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ABSTRACT 

Modal Identification from Frequency Response Functions (FRFs) has been extensively investigated up 

to the point its research reached a stagnation state. Yet, a new approach to determine the modal damping 

factors from FRFs was recently proposed, showing that there still is scope for new findings in the field. 

Contrary to other modal identification methods which are based on the dynamic motion governing 

equations, the method used the dissipated energy per cycle of vibration as a starting point. For lightly 

damped systems with conveniently spaced modes, it produced quite accurate results, especially when 

compared to the well-known method of the inverse. The method used a plot of the sine of the phase of 

the receptance against its amplitude, whereby damping was determined from the slope of a linear fit to 

the resulting plot. In this paper, it is shown that this plot has other (perhaps more important) special 

properties that were not explored before. Near resonant frequencies, its shape is elliptical, whereby the 

real and imaginary parts of the modal constants can be determined from numerical curve-fitting. This 

finding allowed developing a new method which formulation is presented in this paper. The method is 

discussed through numerical and experimental examples. Although the intention is not to present a new 

modal identification method that is superior to other existing ones (like the method of the inverse or 

those based on the Nyquist plot), the authors believe that this new representation of the receptance and 

its properties may bring valuable insights for other researchers in the field. 

Keywords: experimental modal analysis (EMA); modal identification; modal constants; dissipated 

energy; elliptical plane. 

1. Introduction 

The interest of modal identification procedures is acknowledged by the scientific community and many 

authors have addressed this problem, mainly since the early seventies of the past century [1]. The 

existing to date modal identification procedures cover different levels of sophistication and, in almost 

all cases, require the use of software that may not be easy to obtain. 

In the past few years, attention has been more focused on Operational Modal Analysis (OMA) rather 

than in the more traditional Experimental Modal Analysis (EMA). Examples of later developments in 

OMA identification methods can be found, for instance, in [2-5]. In terms of EMA, later publications 

are more concerned with Engineering applications or dealing with uncertainty in existing methods, as 
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can be seen, for instance, in [6, 7]. OMA deals with operational deflection shapes and many often make 

use of output-only measurements, this meaning that excitation loads are unknown. EMA makes use of 

both input forces and output responses in order to determine modal parameters and mode shapes. 

Numerous modal identification algorithms have been developed in the past thirty years [8]. However, 

even if in the past recent years not many advances have been seen in terms of EMA modal identification 

methods, there are a few interesting results that can still be derived. 

If the sole objective is the determination of the global modal characteristics, it is possible to use simple 

approaches that produce quick estimates of the desired information. The issue of determining the modal 

damping factors has recently been presented [9, 10] from a different perspective.  In that new approach, 

the starting point was the dissipated energy per cycle of vibration rather than the governing equations 

of the dynamic motion as it is usually done. The proposed methodology is based on a special plot of the 

receptance, whereby the vertical axis is the sine of the phase angle and the horizontal axis is the 

amplitude (in a similar fashion to what is done with the Nyquist plot of the receptance). 

As it is shown in this paper, this plot has special properties, one of which is that the data points around 

a resonant frequency describe a loop that resembles the half of an ellipse. It is also shown that the major 

and minor axis of the ellipse are related to the modal constants, which can be determined using 

numerical extrapolation methods. Modal constants are important because they contain information 

about the mode shapes (local modal characteristics) which, in the general case of non-proportional 

damping, are complex quantities [1]. Modal identification techniques seek to extract from experimental 

data the modal parameters that characterise the dynamic behaviour of a structure  [11]. Thus, a modal 

model is derived through the determination of the values (for each mode of vibration) of the natural 

frequency (not explored in this paper), damping ratio (explored in [9, 10]) and complex modal constant 

(explored in this paper). Once the modal model is known, it can be used in many different fields of 

structural dynamics, e.g., structural modification, coupling techniques (including mass cancelation), 

finite element updating, transmissibility and structural health monitoring, just to mention a few [1, 12-

18].   

This paper presents the development of the new proposed methodology for the determination of the 

modal constants and illustrates its application through both numerical and experimental examples.  It is 

important to note that the intention is not to present a new approach to modal identification that is 

superior to existing ones (like the method of the inverse or those based on the Nyquist plot). However, 

the fact that this new representation of the receptance in an ‘elliptical plane’ is a function of the modal 

properties, is a reason for the authors to believe that this research may bring valuable insights to other 

researchers in the field. 

2. Theoretical development 

The development presented in sections 2.1 and 2.2 is not original and has been previously presented in 

detail in [10]. However, the authors considered it would be important to summarise it here so that the 

whole of the proposed method can be better understood. 

2.1.  Definitions  

Let us start from the well-known second-order differential equation of motion for a single degree of 

freedom (SDOF) viscous system given by: 

 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝐹𝑒𝑖𝜔𝑡  (1) 

where 𝑚 is the mass, 𝑐 is the viscous damping coefficient, 𝑘 is the stiffness, 𝐹 is the amplitude of the 

oscillatory force, 𝑡 is the time variable and 𝑖 = √−1 is the imaginary number. When excited by an 

harmonic force at a frequency 𝜔, it can be easily proven (and most fundamental texts on vibration 

theory show it, for instance [1, 14]) that for each vibration cycle the system dissipates – through its 



 

 

viscous damper – a quantity of energy directly proportional to the damping coefficient, the excitation 

frequency and the square of the response amplitude 𝑋: 

 𝑊𝑑𝑖𝑠𝑠 = ∫ 𝑓𝑥̇ℎ𝑡
𝑇

0

= 𝜋𝑐𝜔𝑋2 (2) 

where  𝑇 = 2𝜋/𝜔 is the time period of oscillation. However, experimental evidence from tests 

performed on a large variety of materials show that the damping due to internal friction (material 

hysteresis) is nearly independent of the forcing frequency but still proportional to the square of the 

response amplitude [19], i. e.: 

 𝑊𝑑𝑖𝑠𝑠 ∝ 𝐶𝑋2 (3) 

where 𝐶 is a constant. Therefore, from equations (2) and (3) the equivalent damping coefficient is: 

 𝑐 =
𝐶

𝜋𝜔
=

ℎ

𝜔
 (4) 

where ℎ is the hysteretic damping coefficient. In such conditions, equation (1) can be re-written as: 

 𝑚𝑥̈ +
ℎ

𝜔
𝑥̇ + 𝑘𝑥 = 𝐹𝑒𝑖𝜔𝑡  (5) 

If the stiffness is a complex quantity, i.e., defined as the sum of the stiffness itself (𝑘, real part) and the 

damping coefficient (ℎ, imaginary part): 

 𝑘∗ = 𝑘 + 𝑖ℎ = 𝑘(1 + 𝑖𝜂) (6) 

where 

 𝜂 = ℎ/𝑘 (7) 

and knowing that 𝑥̇ = 𝑖𝜔𝑥 for harmonic motion, equation (5) may be re-written as: 

 𝑚𝑥̈ + 𝑘(1 + 𝑖𝜂)𝑥 = 𝐹𝑒𝑖𝜔𝑡  (8) 

The latter formulation (8) leads to the conclusion that the dissipated energy per cycle of vibration is 

independent of the forcing frequency. 

2.2.  Determination of the hysteretic damping 

The experimental measurement of the hysteretic damping factor can be carried out by means of cyclic 

force-displacement tests in the elastic domain [20]. Following the reasoning presented earlier, it is easy 



to show that the energy dissipated per cycle of oscillation is given by the ellipse area of the force-

displacement plot during a complete cycle. Rearrangement of equations (2), (4) and (7) lead to: 

 𝑊𝑑𝑖𝑠𝑠 = 𝜋ℎ𝑋2 = 𝜋𝜂𝑘𝑋2 (9) 

This area, the integral of the force along the displacement, corresponds to the non-conservative work 

done per cycle. In other words, in a plot of force vs displacement at a given frequency, damping can be 

seen as a mechanism that introduces a lag between force and displacement and shows up as an elongated 

ellipse [19, 20]. In fact, from [21], it can be shown that the dissipated energy can be written in the 

alternative form: 

 𝑊𝑑𝑖𝑠𝑠 = 𝜋𝐹𝑋 sin(𝜃) (10) 

where θ is the phase angle between the force and the displacement response. From equations (9) and 

(10) a relationship between the hysteretic damping coefficient, the displacement, the force and the phase 

angle can be established as: 

 ℎ =
𝐹

𝑋
𝑠𝑖𝑛 (𝜃) (11) 

For harmonic motion, the ratio between the force and the displacement is a transfer function often 

referred to as Dynamic Stiffness [1]. Usually, in experimentation, one measures the Receptance instead, 

which is the inverse of the Dynamic Stiffness. For harmonic motion, this is: 

 𝛼(𝜔) =
𝑥(𝜔)

𝑓(𝜔)
 (12) 

The quantities 𝑥(𝜔) and 𝑓(𝜔) are the complex response and complex force with amplitudes 𝑋(𝜔) and 

𝐹(𝜔) respectively. If the amplitude of the receptance is represented by 𝐻(𝜔), then equation (11) can 

be re-written as: 

 sin[𝜃(𝜔)] = ℎ ∙ 𝐻(𝜔) (13) 

The purpose of all this development was to write equation (13). This can be more simply written as: 

 sin(𝜃) = ℎ ∙ 𝐻 (14) 

if the dependency on the angular frequency is dropped for convenience. 

This equation suggests that the hysteretic damping coefficient ℎ can be simply determined from the 

measurement of the amplitude and phase of the receptance. The hysteretic damping factor 𝜂 can then 

be determined from equation (7), but this requires that the stiffness 𝑘 is known, which can be done, e.g., 

using the method of the inverse. The determination of the hysteretic damping factor from the damping 

coefficient following this method and the generalisation to multiple degree of freedom (MDOF) systems 

is addressed in detail in [9, 10]. 



 

 

If we plot equation (13) in a plane composed by the vertical axis 𝑦 ≡ sin(𝜃) and the horizontal axis 

𝑥 ≡ 𝐻, it should be clear that it resembles the equation of a straight line with slope ℎ. However, it also 

has other important properties, discussed in the following sections. 

2.3. Determination of the real and imaginary parts of the modal constant 

The receptance (12) of an MDOF system can be expressed as [1]: 

 

𝛼 = ∑
𝐴̅𝑟

𝜔𝑟
2 − 𝜔2 + 𝑖𝜂𝑟𝜔𝑟

2

𝑁

𝑟=1

 (15) 

where 𝐴̅𝑟 and 𝜔𝑟 are the complex modal constant and angular natural frequency, respectively, for mode 

𝑟, and 𝑁 is the number of degrees of freedom (DOFs). If the modes are sufficiently spaced and at the 

vicinity of a resonance 𝜔𝑟, the influence from other modes is small when compared to the resonant 

mode [9, 10]. Equation (15) becomes: 

 

𝛼𝜔→𝜔𝑟
≅

𝐴̅𝑟

𝜔𝑟
2 − 𝜔2 + 𝑖𝜂𝑟𝜔𝑟

2 (16) 

which resembles the equation of an SDOF with a complex modal constant 

 

𝐴̅𝑟 = 𝐴𝑅 + 𝑖𝐴𝐼 (17) 

where 𝐴𝑅 and 𝐴𝐼 are the real and imaginary parts of the modal constant, respectively. The whole 

following development is based on this assumption: that mode shapes are conveniently well spaced in 

the frequency spectrum so that equation (16) is true at the vicinity of mode 𝑟. 

 

Condition 1: |𝜔𝑟
2  −  𝜔2| ≫  0 

Away from the natural frequency, and considering, for better convenience, a lightly damped system 

where 𝜂𝑟 ≅ 0, equation (16) is simplified to: 

 

𝛼𝜔≪≫𝜔𝑟
≅

𝐴𝑅 + 𝑖𝐴𝐼

𝜔𝑟
2 − 𝜔2

=
𝐴𝑅

𝜔𝑟
2 − 𝜔2

+ 𝑖
𝐴𝐼

𝜔𝑟
2 − 𝜔2

 (18) 

If the receptance is represented in the Argand plane, then the phase 𝜃𝜔≪≫𝜔𝑟
 is related to the imaginary 

𝛼𝐼𝜔≪≫𝜔𝑟
 and real 𝛼𝑅𝜔≪≫𝜔𝑟

 parts of the receptance by: 

 

tan[𝜃𝜔≪≫𝜔𝑟
] =

𝛼𝐼 𝜔≪≫𝜔𝑟

𝛼𝑅𝜔≪≫𝜔𝑟

=

𝐴𝐼

𝜔𝑟
2 − 𝜔2

𝐴𝑅

𝜔𝑟
2 − 𝜔2

=
𝐴𝐼

𝐴𝑅
 (19) 

and 

 

𝜃𝜔≪≫𝜔𝑟
= tan−1 (

𝐴𝐼

𝐴𝑅
) (20) 

Therefore, in the 𝑥 ≡ 𝐻 vs 𝑦 ≡ sin(𝜃) plane this becomes: 



 

sin[𝜃𝜔≪≫𝜔𝑟
]  = sin [tan−1 (

AI

AR
)] (21) 

 

Condition 2: |𝜔𝑟
2  −  𝜔2| =  0 

When at the natural frequency, i.e., when 𝜔 = 𝜔𝑟, equation (16) achieves its maximum value: 

 

𝛼𝜔=𝜔𝑟
=

𝐴𝑅 + 𝑖𝐴𝐼

𝑖𝜂𝑟𝜔𝑟
2 =

𝐴𝐼

𝜂𝑟𝜔𝑟
2 − 𝑖

𝐴𝑅

𝜂𝑟𝜔𝑟
2 (22) 

Hence, the amplitude of the receptance 

 

𝐻 = |𝛼| = √𝛼𝑅𝑒
2 + 𝛼𝐼𝑚

2  (23) 

at the resonance is: 

 

𝐻𝜔=𝜔𝑟
= |𝛼𝜔=𝜔𝑟

| =
1

𝜂𝑟𝜔𝑟
2

√𝐴𝐼
2 + 𝐴𝑅

2  (24) 

which, when solved for 𝐴𝑅, becomes: 

 

𝐴𝑅 = √𝐻𝜔=𝜔𝑟
2 𝜂𝑟

2𝜔𝑟
4 − 𝐴𝐼

2 (25) 

Equation (25) allows determining the real part of the modal constant from its complex counterpart, 

which must be determined somehow. Therefore, if one solves equation (21) for 𝐴𝐼 when having 

equation (25) in consideration, and after some mathematical manipulation, this results in: 

 

𝐴𝐼 = √
𝐻𝜔=𝜔𝑟

2 𝜂𝑟
2𝜔𝑟

4

[tan [sin−1( 𝜃𝜔≪≫𝜔𝑟
)]]

−2
+ 1

 (26) 

Equations (25) and (26) allow determining the real and imaginary parts of the modal constant from the 

plot of the receptance in the 𝑥 ≡ 𝐻 vs 𝑦 ≡ sin(𝜃) plane. For a matter of convenience, and as it will be 

better understood later, this will be henceforward referred to as ‘elliptical plane’. 

3. Properties of the receptance in the ‘elliptical plane’ 

To illustrate how the representation of a receptance looks like in the ‘elliptical plane’ and how the modal 

constants are determined, let us first consider the example of an arbitrary SDOF system with complex 

modal constant 𝐴̅𝑟 = 1000 + 500𝑖, 20.4 Hz natural frequency and a 1% modal damping factor. Let us 

also assume that the receptance was experimentally measured in the 0 to 40 Hz frequency range with a 

period of acquisition of 2 s (i.e., a 0.5 Hz frequency resolution). Plots of the amplitude 𝐻 and phase 𝜃 

of the receptance so obtained in the frequency domain and the same function in the ‘elliptical plane’ are 

shown in figures 1 and 2 respectively. 

The procedure to determine the modal constants involved coding a software that does the following: 



 

 

1. Representation of the receptance in the ‘elliptical plane’; 

2. Extrapolation of the data points (near a resonant frequency) with an elliptical function centred 

at (0, 0) and tangent to an imaginary horizontal line at 𝑦 = ±1; 

3. Determination of 𝜃𝜔≪≫𝜔𝑟
 from the intersection of the ellipse at the 𝑦 axis; 

4. Determination of 𝐻𝜔=𝜔𝑟
 from the point where the ellipse is tangent to an imaginary vertical 

line; 

5. Determination of the angle the ellipse makes with the horizontal to determine the hysteretic 

damping coefficient. The hysteretic damping factor is then determined in the same way to what 

was is done in [9, 10]; 

6. Determination of the modal constants from equations (25) and (26). 

 

  

Figure 1. Numerical example of the amplitude and phase of a SDOF receptance in the frequency domain. 

 

  

Figure 2. Numerical example of the same SDOF receptance represented in figure 1 in the ‘elliptical plane’. 

 

The first observation to note is that the receptance data points when plotted in the ‘elliptical plane’ 

describe a loop that can be fitted with the half of an ellipse. In this case, since the data has no noise and 

it is a SDOF, a perfect correlation between the data and the fit was obtained (figure 2). This ellipse has 

some important properties, namely: 

1. The angle of the ellipse depends on the damping coefficient ℎ and the ellipse is centred at (0, 

0). This should not be a surprise, since equation (13) is the equation of a straight line with slope 

ℎ, as observed before in [9, 10], and intercept at zero. 



2. The function is limited between 1 and -1 since it depends on a sinusoidal trigonometric function. 

In the example shown, where half an ellipse is represented, the elliptical extrapolation is tangent 

at 𝑦 = −1; 

3. Since the natural frequency (20.4 Hz) is not a multiple of the frequency resolution (0.5 Hz) in 

the example shown, the frequency spectrum in figure 1 does not show the exact amplitude at 

the natural frequency (the maximum as seen from figure 1 would be 4.85). The amplitude at 

the resonance for this given example is determined to be 6.805 from equation (15) with 𝑁 = 1 

(since it is SDOF). At the same time, it can be observed from the given example that the ellipse 

in figure 2 is tangent at an imaginary vertical line that crosses the 𝑥 axis at 6.805, precisely the 

amplitude at the resonance, 𝐻𝜔=𝜔𝑟
. This quantity is needed to determine the modal constants 

through equations (25) and (26). The advantage of the ellipse is that it allows determining the 

amplitude at the resonance from experimental data, whereas equation (15) would not be 

possible to use as starting point for most real situations; 

4. The value 𝜃𝜔≪≫𝜔𝑟
 required to determine the imaginary part 𝐴𝐼 of the modal constant (equation 

26) can also be determined from the ellipse, since this is when the ellipse crosses the 𝑦 axis, i.e. 

𝜃𝜔≪≫𝜔𝑟
= sin−1[sin(𝜃𝑥=0)]. 

4. Numerical examples and results 

A total of ten different cases were simulated to illustrate the proposed method. These are listed in table 

1†. Cases 1 to 6 all are SDOF: cases 1 and 2 have real modal constants and cases 3 to 6 have complex 

modal constants with changing signals (as observed in [22] the signal of the modal constants is related 

to the signal of the slope of the ellipse major axis and the phase angle). Cases 7 and 8 are MDOF (2-

DOF) with ‘low’ damping factors (figures 3 and 4) and cases 9 and 10 are MDOF with one ‘highly 

damped’ mode. 

Figures 3 and 4 show the MDOF case 7 in both the frequency domain and ‘elliptical plane’, where the 

fitting ellipses can be clearly seen. However, the procedure assumes that the mode shapes are 

conveniently spaced, so that the influence from mode shapes at the vicinity of the mode shape being 

identified is as little as possible to be neglected. Therefore, each mode is identified individually by 

‘zooming-in’ close to its respective natural frequency. This is shown in figures 5, 6, 7 and 8 where the 

receptance near the first and second mode shapes are represented, respectively, in the frequency domain 

(amplitude and phase) and in the ‘elliptical plane’. 

 

 

Figure 3. Amplitude of the MDOF receptance for numerical case 7 in the frequency domain. 

                                                     

† The modal constants, natural frequencies and hysteretic damping factors may not have any physical/real 

meaning. They were chosen for the specific purpose of the demonstration. 



 

 

 

 

Figure 4. MDOF receptance for numerical case 7 (figure 3) represented in the ‘elliptical plane’ with two 

ellipses fitting the date at the vicinity of the mode shapes (the plot was mirrored for better convenience. Only 

half of the ellipse is actually visible with the discussed method). 

 

 

Figure 5. Amplitude and phase of the receptance in the frequency domain near the 1st resonance of 

simulated case 7. 

 



 

Figure 6. Receptance near the 1st resonance of simulated case 7 (represented in the ‘elliptical plane’) with 

the modal identification fitting ellipse (the plot was mirrored for better convenience). 

 

 

Figure 7. Amplitude and phase of the receptance in the frequency domain near the 2nd resonance of 

simulated case 7. 

 

 

Figure 8. Receptance near the 2nd resonance of simulated case 7 (represented in the ‘elliptical plane’) with 

the modal identification fitting ellipse (the plot was mirrored for better convenience). 

 



 

 

The results from the modal identification following the process described herewith are shown in table 

2. The percent difference between the theoretical values (table 1) and the numerical results (table 2) are 

presented in table 3. 

 

Table 1. Numerical models’ theoretical properties. 

Case 

Mode 1 Mode 2 

Modal Constant 1 
𝑓 (Hz) 𝜂 (%)  Amp 

Modal Constant 2 
𝑓 (Hz) 𝜂 (%) Amp 

Real Imag Real Imag 

1 1000 0 20.4 1 6.087 - - - - - 

2 -1000 0 20.4 1 6.087 - - - - - 

3 1000 500 20.4 1 6.805 - - - - - 

4 -1000 -500 20.4 1 6.805 - - - - - 

5 1000 -500 20.4 1 6.805 - - - - - 

6 -1000 500 20.4 1 6.805 - - - - - 

7 1000 -500 20.4 1 6.805 2000 -1200 50.25 5 0.4679 

8 1000 -500 20.4 1 6.805 2000 1200 50.25 5 0.4679 

9 1000 -500 20.4 1 6.805 2000 -1200 50.25 50 0.04679 

10 1000 -500 20.4 50 0.1361 2000 -1200 50.25 5 0.4679 

 

Table 2. Results from the modal identification (numerical examples). 

Case 

Mode 1 Mode 2 

Modal Constant 1 
𝑓 (Hz) 𝜂 (%)  Amp 

Modal Constant 2 
𝑓 (Hz) 𝜂 (%) Amp 

Real Imag Real Imag 

1 1041 1.033 20.4 1 6.203 - - - - - 

2 -1000 1.013 20.4 1 6.087 - - - - - 

3 1000 500 20.4 1 6.805 - - - - - 

4 -1000 -500 20.4 1 6.805 - - - - - 

5 1000 -500 20.4 1 6.805 - - - - - 

6 -1000 500 20.4 1 6.805 - - - - - 

7 1016 -502.1 20.4 1 6.892 2001 -1198 50.25 5.003 0.4676 

8 1000 -500 20.4 1 6.799 2000 1200 50.25 5 0.4679 

9 993.8 -520.3 20.4 1.027 6.648 2021 -1201 50.29 49.92 0.04715 

10 995.1 -502.1 20.4 50.16 0.1353 1996 -1208 50.25 4.979 0.4700 

 

Table 3. Difference between the theoretical values and the numerical results (all values are expressed in %). 

Case 

% error mode 1 % error mode 2 

Modal Constant 1 
𝑓 𝜂  Amp 

Modal Constant 2 
𝑓 𝜂 Amp 

Real Imag Real Imag 

1 4.10 - 0.00 0.00 1.91 - - - - - 

2 0.00 - 0.00 0.00 0.00 - - - - - 

3 0.00 0.00 0.00 0.00 0.00 - - - - - 

4 0.00 0.00 0.00 0.00 0.00 - - - - - 

5 0.00 0.00 0.00 0.00 0.00 - - - - - 

6 0.00 0.00 0.00 0.00 0.00 - - - - - 

7 1.60 0.42 0.00 0.00 1.28 0.05 -0.17 0.00 0.06 -0.06 

8 0.00 0.00 0.00 0.00 -0.09 0.00 0.00 0.00 0.00 0.00 

9 -0.62 4.06 0.00 2.70 -2.31 1.05 0.08 0.08 -0.16 0.77 

10 -0.49 0.42 0.00 0.32 -0.59 -0.20 0.67 0.00 -0.42 0.45 

 

Table 3 shows that there is good agreement between the theoretical models and the results obtained 

from the modal identification, at least for SDOF systems. The MDOF produced slightly worse results, 

but still acceptable. The worst cases were cases 1, 9 and 10. In the ‘ideal’ case 1, where the modal 

constant is real, the ellipse becomes a straight line, hence the identification process fails due to problems 

related to the ellipse curve fitting (i.e., the ellipse has no minor axis). Hence, a small value had to be 

determined to the imaginary part of the modal constant so that the algorithm produced meaningful 

results. Nevertheless, in real situations, the modal constants normally are complex quantities, therefore 

this ‘ideal’ situation might not represent a real issue. Regarding cases 9 and 10, the slightly higher errors 



may be related to the presence of a ‘highly damped’ mode shape. Since the method was developed for 

lightly damped systems, this result is not surprising. Even though, the maximum error was in the 

identification of the imaginary part of the first modal constant with a value of 4.1% only. 

It is important to note that the modal identification process ‘isolated’ the mode shapes as suggested in 

[22, 23], with the aim to improve the modal parameters’ identification accuracy. This technique exists 

in other modal identification methods, for example in the BetaLAB software [23] that makes use of the 

Characteristic Response Function (CRF) [24]. In this technique, once one mode shape is identified, it 

is subtracted from the experimental curve to eliminate (or at least reduce) the influence from other mode 

shapes. This also means that the modal identification process is run at least twice so that each mode is 

identified with the minimum possible influence from the other mode shapes in the frequency range. 

5. Experimental examples and results 

5.1. Validation of experimental results 

Experimental vibration data from a carbon fibre rectangular plate suspended in a free-free simulated 

configuration (as described in section 5.2 below) was used to better assess the performance of the 

proposed method. The results were then compared with the ones obtained using BetaLAB, a modal 

identification software developed in [23] that makes use of the CRF [24]. The reason why another 

method was used concurrently was to get a benchmark set of values, since experimental modal 

properties are not known beforehand for comparison. Therefore, the performance of BetaLAB was also 

assessed using the numerical cases 7 to 10 described in table 1 and available from section 4. Results are 

presented in tables 4 and 5. 

 

Table 4. Results from the modal identification using BetaLAB (numerical examples). 

Case 

Mode 1 Mode 2 

Modal Constant 1 
𝑓 (Hz) 𝜂 (%)  Amp 

Modal Constant 2 
𝑓 (Hz) 𝜂 (%) Amp 

Real Imag Real Imag 

7 1003 -502.5 20.4 1.001 6.821 1999 -1200 50.25 4.999 0.4679 

8 999.8 -499.8 20.4 0.9995 6.807 2049 1187 50.25 5.054 0.4700 

9 999.0 -505.3 20.4 0.9980 6.828 1994 -1205 50.27 49.95 0.04675 

10 1027.0 -514.0 20.3 51.37 0.137 1999 -1200 50.25 5.001 0.4677 

 

Table 5. Difference between the theoretical values and the numerical results from BetaLAB (all values are 

expressed in %). 

Case 

% error mode 1 % error mode 2 

Modal Constant 1 
𝑓 𝜂  Amp 

Modal Constant 2 
𝑓  𝜂 Amp 

Real Imag Real Imag 

7 0.30 0.50 0.00 0.10 0.24 -0.05 0.00 0.00 -0.02 -0.01 

8 -0.02 -0.04 0.00 -0.05 0.03 2.45 -1.08 0.00 1.08 0.45 

9 -0.10 1.06 0.00 -0.20 0.34 -0.30 0.42 0.04 -0.10 -0.08 

10 2.70 2.80 -0.49 2.74 0.97 -0.05 0.00 0.00 0.02 -0.05 

 

The most important conclusion is that both methods agree quite well with the numerical results. They 

also seem to be equivalent in terms of performance, at least with the numerical results provided. The 

maximum percent differences between these results and the theoretical values for the modal constants 

is 2.80% (BetaLAB) and 4.06% (method of the Ellipse). However, on average, these differences reduce 

to 0.74% and 0.61%, respectively. Regarding the modal damping factors, the maximum percent 

differences are 2.74% (BetaLAB) and 2.70% (method of the Ellipse), but the average differences are 

0.54% and 0.46, respectively. Since the maximum percent differences do not apply to the same cases 

and/or mode shapes, plus the average differences are essentially the same and very small, it is very 

difficult to find a better explanation rather than one that is based on numerical uncertainty/ill-

conditioning and human error. It is important to note that both BetaLAB and the method of the Ellipse 



 

 

rely, up to a certain extent, on the user’s judgment. This also means that it is unlikely that two modal 

identifications on the same data points will ever produce the exact same results when either of the 

software is used. 

 

5.2. Experimental setup 

The composite plate used in this study is formed by 8 unidirectional layers with a [0/90]2S layup. Each 

layer is made of an epoxy resin impregnated with carbon fibre satin weave Cytec Cycom 934-

373KT300. The dimensions of the test plate are, approximately, 360x262x3mm. 

Free-free boundary conditions were simulated in the lab. The specimen plate was suspended vertically 

by 2 nylon strings, which were attached to two 1mm diameter drilled holes positioned at a distance of 

50mm from the plate’s sides and at 5mm from its top edge.  A transfer Frequency Response Function 

(FRF) were measured using a National Instruments DAQ-9234 analogue input data acquisition module 

on a National Instruments cDAQ-9174 USB chassis. The first channel was allocated to the excitation 

force (measured with a PCB 208C01 force transducer) and the other one was used to measure the 

acceleration response with a PCB 352C22 lightweight teardrop accelerometer. 

An electromagnetic shaker LDS V201 was used to produce the excitation signal, at a single coordinate, 

with a copper pushrod 60mm long attached to the force transducer at the other end. A multisine [25] 

excitation signal ranging from 0 to 200Hz with a 0.25 Hz frequency resolution was generated and 

amplified using a NI 9263 analogue output module and an LDS PA25E power amplifier. 

Signal Express 2012 from National Instruments was used to process and record the results. The FRFs 

were recorded under the form of Receptance and a Rectangular window was used during the signal 

acquisition. 

5.3. Results 

The experimental receptance plot, as well as the regenerated curves from the modal identification with 

both the method of the Ellipse and BetaLAB, are shown in figure 9. As with the numerical examples, 

each mode is identified individually by ‘zooming-in’ close to its respective natural frequency, so that 

the influence from mode shapes at the vicinity of the mode shape being identified is as little as possible. 

This is shown in figures 10-17 where the receptances near the four mode shapes are represented, 

respectively, in the frequency domain (amplitude and phase) and in the ‘elliptical plane’. 

 

 

Figure 9. Receptance curve in the 0 to 200 Hz frequency range – experimental curve and regenerated 

identified curves through the method of the Ellipse and the software BetaLAB. 

 



 

Figure 10. Amplitude and phase of the receptance in the frequency domain near the 1st experimental 

resonance. 

 

 

Figure 11. Receptance near the 1st experimental resonance (represented in the ‘elliptical plane’) with the 

modal identification fitting ellipse (the plot was mirrored for better convenience). 

 

 

Figure 12. Amplitude and phase of the receptance in the frequency domain near the 2nd experimental 

resonance. 

 



 

 

 

Figure 13. Receptance near the 2nd experimental resonance (represented in the ‘elliptical plane’) with the 

modal identification fitting ellipse (the plot was mirrored for better convenience). 

 

 

Figure 14. Amplitude and phase of the receptance in the frequency domain near the 3rd experimental 

resonance. 

 

Figure 15. Receptance near the 3rd experimental resonance (represented in the ‘elliptical plane’) with the 

modal identification fitting ellipse (the plot was mirrored for better convenience). 

 

 

 

 



 

 

Figure 16. Amplitude and phase of the receptance in the frequency domain near the 4th experimental 

resonance. 

 

 

 

Figure 17. Receptance near the 4th experimental resonance (represented in the ‘elliptical plane’) with the 

modal identification fitting ellipse (the plot was mirrored for better convenience). 

 

The percent difference between the values obtained with the method of the Ellipse (table 6) and 

BetaLAB (table 7) are presented in table 8. It is important to mention that, because experimental data 

has noise, the ‘best ellipse fitting’ was determined by a combination of two parameters: a correlation 

factor (based on a least-squares fit) and the best approximation between the area of the shape formed 

by the data points in the ‘elliptical plane’ and the extrapolated ellipse. 

 

Table 6. Results from the modal identification using the method of the Ellipse (experimental examples). 

Mode 

Identification from Method of the Ellipse 

Modal Constants 
𝜂 (%)  Amp 

Real Imag 
1 -8.243E-01 4.522E-02 1.866 3.470E-04 

2 -1.808E-02 3.504E-03 1.051 1.199E-05 

3 -2.033E-01 1.171E-02 0.4551 7.118E-05 

4 1.155E-01 6.039E-03 0.996 1.121E-05 

 

 



 

 

Table 7. Results from the modal identification using the software BetaLAB (experimental examples). 

Mode 

Identification from BetaLAB 

Modal Constants 
𝜂 (%)  Amp 

Real Imag 
1 -8.285E-01 4.077E-02 1.876 3.464E-04 

2 -1.674E-02 -7.510E-04 0.9793 1.172E-05 

3 -1.976E-01 7.004E-03 0.4401 7.143E-05 

4 1.148E-01 -8.384E-03 0.9959 1.124E-05 

 

Table 8. Difference between the results obtained with the method of the Ellipse and the software BetaLAB (all 

values are expressed in %). 

Mode 

% difference between Ellipse and BetaLAB 

Modal Constants 
𝜂  Amp 

Real Imag 
1 0.12 -0.05 -0.35 0.52 

2 4.68 -396 5.90 -0.76 

3 1.55 92.4 3.89 -2.10 

4 0.04 -165 -0.45 0.42 

 

Results from table 8 show that, in general, there is good agreement between the method of the Ellipse 

and BetaLAB with respect to the real part of the modal constants, the hysteretic damping factor and the 

amplitude of the receptance. This is also true for the second mode shape (figures 12 and 13) which is 

barely visible in the receptance figure 9. However, the same cannot be said to the imaginary part of the 

modal constants, which differ significantly from one method to the other, both in terms of amplitude 

and sign. This may well be due to the values being one to two orders of magnitude smaller than their 

real counterparts, reason why it does not seem to affect too much the regenerated curves‡ shown in 

figure 9. 

6. Conclusions 

A novel method for the identification of the modal constants from FRFs, based on the dissipated energy 

per vibration cycle, was presented. It is mostly suitable for lightly damped systems with conveniently 

spaced mode shapes. However, and more importantly, it offers an alternative way to represent the 

receptance, in a so-called ‘elliptical plane’. The authors believe this may bring valuable insights for 

other researchers in the field. For example, since the elliptical shape of the receptance (in the vicinity 

of a resonant frequency) when represented in the ‘elliptical plane’ depends on both local and global 

modal properties, then it is reasonable to assume that this representation of the FRF can be used in other 

fields, such as Structural Health Monitoring.  

In previous works [9, 10], it was shown that this method can provide a better estimate of the modal 

damping factors than the method of the inverse. By “isolating” the already identified mode shapes to 

reduce the degree of influence from the other mode shapes, the results agree quite well with the ones 

from BetaLAB. However, with respect to the modal constants, namely their imaginary parts, more 

research is still required, although the discrepancies between the results did not seem to visibly affect 

the regeneration of the identified curves. Furthermore, this may well be due to the imaginary parts of 

the modal constants being one to two orders of magnitude smaller than their real counterparts, hence 

being more prone to uncertainty and error. 

Finally, although the method has not been tested on the modal identification of multiple FRF functions, 

this should not be a real issue. The challenges are mostly related with software implementation rather 

than with the method itself, since the representation of the receptance in the ‘elliptical plane’ greatly 

                                                     

‡ Residuals, which are usually included to account for the influence of modes outside the measured frequency 

range, were not determined in this study. 



depends on local properties. Consistency conditions between the modal constants to satisfy 

orthogonality properties between the eigenvectors can be implemented at a later stage, in the same way 

to what is done in [24]. 

 

Acknowledgements 

The authors gratefully acknowledge the Niger Delta Development Commission for the financial support 

to this research work through grant NDDC/DEHSS/2015PGFS/RVS/025/30. 

References 

 

1. Maia, N.M.M. and J.M.M. e Silva, Theoretical and experimental modal analysis. 1997: 

Research Studies Press Taunton. 

2. Au, S.-K., Uncertainty law in ambient modal identification---Part II: Implication and field 

verification. Mechanical systems and signal processing, 2014. 48(1–2): p. 34-48. 

3. Cheng, L. and D. Zheng, The identification of a dam's modal parameters under random support 

excitation based on the Hankel matrix joint approximate diagonalization technique. 

Mechanical systems and signal processing, 2014. 42(1–2): p. 42-57. 

4. Le, T.-P. and P. Paultre, Modal identification based on the time–frequency domain 

decomposition of unknown-input dynamic tests. International Journal of Mechanical Sciences, 

2013. 71: p. 41-50. 

5. Sadhu, A., B. Hazra, and S. Narasimhan, Decentralized modal identification of structures using 

parallel factor decomposition and sparse blind source separation. Mechanical systems and 

signal processing, 2013. 41(1–2): p. 396-419. 

6. Gonilha, J.A., et al., Modal identification of a GFRP-concrete hybrid footbridge prototype: 

Experimental tests and analytical and numerical simulations. Composite Structures, 2013. 106: 

p. 724-733. 

7. Zapico-Valle, J.L., M. García-Diéguez, and R. Alonso-Camblor, Nonlinear modal 

identification of a steel frame. Engineering Structures, 2013. 56: p. 246-259. 

8. Zhang, L. and R. Brincker. An overview of operational modal analysis: major development and 

issues. in 1st International Operational Modal Analysis Conference. 2005. Copenhagen, 

Denmark. 

9. Montalvão, D. and J.M.M. Silva. A contribution to the modal identification of the damping 

factor based on the dissipated energy. in EURODYN 2014 - IX International Conference on 

Structural Dynamics. 2014. Porto, Portugal. 

10. Montalvão, D. and J.M.M. Silva, An alternative method to the identification of the modal 

damping factor based on the dissipated energy. Mechanical Systems and Signal Processing, 

2015. 54–55: p. 108-123. 

11. Silva, J., N. Maia, and A. Ribeiro. Modal Constants Consistency: Application of a New Method 

for Solving Overdetermined Non-linear Equations. in Proceedings of the 12th International 

Modal Analysis Conference (XII IMAC). 1994. Honolulu, Hawai. 

12. Allemang, R.J., The modal assurance criterion–twenty years of use and abuse. Sound and 

vibration, 2003. 37(8): p. 14-23. 

13. Devriendt, C. and P. Guillaume, Identification of modal parameters from transmissibility 

measurements. Journal of Sound and Vibration, 2008. 314(1): p. 343-356. 

14. Ewins, D.J., Modal testing: theory and practice. 1984, Letchworth, England: Research studies 

press. 

15. Montalvao, D., N.M.M. Maia, and A.M.R. Ribeiro, A review of vibration-based structural 

health monitoring with special emphasis on composite materials. Shock and Vibration Digest, 

2006. 38(4): p. 295-326. 

16. Ribeiro, A., J. Silva, and N. Maia, On the generalisation of the transmissibility concept. 

Mechanical Systems and Signal Processing, 2000. 14(1): p. 29-35. 



 

 

17. Silva, J., N. Maia, and A. Ribeiro, Cancellation of mass-loading effects of transducers and 

evaluation of unmeasured frequency response functions. Journal of Sound and Vibration, 2000. 

236(5): p. 761-779. 

18. Sohn, H., et al., A review of structural health review of structural health monitoring literature 

1996-2001. 2002, Los Alamos National Laboratory. 

19. Lazan, B.J., Damping of materials and members in structural mechanics. 1968, Oxford, 

England: Pergamon Press Ltd. 

20. Montalvão, D., et al., Experimental measurement of the complex Young’s modulus on a CFRP 

laminate considering the constant hysteretic damping model. Composite Structures, 2013. 97: 

p. 91-98. 

21. Meirovitch, L., Elements of vibration analysis. 1975, New York, United States: McGraw-Hill. 

22. Montalvão, D., D. Amafabia, and J. Silva. And yet another method for the identification of 

modal constants in experimental modal analysis. in Proceedings of the 7th International 

Operational Modal Analysis Conference (IOMAC 2017). 2017. Ingolstadt, Germany. 

23. Montalvão, D., A modal-based contribution to damage location in laminated composite plates, 

in Mechanical Engineering Department. 2010, PhD dissertation, Instituto Superior Técnico, 

Technical University of Lisbon. 

24. Silva, J., N. Maia, and A. Ribeiro, Structural dynamic identification with modal constant 

consistency using the characteristic response function (CRF). Machine Vibration, 1996. 5(2): 

p. 83-88. 

25. Guillaume, P., et al. Multisine excitations- new developments and applications in modal 

analysis. in Proceedings of the 19th International Modal Analysis Conference (IMAC XIX). 

2001. Orlando, Kissimmee, FL. 

   



FIGURE CAPTIONS 

Figure 1. Numerical example of the amplitude and phase of a SDOF receptance in the frequency 

domain. 

Figure 2. Numerical example of the same SDOF receptance represented in figure 1 in the ‘elliptical 

plane’. 

Figure 3. Amplitude of the MDOF receptance for numerical case 7 in the frequency domain. 

Figure 4. MDOF receptance for numerical case 7 (figure 3) represented in the ‘elliptical plane’ with 

two ellipses fitting the date at the vicinity of the mode shapes (the plot was mirrored for better 

convenience. Only half of the ellipse is actually visible with the discussed method). 

Figure 5. Amplitude and phase of the receptance in the frequency domain near the 1st resonance of 

simulated case 7. 

Figure 6. Receptance near the 1st resonance of simulated case 7 (represented in the ‘elliptical plane’) 

with the modal identification fitting ellipse (the plot was mirrored for better convenience). 

Figure 7. Amplitude and phase of the receptance in the frequency domain near the 2nd resonance of 

simulated case 7. 

Figure 8. Receptance near the 2nd resonance of simulated case 7 (represented in the ‘elliptical plane’) 

with the modal identification fitting ellipse (the plot was mirrored for better convenience). 

Figure 9. Receptance curve in the 0 to 200 Hz frequency range – experimental curve and regenerated 

identified curves through the method of the Ellipse and the software BetaLAB. 

Figure 10. Amplitude and phase of the receptance in the frequency domain near the 1st experimental 

resonance. 

Figure 11. Receptance near the 1st experimental resonance (represented in the ‘elliptical plane’) with 

the modal identification fitting ellipse (the plot was mirrored for better convenience). 

Figure 12. Amplitude and phase of the receptance in the frequency domain near the 2nd experimental 

resonance. 

Figure 13. Receptance near the 2nd experimental resonance (represented in the ‘elliptical plane’) with 

the modal identification fitting ellipse (the plot was mirrored for better convenience). 

Figure 14. Amplitude and phase of the receptance in the frequency domain near the 3rd experimental 

resonance. 

Figure 15. Receptance near the 3rd experimental resonance (represented in the ‘elliptical plane’) with 

the modal identification fitting ellipse (the plot was mirrored for better convenience). 

Figure 16. Amplitude and phase of the receptance in the frequency domain near the 4th experimental 

resonance. 

Figure 17. Receptance near the 4th experimental resonance (represented in the ‘elliptical plane’) with 

the modal identification fitting ellipse (the plot was mirrored for better convenience). 

  



 

 

TABLE CAPTIONS 

Table 1. Numerical models’ theoretical properties. 

Table 2. Results from the modal identification (numerical examples). 

Table 3. Difference between the theoretical values and the numerical results (all values are expressed 

in %). 

Table 4. Results from the modal identification using BetaLAB (numerical examples). 

Table 5. Difference between the theoretical values and the numerical results from BetaLAB (all values 

are expressed in %). 

Table 6. Results from the modal identification using the method of the Ellipse (experimental examples). 

Table 7. Results from the modal identification using the software BetaLAB (experimental examples). 

Table 8. Difference between the results obtained with the method of the Ellipse and the software 

BetaLAB (all values are expressed in %). 

 

 


