr(B) = log(det(exp(B))):

From Proposition 1, we have:

L∑
i=1

ζi = 1,

⇒ e

L∑
i=1

ζi
= eζ1+ζ2+···+ζL = eζ1eζ2 ...eζL =

∏L
i=1 e

ζi = det (exp(B)) ,

⇒ e

L∑
i=1

ζi
= det (exp(B)) .
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Take the logarithm for both sides, that is

log

(
e

L∑
i=1

ζi

)
= log (det(exp((B)))),

⇒
L∑
i=1

ζi = log (det(exp((B)))).

We know that tr(B) =
L∑
i=1

ζi. This yields:

tr(B) = log (det(exp(B))) = 1.

ii) From Proposition 1, we have ζL ≤ 1
L
and 0 ≤ ζL . . . ζ1 ≤ 1, thus

∏L
i=1 ζi < ζL⇒

∏L
i=1 ζi <

1
L
⇒ det(B) < 1

L
.

We also have

tr(B) =
L∑
i=1

ζi = 1. This yields

det(B) < tr(B)
L

.

It is known that there is a close connection between determinants, eigenvalues, rank,

and invertibility for a square matrix. Note that the determinant of matrix B is the

product of its eigenvalues. It should also be mentioned that an L×L matrix B has

an inverse if and only if rank (B) = L. Based on the following theorem we know

that the determinant of B is zero if and only if when its row reduced the resulting

matrix has a row of zeros; this happens when its rank is less than L.

Theorem 3.17. The determinant of an L × L matrix B is nonzero if and only if

its rank is L; that is to say, if and only if it is invertible [216].

Corollary 3.18. If YN is a white noise process and N is large, we have ζi ≈ 1/L.

Consequently,

det(B) =
L∏
i=1

ζi ≈
1

LL
. (3.29)
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Corollary 3.19. Based on Theorem 3.17, the value of the determinant of B for the

white noise process is greater than its value for any other case. Thus, the general

form of the determinant of matrix B can be defined as:

det(B) =
L∏
i=1

ζi <
1

LL
. (3.30)

The proposed solution and results obtained above indicate that the distribution of

the eigenvalues and their related form such as skewness and kurtosis can help to

distinguish between signal and noise components, then identifying the eigenvalues

corresponding to the signal subspace.

3.5.3 The general form of ζi

Consider the trajectory matrix H defined in Eq. (1.1), with window length L. In

this case B=A/tr(A), where A = HHT is an L × L symmetric matrix with the

following structure:

B =
1

tr(A)



K∑
i=1

y2i
K+1∑
j=2

K∑
i=1

yiyj . . .
N∑

j=L

K∑
i=1

yiyj

K+1∑
j=2

K∑
i=1

yiyj
K+1∑
i=2

y2i . . .
N∑

j=L

K+1∑
i=L

yiyj

...
...

...
. . .

N∑
j=L

K∑
i=1

yiyj
N∑

j=L

K+1∑
i=2

yiyj . . .
N∑
i=L

y2i


. (3.31)

To find the the eigenvalue of the matrix B, one needs to find the following deter-
minant:

f(ζ) = det(B − ζI) (3.32)

= det



K∑
i=1

y2
i /tr(A) − ζ

K+1∑
j=2

K∑
i=1

yiyj/tr(A) . . .
N∑

j=L

K∑
i=1

yiyj/tr(A)

K+1∑
j=2

K∑
i=1

yiyj/tr(A)
K+1∑
i=2

y2
i /tr(A) − ζ . . .

N∑
j=L

K+1∑
i=L

yiyj/tr(A)

.

.

.

.

.

.

.

.

.
.
.
.

N∑
j=L

K∑
i=1

yiyj/tr(A)
N∑

j=L

K+1∑
i=2

yiyj/tr(A) . . .
N∑

i=L
y2
i /tr(A) − ζ


(3.33)
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Therefore, the characteristic polynomial is:

f(ζ) = (−1)L
[
ζL + c1ζ

L−1 + c2ζ
L−2 + ...+ cL−1ζ + cL

]
, (3.34)

where ci are the coefficients to be computed by evaluating the determinant using

the cofactor expansion explained earlier. Note that Eq. (3.34) is correct for any

value of ζ. If we set ζ = 0, then Eq. (3.34) yields:

f(0) = det(B) = (−1L)cL.

Thus,

cL = (−1)Ldet(B).

Note also that c1 can be obtained by evaluating the determinant in Eq. (3.34) using

also the cofactor expansion, which is the trace of B.

c1 = −tr(B) = −1.

Therefore, the general form for the characteristic polynomial is:

f (ζ) = (−1)L
[
ζL − ζL−1 + c2ζ

L−2 + ...+ (−1)L−1 cL−1ζ + (−1)L det (B)
]
, (3.35)

where det(B) = det(A/tr(A)) = det(A)/tr2(A).

Theorem 3.20. Let A and B are defined as above, then the eigenvalues ζi of B

are all real.

Proof. Suppose ζ ∈ C is an eigenvalue of B and let U ∈ CL be its corresponding

eigenvector, then we can write:

BU = ζU, (3.36)

where C is the set of the complex numbers z = x + iy where x and y are the real

and imaginary parts of z and i =
√
−1. Consequently, CL is the set of L-column
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vectors with components in C, and similarly CL×L is the set of L×L matrices with

complex numbers as its entries. The complex conjugate of z is written as z∗ = x−iy.

Similarly for U ∈ CL and B ∈ CL×L, their complex conjugates are U∗ ∈ CL and

B∗ ∈ CL×L, which are obtained by considering the complex conjugate of each of

their components.

Now take the complex conjugates of both sides of Eq. (3.36); this gives:

B∗U∗ = ζ∗U∗. (3.37)

Now we can pre-multiply (3.36) with (U∗)T :

ζ(U∗)TU = (U∗)T (BU) = ((U∗)TB)U

= (BTU∗)TU since (BU)T = UTBT

= (BU∗)TU since BT = B

= (ζ∗U∗)TU = ζ∗(U∗)TUi using (Eq.3.37).

Thus,

(ζ − ζ∗)(U∗)TU = 0.

However, U , being an eigenvector is non-zero and (U∗)TU =
L∑
i=1

u∗
iui > 0 since at

least one of the components of U is non-zero and for any complex number z = x+iy,

z∗z = x2 + y2 ≥ 0. Hence, ζ = ζ∗,i.e., ζ and hence U are real.

Theorem 3.21. Let U1 and U2 be eigenvectors for the real symmetric matrix B =

A/tr(A) corresponding to the different eigenvalues, ζ1 and ζ2. Consequently, U1

and U2 are orthogonal.

Proof. The eigenvectors U1 and U2 of B satisfy the following equations:

BU1 = ζ1U1, BU2 = ζ2U2 and ζ1 ̸= ζ2.

Therefore,
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ζ1U
T
2 U1 = UT

2 (BU1) = (UT
2 B)U1 = (BTU2)

TU1 = (BU2)
TU1 = ζ2U

T
2 U1.

⇒ (ζ1−ζ2)U
T
2 U1 = 0. Since ζ1−ζ2 ̸= 0, then UT

2 U1 = 0. Thus, they are orthogonal.

3.5.4 The eigenvalues and determinant of B for L = 2

Let us now consider the situation where L=2. In this case B is a square-symmetric

matrix with the following structure:

B =
1

y21 + y2N
+ 2

N−1∑
i=2

y2i


N−1∑
i=1

y2i
N−1∑
i=1

N∑
j=2

yiyj

N−1∑
i=1

N∑
j=2

yiyj
N∑
i=2

y2i

 . (3.38)

To find the eigenvalue of matrix B, we use Eq. (3.35) with L = 2. This yields:

f (ζ) = ζ2 − ζ + det(B). (3.39)

Thus, the eigenvalues can be obtained using the quadratic formula:

ζ =
1±
√

1−4 det(B)

2
.

Consequently, the eigenvalues of B, ζ1 and ζ2, are as follows:

ζ1 =
1 +

√
1− 4 det(B)

2
=

1

2
+

1

2

√
1− 4 det(A)

tr2(A)
, (3.40)

ζ2 =
1−

√
1− 4 det(B)

2
=

1

2
− 1

2

√
1− 4 det(A)

tr2(A)
. (3.41)

Corollary 3.22. Using the first property of Proposition 1, we obtain:

ζ1 =
1
2
+ 1

2

√
1− 4 det(A)

tr2(A)
< 1.

Therefore,
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4 det(B) = 4 det(A)/tr2(A) > 0.

We also have:

1− 4 det(A)
tr2(A)

> 0,

⇒ IA = 4 det(B) = 4 det(A)/tr2(A) < 1,

⇒ IA = 4 det(B) ∈ (0, 1). (3.42)

Corollary 3.23. Note that if YN is a white noise process, then matrix H is fully

ranked. Thus, for a large N :

det(B) = det(A)
tr2(A)

→ 1
4
.

⇒ ζ1 ' 1/2, and ζ2 / 1/2. But, if YN is a trend, for example where H has rank

one, then

det(B) = det(A)
tr2(A)

→ 0 ⇒ ζ1 / 1, ζ2 ' 0.

Corollary 3.24. For a white noise process:

4det(B) = 4det(A)
tr2(A)

≈ log(det(exp(B))) = 1

The above results confirm that for L = 2, ζ1 has a positive skewed distribution

whilst ζ2 has a negative skewed one for a white noise process. This helps us to

distinguish between signal and noise and to determine the number of eigenvalues

required for signal extraction.

The eigenvalues of D

To find the eigenvalues of D = exp(B) for L = 2, d1 = eζ1 and d2 = eζ2 , we have

from Proposition 1:
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0 ≤ ζL ≤ ζL−1 ≤ · · · ≤ ζ2 ≤ ζ1 ≤ 1.

⇒ 1 ≤ eζL ≤ eζL−1 ≤ · · · ≤ eζ2 ≤ eζ1 ≤ e. Therefore, d1, d2 ∈ [1, e], and

d1 = eζ1 = e
1
2
+ 1

2

√
1− 4 det(A)

tr2(A) ,

d2 = eζ2 = e
1
2
− 1

2

√
1− 4 det(A)

tr2(A) .

Based on Corollary 3.23, ⇒ d1 ≥ e1/2, and d2 ≤ e1/2 for a white noise series, and

d1 ≤ e, d2 ≥ 1 for a trend series.

3.5.5 The effect of the window length and rank of the Han-

kel matrix

Here, we consider different cases to evaluate the effect of window length on the

tr(AL,N) and the eigenvalues ζL,Ni . Based on Cauchy’s interlacing theorem, the

following theorem was given and proved in [217]; see also [218].

Theorem 3.25. Let H be an L×K Hankel matrix. Then, the eigenvalues of HHT

have the following order:

γL,N
j ≥ γL−l,N−l

j ≥ γL,N
j+l , (j = 1, . . . , L− l),

where l is a number belonging to the set {1, . . . , L− 1}.

Since ζj = γj/tr(A), we can write

ζL−l,N−l
j tr(AL−l,N−l) ≥ ζL,Nj+l tr(AL,N)

Note that ζL−l,N−l
j is the eigenvalue of the sub-matrix B1, which is gained from a

Hankel matrix corresponding to the sub-series HN−l = (y1, . . . , yN−l), where
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B =

 B1 B2

B3 B4

 , (3.43)

and

B1 =
1

tr(A)



K∑
j=1

y2j
K∑
j=1

yjyj+1 . . .
K∑
j=1

yjyj+L−l−1

K∑
j=1

yjyj+1

K∑
j=1

y2j+1 . . .
K∑
j=1

yj+1yj+L−l−1

...
...

. . .
...

K∑
j=1

yjyj+L−l−1

K∑
j=1

yj+1yj+L−l−1 . . .
K∑
j=1

y2j+L−l−1


. (3.44)

Our interest is to see the relationship between ζL−l,N
j and ζL,Nj , not between ζL−l,N−l

j

and ζL,Nj . Thus, Theorem 3.25 should not be used directly.

In [217], it is mentioned that the behaviour of tr(AL,N) is similar on two intervals

2 ≤ L ≤ (N + 1)/2 and (N + 1)/2 + 1 ≤ L ≤ N − 1. They also showed that

γL,N
j increases as L increases until L = (N + 1)/2, and decreases for the interval

(N + 1)/2 + 1 ≤ L ≤ N − 1. Thus, it is enough to consider only one of these

intervals. It is also enough to consider the behaviour of tr(AL,N) to observe the

relationship between ζL−l,N
j and ζL,Nj , since ζL,Nj = γL,N

j /tr(AL,N).

Theorem 3.26. Let tr(AL,N) be defined as in Eq. (3.3). Then, tr(AL,N) is an

increasing function of L on the interval {2, . . . , (N+1)/2}, and a decreasing function

of L on the interval {(N + 1)/2 + 1, . . . , N − 1}, and

max(tr(AL,N)) = tr(A(N+1)/2,N).

Proof. Let us first show that wL,N
j is an increasing function of L on {2, . . . , (N +

1)/2}. Assume L1 and L2 are two arbitrary values, and L1 < L2 ≤ (N + 1)/2.

Then, from the definition of wL,N
j we obtain:
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Cj,L,N =



0, for 1 ≤ j ≤ L1,

j − L1, for L1 + 1 ≤ j ≤ L2,

L2 − L1, for L2 + 1 ≤ j ≤ N − L2 + 1,

N − j + 1− L1 for N − L2 + 2 ≤ j ≤ N − L1 + 1,

0 for N − L1 + 2 ≤ j ≤ N

Thus, wL1,N
j −wL2,N

j ≥ 0 for all j, and inequality is strict for some j [217]. Therefore,

tr(AL2,N)− tr(AL1,N) =
N∑
j=1

(wL2,N
j − wL1,N

j )y2j > 0. (3.45)

Eq. (3.45) confirms that tr(AL,N) is an increasing function of L on {2, . . . , (N +

1)/2}. We use the same approach for {(N + 1)/2 + 1, . . . , N − 1}, which indicates

that tr(AL,N) is a decreasing function of L on this interval. It should be noticed

that increasing the value of L2 leads to the increase of tr(AL2,N)− tr(AL1,N) in Eq.

(3.45), which proves that tr(AL,N) is an increasing function on {2, . . . , (N + 1)/2}.

Consequently, the maximum value of tr(AL2,N) is obtained at L = (N+1)/2, which

is the maximum value of L.

Now, we consider four cases with different values of L and rank of H to observe the

relationship between ζL,Nj and ζL−l,N
j .

Case 1 L ≥ 1, rank = 1. In this case, we have only ζL,N1 =
γL,N
1

tr(AL,N )
= 1. Hence,

ζL,N1 = ζL−l,N
1 for 2 ≤ L ≤ N − 1.

Case 2 L = 1, 2, rank = 2. We have ζ1,N1 , ζ2,N1 and ζ2,N2 . If L = 1, then we

only have one eigenvalue ζ1,N1 . If L = 2, then we have ζ2,N1 and ζ2,N2 , which

are defined in Eqs. (3.40) and (3.41). Furthermore, we know that ζ2,N1 < 1,

ζ2,N1 ≥ 1/L, and ζ2,N2 = 1− ζ2,N1 .

⇒ ζ2,N1 < 1 = ζ1,N1 ⇒ ζ2,N1 < ζ1,N1 .

Case 3 L > 2 and rank = 2. In this case, we use the the characteristic polynomial

given by Eq. (3.34) to find the eigenvalues. As the rank of H is two, then we
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have ζL,Ni=1,2 ̸= 0, which were given by Eqs. (3.40) and (3.41), and then ζL,Ni = 0

(i = 3, . . . , L). In this regard, this case is similar to Case 2. The result shows

that ζL,N1 decreases with L till (N + 1)/2, then increases. In terms of ζL,N2

behaviour, it should be noted that as ζL,N1 decreases, ζL,N2 increases because

ζL,N2 = 1 − ζL,N1 . Consequently, ζL,N2 ≥ ζL−l,N
2 for l = 1, . . . , (N + 1)/2, and

ζL,N2 ≤ ζL−l,N
2 for l = (N + 1)/2, . . . , N − 1.

Case 4 L > 2 and rank > 2. Using Eq. (3.35), we obtain the characteristic equa-

tion whose solution provides the eigenvalues of B. However, their functional

forms are very complicated in this case. Therefore, we consider several series

to show the effect of L on the eigenvalues ζL,Ni in the following section.

3.5.6 Examples for evaluation of the theoretical results

Here, we give some examples related to some of the theoretical results obtained in

the previous section, particularly the behaviour of IA for different sample size, N ,

and the effect of window length and rank of H on the eigenvalues of BL,N , in order

to evaluate the results.

3.5.6.1 The effect of L on the eigenvalues

We present four examples to show the influence of L and rank of H on the eigen-

values.

Examples

Example 1. Let yt = exp(α + βt), where t = 1, . . . , N , N = 100, α = 0.1 and

β = 0.2. In this case, the corresponding Hankel matrix H has rank one [6, 32].

Figure. 3.3 illustrates ζL,1001 of BL,100 for this model, which is stable with respect

to L and is equal to one.

In the next two examples, we consider two cases; the first is a linear model and the

second is a sine model. The corresponding Hankel matrices in these examples have
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Figure 3.3: Plot of ζ1 for different values of L. Example 1.

rank two. It is easy to show that rank of the corresponding Hankel matrix H is

two; for more information refer to [6, 32]. Thus, we consider the behaviour of ζL,N1

and ζL,N2 with different values of L.

Example 2. Let yt = α+βt, where t = 1, . . . , N , N = 100, α = 1 and β = 2. It can

be seen from Figure. 3.4 that ζ1 decreases with L until L ≤ (N + 1)/2, and then

increases; it is convex and reaches minimum value at the median of {1, . . . , 100}.

However, ζ2 increases for 2 ≤ L ≤ (N+1)/2 and decreases for (N+1/2 ≤ L ≤ N−1,

which is expected because if ζ1 decreases, the second eigenvalue ζ2 will increase as

the sum of these two eigenvalues is equal to one.
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Figure 3.4: Plot of ζ1 (left) and ζ2 (right) for different values of L. Example 2.
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Example 3. Let yt = sin(πt/12). Figure. 3.5 depicts ζ1 and ζ2 for this series with

length 100. It is obvious that, if we ignore the small fluctuations in the plots, then

the behaviour of the first and second eigenvalues is similar to the previous example.

Roughly speaking, the results of this example and second one are similar.
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Figure 3.5: Plot of ζ1 (left) and ζ2 (right) for different values of L. Example 3.

Example 4. Let yt = log(t), where t = 1, . . . , N , and N = 100. The rank of

the corresponding Hankel matrix H of this series is four [217]. The eigenvalues,

ζL,100i (i = 1, . . . , 4) are shown in Figure. 3.6. It can be seen that the results are

also in concordance with all the previous examples given in this section, that the

largest eigenvalue ζL,N1 is a decreasing function for 2 ≤ L ≤ (N + 1)/2, and an

increasing function for (N + 1)/2 ≤ L ≤ N − 1, whilst the other eigenvalues ζi

(i = 2 . . . , 4) increase with L up to the median of {1, . . . , 100}, then decrease. The
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Figure 3.6: Plot of ζi (i = 1, . . . , 4) for different values of L. Example 4.

results obtained here agree with those results proved in the previous section.
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3.5.6.2 Asymptotical behaviour of IA and ζi

Let us now consider the asymptotical behaviour of IA defined in Eq. (3.42) for

different sample size N (for simplicity, L = 2 is used here). The simulation was

repeated 104 times. Figure. 3.7 shows the average of IA, IA, for different values

of N , for symmetric and nonsymmetric distributions, trend series, and sine wave.

Here we consider eight different cases that can be seen in real life examples:

(a) White noise; WN.

(b) Uniform distribution with mean zero; U(−α, α).

(c) Uniform distribution; U(0, α).

(d) Exponential distribution, Exp(α).

(e) β + Exp(α).

(f) β + t.

(g) Sine wave series; sin(φ).

(h) β + sin(φ) + sin(ϑ),

where, α = 1, β = 2, φ = 2πt/12, ϑ = 2πt/5, and t is the time which is used to

generate the linear trend series. Note that if YN is the trend series, then the rank of

A/tr(A) is one. Thus, IA is approximately equal to zero based on Theorem 3.17.

For cases (a) and (b), where YN is generated from a symmetric distribution, IA ≈ 1,

then ζ i=1,2 ≈ 1/2. However, from the second and third properties of Proposition

1, we have ζ1 ≥ 1/2 and ζ2 ≤ 1/2. Thus, ζ1 ' 1/2 and ζ2 / 1/2. It is obvious

that IA converges asymptotically to 3/4 for the exponential distribution (d) (see

Figure. 3.7 (d)). Note also that adding a constant to the exponential (case (d)),

will change the value of IA (see Figure. 3.7 (e)). For cases (f) and (g), the values

of IA, for a large N , are approximately 1/4 and 4/25 respectively (see Figure. 3.7

(f) and (g)). The result for the trend series is shown in Figure. 3.7 (f). It is clear
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Figure 3.7: Plot of IA for different sample size N .

that IA ≈ zero, which is supported by Theorem 3.17. Thus, ζ1 ≈ 1 and ζ2 ≈ 0.

Note that the properties of Proportion 1 indicate that ζ1 / 1 and ζ2 ' 0.

Let us now assess the asymptotical behaviour of ζ1 and ζ2, for different values of

N . Figure. 3.8 displays the results for m = 5× 103 simulations for all cases, where

ζ i =

(
m∑
j=1

ζi,j

)
/m, i = 1, 2. As the results indicate, ζ1 and ζ2 have asymptotic

behaviour for the white noise (a) and uniform (b) distributions. The gap between

ζ1 and ζ2 (or their averages after simulations, ζ1, and ζ2, respectively) become

smaller as the sample size increases, and both converge to 1
2
. This result can be
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clearly seen in Figure. 3.8 (a) and (b). Note that for any value of L, both ζ1 and

ζL converge to 1
L
. Thus, according to property 5 of Proposition 1, other eigenvalues

tend to 1
L
. However, we have not observed the behaviour of ζ1 and ζ2 for other cases

(ζ1 and ζ2 do not approach each other). Furthermore, it seems that ζi (i = 1, 2)

has a stable pattern for different values of N (see Figure. 3.8 (c),...,(h)). Note

that the convergence between ζ1 and ζL may tend to 1/L depending on both the

distribution of YN and sample size N . Moreover, the rate IA plays a significant role

in identifying the value of ζi. For example, if YN ∼ Exp(1), then IA ≈ 3/4 (see

Figure. 3.7 (d)). Thus, ζ1 ≈ 17/20, and ζ2 ≈ 3/20 (see Figure. 3.8 (d)). This

conclusion can be extended to other cases.
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Figure 3.8: Plot of ζ1, and ζ2 for different sample size N .



Chapter 4

A Study on the Distribution of

the Scaled Hankel Matrices

Eigenvalues

4.1 Introduction

In this chapter, the main task is to evaluate the empirical distribution of ζi. In

doing so, a series of length N from different distributions, is generated m times.

We consider the same eight cases used in the previous chapter. The results indicate

that even adding an intercept alone will change the distribution of ζi. Note that

an intercept can be considered as a trend in time series analysis. Note also that

usually every harmonic component with a different frequency produces two close

eigenvalues (except for frequency 0.5 which provides one eigenvalue). It will be

clearer if N , L, and K are sufficiently large [112]. In practice, the eigenvalues of

a harmonic series are often close to each other, and this fact simplifies the visual

identification of the harmonic components [112].

Generally, the results confirm that if we add more non stochastic components to the

noise series, for instance trend, harmonic and cyclical components, then the first

few eigenvalues are related to those components and as soon as we reach the noise

75
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level the pattern of eigenvalues will be similar to those found for the noise series.

Thus, the results obtained here are very interesting for signal processing and time

series techniques where noise reduction and filtering matter, and the results are very

important for the following chapters.

The chapter also covers the effect of N on the mean and variance of ζi; the patterns

of the mean; variance, and coefficient of variations for each eigenvalue for a fixed

N = 105; the empirical distribution of each eigenvalue; the effect of the mean and

variance of Gaussian distribution on the eigenvalues; and some examples related to

the effect of window length on the distribution of largest and smallest eigenvalues

for white noise process.

For consistency and comparability of the results, a fixed value of L, here 10, is

used for all examples and case studies throughout the chapter, except in section

4.7. For point estimation and comparison of the mean value of the eigenvalues, the

average of each eigenvalue in m runs is used; ζ i as defined before, i = 1, . . . , L.

Similarly, the variance and the coefficient of variation of ζi are also evaluated: σ2
i =(

m∑
n=1

(
ζi,n − ζ i

)2)
/m, and CVi =

√
σ2
i

ζi
, respectively.

4.2 The effect of N

In this section, we consider the effect of N on ζ i and σ2
i . Figure 4.1 demonstrates

ζ i for different values of N for all cases ((a),. . . ,(h)) considered in this chapter. In

Figure 4.1, ζ i has a decreasing pattern for different values of N . It can be seen that,

for a large N , ζ i → 1/10 for cases (a) and (b). Thus, increasing N clearly affects the

values of ζ i for the white noise (a) and uniform distribution (b). However, there is

no obvious effect on ζ i for other cases. For example, for case (c), ζ1 is approximately

equal to 0.8 for different values of N , and ζ i̸=1 is less than 1/10 (see Figure 4.1 (c)).

Although the pattern of ζ i for uniform distribution (c) is similar to exponential

case (d), for case (c), ζ1 is greater than ζ1 compared to case (d), whilst other ζ i

are smaller. It has been observed that ζ i has similar patterns for cases ((c),. . . ,(f)).
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The values of ζ i for cases (a) and (b), where YN is generated from a symmetric dis-

tribution, are approximately the same. The results clearly indicate that increasing

N does not have a significant influence on the mean of ζi in all cases, except (a)

and (b). As a result, if YN is generated from WN or U(−1, 1), then increasing N

will affect the value of ζ i significantly.
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Figure 4.1: Plot of ζi, (i = 1, . . . , 10) for different values of N .

In terms of σ2
i for the WN process, Figure. 4.2 demonstrates σ2

i for different values

of N . It is clear that the minimum value of σ2
i is in the middle. Generally, for a

large N and small L, σ2
1 w σ2

L. Thus, σ
2
i has a U shape with a global minimum.
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Figure 4.2: Plot of σ2
i for different values of N for WN.

Figure. 4.3 also shows the pattern of ζ1 (left) and σ2
1 (right) for different values

of N for WN. The pattern of ζ1 indicates clearly that ζ1 has a decreasing order

for different values of N . Similar results are also obtained for σ2
1 (see Figure. 4.3

(right)). In addition to the previous results, the coefficient of variation CVi of ζi for
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Figure 4.3: The plot of ζ1 (left) and σ2
1 (right) for different values of N for WN.

WN is also evaluated. The patterns of CVi are similar to what emerged for σ2
i .

4.3 The patterns of ζ i

Let us now focus only on the patterns of ζ i for N = 105. For the white noise

distribution (a) and trend series (f), ζ i has different patterns. It is obvious that

for the white noise series, ζ i converges asymptotically to 1/10, whilst for the trend

series ζ1 is approximately equal to 1, and ζ i̸=1 tends to zero. Similar results were

obtained for the uniform distributions, cases (b) and (c), respectively.
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Both samples generated from exponential distribution have similar patterns for ζ i.

However, it was noticed that adding an intercept β to the exponential distribution

increases the value of ζ1 and decreases other ζ i. The results indicate that ζ1 ≈ 0.6

and ζ2 ≈ 0.4, whilst other ζ i ≈ zero for sine wave (g). It also indicates that for

sine case (h) ζ i (i = 1, . . . , 5) is not zero, whereas other ζ i tend to zero. It was also

noticed that the value of ζ1 for sine wave (h) is greater than its value for sine case

(g), whilst the value of ζ2 is lower.

4.4 The patterns of σ2
i and CV 2

i

Figure. 4.4 shows the results of σ2
i for all cases (a),. . . ,(h) considered in Chapter 3.

It can be seen that σ2
1 w σ2

L for cases (a) and (b). Consequently, σ2
i has a U shape

with a global minimum for the white noise and uniform distribution with zero mean.

However, the patterns of σ2
i for cases (c) and (d) are different to what was observed

for cases (a) and (b). Note that σ2
i (i = 2, . . . , 10) are not stable for the uniform

(c) and exponential (d) distributions. For example, if we remove σ2
1, the pattern

becomes similar to what was seen for the white noise series and the sample taken

from the uniform distribution (b) (see Figure. 4.4 (c) and (d)). For the sine wave

(g), σ2
i has a Z shape. Note that σ2

i (i = 3, . . . , 10) are also not stable and have a

decreasing order in this case. Similar results were observed for case (f), where YN

is a trend. Looking at σ2
i for case (h), σ2

i increases for (i = 1, 2, 3), then decreases.

It should be noted that σ2
i (i = 6, . . . , 10) has a decreasing order (see Figure. 4.4

(h)).

In addition to the previous results, the coefficient of variation CVi of ζi is also

assessed. The pattern of CVi for the white noise and uniform distribution (b) are

similar to what was observed earlier for σ2
i (see Figure. 4.5 (a) and (b)). It can

also be seen that CVi have similar patterns for cases (c) and (d). Note that the

value of CV1 for exponential case (d) is greater than its value for exponential case

(e) (with an intercept). For both sine series, CVi has similar behaviour. It can be

seen that CVi ≈ zero (i = 1, 2) for sine wave (g), and CVi ≈ zero (i = 1, . . . , 5) for
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Figure 4.4: Plot of σ2
i .

sine wave (h), whilst other CVi have an increasing order for both cases (see Figure.

4.5 (g) and (h)). For the trend case, CVi ≈ zero (i = 1, 2), whilst other CVi have

an approximate U shape.

4.5 The empirical distribution of ζi

The distribution of ζi was assessed for all cases. The results are provided only for

ζ1, ζ5 and ζ10, for cases ((a),. . . , (d)), as similar results are observed for other ζi.
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Figure 4.5: Plot of CVi.

Figure 4.6 shows the histogram of ζi (i = 1, 5, 10) for L = 10, and m = 5 × 103

simulations. It appears that the histogram of ζ1, is skewed to the right for samples

taken from WN (a) and uniform distributions (b), whilst for the data generated

from the uniform (c) and exponential (d) distributions, it possibly be symmetric.

For the middle ζi, the histogram might be symmetric for the four cases (results are

only provided for ζ5), whilst the distribution of ζ10, is skewed to the left.

For the cases of exponential distribution (e), trend series (f), sine wave series (g)

and complex series (h), we have standardised ζi to convey information about their

distributions. Figure 4.7 shows the density of ζi (i = 1, 2, 3, 5, 6, 10) for those cases.

It is clear that ζ1 has a different histogram for these cases, and is also different from

what was achieved for the white noise and uniform distributions with zero mean.

Note that if YN is generated from a symmetric distribution, as in cases (a) and (b),

ζ1 has a right skewed distribution. Moreover, it is interesting that ζ10 has a negative

skewed distribution for all cases except the trend series and sine ones ((g), (h)).

Additionally, it should be noted that, for sine series (g), both ζ1 and ζ2 have similar

distributions, whereas other ζi have right skewed distributions. It is obvious that the

distribution of ζi for sine series (h) becomes skewed to the right for ζi (i = 6, . . . , 10).

Remember that sine wave (h) was generated from an intercept and two pure sine
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waves. This means that the components related to the first five eigenvalues create

sine series (h).

In terms of the distribution of ζi for the trend series and sine wave (g), the distri-

butions of ζi=1,2 are totally different to the distributions of other ζi, which become

skewed. Note that the distribution of ζi (i = 1, 2) for the trend series is symmet-

ric, whilst skewed for the sine wave (g). For sine series (h), the distribution of ζi

(i = 1, . . . , 5) is different from the distribution of ζi (i = 6, . . . , 10). It is obvious

from Figure 4.7 that ζi (i = 6, 10) has a right skewed distribution.
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Figure 4.6: Histograms of ζ1, ζ5, and ζ10 for cases ((a),. . . , (d)).

Generally, it is not easy to judge visually if ζi has a symmetric distribution, thus

it is necessary to consider other criteria such as statistical tests. We calculate

the coefficient of skewness, which is a measure for the degree of symmetry in the
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Figure 4.7: Density of ζi, i = 1, . . . , 6, 10 for cases ((e),. . . , (h)).

distribution of a variable. Table 4.1 represents the coefficient of skewness of ζi for

all cases. Bulmer [219] suggests that if skewness is less than -1 or greater than

+1, the distribution is highly skewed; if it is between -1 and -1/2 or between +1/2

and +1, the distribution is moderately skewed; and finally if it is between -1/2 and

+1/2, the distribution is approximately symmetric. Therefore, we can say that, for

instance, the distribution of ζ1 for cases ((c), . . . , (h)), and ζ5 for all cases might be

symmetric.

The D’Agostino-Pearson normality test (D-P) [220] (see also Appendix B), is applied

here to evaluate this issue properly (see Table 4.2). It is also known as the omnibus

test because it uses the test statistics for both the skewness and kurtosis to come

up with a single p-value and to quantify how far from Gaussian the distribution is

in terms of asymmetry and shape. The p-value of the D-P test was not significant;
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Coefficient of Skewness of ζi ,i = 1, . . . , 10.
WN U(−1, 1) U(0, 1) Exp(1) 2 + Exp(1) 2 + t sin(φ) 2 + sin(φ) + sin(ϑ)

ζ1 0.991 0.934 -0.056 -0.021 0.023 -0.046 0.341 0.157
ζ2 0.692 0.687 0.491 0.423 0.117 0.021 -0.341 -0.079
ζ3 0.461 0.564 0.235 0.328 0.048 1.103 0.734 -0.195
ζ4 0.401 0.352 0.078 0.065 0.019 1.405 0.631 -0.321
ζ5 0.099 0.057 0.070 0.071 -0.026 0.794 0.678 -0.059
ζ6 -0.140 -0.098 0.006 0.070 -0.031 0.828 0.708 0.754
ζ7 -0.37 -0.442 0.057 0.001 -0.010 0.921 0.761 0.632
ζ8 -0.503 -0.572 -0.003 -0.129 -0.030 1.123 0.930 0.744
ζ9 -0.577 -0.617 -0.174 -0.278 -0.063 1.540 1.02 0998
ζ10 -0.810 -0.875 -0.568 -0.479 -0.187 2.058 1.616 1.516

Table 4.1: Coefficient of skewness for ζi, (i = 1, . . . , 10), for all cases.

greater than 0.05 for ζ1, for cases ((c),. . . , (f)), whereas, it is less than 0.05 for other

cases ((a), (b), (g), (h)). Therefore, we accept the null hypothesis that the data of

ζ1 for cases ((c), . . . , (f)) are symmetric and as a result are not skewed. Moreover,

ζ5 has a symmetric distribution for all cases, except the trend series and sine wave

(g). Note that the distribution of ζi (i = 2, 3, 9), for the exponential case (d) is

skewed, whereas it is symmetric for the exponential case with intercept (e).

P -value of D-P test for ζi ,i = 1, . . . , 10.
WN U(−1, 1) U(0, 1) Exp(1) 2 + Exp(1) 2 + t sin(φ) 2 + sin(φ) + sin(ϑ)

ζ1 <2.2e-16 <2.2e-16 0.760∗ 0.362∗ 0.735∗ 0.501∗ 9.2e-7 0.021
ζ2 <2.2e-16 <2.2e-16 2.1e-9 1.4e-11 0.089∗ 0.761∗ 9.2e-7 0.242∗

ζ3 2.7e-14 3.1e-14 2.3e-6 4.8e-05 0.474∗ <2.2e-16 <2.2e-16 0.004
ζ4 1.02e-06 6.3e-09 0.338∗ 0.250∗ 0.768∗ <2.2e-16 <2.2e-16 3.8e-6
ζ5 0.271∗ 0.851∗ 0.296∗ 0.290∗ 0.699∗ <2.2e-16 8.4e-16 0.386∗

ζ6 0.442∗ 0.075∗ 0.299∗ 0.920∗ 0.651∗ <2.2e-16 <2.2e-16 <2.2e-16
ζ7 2.9e-07 3.1e-06 0.990∗ 0.402∗ 0.881∗ <2.2e-16 <2.2e-16 <2.2e-16
ζ8 4.1e-13 6e-10 0.057∗ 0.968∗ 0.658∗ <2.2e-16 <2.2e-16 <2.2e-16
ζ9 <2.2e-16 <2.2e-16 5.7e-5 0.001 0.355∗ <2.2e-16 <2.2e-16 <2.2e-16
ζ10 <2.2e-16 <2.2e-16 1.7e-11 3.2e-09 0.006 <2.2e-16 <2.2e-16 <2.2e-16

Note :∗, represents symmetry based on D-P test at p = 0.05.

Table 4.2: p-value of the D’Agostino-Pearson test for ζi, (i = 1, . . . , 10), for all
cases.

In addition, the relationship between ζi and ζj, (i, j = 1, . . . , 10) is also studied.

The Pearson’s correlation coefficient, ρ, between two sets of data, for example, ζi

and ζj with expected values ζ i and ζj (respectively) is considered, and defined as

follows:

ρ = cor(ζi, ζj) =
∑m

n=1 (ζi,n−ζi)(ζj,n−ζj)√∑m
n=1(ζi,n−ζi)

2
√∑m

n=1(ζj,n−ζj)
2
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Figure. 4.8 shows the correlation matrix for ζi considering Pearson correlation,

which is the most commonly reported, even for those data for which it is superficially

not a good match. The correlation matrix for ζi is considered, in a 20-grade grey

scale from white to black corresponding to the values of correlations from -1 to 1.

The white colour indicates that ζi and ζj have perfect negative correlation, whilst

a black value shows a perfect positive correlation.
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Figure 4.8: Matrix of correlation between ζi and ζj , i, j = 1, ..., 10 for all cases.

The results clearly indicate that the elements of the main diagonal of the correlation

matrix are more correlated than those on the off-diagonal for WN (see Figure. 4.8

(a)). Moreover, it can be seen that the value of the correlation becomes smaller
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as the distance increases. Figure. 4.8 (c) illustrates the relationship between the

ζi and ζj for uniform distribution (c). It is obvious that the relationship is totally

different to that observed for the white noise series. Similar results were obtained

for exponential case (b) and uniform distribution (d), respectively.

It is also clear that the values of ρ between ζ1 and ζi, (i = 2, 3, 4) are positive for the

white noise series and sample generated from uniform distribution (b). In contrast,

there is a negative correlation between ζ1 and ζi, (i = 5, . . . , 10) for these cases.

Moreover, it is obvious that the strongest relationship is observed between ζ1 and

ζ2 for the white noise process. It is also obvious that there is a negative relationship

between ζ1 and other ζi for cases (c) and (d). This further supports the results

obtained above.

Furthermore, the correlation matrices for both exponential distributions, cases (d)

and (e), are similar. This means adding a constant to exponential distribution (d)

does not make differences to the results of the association. We observe that the

correlation between ζ1 and ζ2 for sine wave (g) is approximately -1, which indicates

a strong negative relationship. Similar results were achieved for the trend series.

It can be observed that for sine series (h) there is a strong positive relationship

between ζ1, and ζi (i = 2, 4), whilst ζ1 is associated with ζ3 and ζ5 negatively.

Furthermore, it can be seen that the values of ρ between ζi and ζj (i, j = 6, . . . , 10)

are similar (see Figure. 4.8 (h)).

Figure. 4.9 shows the correlation matrix between ζi and ζj for WN considering

different types of correlations, namely Pearson (ρ), Spearman (ρs) and Kendall (τ)

(see Appendix A for details). It is clear that these measures give similar results and

patterns of the correlation matrix. The results indicate that we can use any linear

measure as there is no difference in the results. The results also clearly indicate that

the elements of the main diagonal of the correlation matrix are more correlated than

those of the off-diagonal. The values of the correlation obtained by the different

measures become smaller as the distances increase.

Additionally, we also consider a measure based on mutual information that can be

helpful in capturing serial dependence and correlation when there are nonlinearities
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Figure 4.9: Matrix of correlation between ζi and ζj , i, j = 1, ..., 10 for the WN
process considering Pearson, Kendal, and Spearman correlations.

in the data. The standard measure for the mutual information (ξ) is defined in

Appendix A, Eq. (A.6), which can capture the overall dependence, both linear and

nonlinear, between ζi and ζj. Note that it takes values between 0 and 1. The results

indicate that the relationship between ζi and ζj observed by the standard mutual

information ξ, is similar to what was obtained by the linear correlation coefficients.

For example, Table. 4.3 represents the standard mutual information between ζ1

and other ζi for all cases. Accordingly, as the value of linear correlation informs us

the positive and negative direction of association, we use linear correlation in the

following chapters.

4.6 The effect of the mean and variance of Gaus-

sian noise distribution

In the previous sections the white noise series (µ = 0 and σ2 = 1) and other cases

were assessed. Let us now consider the effect of the Gaussian noise mean, µ, and

variance, σ2, on the distribution of ζi. The results are provided only for ζ1, ζ5

and ζ10 as similar results are observed for other cases. Let us first consider the

situation where µ = 0 and σ2 varies. Figure. 4.10 shows the results related to ζ i,

σ2
i , and CVi of ζi for the sample obtained from N(0, 5). These results are similar to

what emerged for the white noise process, N(0, 1). The simulation results for other

values of σ2 also confirm that changing the values of σ2 does not show any different
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WN
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ζ1 0.92 0.88 0.79 0.75 0.80 0.84 0.87 0.90 0.85

U(0, 1)
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ζ1 0.91 0.86 0.82 0.76 0.83 0.84 0.88 0.89 0.88

U(−1, 1)
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ζ1 0.93 0.91 0.83 0.86 0.84 0.85 0.89 0.92 0.87

Exp(1)
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ζ1 0.87 0.89 0.91 0.92 0.94 0.93 0.89 0.88 0.86

2 + Exp(1)
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ζ1 0.89 0.93 0.94 0.96 0.97 0.98 0.95 0.93 0.91

2 + Trend
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ζ1 0.99 0.81 0.65 0.63 0.65 0.64 0.66 0.67 0.66

sin(2πt/12)
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ζ1 0.99 0.67 0.69 0.70 0.68 0.68 0.69 0.66 0.68

2 + sin(2πt/12) + sin(2πt/5)
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ζ1 0.99 0.96 0.98 0.95 0.58 0.57 0.56 0.57 0.57

Table 4.3: Non-linear correlation between ζ1 and ζi for all cases.

results. Therefore, for µ = 0 and σ2 ≥ 1, the patterns of ζi are similar to those

which emerged for the white noise process N(0, 1).

Let us now consider σ2 = 1 (fixed) and different values of µ. The outcome indi-

cates that if the sample is taken from N(µ ̸= 0, 1), the distribution of ζi might be

symmetric (see Figure. 4.11). In Figure. 4.11, the distribution of ζ1 is symmetric

based on the D-P test for the symmetry assumption. Similar results have been

obtained for ζi, 4 ≤ i ≤ 9. However, the distribution of ζ10 is skewed to the left,

based on the D-P test (see also Figure. 4.11). Therefore, for the sample taken from

N(1, 1), for instance, the distributions of ζi are symmetric except ζ2, ζ3 and ζ10

whose distributions are skewed. Similar results have been observed for the sample

taken from N(µ ̸= 0, 1). As a result, µ and σ2 play an important role in identifying

the symmetry of the distribution of ζi. Note also that one may use the standard-

isation procedure to transfer a series with arbitrary mean µ and variance σ2 to a

series with zero mean and also variance 1.
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Additionally, a commonly used approach to determine if a variable follows a normal

distribution is the normal Q-Q plot. Visually, one may decide whether the data

of ζi roughly follows a straight line (see Figures 4.10 and 4.11 (bottom)). This

may help us to identify which of them are normally distributed, and then which

are symmetric. However, we use one of the most powerful test for all types of

distributions and sample sizes, the Shapiro-Wilk test (S-W) [221], to evaluate the

assumption of the normality of ζi. It confirms that if the distribution of ζi is normal,

then it must be symmetric. Here, the simulation for the p-value of the S-W test,

is also considered to have a good and credible result. The simulation was repeated

103 times. Table 4.4 reports the average of the p-value of the S-W test for ζi. The

results indicate that the average of the p-value of ζ5 and ζ6 for the sample taken from

N(0, σ2) is greater than 0.05. Thus, the distributions of ζ5 and ζ6 follow a normal

distribution. However, the distributions of other ζi are not normally distributed;

their p-values of the S-W test are very small, leading to a rejection of the normality

assumption. Therefore, the distributions of ζi are not symmetric for the white noise

process, except the distribution of ζ5 and ζ6. For the sample taken from N(µ ̸= 0, 1),

the distributions of ζi might be symmetric based on the p-values of the S-W test.

For example, if we select α = 0.05, then ζi (i = 1, 4, . . . , 9) is normally distributed

for sample N(10, 1) as the p-value > 0.05. It is noticed that if the sample is selected

from N(µ, σ2), where µ ̸= 0, the distribution of ζi can be symmetric.

Figure. 4.12 displays the distribution of ζ1 for different values of µ ̸= 0 and σ2.

The histogram of ζ1 for the sample generated from N(1, 1) is symmetric, whilst it

is skewed for the samples generated from N(1, 50) and N(100, 1).

The other empirical results confirm that there is a relationship between ζ1 and ζ2

whereas a very weak relation is seen between ζ1 and other ζi for the sample taken

from N(0, 5). Similar results were obtained for the sample taken from N(0, 10).

Thus, the correlation between ζ1 and ζi for N(0, σ2) is similar to that for the white

noise process N(0, 1). However, for the sample taken from N(1, 1), there is a clear

negative correlation between ζ1 and other ζi.
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Figure 4.10: Plot of ζi, σ
2
i and CVi (top), the histograms of ζ1, ζ5, and ζ10

(middle) and the Q−Q plots (bottom) for µ = 0 and σ2 = 5.

4.7 Effect of L on the distribution of the largest

and smallest eigenvalues for WN

In this section, we consider the effect of L on the distribution of the largest and

smallest eigenvalues of BL,N for YN as a white noise. We consider different values

of L to explore how changing the values of the window length affect the behaviour

or the distribution of ζL,N1 and ζL,NL for WN.
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Figure 4.11: Plot of ζi, σ
2
i and CVi (top), histograms of ζ1, ζ5, and ζ10 (middle)

and Q−Q plots (bottom) for µ = 1 and σ2 = 1.
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Figure 4.12: Histogram of ζ1 for different values of µ and σ2.
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p-value of S-W test
µ = 0, σ2 = 5 µ = 0, σ2 = 10 µ = 0, σ2 = 100 µ = 1, σ2 = 1 µ = 5, σ2 = 1 µ = 10, σ2 = 1

ζ1 1.9e-16 2.5e-18 1.5e-18 0.182∗ 0.011 0.360∗

ζ2 5.1e-11 3.1e-9 2.7e-10 2e-4 6.2e-4 6e-4
ζ3 2.2e-4 1.3e-4 2.8e-5 9.4e-3 0.020 0.019
ζ4 0.019 0.016 0.015 0.180∗ 0.162∗ 0.151∗

ζ5 0.055∗ 0.391∗ 0.252∗ 0.632∗ 0.184∗ 0.413∗

ζ6 0.110∗ 0.107∗ 0.104∗ 0.412∗ 0.324∗ 0.312∗

ζ7 0.005 0.004 0.003 0.450∗ 0.392∗ 0.381∗

ζ8 8.1e-4 1.3e-4 8.3e-8 0.514∗ 0.442∗ 0.451∗

ζ9 2.4e-7 2.3e-6 2.8e-7 0.372∗ 0.480∗ 0.473∗

ζ10 2.2e-16 2.2e-16 2.2e-16 0.0420 0.008 2.1e-05
Note :∗, represents normality based on Shapiro test at p = 0.05.

Table 4.4: Average of p-values of the Shapiro-Wilk test of ζi for different values
of µ and σ2 of Gaussian distribution.

Let YN = (y1, . . . , yN), where yt ∼ WN(0, 1) andN = 100. We consider five different

values of L, and for each value of L, the simulation is repeated 105 times to observe

the behaviour or the distribution of the largest and smallest eigenvalues in each case.

We intend to see if there is an effect on the eigenvalues by changing the window

length; specifically, to see the similarities and differences between the distribution

of ζL,1001 and ζL−m,100
1 , and between the distribution of ζL,100L and ζL−m,100

L where

L = 50 and m = (10, 20, 25, 30, 40). Figure. 4.13 shows the distribution of the

largest eigenvalue for different values of L. It is clear that there is no change in the

distribution of ζL,1001 with L. The distribution is skewed to the right for all cases.

However, it can be seen that the distribution of ζL,NL changes as L increases (see

Figure. 4.14). For L = 10, the distribution of ζ10,100L is skewed to the left, then

becomes symmetric for L = 30, and becomes skewed to the right for L = 50.

The results confirm that the largest eigenvalue of B has a stable positive skewed

distribution with L whilst the smallest eigenvalue does not have a stable distribution

with L; the distribution changes from left to right when L increases. This result is

very interesting and helpful for the following chapters, especially Chapter 6 because

the results indicate that if we add any signal component to the noise series, for

example harmonic, trend and cyclical components, then the first few eigenvalues are

related to those components and as soon as we obtain the noise level the pattern of

eigenvalues will be similar to those found for the noise series. Therefore, the results
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obtained here are very important for time series and signal processing techniques

where noise reduction, signal extraction and filtering matters.
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Figure 4.13: Plot of the largest eigenvalue for the white noise process with
respect to different values of L.

4.8 Summary

In this chapter, we have studied the empirical distribution of ζi of the matrix B,

generated from different distributions (symmetric, nonsymmetric), trend and sine

series. The results have illustrated that for a large sample size N , ζ i → 1/L, and

σ2
1 w σ2

L for the normal and the uniform distributions with zero mean, whilst ζi

does not converge to 1/L, and σ2
1 ̸= σ2

L for other cases.

It was observed that for the symmetric cases, the first eigenvalue has a right skewed

distribution, whilst it may have a symmetric distribution for the trend and nonsym-

metric distribution examples. Moreover, for all cases considered in this chapter, the

distribution of the middle ζi, for L = 10, can be symmetric except the distribution
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Figure 4.14: Plot of the smallest eigenvalue for the white noise process with
respect to different values of L.

of ζ5 for the trend case and sine series (g). It was found that the smallest eigenvalue

has a negative skewed distribution for all cases apart from the trend series and sine

waves. In addition, the correlation between eigenvalues was assessed and found

that there is a complex structure among them. It is also found that the correlation

matrix between ζi and ζj for symmetric distribution is different to what observed

for nonsymmetric distribution, trend and sine series. Furthermore, the influence of

µ and σ2 on ζi were examined. The results show that the distribution of ζi for the

sample generated from N(0, σ2) is similar to the distribution of ζi for the sample

taken from N(0, 1). However, the distribution of ζi is totally different, and might

be symmetric for the sample taken from N(µ, σ2), µ ̸= 0. Thus, the rate σ2/µ plays

an important role in identifying if ζi has a symmetrical distribution. In addition,

we consider the effect of the window length on the distribution of the largest and

smallest eigenvalues for the white noise process. The results show that the distri-

bution of the largest eigenvalue is skewed to the right for any value of L, but the

distribution of the smallest eigenvalue changes from the left to the right with L.
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The results obtained here can be used for signal processing and time series tech-

niques in terms of filtering and noise reduction. The results confirm that if we

simply add an intercept, then the pattern and distribution of ζi will be changed.

Generally, if we add more non-stochastic components to the noise series, then the

first leader eigenvalues correspond to those components, and once we reach the

noise level, the pattern of eigenvalues will be similar to those found for the noise

series. Consequently, this will aid in identification of the value of r and then of

signal extraction using a step by step procedure in chapter 6.



Chapter 5

Chaos and Noise

5.1 Introduction

Chaos theory is a branch of mathematics that focuses on the dynamical systems

whose behavior is highly sensitive to small changes in initial conditions. This means

slight alterations can lead to strikingly considerable consequences and this popularly

referred to as the butterfly effect [55]. Slight differences in initial conditions, for

instance, to those due to rounding errors in numerical computation, give widely

diverging results for such dynamical systems, yielding long-term forecast of their

behavior hard to be obtain in general [222]. Note that this can be happened even

though these systems are deterministic. This means that the future behavior of

systems is totally determined by their initial conditions, with no involvement of

random components. In different words, the deterministic nature of these systems

does not make them predictable. Chaotic systems are predictable for a while and

then become random [222].

Edward Lorenz summarized the theory as chaos is when the present determines the

future, but the approximate present does not approximately determine the future.

Chaotic behavior can be found in several natural systems, for example, weather and

climate [55]. This behavior also exists spontaneously in other systems with artificial

components, such as road traffic. It can be studied through analysis of a chaotic

96
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mathematical model, or through analytical techniques such as recurrence plots and

Poincar maps. The theory has several applications in different disciplines, including

engineering, biology, meteorology, sociology, physics, environmental science, com-

puter science, economics, ecology, and philosophy.

The systems behavior is known as chaos. Chaos term is known commonly as a

state of disorder, but this term is defined more precisely in chaos theory. Despite

there is no universal mathematical definition of chaos in the literature, the most

used one says that to classify a dynamical system as chaotic, it must be sensitive

to initial conditions, topologically mixing and have dense periodic orbits. For more

information about the mathematical definition and formulation of chaos, see [223].

Some dynamical systems, for instance, Logistic map is chaotic everywhere, but in

various cases chaotic behavior can be seen only in a subset of phase space. The

most interesting cases arise when the chaotic behavior takes place on an attractor.

The attractor that appear from chaotic systems is known as a strange attractor.

Strange attractors occur in both continuous dynamical systems (such as the Lorenz

system) and in some discrete systems (such as the Hnon map). The Lorenz attractor

(see Figure 1.2 in Chapter 1) is probably one of the most and best known chaotic

system diagrams, perhaps because it is one of the first and the most complex ones

that shows a very interesting pattern, which looks like the wings of a butterfly.

In the late 19th century, while Henri Poincar was studying the three-body problem,

he found that we can have orbits that non-periodic, and yet not forever increasing

nor approaching a fixed point [224]. The start of chaos theory was in the field of

ergodic theory, then on the topic of nonlinear differential equations were carried

out, see, for example, [225] and references therein.

Although the first insights of chaos theory were in the first half of the 20th century,

it became formalized only after the mid of the century, when scientists found at

that time linear theory and the prevailing system theory could not describe the

observed behavior of certain experiments such that of the logistic map. What was

attributed to measure noise and imprecision were considered by chaos theorists as

a full component of the studied systems.
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The early pioneer of the chaos theory was Edward Lorenz. The main interest of

his work in chaos came up accidentally in 1961 when he was working on weather

forecast. He found that very small changes in initial conditions will produce large

changes in long-term outcome [55]. His discovery, which is known as Lorenz attrac-

tors, displayed generally that even detailed atmospheric modeling does not make

accurate long-term weather forecasts. In 1982 the fractal geometry of nature was

published in [226], which became a classic of chaos theory. Biological systems such

as the branching of the circulatory and bronchial systems proved to fit a fractal

model [227].

In 1987, a book with title chaos: making a new science, was published by James

Gleick [228], which became a best known one that introduce fundamental principles

of the theory of chaos and its history to the broad public. Since then, it has more

attention and progressively emerged as a discipline, mainly under the name of non-

linear systems analysis. Currently, the theory remains an active area of research

including several various disciplines [228]. Although it was born from observing

weather patterns, its applicability has become known in a variety of areas. Some

areas that benefit from chaos theory are geology, mathematics, microbiology, biol-

ogy, computer science, economics, engineering, finance, algorithmic trading, meteo-

rology, philosophy, physics, politics, population dynamics, psychology, and robotics.

For example, chaotic behaviour is found in biological systems, such as cardiotocog-

raphy, which is a technical means of recording the fetal heartbeat and the uterine

contractions during pregnancy. Fetal surveillance is a delicate balance of obtaining

precise information while being as noninvasive as possible. Chaotic modeling can

help in obtaining better models of warning signs of fetal hypoxia [229].

In the last 3 decades, there have been several discussions on the similarities and

differences between stochastic noises and deterministic chaos. The deterministic

system, chaos, stochastic process and noise can exist in various situations [89].

Chaos is a nonlinear deterministic process which looks random. There have been

great challenges for the detection of chaos since the seminal papers by [230, 231].

The distinction between chaos and noise systems is considered to be a very im-

portant topic, because they have several common properties that can make them
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indistinguishable (see for example [90]–[96]). Furthermore, there is a significant and

confusing similarity between these systems, in that both have an even distribution

property in the time domain and a broad band property in the frequency domain

[89].

In order to introduce this issue, let us present typical trajectories of two well known

processes, chaotic and stochastic ones. Figure 5.1 (left) shows a series of nonlinear

difference equation proposed by Henon for the parameter values a = 1.4 and b =

0.3, which appears to be a random series; however, mapping this series to a two

dimensional map can present the chaotic attractor shown in Figure 5.2. In Figure

5.1 (right) a series is plotted from Gaussian white noise of zero mean and unit

variance. Both series appear irregular and similar on time. However, there are

important differences between them and, in particular; the Henon is known as

deterministic and being more regular than the white noise. The visual comparison

exposes that chaotic signal is similar to and more regular than the white noise. From

this observation, one would wonder if there exists a quantitative test of randomness

that can capture our visual intuition. Such a question is very important in the

natural sciences where the time evaluation of several biological and physicochemical

phenomena is described by stochastic process.
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Figure 5.1: A Henon series (left) and white noise series (right).

As stated earlier, chaos theory has applications in several disciplines. Medicine is

the latest field that consider the idea of chaos theory. Specialists are seeking to

understand, for example, the working of the brain and heart using it, which may

help them to understand and treat some medical conditions. An example of chaos
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Figure 5.2: A Henon map.

in our bodies is the beating of the heart [232]. It is not constant, and depends on

the actions that a person is doing at a certain of time. The heartbeats can speed

up, or beat erratically, in certain different conditions.

The noise influencing the ECG time series has caused many problems in the esti-

mation of chaotic behaviour and needs to be taken into account [233]. The issue

of noise impact on the estimation of parameters for chaotic characterisation (e.g.

dimensions, entropies and Lyapunov exponents) has been the subject of much work

in recent years.

Whether the normal or abnormal human heart is chaotic has long been a subject of

interest in the application of nonlinear time series analysis. For example, the author

of [234, 235] analysed the ECG of healthy subjects and those with severe congestive

heart failure. The results of their work suggest that cardiac chaos is prevalent in the

normal heart, and a decrease in such chaotic behaviour can be a signal of congestive

heart failure.

The correlation dimension, entropies and Lyapunov exponents (LE), show evidence

of chaos in human cardiac data [233], [236]–[238]. For example, the authors of [236]

combined ECG results and pulse data with periodic and chaotic data, and found

that the changing tendency of ECG and pulse pressure signals are both consistent
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with that of chaotic Rössler and Chua data and vary significantly from the con-

sidered periodic data, which indicates the existence of deterministic chaos in the

cardiac data employed. The authors mentioned that their results may not consti-

tute a definitive proof of chaos in healthy human heart output signals but they

were found to be consistent with chaotic dynamics. Furthermore, the authors of

[237] concluded their research by saying that the normal human heart follows a

deterministic dynamic of chaotic nature.

The LE is the common key to characterise chaotic systems [92], with chaos indicated

by a positive LE. However, it is not directly clear how it should be properly defined,

and it suffers from some drawbacks [90]. Furthermore, evidence of chaos based on

these measures, such as the presence of the positive Lyapunov exponent alone, do

not provide adequate evidence to confirm the existence of chaotic behaviour [239].

The Pseudo-Periodic Surrogates (PPS) method and correlation dimension were used

in [236], together with the hypotheses of a periodic orbit with uncorrelated noise

in both complete ECG and pulse waveform, to examine the existence of chaotic

structures. It was found that the ECG systems reveal chaotic characteristics. Here,

the distribution of ζi is proposed to be a technique for distinguishing between these

systems. The general aim is to analyse the experimental data and to detect whether

their nature is purely random or due to deterministic chaos.

It should be noted that for over twenty years the issue of distinguishing random

signals from deterministically chaotic ones has been debated in the nonlinear dy-

namics community (see for example, [240]-[242]). The question of whether the data

are purely random or purely deterministic is not valid in most practical cases. In

realistic situations, the observed processes originate from nonlinear systems, but

are strongly affected by random noise. In such situations, the noise-free underlying

dynamical system can demonstrate deterministic chaos, but being influenced by

noise it can show a complex mixture of chaos and noise. The question is therefore

not to decide whether the process is random or not (it is always random to some

extent in practice), but whether the underlying noise-free dynamical system has

deterministic chaos or not. An altogether different issue is whether random noise

can induce chaos if the noise-free system behaves in a non-chaotic manner [243].
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Based on the literature, the main issue is how we can determine whether the irreg-

ularity observed in the time series results from chaotic systems or from the noisy

systems. Here, we apply the proposed method to distinguish between the white

noise and some chaotic series, namely; the Henon, Logistic, Lorenz, and Tent map.

The method is then examined using real ECG data.

In the following section, we give a general mathematical definition of chaos, and a

brief definition of the Henon, Logistic, Lorenz and Tent map. In section 5.3, the

distinction between chaotic and noise series is discussed using simulated and real

chaotic series.

5.2 Mathematical definition of chaos

There are different definitions of chaos in the means of mathematics. Here we give

one of the most popular definitions: for more information see [244].

A continuous map f : X → X on a compact metric space (X,d) is called chaotic

according to Li and Yorke [245], if there exists a subset S of X with the following

properties:

• lim sup
n→∞

d(fn(x), fn(y)) > 0 for all x, y ∈ S, x ̸= y.

• lim sup
n→∞

d(fn(x), fn(y)) = 0 for all x, y ∈ S, x ̸= y.

• lim sup
n→∞

d(fn(x), fn(p)) > 0 for all x ∈ S, p ∈ X, p periodic.

There are several chaotic maps; here we consider the most famous and well known

ones.

1. The Henon map: a Henon map is a simple nonlinear difference equation:

xn+1 = yn + 1− ax2
n (5.1)

yn+1 = bxn. (5.2)
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Henon [246] used the parameters a and b as a = 1.4 and b = 0.3. Although

those values are usually used, the other parameters are interesting too.

2. The Logistic map: in a mathematical sense, a logistic map is a nonlinear

difference equation, given as follows:

xn+1 = rxn − xn. (5.3)

where xn ∈ [0, 1], which represents the ratio of the existing population to the

maximum possible population. The values of interest for the parameter r are

those in the interval (0, 4].

3. The Lorentz map: Lorentz [55] published his system of the three ordinary

equations:

d(x)

d(t)
= σ(y − x) (5.4)

d(y)

d(t)
= x(r − z)− y (5.5)

d(z)

d(t)
= xy − bz, (5.6)

where σ, r, and b are positive parameters. His equations show the convective

motion of a fluid cell which is warmed from below and cooled from above.

He found a strange attractor when he used the values 10, 28 and 8/3 for the

parameters σ, r and b respectively.

4. Th Tent map: a Tent map is one of the main examples of chaotic maps study

for nonlinear discrete dynamical systems. It is given by the following formula:

xn+1 = fa(xn) =

 a xn forxn < 0

a (1− xn) for 1
2
≤ xn,

where a is a positive real constant. Note that for a = 4, the Tent map is a nonlinear

transformation of the Logistic map.
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5.3 Distinction between chaos and noise

5.3.1 Simulated data

We simulated ζi (i = 1, 2) 1000 times for chaotic and white noise series. For the

Lorenz series, the parameters of the system were σ = 16, r = 45.92 and b = 4, with

an integral step of 0.01. The parameters a = 1.4 and b = 0.3 are considered for the

Henon series, r = 4 for the Logistic, and a = 2 for the Tent map. The initial values

were generated randomly from the uniform distribution to generate a chaotic series.

The empirical distribution of ζi, i = 1, 2 for the white noise, Logistic, Henon, Lorenz,

and Tent series is evaluated. Note that to embed data from the Logistic equation

or Henon map, embedding dimension L = 2 is sufficient. However, the embedding

dimension for a chaotic Lorenz system must be at least 3. Moreover, according to the

famous Takens theorem, the necessary embedding dimension should be calculated

from the formula specified in [86]. For simplicity and visualisation purposes, L = 2 is

considered. Here, we present five figures, with each figure showing four patterns for

each case. The first is the plot of the time series data, the second displays the map,

and the third and fourth patterns show the empirical distribution of ζi (i = 1, 2)

for m = 1000 simulations. Looking at the plots of the series, particularly the white

noise, Henon and Logistic series, it is difficult to decide whether the process is

deterministic or stochastic. However, finding the distribution of ζi explained in the

previous chapter, one can decide whether the data is chaotic or noise. Visually, we

can judge that the distribution of ζi (i = 1, 2) is skewed for the white noise series

(see Figure 5.3) and Tent series (see Figure 5.7). For the white noise series, the

distribution of ζ1 is skewed to the right and the distribution of ζ2 is skewed to the

left, whereas ζ1 has a negative distribution and ζ2 has a positive one for the Tent

series. Note that ζi (i = 1, 2) might have a symmetric distribution for other chaotic

series, especially the Henon and Logistic ones (see Figures. 5.4 and 5.5).

Furthermore, the coefficient of skewness, skew(ζi), is calculated. Table 5.1 presents

the coefficient of skewness of ζi (i = 1, 2) for all cases. It is clear from the table that,

for the white noise and Lorenz series, the coefficient of skewness for ζ1 and ζ2 are
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approximately 1 and -1 respectively, whilst they are around zero for the Henon and

Logistic series. Moreover, the D-P normality test is applied here to evaluate this

problem. Table 5.2 provides information about the p-values of the D-P test for ζi. It

is obvious that the p-value is not significant; greater than 0.01 for ζi, for the Henon

and Logistic series, whilst less than 0.01 for the white noise, Tent and Lorenz series.

Therefore, we accept the null hypothesis that the data of ζi, for the Henon and

Logistic series are not skewed, and are therefore symmetric. For the Lorenz series,

the empirical distribution might be similar for L = 2, but is completely different for

L = 3 which is the correct dimension.

In addition to the previous results, the correlation ρs, between ζ1 and ζ2 is also

computed. The value of ρs between ζ1 and ζ2 is exactly -1 for all cases, which

indicates a perfect negative relationship between them. We also consider L = 10 for

further evaluation. Figure 5.8 demonstrates the correlation matrix for ζi considering

ρs. It is obvious that the correlation matrix between ζi and ζj, (i, j = 1, . . . , 10)

for WN is totally different to what was observed for the chaotic time series. For

example, there is a strong positive linear relationship between ζ1 and ζ2 for the WN

series, whilst ζ1 is associated with ζ2 negatively for the chaotic series. Furthermore,

for the WN series, the elements of the main diagonal of the correlation matrix are

more correlated than those on the off-diagonal, whereas different structure among

these elements can be seen for the chaotic series.

We also consider the nonlinear measure (ξ) between the eigenvalues, defined in Eq.

(A.6). The ξ measure between ζ1 and ζj (j = 2, . . . , 10), is evaluated. Table 5.3

presents the values of ξ for all cases. The linear and nonlinear correlations between ζ1

and ζj, for all cases are similar. The results indicate that the relationship between

ζ1 and ζj observed by the standard mutual information ξ is similar to what was

obtained by ρs. As a result, we should use the value of linear correlation because it

gives us, the positive and negative direction of correlation.

Additionally, the Kolmogorov Smirnov (K-S) [247] test is also applied. The K-S

test is a nonparametric test for the equality of continuous, one-dimensional proba-

bility distributions that can be used to compare a sample with a known probability
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Figure 5.3: White Noise series, map and histogram of ζi (i = 1, 2).
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Figure 5.4: Henon series, Henon map and histogram of ζi (i = 1, 2).
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Figure 5.5: Logistic series, Logistic map and histogram of ζi (i = 1, 2).

Table 5.1: Coefficient of skewness for ζi, (i = 1, 2) for white noise and chaotic
series.

Coefficient of Skewness of ζi.
WN Henon Logistic Lorenz Tent

ζ1 0.99 -0.11 0.005 0.82 -0.93
ζ2 -0.99 0.11 -0.005 -0.82 0.93

distribution, for instance normal or uniform distributions, or to compare two sam-

ples. The two-sample K-S test is one of the most helpful and general nonparametric

methods for comparing two samples because it is critical to differences in both the

location and shape of the empirical cumulative distribution functions (c.d.f.’s) of
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Figure 5.6: Lorenz series, Lorenz map and histogram of ζi (i = 1, 2).
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Figure 5.7: Tent series, Tent map and histogram of ζi (i = 1, 2).

Table 5.2: p-value of the D-P test for ζi, (i = 1, 2) for white noise and chaotic
series.

P -value of D-P test for ζi
WN Henon Logistic Lorenz Tent

ζ1 <0.01 0.2 0.96 <0.01 <0.01
ζ2 <0.01 0.2 0.96 <0.01 <0.01

the two samples. Suppose that x1, . . . , xN1 are observations on i.i.d random vari-

ables X1, . . . , XN1 with a c.d.f. F1(x) = P(X ≤ x) and y1, . . . , yN2 are observation

on i.i.d. random variables Y1, . . . , YN2 with a c.d.f. F2(y) = P(Y ≤ y). The aim is

to test

H0 : F1 = F2 vs. H1 : F1 ̸= F2.

Let F1,N1(x) and F2,N2(y) be the corresponding empirical c.d.f’s;

F1,N1(x) = PN1(X ≤ x) = 1
N1

N1∑
i=1

I(Xi ≤ x)

F2,N2(y) = PN2(Y ≤ y) = 1
N2

N2∑
i=1

I(Yi ≤ y).
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Figure 5.8: Matrix of correlation between ζi and ζj , i, j = 1, ..., 10 for the white
noise and chaotic series.

Table 5.3: Mutual information I(ζ1, ζi) (i = 2, . . . , 10) and the standard mea-
sure for mutual information ξ(ζ1, ζi) for white noise and chaotic series.

ζ1 WN
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ξ 0.94 0.85 0.83 0.84 0.85 0.86 0.86 0.86 0.85

I 1.02 0.63 0.58 0.59 0.59 0.62 0.68 0.67 0.64

ζ1 Henon
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ξ 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98

I 0.51 0.60 0.72 0.73 0.59 0.52 0.61 0.56 0.64

ζ1 Logistic
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ξ 0.99 0.90 0.90 0.93 0.94 0.93 0.92 0.91 0.88

I 0.79 0.87 0.99 1.04 1.07 1.03 0.96 0.82 0.77

ζ1 Lorenz
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ξ 0.99 0.98 0.86 0.86 0.85 0.85 0.86 0.86 0.84

I 2.87 1.46 1.23 0.65 0.72 0.65 0.72 0.68 0.66

ζ1 Tent
ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ξ 0.87 0.89 0.94 0.96 0.95 0.95 0.94 0.93 0.92

I 0.67 0.73 1.03 1.22 1.15 1.15 1.12 0.97 0.95

Under the null hypothesis, the largest difference between F1 and F2 goes to 0 in

probability:
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DN1,N2 = supx∈R | FN1(x)− FN2(x) |→ 0.

The idea in the K-S test is that the distribution of the supremum does not depend

on the unknown distribution P of the sample if it is continuous distribution.

Theorem 5.1. Let X1, . . . , XN1 and Y1, . . . , YN2 be i.i.d random variables with a

common continuous c.d.f and let F1,N1 and F2,N2 be the empirical c.d.f ’s of X ′s and

Y ′s, respectively. Moreover, let

DN1,N2 = supx | FN1(x)− FN2(x) |.

Then we have

limN1,N2→∞ P
(√

N1N2

N1+N2
≤ x

)
= 1− 2

∞∑
s=1

(−1)s−1e−2s2x2
.

In our case, the K-S statistic quantifies a distance between the empirical distribution

functions of two samples, with ζi obtained from the white noise process and ζi

obtained from the chaotic series. The null distribution of this statistic is computed

under the null hypothesis that the samples are drawn from the same distribution.

Table 5.4 shows the p-value of the K-S test between ζi for WN and ζi for for each

chaotic series. It is obvious that the null hypothesis is rejected since the p-value

is less than 0.05, which is a default value of the level of significance for all cases.

According to the test, the difference between ζi for WN and ζi for chaotic series is

highly significant and we can say that they have a different distribution.

Table 5.4: p-value of the K-S test between ζi for the white noise series and ζi
for chaotic series.

The p-value of K-S test
ζ1 (Henon) ζ1 (Logistic) ζ1 (Lorenz) ζ1 (Tent)

ζ1 (WN) < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

ζ2 (Henon) ζ2 (Logistic) ζ2 (Lorenz) ζ2 (Tent)
ζ2 (WN) < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16
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5.3.2 Real data

To apply the proposed technique to real data one needs to generate several copies

of the data sets. To this end, we utilise a simulation approach. By performing

simulations and analysing the generated series, we can gain an understanding of how

the pattern of eigenvalues would behave or what the histogram of each eigenvalue

would be. Similarities and dissimilarities with the chaotic series provide an insight

into detecting chaotic behaviour. Let us now consider an electrocardiogram (ECG)

data, which are a record of the electrical activity of the heart.

ECG is a time series of the electrical potential between two points on the surface of

the body caused by a beating heart. This time series or the signal is recorded by a

machine to see if there is unusual event or problem in the heart signal. It is arguably

one of the the most important time series. ECG is a simple test that can be used

to check the heart’s rhythm and electrical activity. Sensors attached to the skin are

used to detect the electrical signals produced by the heart each time it beats. The

ECG data can help to investigate symptoms of a possible heart problem, such as

chest pain, suddenly noticeable heartbeats (palpitations), dizziness and shortness

of breath. It can also help to detect arrhythmias; where the heart beats too slowly,

too quickly, or irregularly, coronary heart disease; where the heart’s blood supply is

blocked or interrupted by a build-up of fatty substances, heart attacks; where the

supply of blood to the heart is suddenly blocked, and cardiomyopathy; where the

heart walls become thickened or enlarged.

The data of ECG signal analysed here was obtained via [248] and analysed by many

authors, see, for example, [249]. The signal is a complicated one as it contains

anomaly and considered as a time series discord. It was annotated by a cardiologist

as containing one premature ventricular contraction, see Figure 5.9 (left). Table

5.5 represents a summary of descriptive statistics for the ECG series. The mean

and standard deviation (S.D) of the series are -0.176 and 0.838, respectively. As it

can be seen from the table that the values of skewness and kurtosis are negative

and positive respectively, which clearly are different from 0, and typically indicate

that the distribution is asymmetrical, more peaked and fatter tails than normal
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distribution. Similar results can also be seen for the values of the minimum and

maximum of the series, respectively.

Figures 5.9 and 5.10 show the results of the ECG series. It is very clear that the

scatter plot of yt with time delay 22 has a tractive pattern. A tractive pattern can

also be seen with time delay 230. The distributions of ζi (i = 1, 2) are symmetric

based on the D-P test; ζ1 is slightly skewed to the left whilst ζ2 is to the right (see

also Table 5.6). The p-value of the K-S test between ζi for the WN and ζi for the

ECG series is significant (almost zero). This means the data of ζi for WN and ECG

do not come from the same distribution. The results confirm that the distribution

of ζi (i = 1, 2) for ECG are totally different from what emerged for the white noise

process, and similar to the distribution of ζi for the Henon and Logistic series.
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Figure 5.9: ECG series and histogram of ζi (i = 1, 2).

Table 5.5: Descriptive statistics of ECG series.

Statistics
Mean S.D Minimum Maximum Skewness Kurtosis

ECG series -0.18 0.84 -3.72 1.00 -2.29 8.91

Table 5.6: Coefficient of skewness and p-value of the D-P test for ζi (i = 1, 2),
for the ECG series.

Skew(ζi) p-value of D-P test

ζ1 -0.12 0.06

ζ2 0.12 0.06
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Figure 5.10: Plot of yt with time delay 22 (left) and time delay 230 (right) for
the ECG series.

5.4 Summary

The distribution of the eigenvalues of matrix B generated from deterministic and

stochastic processes were studied. The distribution of ζi was proposed to be a new

approach to distinguishing the Henon, Logistic, Lorenz, and Tent chaotic series

from the white noise series. It was found that the distribution of ζi is symmetric

for the Henon and Logistic series, whilst skewed for the white noise, Lorenz, and

Tent series. The distribution of ζi for white noise is totally different from what

was obtained for the Tent map, as the direction of the skewness is different. Fur-

thermore, the correlation between eigenvalues was assessed. It was observed that

the correlation matrix between eigenvalues for the white noise series is totaly dif-

ferent to what was emerged for the chaotic series. Although the distribution of ζi

is skewed for the Lorenz series, it is possible to distinguish whether the process is

deterministic or stochastic by calculating the coefficient of skewness for ζi or by

looking at the matrix of the correlation. Furthermore, we applied the K-S test to

compare the distribution of ζi for WN and chaotic series. The results indicate that

the distribution of ζi for these have different distributions. The results of the real

ECG time series also indicated that the proposed approach can be a valuable aid

in distinguishing between chaos and noise.



Chapter 6

Selecting the Number of

Eigenvalues

6.1 Introduction

In the previous chapters, we have studied and analysed the distributions and be-

haviour of the scaled Hankel matrix eigenvalues, and proposed these distributions

for the identification of chaos from noise. The results make a significant contribu-

tion to achieving the goal of this chapter, which is the optimal choice of r and the

extraction of the desired signal. In this regard, the purpose of this chapter is to

develop the proposed approach and to indicate how it can be used directly to iden-

tify the eigenvalues corresponding to the noise component and thereby, selecting

the appropriate value of r corresponding to the signal component.

Signal and noise separation, and reconstructed series are the main steps in SSA that

need to be undertaken before any further application or aims; for example, fore-

casting, analysis of missing data, and change point detection. The main component

(signal) can consist of subcomponents such as trend, and cyclical and seasonal ones.

In the proposed approach, our interest is to consider the signal as a whole, so we

seek to identify the optimal eigenvalues related to the whole signal component. In

other words, we are not interested in each signal component, so the selection of the

113
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window length rational to the periodicity of the signal components is not important

[6]. In this case, we seek to illustrate how the optimal value of r can be achieved.

The structure of the signal or the time series is closely related to the rank of H

(rankH), the number of non-zero eigenvalues in the SVD of the trajectory ma-

trix H. For any time series of finite length, rankH ≤ min(L,K). If rankH <

min(L,K), then the series has a structure [6]. This chapter considers several exam-

ples of time series in terms of their rank. It should be mentioned that the class of

finite rank time series contains the sum of the products of polynomials, exponentials

and sinusoids. It should also be mentioned that any sine-wave time series (so-called

sinusoid) with a frequency in the range (0,0.5) has rank 2, and the saw-tooth si-

nusoid with frequency 0.5 has rank 1. Subsequently, almost any periodic signal

series with a finite number of addends has a finite rank. Any periodic time series

definitely has a finite rank. Aperiodic time series such as white noise cannot have a

finite rank. Note that the rank of the modulated periodic series may increase, but

can stay finite. The only possible example of modulation that does not change the

rank of the signal is the exponential modulation exp(αt) = f t with f = eα.

Trend signals have very varied and, as a rule, non-structured behaviour; in addition,

the trend makes the main contribution towards the non-stationarity of the series.

A typical trend that is a slowly varying component of the series can be precisely

approximated by a series of finite rank. The list of slowly-varying series with simple

SSA structure and small rank includes an exponential series (rank 1), a sinusoid

with large period (rank 2), a linear series (rank 2) and polynomials of higher order

(rank > 2) [6].

In the following section, we provide a general description and algorithm of the

proposed approach to choosing r. In Section 6.3, the algorithm is applied to a

number of simulated data with different structures. We use various signals such as

linear trend, sequential exponential series, and sine series. This section also discuss

the effect of noise level. Furthermore, despite the fact that the main aim is to select

the optimal value of r we also briefly consider the selection of the value of L. The
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applicability of the proposed approach is then examined using real ECG and EEG

data. Section 6.4 provides the conclusions of this chapter.

.

6.2 Further development on the proposed approach

to the identification of r

6.2.1 General description

In many cases, real-life time series have two main components, periodic (or quasi-

periodic) and noise (aperiodic) components [6]. Thus, we assume that any time

series can be written as YN = {yt}Nt=1 = SN +EN , where SN , EN are the signal and

noise components, respectively.

In order to separate the signal and noise components from each other, we first

study the symmetry/skewness and kurtosis of the distribution of ζi for a white

noise process; this type of noise will then be added to different signal series to see

how the distribution of each eigenvalue would behave.

As mentioned earlier, the SSA technique consists of two main stages, decomposi-

tion and reconstruction; with each stage consisting of two compatible steps. The

proposed approach is a novel step that can be used between the first and second

stages of SSA to select the optimal value of r.

Consider a one-dimensional series YN , mapping this series into a Hankel matrix H

(L × K), where L ≤ K. Set A = HHT and denoted by γi (i = 1, . . . , L) the

eigenvalues of A taken in the decreasing order of magnitude ( γ1 ≥ . . . ≥ γL ≥ 0)

and by U1, . . . , UL the orthonormal system of the eigenvectors of the matrix A

corresponding to these eigenvalues.

We mentioned in the previous chapter that the fundamental issue when studying the

behaviour of the eigenvalues, γi, is that increasing the series length leads an increase
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in the eigenvalues. This issue was solved by dividing A by its trace, B = A/tr(A).

We also have pointed out that by utilising a simulation technique, the distribution

of the eigenvalue of B and its related forms can be used as a novel approach to

the selection of the optimal value of r in SSA. In this regard, the main concept

in proposing the present approach is separability, which characterises how well the

signal and noise components can be separated from each other.

Let ζ1, . . . , ζL denote the eigenvalues of matrix B in decreasing order of magnitude

(1 ≥ ζ1 ≥ . . . ≥ ζL ≥ 0). In this step, we perform the simulation technique to obtain

the distribution of ζi, so we can understand the behaviour of each eigenvalue, which

can be useful for obtaining the optimal value of r.

In this chapter and the following ones, we focus on the third and fourth central

measures moments of the distribution of ζi, which are the skewness (Skew) and

kurtosis (Kurt) to identify the number of eigenvalues r corresponding to the signal

component. Skewness is a measure of asymmetry of the data distribution, whilst

kurtosis describes the distribution of observed data in terms of shape or peak.

The coefficient of skewness of the distribution for each eigenvalue, Skew(ζi) and

of kurtosis, Kurt(ζi) for an m simulation, can be calculated from the following

formulas:

Skew(ζi) =

1
m

m∑
n=1

(
ζi,n − ζ i

)3
[

1
m−1

m∑
n=1

(
ζi,n − ζ i

)2]3/2 , (6.1)

Kurt(ζi) =

1
m

m∑
n=1

(
ζi,n − ζ i

)4
[

1
m

m∑
n=1

(
ζi,n − ζ i

)2]2 − 3. (6.2)

Furthermore, we consider the coefficient of variation, CV , which is defined as the

ratio of the standard deviation σ(ζi) and ζ i which can be calculated mathematically:

CV (ζi) =
σ(ζi)

ζ i
. (6.3)
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Additionally, the Spearman correlation ρs between the eigenvalues ζi and ζj (i, j =

1, . . . , L) is also calculated to enhance the results obtained by those measures:

ρs = cor(ζi, ζj) = 1− 6
∑

d2n
m(m2 − 1)

, (6.4)

where dn = xn − yn (n = 1, . . . ,m) is the difference between xn and yn which are

the ranks of ζi,n and ζj,n respectively, and ζi,n is the n-th observation for the i-th

eigenvalue (ζi), ζ i =

(
m∑

n=1

ζi,n

)
/m.

The matrix of the absolute values of the Spearman correlation show a full decompo-

sition of the trajectory matrix, and in this decomposition each eigenvalue is related

to an elementary matrix component of the SVD. If the absolute value of ρs is close

to zero, then the corresponding components are almost orthogonal, but if it is close

to one, then the two components are far from being orthogonal and so it is difficult

to separate them. Thus, if ρs = 0 between two reconstructed components, this

means that these two reconstructed series are separable. The values of ρs between

the eigenvalues for the white noise are approximately significant (refer to Chapter

3), which helps in the discrimination of the noise part.

The proposed criteria above split the eigenvalues into two groups, the first is cor-

responding to the signal and the second to the noise. Once r is obtained, then Eq.

(1.3) can be written as

H = S+ E, (6.5)

where S =
r∑

i=1

Hi is the signal matrix and E =
L∑

i=r+1

Hi is the noise matrix. At

the final step, we use diagonal averaging to transform matrix S into a new series of

length N .

These measures of difference between the eigenvalues related to the signal and noise

components can specify the cut-off point of separability; that is, it can determine the

number of leading SVD components that are separated from the residual. Thus, the

last cut-off point of separability between the signal and noise components obtained

by the suggested measures, corresponds to the rank estimation.
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In this chapter, we consider all the measures or criteria presented above. The

following section gives a general example for the identification of the value of r

based on the values of all the measures. In Section 6.2.2, we consider YN as a white

noise series in order to have a prior idea and image of the pattern or behaviour

of the values of Skew(ζi), Kurt(ζi), CV (ζi) and the correlation matrix between

the eigenvalues of B. This will enable us to identify the eigenvalues r related to

the noise component, then to enhance the eigenvalues corresponding to the signal

component for a signal model mixed with white noise. Furthermore, in Section 6.3

we will show the applicability of the proposed approach in determining r considering

different real and simulated data with different values of signal to noise ratio. In

addition, the optimality of the selection of L will also be discussed.

6.2.2 General example

6.2.2.1 White noise process

Let us first consider YN as a white noise process of length N = 200, and calculate

the eigenvalues of B, ζi (i = 1, . . . , L). Note that ζi = γi/
∑L

i=1 γi and (1 ≥

ζ1 ≥ ζ2, . . . , ζL ≥ 0). To study the asymptotical behaviour of the eigenvalues, the

simulation for each case was repeated m = 104 times. Different values of L were

used: L = 10, 25, 50, 100. Note that ζ i has a decreasing order for different values

of L for the white noise process. The pattern of the mean and variance of ζi were

studied in Chapter 4, and so we focus here on the values of Skew, Kurt, CV , and

ρs.

Figure. 6.1 illustrates the coefficient of skewness for ζi, for different values of L.

It is obvious that the maximum value is obtained for the largest eigenvalue ζ1 for

different values of L except in the case L = N/2. Note that ζ1 has a positive

skewed distribution for different values of L. However, the distribution of the last

eigenvalue can be right/left skewed or symmetric, whilst the middle eigenvalues have

approximately symmetric distributions. The results or the pattern of the coefficient

of kurtosis for ζi are similar to the pattern of the coefficient of skewness for ζi.
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Remember that the pattern of the coefficient of variation of ζi has a U shape, as

illustrated in Chapter 4.

Furthermore, the correlation between ζi and ζj is evaluated. Figure. 6.2 (left)

shows the matrix of the correlation between ζi and ζj, for L = 50, considering the

Spearman correlation coefficient ρs(ζi, ζj), in a 20-grade grey scale from white to

black corresponding to the values of correlations from -1 to 1. The results clearly

show that the elements of the correlation matrix are highly correlated. In addition,

for the correlation between eigenvalues, we can only consider the correlation between

ζi and ζi+1 (i = 1, . . . , L−1) for further purposes. The minimum value was observed

between ζ2 and ζ3; see Figure. 6.2 (right). Since similar results emerged for other

values of L, they are not reported here.
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Figure 6.1: Skewness coefficient of ζi for different values of L for the white noise
series.

6.2.2.2 Signal plus noise

In this part, we use five sine series with different amplitudes and frequencies and

added white noise. One of the important features of the approach is that it does not
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Figure 6.2: Matrix of correlation between ζi and ζj ,i, j = (1, ..., L) (left) and
correlation coefficient between ζi and ζi+1 (right) for the white noise series.

require the sinusoids to be separated from each other. Thus, the aim is to identify

the value of r related to the whole sine series. The results obtained in the previous

section help us to identify the patterns related to the noise component; we can then

determine the required r for the signal series. In the following section, we will show

that the proposed approach can be applied to various simulated and real series.

Let us now consider a time series YN = {yt}Nt=1 = SN + EN of length N = 216,

where SN = {st}Nt=1,

st = 3.3
(
s
(1)
t + s

(2)
t + s

(3)
t + s

(4)
t + s

(5)
t

)
,

s
(1)
t = 0.8 sin(2πt/12), s

(2)
t = 0.6 sin(2πt/6), s

(3)
t = 0.4 sin(2πt/4), s

(4)
t = 0.3 sin(2πt/3),

s
(5)
t = 0.3 sin(2πt/2.5)

is the signal and EN = {ϵt}Nt=1 is a white noise process. The properties of the model

usually depend on the signal-to-noise ratio SNR = σ2
s/σ

2
ϵ , here SNR = 7. Figure.

6.3 (left) represents this noisy time series.

As mentioned earlier, the distribution of ζi of matrix B and its related forms will

enable us to identify the value of r, and then separate and extract the signal compo-

nent from the noisy time series. In SSA, the trend is any slowly varying component

of the series, which does not contain cyclical/seasonal components. For trend ex-

traction, a small window length should be enough [32], but this series does not

include the trend. Thus, for this example we will not consider a very small window

length.
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Figure 6.3: Five sine wave series with added noise (left) and its periodogram
(right).

The signal here contains five sine waves with different frequencies. It is known

that every harmonic component with a different frequency often produces two close

eigenvalues (except for the frequency 0.5, which provides one eigenvalue with a saw-

tooth singular vector) [112]. The periodogram analysis of the original series can

help us to select the optimal L since it tells us which frequency must be considered.

Figure. 6.3 (right) shows the periodograms of the original series. The information

arising from the figure indicates that there are different frequencies, 12, 6, 4, 3, and

2.5. Thus, let us consider different values of window length, L = 12, 24, 60, 108.

Now, we can simulate m independent copies EN,n (n = 1, . . . ,m) of the process EN

and find the distribution of ζi (i = 1, . . . , L) of matrix B for m independent time

series YN = SN + EN,n for those values of window length. Figure. 6.4 depicts the

plot of the logarithms of ζ i for the different values of L. It is obvious that there is a

break in the eigenvalue spectra, particularly after ζ10. Furthermore, it is known that

a pure noise series produces a slowly decreasing sequence of eigenvalues. Moreover,

it can be seen that there are five evident pairs with two almost equal eigenvalues,

corresponding to an almost harmonic component of the series: component pairs 1-2,

3-4, 5-6, 7-8, 9-10 are related to harmonic components with specific periods 12, 6,

4, 3, and 2.5, respectively (for more information about periodograms of eigentriples

and vectors, refer to [112].

Remember that the result obtained in the previous example indicates that the

largest eigenvalue for the white noise process has positive skewness distribution,
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Figure 6.4: Logarithm of ζi for different values of L for the five sine wave series.

which is closely associated with the second one. Generally, ζi has a strong relation-

ship with ζi+1 for the white noise process. Therefore, if skew(ζc) (c ∈ {1, . . . , L}) is

the maximum, and the pattern for skew(ζc) to skew(ζL) has the same pattern, the

same as emerged for the white noise, then the first r = c−1 eigenvalues correspond

to the signal and the rest to the noise. A similar procedure can be done using the

the coefficients of kurtosis and variation of ζi. Furthermore, if ρs(ζc−1, ζc) is the

minimum, and the pattern for the set {ρs(ζi, ζi+1)}L−1
i=c is similar to what was ob-

served for the white noise, then we select the first r = c−1 eigenvalues for the signal

and the rest for the noise component. Figure. 6.5 illustrates the result of skew(ζi)

for different values of L. The result indicates that there are two clear shapes in the

values of skew(ζi) for each window length. The pattern of the values for skew(ζ11)

to skew(ζL) is similar to the pattern which emerged for the white noise process. It

also can be seen that the maximum value of the skewness coefficient is observed for

ζ11 for different values of L. Note that for large L, we are not concerned with the

last eigenvalues, as they are obviously related to the noise component. Therefore, ζ1

to ζ10 correspond to the signal component, and ζ11 to ζL belongs to the noise. The
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results are also supported by the results obtained using the coefficients of kurtosis

and variation of ζi (see Figure. 6.6)
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Figure 6.5: Coefficient of skewness of ζi for different values of L for the five sine
wave series.
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Figure 6.6: Coefficients of kurtosis and variation of ζi for L = 60 for the five
sine series.

In addition to the previous results, the absolute value of the Spearman correlation

between ζi and ζj is shown in Figure. 6.7 (left) for L = 60 (the same results are

observed for other values of L). The correlation matrix enables us to distinguish and

separate the different components from each other. Thus, the correlation matrix

of ζi is considered as a new criterion for separability between these components.
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If the absolute value of the correlation coefficient between ζi and ζj is small, then

the corresponding components are almost orthogonal; however, if the value is large,

then the corresponding series are far from being orthogonal and thus they are not

neatly separable. It is clear that the signal can be separated from the noise since

the top right pattern from the correlation matrix is similar to the pattern of the

correlation matrix for the white noise obtained in the previous example.

In addition, Figure. 6.7 (right) shows the correlation between ζi and ζi+1. It is

obvious that there are two different patterns in the figure, and the minimum value

of ρs is achieved between ζ10 and ζ11. Therefore, the results confirm that the cut-off

point is from ζ11. Note that we do not often consider the minimum value of ρs as a

criterion for the cut-off point; the important consideration is to have two different

shapes for ρs(ζi, ζi+1), and the second shape should be similar to the one observed

for the white noise process.

To evaluate the results, the root mean square error (RMSE), and mean absolute

error (MAE) between the original signal and reconstructed series were calculated.

The results of these two measures confirm our results obtained that the value of r

required for the signal series is 10 (see Figure. 6.8 for L = 60).
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Figure 6.7: Correlation matrix of ζi for L = 60 (left) and the correlation
coefficient between ζi and ζi+1 (right) for the five sine series.

To examine this approach, we apply it to a real time series. However, the problem

is how one can simulate this series. Here, we introduce a new approach for the

simulation of a time series.

To simulate a value yi, we generate a value from a uniform distribution with bound-

aries yi − a and yi + b, where a =| yi−1 − yi | and b =| yi − yi+1 |. This idea can be
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Figure 6.8: Root mean square error (RMSE) and mean absolute error (MAE)
between the original signal and reconstructed series by r (r = 1, . . . , 60) for

L = 60.

applied to any time series. It was applied to the simulated series YN in the previous

example. The results obtained are similar. To assess the proposed simulation ap-

proach, four series were generated and simulated m times. The results are discussed

in Section 6.3.

6.2.3 Algorithm

The algorithm is divided into two stages. At the first stage, the optimal value of

r can be obtained for the separability between signal and noise, and at the second

stage the free noise time series can be reconstructed.

6.2.3.1 Stage 1:

1. Transfer a one-dimensional time series YN = (y1, . . . , yN) into the multi-

dimensional series H1, . . . , HK with vectors Hi = (yi, . . . , yi+L−1)
T ∈ RL,

where K = N − L + 1, and the window length L is an integer such that

2 ≤ L ≤ N/2. This step provides the trajectory matrix H = [H1, . . . , HK ] =

(xij)
L,K
i,j=1.

2. Compute matrix B = HHT/tr(HHT ).

3. Compute the eigenvalues and eigenvectors of matrix B and represent them in

the form B = UΣUT . Here, Σ = diag(ζ1, . . . , ζL) is the diagonal matrix of
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the eigenvalues of B that has the order (1 ≥ ζ1 ≥ ζ2, . . . , ζL ≥ 0) and U =

(U1, U2, . . . , UL) is the corresponding orthogonal matrix of the eigenvectors of

B.

4. Simulate the original series m times and calculate the eigenvalues for each

series. We simulate yi from a uniform distribution with boundaries yi− a and

yi + b, where a =| yi−1 − yi | and b =| yi − yi+1 |.

5. Calculate the coefficient of skewness for each eigenvalue, skew(ζi). If skew(ζc)

is the maximum, and the pattern for skew(ζc) to skew(ζL) has a similar

pattern to what was emerged for the white noise, then select r = c− 1.

6. Calculate the coefficient of kurtosis for each eigenvalue, kurt(ζi). If kurt(ζc)

is the maximum, then select r = c− 1.

7. Calculate the absolute values of the correlation matrix between the eigenval-

ues, and represent them in a 20-grade grey scale from white to black corre-

sponding to the values of the correlations from 0 to 1. This can split the

eigenvalues into two groups, from ζ1 to ζr, which correspond to the signal,

and the rest which correspond to the noise.

8. Calculate the absolute values of the correlation between ζi and ζi+1, and

plot them in one figure. If ρs(ζc−1, ζc) is the minimum, and the pattern for

ρs(ζc, ζc+1) to ρs(ζL−1, ζL) has the same pattern for the white noise, then choose

r = c− 1.

9. Calculate the coefficient of variation, CV (ζi). This can split the eigenvalues

into two groups, from ζ1 to ζc−1, which correspond to the signal, and the rest,

which almost have a U shape and which correspond to the noise component.

6.2.3.2 Stage 2

1. Use the number of the eigenvalues r obtained in the first stage to calculate

the approximate signal matrix S̃, that is S̃ =
∑r

i=1 Hi, where Hi =
√
γ
i
UiVi

T ,

Ui and Vi stands for the left and right eigenvectors of the trajectory matrix.
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2. Transition to the one dimensional series can now be achieved by averaging

over the diagonals of the matrix S̃.

6.3 Results

6.3.1 Simulated data

In the following examples, we have added a white noise process ϵt to four different

signal series considering various signal to noise ratios:

a. yt = α1t+ ϵt

b. yt = exp(α2t) + ϵt

c. yt = α3 sin(2πt/12) + ϵt

d. yt = α4 + sin(2πt/6) + sin(2πt/12) + ϵt,

where t = (1, . . . , N), α1 = 0.062, α2 = 0.011, α3 = 6.31, α4 = 0.078 and ϵt is a

Gaussian white noise process with variance 1. The signal to noise ratios for the

above cases are SNR = 15, 7, 20, 24, respectively. For each series, a m = 10000

time series was simulated using the proposed simulation approach in Section 6.2.2,

for a fixed L = 12 and N = 216. It is obvious that the number of eigenvalues

needed to reconstruct the signal for these cases are 1, 1, 2, 5, respectively. Table 6.1

represents the skewness coefficient of ζi (i = 1, . . . , L) for all cases. As mentioned

earlier, the maximum value of the skewness coefficient is the indicator of the start of

the noise. It is clear that the maximum skewness coefficients of ζi for the four cases

are for ζc=2, ζc=2, ζc=3, ζc=6, respectively. Thus, the number of eigenvalues required

to extract the signal for those cases are 1, 1, 2, 5 as r = c − 1. Similar results

emerged by using the values of Kurt and CV (see Tables 6.2 and 6.3). Moreover,

the correlation between ζi and ζi+1 for the four cases is considered. Table. 6.4

represents the correlation between ζi and ζi+1. For the correlation coefficient, we

need the minimum value of ρs between ζc−1 and ζc as an indicator for the cut-off
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point, with a condition that the pattern of the set {ρs(ζi, ζi+1)}L−1
i=c is similar to that

obtained for the white noise process. The results are similar to what emerged with

the coefficient of skewness, and confirm that the proposed approach works properly.

The results of RMSE and MAE also confirm that the proposed approach works

efficiently (see Tables 6.5 and 6.6). Thus, the proposed simulation approach will

also be used for simulating real time series in section 6.3.4.

Table 6.1: Skewness coefficient of ζi for cases a,. . . , d.

Case ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12

a -0.06 0.362∗ 0.26 0.19 0.10 0.16 -0.09 -0.06 -0.03 -0.04 0.06 0.002
b -0.09 0.28∗ 0.25 0.22 0.25 0.12 0.18 0.10 0.10 0.05 -0.05 0.06
c 0.24 0.19 1.10∗ 0.72 0.37 0.25 0.09 -0.02 -0.14 -0.16 -0.15 -0.42
d 0.002 0.18 0.15 -0.06 -0.04 0.47∗ 0.29 0.22 0.19 0.13 0.05 -0.06

Note :∗, represents the maximum value of skew(ζi).

Table 6.2: Kurtosis coefficient of ζi for cases a,. . . , d.

Case ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12

a 3.08 4.16∗ 3.66 3.45 3.12 3.07 3.02 3.08 3.08 3.11 3.03 3.10
b 3.08 4.12∗ 3.53 3.27 3.29 3.10 3.07 3.10 3.01 3.05 3.06 3.12
c 3.07 3.04 4.03∗ 3.32 3.20 3.28 3.13 3.11 3.11 3.13 3.09 3.10
d 3.04 3.24 3.26 3.05 3.03 4.00∗ 3.22 3.15 3.02 2.95 2.98 3.02

Note :∗, represents the maximum value of kurt(ζi).

Table 6.3: Variation coefficient of ζi for cases a,. . . , d.

Case ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12

a 0.002 0.13∗ 0.12 0.113 0.112 0.110 0.112 0.114 0.119 0.12 0.14 0.16
b 0.004 0.14∗ 0.13 0.116 0.115 0.113 0.114 0.116 0.12 0.125 0.14 0.16
c 0.00850 0.00855 0.146∗ 0.132 0.121 0.1180 0.1170 0.1174 0.122 0.128 0.14 0.16
d 0.002 0.119 0.122 0.130 0.133 0.152∗ 0.145 0.133 0.1376 0.1379 0.155 0.170

Note :∗, represents the peak value of CV (ζi).

Table 6.4: Correlation coefficient between ζi and ζi+1 for cases a,. . . ,
d.

Case ρ(ζi, ζi+1)

a 0.52∗ 0.85 0.73 0.60 0.91 0.78 0.93 0.78 0.93 0.72 0.98
b 0.52∗ 0.78 0.70 0.71 0.81 0.85 0.74 0.83 0.80 0.76 0.90
c 0.72 0.41∗ 0.71 0.53 0.74 0.70 0.75 0.74 0.76 0.65 0.69
d 0.72 0.99 0.04 0.99 0.03∗ 0.88 0.70 0.85 0.80 0.76 0.78

Note :∗, represents the minimum value of ρ(ζi, ζi+1).

Table 6.5: Root mean square error between the original and reconstructed series
by (r = 1, . . . , 12) for cases a,. . . , d.

Case r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12

a 0.07∗ 0.11 0.15 0.18 0.20 0.22 0.24 0.26 0.28 0.29 0.30 0.32
b 0.05∗ 0.09 0.13 0.15 0.17 0.20 0.22 0.24 0.25 0.27 0.28 0.29
c 1.20 0.31∗ 0.41 0.52 0.60 0.65 0.71 0.75 0.83 0.91 0.95 0.99
d 1 0.78 0.71 0.37 0.16∗ 0.17 0.20 0.22 0.24 0.26 0.27 0.29

Note :∗, represents the minimum value of RMSE.

6.3.2 The effect of noise level

In addition to the previous results, we also consider different signal to noise ratios for

each case to reach a better understanding of the effect of noise reduction using the
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Table 6.6: Mean absolute error between the original and reconstructed series by
(r = 1, . . . , 12) for cases a,. . . , d.

Case r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12

a 0.06∗ 0.09 0.11 0.14 0.16 0.17 0.19 0.20 0.22 0.23 0.24 0.25
b 0.04∗ 0.07 0.10 0.12 0.14 0.16 0.18 0.19 0.20 0.21 0.22 0.24
c 1.60 0.28∗ 0.34 0.42 0.50 0.53 0.56 0.61 0.64 0.72 0.75 0.80
d 0.76 0.63 0.63 0.32 0.13∗ 0.14 0.16 0.18 0.19 0.20 0.22 0.23

Note :∗, represents the minimum value of MAE.

proposed approach. As we mentioned the properties of the model usually depend

on the signal-to-noise ratio (SNR). Here the SNR is the ratio of variance of the

noise free series (signal) to variance of noise SNR = σ2
s/σ

2
ϵ (for more information

about the definition of SNR, see [250]). The results are provided for cases a and c,

as similar results are observed for the other two cases. Figures. 6.9 and 6.10 show

Skew(ζi) for cases a and c considering different values of SNR. For example, Figure.

6.9 shows Skew for the case a, where we have only a trend component. As shown

in the figure, the maximum value of Skew is observed for ζc=2 for different values

of SNR, which confirms that r = 1. Figure. 6.10 shows Skew for the case c, where

we have a harmonic component. It can be seen from the figure that r = 2 based on

the results of Skew for different values of SNR. This result confirms that the new

approach works for any series that is mixed with a low or high noise level.
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Figure 6.9: Value of skewness coefficient of eigenvalues for case a, considering
different values of SNR.
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Figure 6.10: Value of skewness coefficient of eigenvalues for case c, considering
different values of SNR.
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6.3.3 Selection of L

As mentioned earlier, we will briefly consider the selection of window length. Here

we consider different values of L, namely 12, 24, 60, 108 to analyse each series

considered in section 6.3. The value of SNR here is fixed (SNR=14) for all series,

and the number of simulations is also 10,000. In this case, based on the values of

window length on SVD of the trajectory matrix, we have 12, 24, 60, 108 eigenvalues

or eigentriples for each case, ordered by their contributions into the decomposition

stage. However, as we already know the maximum number of eigenvalues needed

was five for case d, as it consists of a trend and two sine series, we will therefore

only provide the results for the first 12 eigenvalues for comparison between these

four cases. First we need to identify the set of leading eigenvalues for each value of

L in each case. All measures are considered in this section to help in identifying the

optimal value of L. The results are compared with the results of the w -correlations

and evaluated using RMSE and MAE.

Tables 6.7, 6.8, 6.9, and 6.10 represent the results of the coefficient of skewness,

kurtosis, variation for each eigenvalue and the results of the correlation between ζi

and ζi+1. As shown by the results, for the sequential exponential series b considering

different values of L, the maximum values of Skew, Kurt, CV are observed for ζc=2,

and the minimum value of ρs is obtained between ζc−1=1 and ζc=2 for each value of

L; this indicates that there is no effect of L and thus r = c−1 = 1. A similar result

emerged for sine series c. The value of r is 2 for different values of L because the

maximum values of Skew, Kurt, and CV are observed for ζc=3, and the minimum

value of ρs is obtained between ζc−1=2 and ζc=3. However, for the linear trend series

a, the value of r is 1 for L = 12 and L = 24, whilst it is 2 for L = 60 and L = 108

based on all the measures. This means that the rank or r increases from 1 to 2

with the increase in L, but the increase is only by one from small to large window

length (L = N/2), and the rank is still finite. A similar result are obtained for

series d because it includes a trend component with two sine series. For L = 12 and

L = 24, the the maximum values of Skew, Kurt, and CV is obtained for ζc=6, and

the minimum value of ρs is observed between ζc−1=5 and ζc=6; this indicates that
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r = 5. However, for L = 60 and L = 108, the value of r increases from 5 to 6 based

on all the criteria.

Let us now compare the results with the results of the w -correlations. Table 6.11

represents the results obtained from the w -correlations for the four simulated series.

It can be seen from the table that the results of the w -correlations for cases a, b,

and c coincide with the results obtained by the above criteria for different values of

window length. It can also be seen that for case d, the results of the w -correlations

only coincide with those criteria for L = N/2 = 108. It is obvious that the results

based on Skew, Kurt, CV , and ρs are more accurate than those obtained by the

w -correlations for small window length, particularly for case d, where a linear trend

is included in the series.

We now aim to fix r and select the optimal value of L based on the maximum values

of the Skew, Kurt, CV of ζi and the minimum value of ρs between ζi and ζi+1, w -

correlations, RMSE, and MAE. The values of r are fixed for the four cases based on

the above results, being r = 1, 2 for series a, r = 1 for series b, r = 2 for series c, and

r = 5, 6 for series d. Tables 6.12, 6.13, 6.14, and 6.15 show the results. As appears

from these results, the best reconstructed signals for these series, considering all the

different criteria, are obtained using L = N/2 = 108, and r = 2, 1, 2, 6 for the four

series respectively. The results indicate that the optimal value of window length is

half of the series for all the considered series. Figure. 6.11 depicts the the result of

the reconstructed series, which is obtained by using L = N/2 and eigentriples 1− r

(r = 2, 1, 2, 6) for a, b, c, and d series, respectively. The blue and the black lines

correspond to the reconstructed series and the original series. It is obvious that the

reconstructed series has been obtained precisely.

6.3.4 Real data

We consider two real time series, namely an electrocardiogram (ECG) and an elec-

troencephalogram (EEG) series. The window lengths used to decompose these series

were 460, and 200, respectively. The aim here is to find the value of r for each series.
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Table 6.7: Skewness coefficient of ζi for cases a,. . . , d and different values of L.

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12

L Case a
12 0.270 1.139∗ 0.742 0.424 0.279 0.027 -0.111 -0.159 -0.197 -0.249 -320 -0.391
24 0.178 0.905∗ 0.794 0.540 0.520 0.411 0.298 0.256 0.151 0.093 0.045 -0.002
60 0.063 0.271 1.168∗ 1.078 0.850 0.841 0.612 0.600 0.461 0.462 0.360 0.337
108 -0.007 0.326 1.219∗ 1.151 0.899 0.912 0.699 0.674 0.569 0.559 0.430 0.421

Case b
12 0.191 1.078∗ 0.731 0.448 0.262 0.062 -0.056 -0.123 -0.184 -0.240 -0.269 -0.331
24 0.186 1.185∗ 0.955 0.595 0.544 0.423 0.369 0.274 0.236 0.118 0.066 0.008
60 0.068 1.416∗ 1.156 0.769 0.756 0.565 0.561 0.509 0.502 0.418 0.419 0.335
108 -0.024 1.532∗ 1.252 0.877 0.845 0.611 0.637 0.553 0.564 0.486 0.493 0.391

Case c
12 0.233 0.170 1.007∗ 0.629 0.304 0.210 0.072 -0.015 -0.128 -0.149 -0.139 -0.322
24 0.243 0.222 1.172∗ 0.893 0.545 0.475 0.321 0.225 0.172 0.108 0.060 0.043
60 0.124 0.122 1.363∗ 1.124 0.821 0.744 0.595 0.567 0.415 0.397 0.281 0.267
108 0.026 0.024 1.448∗ 1.205 0.850 0.821 0.704 0.664 0.502 0.491 0.381 0.368

Case d
12 -0.012 0.312 0.314 0.032 0.039 0.835∗ 0.487 0.218 0.090 -0.024 -0.087 -0.242
24 -0.015 0.360 0.357 0.065 0.069 0.909∗ 0.804 0.431 0.424 0.256 0.267 0.148
60 -0.046 0.481 0.385 0.244 0.110 0.123 1.211∗ 1.134 0.815 0.779 0.623 0.602
108 -0.065 0.466 0.395 0.201 0.118 0.078 1.262∗ 1.173 0.936 0.842 0.674 0.678

Note :∗, represents the maximum value of skew(ζi).

Table 6.8: Kurtosis coefficient of ζi for cases a,. . . , d and different values of L.

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12

L Case a
12 3.229 5.426∗ 3.854 3.380 3.359 3.244 3.174 3.055 2.999 3.051 3.026 3.141
24 3.091 4.330∗ 4.022 3.467 3.487 3.347 3.114 3.138 3.139 3.154 3.071 3.001
60 3.010 3.092 5.323∗ 4.822 4.259 4.199 3.668 3.623 3.353 3.401 3.286 3.241
108 3.041 3.046 5.571∗ 5.002 4.445 4.519 3.903 3.883 3.674 3.683 3.324 3.338

Case b
12 3.109 5.270∗ 3.983 3.569 3.292 3.055 3.081 3.105 2.999 3.026 3.040 3.112
24 3.154 5.741∗ 4.661 3.616 3.566 3.394 3.285 3.304 3.307 3.102 3.021 3.065
60 3.031 7.516∗ 5.363 4.130 4.061 3.494 3.518 3.497 3.509 3.375 3.401 3.230
108 2.956 8.535∗ 5.754 4.598 4.375 3.671 3.774 3.530 3.517 3.440 3.507 3.271

Case c
12 2.996 3.012 5.039∗ 3.864 3.295 3.215 3.141 3.146 3.024 2.991 2.975 3.135
24 2.998 3.012 5.685∗ 4.458 3.573 3.458 3.237 3.141 3.182 3.109 3.076 3.028
60 2.992 2.950 6.676∗ 5.159 4.341 4.021 3.373 3.635 3.393 3.348 3.167 3.144
80 2.981 2.969 7.266∗ 5.557 4.373 4.268 3.995 3.971 3.587 3.539 3.257 3.237

Case d
12 2.959 3.278 3.280 2.919 2.916 4.255∗ 3.431 3.109 3.027 3.042 2.974 3.079
24 2.966 3.349 3.348 2.940 2.945 4.548∗ 4.230 3.367 3.468 3.084 3.274 3.133
60 2.935 3.470 3.397 2.938 2.948 3.020 5.593∗ 5.205 4.286 4.075 3.738 3.724
108 2.936 3.557 3.380 3.056 2.945 3.048 5.938∗ 5.280 4.848 4.255 3.782 3.819

Note :∗, represents the maximum value of kurt(ζi).

Table 6.9: Variation coefficient of ζi for cases a,. . . , d and different values of L.

L ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12

Case a
12 0.0005 0.1005∗ 0.087 0.065 0.063 0.059 0.062 0.065 0.074 0.082 0.107 0.125
24 0.0006 0.136∗ 0.117 0.098 0.084 0.078 0.071 0.069 0.066 0.066 0.065 0.066
60 0.0010 0.163 0.175∗ 0.169 0.123 0.121 0.100 0.099 0.089 0.089 0.082 0.081
108 0.0015 0.200 0.202∗ 0.199 0.143 0.142 0.119 0.118 0.106 0.06 0.098 0.097

Case b
12 0.0009 0.102∗ 0.089 0.068 0.066 0.061 0.064 0.066 0.073 0.081 0.104 0.122
24 0.001 0.130∗ 0.119 0.086 0.082 0.072 0.070 0.066 0.066 0.063 0.064 0.064
60 0.002 0.178∗ 0.170 0.120 0.119 0.100 0.101 0.090 0.089 0.084 0.083 0.079
108 0.002 0.207∗ 0.201 0.142 0.142 0.119 0.119 0.108 0.107 0.100 0.099 0.094

Case c
12 0.00328 0.0032 0.116∗ 0.097 0.079 0.076 0.075 0.077 0.082 0.090 0.112 0.136
24 0.00326 0.0033 0.141∗ 0.123 0.093 0.088 0.079 0.077 0.074 0.073 0.072 0.073
60 0.0040 0.0041 0.187∗ 0.173 0.127 0.122 0.106 0.103 0.094 0.092 0.087 0.086
108 0.0046 0.0047 0.214∗ 0.202 0.147 0.143 0.124 0.121 0.111 0.109 0.102 0.101

Case d
12 0.0026 0.118 0.120 0.126 0.129 0.130∗ 0.111 0.094 0.100 0.101 0.124 0.140
24 0.0028 0.134 0.137 0.145 0.147 0.149∗ 0.121 0.096 0.090 0.084 0.080 0.078
60 0.0032 0.143 0.155 0.153 0.170 0.147 0.180∗ 0.174 0.126 0.123 0.105 0.103
108 0.0036 0.131 0.163 0.136 0.182 0.160 0.208∗ 0.205 0.147 0.145 0.123 0.122

Note :∗, represents the peak value of CV (ζi).

1. ECG:

An electroencephalogram (ECG) records the electrical activity of the heart.

The heart produces tiny electrical impulses which spread through the heart
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Table 6.10: Correlation coefficient between ζi and ζi+1 for cases a,. . . , d and
considering different values of L.

ρ(ζi, ζi+1)

L Case a

12 0.278∗ 0.705 0.502 0.661 0.634 0.663 0.730 0.672 0.797 0.602 0.812
24 0.094∗ 0.276 0.820 0.598 0.850 0.695 0.859 0.755 0.856 0.784 0.868
60 0.405 0.029∗ 0.927 0.591 0.932 0.736 0.929 0.795 0.931 0.842 0.932
108 0.602 0.021∗ 0.945 0.595 0.951 0.742 0.953 0.808 0.950 0.846 0.952

Case b

12 0.354∗ 0.765 0.451 0.737 0.597 0.729 0.696 0.708 0.763 0.625 0.792
24 0.344∗ 0.861 0.546 0.862 0.680 0.855 0.752 0.854 0.792 0.858 0.828
60 0.315∗ 0.920 0.599 0.930 0.738 0.931 0.802 0.931 0.853 0.934 0.866
108 0.303∗ 0.940 0.608 0.944 0.745 0.948 0.815 0.949 0.854 0.952 0.879

Case c

12 0.790 0.466∗ 0.691 0.565 0.727 0.706 0.746 0.744 0.752 0.674 0.710
24 0.921 0.380∗ 0.811 0.588 0.837 0.742 0.858 0.796 0.868 0.838 0.872
60 0.973 0.359∗ 0.894 0.627 0.908 0.763 0.917 0.821 0.927 0.860 0.925
108 0.984 0.353∗ 0.918 0.629 0.926 0.758 0.934 0.824 0.939 0.869 0.939

Case d

12 0.812 0.982 0.520 0.989 0.078∗ 0.767 0.567 0.727 0.719 0.639 0.772
24 0.824 0.993 0.496 0.995 0.004∗ 0.492 0.758 0.669 0.824 0.748 0.838
60 0.813 0.990 0.510 0.981 0.142 0.030∗ 0.924 0.598 0.928 0.743 0.925
108 0.727 0.784 0.674 0.752 0.658 0.001∗ 0.945 0.613 0.946 0.750 0.947

Note :∗, represents the minimum value of ρ(ζi, ζi+1).

Table 6.11: Value of w -correlations of the signal reconstruction for different values
of L and r for cases a,. . . , d.

L r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11

Case a
12 0.0054∗ 0.0162 0.0160 0.0173 0.0203 0.0306 0.0267 0.0268 0.0281 0.0213 0.0305
24 0.0055∗ 0.0113 0.0125 0.0102 0.0147 0.0162 0.0197 0.0212 0.0201 0.0224 0.0239
60 0.0127 0.0011∗ 0.0051 0.0038 0.0065 0.0069 0.0087 0.0097 0.0108 0.0112 0.0145
108 0.0070 0.0007∗ 0.0038 0.0021 0.0046 0.0036 0.0069 0.0096 0.0106 0.0102 0.0092

Case b
12 0.0053∗ 0.0186 0.0311 0.0357 0.0277 0.0449 0.0463 0.0526 0.0683 0.0661 0.0516
24 0.0021∗ 0.0116 0.0163 0.0176 0.0138 0.0197 0.0291 0.0328 0.0365 0.0344 0.0336
60 0.0005∗ 0.0061 0.0032 0.0082 0.0074 0.0114 0.0153 0.0165 0.0194 0.0210 0.0214
108 0.0004∗ 0.0054 0.0016 0.0061 0.0063 0.0101 0.0106 0.0133 0.0145 0.0142 0.0121

Case c
12 0.8972 0.0140∗ 0.0415 0.0525 0.0565 0.0361 0.0635 0.0641 0.0614 0.0866 0.1147
24 0.8850 0.0057∗ 0.0202 0.0277 0.0296 0.0233 0.0303 0.0500 0.0507 0.0562 0.0546
60 0.8798 0.0017∗ 0.0098 0.0056 0.0128 0.0172 0.0228 0.0243 0.0286 0.0309 0.0314
108 0.8793 0.0006∗ 0.0074 0.0022 0.0084 0.0088 0.0141 0.0149 0.0185 0.0197 0.0199

Case d
12 0.0264 0.0211 0.0108∗ 0.0206 0.0122 0.0256 0.0288 0.0268 0.0293 0.0221 0.0313
24 0.0123 0.0314 0.0197 0.0066∗ 0.0138 0.0136 0.0129 0.0148 0.0195 0.0237 0.0257
60 0.0108 0.0365 0.0354 0.0304 0.0160 0.0024∗ 0.0067 0.0053 0.0080 0.0070 0.0104
108 0.0063 0.0267 0.0368 0.0212 0.0207 0.0012∗ 0.0045 0.0025 0.0056 0.0066 0.0095

Note :∗, represents the minimum value of w-correlations.

muscle to make the heart contract. However, the heart sound may contain

various abnormal components. The contribution of this work is to select the

correct subspace of the signal component and remove the undesired compo-

nent. The ECG data used in this paper was described in the previous chapter

and downloaded from [248], and is shown in Figure. 6.12 (left). Remember

that the signal is abnormal, and the distribution of this signal is not normal

(see Figure. 6.13 (left)).

The matrix of the absolute values of the Spearman correlation of ζi is shown

in Figure. 6.12 (middle). It is very clear that the eigenvalues are split into

two groups, from the first to the 150-th and the rest, which decomposes the
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Table 6.12: Simulated series: value of Skew, Kurt,
CV , ρs, w-correlation, MAE, and RMSE of the signal
reconstruction step for different values of L and r for

case a.

Case a

r = 1

L = 12 L = 24 L = 60 L = 108

RMSE 0.2810 0.2113 0.4725 0.7183
MAE 0.2319 0.1694 0.3035 0.5356

w -correlation 0.0054 0.0055 0.0127 0.0070
Skew(ζ2) 1.1392 0.9051 0.2715 0.3258
Kurt(ζ2) 5.4263 4.3210 3.0923 3.0459
CV (ζ2) 0.1005 0.1360 0.1629 0.1998
ρ(ζ1, ζ2) 0.2779 0.0937 0.4054 0.6020

r = 2

L = 12 L = 24 L = 60 L = 108

RMSE 0.3887 0.2992 0.2235 0.2110∗

MAE 0.3001 0.2451 0.1760 0.1659∗

w -correlations 0.0162 0.0113 0.0012 0.0007∗

Skew(ζ3) 0.7417 0.7938 1.1686 1.2187∗

Kurt(ζ3) 3.8544 4.0224 5.3231 5.5706∗

CV (ζ3) 0.0869 0.1169 0.1751 0.2023∗

ρ(ζ2, ζ3) 0.7054 0.2765 0.0286 0.0209∗

Note :∗, represents the optimal value of L and r for case
a based on all the considered criteria.

Table 6.13: Simulated series: value of Skew, Kurt,
CV , ρs, w-correlation, MAE, and RMSE of the signal
reconstruction step for different values of L and r for

case b.

Case b

r = 1

L = 12 L = 24 L = 60 L = 108

RMSE 0.2141 0.1473 0.1106 0.0914∗

MAE 0.1771 0.1312 0.0864 0.0677∗

w -correlation 0.0053 0.0021 0.0005 0.0004∗

Skew(ζ2) 1.0775 1.1853 1.4163 1.5317∗

Kurt(ζ2) 5.2701 5.7414 7.5161 8.5354∗

CV (ζ2) 0.1019 0.1297 0.1778 0.2073∗

ρ(ζ1, ζ2) 0.3538 0.3444 0.3152 0.3028∗

Note :∗, represents the optimal value of L and r for
case b based on all the considered criteria.

trajectory matrix into almost orthogonal blocks, with the first block corre-

sponding to the approximated version of the ECG series and the second block
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Table 6.14: Simulated series: value of Skew, Kurt,
CV , ρs, w-correlation, MAE, and RMSE of the signal
reconstruction step for different values of L and r for

case c.

Case c

r = 2

L = 12 L = 24 L = 60 L = 108

RMSE 0.3830 0.2666 0.1694 0.1425∗

MAE 0.3232 0.2193 0.1369 0.1202∗

w -correlation 0.0140 0.0057 0.0016 0.0006∗

Skew(ζ3) 1.0070 1.1723 1.3631 1.4481∗

Kurt(ζ3) 5.0388 5.6854 6.6760 7.2655∗

CV (ζ3) 0.1156 0.1414 0.1868 0.2141∗

ρ(ζ2, ζ3) 0.4659 0.3800 0.3585 0.3529∗

Note :∗, represents the optimal value of L and r for
case c based on all the considered criteria.

Table 6.15: Simulated series: value of Skew, Kurt,
CV , ρs, w-correlation, MAE, and RMSE of the signal
reconstruction step for different values of L and r for

case d.

Case d

r = 5

L = 12 L = 24 L = 60 L = 108

RMSE 0.6219 0.3550 0.4339 0.5123
MAE 0.4961 0.2852 0.3146 0.3863

w -correlation 0.0122 0.0138 0.0160 0.0207
Skew(ζ6) 0.8346 0.9086 0.1233 0.0784
Kurt(ζ6) 4.2554 4.5476 3.0201 3.0482
CV (ζ6) 0.1222 0.1302 0.1473 0.1595
ρ(ζ5, ζ6) 0.0785 0.0041 0.1420 0.6579

r = 6

L = 12 L = 24 L = 60 L = 108

RMSE 0.6792 0.4179 0.2070 0.1939∗

MAE 0.5434 0.3319 0.1636 0.1588∗

w -correlations 0.0256 0.0136 0.0024 0.0012∗

Skew(ζ7) 0.4867 0.8037 1.2112 1.2617∗

Kurt(ζ7) 3.4311 4.2303 5.5927 5.9378∗

CV (ζ7) 0.1107 0.1206 0.1798 0.0208∗

ρ(ζ6, ζ7) 0.7671 0.4925 0.0305 0.0011∗

Note :∗, represents the optimal value of L and r for case
d based on all the considered criteria.

corresponding to the noise part. Furthermore, Figure. 6.12 (right) indicates

that there are two different sequences for the result of skew(ζi), from skew(ζ1)
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Figure 6.11: Original (black) and reconstructed (blue) series for cases a, b, c,
and d.

to skew(ζ150) correspond to the signal, and the rest to the residual.
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Figure 6.12: Noisy ECG series (left), the correlation matrix (middle) and the
skewness coefficient (right) of ζi for the ECG series.

2. EEG:
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Electroencephalography (EEG) is the recording of the brain’s electrical activ-

ity. The EEG procedure is usually carried out by a highly trained specialist

called a clinical neurophysiologist during a visit to a hospital. During the

test, small sensors are attached to the scalp to pick up the electrical signals

produced when brain cells send messages to each other. These signals are

recorded by a machine and are looked at by a doctor later to see if they are

unusual.

There are many different ways an EEG recording can be done. Before the

test starts, the patient’s scalp is cleaned and around 20 small sensors, which

called electrodes, are attached using a special paste or glue. The sensors are

connected by wires to an EEG recording machine. Routine EEG recordings

usually take 20 to 40 minutes, although a typical appointment will last about

an hour, including some preparation time at the beginning and some time at

the end. Other types of EEG recording may take longer.

The main types of EEG are explained here:

• Routine EEG

A routine EEG recording lasts for about 20 to 40 minutes. During the

test, the patients will be asked to rest quietly and close or open their eyes

from time to time. Most of cases, they also may be required to breathe

in and out deeply (known as hyperventilation) for a few minutes. At the

end of the test, a flashing light can be placed nearby to see if this affects

their brain activity.

• Sleep EEG or sleep-deprived EEG

A sleep EEG is carried out while the patient is asleep. This can be used

if a routine EEG does not provide enough information, or to examine for

sleep disorders. In some cases, the patient is required to be awake the

night before the examination to aid ensure the patient will sleep while

the test is carried out. It is known as a sleep-deprived EEG.

• Ambulatory EEG
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This test is where brain activity is recorded during the day and night

over a period of one or more days. The electrodes are attached to a

small portable EEG recorder, which may be clipped on to the patient’s

clothes. The patient can continue with most of normal daily activities

while the data is being recording.

• Video telemetry

Video telemetry, it is also called video EEG, is a special type of EEG

where the patients is filmed while data is recording. This provides more

details about brain activity, which is usually carried out over a few days

while staying in a hospital. The EEG signal is transmitted wirelessly to

a computer. The video is also recorded by the computer and kept under

regular surveillance by trained staff.

EEG can help to diagnose a number of various medical conditions; for exam-

ple, epilepsy, memory impairment, brain inflammation and coma. However,

EEG recording is highly susceptible to different types of noise, which makes

the analysis of EEG data more difficult. We use a single channel EEG that has

been analysed by many authors (see, for example, [56, 251]). The signal was

obtained from a set that containing 100 single channel EEG segments of 23.6-

second duration. These segments were selected and cut out from continuous

multichannel EEG recordings after visual inspection for artifacts, e.g., due to

muscle activity or eye movements. In addition, the segments had to fulfill a

stationarity criterion described in detail in [56]. The set consisted of segments

taken from surface EEG recordings that were carried out on five healthy vol-

unteers using a standardized electrode placement scheme. Volunteers were

relaxed in an awake state with eyes open.

The signal was recorded with the 128-channel amplifier system, using an av-

erage common reference (omitting electrodes containing pathological activity

strong eye movement artifact normal EEG segment). After 12 bit analog-to-

digital conversion, the data was written continuously onto the disk of a data

acquisition computer system at a sampling rate of 173.61 Hz.
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Table 6.16 represents a summary of descriptive statistics for both ECG and

EEG series. As can be observed from Table 6.16 that the values of mean and

standard deviation (S.D) of the ECG series are smaller than their values of

the EEG series. Different results can be seen for the values of the minimum

and maximum of the series. It is obvious that the values of the skewness and

kurtosis are also different. The results indicate that the ECG series does not

have a symmetrical and normal distributions whereas the normal EEG data

may does (see Figure. 6.13). This will be evaluated using different statistical

tests, and will be discussed deeply in Chapter 7.

Table 6.16: Descriptive statistics of ECG and EEG series.

Statistics
Mean S.D Minimum Maximum Skewness Kurtosis

ECG series -0.18 0.84 -3.72 1.00 -2.29 8.91
EEG series 6.82 42.6 -190 185 -0.18 3.54
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Figure 6.13: Histograms of the abnormal ECG (left) and normal EEG (right)
series with normal curve (red line).

Figure. 6.14 (right) illustrates the EEG time series, and the results of the

correlation and the skewness of ζi are depicted in Figure. 6.14 (middle) and

(right), respectively. Both results indicate that the number of eigenvalues that

correspond to the EEG signal is 91.

After finding the optimal r for each series, we can use the second stage of the

algorithm. The second stage is exactly the grouping and diagonal averaging steps

in SSA. Note that for grouping step, we put the eigentriples (1 : r) in one group for
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Figure 6.14: Noisy EEG series (left), the correlation matrix (middle) and the
skewness coefficient (right) of ζi for the EEG series.

the reconstruction or extraction of the signal. Figure. 6.15 shows the the result of

the signal extraction or reconstruction series without noise, which is obtained from

eigentriples 1 : r (r = 150, 91) for the ECG and EEG series respectively. The blue

and the black lines correspond to the reconstructed series and the original series

respectively. Note that the first 100 observations of the ECG and EEG series were

plotted in the figure for visual purposes. As a result, the selected vaalues of r for

the reconstruction of the original series are optimal.
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Figure 6.15: Original (black) and reconstructed (blue) series for ECG, and
EEG series (first 100 observations).
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6.4 Summary

The most important issue in singular spectrum analysis, that is, the selection of the

number of eigenvalues (r) needed for reconstruction of the series, was considered.

We have studied and investigated the skewness and kurtosis of the eigenvalue dis-

tribution of B, and the value of variation coefficient for each eigenvalue. We have

shown that the maximum value of the skewness and kurtosis coefficients for the

distribution of the eigenvalues are novel indicators for selecting the optimal value of

r. In addition, the correlation (or correlation matrix) between eigenvalues, ζi and

ζj were considered. The correlation matrix was considered as another criterion for

separability between time series components in SSA. In addition, we have used the

same criteria for the choice of L. Although we have not considered all the values

of L, the results indicate that the value of L should be half of the series length for

best separability. The results based on these criteria have shown that the cut-off

point between signal and noise components in SSA can be obtained correctly.



Chapter 7

Application in Biomedical Data

This chapter seeks to explore the applicability of the method for eigenvalue identifi-

cation in four different gene expression protein profiles. In addition, the approach is

applied to discrimination between normal and epileptic seizure EEG signals, extrac-

tion of strange patterns, and filtering of EEG signals and eliminating noise included

in the signals.

The reminder of this chapter is structured as follows: Section 7.1 includes a brief

introduction to noise correction in gene expression data, followed by data descrip-

tion and main results of the section. Section 7.2 presents a brief introduction to

the removal of noise from EEG signals. In Section 7.2.1 we show that the approach

can decompose the synthetic data into two main distinct subspaces. Section 7.2.2

presents the performance of the proposed approach in filtering EEG signals, ex-

tracting strange patterns, and discriminating between normal and epileptic EEG

signals. Section 7.3 presents the summary of the chapter.

7.1 Noise correction in gene expression data

Segmentation in Drosophila melanogaster is a very important studied example of

gene regulatory networks in developmental studies [252] as it has small size, short

142
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generation time, and large brood size, which make it ideal for genetic studies. Fur-

thermore, transparent embryos facilitate developmental studies. Model organisms

are species that are studied to understand the biology of other organisms, often

humans. In addition, fruit flies share 75% of the genes that cause disease with

humans, so scientists can learn about human genetics by studying fruit fly genetics.

In gene regulatory networks, it is widely accepted that the pattern of the seg-

mentation factors which has been activated by the primary morphogens direct the

development of the early embryo. However, due to the presence of noise, finding the

pattern of segmentation factors is not a simple task [117, 253] and even a small level

of noise in gene expression patterns will considerably affect our understanding of

the embryo developmental fate. Hence, it is important to probe the gene expression

signal using a method which effectively enables us to filter the fluctuations of the

related gene protein profile.

These profiles can mostly be achieved by using the fluorescence imaging technique

[169]. Such quantification relies on the assumption that the actual protein concen-

trations detected by the fluorescence in situ hybridization (FISH) technique are lin-

early related to the embryos natural protein concentration. However, the obtained

profile contains different levels of noise which need to be removed first. Among

several noise removal models, SSA is a relatively new method which has recently

transformed itself into a valuable tool for gene expression signal extraction. The

first such application of SSA was made in 2006 when Holloway et al. studied the re-

lation between maternal protein gradients and segmentation process in Drosophila,

by analysing gene expression patterns extracted by SSA [164]. Two powerful charac-

teristics of SSA are worthy of mention: there is no requirement of any assumptions

about the data and related residuals, and its effective performance in noise filtering

[112] makes SSA a valuable method in analysing segmentation gene profiles.

Even though the signal extraction by SSA appears to be simple, in practice it is a

complicated task since in some cases the trend cannot be separated from noise or

cyclic components just by choosing the first eigenvalue. This issue was raised for

the first time in [117], where the author suggests the use of either a small window
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length or the addition of a constant to the series to improve the separability between

noise and signal [117]. Despite the practical possibility of these suggestions, there

is still an open question related to the identification of the number of eigenvalues

required for gene series reconstruction.

To address this question we mainly follow the algorithm proposed in Chapter 6.

The proposed approach has been mainly used for noise reduction, filtering, signal

extraction and distinguishing chaos from noise in previous chapters. In identifying

the number of eigenvalues, this method mainly relies on the distribution of the scaled

Hankel matrix eigenvalues. Here, we apply the method for signal extraction for four

different genes; bicoid (bcd), caudal (cad), giant (gt) and even-skipped (eve), which

are among the most important zygotic segmentation genes. The approach enables

us to decide and select the appropriate number of eigenvalues related to the gene

signal.

7.1.1 Real data

Data description

The gene expression data in wild-type Drosophila melanogaster embryos is achieved

by the fluorescently tagged antibodies technique and is available via [254], where a

more detailed description of the biological characteristics, method and data is given.

This data was extracted from the nuclear intensities of %10 longitudinal strips and

the data was not processed for any other noise removal.

Of the many segmentation genes, we are only concerned with four different ones in

this study: bcd, cad, gt and eve, of which bcd is maternal, cad has both maternal

and zygotic origins, and gt and eve are respectively related to gap and pair rule

categories of zygotic genes [164, 169].

bcd mRNA is completely maternal and the Bcd protein gradient is formed at cleav-

age cycle 9 [164, 169]. Figure 7.1(a) depicts a typical example of a Bcd gradient
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related to cleavage cycle 14(3). Although this figure suggests Bcd follows an ex-

ponential trend due to the high volatility seen in the series, the extraction of this

trend is not a simple task.

cad mRNA has both maternal and zygotic origins and the maternal transcripts

begin to translate immediately after fertilization. However, proteins encoded by gt

and eve were reported to appear at cycle 12 and 10 respectively and it is accepted

that the posterior stripe of gt expression is regulated by bcd and cad [161, 164, 169].
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Figure 7.1: Experimental data from the Drosophila melanogaster embryo; (a):
bcd, (b): cad, (c): eve, (d): gt. y axis represents gene expression profile, which

tell us what actually it is doing at a point in time (x axis).

7.1.2 Main results

To generate simulated noisy profiles with similar structure, shape and distribution

to the real gene expression profiles we mainly follow the algorithm presented and

explained in the previous chapter. Although the gene expression profiles are slightly

different from embryo to embryo, as the obtained results in terms of number of

eigenvalues are similar, we only consider ten different embryos to study each gene.
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In this regard, each copy of the gene expression data was simulated 104 times.

Studying the distribution of each eigenvalue provides the capacity to obtain an

accurate and deep intuitive understanding of selection of the optimal value of r.

The first data for each gene is analysed and discussed in more detail, whilst the

results of the other data are summarised based on the outcomes of the skewness,

variation and correlation coefficients. The window length used for analysing the

bcd, cad, gt and eve genes series is 200.

We mainly focus here on the skew and CV of the distribution of ζi. In addition, the

ρs between the eigenvalues is also evaluated to enhance the results obtained by the

skew and CV measures. The absolute value of the correlation between ζi and ζi+1

is considered; 1 indicates that ζi and ζi+1 have perfect positive correlation, whilst 0

shows there is no correlation between them.

Figure. 7.2 illustrates the results of skew(ζi) (left) and CV (ζi) (right) for the first

data series for each gene type. It can be seen from the left column that the maximum

value of skew is obtained for ζc=3 in both bcd and cad data, whereas skew(ζc=4)

is the maximum for both eve and gt series. In the right column, the results of

CV split the eigenvalues into two groups for each data; the second group looks

like a U shape which is related to the noise component. The results indicate that

r = c− 1 = 2, 2, 3, 3 for extracting the bcd, cad,eve and gt signals, respectively.

Furthermore, the result of ρs can be used as a decision or test tool if the skew

and CV measures give different results. However, in these typical examples, the

results of those two measures are the same which also supported by the results

of the correlation coefficient. It is obvious that the minimum values of ρs are

observed between (ζ2, ζc=3), (ζ2, ζc=3), (ζ3, ζc=4) and (ζ3, ζc=4) for bcd, cad, eve and

gt, respectively. Therefore, the results enhance the fact that r = 2, 2, 3, 3 for the

first data for each gene (see Figure. 7.3).

Tables. 7.1, 7.2, 7.3, and 7.4 show the results of r based on those three measures

for all 40 series. For the bcd signal extraction, all the outputs show r = 2 for all

bcd data (see Table. 7.1). Similar results emerged in the extraction the cad signal,

most of the outcomes indicating r = 2.
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For the eve data, r = 3 for five series, as all the three measures give the same

result. However, for example, for series 2, the results of skew and CV are different;

r = 3 and r = 4, respectively. To overcome this, we look at the result of ρs, which

confirms that r = 4. In this regard, the decision is that r = 3 for six series of ten

eve data. Table. 7.4 demonstrates that r = 3 for all gt series except the last series,

because all measures have the same results. As a result, for L = 200, the required

eigenvalues to extract the bcd, cad, eve, and gt signals are 2, 2, 3, 3, respectively.

Table. 7.5 shows the final results for all four genes along with the most frequent

reported skew, CV and ρs.
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Figure 7.2: Skewness coefficient (left) and the variation coefficient of ζi (right)
for the first series of bcd, cad, eve and gt data.
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Figure 7.3: Correlation between ζi and ζi+1 for the first series from each data
set.

Table 7.1: Values of r based on Skew and CV for the ten bcd series.

Series r (skew) r (CV ) r (ρ) Series r (skew) r (CV ) r (ρ)

1 2 2 2 6 2 2 2
2 2 2 2 7 2 2 2
3 2 2 2 8 2 2 2
4 2 2 2 9 2 2 2
5 2 2 2 10 4 2 2

Table 7.2: Values of r based on skew and CV for the ten cad series.

Series r (skew) r (CV ) r (ρ) Series r (skew) r (CV ) r (ρ)

1 2 2 2 6 1 2 1
2 2 2 2 7 2 2 2
3 2 2 2 8 2 2 2
4 1 2 1 9 2 1 2
5 2 2 2 10 3 3 3

Table 7.3: Values of r based on skew and CV for the ten eve series.

Series r (skew) r (CV ) r (ρ) Series r (skew) r (CV ) r (ρ)

1 3 3 3 6 3 4 4
2 4 3 4 7 3 3 3
3 6 6 6 8 4 4 4
4 6 4 4 9 3 3 3
5 3 3 3 10 3 3 3

After the step of identifying the value of r, we can use the leader eigenvalues in

the second stage of the algorithm to reconstruct the first typical data for each
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Table 7.4: Values of r based on skew and CV for the ten gt series.

Series r (skew) r (CV ) r (ρ) Series r (skew) r (CV ) r (ρ)

1 3 3 3 6 3 3 3
2 3 3 3 7 3 3 3
3 3 3 3 8 3 3 3
4 3 3 3 9 3 3 3
5 3 3 3 10 5 3 5

Table 7.5: Final result obtained in
noise-signal separation study for gene

data.

Gene type r (skew) r (CV ) r (ρ)

bcd 2 2 2
cad 2 2 2
eve 3 3 3
gt 3 3 3

gene. Figure. 7.4 shows the result of the gene signal extraction or reconstruction

series without noise. The red and the black lines correspond to the reconstructed

series and the original series respectively. As a result, the considered r for the

reconstruction of the original series is obtained correctly, especially for the bcd and

cad signals.
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Figure 7.4: Original (black) and extracted signal (red); (a): bcd, (b): cad, (c):
gt, (d): eve .

Taking a closer look at Figure. 7.4, it is important to note that the extracted signal

profiles of eve and gt do not follow the expression data satisfactorily when the data

series changes sharply. Therefore, in order to solve this issue and capture the peaks

of the profiles, we used sequential SSA. The main idea underlying this approach

is to apply SSA recursively on the residuals with different window length L [255].

By doing so we extract some components of the initial series using basic SSA and

then extract the remaining components related to the signal by applying SSA on

residuals. Such a recursive SSA application produces a gradual extraction of the

signal present in the noise. Figure. 7.5 shows the result after applying sequential

SSA. As can be seen, signal extraction and peak capturing have been improved

accordingly.
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(a) (b)

Figure 7.5: Improving signal extraction using sequential SSA. Original (black)
and extracted signal (red);(a): eve, (b): gt .

7.2 Removing noise from EEG signal

The electroencephalography (EEG) signal is the recording of electrical brain activ-

ity, which is a complex signal, and one of the most frequently used to study and

investigate neurological disorder. The EEG signals represent not only the brain

function but also the situation of the whole body [256]. Furthermore, the EEG

biosignal records play an important role in the detection and treatment of brain

diseases, such as epilepsy and brain tumor. Moreover, the analysis of EEG can be

used to diagnose brain death [257].

The EEG signal is a valuable tool to study the brain function and neurobiological

disorders, however; its recording is contaminated by diverse types of noise and arti-

facts which can cause problems in the accurate analysis of brain signals. These types

of noise can be electrical, or can be made by our bodies, since the signal records

have small amplitudes [257]. Furthermore, different artifacts such as blinking of the

eyes, ocular artifacts, and muscle activities make noise in EEG recording; detecting

such noise becomes a complex task. Although the signals can be affected by inter-

nal and external noises, which often have unknown characteristics, the noise can

be identified if the signal and noise subspaces can be accurately separated. Various

methods can be implemented for denoising or removing noise from EEG signals; for

instance, principal component analysis (PCA) [258]–[260], independent component
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analysis (ICA) [261]–[263], and wavelet transform (WT) [264]. Furthermore, dif-

ferent techniques have been applied to the analysis and discrimination of different

categories of EEG signals [265]–[267].

We mentioned in the first chapter that in nature many nonlinear dynamic systems

can show chaotic behaviour. For example, the recording of the brain is considered as

a nonlinear time series when an epileptic seizure exists, and can also be considered

as a chaotic series [57]. Therefore, researchers attempt to identify strange patterns

in the analysis of brain signals. In addition, analysing EEG is an important tool

for detecting epileptic activity. Detection of epileptic seizure and the extracted

information from brain recordings play a significant role in diagnosis and treatment.

In this subsection, we apply the approach to discriminate between normal and

epileptic seizure EEG signals, to choose the optimal value of r to denoise the EEG

signal segments, thereby eliminating noise, and to extract strange patterns.

7.2.1 Synthetic data analysis

Let us here illustrate the capability of the proposed approach using two other exam-

ples, as EEG recordings contain the sum of sinusoid components, noise and other

signals that behave chaotically.

Example 1:

To show the applicability of the scheme, it is also used to decompose the synthetic

time series generated from the well known Rossler low dimensional chaotic system:
dx
dt

= −y − z

dy
dt

= x+ ay

dz
dt

= b+ z(x− c).

(7.1)

Figure. 7.6 (left) illustrates 5000 values generated from the Rossler system, and

Figure. 7.6 (right) shows the Rossler series with added white noise. In this example,

the signal to noise ratio is SNR = 14. The idea is to discuss how the approach can
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help to determine the number of eigenvalues that are required to remove the noise

from the EEG series in order to perform an adequate analysis.
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Figure 7.6: Rossler series (left), and Rossler + noise (right).

To apply the proposed approach, 105 copies of the noise component were generated

and added to the signal. In this case, the independent time series Y m
N , where

m = 1, . . . , 105 has been analysed; here L = 100. The pattern of ζi (i = 1 . . . , L)

of the matrix B and its related forms for those independent time series have been

studied in depth. Figure. 7.7 shows the average of the eigenvalues. It can be seen

that the value of the first three are outstanding, whilst the other eigenvalues are

close to each other. This is expected because the embedding dimension for a chaotic

Rossler system must be at least 3. Each eigenvalue or singular value contributes

to the trajectory matrix decomposition. We can consider the ratio ζ i × 100 as the

characteristic of the matrixHi to Eq. (1.3). Thus, 100×
∑r

i=1 ζ i is the characteristic

of the best approximation of H by the matrices of rank r.
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Figure 7.7: Logarithm of ζi for the Rossler + Noise series.



Chapter 7. Application in biomedical data 154

Here, the corresponding eigentriples to those first three singular values can be as-

sumed as the leading components for the original series as their ratio is 99.12. Fig-

ure. 7.8 illustrates the results of Skew(ζi) (top left), Kurt(ζi) (top right), CV (ζi)

(bottom left), and the matrix of the absolute value of ρs between the eigenvalues

(bottom right). The results of the coefficient of the skewness measure split the

eigenvalues into two groups. It is obvious that the maximum value of Skew is ob-

tained for ζc=4 and the pattern of Skew(ζ4) to Skew(ζL) has the same pattern for

the noise component. Therefore, the first three eigenvalues correspond to the signal

and the reminder to the noise part. Similar results emerged with the other two

measures, Kurt and CV . It can be seen that the second group of CV results has a

shape which is related to the noise (see Chapter 6). In addition, it is obvious from

the correlation matrix that the first three leading eigenvalues describe the Rossler

signal, and the large sparkling square is the indicator of the white noise components.

Thus, the eigenvalue correlation matrix gives a clear image for the theory of the

separability.
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Figure 7.8: Results of Skew, Kurt, CV , and the correlation matrix.

The above results are evaluated using the root mean square error (RMSE) between
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the original Rossler signal component and the reconstructed series by eigentriples

1–i, (i = 1, . . . , 100) (see Figure. 7.9 (left)). The result confirms that r = 3, as

the minimum value was obtained between the original signal and the reconstructed

series by eigentriples 1–3. Figure. 7.9 (right) depicts the reconstructed noise free

series by eigentriples 1–3 (blue line), and the original Rossler component (black

line).
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Figure 7.9: Root mean square error (RMSE) between the original Rossler signal
and reconstructed components by eigentriples (left), and the reconstructed or

extracted signal and the original signal series (right).

Example 2:

The second example is a mix of two signal components: the exponential sequence

and cosine wave, with white noise:

yt = s
(1)
t + s

(2)
t + ϵt, (7.2)

where s
(1)
t = exp(αt), s

(2)
t = cos(2πt/T ), ϵt ∼ N(0, σ2), α = 0.03, σ2 = 5, T = 12,

and t = 1, . . . , 96. In this regard, the whole signal consists of the exponential trend

and harmonic components. Figure. 7.10 shows a typical example of the signal

s
(1)
t + s

(2)
t , and yt series.

Figure. 7.11 illustrates the average of the eigenvalues. It is obvious that the value

of ζ1 is outstanding, whilst ζ2 and ζ3 are close to each other. This is also expected

because the first eigenvalue correspond to the exponential trend, and the second

and third eigenvalues correspond to the harmonic component. In this case, the
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corresponding eigentriples to ζ1, ζ2 and ζ3 can be considered as the leading compo-

nents for the original series as their ratio is 99.24. Figure. 7.12 show the results of

Skew(ζi) (top left), Kurt(ζi) (top right), CV (ζi) (bottom left), and the matrix of

the absolute value of ρs between the eigenvalues (bottom right). It can be seen that

the coefficient of skewness measure separates the eigenvalues into two groups, and

the maximum value of Skew is observed for ζc=4. Thus, ζi (i = 1, 2, 3) correspond

to the signal and the reminder to the noise components. Similar results were also

obtained by the Kurt and CV measures. Furthermore, from the correlation matrix

we can see that the first leading eigenvalue describes the exponential trend, the two

pair eigenvalues correspond to the harmonic component, and the other are related

to the white noise components.
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Figure 7.10: Typical example series, s
(1)
t + s

(2)
t (left) and yt = s

(1)
t + s

(2)
t + ϵt

(right).
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Figure 7.11: Logarithm of ζi for the simulated series, Example 2.

The results here are also examined using RMSE between the original signal com-

ponent (s
(1)
t + s

(2)
t ) and the reconstructed series by eigentriples 1–i, (i = 1, . . . , 36)

(see Figure. 7.13 (left)). The result of RMSE confirms that r = 3. Figure. 7.13
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Figure 7.12: Results of the Skew, Kurt, CV , and the correlation matrix for
Example 2.

(right) shows the reconstructed free noise series by eigentriples 1–3 (blue line), and

the original components s
(1)
t + s

(2)
t (black line). As a result, the considered r for the

reconstruction of the original series is optimal, and thus the approach can be used

as a promising technique for the removal noise from noisy EEG data.
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Figure 7.13: Root mean square error (RMSE) between the original signal and
reconstructed components by eigentriples (left), and the plot of the reconstructed

signal and original signal series (right), Example 2.
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7.2.2 Real data analysis

7.2.2.1 EEG data selection

Two EEG signals sets [56] were used for this study. These data have been analysed

by many authors as they can help us to diagnose and cure diseases in human brain,

see for example [251, 268] and references therein. Each set includes 100 single-

channel segments of 23.6 second duration, which were extracted from continuous

multichannel EEG records after visual inspection for artifacts. The first set (nor-

mal subject) was selected from surface EEG recordings of five healthy volunteers

who were relaxed in an awake state and with eyes open, using a standardised elec-

trode placement approach. The second set contains epileptic signals (during seizure

activity) from five epileptic patients.

All EEG signals were recorded with the same 128-channel amplifier system, using

an average common reference (omitting electrodes containing pathological activity

sezure activity segments, or strong eye movement artifacts normal EEG segments).

After 12 bit analog-to-digital conversion, the data were written continuously onto

the disk of a data acquisition computer system at a sampling rate of 173.61 Hz.

Band-pass filter settings were 0.5340 Hz (12 dB/oct)(more details about the data

can be found in [56]).

Two specimens of the normal and epileptic seizure series are shown in Figure. 7.14,

and the densities of their distribution in Figure. 7.15. It is clear that the distribu-

tion of the healthy series is symmetric, whilst it is skewed for the epileptic series.

It is worth mentioning that segments of the normal set can have a symmetrical

distribution, whereas the distribution of the epileptic series are skewed to the right

or to the left. Table 7.6 represents a summary of descriptive statistics for only series

1, series 50, and series 100 from each subject as similar results were obtained for

other series. As can be observed from Table 7.6, all series of normal EEG have

a smaller standard deviation (SD) than those values obtained for epileptic EEG.

Similar results can also be seen for the values of the maximum and minimum of

the series. It also can be seen from the table that the values of skewness (which
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measures the deviation of the distribution from symmetry) is clearly different from

zero for epileptic EEG series, then their distributions are asymmetrical, while those

values for the normal EEG segments are almost zero, then their distributions are

almost symmetrical. The D-P test is also used here to evaluate both the skewness

and kurtosis of the distributions (see Table 7.7). The results based on the test con-

firm that all epileptic EEG segments have skewed distributions, whilst the normal

EEG segments can have a symmetrical distribution, for example, series 50.
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Figure 7.14: Specimen of the normal (left) and epileptic seizure (right) series.
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Figure 7.15: Density of the normal and epileptic series.

7.2.2.2 Removing noise

The main aim of the approach is the separability of the EEG signal and noise

components. After selecting the optimal value of r, eigentriples that contribute to
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Table 7.6: Descriptive statistics of for three segments; series 1, series 50 and
series 100 from normal and epileptic EEG signals.

Statistics
Series Mean S.D Minimum Maximum Skewness Kurtosis

EEG.Normal 1 6.82 42.60 -190 185 -0.18 3.54
EEG.Normal 50 3.82 49.89 -206 163 -0.06 3.18
EEG.Normal 100 -28.36 42.07 -164 138 0.21 3.50
EEG.Epileptic 1 47.10 478.54 -1765 1027 -1.35 4.49
EEG. Epileptic 50 -31.14 269.93 -645 769 0.70 2.84
EEG.Epileptic 100 3.28 259.29 -833 1058 0.22 2.72

Table 7.7: p-value of the D-P test for three segments; series 1, series 50 and
series 100 from normal and epileptic EEG signals.

Statistics
Series Normal 1 Normal 50 Normal 100 Epileptic 1 Epileptic. 50 Epileptic 100
p-value 0.0018 0.337∗ 0.0003 <2.2e-16 <2.2e-16 0.0002

Note :∗, represents symmetry based on D-P test at p = 0.05.

noise components are discriminated, and thus they can be separated from the signal

components.

In this subsection, only two segments, from the healthy and epileptic sets, were

used, simulated 104 times, and analysed to extract the signal or remove the noise

from the EEG signal subspace. We aim here to show that the the approach can

be applied for each segment separability although we will apply it for all segments

together later. Figure. 7.16 (left and right columns) show the results of the measures

corresponding to the normal and abnormal subjects, respectively. It is obvious that

the three measures split the eigenvalues or eigentriples into two different groups

(signal and noise). It can be seen that the value of Skew(ζc=52) is the maximum

for the non seizure signal, whilst the value of Skew(ζc=48) is the maximum for the

seizure signal. Furthermore, for both cases, the values of the skewness coefficient

of the eigenvalues corresponding to the noise components have a slowly decreasing

order. The results of the variation coefficient measure show clear evidence of the

separability point between the signal and noise spaces as the values of the measure

related to the noise eigenvalues have a U shape. The results of the correlation matrix

between eigenvalues confirm that the number of eigenvalues corresponding to the
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signal for the healthy and unhealthy subjects are 51 and 47, respectively. Thus,

by using the eigentriples corresponding to those eigenvalues we can reconstruct the

signal, and remove the noise part. Figure. 7.17 shows the extracted signals, and the

noise series after extracting the signal from the original series for both subjects. We

should mention that the same procedure can be done for other segments. Similar

results were obtained by considering each segment separately.
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Figure 7.16: Results of all measures corresponding to the normal and abnormal
EEG series.
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Figure 7.17: Extracted signals (top) and extracted noise (bottom) for healthy
and epileptic seizure EEG.

7.2.2.3 Strange patterns

The main and challenging question in the nervous system is how one can differ-

entiate between deterministic and stochastic patterns. In Chapter 5, we showed

that the distribution of the scaled Hankel matrix eigenvalues can be used as a novel

approach for distinguishing chaos from noise. It has been applied for discriminating

between Lorenz, Henon, Tent, and white noise. The applicability of the approach

was evaluated using ECG time series. The results of the approach confirmed that

there is evidence of chaotic behaviour in that series, and we found an attractive

pattern using the embedding method. There are several research studies devoted to

the analysis of experimental data by means of the tools of nonlinear dynamics that

are related to the embedding method and the delayed embedding which we use in

the present study (refer to [184, 185]).

In this subsection, we only have used the first component from the extracted signal

components, and the residual series for both segments, which were determined in
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the the previous subsection, to detect strange patterns or chaotic behaviour in EEG

signals. The two reconstructed series by the first eigentrple, and two residual series

are used, and then the delayed embedding method is applied . In Figure. 7.18

(top), it can be seen that the scatter plot of yt with time delay 10 has a very nice

attractor for both reconstructed signals, which are different from each other. It can

also be observed that the orbits produced move in different ways. In the healthy

case, the orbit moves between the values -20 and 20, but between -300 and 300 in

the unhealthy case. By looking at the scatter plot of residual series with time delay

20 for both subjects, we can see a clear pattern only for the residual series obtained

from the seizure signal (see Figure. 7.18 (bottom)).
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Figure 7.18: Plot of yt with time delay 10 for both reconstructed series, and
with time delay 20 for the two residual series.

By looking at Figure. 7.18 (right bottom), we can see that the extracted noise of

epileptic EEG signal may have some remaining signal components. In order to solve

this issue and extract those remaining components, we applied SSA again with the

same window length. The main idea underlying this technique is to apply SSA

recursively on the residuals [255]. Thus, we can extract some components of the

initial series using basic SSA and then extract the remaining components related to
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the signal by applying SSA on residuals. Such a recursive SSA application produces

a gradual extraction of the signal present in the noise. Figure 7.19 shows the result

after applying SSA again on the residual. It can now be seen that the extraction of

the signal and noise components have been improved accordingly.
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Figure 7.19: Improving signal (left) and noise (middle) extractions of epileptic
EEG signal, and plot of yt with time delay 20 for the noise series (right).

It should be mentioned here that we can distinguish between EEG signals by looking

at the explored strange patterns, and studying the distributions of the reconstructed

and residual series as shown above. Although it is possible to simulate and analyse

each segment and use all the filtered EEG segments and residuals to discriminate

between EEG classes and detect epileptic seizure, we can differentiate between EEG

subjects by applying the proposed approach to the EEG segments directly without

using a simulation method for each segment, and using different criteria for the

discrimination of them. This will be discussed in the following subsection.

7.2.2.4 Discrimination of EEG signals

This subsection demonstrates the ability of the approach to distinguish between

EEG signals by using all 100 segments from each class. Each single channel from

each class is analysed and ζi is calculated. Note here that we do not need a simu-

lation technique as each class has 100 single channels, which can be considered as

simulated series, and are sufficient for this study. Consequently, for each class the

average of each eigenvalue of matrix B can be obtained, and other statistical tests

can be applied to each eigenvalue data. The same measures that have been used
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in the previous section are applied here. They are used as features to recognize

the difference between normal and seizure EEG signals. The potentiality of these

measures to differentiate between the two signals depends on the values of those

measures. The results of these measures are similar to those shown in Figure. 7.16.

The results indicate that the maximum value of Skew is obtained with ζ52 for the

normal subject whilst with ζ48 for the epileptic one. It is clearly observed that there

is a significant difference between the values of Skew for the normal and epileptic

conditions, especially, between the first two values. Similar results emerged for both

subjects using the kurtosis measure. Furthermore, the first values of Kurt(ζi) are

similar for both cases, whereas there are big differences between the last 50 values

(see Figure. 7.20 (middle)). In addition, by looking at the results of CV , especially

the last 10 values, we can see that CV increases for the epileptic signal whilst it

decreases for the normal signal.
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Figure 7.20: Results of Skew(ζi),Kurt(ζi), and CV (ζi) for normal and epileptic
EEG segments.

Let us now consider only the largest eigenvalue obtained from the EEG segments

for both subjects. Let ζ1,he = {ζhe1,n}100n=1 and ζ1,ep = {ζep1,n}100n=1 denote the largest

eigenvalue for the 100 normal and epileptic segments, respectively. The distribution

of ζ1,he and ζ1,ep are different, ζ1,he has approximate skewed distribution, whereas

ζ1,ep has a symmetric distribution (see Figure. 7.21). It is interesting here that

the distribution of ζ1 for the healthy subject has a fat-tail. To evaluate this, two

statistical tests are also applied to the distribution of ζ1,he and ζ1,ep: D-P and K-S.

As stated earlier, the D-P test is used to evaluate both the skewness and kurtosis
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of the distribution. The K-S test can be used to compare a sample with a known

probability distribution, or to compare two samples.

Table 7.8 provides information about the p-values of the D-P test for ζ1,he and ζ1,ep.

It is obvious that the p-value is significant for the healthy case, 0.001 for ζ1,he, whilst

0.788 for ζ1,ep. Thus, the null hypothesis is accepted that the data of ζ1,ep (epileptic

seizure set) is symmetric, whereas it is rejected for the data of ζ1,eh (normal set),

and as a result the distribution of ζ1,he is skewed. In addition, the p-values of

the K-S test is significant; p-value=0.0014, which indicates that the data of ζ1,ep

and ζ1,he come from different distributions, and thus their corresponding signals are

distinguishable. Similar results were obtained between ζi,he and ζi,ep (i = 50, 100),

(see Table 7.9). Similar results were also found for other eigenvalues, thus they are

not reported here.
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Figure 7.21: Density of of the distribution of ζ1,he (normal) and ζ1,ep (epileptic).

Table 7.8: p-
value of the D-P
test for ζ1,he and

ζ1,ep.

p-value

ζ1,he 0.001
ζ1,ep 0.788∗

Note :∗, represents sym-
metry based on D-P test
at p = 0.05.
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Table 7.9: The p-value of KS test between ζi (i = 1, 50, 100) for the normal
and epileptic EEG series.

The p-value of KS test
ζ1,he ζ50,he ζ100,he

ζ1,ep 0.0014

ζ50,ep 0.004

ζ100,ep 0.001

Finally, the maximum, minimum, mean, and standard deviation were used as fea-

tures to also distinguish between these two sets. Table. 7.10 shows the extracted

features of 200 records from the two classes. It can be seen that the results are

totally different from each other. Thus, these features can be used as useful infor-

mation in classifying the EEG signals.

Remember that here we have considered all segments together in each case, however,

we can use each segment from each case, simulate it and find the results. The

results are similar to what found in Table 7.10, which shows those used features

are totally different for the two subjects, and thus their corresponding signals are

distinguishable.

Table 7.10: Extracted features of 200 segments from the two classes.

Subjects Extracted features Largest eigenvalue of B

Healthy Maximum 0.9237
Minimum 0.0884
Mean 0.3066

Standard deviation 0.2181
Coefficient of Variation 0.7114

Epileptic Seizure
Maximum 0.3318
Minimum 0.0629
Mean 0.1859

Standard deviation 0.0713
Coefficient of Variation 0.3837
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7.3 Summary

To show the applicability of the scheme, we have also used it here to analyse syn-

thetic time series generated from the well known Rossler low dimensional chaotic

system, and cosine wave. The results of simulated data were evaluated using a sta-

tistical test between the original Rossler signal component and the reconstructed

series by eigentriples.

The approach was examined in using real data. It was applied to remove the noise

and signal extraction in four different Drosophila segmentation genes. We have

demonstrated that the approach gives promising results for extracting the signal of

gene expression and also indicating that the method used for removing noise from

the protein profile of gene expression should be flexible enough for different type of

genes, as the results have shown that we need a different number of eigenvalues for

signal extraction in each gene.

In addition, the approach was examined in distinguishing between epileptic seizure

and normal EEG series, and denoising the EEG signals. Two EEG signal sets were

used, each set including 100 single-channel segments. We used different criteria to

choose the appropriate value of r for separability between the noise component and

EEG signal, extracting strange patterns and discriminating between normal and

epileptic EEG.

First, only two specimens from the normal and epileptic seizure sets were studied to

determine the value of r and remove noise from the signals. After finding the value

of r corresponding to the signals, we applied the embedding method to the first

component from the extracted signals, and the residual series in both subjects, to

detect strange patterns. It was found that the scatter plot of yt with a time delay

has a nice attractor for both reconstructed signals which are different from each

other and that the produced orbits from both signals move in different ways. It was

found that there is a strange pattern only for the residual series obtained from the

epileptic seizure signal, which indicates the possibility of chaotic behaviour in the

epileptic signal.



Chapter 7. Application in biomedical data 169

Furthermore, we have considered all segments from each subject. It was observed

that there is a difference between the values of Skew for the normal and epileptic

conditions, especially, between the first two values. Similar results emerged for both

subjects using the kurtosis measure. For both cases, the first values of Kurt are

similar whilst there are big differences between the last values. Moreover, by looking

at the results of CV , particularly the last values, it was observed that CV increases

for the epileptic signal, whilst it decreases for the normal signal.

In addition, various criteria based on the largest eigenvalue were also used as new

features to distinguish between the two signals. It was found that the results of the

two signals are totally different from each other. Therefore, these features can be

considered as useful information to classify brain signals.



Chapter 8

Conclusions and Future Research

Here we draw conclusions from the main findings of the thesis, followed by our ideas

for future research; theoretical and experimental work.

8.1 Conclusions

Singular spectrum analysis is considered as a promising and reliable technique of

time series analysis and forecasting. The main concept in studying SSA properties

is separability, which characterises how well different components can be separated

from each other. Separability depends on the selection of L and r, which is the

main issue in the use of SSA; an improper choice of L and r would imply inferior

separability. As our interest is to consider the signal as a whole, the importance of

the selection of L becomes less important. Thus, the main aim of the thesis was to

introduce a new approach for choosing the value of r, which relies on the distribution

of the scaled Hankel matrix eigenvalues. The selection of L was then considered.

This makes a novel contribution to the area of noise reduction and filtering in

biomedical signal processing and time series analysis, as biomedical signals are often

corrupted by artifacts and noise, which require separation or signal extraction before

any statistical and medical evaluation. Another challenge in analysing biomedical

signals is that their data is often non-stationary, particularly when there is an

170
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abnormal event observed within the signal, such as epileptic seizure, and they can

also present chaotic behaviour. Distinguishing chaos from noise is one of the main

issues in the modern age because they share common properties, which in turn

make them indistinguishable. Therefore, another important aim of the thesis was

to provide a viable solution to this problem by the use of the distribution of the

scaled Hankel matrix eigenvalues for the differentiation between and identification

of chaos from noise.

In this research, we have presented a new approach and some theoretical properties

of the eigenvalues of a scaled Hankel matrix that can be used for identifying signal

subspace from a noisy time series. First, we presented the theoretical aspects of

singular spectrum analysis and some mathematical background. We introduced

and included new theoretical results and proposals on the eigenvalues ζi of matrix

B. Several properties were proposed and proved, which can help us to distinguish

between signal and noise components. The theoretical results indicated that the

distribution of the eigenvalues can help us to distinguish between signal and noise,

then to identify the eigenvalues corresponding to the signal subspace for signal

extraction. The theoretical results also included the effect of the window length and

rank of the Hankel matrix on its eigenvalues. We considered a number of cases with

different values of L and rank of H to explore the relationship between eigenvalues.

The results indicated that the largest and smallest eigenvalues have respectively a

decreasing and increasing order for 2 ≤ L ≤ (N + 1)/2, whilst having respectively

increasing and decreasing orders for (N + 1)/2 ≤ L ≤ N − 1. In addition, the

change and increase in window length affect and change the distribution of the

smallest eigenvalue, but do not affect the distribution of the largest one for the

white noise process.

Second, the simulation study demonstrated that the approach performs very well

in the comparison between signal and noise series based on the distribution of

the eigenvalues. The distribution of the eigenvalues of matrix B generated from

different distributions was studied, and several properties were introduced. We

have considered various cases: symmetric and nonsymmetric distributions, trend

series and sine waves. The results indicate that for a large length of series N ,
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the average of each eigenvalue converges to 1/L for a white noise process, whereas

this result has not been found for other cases. Furthermore, the variance of the

largest eigenvalue is approximately equal to the variance of the smallest one and

the pattern of variance for all eigenvalues has a U shape for the white noise process.

In contrast, various results were obtained for the other cases. The results also

confirm that for the white noise process the distribution of the first eigenvalue is

skewed to the right, whilst it can be symmetric for the trend and nonsymmetric

distributions. The results also confirm that, for all cases, the distribution of the

middle part of ζi can be symmetric, whilst the distribution of the last eigenvalue

can be skewed. It was found that for small window length, the smallest eigenvalue

has negative skewed distribution for all cases, except the trend and sine ones. In

addition, the correlation between eigenvalues was assessed. It was found that the

correlation matrix between ζi and ζj for a white noise process is different to what

was observed for other cases, in that thy had a complex structure.

Furthermore, the effect of the parameter of normal distribution µ and σ2 on the

eigenvalues of B were evaluated. Based on the results, the distribution of ζi for

a white noise process, N(0, σ2), is always skewed to the right, which is totally

different from the one obtained by the sample generated from N(µ, σ2), µ ̸= 0. The

parameters of normal distribution or the rate σ2/µ can play a significant role in

determining the symmetry of the distribution of each eigenvalue. In addition, the

distribution of the smallest eigenvalue for the white noise process converges from

left to right with the increase in window length, which can also be considered as a

feature to determine the noise part in a noisy time series, thereby making it possible

to extract the desired signal.

Third, the distribution of the eigenvalues was used as a novel approach to the

distinction between deterministic chaotic systems and stochastic processes. Using

the proposed approach we were able to distinguish between chaotic series, Henon,

Logistic, Lorenz and Tent, and white noise series. It has been indicated that the

distribution of ζi (i = 1, 2) is symmetric for chaotic cases, particularly Henon and

Logistic, whilst skewed for the white noise, Lorenz and Tent series. The distribution

of ζi for the white noise is totally different to what obtained for the Tent map, as
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the direction of the skewness is different. Although the distribution of ζ1 and ζ2 are

skewed for the Lorenz series, which are similar to their distributions for the white

noise process, it is possible to determine whether the process is deterministic or

stochastic by calculating the coefficient of skewness or by looking at the matrix of

the correlation. It was observed that the correlation matrix between the eigenvalues

for the white noise series was totally different to what emerged for the chaotic series.

In addition, different statistical test were used to to verify the results. The results

confirm that the distribution of eigenvalues for the WN and chaotic series do not

share the same distribution. The application in real time series also confirmed the

validity and applicability of the proposed method to answer the question of whether

chaos and noise are distinguishable.

Fourth, we have developed the approach and used the skewness and kurtosis co-

efficients of the eigenvalue distribution, together with the coefficient of variation

and the matrix of correlation between eigenvalues as new indicators and criteria

for the separability between signal and noise components. Based on the results of

these criteria, we were able to choose the value of r for separability between the

main components, signal and noise. Thus, the eigentriples corresponding to the r

eigenvalues can be used to reconstruct the time series. In addition, based on the

approach and its criteria the value of the window length should be large and can

be half of the series. The results obtained by the introduced criteria coincided with

the results obtained by other criteria used in the thesis. As a result, the approach

and its criteria can help us to answer the question of what the optimal values of L

and r in SSA are.

Finally, to also show the applicability of the scheme and its successful applications,

it was used to analyse real biomedical data. It was applied to remove noise and to

extract signals in different Drosophila segmentation genes. The criteria were used

to identify the eigenvalues corresponding to gene signal from those corresponding to

the noise. The results confirm that the proposed approach gives a promising output

for the gene expression signal extraction and also indicates that the method used for

removing noise from the protein profile of gene expression should be flexible enough
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for different types of genes, as in this study we have obtained different numbers of

eigenvalues needed for signal extraction in each gene.

In addition, we presented another application of the approach. This includes the

analysis of EEG signals, noise and artifact reductions, discrimination between EEG

signals, and extraction of strange patterns. The approach was examined in dis-

criminating between normal and epileptic EEG segments, and filtering the EEG

signals. Two sets from normal and epileptic EEG signals were considered, each

set containing 100 single-channel segments. In the first stage, only one specimen

from each set was analysed to identify the value of r and remove noise from the

signals. After obtaining the value of r and extracting the signals, the embedding

method was applied to the first component from the extracted signals, and also to

the residual series for the detection of strange patterns or chaotic behaviour. The

results indicated that there are attractive patterns for both reconstructed signals

which are totally different from each other, but there is only a clear strange pattern

for the residual series obtained from the epileptic seizure signal, which means the

possibility of chaotic behaviour in the epileptic EEG signal.

In the second stage, all the segments from each subject were then used. Various

measures were used to recognize the difference between normal and seizure EEG

signals. The potentiality of these measures to differentiate between the two signals

depends on their values. The results clearly indicate that there is a significant

difference between the values of the measures used for the normal and epileptic

subjects, which can be an answer to the question of whether we can differentiate

between normal and abnormal biomedical signals.

In addition to all the above results, we introduced several criteria based on the

largest eigenvalue, and used them as novel features to classify EEG signals. The

results indicated that the two signals are distinguishable. Thus, the recommended

features can also be used as useful information in classifying brain signals.

As a result, all our findings confirm the impressive performance of the proposed

approach in distinguishing between chaos and noise and selecting the value of r

for identifying the signal subspace from a noisy time series. The approach does
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not need any assumptions; for example, stationarity of the series or linearity of the

residual. This shows that the proposed approach can be considered as a promising

one for the extraction of any biomedical signal contaminated in linear, nonlinear,

stationary, or non-stationary noise, or buried in other signals. Furthermore, the

main findings confirm that the proposed approach can be interesting to other re-

searchers in different areas and disciplines where separability, distinction between

noise and signals, noise reduction and filtering matters.

8.2 Future Research

For future research, the theoretical distribution of matrixB is of interest. Therefore,

we aim to compare the distribution of matrix B with several well known theoretical

distributions. Furthermore, the theoretical distribution of the smallest eigenvalue

is also of great interest, because, for instance, its behaviour is used to prove its

convergence to the circular law. Accordingly, study of the local properties of the

spectrum, as well as the related distribution, is of interest.

Furthermore, we believe that by using the proposed approach it is also possible to

find the optimal value of the window length in singular spectrum analysis to analyse

and forecast various time series. Therefore, we aim to evaluate the applicability of

the results found here for noise reduction of other real time series that display

chaotic behaviour in different disciplines. Moreover, the presence of outliers is an

important issue in time series analysis; they make the time series non-stationary

and could mislead forecasting results. We thus aim to evaluate the approach in

the existence of outliers, where Gaussian distribution is considered as the noise

distribution.

Additionally, we will apply the properties obtained here as extra criteria for filtering

series with more complex structures and for considering different types of noise;

for example, red noise. We may also design a statistical test based on the result

found of the determinant of matrix B to examine the separability obtained by the

approach. Furthermore, we may use other decomposition methods such as tensor
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decomposition, instead of singular value decomposition, to examine and compare

their performance with the approach.



Appendix A

Linear and Non-Linear

Dependencies

The aim of using linear and nonlinear measures is to test if there is a linear or non-

linear relationship between eigenvalues, and to explore if there are any similarities

and differences when using these measures.

A.1 Linear correlation coefficient

A linear measure of dependencies such as linear correlation can be used to measure

dependencies between two time series in linear dynamic systems. The three coeffi-

cient linear correlations that are commonly used to test dependency between two

random variables are Pearson, Spearman and Kendall.

A.1.1 Pearson correlation

One of the most famous linear correlation measures is the Pearson correlation co-

efficient. This coefficient, ρ, between two random variables X and Y is defined

as:

ρX,Y =
cov(X, Y )

σXσY

=
E(X − µX)(Y − µY )

σXσY

. (A.1)
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where E is the expected value operator, µX , σX , and µY , σY are expected values

and the standard deviation of random variables X and Y , respectively. The sample

linear correlation coefficient of N observations of random variables X and Y can be

obtained by replacing µX and µY with the sample means x and y and also σX and

σY with the sample standard deviations sx and sy (as estimators of µX and µY in Eq.

A.1, respectively). However, observed data might not be normally distributed and

might tend to have marginal distributions with heavier tails. Pearson’s correlation

coefficient, ρ, can only capture linear dependencies, and can not detect even a simple

nonlinear association. Moreover, it has a large number of disadvantages; see [25].

A.1.2 Spearman correlation

The Spearman rank correlation, ρs, is similar to that of Pearson, and measures

the linear relationships between ranked variables rather than between their raw

numbers. It is a nonparametric measure of the strength of the linear association

between two scale variables, and can be applied to ordinal data as well. It can

measure how consistently one variable increases or decreases as a second variable

increases (monotonic). For a sample of size N , the N raw scores Xi, Yi are converted

to ranks xi, yi, and ρs is computed as follows:

ρs = 1− 6
∑

d2i
N(N2 − 1)

(A.2)

where di = xi − yi, is the difference between ranks.

A.1.3 Kendall correlation

The Kendall correlation, τ , is similar to that of Spearman, and can be used with any

variables that are at least ordinal. It measures the degree to which a relationship

always increases or decreases. Let (x1, y1), (x2, y2), . . . , (xN , yN) be a set of observa-

tions of the joint random variables X and Y respectively, such that all the values

of xi and yi are unique. Any pair of observations (xi, yi) and (xj, yj) are said to be
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concordant if the ranks for both elements agree; that is, if both xi > xj and yi > yj

or if both xi < xj and yi < yj. They are said to be discordant if xi > xj and yi < yj

or if xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither concordant nor

discordant. The Kendall coefficient is defined as:

τ =
D1 −D2

1/2N(N − 1)
, (A.3)

where D1 and D2 are the numbers of concordant and discordant pairs, respectively.

To summarise which coefficient we should use, for interval scale data and if we

are interested in linear relationships we use Pearson’s coefficient, whilst those of

Spearman or Kendall if our interest lies in any decreasing/increasing relationship.

A.2 Mutual information

A pure linear relationship or a linear transformed relationship is required for the

application of linear correlations. Thus, these linear correlation coefficients may not

be useful in identifying serial dependence if there is nonlinear behaviour in the data

[269, 270]. Furthermore, many statistical tests have been used to show that there is

evidence of nonlinear dependence and chaotic behaviour in biomedical data. Thus,

we also consider a nonlinear measure based on mutual information.

The mutual information of two continuous random variablesX and Y can be defined

as:

I(X, Y ) =

∫
X

∫
Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dydx, (A.4)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and

p(y) are the marginal probability distribution functions of X and Y , respectively. In

the discrete case, we replace the integral by a definite double summation. Intuitively,

mutual information measures the information that X and Y share: it measures

how much knowing one of these variables reduces our uncertainty about the other.
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Mutual information can be expressed as:

I(X, Y ) = H(X)−H(X\Y ) = H(Y )−H(Y \X) = H(X)+H(Y )−H(X, Y ), (A.5)

where H(X) and H(Y ) are the marginal entropies, H(X\Y ) and H(Y \X) are the

conditional entropies, and H(X,Y ) is the join entropy of X and Y . Since H(X) ≥

H(X\Y ), we have I(X;Y ) ≥ 0; assuming equality, if X and Y are statistically

independent. Therefore the mutual information between the vectors of random

variables X and Y can be considered as a measure of dependence between these

variables, or even better, the statistical correlation of X and Y . The statistics

defined in Eq. A.5 satisfy some of the desirable properties of a good measure of

dependence [270].

The mutual information takes a value between 0 and infinity, I(X, Y ) ≥ 0, which

makes the comparisons difficult between different samples. In this context, [270]–

[273], among others, defined and used a standard measure for the mutual informa-

tion:

ξ = (1− exp[−2I(X,Y )])1/2 . (A.6)

This measure can capture the overall dependence, both linear and nonlinear, be-

tween X and Y . It varies between 0 and 1 and is thus directly comparable to

the linear correlation coefficient based on the relationship between the measures of

information theory and variance analysis.



Appendix B

Measures of Accuracy and

Statistical Significance of Noise

Free Time Series Reconstruction

Root mean square (RMSE) error and mean absolute error (MAE) are common

statistical metrics that are used to measure the performance of the methods for

the prediction of time series. They are used to measure the differences between

predicted values by a model or an estimator and actual observed values. They are

also used for image and noise free time series reconstruction. In this thesis, these

measures are applied to measure the capability of the proposed approach in the

selection of the optimal signal subspace.

B.1 Root mean square error (RMSE)

The root mean square error between the original simulated signal and the recon-

structed series after removing the added noise by the proposed approach can be

calculated from the following formula:

RMSE =

√∑N
t=1(ŷt − yt)2

N
. (B.1)
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Here N denotes the length of the series, ŷt are the reconstructed values obtained by

SSA based on the proposed approach, and yt are the original signal values before

adding noise.

B.2 Mean absolute error (MAE)

We also use mean absolute error (MAE) to examine our results. This measure is

used to enhance and confirm the accuracy of the approach. It is also applied to

measure the difference between original simulated values (before adding Gaussian

error) and the reconstructed noise free series. MAE can be calculated from the

following formula:

MAE =
1

N

N∑
t=1

|ŷt − yt| , (B.2)

where N and ŷt are as defined above.



Appendix C

Measures for Normality

In statistical analysis, the most used distribution is the normal one [274], which is

widely used in medical research and many other fields. There exists a considerable

literature for testing normality. In the thesis, we used D’Agostino-Pearson [220]

and Shapiro-Wilk [221] as they are the most powerful and used tests.

C.1 The Shapiro-Wilk test for normality

One of the commonly used tests in the theory of testing for normality is the Shapiro

and Wilk test (1965). For example, [275] reviewed more than thirty formal proce-

dures that have been proposed for testing normality assumption. In terms of power

performance against a broad range of alternatives, the S-W test is the benchmark

of omnibus tests for univariate data. Moreover, in 2011, [276] compared the power

of four formal tests of normality: the Shapiro-Wilk (S-W) test, the Kolmogrov-

Smirnov test, the Lilliefors test and the Anderson-Darling test. The authors con-

cluded that of these considered tests, the S-W test is the most powerful one for

all types of distribution and sample sizes. Furthermore, for practical applications,

biomedical researchers often prefer to use S-W test as it is informative and easy

for them to understand. The test utilizes the null hypothesis principle to test if a
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sample x1, . . . , xn of n independently and identically distributed (iid) observations

come from a normally distributed population.

Let x1 ≤ · · · ≤ xn denote the ordered values of the random sample xi (i = 1, . . . , n),

the S-W statistic can be calculated as follows:

S-W =
(
∑n

i=1 aix(i))
2∑n

i=1(xi − x̄)2
, (C.1)

where x̄ =
∑n

i=1 xi

n
is the sample mean; the constants ai are obtained by the following

formula:

AT = (a1, . . . , an) =
MTV−1

(MTV−1V−1M)
1
2

, (C.2)

where MT = (m1, . . . ,mn), and m1, . . . ,mn are the expected values of the order

statistics of iid random variables generated from the standard normal distribution;

and V is the covariance matrix of those order statistics.

In the S-W test, the null hypothesis is the population normally distributed. There-

fore, if the p−value is greater than the chosen alpha level, then the null hypothesis

is accepted and we have evidence that the examined data came from a normally

distributed population.

C.2 D’Agostino-Pearson normality test

The skewness and kurtosis statistics, and the D’Agostino-Pearson (D-P) [220] statis-

tic that combines these two have been shown to be informative and powerful test for

testing normality [277]. There has been a plethora of these tests available, and there

is a long history of them [274]. The S-W test, the skewness and kurtosis tests, and

the D’Agostino-Pearson test combining these [220] emerge as excellent tests [277].

The S-W and D-P tests share the fine property of being omnibus tests, in that they

have good power properties over a broad range of non-normal distributions.
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The D’Agostino-Pearson normality test calculates skewness and kurtosis to quantify

how far the distribution is from Gaussian in terms of asymmetry and shape. It then

computes how these values vary from those expected with Gaussian distribution,

and calculates a single p−value from the sum of these discrepancies. The D-P test

statistic is:

D-P = Z2(b1) + Z2(b2), (C.3)

where Z2(b1) and Z2(b2) are the standard normal deviates equivalent to observing

b1 (skewness) and b2 (kurtosis) [278]. The D-P statistic has approximately a chi-

squared distribution, with 2 degrees of freedom when the population is normally

distributed [277].
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