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Abstract—We present a novel non-parametric clustering model
using Gaussian mixture model (NHCM). NHCM uses a novel
Dirichlet process (DP) prior allowing for more flexible modeling
of the data, where the base distribution of DP is itself an infinite
mixture of Gaussian conjugate prior. NHCM can be thought
of as hierarchical clustering model, in which the low level base
prior governs the distribution of the data points forming sub-
clusters, and the higher level prior governs the distribution
of the sub-clusters forming clusters. Using this hierarchical
configuration, we can maintain low complexity of the model and
allow for clustering skewed complex data. To perform inference,
we propose a Gibbs sampling algorithm. Empirical investigations
have been carried out to analyse the efficiency of the proposed
clustering model.

I. INTRODUCTION

FLat clustering creates a flat set of clusters without any
explicit structure that would relate clusters to each

other. While hierarchical clustering aims at producing a
hierarchical series of nested clusters, ranging from clusters of
individual points at the bottom to an all-inclusive cluster at
the top. However, real world data often exhibits a hierarchical
structure,though sometime it is implicit. Thus, many levels
of grouping can be done. In this paper, we propose a two-
level clustering algorithm. Unlike the hierarchical Dirichlet
process prior [1], different clusters in the same level do
not share components allowing for modeling of multi-center
distributions. The proposed NHCM model uses a novel
Bayesian non-parametric prior. This prior can be simply
described as a distribution on the space of distributions on
distributions. Its low level is a distribution over distribution,
which itself is distributed according to the higher level
distribution.

Probabilistic machine learning assumes underlying distribu-
tions for the observed data. To model these distributions, in
the literature,we encounter two approaches; optimization and
Bayesian approaches. The difference between the optimization
and the Bayesian modeling is that the former uses a point
estimate of the model parameter as in GGMM [2], while
the Bayesian approach models the uncertainty of the model
parameters using a distribution. We also distinguish parametric
and non-parametric approaches. For parametric approaches,
data is represented by models using a fixed and finite number
of parameters. Thus, an assumed number of parameters has
to be determined apriori; like the number of clusters in a
parametric clustering. In contrast, in non-parametric modeling,
the number of parameters can grow with the sample size.
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In addition, by allowing the complexity of the model to be
unbounded, under-fitting gets mitigated. Over-fitting, on the
other hand, is mitigated using a Bayesian approach. For more
comparison between the two modeling approaches, please
refer to [3]. In the following, we will briefly explain dirichlet
and hierarchical dirichlet process. For more details, please
refer to [1], [3].

A. Background

1) Dirichlet process: DP is one of the most popular prior
used in Bayesian non-parametric model. Its first use by
the machine learning community dates back to [4], [5]. In
general, stochastic process is probability distribution over a
space of paths which describe the evolution of some random
value over time. DP is a family of stochastic processes
whose paths are probability distributions. It can be seen as an
infinite-dimensional generalization of Dirichlet distribution,
where it is a prior over the space of countably infinite
distributions. In the literature, DP has been constructed
with different ways, the most well-known constructions are:
infinite mixture model [5], distribution over distribution
[6], Polya-urn scheme [7] and stick-breaking [8]. For more
details, interested reader is referred to [3].

Figure 1 shows two DP representations, the graphical model
and the infinite mixture model with number of clusters L goes
to ∞. Infinite mixture model is simply a generalization of the
finite mixture model, where DP prior with infinite parameters
is used instead of Dirichlet distribution prior with fixed number
of parameters. The finite mixture model can be represented by
the following equations:

π|α0 ∼ Dirichlet(α0/L, ..., α0/L)

zi|π ∼ Discrete(π1, ..., πL)

θk|G0 ∼ G0

xi|zi,θ ∼ F (θzi) (1)

F (θzi) denotes the distribution of the observation xi given
θzi, where θzi is the parameter vector associated with com-
ponent zi. Here zi indicates which latent cluster is associated
with observation xi. Indicator zi is drawn from a Discrete
distribution governed by parameter π drawn from dirichlet
distribution parametrized by α0. We can simply say that
xi is distributed according to a mixture component drawn
from θk prior distribution G0 and picked with probability
given by the vector of mixing proportions π. The model
represented by Eq.(1) above is a finite mixture model, where L
is the fixed number of parameters (components). The infinite
mixture model can be derived by letting L → ∞, then π
can be represented as an infinite mixing proportion distributed
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(a) Graphical model (b) Finite mixture model

Figure. 1 DP mixture model representations

according to stick-breaking distribution GEM(α) [8]. Thus,
Eq.(1) can be equivalently expressed according to the graphical
representation as:

G|α,G0 ∼ DP (α,G0)

θi|G ∼ G
xi|θi ∼ F (θi) (2)

where G =
∑∞

k=1 πkδθi is drawn from DP prior, δθi is a Dirac
delta function centred at θi. Technically, DP is a distribution
over distribution [6], where DP (G0, α), is parametrized by
the base distribution G0, and the concentration parameter α.
Since DP is distribution over distributions, a draw G from it is
a distribution. Thus, we can sample θi from G. Back to Eq.(1),
by integrating over the mixing proportion π, we can write the
prior for zi as conditional probability of the following form
[9]:

p(zi = c|z1, ..., zi−1) =
n−ic + α0/L

i− 1 + α0
(3)

where n−ic is the number of zi for j < i that are equal to c.
by letting L goes to infinity we get the following equations:

P (zi = c|z1, ..., zi−1)→ n−ic

i− 1 + α0

P (zi 6= zj for all j < i|z1, ..., zi−1)→ α0

i− 1 + α0
(4)

For an observation xi with zi 6= zj for all j < i, a new
component gets created with indicator zi = cnew. For more
details about the process of obtaining the prior distribution,
reader is referred to [9].
2) Hierarchical Dirichlet process: Hierarchical Dirichlet pro-
cess (HDP) prior [1] has been proposed to link mixture models
sharing same characteristics. Figures 2 shows the graphical
model and its equivalent representation as HDP mixture model
in terms of the stick-breaking representation. The equations of
the graphical model are as follows:

(a) Graphical model (b) Finite hierarchical multiple mix-
ture model

Figure. 2 Hirarchical multi-layer Dirichlet process mixture model

G0|H,α0 ∼ DP (α0, H)

Gj |G0, α1 ∼ DP (α1, G0)

θji|Gj ∼ Gj

xji|θji ∼ F1(θji) (5)

Here, it is assumed that there are J groups of data, where
the jth group is denoted as (xji)

nj
i=1. Each group has a set

of parameters (θji)
nj
i=1 governing the distribution F (θji)

of data. As shown in Eq. (5), G0 representing the base
distribution of low-level mixture of DP prior, is itself drawn
from the DP prior. Thus, each draw Gj from DP prior
DP (α1, G0) has a shared discrete base distribution G0

allowing the different distributions to share the same set of
atoms but have distinct sets of weights. One can think of Gj

as a distribution on distributions and the whole model as a
mixture of distribution on distributions. Thus, it is can be
used to allow some characteristics to be shared between two
similar problems.

II. PROPOSED APPROACH

Unlike the hierarchical approach, which has one continuous
base distribution of the higher level DP prior, we propose
a novel DP prior with multi-base continuous distributions.
Instead of having one Gaussian conjugate prior as base dis-
tribution for the higher-level DP prior, an infinite mixture of
samples from a DP prior sample imposes the parameters of
the base distribution of the model DP prior. The model can be
thought of as a multi-layer clustering model, where the high-
layer clusters govern the low-layer sub-clusters parameters
distribution. Figure 3 shows graphical representation of the
model. The nodes in Fig 3 correspond to the variables of our
model. The arrows correspond to dependencies between the
variables, and the lines are just to show the sub-variables of
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(a) Graphical model (b) Infinite multi-base DP mixture
model

Figure. 3 Representaions of NHCM

the main variable. The generative model shown in Fig.3a is
represented as follows:

H0|(µ0,Σ0), v0, k0 ≡ NIW (.|µ0,Σ0, k0, v0)

G0|α0, H0 ∼ DP (α0, H0)

φj = (µφj ,Σφj)|G0 ∼ G0

Hj |(µφj ,Σφj), q ≡ N(.|µφj , qΣφj)
Gj |Hj , α1 ∼ DP (α1, Hj)

µθi|Gj ∼ Gj

xi|(µθi,Σφj) ∼ N(.|µθi,Σφj) (6)

Figure 3a, and Equation (6) show the generative process of
the model. Here, we have two plates denoting replication
of observations (the bottom plate) and clusters. The clusters
are parametrized by the mean µφj and the variance Σφj of
the Normal distribution Hj . These variables are generated
from G0 drawn from DP , while Hj is the base distribution
for the low level DP prior from which Gj is drawn.
Here, The sub-clusters Normal distribution are parametrized
by the mean µθi drawn from Gj and the variance Σφj .
NIW (.|µ0,Σ0, k0, v0) = N(.|µ0, k

−1
0 Σ)W−1

v0 (Σ|Σ0)
denotes the Normal-Inverse-Wishart prior, where
µ0,Σ0, v0, k0 are the hyper-parameters of the distribution.
µ0 is the prior of the clusters’ means, and Σ0 controls the
variance among their means. k0 scales the diffusion of the
clusters means, while parameter q scales the diffusion of
the sub-clusters’ means within cluster. v0 is the degree of
freedom of the Inverse-Wishart distribution.

We propose a Collapse Gibbs sampling algorithm to estimate
the posterior of component indicators. The mathematical equa-
tions are briefly developed following the notions adopted in
[9]. It is shown that applying Gibbs sampling to the model
formulated in eq.(1) with mixing proportion π and θ integrated
out is more efficient than applying it to other posterior forms

[9]. Thus, we formulate the model shown in Fig.3b as in (1):

φk = (µφk,Σφk) ∼ H0 ≡ NIW (.|µ0,Σ0, k0, v0)

β|α0 ∼ GEM(α0)

gj |β ∼ Discrete(β)

Hj |gj , q, (φ)∞k=1 ≡ N(.|µφgj , qΣφgj )
µθk ∼ Hj

π|α1 ∼ GEM(α1)

zi|π ∼ Discrete(π)

xi|zi, gzi , (µθk ,Σφk)∞k=1 ∼ N(.|µθzi ,Σφgzi ) (7)

Similar to DP and HDP reviewed in section 1, Fig. 3b is
equivalent to Fig. 3a. It is an infinite multi-base DP mixture
model representation, where not only the number of mixture
can grow, but also the prior governing each mixture model.
In order to sample from the probability distribution of cluster
indicators gj ( high-level base-prior) and sub-cluster indica-
tors zi (low-level base-prior) given the observations, we use
Markov chain with states consist of G = {g1, ..., gC} and
Z = {z1, ..., zN}. The Collapse Gibbs sampling algorithm
used is similar to [9], where we sample the sub-cluster state zi
from zi|z−i, g,X and cluster state gj from the gj |g−j , z,X

P (zi = c|z−i, g,X) ∝ P (zi = c,X|z−i, g)

= P (zi = c|z−i, g)P (X|zi = c, z−i, g)

P (zi = cnew|z−i, g,X) ∝ P (zi = cnew,X|z−i, g)

= P (zi = cnew|z−i, g)P (X|zi = cnew, z
−i, g) (8)

Here, cnew denotes new sub-cluster, p(zi = c|z−i, g) is the
probability of having the new data i in sub-cluster c given the
rest of the data assignments to sub-clusters z−i and all the
sub-cluster assignments to clusters g.

P (zi = c|z−i, g) ∝ n−ic

ngc + α1 − 1

P (zi = cnew|z−i, g) ∝ α1

ngc + α1 − 1
(9)

where n−ic is the number of data in sub-cluster c excluding
xi, and ngc is the number of data in cluster gc. c ∈ {1, ..., C},
with C is the total number of sub-clusters. Equation (9)
is applied for all the sub-clusters associated with the same
cluster gzi = gc, where the sum of the probabilities of all
the possible assignments is equal to one. Because of the use
of conjugate prior for the Gaussian parameters distribution, a
close form solution for the likelihood P (X|zi = c, z−i, g)
and P (X|zi = cnew, z

−i, g) can be obtained. Similar to
the simple DP model, we will end up with the Student’s t-
distribution. The mathematical solution and the parameters of
the distribution are detailed as follows:

P (X|zi = c, z−i, g) =

P (xi,X
−i
zi
,X−zigzi

,X−gzi |zi = c, z−i, g) (10)

where X−izi ,X
−zi
gzi

,X−gzi are respectively the data in sub-
cluster zi excluding xi, data in cluster gzi excluding zi, and
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the rest of data. Given that gzi = gc, eq.(10) can be expressed
as follows:

P (xi,X
−i
zi
,X−zigzi

,X−gzi |zi = c, z−i, g) ∝

P (xi|X−ic ,X−cgc ) (11)

By plugging in the sub-cluster parameter (µθc,Σφgc), we get
the following equation:

P (xi|X−ic ,X−cgc ) =

∫
Σφgc

∫
µθc

P (xi|µθc,Σφgc)

P (µθc,Σφgc |X−ic ,X−cgc )dµθcdΣφgc (12)

where xi|µθc,Σφgc ∼ N(.|µθc,Σφgc) and
(µθc,Σφgc)|X−ic ,X−cgc ∼ NIW (.|µ̂, Σ̂, k̂, v̂). Hence,
by integrating out (µθc,Σφgc), we obtain the student’s t-
distribution as already mentioned above. In the following, we
will compute the parameters of the Normal-Inverse-Wishart
prior NIW (.|µ̂, Σ̂, k̂, v̂), then the parameters of the student’s
t-distribution tv(.|µ,Σ).

P (µθc,Σφgc |X−ic ,X−cgc ) ∝ P (X−ic |µθc,Σφgc)
P (µθc,Σφgc |X−cgc ) (13)

P (µθc,Σφgc |X−cgc ) = P (µθc|X−cgc ,Σφgc)P (Σφgc |X−cgc )
(14)

P (µθc|X−cgc ,Σφgc) =

∫
µφgc

P (µθc|µφgc ,Σφgc)

P (µφgc |X−cgc ,Σφgc)dµφgc (15)

P (µφgc |X−cgc ,Σφgc) ∝
∫
µθt1

P (Xt1 |µθt1 ,Σφgc)

P (µθt1 |µφgc ,Σφgc)P (µφgc |X−(c,t1)
gc

,Σφgc)dµθt1
...

P (µφgc |X−(c,..,tn−1)
gc

,Σφgc) ∝
∫
µθtn

P (Xtn |µθtn ,Σφgc)

P (µθtn |µφgc ,Σφgc)P (µφgc |Σφgc)dµθtn
(16)

where t1, ..., tn are all the sub-clusters in cluster gc excluding
c, that is gti = gc for i ∈ {1, ..., n}. Equation (16) can be
solved analytically as all the random variable are normally
distributed. To compute the parameter of µφgc |X−cgc ,Σφgc ∼
N(.|µ̇, Σ̇), we roll up eq.(16) by starting from tn. The final
solution can be expressed as follows:

µ̇ =
(
k0 +

n∑
i=1

nti
1 + q ∗ nti

)−1(
k0 ∗ u0 +

n∑
i=1

nti
1 + q ∗ nti

x̄ti

)
Σ̇ =

(
k0 +

n∑
i=1

nti
1 + q ∗ nti

)−1

Σφgc (17)

where nti is the number of data in sub-cluster ti, and x̄ti is
the mean of the data in ti. Now, we can compute the parameter
of µθc|X−cgc ,Σφgc ∼ N(.|µ̈, Σ̈) in equation (15):

µ̈ =
(
k0 +

n∑
i=1

nti
1 + q ∗ nti

)−1(
k0 ∗ u0 +

n∑
i=1

nti
1 + q ∗ nti

x̄ti

)
Σ̈ = qΣφgc + Σ̇ = Σφgc

(
q + (k0 +

n∑
i=1

nti
1 + q ∗ nti

)−1
)
(18)

We still need to compute the parameter of Σφgc |X−cgc ∼
W−1

v̄ (Σ̄) in order to find the Normal-Inverse-Wishart param-
eters in (12).

P (Σφgc |X−cgc ) ∝ P (Xt1 |Σφgc)P (Σφgc |X−c,t1gc
)

...

P (Σφgc |X−(c,..,tn−1)
gc

) ∝ P (Xtn |Σφgc)P (Σφgc) (19)

Similar to eq.(16), we roll up by starting from the bottom.

v̄ = v0 +

n∑
i=1

nti

Σ̄ = Σ0 +

n∑
i=1

Sti (20)

where Sti is the covariance of the data in sub-cluster ti.
Finally, we are able to compute the posterior distribution of
the Normal-Inverse-Wishart in eq.(13):

k̈−1 =
(
q + (k0 +

n∑
i=1

nti
1 + q ∗ nti

)−1
)

µ̂ =
k̈

k̈ + nc − 1
µ̈+

nc − 1

k̈ + nc − 1
x̄−ic

Σ̂ = Σ̄ + S−ic +
k̈(nc − 1)

nc − 1 + k̈
(x̄−ic − µ̈)(x̄−ic − µ̈)T

v̂ = v̄ + nc − 1

k̂ = k̈ + nc − 1 (21)

Now, the integral in (12) leads to the student’s t-distribution
with the following parameters

µ = µ̂

Σ =
Σ̂(k̂ + 1)

k̂(v̂ − d+ 1)

v = v̂ − d+ 1 (22)

where d is the data dimension. As for P (zi =
cnew|z−i, g,X), we get the following parameters by setting
all the numbers of data in sub-clusters to zeros.

µ′ = µ0

Σ′ =
Σ0

(
k0(q ∗ k0 + 1)−1 + 1

)
k0(q ∗ k0 + 1)−1(v0 − d+ 1)

v = v0 − d+ 1 (23)
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Therefore, Equation (8) can be expressed as follows:

P (zi = c|z−i, g,X) ∝ n−ic

ngc + α1 − 1
tv(xi|µ,Σ)

P (zi = cnew|z−i, g,X) ∝ α1

N + α1 − 1
tv′(xi|µ′,Σ′)

(24)

Similarly, the conditional probability of sub-cluster assign-
ments to clusters given the data assignments to sub-clusters
can be written as follow:

P (gj = r|g−j , z,X) ∝ P (gj = r,X|g−j , z)

= P (gj = r|g−j , z)P (X|gj = r, g−j , z)

P (gj = rnew|g−j , z,X) ∝ P (gj = rnew,X|g−j , z)

= P (gj = rnew|g−j , z)P (X|gj = rnew, g
−j , z)

(25)

where gnew denotes new cluster, and r ∈ {1, ..., R} with R
is the total number of sub-cluster assignments to the existing
clusters. Here, j refers to the sub-clusters j ∈ {1, ..., C}.

P (gj = r|g−j , z) ∝ N−jr

P (gj = rnew|g−j , z) ∝ α0 (26)

Nr is the number of sub-clusters in cluster r excluding j.
Likewise the data assignments, we will end up with student’s
t-distribution. The mathematical solution and the parameters
of the distribution are detailed as follows:

P (X|zi = c, g−j , z) ∝ P (Xj ,X
−j
gj
|gj = r, g−j , z)

= P (Xj ,X
−j
r ) (27)

where Xj ,X
−j
r are respectively the data in sub-cluster j,

and the sub-clusters in cluster r excluding j. By plugging in
the sub-cluster parameter (µθj ,Σφr), we get the following
equation:

P (Xj |X−jr ) =

∫
Σφr

∫
µθj

P (Xj |µθj ,Σφr)

P (µθj ,Σφr|X−jr )dµθjdΣφr (28)

Using the obtained results from the previous section,
we can deduce the parameters of (µθj ,Σφr)|X−jr ∼
NIW (.|µ̂1, Σ̂1, k̂1, v̂1) as follows:

µ̂1 =
(
k0 +

n∑
i=1

nti
1 + q ∗ nti

)−1(
k0 ∗ u0 +

n∑
i=1

nti
1 + q ∗ nti

x̄ti

)
Σ̂1 = Σ0 +

n∑
i=1

Sti

v̂1 = v0 +

n∑
i=1

nti

k̂1 =
(
q + (k0 +

n∑
i=1

nti
1 + q ∗ nti

)−1
)−1

(29)

Here, t1, ..., tn are all the sub-clusters in cluster r excluding
j, that is gti = r for i ∈ {1, ..., n}. As shown in fig.3,

the distribution of data Xj is independent given (µθj ,Σφr).
Therefore eq.(27) can be written as follows:

P (Xj |X−jr ) =

nj∏
i=1

∫
Σφr

∫
µθj

P (xj,i|µθj ,Σφr)

P (µθj ,Σφr|X−jr )dµθjdΣφr

=

nj∏
i=1

tv1(xj,i|µ1,Σ1) (30)

where nj is the number of data in sub-cluster j.

µ1 = µ̂1

Σ1 =
Σ̂1(k̂1 + 1)

k̂1(v̂1 − d+ 1)

v1 = v̂1 − d+ 1 (31)

Similarly, we have the following parameter when new cluster
is created.

µ′1 = µ0

Σ′1 =
Σ0

(
k0(q ∗ k0 + 1)−1 + 1

)
k0(q ∗ k0 + 1)−1(v0 − d+ 1)

v1 = v0 − d+ 1 (32)

Therefore, Equation (25) can be expressed as follows:

P (gj = r|g−j , z,X) ∝ N−jr

nj∏
i=1

tv1
(xj,i|µ1,Σ1)

P (gj = rnew|g−j , z,X) ∝ α0

nj∏
i=1

tv′
1
(xj,i|µ′1,Σ

′
1) (33)

Algorithm (1) summarize NHCM. We empirically set the
number of gibbs sampling iterations ngibbs, which is needed
for reaching the stationary distribution, to 10.

III. EXPERIMENT

To discuss the efficiency of the proposed model, we analyse
its behaviour in comparison with GMM with one layer DP
(DPGMM). We use banana dataset for the sake of comparing
NHCM against DPGMM. The banana dataset is an artificial
dataset drawn from a distribution with a domain shaped in the
form of banana [10]. The data is uniformly distributed along
the banana trajectory, while orthogonally to the trajectory,
it is normally distributed with standard deviation equal to
0.3. We generate a total of 400 points evenly divided into
two classes. The banana dataset is a skewed multi-modal
dataset, where clusters tend to split up to accommodate the
data. Hence, using this type of dataset provides an insight
into the flexibility of the algorithm. However, we believe that
NHCM will show better results than classical flat clustering
algorithms on any multi-modal skewed datasets. Therefore,
more experiments on different synthetic and real world
datasets will be carried out in the future in order to show the
robustness of NHCM.

In order to allow obscure prior, we set α1 = 1 for NHCM
and DPGMM, and α0 = 1 for NHCM. The mean u0 for both
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Algorithm 1 Steps of NHCM

1: Input: data.
2: initialize: α0, α1, µ0, Σ0, v0, k0, q to the values proposed

in the experiment section. The number of clusters R to
zero, and the number of sub-cluster C to zero. The number
iterations before equilibrium ngibbs.

3: for all nb = 1 : ngibbs do
4: for all i = 1 : N in random order do
5: Remove xi’s sufficient statistics from its old sub-

cluster zi
6: for all c = 1 : C over the existing sub-clusters given

that gc = gzi do
7: Compute the probability of the xi assignment to

sub-cluster c.
(
Eq. (8)

)
8: end for
9: Compute the probability of the xi assignment to new

sub-cluster cnew.
(
Eq. (8)

)
10: Sample zi ∈ p(zi|.)
11: Add xi to its sub-cluster zi, and remove any empty

sub-cluster.
12: Remove zi’s sufficient statistics from its old cluster

gzi
13: for all r = 1 : R over all the existing clusters do
14: Compute the probability of the zi assignment to

cluster r.
(
Eq. (25)

)
15: end for
16: Compute the probability of the zi assignment to new

cluster rnew.
(
Eq. (25)

)
17: Sample gzi ∈ p(gr|.)
18: Add zi to its cluster gzi , and remove any empty

cluster.
19: end for
20: end for

models NHCM and DPGMM is set to be equal to the mean
of the entire datasets. The degree of freedom of the Wishart
distribution v0 must be greater than the dimension of the
data. We set it to v0 = 5 to allows high flexibility. The rest of
the parameters are empirically set as follow: q = 3, k0 = 1
and Σ0 = I . However, changing the parameters have slightly
effect on the final results, while the convergence time changes.

In Figure 4, the same color within the same ellipse shows
that the data is in the same cluster. The ellipses are drawn
according to the variance and the mean of the data in the
cluster. Figures 4a shows the sub-clusters created by NHCM
for banana dataset. These sub-clusters are governed by the base
distribution of the clusters shown in Fig.4b. Each cluster forms
a base-prior for many sub-clusters resulting in more flexible
clustering. The base prior of the cluster plays the role of a
distribution over the space of distributions on distributions.
Figures 4c shows the results of DPGMM. It is clear that more
clusters have been created. One can naively think of NHCM as
a model for clustering the means of DPGMM clusters leading
to higher representation with lower complexity.

(a) Low level clusters(sub-clusters) of NHCM

(b) High level clusters of NHCM

(c) Clusters of DPGMM

Figure. 4 Banana shaped dataset

IV. CONCLUSION

We have proposed a hierarchical clustering algorithm with
unbounded complexity. The proposed model maintains low
complexity by using Dirichlet process with hierarchical base
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prior distribution, where close sub-clusters forms high-level
clusters. It needs no prior information such as number of
clusters, or merging and splitting steps. In the future, we
will discard the exchangeability assumption of the data and
propose a dynamic model, where inference is performed using
sequential Monte Carlo. We will also add non-parametric prior
over the label distribution in order to perform classification
by softly gathering similar data from the same class in the
same cluster. These two expansions will be finally collected
to perform novelty detection using active learning.
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