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Abstract 

 

This paper studies the tribological behavior of the ionic liquid methyltrioctylammonium 

bis(trifluoromethylsulfonyl)imide ([N1888][NTf2]) as additive at different concentrations (1.25, 2.50, 3.75 

and 5.00 wt%) in a polar base oil (diester). A tribometer using a ball-on-disk reciprocating configuration 

under fully flooded lubrication was used at a frequency of 15 Hz, at three different loads (40, 80 and 120 

N), stroke length of 4 mm, and duration of 45 minutes. Worn surface on the disk was studied by confocal 

microscopy, SEM and XPS. Main results showed similar coefficient of friction for all lubricant samples; 

but different wear results were found at different loads, probably related with the chemical states found 

for fluorine on the worn surface and the temperature-dependent adsorption-desorption processes.  

 

Keywords: ionic liquid, polar oil, additive, lubrication 

 

1. Introduction 

 

Ionic liquids (ILs) are molten salts consisting in cations and anions, which have excellent 

physicochemical properties (inherent polarity, high thermal stability, low flammability, large liquid range, 

high viscosity and low melting point) for using them in lubrication. The use of ILs in lubrication was 

explored for the first time in 2001 [1] and the attention in this subject has increased greatly over the years 

[2-6]. Many studies about the use of ILs as neat lubricant have showed their potential for lubricating 

different material pairs [7-18]. Despite the advantages of both physicochemical properties and tribological 

performance of the ILs, the use of them as neat lubricant or lubricant base stock is not economically 

feasible due to their high costs.  

Due to their high costs, the feasibility of using ILs as lubricant additive has become in a prominent 

research topic. However, most of ILs are immiscible (<<1 % of solubility) in common nonpolar oils 

because the nonpolar neutral molecules are attracted by van der Waals forces while ions are held together 

by ionic forces and occasionally also by hydrogen bonding [6]. Several studies have been published using 

ILs as component of oil-IL emulsions or blended at low concentrations in nonpolar oils [8, 13, 19-36]. 

Meanwhile some authors used polar base oils seeking higher solubility with ILs [33, 37-51]. On the other 

hand, only few works have used ILs as an additive in fully-formulated oils [27, 34, 52-55] but more 
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studies are necessary in order to know the compatibility of the ILs with other surface-adsorbing additives 

[6]. 

The first cations studied for tribological purpose were imidazolium-, ammonium-, pyrrolidinium-, 

pyridinium-, thiouronium-, and thiazolium-based. Meanwhile, anions such as [BF4]
−
, [PF6]

−
, [Cl]

−
, 

[NTf2]
−
, [sulfate]

−
 and [sulfonate]

 −
 were also explored first [6]. However, the main problems presented 

by these ILs were corrosion due to the hydrolysis of the anion and low solubility in nonpolar oils. Qu et 

al. reported trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P6,6,6,14][DEHP]) and 

trihexyltetradecylphosphonium bis- (2,4,4-trimethylpentyl)alkylphosphinate ([P6,6,6,14]- [BTMPP]) as the  

first oil-soluble ILs [27, 52], which comprise quaternary structures with relatively long hydrocarbon 

chains both in cations and anions. From these two works emerged a theory, which state that an IL can be 

soluble in nonpolar oil if both cation and anion are also soluble.  

With regard to the expected solubility of the ionic liquid in polar oils, ILs comprising cations such as  

imidazolium and pyrrolidinium; paired with many anions have resulted soluble in rapeseed oil, 

poly(ethylene glycol) (PEG), trimethylolpropane (TMP) oleate, castor oil, and glycerol, or in fully-

formulated oils due to synergies with other additives [6]. From a tribological point of view, the possible 

interference between polar base oils and ILs used as additive in their interaction with metallic surfaces 

can affect friction and wear results. This paper studies the lubrication performance of an IL based on an 

ammonium cation and the [NTf2] anion used as an additive at different concentrations in a polar oil. 

 

2. Experimental details 

2.1 Lubricant samples preparation 

The ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([N1888][NTf2]) was used as 

lubricant additive to a biodegradable diester with high oxidative and hydrolytical stability. The 

ammonium-based IL was provided by Io-Li-Tec (Ionic Liquid Technologies GmbH) and the polar base 

oil (Priolube 1936) was kindly supplied by CRODA, S.A. A description of the main properties of these 

compounds is shown in Table 1. IL-containing mixtures were prepared with the base oil and 

concentrations of 1.25, 2.50, 3.75 and 5.00 wt% of the IL. The solubility of the [N1888][NTf2] in the polar 

oil used in this work was tested using the turbidimetry technique and results showed that the IL is 

miscible in the oil at least 30 wt%. The corrosion activity of the IL on different substrates (steel, TiN, 

CrN, ZrN) was tested before [56] and no evidence of corrosion was found on these materials. 
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Table 1. Material properties. 

IUPAC NAME  

(CAS NUMBER) 

Purity (%) Density 

20ºC 

(g/cm3) 

Mol. 

Weight   

Viscosity 

40ºC 

(mPa·s) 

Methyltrioctylammonium  

bis(trifluoromethylsulfonyl)imide 

(375395-33-8) 

99 

 

1.109 

 

648.85 200.7 

 

Chemical structure 

 

Cation Anion 

   

C25H54N
+
 C2F6S2O4N

-
 

 
 

[N1888] [NTf2] 

Name Oil type Density 

20ºC 

(g/cm
3
) 

Viscosity 

Index 

ASTM D 2270 

Viscosity (mPa·s) 

ASTM D 445 

   40ºC  100ºC  

Priolube 1936 

(coded as A2) 

Petrochemical 

diester 
0.91 139 26 5.3 

 

2.2. Friction and wear tests 

A Bruker UMT-3 micro-tribometer with a reciprocating ball-on-disk configuration was used for friction 

and wear testing. The tribological tests were performed for a period of 45 minutes under normal loads of 

40, 80 and 120 N (corresponding to maximum contact pressures of 1.67, 2.10 and 2.41 GPa, 

respectively), with a stroke length of 4 mm and a frequency of 15 Hz. Each test condition was repeated at 

least three times at room temperature using 4 ml of lubricant sample in order to ensure fully flooded 

lubrication condition. Commercially available AISI 52100 chrome steel balls (Ø9.5 mm, hardness 63 

HRC, Ra ≤ 0.01 µm) were used as upper specimen and run against AISI 52100 steel disks (10 mm 

diameter, 3 mm thick, hardness 190-210 HV30, Ra ≤ 0.02 µm) used as lower specimen. Coefficient of 

friction (COF) and electrical contact resistance (ECR) were recorded during the tests and wear volume 

was measured on the disk's surface using confocal microscopy (Leica DCM 3D). Both specimens were 

cleaned with heptane in an ultrasonic bath during 5 minutes before tribological tests and also before worn 

surface characterization. After the cleaning process, both specimens were rinsed in ethanol and then air-

dried.  

2.4. Surface characterization 
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After tribological tests worn surfaces were analyzed with a scanning electron microscope (SEM) in order 

to evaluate the wear mechanism. XPS measurements were also taken with a Phoibos MD5 detector, using 

non monochromatized Al radiation (K alpha = 1486.7 eV) at 13 kV and 200 W. Electromagnetic lenses 

were used in small area mode or high magnification in the case of iron and oxygen. Number of scans 

ranged from 10 to 40 according to the chemical elements content on the disk´s surface in order to obtain 

high resolution spectra. Survey spectra were taken with 90 eV pass energy and 1 eV step energy (a single 

scan), whereas high resolution spectra were measured using 30 eV pass energy and 0.1 eV energy step. 

Curve fitting for high resolution XPS analysis is performed using a product 70% Gaussian-30% 

Lorentzian shape curve and Shirley type baseline. In case that more than one curve is used for the fitting 

of a single element, full width at half maximum (fwhm) is constrained so as to all curves have the same 

fwhm value. In the case of Fe 2p3/2 fit, an exponential tail was considered for modelling the peaks of 

Fe(III) (T=1.5) and Fe(0) (T=0.65), as done by Mangolini et al. [57]. 

3. Results and discussion 

 

3.1. Tribological tests  

The base oil and the IL-containing mixtures showed unexpected friction behavior, Table 2. The average 

coefficient of friction of all tests was similar irrespective of both the lubricant sample and the load used. 

Similar behavior was found when this ionic liquid was tested as neat lubricant under different test 

conditions including those here used [18]. The study of the evolution of the coefficient of friction and 

electrical contact resistance (ECR) with time showed that the initial higher coefficient of friction values 

decrease with the increase of ECR probably due to the tribofilm formation, Fig. 1. The ECR values were 

higher at the lowest (40 N) and intermediate (80 N) loads, while at the highest (120 N) load they 

decreased. This behavior could be related to adsorption-desorption processes, which are temperature- and 

hence load-dependent.  

The polar nature of the lubricant samples promotes a competition for the metallic surface between the 

base oil and the ionic liquid but it seems that the higher concentration of the base oil leads to above-

mentioned similar friction results [58]. Improved friction results were obtained when nonpolar base oils 

(mineral oils or polyalphaolefins) were used as main component in a binary mixture with polar 

compounds (esters or ionic liquids) [8, 33, 35, 36, 58-60]. Mixtures of nonpolar base oil and an ester were 

also used in the preparation of an emulsion for lubricant purposes resulting in improved tribological 

behavior [61]. 
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Table 2. Average coefficient of friction and standard deviation for tests made with all samples. 

 

IL conc. 

(wt%) 

40 N 80 N 120 N 

Avg SD (x10
-3

) Avg SD (x10
-3

) Avg SD (x10
-3

) 

0.00 0.070 1.994 0.068 0.401 0.069 2.150 

1.25 0.069 1.665 0.068 0.665 0.068 0.480 

2.50 0.069 1.209 0.069 0.845 0.070 1.471 

3.75 0.071 3.150 0.068 0.842 0.070 0.701 

5.00 0.070 2.801 0.070 1.559 0.068 0.505 

 

 

 

 
 

Fig. 1. Evolution with time of both the coefficient of friction and electrical contact resistance: 

 a) A2  b) A2 + 1.25 wt% IL  c) A2 + 2.50 wt% IL  d) A2 + 3.75 wt% IL  e) A2 + 5.00 wt% IL. 
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The wear results were different under the three loads used and the IL concentration in the mixtures also 

influenced on them, Fig. 2. Wear reductions were found for all mixtures with regard to the base oil at 40 

N-load, with the highest wear reduction for the highest IL concentration (5.00 wt%). On the other hand, a 

significant wear reduction with regard to the base oil was found at 80 N-load for the mixtures containing 

2.50 wt% of IL. Meanwhile, the mixtures containing 1.25 wt% of IL showed the highest wear reduction at 

120 N-load. These different behaviors are not only related with adsorption-desorption processes but also 

with chemical reaction of the lubricant samples with worn surface. These possible chemical reactions 

were studied by X-ray spectroscopy (XPS) and their results are shown in the next section. 

 

 
Fig. 2. Average wear volume and standard deviation for tests made with all samples. 

3.2. Worn surface characterization 

Fig. 3 shows the images of the worn surface on the disks (lower specimen) taken with scanning electron 

microscopy. An increase in wear scar width can be observed with the increase of the load. The 

predominant wear mechanism was adhesive for all lubricant samples under the three loads. The SEM 

images also show that the lowest surface damage at 40 N-load was obtained with the mixture containing 

5.00 wt% of IL; while at 80 N and 120 N the lowest surface damage was obtained with the mixtures at 

2.50 and 1.25 wt% of IL, respectively.   
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Fig. 3. SEM images from the wear surface on the disks after the tribological tests. 
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The chemical analysis (EDS) of the wear surface at both lowest and highest load for the neat base oil and 

the mixture with the higher IL concentration showed similar results with the detection of only the 

elements present in the steel, Fig. 4. This result is close related to the fact that the EDS technique detects 

elements from a depth of microns, while the tribolayer formed by the interaction of lubricant samples and 

the surface should have a thickness of nanometers.  

 

 

Fig. 4. EDS from the wear surface on the disks after the tribological tests. 

 

The worn surface of different samples was analysed with XPS, following the presence of Fe and F. 

Concerning the Fe2p3/2 analysis, three different species appear to be present: Fe(0) at 707.4 ± 0.1 eV, Fe 

(III) at 710.5 ± 0.1 eV and FeOOH at 712.4 ± 0.1 eV [57, 62]. Fig. 5 shows the Fe 2p3/2 XPS band of the 

surface lubricated with neat A2, in absence of ionic liquid. There is no evident difference in the surfaces 

regardless the applied load. 
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Fig. 5. Fe2p3/2 XPS band for samples lubricated with neat A2 at different loads. 

 

Likewise, Fig. 6 records the XPS Fe2p3/2 band of the surfaces assayed at 120 N and lubricated with 

growing concentrations of ionic liquid. There is also any evidence of difference among these spectra, 

being the surfaces very similar with respect to iron. Taking into account the poor difference in the iron for 

these samples, further analysis concerning oxygen (O1s) was carried out and shown in Fig. 7. The O1s 

spectrum in every sample can be fitted using two curves located at 532.7 eV and 530.6 eV, usually 

associated to organic oxygen [23] and iron oxides [18]. However, the ratio O532.7/O530.6 is different for the 

sample without ionic liquid (0.58) from the others (0.76 ± 0.04 as a mean value for samples with 1.25, 

2.50, 3.75 and 5.00 wt% of IL). This difference can arise either from a bigger amount of organic oxygen 

or from a reduction in the surface iron oxides, but the previously shown spectra of iron did not suggest 

differences in the iron oxides, being more likely that the higher O532.7/O530.6 ratio comes from the ionic 

liquid.  
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Fig. 6. Fe2p3/2 band for samples tested at 120 N with mixtures containing 1.25, 2.50, 3.75 and 5.00 wt% 

of IL. 

 

 

Fig. 7. O1s band for samples assayed at 120 N with ionic liquid concentration ranging 0-5.00 wt%. 
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The Fe2p3/2 XPS band of samples showing the lowest wear damage at different loads (1.25 wt% IL at 

120 N, 2.50 wt% IL at 80 N or 5.00 wt% IL at 40 N) were also compared and shown in Fig. 8, with a 

scarce difference to the previously shown Fe spectra.  

 

 

Fig. 8. Fe2p3/2 band for samples assayed at 120 N with 1.25 wt% IL, 80 N with 2.50 wt% IL and 40 N 

with 5.00 wt% IL. 

 

Finally, fluorine could only be clearly detected in samples lubricated with 5.00 wt% IL at 40 N, 2.50 wt% 

IL at 80 N and 2.50 wt% IL at 120 N, although there is also a very poor band in the case of 1.25 wt% IL 

at 120 N. These samples correspond to those with the lowest wear values according to Fig. 2. As it is 

shown in Fig. 9 (left), there is a clear F1s band centered at 689.5 eV in the case of the samples assayed 

with 5.00 wt% of IL at 40 N-load. The position of this band agrees with the expected value of 689.0 eV 

for the [NTf2] anion, according to the work by Bovio et al [63]. The same band can also be found for 

samples assayed at higher loads (80 and 120 N) using a lower amount of ionic liquid (2.50 wt%), as 

shown in Fig. 9 (center) and Fig. 9 (right). These results agree with those with lowest wear volumes, 

which have more evident presence of fluorine on the surface. 
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Fig. 9. F1s band for samples assayed at 40 N and 5.00 wt% IL (left), 80 N and 2.50 wt% IL (center), and 

120 N and 2.50 wt% IL (right). 

 

 

4. Conclusions 

 

An ammonium cation-based IL was used as an additive at different concentrations in a polar oil in order 

to study both friction and wear reduction properties of the IL and possible interferences of the base oil on 

those properties due to its polar nature. The following conclusions can be drawn from the results 

obtained: 

 The base oil and all the mixtures showed similar friction results, which can be related to the 

similar polar nature of the base oil and the IL, resulting in a competition of both for the surface. 

 Wear results were different with increasing values when load increased, meanwhile wear 

reduction of the mixtures with regard to the neat base oil was different for each IL concentration 

under the three loads. The different wear behavior of the mixtures could be related to the 

adsorption-desorption processes, which are both temperature and load dependent. 

 The chemical analysis of the worn surface by EDS did not show differences. On the other hand, 

the XPS analysis showed similar results for the chemical state of iron, which probably 

influenced on the similar coefficient of friction showed by all lubricant samples. However, 

fluorine was found on the worn surface with the lowest wear volumes, and the corresponding 

binding energy is consistent with the presence of the [NTf2] anion. 
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