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Abstract

Classification of evolving data streams is a challenging task, which is suitably

tackled with online learning approaches. Data is processed instantly requir-

ing the learning machinery to (self-)adapt by adjusting its model. However for

high velocity streams, it is usually difficult to obtain labeled samples to train

the classification model. Hence, we propose a novel online batch-based active

learning algorithm (OBAL) to perform the labeling. OBAL is developed for

crisis management applications where data streams are generated by the social

media community. OBAL is applied to discriminate relevant from irrelevant so-

cial media items. An emergency management user will be interactively queried

to label chosen items. OBAL exploits the boundary items for which it is highly

uncertain about their class and makes use of two classifiers: k-Nearest Neigh-

bors (kNN) and Support Vector Machine (SVM). OBAL is equipped with a

labeling budget and a set of uncertainty strategies to identify the items for la-

beling. An extensive analysis is carried out to show OBAL’s performance, the

sensitivity of its parameters, and the contribution of the individual uncertainty

strategies. Two types of datasets are used: synthetic and social media datasets

related to crises. The empirical results illustrate that OBAL has a very good
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discrimination power.

Keywords: Online Learning, Active Learning, Classification, Social Media,

Crisis Management

1. Introduction

In the presence of less labeled data for training a classifier, active learning

can be applied to interactively query the user about the label of an input.

Active learning has been the subject of intensive investigation over the last

decade Zhu et al. (2007). However, most of the work has focussed on offline5

active learning Nguyen & Smeulders (2004); Cohn et al. (1996). Indeed, few

attempts have been made to develop online active learning algorithms for data

streams Ienco et al. (2013); Attenberg & Provost (2011).

By its very nature, active learning and in particular stream-based active

learning is relevant to various applications where external feedback from the10

environment is used to enhance the classification performance. Learning from

social media (SM) data for a particular application like crisis management may

require active involvement of the users who could be emergency management

staff members (e.g. first responders) to label ambiguous items. Interestingly, in

recent years, SM has become a well-established communication medium for the15

public to exchange information. Mobile devices and mobile Internet allow users

to publish information almost anywhere at anytime. This makes SM a very

important source of information for different purposes. There is considerable

effort by the research community to harness social media for emergency man-

agement. Many studies in the context of SM and emergency management show20

the usefulness of this data for emergency preparation, response planning, and

recovery strategies Pohl et al. (2013); Pohl (2014). More precisely, emergency

departments have already noticed the importance of social media for gathering,

monitoring, and disseminating information Denef et al. (2013); Hughes et al.

(2014) but they mostly use simple built-in browsing and search mechanisms as25

for Twitter.
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To exploit SM in the context of crisis management, it is necessary to identify

data that is relevant to the crisis/emergency at hand. Hence, appropriate pre-

processing is necessary in order to distinguish between relevant and irrelevant

items by involving the emergency management staff. Such professionals can30

then share their experience and knowledge to develop useful learning systems.

In this paper, we propose a batch-based active learning algorithm (OBAL).

This algorithm uses label uncertainty Cohn et al. (1994) as query criterion. It

does that by examining the boundary separating the classes, which represent

uncertainty regions. Here, the classes are ”relevant” and ”not relevant”. OBAL35

self-adapts in response to changes in the data stream (i.e., shifts in the boundary

region) by continuously updating the boundary information.

Different uncertainty strategies acting on the boundary information are pro-

posed and applied to decide which data items need to be queried. Moreover,

while OBAL can use any classifier, in this paper we use the k Nearest Neigh-40

bors (kNN) and Support Vector Machine (SVM). We also introduce a number

of query strategies to request feedback from the user. But to limit the number

of queries, a labeling budget is used.

The paper is structured as follows. Section 2 gives an overview of the related

work. Section 3 presents the details of OBAL and defines the concept of bound-45

ary items and how they are determined. Section 4 describes the different query

strategies used to identify ambiguous items. Section 5 presents the concept of

budget. Section 6 describes the experiments and discusses the results. Finally,

Section 7 concludes the paper.

2. Related Work50

Research related to this work is concerned with (1) online learning from

social media especially in crisis management, (2) active learning, and (3) active

learning with a budget. The areas are covered in the following sections.
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2.1. Learning from Social Media in Crisis Management

Social media for crisis management is becoming increasingly popular. Several55

approaches deal with online learning based on SM in crisis management. For

example, Yin et al. Yin et al. (2012) identify topics online from Twitter during

a crisis using textual similarity. Klein et al. Klein et al. (2012) analyze tweets

with the help of textual and network-based analysis. Starbird Starbird (2011)

introduces a predefined grammar for tweets to support the automatic analysis60

of new incoming tweets. Sheth et al. Sheth et al. (2011) identify events by using

event descriptors.

Twitcident, introduced by Abel et al. Abel et al. (2012), uses manual inserted

keyword rules to analyze Twitter streams in time. MacEachren et al. MacEachren

et al. (2011) utilize named entity recognition for event identification in tweets.65

Other tools use several visual analytic approaches to identify important top-

ics during emergency. For example, TweetTracker from Kumar et al. Kumar

et al. (2013) apply named entity recognition to identify important topics. Also,

TweetXplorer introduced by Morstatter et al. Morstatter et al. (2013) makes

use of visual analytics to identify tweets during emergency situations.70

Li et al. Li et al. (2012) employ commonly used keywords from similar emer-

gency situations to train a classifier to identify crises. Zhou et al. Zhou et al.

(2013) classify incoming microblogs to redirect them to the emergency agency

in charge (e.g., police, fire department). Imran et al. Imran et al. (2014b) au-

tomatically classify incoming tweets into information categories, for example,75

damage, injured, etc.

Besides Twitter, other platforms are also considered in online analysis. For

example, Maxwell et al. Maxwell et al. (2012) introduce a system called Crisees

for sentiment analysis based on Twitter and YouTube streams. Petkos et

al. Petkos et al. (2014) determine events online based on Flickr streams by80

considering community detection algorithms. Papadopoulos et al. Papadopou-

los et al. (2013) use geo-referenced and visual information from SM data (e.g.,

Twitter, Flickr, YouTube) to aggregate related items for situational awareness.
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2.2. Active Learning

Active learning for data streams is used for collecting labels of unlabeled85

data examples to enhance the accuracy of the classifier. There are two classes for

active learning: pool-based and streaming-based methods. Most of the methods

are pool-based; only few methods are dedicated to data streams.

Žliobaitė et al. Žliobaitė et al. (2014) apply different uncertainty strategies

to query items. Smailović et al. Smailović et al. (2014) use active learning for90

sentiment analysis using Twitter. The idea is to predict stock market move-

ments. Zhu et al. Zhu et al. (2007) describe an active learning algorithm for

data streams based on classifier ensembles. The idea is to label those items

that cause a high variance in the classification results of the ensemble. Ienco et

al. Ienco et al. (2013) use a pre-clustering step in order to identify relevant items95

to be labeled by the user. Therefore, the data stream is partitioned into seg-

ments and each segment is clustered. The homogeneity of each resulting cluster

is examined based on the classifier results for each item within the cluster. The

items of those clusters that contain different labels are chosen, since those are

the most uncertain ones.100

AIDR Imran et al. (2014b) is used to automatically classify incoming tweets

during a crisis into different classes, for example, in caution/advise, damage,

casualties, etc. The classification model used in the background utilizes ran-

dom forests (i.e., decision trees) with pure textual features (i.e., unigrams and

bigrams extracted from the text) Imran et al. (2014a). An active learning ap-105

proach is used, where members of a crowd label tweets. It is described that with

active learning, items that are selected ”are close to the decision boundary and

for which the labels are maximally informative” Imran et al. (2014a). A small

subset of SM items is selected for requesting labels Imran et al. (2014b). The

PyBossa crowdsourcing platform is used to contact volunteers for labeling the110

data.

There are also other approaches related to SM and active learning. Chatzilari

et al. Chatzilari et al. (2014) use active learning to categorize pictures fetched

from Flickr. In this context, the labeling of an image is performed through
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user-defined tags assigned to images instead of a human deciding explicitly on115

the labels. They use an active learning approach based on SVM for category

classification. Zhuang et al. Zhuang et al. (2011) use active learning in assessing

social strength between users. They select training examples using active learn-

ing to build pairs considering different similarity measures (e.g., geo-location,

similar friendship, interest groups, etc.) Zhuang et al. (2011). Jin et al. Jin120

et al. (2011) introduce a spammer detection algorithm for social networks based

on active learning. Several features, such as image content, text features, and

profile information are extracted from posts which are the basis for classifying

a profile as spammer or normal user.

Based on the active learning categorization by Settles et al. Settles (2010),125

our approach is a “stream-based selective sampling approach” based on up-

dated boundary items and considering different strategies to request instances

for labeling.

2.3. Concept Drift

A crisis is a dynamic environment where situation changes over time. Within130

such a dynamic environment, concept drifts are inherent. In general, a concept

drift describes changes within incoming data, which forces a learning algorithm

to adapt to the changing data, see Webb et al. (2016).

Li et al. Li et al. (2016) consider concept drift to predict the popularity of

social media items within a social media network. For the prediction, a classi-135

fication ensemble is used and offline trained based on different time intervals.

Gama et al. Gama et al. (2014) summarize concept drift approaches and state

sentiment analysis for social media monitoring as valuable application. Another

approach for coping with concept drifts in textual data streams is suggested

by Song et al. (2016). They use Clustering Trees, i.e. a Clustering Forest, as140

base to classify items in the stream.

Mohamad et al. Mohamad et al. (2017) suggest an active learning algo-

rithm considering concept drifts based on Growing Gaussian Mixture Models

and online logistic regression. The approach uses two selection criteria to iden-
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tify instances for labeling, namely density based and uncertainty based criteria.145

Borchani et al. Borchani et al. (2015) introduce a stream-based Bayesian clas-

sifier for the financial sector. They conducted, as it is also performed in the

paper at hand, experiments based on real-world and synthetic datasets. Guo

and Liew Guo & Liew (2016) use concept drift tracking for time series analy-

sis. After a concept drift is detected, the online training is performed to adapt150

to the new situation. Da Costa et al. da Costa et al. (2016) propose concept

detection based on unsupervised machine learning methods, e.g., hierarchical

clustering. Another approach, proposed by Pozzolo et al. (2015), uses concept

drift for fraud detection of credit cards. The approach uses Balanced Random

Forest as classifier.155

In our approach, concept drift within the data is considered due to a contin-

uous update of the boundary vectors. Currently, the classification is based on

kNN and SVM. It can be changed to any other model acting on the boundary

data.

2.4. Active Learning with Budget160

A budget can be used to limit the number of queries the user has to handle.

The budget can be derived from time constraints, budget money, etc. This

prevents the user from doing too much labeling. For example, Žliobaitė et

al. Žliobaitė et al. (2014) consider a budget over data streams based on a moving

average. They utilize several uncertainty strategies to ask the user for feedback.165

They use a random budget. Ienco et al. Ienco et al. (2014) apply high-density

region and posterior probability calculation to identify items to be queried.

Dasgupta and Hsu Dasgupta & Hsu (2008) introduce also a budget into their

active learning approach. The budget controls the number of queries per batch.

The authors apply a hierarchical clustering approach to select items for labeling170

per batch. Imran et al. Imran et al. (2014a) use a fixed number of labels to

request as budget limit. In addition, they test different budget usage strategies

(e.g., all labels at the beginning or separated between periods). Attenberg

and Provost Attenberg & Provost (2011) describe a budget approach for active
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learning which is based on the usefulness of incoming items considering online175

density estimation (i.e., the possible repetition of an item within the stream).

Also, Cesa-Bianchi et al. Cesa-Bianchi et al. (2006) use a label request strategy

for online learning based on results of the perceptron used for classification (i.e.,

depending on the margin). The upper bound of the number of labels is based

on the margin itself.180

The approach presented in Vijayanarasimhan et al. (2010) shows the appli-

cation of a budget on image and video recognition. In this case, the budget is

defined based on the funding available (e.g., amount of money spent on the Me-

chanical Turk1 platform). The items to label consume different amounts of the

budget depending on the complexity involved in labelling them. Their selection185

is viewed as an optimization problem.

For our experiments, we adopt the approach given in Žliobaitė et al. (2014)

in order to limit the number of user queries. We also implement different un-

certainty strategies to decide on the ambiguity of the classification results, as

described later in Section 4.190

3. Batch-based Active Learning

OBAL makes use of the uncertainty criterion which stipulates that the data

instances which the model is least certain about their labels are queried. Usu-

ally, the most uncertain items typically lie close to the classification boundary

(see Fig. 2). Thus, training the classifier on those items is expected to ad-195

just the boundary, achieving therefore better classification accuracy. Figure 1

shows the general processing steps of OBAL. While OBAL can be used for any

type of input, in our case, it is applied to textual data (social media items).

The aim is to distinguish between relevant items and and irrelevant ones (i.e.,

label ∈ {relevant, irrelevant}). The textual items are first transformed into a200

vector space model, where each feature is captured by the term frequency-inverse

1http://www.mturk.com/
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document frequency (tf-idf) Manning et al. (2008); Pohl et al. (2012).

Feature extraction

OBAL

Textual Items

ClassificationClassification

Active learning
(Uncertainty 
strategies, budget)

Refresh 
boundary items

Calculate 
boundary items

Update 
classification 
model

user 
involvment

No 
user

Query and 
assign label

Figure 1: Workflow of OBAL

OBAL consists of the following protocol:

1. For each new data item

2. If the classifier (trained on the labeled data) is uncertain about the label205

of the item according to some uncertainty criteria - see Section 4, then

(a) Query the label of the new input provided that enough budget is

available (see Section 5).

(b) Check boundary condition for the item and, if satisfied, add the item

to the boundary pool of labeled samples.210

(c) Train the classifier using the new pool.

In this paper, two classifiers (kNN and SVM ) are used. Any other classifier

can be chosen though. Each classifier has its own way of using the boundary

items in classification. For kNN, an item is considered as uncertain if there is no

9



label majority in its neighborhood of boundary items (see uncertainty strategies215

in Section 4.1). On the other hand, SVM is trained on the known boundary

items (see Fig. 2) and will be continuously updated as new boundary items are

identified. If SVM is not certain about the label of that sample (see uncertainty

strategy in Section 4.2), the label of that sample is queried. The identified

boundary items are used to (re-)train the classifier.220

Figure 2: Boundary items from two classes: ’•’ and ’x’

Table 1 introduces the list of symbols used in the rest of this paper. Algo-

rithm 1 shows the steps of OBAL. The algorithm is divided into two phases:

initial phase and execution phase. The initial phase is used for a “cold-start”

to build an initial classification model (see Algorithm 1 step 2). In our exper-

iments, we have used a minimum number of ζ = 3 ∗ C (3 examples from each225

class), where C is the number of classes. If there is enough data (see step 5

of Algorithm 1), the boundary examples are computed and if there are enough

boundary examples, the second phase, the execution phase, can start.

Algorithm 2 proposed in Bouchachia (2014) shows how the boundary sam-

ples are computed using Gabriel graph. Two samples with different labels are230

part of the boundary, if there is no other sample within the diameter of these

two samples (see steps 6-9). Figure 3 illustrates graphically how the bound-

ary samples are computed in Algorithm 2. Note that the algorithm uses the

Euclidean distance expressed as: dist(v,x) =
(∑M

i=1(vi − xi)2
) 1

2

During the execution phase, the boundary vectors are used to build a classi-235
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Table 1: List of symbols

Symbol for OBAL Description

C Number of classes.

X X =
⋃
Xi for i = 1, . . . , C is the set of

labeled items, where Xi describes the

labeled items belonging to class i.

ω Maximum number of labeled examples

in X, e.g., |X| = ω = 50.

Boundary Describes the current boundary vec-

tors; Boundary is a C×C array, where

Boundary(i, j) is the set of boundary

examples between class i and class j.

ζ Minimum number of boundary exam-

ples per class (threshold) to be consid-

ered in the initial phase (cold start).

ζ ≤ ω.

uRes uRes.uncertainty = true if the clas-

sification of the input is uncertain

otherwise uRes.uncertainty = false.

uRes.label contains the predicted label

of the current item.

k Number of nearest neighbors in kNN.

svm start Boolean to indicate whether SVM can

be trained.

svm update Boolean whether SVM has been up-

dated.

svm threshold Maximum distance of data to the hy-

perplane in SVM.
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Figure 3: Boundary samples for two classes (’•’ and ’x’); left: p and q as boundary samples,

right: p and q are not boundary samples because there is another sample between them.

fier in order to predict the label of the new incoming inputs (see Algorithm 1,

step 12).

3.1. Classification

Although any classifier can be used in Algorithm 1 step 12. We apply two

classifiers in this paper: kNN and SVM. The kNN operates on the current240

known boundary vectors (see Algorithm 3 and Table 1). The kNN results in k

neighbors for the current input, where each neighbor consists of the vector and

the assigned label representing it. Depending on the results of the kNN, several

uncertainty strategies (see Section 4.1) are implemented to identify uncertainty

in classification outputs (see Algorithm 3, step 2).245

For the SVM, the different boundary vectors are used to update the classifier

(Algorithm 4 and Table 1). The SVM is initialized after the initPhase (i.e.,

svm start = 1) or updated after svm update user queries (e.g., every 6 queries).

The uncertainty strategy of SVM focuses on the distance between the input

and the margin of the SVM border (see Section 4.2). We used SVM with the250

“Gaussian Radial Basis Function” kernel.

If there is an uncertainty about the classification result (kNN or SVM) and

enough budget available (see Section 5), the user is asked to provide a label.

Only labeled data is used to update the boundary vectors during execution.

This allows us to respect drifts within the data. After the feedback of the user,255
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the boundaries are calculated and the necessity for an update/cleaning step is

checked.

After ω items were processed, the update step is performed (see Algo-

rithm 5). First, all non-boundary vectors are removed from X. If the number

of remaining vectors is higher then the threshold ω, all remaining vectors - ex-260

cept the most recent boundary vectors - are removed from X so that ω vectors

remain.

4. Query Strategies

The following sections describe the uncertainty strategies that allow deciding

when to query data items.265

4.1. kNN Query Strategies

We implemented four types of uncertainty estimation based on kNN results.

The uncertainty estimation is based on a voting concept depending on the labels

and/or distances of the neighbors of the current input:

• Majority vote (MV): It considers the majority of class labels in the kNN270

result (see Algorithm 6). If there is no majority in favour of one class, the

user is asked to label the input.

• Distance-based maximum vote (DMV): This strategy is similar to MV,

but relies to the distance to neighbors (see Algorithm 7). If the distance

of the input to most of the neighbors is above the average distance, it is275

supposed that the current input is too far away to make an acceptable

decision.

• Two-thirds majority vote (TMV): This means that more than two-thirds

of the neighbors must have the same label (see Algorithm 8). If at least

2/3 of the neighbors do not have the majority, the user is asked to provide280

a label.
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• Weighted vote (WV): This strategy was suggested by Dudani Dudani

(1976) (see Algorithm 9). In this case, neighbors closer to the input of

one class are higher weighted than other ones. If the average difference

between the weighted distance of all pairs of classes is lower than a given285

thresholds ε, the user is asked to provide a label. The assumption is that

the calculated weighted distances are too close to make a decision.

4.2. SVM Query Strategy

For SVM, we make use of the margin between the boundary vectors of two

classes recognized in the SVM. If the distance to the hyperplane is below a290

predefined threshold (svm threshold), the classification result is considered as

uncertain (see Algorithm 10 for details).

5. Budget

The idea of active learning is to query uncertain data. To limit the number

of user queries, a budget may be defined. The budget is the maximum number295

of labeling queries for feedback. In this work, we adapt the budget method

presented in Žliobaitė et al. (2014). The budget bt consumed after t queries is

defined as follows Žliobaitė et al. (2014):

bt =
ut
s
, where :

ut = λut−1 + labelingt

λ = (s− 1)/s (2)

where ut is the number of queries made in the last s steps. The window s acts

as memory (e.g., last 100 items Žliobaitė et al. (2014)). λ describes the fraction300

of including value ut−1. labelingt updates ut based on the requested label (i.e.,

labelingt = 0 if no label was queried and labelingt = 1 if there was a label

requested) at the current item t.

One needs to improve a threshold B on bt, that is the upper bound of the

number of queries and the fraction of data from window bw that can be labeled305
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(i.e., B = 0.2 corresponds to 20%). At each step, one input is processed.

The isBudgetAvailable() procedure in Algorithm 1 checks, if enough budget is

available (i.e., bt < B). If so, the uncertain input is queried.

6. Experiments

In this section, we present the datasets, show the experimental settings, and310

discuss the evaluation results.

6.1. Datasets

The experiments have been performed on two kinds of datasets: synthetic

datasets to understand the general performance of OBAL in controlled settings,

and real-world social media datasets to investigate the behavior on textual data.315

In the following, a short description of both classes of datasets as well as the

performance of the proposed classifier is introduced.

6.1.1. Synthetic Datasets

Two datasets are used: (1) The synthetic dataset (SD) consists of 4 batches

with 200 data items. Figure 4 illustrates the synthetic dataset. Each batch is320

divided into two classes, with 100 items belonging to the relevant class (denoted

as ’o’) and 100 to the irrelevant class (denoted as ’x’). The data is randomized

sampled and sequentially presented to OBAL. It allows us to study the behavior

and performance of the algorithm.

(2) The non-contiguous class synthetic dataset (NCSD) is presented to OBAL325

as one batch (see Figure 5), i.e., the data is selected randomized and sequen-

tially presented to OBAL. The NCSD consists of three clusters: two clusters

of class ’o’, separated by class ’x’. Each partition consists of 200 data items.

It allows us to study the behavior and performance of the algorithm when a

non-contiguous class is given.330
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Figure 4: Synthetic dataset (SD) presented to OBAL as batch-1, batch-2, batch-3, and batch-

4.

6.1.2. Real-World Datasets

We used two real-world datasets from the CrisisLexT26 collection Olteanu

et al. (2015). The collection contains Twitter data from different crises around

the world. In detail, we used the Colorado Floods (CF) and Australian Bushfires

(AB) datasets. For one crisis, 1000 items are randomly selected and labeled via a335

crowdsourcing platform to identify the relevance of the items. Items are marked

in four categories: related to the crisis and informative, related to the crisis -

but not informative, not related, and not applicable. We consider items only

as “relevant” when they are labeled as related to the crisis and informative,

otherwise they are irrelevant.340

For CF, we examine the period between “2013-09-12 07:00:00” and “2013-09-

29 10:00:00” since this period contains most of the items/tweets. CF contains

751 relevant and 224 irrelevant items and in sum approx. 189 repetitions of
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Figure 5: Non-contiguous synthetic dataset (NCSD) presented to the OBAL as one batch.

text messages2. Based on the Levenshtein distance (ldis) Levenshtein (1966),

there exist 105 items with similar text (i.e., ldis ≤ 0.2), which is a quite small345

number. This also indicates that the lengths of the repeating text fragments

are very small (105 vs. 189 repetitions of text).

For the AB dataset, we cover the relatively long period between “2013-10-17

05:00:00” and “2013-10-29 12:30:00” due to its low item density. It has the

following characteristics: 645 relevant, 408 irrelevant items with approx. 385350

repetitions of text messages2. The AB dataset has a high amount of similar

items, i.e., based on ldis ≤ 0.2, there exist 582 items with similar text. Due

to the increased similarity of the items, it is more difficult to distinguish be-

tween relevant and irrelevant items. There are some overlapping items between

relevant and irrelevant items, increasing the effort to distinguish. Hence, AB355

2Repetitions are retweets. It is an approximation since there is no mandatory retweet

syntax Boyd et al. (2010).
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is an interesting dataset in order to test the approach under hard conditions.

For instance, the following example shows two differently labeled items with the

same content Olteanu et al. (2015):

• Wed Oct 16 17:12:46 +0000 2013: ”390525739864702976”,”RT @Xxxx: A dog has

risked its life to save a litter of newborn kittens from a house fire in Melbourne,360

Australia http://t.co/Gz..”,Eyewitness,Affected individuals,Related and informa-

tive

• Wed Oct 16 17:13:57 +0000 2013: ”390526037689630720”,”RT @Xxxx: A dog has

risked its life to save a litter of newborn kittens from a house fire in Melbourne,

Australia http://t.co/Gz...”,Not labeled,Not labeled,Not related365

We created 30-minutes batches for both datasets which is a reasonable time

period for planning in crisis management Pohl et al. (2015). There are also

inactive periods within the datasets.

6.2. Evaluation Metrics

For evaluation, we used two metrics. First, the error-rate (ER) (see Eq. 3)370

is calculated based on the label assignments of the N items in the dataset L

compared to the ground truth G. |L 6= G| is the number of items, where the

assigned labels L do not agree with the ground truth G. The average ER based

on all batches is calculated and used to estimate the performance.

ER(L;G) =
|L 6= G|
N

∗ 100 (3)

Second, for assessing the influence of the budget setting on the algorithm,375

we also consider the average number of user-queries (Q) per batch. Both, ER

and Q are visualized within diagrams based on the experimental setting given

in the next section.

6.3. Results

We conducted an extensive analysis of OBAL’s performance and the sensi-380

tivity of the used parameters. This section covers the results of the analysis and

discusses the results for the 2-dim synthetic datasets (SD and NCSD) and the
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real-world datasets (CF and AB). The parameter settings in the experiments

used for kNN and SVM are illustrated in Tables 2 and 3.

Table 2: kNN Parameters

Parameter Instances/Values

k k neighbors with k = 5, 6, 7

ω Limit of boundary vectors stored

in the system ω = 50

uOption = 1 Majority vote (MV)

uOption = 2 Distance-based maximum vote

(DMV)

uOption = 3 Two-thirds majority vote

(TMV)

uOption = 4 Weighted vote (WV) with differ-

ent thresholds ε = 0.1, 0.2, 0.3,

0.4, 0.5

Table 3: SVM Parameters

Parameter Instances/Values

k in initPhase k = 6

svm update (su) su = 6, 12, 18

ω Limit of boundary vectors stored

in the system ω = 50

svm threshold (st) st = 0.1, 0.2, 0.3, 0.4 (for the un-

certainty region)

In general, we distinguish two classes of parameters in Tables 2 and 3: those385

that are simple choices of options/methods for computing the boundary samples

(uOption 1 · · · 4) and those that indicate a certain user-defined input. Given

their number, the range of the least impacting parameters after initial empirical

experiments, was squeezed, while those that clearly have effect on the outcome
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were varied (k, su, st and thresholds in uOption 4).390

In addition, both methods (kNN and SVM) have been examined with a pre-

defined budget covering the following parameters based on the budget definition

in Section 5, where s = 100 (i.e., budget window) and budget B = 0.2 (i.e., 20%

of s). The results are visualized in diagrams and summarized in the following

sections for the different classification methods and datasets.395

6.3.1. kNN Results

The results of the experiments for kNN are discussed in the following. In

particular, the effect of the uncertainty strategies (uOptions), the number of

neighbors (k), and the influence of the budget are illustrated based on ER and

Q.400

Synthetic datasets. Figure 6 shows the results for SD, whereas Figure 7

depicts the results for the non-contiguous dataset NCSD. The first line of the

figures shows ER and Q for all combinations of k and uOption. In addition, the

second line shows the details for uOption = 4 for different values of k and ε.

Regarding Q, high numbers of Q are caused by the uOption = 2 (DMV).405

The lowest Q for SD and NCSD is reached with uOption = 1 (MV), but it has

a worse ER. For SD, the uOption = 3 (TMV) performs slightly better than

uOption = 4 (WV). Both options show a good compromise between Q and ER.

For NCSD, the same is true for uOption = 2 (DMV) and uOption = 4 (WV).

ER of the WV is small compared to the results of the other approaches (see ER410

of Figure 6(a)/Figure 7(a) and ER of Figure 6(c)/Figure 7(c)). The threshold

ε = {0.1, 0.2} results in a higher ER compared to the other threshold settings,

but it has reasonably fewer queries Q. There is no obvious influence of k on ER.

For the uOption = 4 a high value of k results in a higher number of Q.

The budget reduced the number of queries performed. For SD, the budget415

has a positive influence on the number of queries (e.g., compare Q of Figure 6(a)

with Figure 6(b)). In addition, the ER remains almost constant (i.e., only less

degradation, see ER of Figure 6(a) and Figure 6(b)). This is also true for the

NCSD (see Figure 7).
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Summarized for kNN and both synthetic datasets, the uOption = 3 and420

uOption = 4 show good performance. uOption = 3 is slightly better compared

to uOption = 4. The uOption = 2 results in a high value of Q and uOption = 1

shows the smallest Q but the worst ER. Q can be reduced considerably by

introducing the budget without a noticeable deterioration of ER.

Real-world datasets. Figure 8 portrays for CF the same experiments425

discussed so far. Again uOption = 1 shows the lowest number of queries.

uOption = 2 has a high number of Q for all distances used independent of

the budget (see Figure 8). Also, the uOption = 4 has high Q values, but a

slightly smaller number compared to uOption = 2. In addition, small values

of k (i.e., k = 5) show the best performance. The budget reduces the overall430

number of Q, independent of the metric used. For ER and Q, uOption = 3

(TMV) shows the best results.

The results of the AB dataset can be found in Figure 9. uOption = 2

also results in a high value of Q. k = 5 yields the best results. Compared to

CF, indeed more queries per batch are needed. The uOption = 4 shows worse435

quality in the results compared to other datasets. This is as expected due to the

characteristic of the dataset (e.g., high number of similarly items and differently

labeled items). Only for a higher number of Q (i.e., due to a high threshold ε),

the uOption = 4 shows good results. The introduction of a budget decreases in

most cases Q, resulting only in a slight increase of ER for this dataset.440

For AB and CF, small values of k yield better results. uOption = 3 (TMV)

shows good results for AB and CF based on Q and ER. The TMV is less prone

to differently labeled items, by just considering the majority of labels in contrast

to the distance weighting in WV.

6.3.2. SVM Results445

The SVM results for the different datasets are given in the following. The

SVM evaluation parameters, i.e., update and threshold settings, are illustrated

and discussed based on ER and Q.

Synthetic datasets. The diagrams of SVM for SD and NCSD are given in
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Figure 10. The diagrams show the parameter settings for svm update (su) and450

svm threshold (st), respectively. The performance for SD and NCSD is very

good. Regarding Q, the higher the threshold st for SVM, the higher Q. The

introduction of the budget significantly reduces Q for SD (see Figure 10, first

line); Q is cut in half. For NCSD, Q has not been reduced significantly. This

is an indicator that Q for NCSD does not massively exceed the 20% budget455

marking. In general, SVM performs similarly to the uOption = 4 of kNN. For

the synthetic datasets, SVM has a better overall performance considering Q

resulting in a similar ER compared to kNN.

Real-world datasets. The results of SVM with CF and AB can be found

in Figure 11. For CF and AB, only higher Q values (i.e., due to higher st values)460

show good performance, but indeed it is not better than kNN. This is due to

the overlaps contained within the AB dataset (see Section 6.1.2). It is easier to

distinguish this overlapping information based on the boundary neighborhood

of the incoming item. For CF, SVM produces a better performance compared

to kNN for higher ε.465

6.4. Discussion

The proposed active classification approach, OBAL, builds upon calculated

boundary vectors. The boundary vectors limit the number of items for calcu-

lating the k nearest neighbors. In addition, they also reduce the number of

training items for the SVM. Concept drift when occurring is captured by the470

continuous calculation of the new boundary items from labeled data.

Table 4 summarizes the best results obtained from the experiments (i.e.,

with and without budget B) for each dataset. To identify the best results, we

introduced a combined measure (see CM in Eq. 4), taking the average error-

rate (ER) of the batches Bt and the number of queries (Q) based on the overall475

number of items (# items) into consideration.

CM = [0.8 ∗
∑|Bt|

i=1 (1− ERi/100)

|Bt|
] + (4)

[0.2 ∗ (1− (Q/#items))]
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Figure 6: kNN (SD): Performance on k and uOption (ω = 50)
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Figure 7: kNN (NCSD): Performance on k and uOption (ω = 50)
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Figure 8: kNN (CF): Performance on k and uOption (ω = 50)
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Figure 9: kNN (AB): Performance on k and uOption (ω = 50)
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(c) NCSD without budget
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Figure 10: SVM (SD, NCSD): Performance on su and st (ω = 50)
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Figure 11: SVM (CF, AB): Performance on su and st (ω = 50)
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Table 4: Best results of kNN and SVM (with and without budget)

kNN

Dataset uOption k Q (Q/#items) ER CM

SD 3 6 175.0 (0.22) 2.8750 0.9333

NCSD 3 5 320.0 (0.53) 3.0000 0.8693

CF 3 5 26.0 (0.03) 17.7791 0.8524

AB 3 5 275.0 (0.26) 18.9630 0.7961

kNN with budget

Dataset uOption k Q (Q/#items) ER CM

SD 3 5 216.0 (0.27) 2.2500 0.9280

NCSD 3 5 149.0 (0.25) 9.1667 0.8770

CF 3 5 26.0 (0.03) 17.7791 0.8524

AB 3 6 90.0 (0.09) 19.8134 0.8244

SVM

Dataset st su Q (Q/#items) ER CM

SD 0.1 6 161.0 (0.20) 4.6250 0.9227

NCSD 0.4 6 110.0 (0.18) 6.0000 0.9153

CF 0.2 18 35.0 (0.04) 18.2267 0.8470

AB 0.3 6 810.0 (0.77) 2.6834 0.8247

SVM with budget

Dataset st su Q (Q/#items) ER CM

SD 0.3 6 222.0 (0.28) 9.2500 0.8705

NCSD 0.4 12 112.0 (0.19) 5.6667 0.9173

CF 0.2 18 35.0 (0.04) 18.2267 0.8470

AB 0.3 6 221.0 (0.21) 27.0141 0.7419

In a nutshell, independently of the datasets, we can observe the following:

• The distance-based majority vote (DMV) uncertainty strategy (i.e., uOption =

2) of the kNN-based approach needs on average more queries compared

to other uncertainty strategies used with kNN.480

• The kNN-based uOption = 1, maximum vote (MV), produces the worst

results. The number of queries is very low but the error-rate (ER) is high.

• By introducing the budget, the number of queries (Q) decreases consid-

erably causing only a marginally negative effect on ER compared to the
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settings without budget (compare Fig. 6(a) with Fig 6(b)).485

• For kNN, k = 5 is preferred, especially due to the lower number of queries

(Q). For SVM, a higher update rate (i.e., su = 6) is recommended follow-

ing the results in this study.

• Regardless of the dataset used, the two-thirds majority vote uncertainty

strategy (uOption = 3) is better than other uncertainty strategies.490

• kNN shows good behavior in the case of overlapping data and the SVM

has an overall good performance considering Q.

In terms of the effect of the dataset on the performance of OBAL, the fol-

lowing remarks can be made:

• In the case of synthetic data (SD and NCSD), the average number of495

queries required by SVM to distinguish between relevant and irrelevant

items is much less lower than that required by kNN (see Figs. 6, 7, and

10).

• For Australian Bushfires (AB), the number of queries required by SVM is

much higher due to the largest mismatch with the ground truth.500

• In the case of Colorado Floods (CF), the number of queries for SVM is

in general similar or slightly smaller compared to kNN, see for example

Figures 8 and 11.

• Higher number of neighbours, k, leads to higher number of queries, Q.

• Lower values of ε results in lower number of queries but higher error. It is505

therefore recommended to make a trade-off between the querying budget

and classification quality.

• Intuitively higher budget leads to better classification quality since the

number of labelled examples increases yielding a better insight into the

distribution of data from different classes.510
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• kNN produces overall the best results as shown in Table 4.

In terms of robustness and as outlined above, the sensitivity analysis shows

quite informative indications. Looking at Fig. 6 to 11 the behaviour of active

learning using either kNN or SVM is quite regular across all datasets (both syn-

thetic and real-world), which indicates that for any combination of parameters515

OBAL behaves very similarly across all datasets. Any good solution tends to

be consistently good.

Finally, OBAL was driven by the application of crisis management, and

in this study two datasets were used: Colorado Floods (CF) and Australian

Bushfires (AB) datasets. The use of budget for the best option did not have520

much impact in the case of CF, while for AB the use of budget was influential.

Indeed AB is more challenging as described in Sec. 6.1.2 and OBAL did react to

budget. One has to make the tradeoff between the budget and the quality of the

classification. KNN seems to do better than SVM in terms of tradeoff. Overall,

OBAL fits the scenario where classes overlap over time in the separating region525

and some guidance is required to learn in an online way that boundary.

6.5. Unbalanced Data

It could be the case that social media data about a crisis is unbalanced.

For our experiments, we used real-world datasets as benchmarks. Within these

datasets, the unbalanced problem is not acute (see Table 5). Furthermore, we530

observed that the Australian Bushfire (AB) dataset, which is quite balanced,

turned out to be the most challenging dataset (see Section 6.4).

Table 5: Unbalance ratio of the real-world datasets

Dataset Relevant Irrelevant Ratio

Australian Bushfires (AB) 645 408 1.5

Colorado Floods (CF) 751 224 3.3

In the context of crisis management, it is necessary to flag out positive

examples (i.e., relevant items). Even, if the system predicts a non-relevant item
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as relevant, there is no substantial cost for decision making, except that the535

crisis management person (first responder) will probably receive some irrelevant

tweets.

In this paper, we did not investigate the aspect of crisis data unbalance, but

it is a relevant and important issue to be fully addressed in the future.

7. Conclusion540

This paper presents a batch-based active learning approach used for a binary

classification problem to distinguish between relevant and irrelevant information

contained in a data stream. The research can be applied to other fields as well.

Especially to areas were changes in data happens and thus continuous learning

is needed (e.g. spam detection in social networks). The OBAL algorithm relies545

on the uncertainty criterion to query the data samples. In addition, several

uncertainty strategies for requesting feedback from the user have been imple-

mented and tested. OBAL was extensively evaluated using two classifiers kNN

and SVM, different uncertainty strategies, different parameter settings, and two

classes of datasets: synthetic and real-world datasets.550

The proposed algorithm is dedicated to support the crisis management team

to identify relevant and useful information communicated by people (citizen

journalists) in social media in order to organize the rescue and intervention

plans. Because automatic classification requires labeled items, it is extremely

difficult to have that information in real-time as it requires human-in-the-loop555

to do that. Active learning is an adequate methodology to enable labelling of

items (Tweets) to be used by the classifier. The challenge in active learning is to

label as few items as possible, while keeping the quality of the prediction high.

Several criteria can be used and here we focused on a number of label-uncertainty

strategies. OBAL is designed to actively query streaming items whose classes560

are undecidable (falling in the region separating relevant and irrelevant classes)

to be used for further learning by the classifier.

Experiments show a very good performance; an error rate (between 0.02 and
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0.27) in most cases is obtained. In the future, we will investigate other active

learning criteria, like the density-based criterion and we will combine them to565

cope with drifting data streams, where drift can happen either at the separating

region between classes or far from the known boundaries (called remote drift).
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Algorithm 1 : OBAL algorithm

Input: stream of data, parameters ω, ζ such that (ζ ≤ ω), bt=0, budget

B

1: For an unlabeled input x

2: if (|X| < ω) or (|Boundary| < ζ) then

3: Query the label l of x and set bt = bt + 1

4: Xl = Xl∪ {x}

5: if |X| ≥ 2 then

6: Find the subset of boundary examples, Boundary, in the labeled set X using

Alg. 2

7: if |X| > ω then

8: X=Boundary

9: end if

10: end if

11: else

12: uRes = Classify(Boundary, x)

13: if uRes.uncertainty = true then

14: if the number of queries already placed, bt, is less than a threshold, B (See

Sec. 5) then

15: Query the label l of x

16: Xl = Xl ∪ {x}

17: Find the subset of boundary examples in the labeled set X, Boundary,

using Alg. 2

18: if |X| > ω then

19: X=Boundary

20: end if

21: else

22: Assert uRes.label as label for x

23: end if

24: else

25: Assert uRes.label as label for x

26: end if

27: end if
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Algorithm 2 : ComputeBoundary ()

Input: X, distance-measure and C (number of class labels)

1: Bd = C × C

2: for pair of classes (i,j) do

3: Compute distance matrix Di,j between Xi and Xj based on distance-measure

4: for p = 1 to |Xi| do

5: for q = 1 to |Xj | do

6: m = Xi(p)+Xj(q)
2

7: T = Xi ∪Xj

8: Compute distance Z(l) using distance-measure between each data sample

in T (l) and m where l = 1 . . . |T |

9: Find the set R of data samples l for which Z(l) < Di,j(p, q)/2

10: if R = ∅ then

11: Bd(i, j) = Bd(i, j) ∪ p

12: Bd(j, i) = Bd(j, i) ∪ q

13: end if

14: end for

15: end for

16: end for

17: return Bd

Algorithm 3 : Classify kNN

Input: Boundary, k and x

1: kNN-result = kNN(Boundary, k)

2: uRes = isUncertainty(kNN-result, Boundary)
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Algorithm 4 : Classify SVM

Input: Boundary and input x

1: if (svm start == 1) and svm update == 0) then

2: svm = SVMTrain(Boundary)

3: svm start = 0

4: end if

5: result = SVMClassify(x)

6: uRes = isUncertaintySVM(result,x)

7: if uRes.uncertainty == true then

8: uRes.assigned label = svm-result {//add default label}

9: end if

Algorithm 5 : updateBoundary(X, Boundary)

Input: X and Boundary

1: if |X| > ω then

2: X=Boundary

3: end if

4: for i to C do

5: remove oldest boundary vectors of class i in Boundary with |Boundaryi| > ω

6: end for

7: return X and Boundary

Algorithm 6 : isUncertainty MV(res, Boundary)

Input: kNN-result res and boundaries Boundary

1: Counti = number of neighbors in res.neighbours belonging to class i

2: max classes = arg maxi=1···c Counti

3: if |max classes| > 1 then

4: uRes.uncertainty = true

5: else

6: uRes.uncertainty = false

7: uRes.assigned label = max classes

8: end if

9: return uRes
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Algorithm 7 : isUncertainty DMV(res, Boundary)

Input: kNN-result res and boundaries Boundary

1: Counti = number of neighbors in res.neighbours belonging to class i

2: max classes = arg maxi=1···c Counti

3: aDist = average distance in res.neighbors distance to all neighbors

4: count distance = number of neighbors for which res.neighbors distance < aDist

5: if (|max classes| > 1) or (count distance < (|res.neighbors|/2)) then

6: uRes.uncertainty = true

7: else

8: uRes.uncertainty = false

9: uRes.assigned label = max classes

10: end if

11: return uRes

Algorithm 8 : isUncertainty TMV(res, Boundary)

Input: kNN-result res and boundaries Boundary

1: Calculate majority: majority = (|res.neighbors| ∗ 2/3)

2: Counti = number of neighbors in res.neighbours belonging to class i

3: max classes = arg maxi=1···c Counti

4: max count = maxi=1···cCounti

5: if |max count| >= majority then

6: uRes.uncertainty = false

7: uRes.assigned label = max classes

8: else

9: uRes.uncertainty = true

10: end if

11: return uRes
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Algorithm 9 : isUncertainty WV(res, Boundary)

Input: kNN-result res and boundaries Boundary; ε threshold

1: dmax = max(res.neighbors distance)

2: dmin = min(res.neighbors distance)

3: valuel is the sum of weighted distances wk calculated for all k neighbors with

distance dk belonging to class l (see also Dudani (1976)):

wk =


dmax−dk
dmax−dmin

if dmax 6= dmin

1 otherwise

(1)

4: calculate difference valuel,k = abs(valuel − valuek) between all pairs of classes l

and k

5: if mean(valuel,k) < ε then

6: uRes.uncertainty = true

7: else

8: uRes.uncertainty = false

9: uRes.assigned label = arg maxl=1···c valuel

10: end if

11: return uRes

Algorithm 10 : isUncertaintySVM(res, input)

Input: SVM-result res, current input

1: U = svm.supportV ectors

2: svm distance =
∑
ui∈U αiK(ui, input) + b with b is the bias, αi are the weights,

and rbf-kernel K(x1, x2) = e(−η(||x1−x2||
2)) with η = 1/2

3: if svm distance < svm threshold then

4: uRes.uncertainty = true

5: else

6: uRes.uncertainty = false

7: uRes.assigned label = res.label

8: end if

9: return uRes
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