Sourcing the clay: Iron Age pottery production around Poole Harbour and the Isle of Purbeck, Dorset, UK

Volume 2 of 2

Grace Perpetua Jones

A thesis submitted in partial fulfilment of the requirements of Bournemouth University for the degree of Doctor of Philosophy

May 2017

Bournemouth University

in collaboration with

The Poole Harbour Heritage Project

Table of Contents: Volume 2

List of figures

Figures for Chapter 1

1.1	Location map	443
1.2	The Dorset variant of the All Cannings Cross-Meon Hill group	445
1.3	The Maiden Castle-Marnhull style	446
1.4	The Durotrigian pottery types	447
1.5	Distribution map of Durotrigan, Dobunnic and Atrebatic coins	448
1.6	Distribution of Maiden Castle-Marnhull style pottery	448
1.7	Examples of Black-burnished ware forms	449

Figures for Chapter 2

2.1	The study area	451
2.2	The Hampshire Basin	452
2.2a	Legend for Figure 2.2	453

Figures for Chapter 3

3.1	Location of Late Iron Age and Roman pottery production sites	
	around Poole Harbour	454
3.2	Location of possible Roman pottery production sites in the	
	outlying areas	455
3.3	Plan and sections of kiln/furnace 2914 and clay-lined pit 2927,	
	East of Corfe River	456
3.4	Plan, section and photo of kiln 46, Worgret	457
3.5	Plan, section and photo of kiln/oven 36, Worgret	458
3.6	Plan, section and photo of kilns 160 (B) and 161 (A), Worgret	459
3.7	Plans of kiln types 1-3 at Bestwall Quarry, Wareham	460
3.8	Plans of kiln types 3-5 at Bestwall Quarry, Wareham	461
3.9	Plans of kiln type 6B at Bestwall Quarry, Wareham	462
3.10	Location of briquetage finds and excavated kilns at Ower Peninsu	la

463

3.11.	Plan and section of kiln 540 at Ower	465
3.12	Plans kilns 1.11, 1.12 and 1.13 at Norden	465
3.13	Kiln 1.12 at Norden	466
3.14	Kiln 1.13 at Norden	466
3.15	Plans of dryers at Bestwall Quarry, Wareham	467
3.16	Plan, section and photo of possible settling tank at Worgret	468
3.17	Plan of the pottery production site at Ower	469
3.18	Fired clay 'stackers' from Worgret	470
3.19	Reconstruction of a possible Late Roman kiln	471

Figures for Chapter 4

4.1	Location of sites sampled for analysis – Isle of Purbeck,	
	Bournemouth, Dorchester and Weymouth	471
4.2	Location of sites sampled for analysis – North Dorset, East Dorset	
	and Somerset	472
4.3	Vessels sampled from the Wytch Farm Oilfield sites	473
4.4	Vessels sampled from the Wytch Farm Oilfield sites	474
4.5	Vessels sampled from Green Island	474
4.6	Vessels sampled from Redcliff Farm	475
4.7	Example of an overfired vessel from Redcliff Farm	475
4.8	Example of fire-clouding on vessel from Redcliff Farm	476
4.9	Vessels sampled from Bestwall Quarry	477
4.10	Vessels sampled from Eldon's Seat	478
4.11	Vessels sampled from Rope Lake Hole	479
4.12	Vessels sampled from Rope Lake Hole	480
4.13	Vessels sampled from Football Field, Worth Matravers	481
4.14	Vessels sampled from Maiden Castle	482
4.15	Vessels sampled from Maiden Castle	483
4.16	Vessels sampled from Southdown Ridge	484
4.17	Vessels sampled from Southdown Ridge	485
4.18	Vessels sampled from Gussage All Saints	486
4.19	Vessels sampled from Gussage All Saints	487
4.20	Vessels sampled from Barton Field, Tarrant Hinton	488
4.21	Vessels sampled from Bradford Down, Pamphill	488

4.22	Vessels sampled from Oakley Down, Wimborne St. Giles	489
4.23	Vessels sampled from Allard's Quarry, Marnhull	490
4.24	Vessels sampled from Sigwells, South Cadbury	491

Figures for Chapter 5

5.1	Location of sites of known or suspected pottery production during	
	the Late Iron Age to Romano-British periods	492
5.1a	Legend for Figure 5.1	493
5.2	Late Iron Age and Romano-British pottery production sites within	
	the wider region	494
5.2a	Legend for Figure 5.2	495
5.3	Location of areas selected for sampling	496
5.4	Areas of Late Iron Age and Romano-British pottery production,	
	historic brick and pottery works, and field samples	497
5.4a	Legend for Figure 5.4	498
5.5	Sample locations and sites of known or suspected Late Iron Age	
	and Romano-British pottery production on the southern shores of	
	Poole Harbour	500
5.5a	Legend for Figure 5.5	501
5.6	Ower Bay, view to the north-east	502
5.7	Augering for sample 3, Ower Bay	502
5.8	Location of sample sites on Godlingston Heath, a possible	
	Romano-British pottery kiln, and areas of 19th century clay	
	exploitation	503
5.8a	Legend for Figure 5.8	504
5.9.	Godlingston Heath, view from sample 2 location, looking towards	
	Agglestone Cottage	505
5.10.	Location of published grid reference for Romano-British pottery k	iln,
	Godlingston Heath	505
5.11.	Location of samples 1 and 2, Foxground Plantation	506
5.12	The clay loam pit at Sandford (samples 5-6)	506
5.13.	Pine plantation at Wytch Heath	507
5.14	Area of outcropping Parkstone Clay on Brownsea Island	508
5.14a	Legend for Figure 5.14	509

5.15	Location of areas of sampling on Brownsea Island	510
5.16	Sample locations on the south-west coast of Brownsea Island	511
5.17	Sample locations on the northern coast of Brownsea Island	512
5.18	Section of clay along the south-western shores of Brownsea Island	513
5.19	Sites of historic brick and pottery workings, and sample location, i	n
	the Alderney, Newtown and Foxholes area	514
5.20	A view from the corner of no. 42 Walton Road looking to the	
	south-west towards Jewsons and the Kinson Pottery Estate	515
5.21	Sites of historic brick and pottery workings, and sample location,	
	for Bourne Bottom Nature Reserve and Alder Hills Nature Reserve	e516
5.22	Cliff section on the western side of Furzey Island	517
5.23	Cliff on western side of Green Island	517
5.24	Cliff collapse on Round Island, view looking west towards	
	the cottages	518
5.25	Colour variability in the clay on Round Island	518
5.26	Disused clay pit at Lower Lynch House	519
5.27	Drawing of a brick kiln near to Corfe Castle	519
5.28	Example of a vitrified brick from Lower Lynch House	520
5.29	Location of brickworks and sample sites at Lower Lynch House	521
5.30	Location of sample 1, Corfe Common, Lower Lynch Farm	522
5.31	Location of sample 2, Lower Lynch Farm	522

Figures for Chapter 6 Photomicrographs

6.1	Green Island, pottery sample 1	523
6.2	Green Island, pottery sample 3	523
6.3	Elongated argillaceous inclusion in Green Island pottery sample 13	5 523
6.4	Green Island, pottery sample 19	524
6.5	Wytch Farm Oilfield pottery, sample 23	524
6.6	Wytch Farm Oilfield pottery, sample 14	524
6.7	Wytch Farm Oilfield pottery, sample 2	525
6.8	Wytch Farm Oilfield, pottery sample 17	525
6.9	Wytch Farm Oilfield, pottery sample 10	525
6.10	Redcliff, Ridge, pottery sample 4	526
6.11	Rope Lake Hole pottery sample 24	526

6.12	Rope Lake Hole pottery sample 25	526
6.13	Rope Lake Hole pottery sample 14	527
6.14	Rope Lake Hole pottery sample 14	527
6.15	Hengistbury Head pottery sample 4	527
6.16	Gussage All Saints pottery sample 9	528
6.17	Gussage All Saints pottery sample 10	528
6.18	Gussage All Saints pottery sample 36	528
6.19	Barton Field, Tarrant Hinton pottery sample 5	529
6.20	Bradford Down, Pamphill pottery sample 2	529
6.21	Bradford Down, Pamphill pottery sample 3	529
6.22	Bradford Down, Pamphill pottery sample 1	530
6.23	Oakley Down pottery sample 1	530
6.24	Allard's Quarry pottery sample 9	530

Figures for Chapter 7

Photomicrographs

7.1	Foxground Plantation, clay sample 1	531
7.2	Arne Peninsula clay, sample 2A	531
7.3	Arne Peninsula clay, sample 2B	531
7.4	Ower Bay clay, sample 3	532
7.5	Redcliffe Farm clay, sample 2	532
7.6	Wytch Farm clay, sample 1A	532
7.7	Wytch Farm clay, sample 1B	533
7.8	Godlingston Heath clay, sample 1	533
7.9	Godlingston Heath clay, sample 5	533
7.10	Upton Poole Road, clay sample 3	534
7.11	Brownsea Island, clay sample 20	534
7.12	Brownsea Island, clay sample 2	534
7.13	Bourne Valley, clay sample 5	535
7.14	Creech Heath, clay sample 4	535
7.15	Lower Lynch Farm, clay sample 3	535
7.16	SE Purbeck, clay sample 2	536
Pie-charts		
7.17	Proportion of silt-sized quartz in the clay samples	536

7.18	Proportion of silt-sized quartz in the pottery samples	536		
Histog	Histograms of grain size			
7.19	Godlingston Heath, clay sample 5	537		
7.20	Sandford, clay sample 4	537		
7.21	Upton Poole Road, clay sample 2	537		
7.22	Upton Poole Road, clay sample 3	537		
7.23	East Holme, clay sample 2	537		
7.24	Brownsea, clay sample 14	537		
7.25	Brownsea, clay sample 20	538		
7.26	Bourne Valley, clay sample 9	538		
7.27	Creech Heath, clay sample 2	538		
7.28	Green Island, pottery sample 1	538		
7.29	Green Island, pottery sample 2	538		
7.30	Green Island, pottery sample 3	538		
7.31	Maiden Castle, pottery sample 18	539		
7.32	Maiden Castle, pottery sample 20	539		
7.33	Wytch Farm Oilfield, pottery sample 14	539		
7.34	Wytch Farm Oilfield, pottery sample 15	539		
7.35	Wytch Farm Oilfield, pottery sample 16	539		
7.36	Wytch Farm Oilfield, pottery sample 24	539		
7.37	Rope Lake Hole, pottery sample 19	540		
Photo	micrographs and histograms			
7.38	Rope Lake Hole, pottery sample 19	540		
7.39	Redcliff, Ridge, pottery sample 4	540		
7.40	Redcliffe Farm, clay sample 2	540		
7.41	Redcliffe Farm, clay sample 2	540		
7.42	Shale and sand added to Arne Beach clay sample 2	541		
7.43	Arne Beach, sample 2A	541		
7.44	Arne Beach, sample 2B	541		
7.45	Furzey Island, sample 3, sand	541		
7.46	Rempstone, sample 3, sand	541		

Apppendices

Appendix A - Additional data for Chapter 2	543
Table A1. Compositional grouping of Durotrigian pottery by Coulston (1989),	
presented by form	547
Appendix B - Additional data for Chapter 3	549
B1. Major brick and pottery producers operating around Poole during the	
19th and 20th centuries	549
B1. 1 Poole Pottery	549
B1.2 George Jennings and the South-Western Pottery	551
B1.3 Pike Brothers	551
B1.4 Branksea Clay and Pottery Company	552
B1.5 Sandford Pottery, Keysworth Pottery and Sibley Pottery	553
B1.6 Kinson Potteries	553
B1.7 Elliott's Potteries	554
B1.8 The Bourne Valley Potteries	554
B1.9 Upton Brickworks	555
Appendix C - Additional data for Chapter 4	557
Table C1. Fabrics identified in the Green Island assemblage from the 1969	
and 2010 investigations	557
Table C2. Forms of Poole Harbour wares identified from the 1969	
and 2010 excavations at Green Island	558
Table C3. Percentage of later prehistoric fabric groups present in each phase	
from the 1985-6 excavations at Maiden Castle	559
Table C4. Early Iron Age forms from Gussage All Saints	559
Table C5. Early to Middle Iron Age forms from Gussage All Saints	560
Table C6. Middle Iron Age forms from Gussage All Saints	560
Table C7. Middle to Late Iron Age forms from Gussage All Saints	560
Table C8. Late Iron Age forms from Gussage All Saints	561
Table C9. Forms present at Barton Field, Tarrant Hinton, in Poole Harbour	
fabrics	562

Appendix D - Additional data for Chapter 5	565
Table D1. Details of sites of historic workings (HW) for brick and	
pottery production	566
D1. Briquettes made from samples of Creekmoor Clay	571
Table D2. Forming and firing colours of briquettes from clay	
from Upton Country Park	571
D. 2 Briquettes made from samples of Oakdale Clay	572
Table D3. Forming and firing colours of briquettes from clay	
from Sandford	572
Table D4. Forming and firing colours of briquettes from clay	
from East Holme	572
Table D5. Forming and firing colours of briquettes from clay	
from Longfleet Lodge	573
Table D6. Forming and firing colours of briquettes from clay	
from Upton, Poole Road	573
D. 3 Briquettes made from samples of Broadstone Clay	574
Table D7. Forming and firing colours of briquettes from clay	
from south of Bramble Bush Bay	574
Table D8. Forming and firing colours of briquettes from clay	
from Ower Bay	575
Table D9. Forming and firing colours of briquettes from clay	
from Arne Peninsula	575
Table D10. Forming and firing colours of briquettes from clay	
from Arne, south of Bank Gate Cottages	576
Table D11. Forming and firing colours of briquettes from clay	
from Arne Beach	576
Table D12. Forming and firing colours of briquettes from clay	
from Godlingston Heath	577
Table D13. Forming and firing colours of briquettes from clay	
from Redcliffe Farm, Ridge	577
Table D14. Forming and firing colours of briquettes from clay	
from Foxground Plantation	578
Table D15. Forming and firing colours of briquettes from clay	
from Rempstone Heath	578
Table D16. Forming and firing colours of briquettes from clay	
from Sandford	578
Table D17. Forming and firing colours of briquettes from clay	

from Wytch Heath	579
D.4 Briquettes made from samples of Parkstone clay	580
Table D18. Forming and firing colours of briquettes from clay	
from Brownsea Island	580
Table D19. Forming and firing colours of briquettes from clay samples	
from Creech Heath	582
Table D20. Forming and firing colours of briquettes from clay samples	
from Newtown	582
Table D21. Forming and firing colours of briquettes from clay samples	
from Bourne Valley and Alder Hills	583
D5. Briquettes made from samples of Poole Formation clays	584
Table D22. Forming and firing colours of briquettes from clay samples	
from Furzey Island	584
Table D23. Forming and firing colours of briquettes from clay samples	
from Green Island	584
Table D24. Forming and firing colours of briquettes from clay samples	
from Round Island	585
D6. Briquettes made from samples of Wealden Clay	586
Table D25. Forming and firing colours of briquettes from clay samples	
from Belle View Farm	586
Table D26. Forming and firing colours of briquettes from clay samples	
from Lower Lynch House	587
Table D27. Forming and firing colours of briquettes from clay samples	
from South-East Purbeck	588
D7. Briquettes made from samples of Kimmeridge Clay	589
Table D28. Forming and firing colours of briquettes from clay samples	
from Kimmeridge Bay	589
D8. Briquettes made from samples of Barton Clay	589
Table D29. Forming and firing colours of briquettes from clay samples	
from Hengistbury Head	589
Appendix E - Additional data for Chapter 6	591
Figure E1. Inclusion density charts used for petrological analysis	592
Figure E2. Diagram of sorting of inclusions used for petrological analysis	593
Figure E3. Diagram of sorting of inclusions used for petrological analysis	594
Figure E4. Diagram of sorting of inclusions used for petrological analysis	595
Table E1. Percentages of inclusions present in pottery samples from	

Table E2. Percentages of inclusions present in pottery samples fromWytch Farm Oilfield598Table E3. Percentages of inclusions present in pottery samples from600Table E4. Percentages of inclusions present in pottery samples from601Table E5. Percentages of inclusions present in pottery sample from602Table E5. Percentages of inclusions present in pottery samples from602Table E6. Percentages of inclusions present in pottery samples from603Table E7. Percentages of inclusions present in pottery samples from604Table E7. Percentages of inclusions present in pottery samples from604Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from606Table E10. Percentages of inclusions present in pottery samples from606Table E10. Percentages of inclusions present in pottery samples from606Table E10. Percentages of inclusions present in pottery samples from606Table E11. Percentages of inclusions present in pottery samples from606Table E12. Percentages of inclusions present in pottery samples from606Table E13. Percentages of inclusions present in pottery samples from606Table E14. Percentages of inclusions present in pottery samples from606Table E13. Percentages of inclusions present in pottery samples from606Table E14. Percentages of inclusions present in pottery samples from606Table E15. Percentages of inclusions present in pottery samples from606Table E14. Percentages of inclusions presen	Green Island	596
Table E3. Percentages of inclusions present in pottery samples from600Table E4. Percentages of inclusions present in pottery samples from601Table E5. Percentages of inclusions present in pottery sample from602Table E6. Percentages of inclusions present in pottery samples from603Table E7. Percentages of inclusions present in pottery samples from603Table E7. Percentages of inclusions present in pottery samples from604Table E8. Percentages of inclusions present in pottery samples from606Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from606Table E10. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from610Gussage All Saints611Table E12. Percentages of inclusions present in pottery samples from612Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Table E14. Percentages of inclusions present in pottery samples from612Table E14. Percentages of inclusions present in pottery samples from613Table E14. Percentages of inclusions present in pottery samples from614Table E14. Percentages of inclusions present in pottery samples from616Table E14. Percentages of inclusions present in pottery samples from616Table E15. Percentages of inclusions present in pottery samples from616<	Table E2. Percentages of inclusions present in pottery samples from	
Redcliff, Ridge600Table E4. Percentages of inclusions present in pottery samples from601Bestwall Quarry601Table E5. Percentages of inclusions present in pottery sample from602Table E6. Percentages of inclusions present in pottery samples from603Table E7. Percentages of inclusions present in pottery samples from604Table E8. Percentages of inclusions present in pottery samples from604Table E8. Percentages of inclusions present in pottery samples from606Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from607Maiden Castle607607Table E10. Percentages of inclusions present in pottery samples from609Southdown Ridge609609Table E11. Percentages of inclusions present in pottery samples from610Gussage All Saints611Table E12. Percentages of inclusions present in pottery samples from612Gussage All Saints612Table E13. Percentages of inclusions present in pottery samples from612Table E14. Percentages of inclusions present in pottery samples from613Table E15. Percentages of inclusions present in pottery samples from613Gustage All Saints614Table E15. Percentages of inclusions present in pottery samples from614Table E15. Percentages of inclusions present in pottery samples from613Table E15. Percentages of inclusions present in pottery samples from614Table E15. Percentages of	Wytch Farm Oilfield	598
Table E4. Percentages of inclusions present in pottery samples from601Bestwall Quarry601Table E5. Percentages of inclusions present in pottery sample from602East Holme602Table E6. Percentages of inclusions present in pottery samples from603Eldon's Seat603Table E7. Percentages of inclusions present in pottery samples from604Table E8. Percentages of inclusions present in pottery samples from606Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from607Table E10. Percentages of inclusions present in pottery samples from607Table E10. Percentages of inclusions present in pottery samples from607Southdown Ridge609Table E11. Percentages of inclusions present in pottery samples from610Table E12. Percentages of inclusions present in pottery samples from611Table E13. Percentages of inclusions present in pottery samples from612Gussage All Saints612Table E14. Percentages of inclusions present in pottery samples from612Table E14. Percentages of inclusions present in pottery samples from613Table E15 Percentages of inclusions present in pottery samples from613Gukey Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from613Table E16a. Percentages of inclusions present in pottery samples from613Table E16a. Percentages of inclusions present in pottery samples from614 <td>Table E3. Percentages of inclusions present in pottery samples from</td> <td></td>	Table E3. Percentages of inclusions present in pottery samples from	
Bestwall Quarry601Table E5. Percentages of inclusions present in pottery sample from602East Holme602Table E6. Percentages of inclusions present in pottery samples from603Eldon's Seat603Table E7. Percentages of inclusions present in pottery samples from604Table E8. Percentages of inclusions present in pottery samples from606Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from606Table E10. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from610Gussage All Saints611Gussage All Saints612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Table E15. Percentages of inclusions present in pottery samples from614Gussage All Saints613Gussage All Saints614Table E14. Percentages of inclusions present in pottery samples from613Table E15. Percentages of inclusions present in pottery samples from614Table E16. Percentages of inclusions present in pottery samples from614Table E15. Percentages of inclusions present in pottery samples from614Table E16. Percentages of inclusions present in pottery samples from614Table E16. Percentages of inclusions present in pottery samples from614Table E16a. Percentages of inclusions present in pottery samples from614<	Redcliff, Ridge	600
Table E5. Percentages of inclusions present in pottery sample from602East Holme602Table E6. Percentages of inclusions present in pottery samples from603Eldon's Seat603Table E7. Percentages of inclusions present in pottery samples from604Table E8. Percentages of inclusions present in pottery samples from606Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from606Table E10. Percentages of inclusions present in pottery samples from609Southdown Ridge609Table E11. Percentages of inclusions present in pottery samples from610Gussage All Saints611Gussage All Saints612Barton Field, Tarant Hinton612Fadford Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from613Guskey Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from614Table E16a. Percentages of inclusions present in pottery samples from614Table E16a. Percentages of inclusions present in pottery samples from614Table E16a. Percentages of inclusions present in pottery samples from614Table E16a. Percentages of inclusions present in pottery samples from614Table E16a. Percentages of inclusions present in pottery samples from614Table E16a. Percentages of inclusions present in pottery samples from<	Table E4. Percentages of inclusions present in pottery samples from	
East Holme602Table E6. Percentages of inclusions present in pottery samples from603Eldon's Seat603Table E7. Percentages of inclusions present in pottery samples from604Rope Lake Hole604Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from607Maiden Castle607Table E10. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from610Gussage All Saints611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Table E14. Percentages of inclusions present in pottery samples from612Gussage All Saints613Table E14. Percentages of inclusions present in pottery samples from613Table E15 Percentages of inclusions present in pottery samples from614Gakley Down, Wimborne St. Giles614Allard's Quarry, Marnhull615Fable E16. Percentages of inclusions present in pottery samples from614	Bestwall Quarry	601
Table E6. Percentages of inclusions present in pottery samples from603Eldon's Seat603Table E7. Percentages of inclusions present in pottery samples from604Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from607Table E10. Percentages of inclusions present in pottery samples from609Table E10. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from609Gustage All Saints609Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Fable E14. Percentages of inclusions present in pottery samples from612Gussage All Saints612Gustage All Saints612Gustage All Saints612Gustage E14. Percentages of inclusions present in pottery samples from613Table E15. Percentages of inclusions present in pottery samples from614Gustage All Saints614Gustage All Saints615Gustage All Narint Hinton612Gustage E15. Percentages of inclusions present in pottery samples from614Gustage All Saints614Gustage All Saints614Gustage All Saints614Gustage All Saints615Gustage All Agenty, Mamhull615Gustage All Saints614Gustage All Saints614Gustage All Saints615Gustage All Agenty, Marnhul	Table E5. Percentages of inclusions present in pottery sample from	
Eldon's Seat603Table E7. Percentages of inclusions present in pottery samples from604Rope Lake Hole604Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from607Maiden Castle607Table E10. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from609Table E12. Percentages of inclusions present in pottery samples from610Table E12. Percentages of inclusions present in pottery samples from611Table E13. Percentages of inclusions present in pottery samples from612Gussage All Saints611Table E14. Percentages of inclusions present in pottery samples from613Table E14. Percentages of inclusions present in pottery samples from613Table E15. Percentages of inclusions present in pottery samples from614Table E16. Percentages of inclusions present in pottery samples from614Table E15 Percentages of inclusions present in pottery samples from614Cakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Signells,615	East Holme	602
Table E7. Percentages of inclusions present in pottery samples from604Rope Lake Hole604Table E8. Percentages of inclusions present in pottery samples from606Table E9a. Percentages of inclusions present in pottery samples from607Maiden Castle607Table E10. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from610Gustage All Saints611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Paton Field, Tarant Hinton612Bardon Zheng Pamphill613Gustage L15. Percentages of inclusions present in pottery samples from613Cable E15. Percentages of inclusions present in pottery samples from613Hardord Down, Pamphill613Gustage L16. Percentages of inclusions present in pottery samples from614Hable E16. Percentages of inclusions present in pottery samples from614Hable E16. Percentages of inclusions present in pottery samples from614Cakley Down, Wimborne St. Giles614Halard's Quarry, Marnhull615Halard's Quarry, Marnhull615Cable E17. Percentages of inclusions present in pottery samples from615	Table E6. Percentages of inclusions present in pottery samples from	
Rope Lake Hole604Table E8. Percentages of inclusions present in pottery samples from606Football Field, Worth Matravers606Table E9a. Percentages of inclusions present in pottery samples from607Maiden Castle607Table E10. Percentages of inclusions present in pottery samples from609Southdown Ridge609Table E11. Percentages of inclusions present in pottery samples from610Table E12. Percentages of inclusions present in pottery samples from611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Catley Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Table E16a. Percentages of inclusions present in pottery samples from615Cakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Cable E17. Percentages of inclusions present in pottery samples from Signed!615	Eldon's Seat	603
Table E8. Percentages of inclusions present in pottery samples from606Football Field, Worth Matravers607Table E9a. Percentages of inclusions present in pottery samples from607Maiden Castle607Table E10. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from610Table E12. Percentages of inclusions present in pottery samples from611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Gussage All Saints614Guber E15. Percentages of inclusions present in pottery samples from614Hadford Down, Pamphill613Gukley Down, Wimborne St. Giles614Allard's Quarry, Marnhull615Allard's Quarry, Marnhull615	Table E7. Percentages of inclusions present in pottery samples from	
Football Field, Worth Matravers606Table E9a. Percentages of inclusions present in pottery samples from607Maiden Castle607Table E10. Percentages of inclusions present in pottery samples from609Southdown Ridge609Table E11. Percentages of inclusions present in pottery samples from610Hengistbury Head610Table E12. Percentages of inclusions present in pottery samples from611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Bardord Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Gakley Down, Wimborne St. Giles614Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from615	Rope Lake Hole	604
Table E9a. Percentages of inclusions present in pottery samples from607Maiden Castle607Table E10. Percentages of inclusions present in pottery samples from609Table E11. Percentages of inclusions present in pottery samples from610Table E12. Percentages of inclusions present in pottery samples from610Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Bardord Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Cakley Down, Wimborne St. Giles614Allard's Quarry, Marnhull615Kathar's Quarry, Marnhull615	Table E8. Percentages of inclusions present in pottery samples from	
Maiden Castle607Table E10. Percentages of inclusions present in pottery samples from609Southdown Ridge609Table E11. Percentages of inclusions present in pottery samples from610Hengistbury Head610Table E12. Percentages of inclusions present in pottery samples from611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Guskey Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Allard's Quarry, Marnhull615Allard's Quarry, Marnhull615	Football Field, Worth Matravers	606
Table E10. Percentages of inclusions present in pottery samples from609Southdown Ridge609Table E11. Percentages of inclusions present in pottery samples from610Table E12. Percentages of inclusions present in pottery samples from611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Gusdge All Saints614Gusde JDown, Pamphill613Gakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from614Allard's Quarry, Marnhull615Fable E17. Percentages of inclusions present in pottery samples from615	Table E9a. Percentages of inclusions present in pottery samples from	
Southdown Ridge609Table E11. Percentages of inclusions present in pottery samples from610Hengistbury Head610Table E12. Percentages of inclusions present in pottery samples from611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Bradford Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Cakley Down, Wimborne St. Giles614Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from615	Maiden Castle	607
Table E11. Percentages of inclusions present in pottery samples from610Hengistbury Head610Table E12. Percentages of inclusions present in pottery samples from611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Table E15. Percentages of inclusions present in pottery samples from613Cakley Down, Pamphill614Oakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from615	Table E10. Percentages of inclusions present in pottery samples from	
Hengistbury Head610Table E12. Percentages of inclusions present in pottery samples from611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Bradford Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Cakley Down, Wimborne St. Giles614Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from615	Southdown Ridge	609
Table E12. Percentages of inclusions present in pottery samples from611Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Bradford Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Oakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells,615	Table E11. Percentages of inclusions present in pottery samples from	
Gussage All Saints611Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Bradford Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Oakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells,615	Hengistbury Head	610
Table E13. Percentages of inclusions present in pottery samples from612Barton Field, Tarant Hinton613Table E14. Percentages of inclusions present in pottery samples from613Bradford Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Oakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells,615	Table E12. Percentages of inclusions present in pottery samples from	
Barton Field, Tarant Hinton612Table E14. Percentages of inclusions present in pottery samples from613Bradford Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Oakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells,615	Gussage All Saints	611
Table E14. Percentages of inclusions present in pottery samples from613Bradford Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Oakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells615	Table E13. Percentages of inclusions present in pottery samples from	
Bradford Down, Pamphill613Table E15 Percentages of inclusions present in pottery samples from614Oakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells,615	Barton Field, Tarant Hinton	612
Table E15 Percentages of inclusions present in pottery samples from614Oakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from615Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells,615	Table E14. Percentages of inclusions present in pottery samples from	
Oakley Down, Wimborne St. Giles614Table E16a. Percentages of inclusions present in pottery samples from Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells,615	Bradford Down, Pamphill	613
Table E16a. Percentages of inclusions present in pottery samples fromAllard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells,	Table E15 Percentages of inclusions present in pottery samples from	
Allard's Quarry, Marnhull615Table E17. Percentages of inclusions present in pottery samples from Sigwells,	Oakley Down, Wimborne St. Giles	614
Table E17. Percentages of inclusions present in pottery samples from Sigwells,	Table E16a. Percentages of inclusions present in pottery samples from	
	Allard's Quarry, Marnhull	615
South Cadbury Environs617	Table E17. Percentages of inclusions present in pottery samples from Sigwells,	
	South Cadbury Environs	617
Appendix F - Additional data for Chapter 7619	Appendix F - Additional data for Chapter 7	619
Table F1. Percentages of inclusions present in the Poole Formation	Table F1. Percentages of inclusions present in the Poole Formation	
	(undifferentiated) clay samples	619
	(undifferentiated) clay samples	619

Table F2. Percentages of inclusions present in the Broadstone clay samples	620
Table F3. Percentages of inclusions present in the Creekmoor clay samples	622
Table F4. Percentages of inclusions present in the Oakdale clay samples	623
Table F5. Percentages of inclusions present in the Parkstone clay samples	624
Table F6. Percentages of inclusions present in the Wealden clay samples	627
Table F7. Percentages of inclusions present in the Barton clay samples	628
Table F8. Descriptive statistics of clay samples analysed using quantitative	
petrological analysis	629
Table F9. Descriptive statistics of sand samples analysed using quantitative	
petrological analysis	630
Table F10. Descriptive statistics of pottery samples analysed using quantitative	
petrological analysis	630
Table F11. Percentage of all size categories of grains for clay, pottery and	
sand samples	631
Table F12. Percentages of grains, minerals, voids and clay matrix of the clay	
samples	632
Table F13. Percentages of grains, minerals, voids and clay matrix of the clay	
samples	633
Table F14. Inclusions present in the clay samples, by count	634
Table F15. Inclusions present in the pottery samples, by count	635

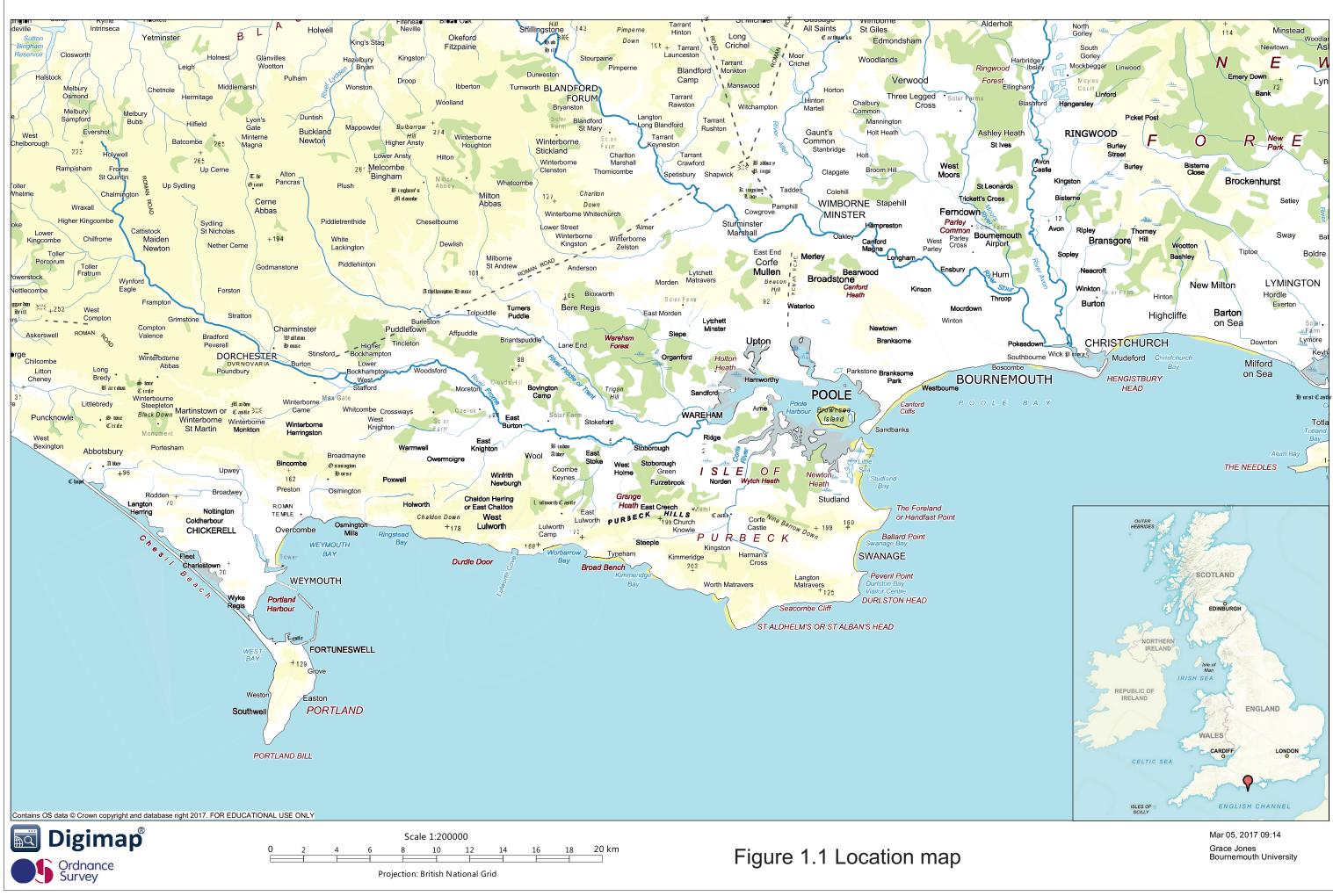
Appendix G - Additional data for Chapter 8

Figures

G1. P-P plot of Al, all samples (a: raw data; b: log_{10} data)	637
G2. P-P plot of Ba, all samples (a: raw data; b: log_{10} data)	637
G3. P-P plot of Ca, all samples (a: raw data; b: log_{10} data)	637
G4. P-P plot of Cr, all samples (a: raw data; b: log_{10} data)	638
G5. P-P plot of Cu, all samples (a: raw data; b: log_{10} data)	638
G6. P-P plot of Fe, all samples (a: raw data; b: log ₁₀ data)	638
G7. P-P plot of K, all samples (a: raw data; b: log_{10} data)	639
G8. P-P plot of Li, all samples (a: raw data; b: log ₁₀ data)	639
G9. P-P plot of Mg, all samples (a: raw data; b: log ₁₀ data)	639
G10. P-P plot of Mn, all samples (a: raw data; b: log ₁₀ data)	640
G11. P-P plot of Na, all samples (a: raw data; b: log_{10} data)	640
G12. P-P plot of Ni, all samples (a: raw data; b: log ₁₀ data)	640
G13. P-P plot of Pb, all samples (a: raw data; b: log ₁₀ data)	641
G14. P-P plot of Sr, all samples (a: raw data; b: log ₁₀ data)	641

G15. P-P plot of W, all samples (a: raw data; b: log_{10} data)	641
G16. P-P plot of Zn, all samples (a: raw data; b: log ₁₀ data)	642
G17. P-P plot of Ce, all samples (a: raw data; b: log ₁₀ data)	642
G18. P-P plot of La, all samples (a: raw data; b: log ₁₀ data)	642
G19. P-P plot of Tm, all samples (a: raw data; b: log_{10} data)	643
G20. P-P plot of Y, all samples (a: raw data; b: log ₁₀ data)	643
G21 P-P plot of Nd, all samples (a: raw data; b: \log_{10} data)	643
G22. Scree plot to show principal components with Eigen values >1,	
for all pottery, clay and shale samples ($\log_{10} data$)	644
G23. Bivariate plot of Mn and Ce, of all samples ($\log_{10} data$)	644
G24. Bivariate plot of Mn and Ce, of all samples (log_{10} data)	645
G25. Bivariate plot of Mn and La, of all samples ($\log_{10} data$)	645
G26. Bivariate plot of Mn and Nd, of all samples (log_{10} data)	646
G27. Bivariate plot of Mn and Y, of all samples (log_{10} data)	646
G28. Bivariate plot of Ni and Ce, of all samples (log_{10} data)	647
G29. Bivariate plot of Ni and La, of all samples (log_{10} data)	647
G30. Bivariate plot of Ni and Nd, of all samples (log_{10} data)	648
G31. Bivariate plot of Ni and Y, of all samples ($log_{10} data$)	648
G32. Bivariate plot of Zn and Ce, of all samples ($log_{10} data$)	649
G33. Bivariate plot of Zn and La, of all samples (log_{10} data)	649
G34. Bivariate plot of Zn and Nd, of all samples (log_{10} data)	650
G35. Bivariate plot of Zn and Y, of all samples (log_{10} data)	650
G36. Scree plot of principal components of pottery samples	651
G37. P-P plot of Al, log ₁₀ data (a: pottery samples; b: clay samples)	652
G38. P-P plot of Ba, log_{10} data (a: pottery samples; b: clay samples)	652
G39. P-P plot of Ca, log_{10} data (a: pottery samples; b: clay samples)	652
G40. P-P plot of Cr, log ₁₀ data (a: pottery samples; b: clay samples)	653
G41. P-P plot of Cu, log_{10} data (a: pottery samples; b: clay samples)	653
G42. P-P plot of Fe, log_{10} data (a: pottery samples; b: clay samples)	653
G43. P-P plot of K, log ₁₀ data (a: pottery samples; b: clay samples)	654
G44. P-P plot of Li, log_{10} data (a: pottery samples; b: clay samples)	654
G45. P-P plot of Mg, log_{10} data (a: pottery samples; b: clay samples)	654
G46. P-P plot of Mn, log ₁₀ data (a: pottery samples; b: clay samples)	655
G47. P-P plot of Na, log ₁₀ data (a: pottery samples; b: clay samples)	655
G48. P-P plot of Ni, log_{10} data (a: pottery samples; b: clay samples)	655
G49. P-P plot of Pb, log_{10} data (a: pottery samples; b: clay samples)	656
G50. P-P plot of Sr, log_{10} data (a: pottery samples; b: clay samples)	656

G51. P-P plot of W, log_{10} data (a: pottery samples; b: clay samples)	656
G52. P-P plot of Zn, log ₁₀ data (a: pottery samples; b: clay samples)	657
G53. P-P plot of Ce, log ₁₀ data (a: pottery samples; b: clay samples)	657
G54. P-P plot of La, log_{10} data (a: pottery samples; b: clay samples)	657
G55. P-P plot of Tm, log_{10} data (a: pottery samples; b: clay samples)	658
G56. P-P plot of Y, log_{10} data (a: pottery samples; b: clay samples)	658
G57. P-P plot of Nd, log ₁₀ data (a: pottery samples; b: clay samples)	658
G58. Scree plot of principal components of pottery samples from Wytch Farm,	
Green Island, Hengistbury Head, Maiden Castle, Southdown Ridge,	
Gussage All Saints and Barton Field	659
G59. Bivariate plot of Al-Ce for the pottery log_{10} data	659
G60. Bivariate plot of Al-La for the pottery log_{10} data	660
G61. Bivariate plot of Al-Nd for the pottery log_{10} data	660
G62. Bivariate plot of Al-Y for the pottery log_{10} data	661
G63. Bivariate plot of K-Ce for the pottery log_{10} data	661
G64. Bivariate plot of K-La for the pottery log_{10} data	662
G65. Bivariate plot of K-Nd for the pottery log_{10} data	662
G66. Bivariate plot of K-Y for the pottery \log_{10} data	663
G67. Bivariate plot of Li-Ce for the pottery log_{10} data	663
G68. Bivariate plot of Li-La for the pottery \log_{10} data	664
G69. Bivariate plot of Li-Nd for the pottery log_{10} data	664
G70. Bivariate plot of Li-Y for the pottery log_{10} data	665
G71. Scree plot of the principal components of the raw data of the	
pottery samples	665
G72. Scree plot of principal components of raw data for pottery	
samples	666
G73. Scree plot from PCA of pottery, raw data	666
G74 Scree plot from PCA of pottery log_{10} data	667
G75. Scree plot of principal components for the clays and	
compositional group 1 of the pottery (raw data)	667
G76. Bivariate plot of Ba and Ce for raw data of pottery group	668
G77. Bivariate plot of Ba and La for raw data of pottery group 1	668
G78. Bivariate plot of Ba and Tm for raw data of pottery group 1	669
G79. Bivariate plot of Ba and Y for raw data of pottery group 1	669
G80. Scree plot of principal components for the clays and	
compositional group 2 of the pottery (raw data)	670
G81. Scree plot of principal components for the clays and	


compositional group 3 of the pottery (raw data)	670
G82. Scree plot of principal components for the clays and	
compositional group 4 of the pottery (raw data)	671
G83. Scree plot of principal components for the clays and	
compositional group 5 of the pottery (raw data)	671
G84. Bivariate plot of Zn and Ce for raw data of pottery group 5	672
G85. Bivariate plot of Zn and Nd for raw data of pottery group 5	672
G86. Bivariate plot of Zn and Y for raw data of pottery group 5	673
G87. Bivariate plot of Mn and Ce for raw data of pottery group	673
G88. Bivariate plot of Mn and Nd for raw data of pottery group 5	674
G89. Bivariate plot of Mn and Y for raw data of pottery group 5	674
G90. Bivariate plot of Ni and Nd for raw data of pottery group 5	675
G91. Bivariate plot of Ni and Y for raw data of pottery group 5	675

Tables

G1. Elements used in the discriminant function analysis of all clay,	
pottery and shale samples	677
G2. Discriminant functions used in the analysis of all clay, pottery and	
shale samples	677
G3. Wilks' Lambda test of significance in discriminant analysis of all clay,	
pottery and shale samples	677
G4. Discriminant functions used in the analysis of the clay samples,	
excluding tempered samples 37 and 39	678
G5. Significance of the discriminant functions for the analysis of the clay	
samples, excluding tempered samples 37 and 39	678
G6. Functions used in the analysis of pottery and classified clay samples	678
G7. Wilks' Lambda table for significance of the pottery and classified clay	
samples	679
G8. Principal components extracted from clay, pottery and shale data	679
G9. Summary of correlation matrix produced in a principal components analysis	
of all pottery, clay and shale samples ($\log_{10} data$)	680
G10. Component matrix of principal components for pottery samples	681
G11. Correlation coefficients for the pottery samples ($log_{10} data$)	682
G12. Variables used in a discriminant function analysis of the chemical	
groups within the pottery samples, defined by a PCA	683
G13. Discriminant functions identified for possible chemical groups in	
pottery data	683

H. 1. 1. Jars	697
H. 1. Early Iron Age forms	697
Appendix H. Additional data for Chapter 9	697
compositional group 5 of the pottery (raw data)	695
G30. Component matrix of principal components for the clays and	
compositional group 4 of the pottery (raw data)	694
G29. Component matrix of principal components for the clays and	
compositional group 3 of the pottery (raw data)	693
G28 Component matrix of principal components for the clays and	
compositional group 2 of the pottery (raw data)	692
G27. Component matrix of principal components for the clays and	
compositional group 1 of the pottery (raw data)	691
G26. Component matrix of principal components for the clays and	
raw pottery data, excluding samples 40, 45-50, 52 and 95	690
G25. Wilks' Lambda test of significance in discriminant analysis of the	
excluding samples 40, 45-50, 52 and 95	690
G24. Discriminant functions used in the analysis of the raw pottery data,	
pottery data, excluding samples 40, 45-50, 52 and 95	690
G23. Elements used in the discriminant function analysis of all the raw	
pottery data, excluding samples 40, 45-50, 52 and 95	689
G22. Wilks' Lambda test of significance in discriminant analysis of the \log_{10}	
excluding samples 40, 45-50, 52 and 95	689
G21. Discriminant functions used in the analysis of the log_{10} pottery data,	
pottery data, excluding samples 40, 45-50, 52 and 95	689
G20. Elements used in the discriminant function analysis of all the log_{10}	
samples 40, 45-50, 52 and 95	688
G19. Component matrix from PCA of pottery, log_{10} data, excluding	
samples 40, 45-50, 52 and 95	687
G18. Component matrix from PCA of pottery, raw data, excluding	
samples, excluding samples 40, 45-50	686
G17. Component matrix of principal components of raw data for pottery	
G16. Component matrix of the raw data of the pottery samples	685
Gussage All Saints and Barton Field	685
Green Island, Hengistbury Head, Maiden Castle, Southdown Ridge,	
G15. Component matrix of PCA for of pottery samples from Wytch Farm,	
G14. Wilks' Lambda test for possible chemical groups in pottery data	684

H.1.2. Bowls	698
H. 2 Early to Middle Iron Age	699
H. 2. 1. Jars	699
H. 2. 2. Bowls	700
H. 3. Middle Iron Age	701
H. 3. 1. Jars	701
H. 4. Middle to Late Iron Age	703
H. 4. 1. Jars	703
H. 4. 2. Bowls	707
H. 4. 3. Saucepan pots	709
H. 5. Late Iron Age	710
H. 5. 1. Jars	710
H. 5. 2. Bowls	715
H. 5. 3. Dishes and platters	721
H. 6. Other forms	721
H. 7. Lids	722

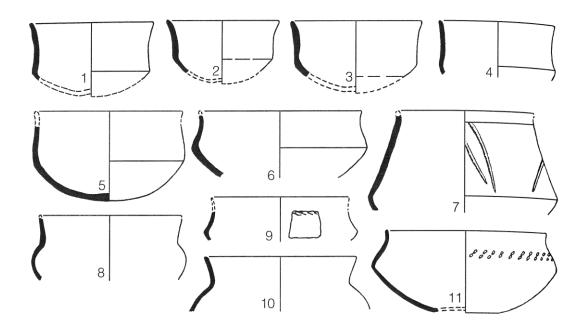


Figure 1.2 The Dorset variant of the All Cannings Cross-Meon Hill group (1-11: Eldon's Seat; reproduced from Cunliffe 2010, figure A.9).

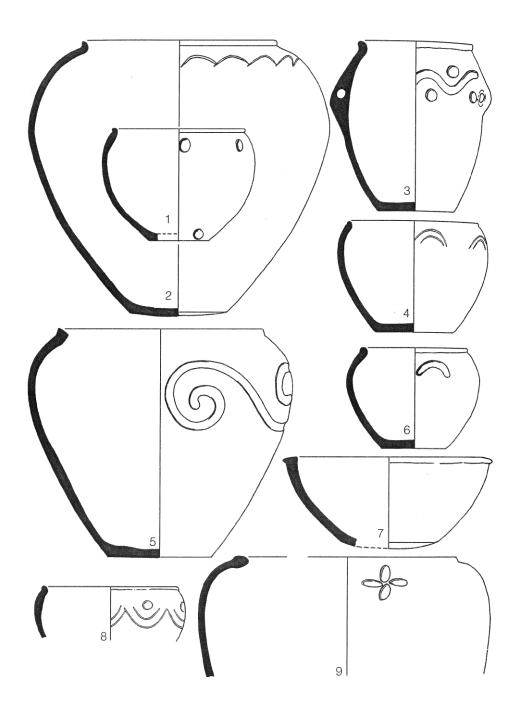


Figure 1.3 The Maiden Castle-Marnhull style (1-9: Maiden Castle; reproduced from Cunliffe 2010, figure A.21).

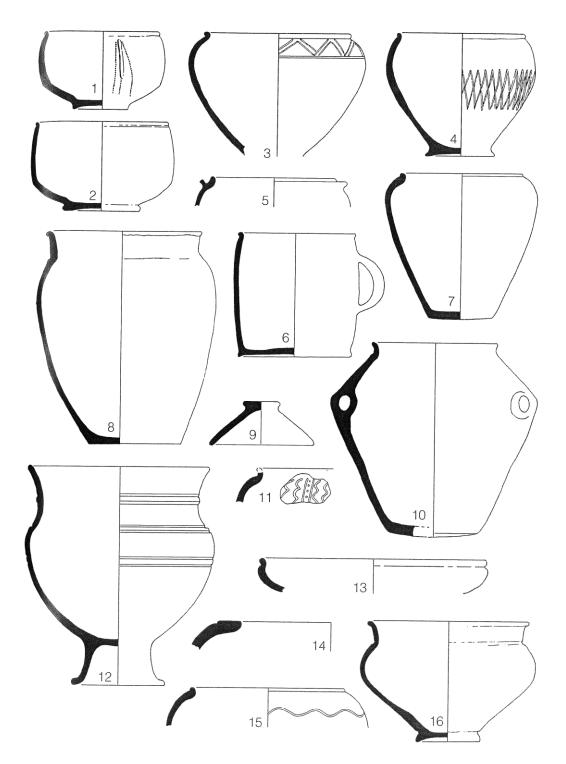


Figure 1.4 The Durotrigian pottery types (1-10 and 12-16: Maiden Castle; 11: Fitzworth; reproduced from Cunliffe 2010, 647).

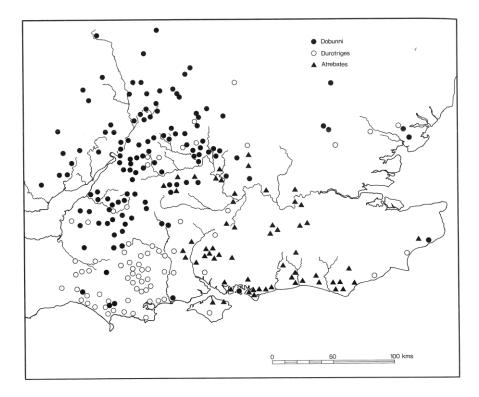


Figure 1.5. Distribution map of Durotrigan, Dobunnic and Atrebatic coins (reproduced from Sellwood 1987, figure 13.1).

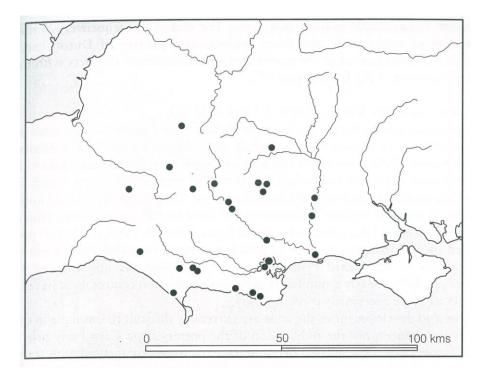


Figure 1.6 Distribution of Maiden Castle-Marnhull style pottery (reproduced from Cunliffe 2010, 107).

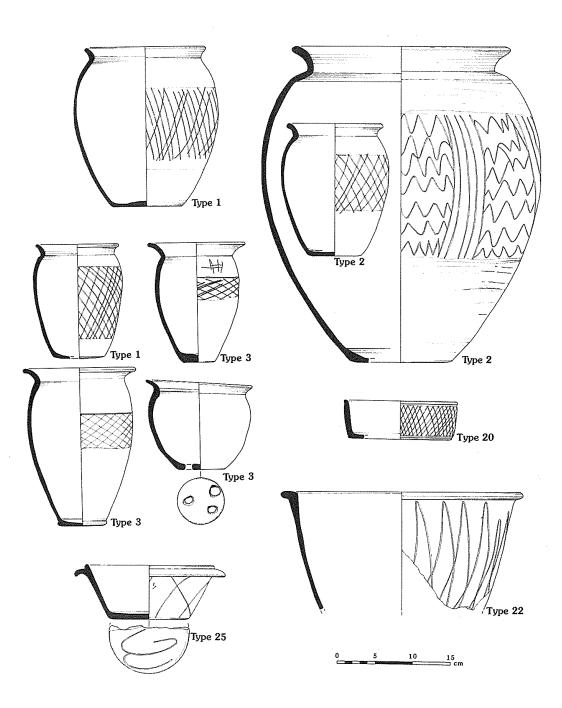
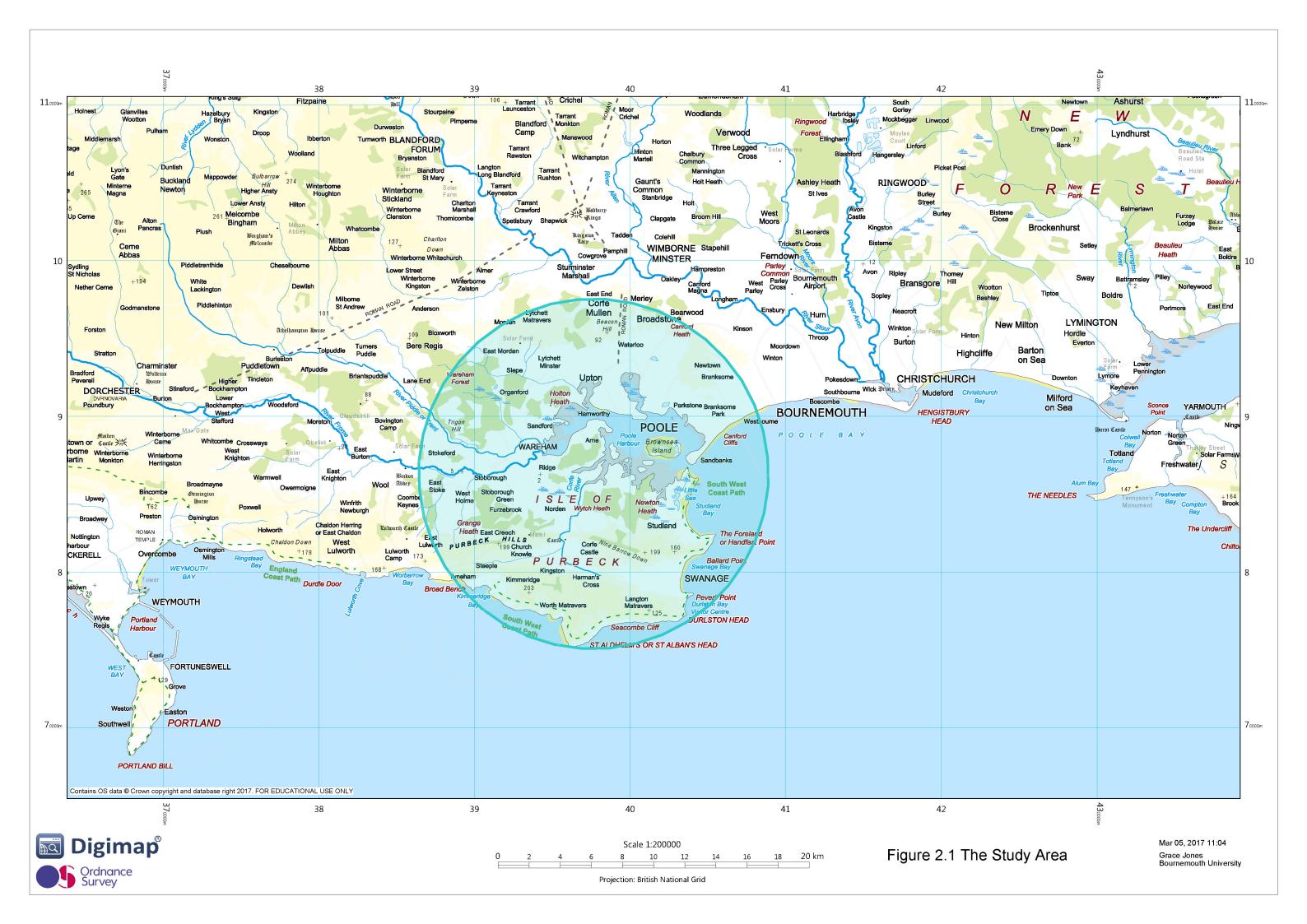



Figure 1.7 Examples of some of the more common Black-burnished ware forms (reproduced from Seager Smith and Davies 1993, figs. 122-124).

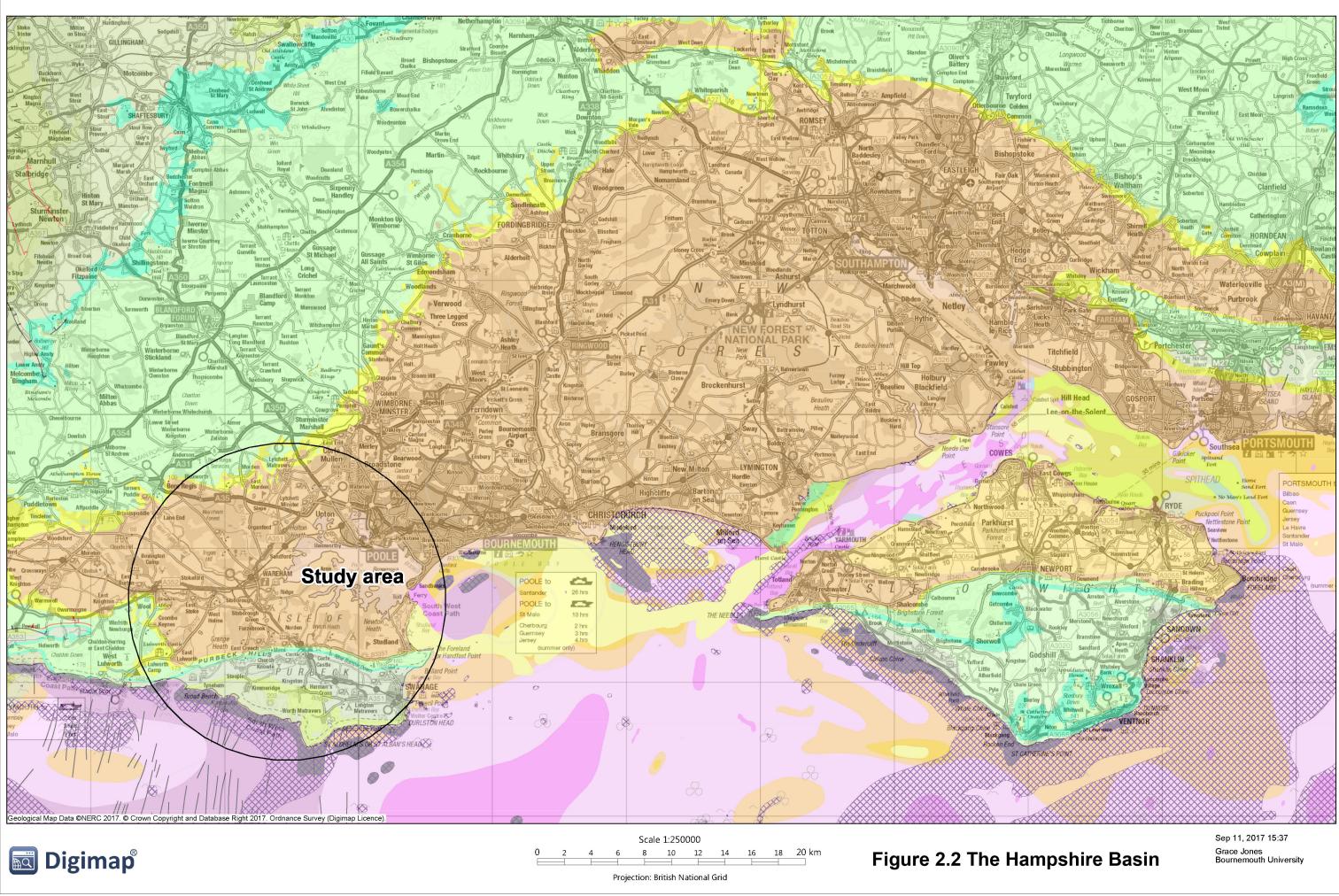
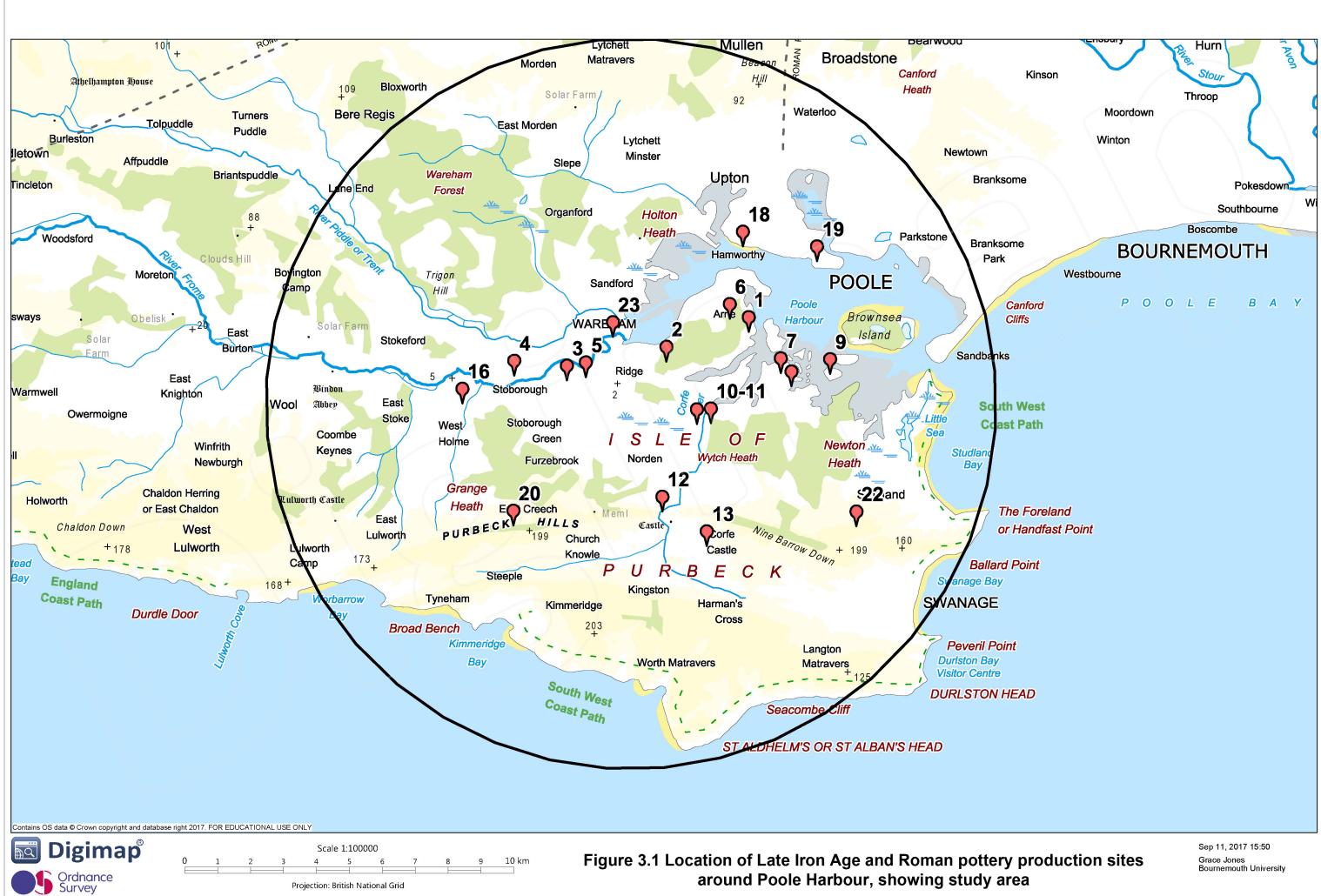



Figure 2.2a

Legend for Figure 2.2

• • • • • • • • • • • • • • • • • • • •	
Geology 1:250 000	
Bedrock	
Lower Chalk Formation And Middle Chalk Formation (Undifferentiated) - Chalk(LMCK-CHLK)	
Bembridge Limestone Formation - Limestone(BEL- LMST)	
Inferior Oolite Group - Limestone(INO-LMST)	
Barton Group, Bracklesham Group And Bagshot Formation (Undifferentiated) - Sandistone	
(Undifferentiated) And Siliciclastic Argillaceous- Rock(BABB-SDST + AROC)	
London Clay Formation - Siliciclastic Argillaceous- Rock(LC-AROC)	
Headon Beds And Osborne Beds (Undifferentiated) - Siliciclastic Argillaceous- Rock And Sandstone (Undifferentiated)(HEOS-	
AROC + SDST)	
Kellaways Formation - Siliciclastic Argillaceous- Rock And Sandstone (Undifferentiated)(KLB- AROC + SDST)	
Fuller'S Earth Rock Member - Limestone(FER-LMST)	
Blue Lias Formation And Charmouth Mudstone Formation (Undifferentiated) - Siliciclastic Argillaceous- Rock(BLCR-ARIOC)	
Bridport Sand Formation - Sandstone (Undifferentiated)(BDS- SDST)	
Lower Greensand Group - Sandstone (Undifferentiated)(LGS- SDST)	
Duriston Formation - Siliciclastic Argiliaceous-Rock And Limestone(DURN-AROC + LMST)	
Fuller'S Earth Formation - Siliciclastic Argillaceous- Rock(FE-AROC)	
Upper Greensand Formation - Sandstone (Undifferentiated)(UGS- SDST)	
Lower Chalk Formation - Chalk(LCK-CHLK)	
,	
Reading Formation - Siliciclastic Argillaceous- Rock And Sandstone (Undifferentiated)(RB- AROC + SDST)	
Bagshot Formation - Sandstone (Undifferentiated)(BGS- SDST)	
Combrash Formation - Limestone And Siliciclastic Argilaceous-Rock(CB- LMST + AROC)	
Kimmeridge Clay Formation - Siliciclastic Argillaceous-	
Rock(KC-AROC) Lambeth Group - Sandstone	
(Undifferentiated) And Siliciclastic Argillaceous- Rock(LMBE-SDST + AROC)	
Weald Clay Formation - Siliciclastic Argillaceous- Rock(WC-AROC)	
Penarth Group - Siliciclastic Argillaceous-Rock And Limestone(PNG-AROC + LMST)	

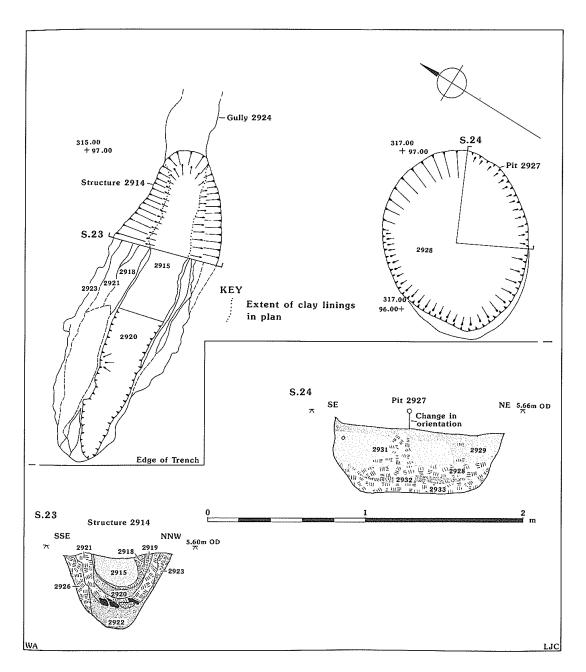
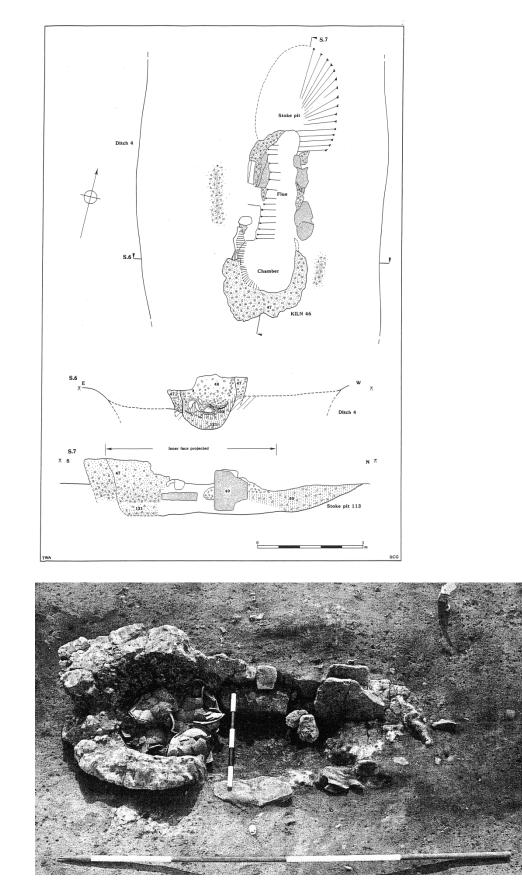
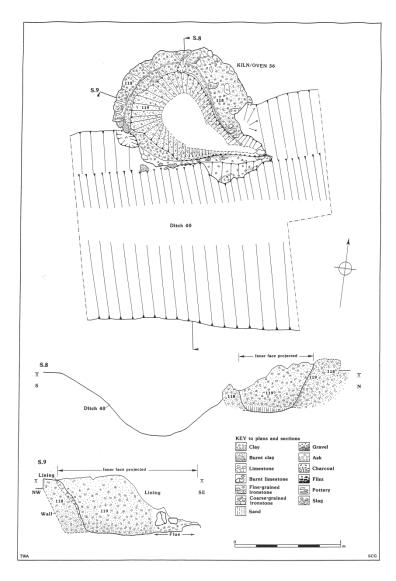
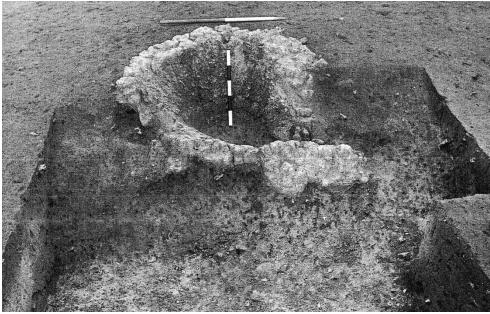
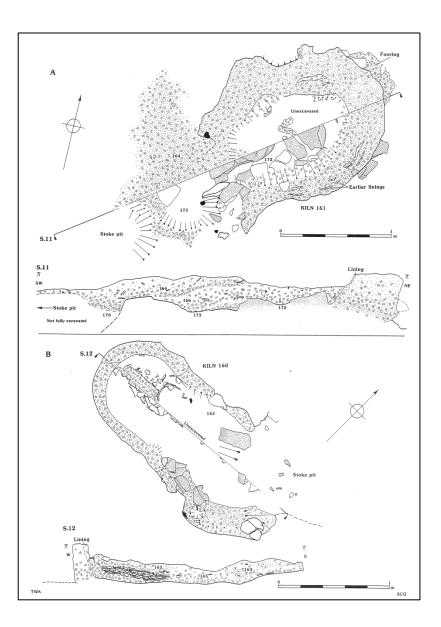
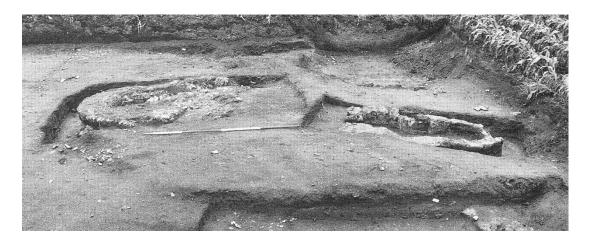


Figure 3.3 Plan and sections of kiln/furnace 2914 and clay-lined pit 2927, East of Corfe River (reproduced from Cox and Hearne 1991, fig. 14).


Figure 3.4 Plan, section and photo of kiln 46, Worgret (reproduced from Hearne and Smith 1992, fig. 6 and plate 3 – larger scale in photo is 2m).

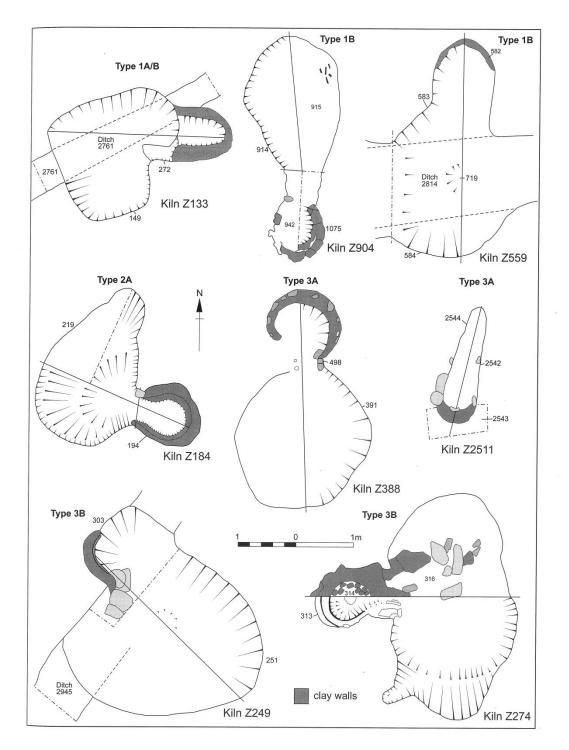


Figure 3.5 Plan, section and photo of kiln/oven 36, Worgret (reproduced from Hearne and Smith 1992, fig. 7 and plate 5 – larger scale in photo is 1m)

Figure 3.6 Plan, section and photo of kilns 160 (B) and 161 (A), Worgret (reproduced from Hearne and Smith 1992, fig. 9 and plate 6 – scale in photo is 2m)

Figure 3.7. Plans of kiln types 1-3 at Bestwall Quarry, Wareham (reproduced from Ladle 2012, fig. 37).

Figure 3.8. Plans of kiln types 3-5 at Bestwall Quarry, Wareham (reproduced from Ladle 2012, fig. 44).

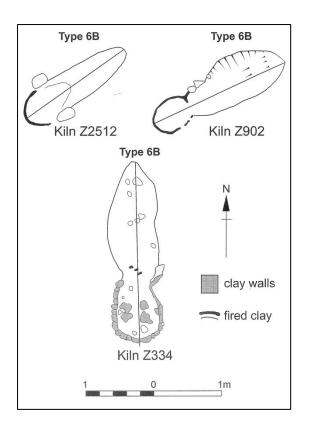
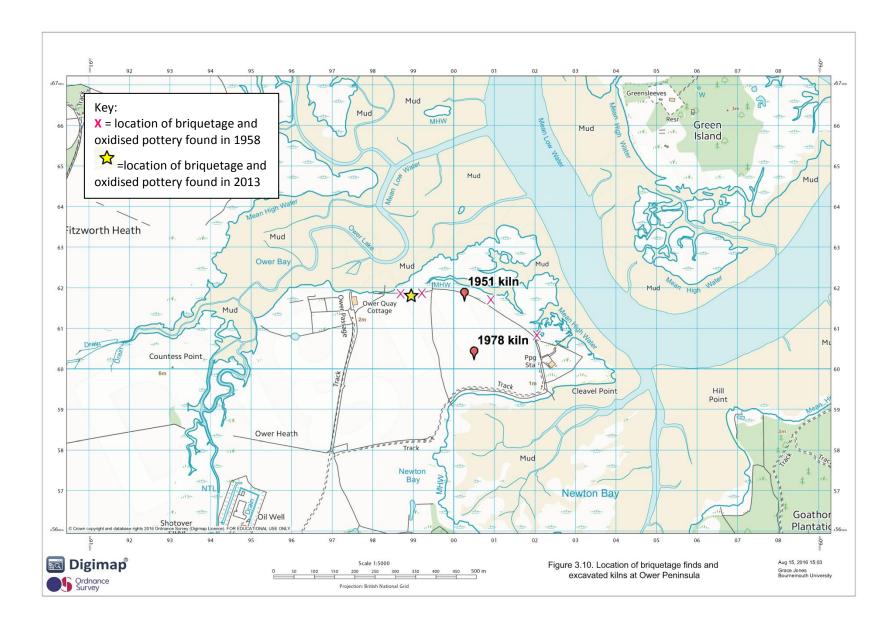
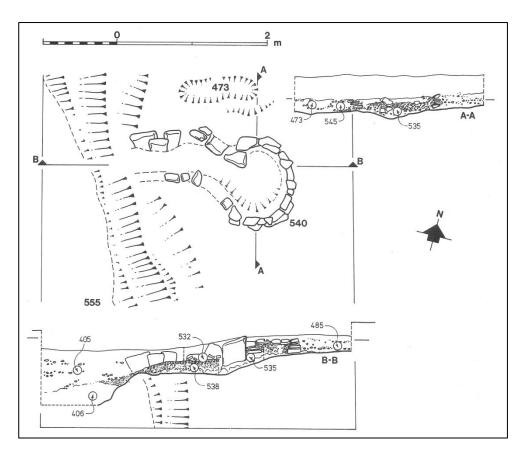




Figure 3.9. Plans of kiln type 6B at Bestwall Quarry, Wareham (reproduced from Ladle 2012, fig. 50).

Figure 3.11. Plan and section of kiln 540 at Ower (reproduced from Woodward1986, fig. 38).

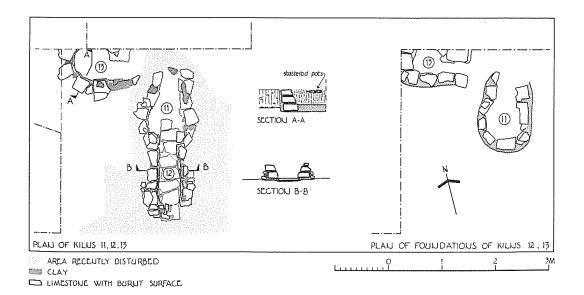
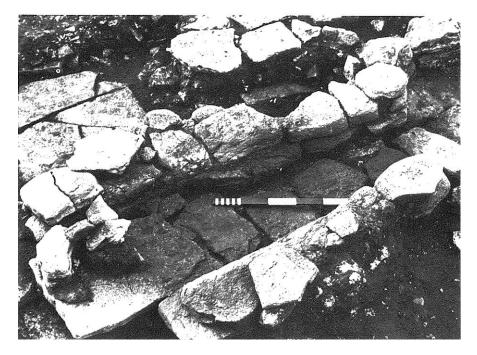
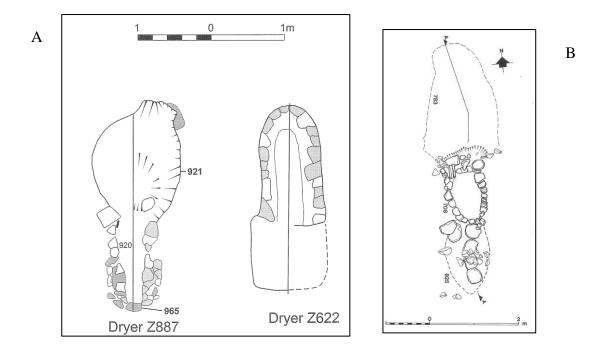
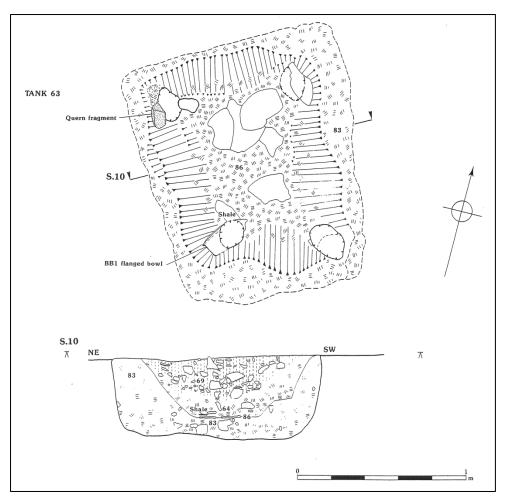


Figure 3.12. Plans kilns 1.11, 1.12 and 1.13 at Norden (reproduced from Sunter1986, fig. 6).


Figure 3.13. Kiln 1.12 at Norden (reproduced from Sunter1986, plate 6)

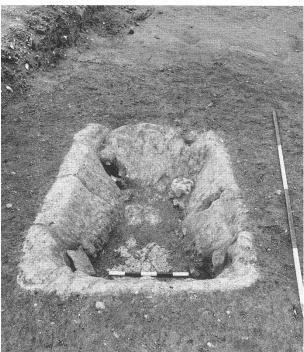


Figure 3.14. Kiln 1.13 at Norden (reproduced from Sunter1986, plate 10)

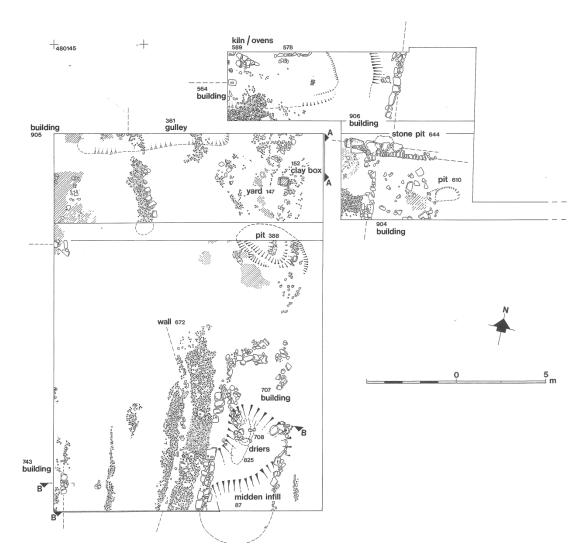
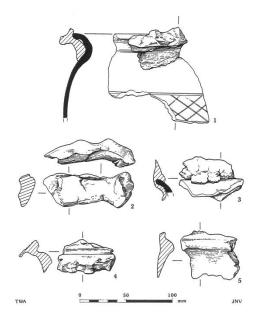


Figure 3.15. Plans of dryers at Bestwall Quarry, Wareham (A: reproduced from Ladle 2012, fig. 50) and Ower (B: reproduced from Woodward 1986, fig. 38)



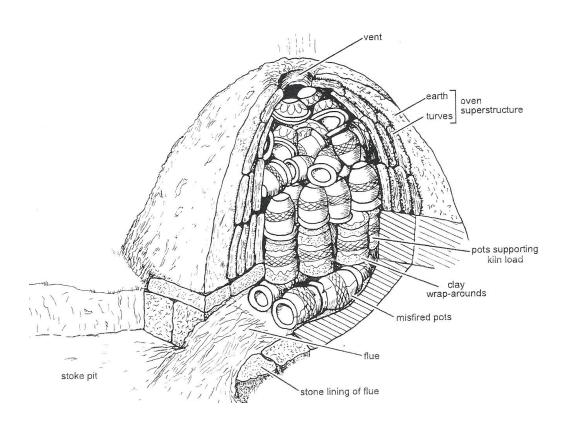
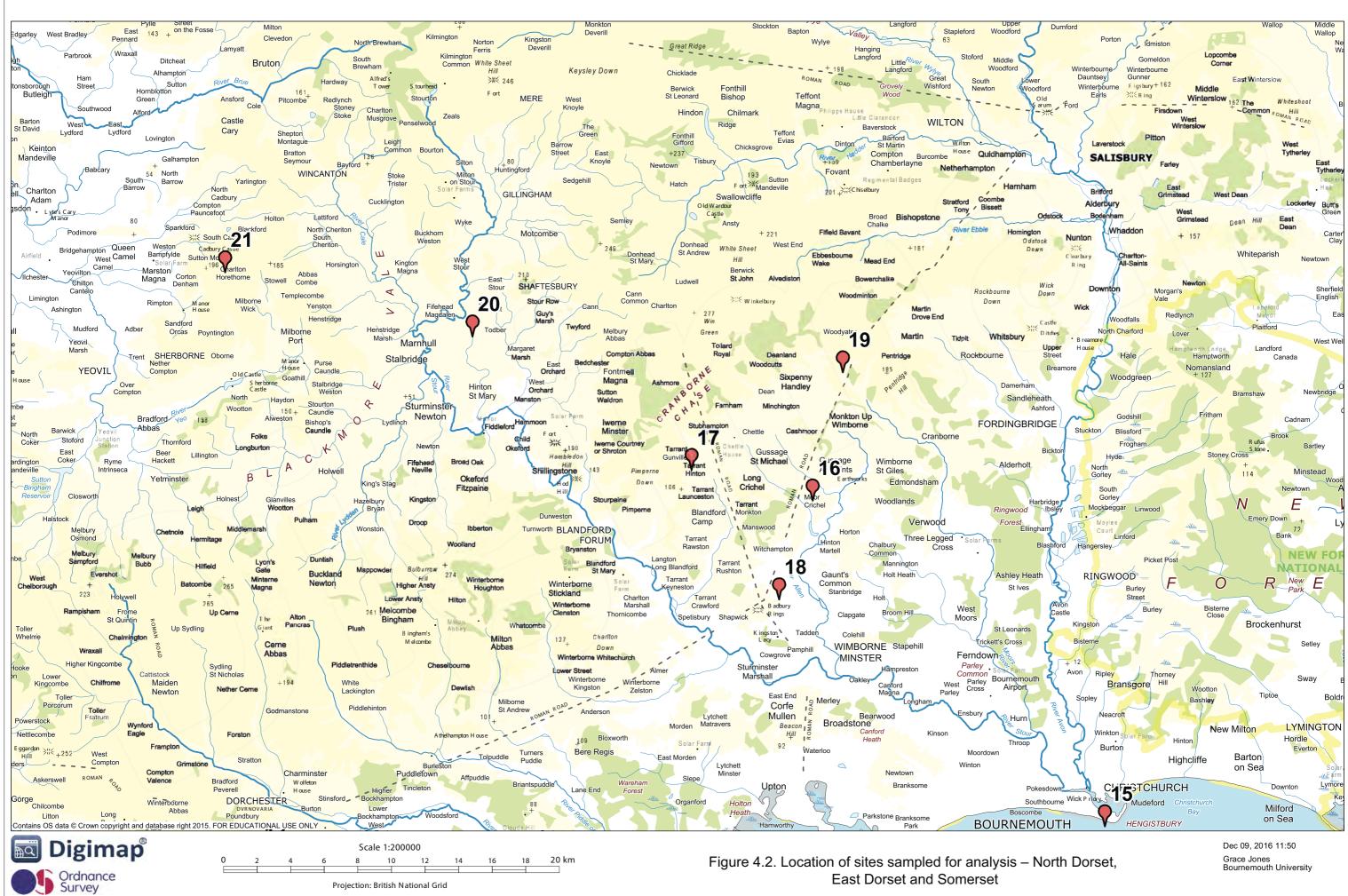
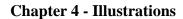

Figure 3.16. Plan, section and photo of possible settling tank at Worgret (Hearne and Smith 1992, feature 63, reproduced from fig. 8B and plate 12 – larger scale is 2m)

Figure 3.17. Plan of the pottery production site at Ower (reproduced from Woodward 1986, fig. 36)




Figure 3.18. Fired clay 'stackers' from Worgret (reproduced from Hearne and Smith 1992, fig. 18)

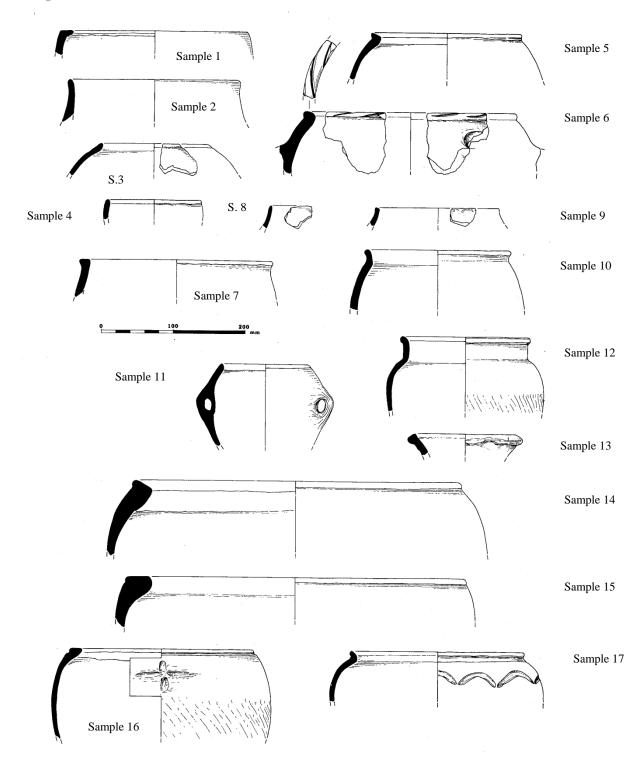


Figure 3.19. Reconstruction of a possible Late Roman kiln (reproduced from Ladle 2012, fig. 163)

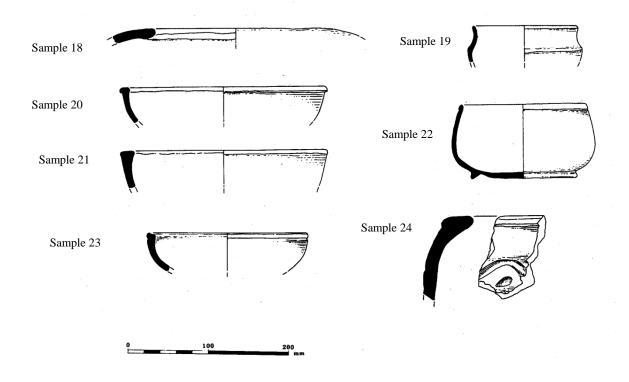


Figure 4.3. Vessels sampled from the Wytch Farm Oilfield sites. Illustrations from Lancley and Morris 1991, figure 58.

Figure 4.4. Vessels sampled from the Wytch Farm Oilfield sites. Illustrations from Lancley and Morris 1991, figures 59 and 87.

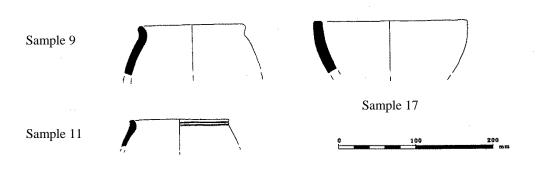
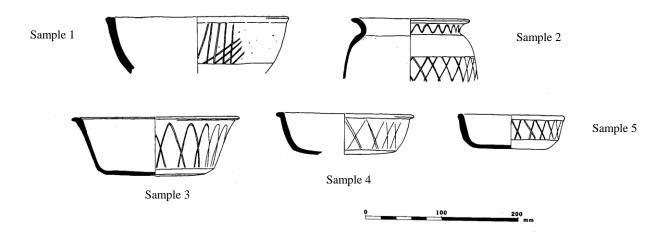



Figure 4.5. Vessels sampled from Green Island (illustrations author's own).

Figure 4.6. Vessels sampled from Redcliff Farm. Illustrations from Lyne 2002, figures 8 (no. 40: sample 1), 10 (no. 57: sample 2) and 11 (no. 62: sample 3; no. 67: sample 4; no. 71: sample 5).

Figure 4.7. Example of an overfired vessel from Redcliff Farm (sample 1)

Figure 4.8. Example of fire-clouding on vessel from Redcliff Farm (sample 2)

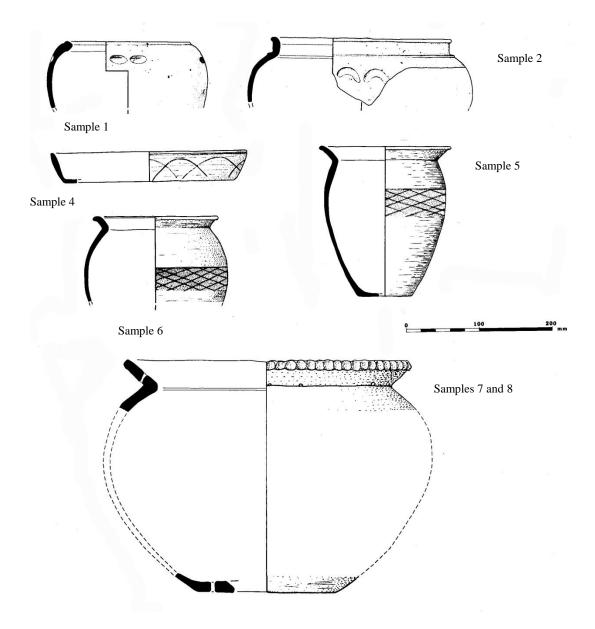


Figure 4.9. Vessels sampled from Bestwall Quarry. Illustrations from Lyne 2012, figures 141, 144, 146, 151 and 155.

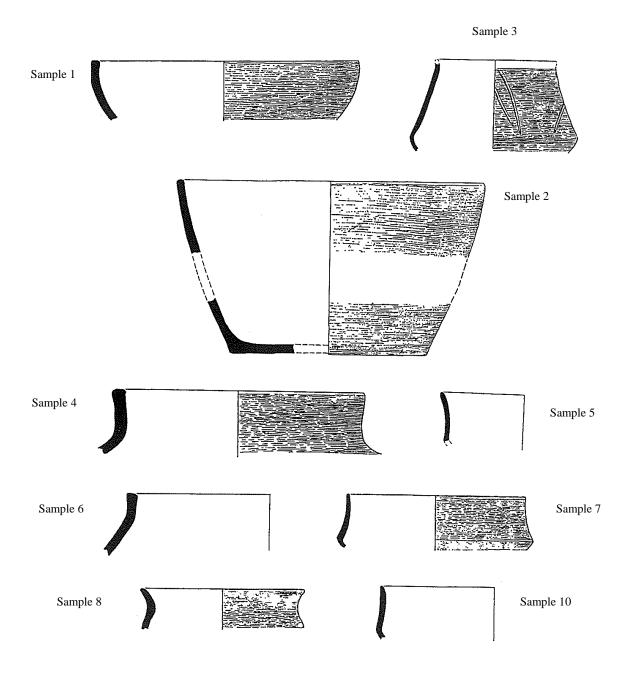
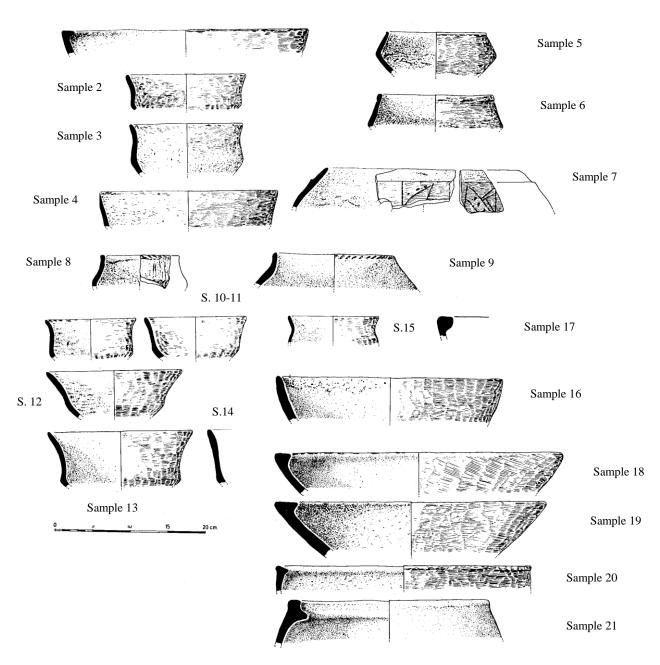



Figure 4.10. Vessels sampled from Eldon's Seat. Illustrations are from Cunliffe 1968, figures 15 (sample 2: no. 96; sample 8; no. 104), 16 (sample 3: no. 116; sample 7: no. 119; sample 5: no. 124; sample 10: no. 129), 17 (sample 4: no. 165; sample 6: no. 166) and 18 (sample 1: no. 196).

Sample 1

Figure 4.11. Vessels sampled from Rope Lake Hole. Illustrations Davies 1986, figures 79 and 80.

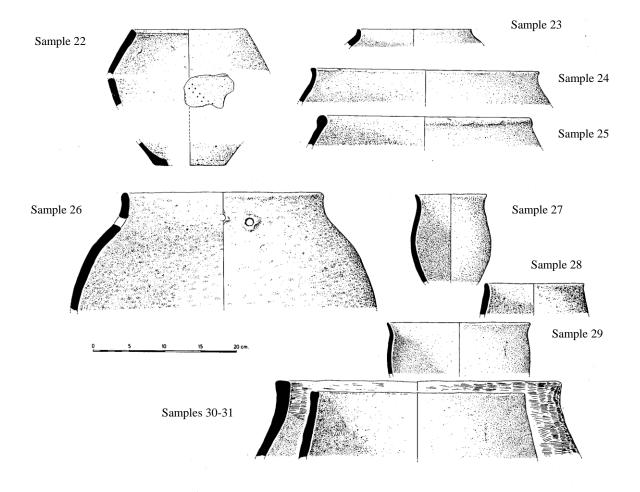
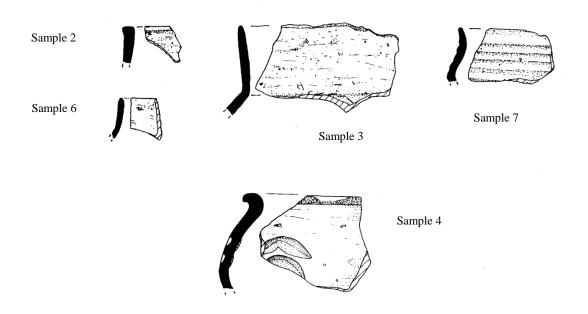
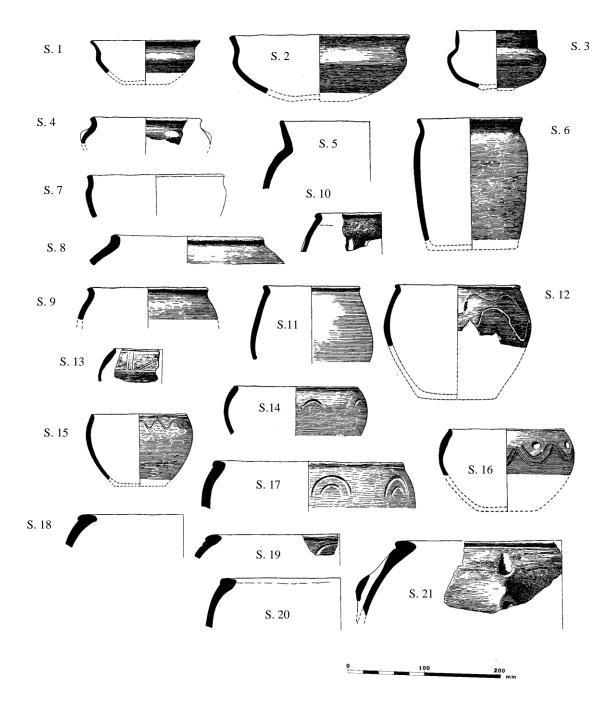
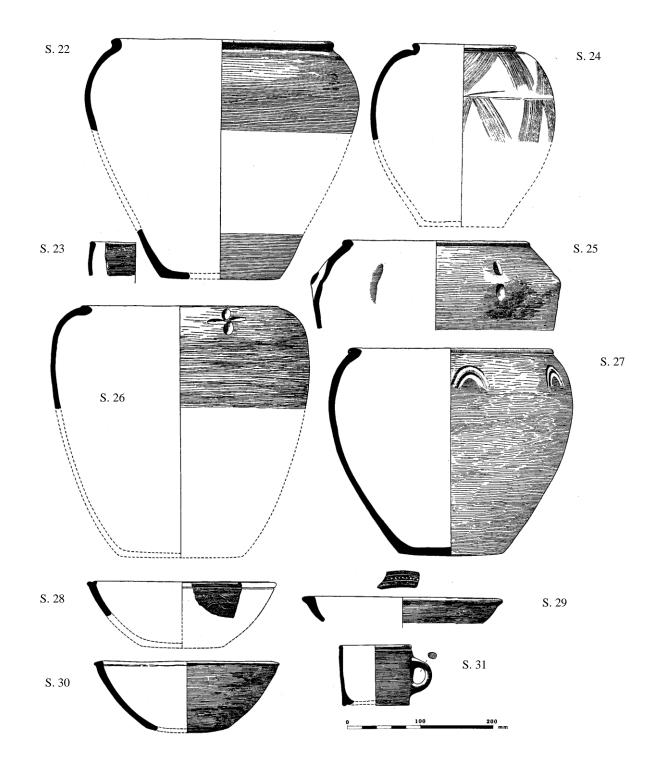
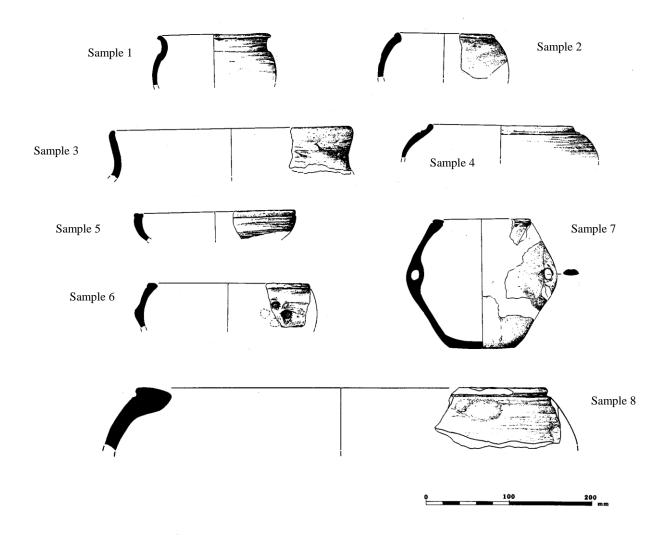
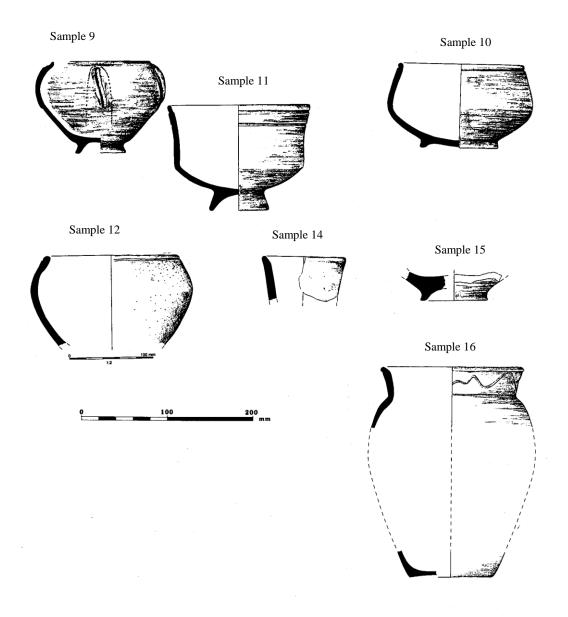


Figure 4.12. Vessels sampled from Rope Lake Hole. Illustrations Davies 1986, figure 80.


Figure 4.13. Vessels sampled from Football Field, Worth Matravers. Illustrations currently published and supplied by Lilian Ladle.


Figure 4.14. Vessels sampled from Maiden Castle (illustrations from Wheeler 1943, figures 56, 57, 58, 59, 66 and 67).

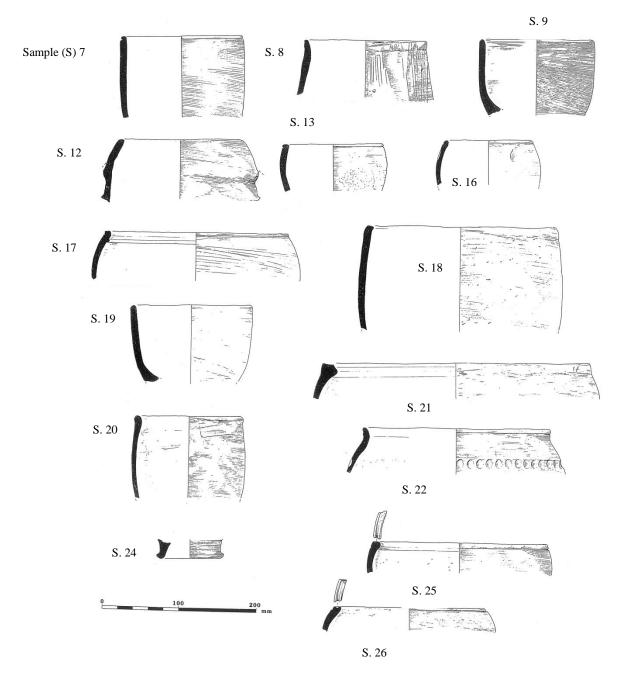
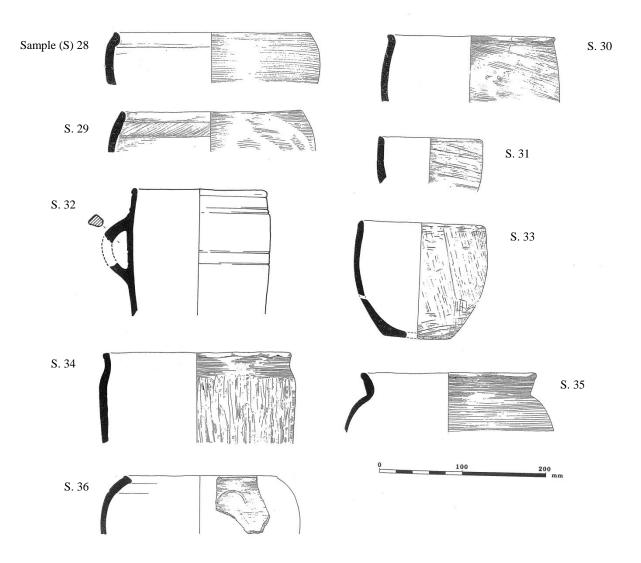
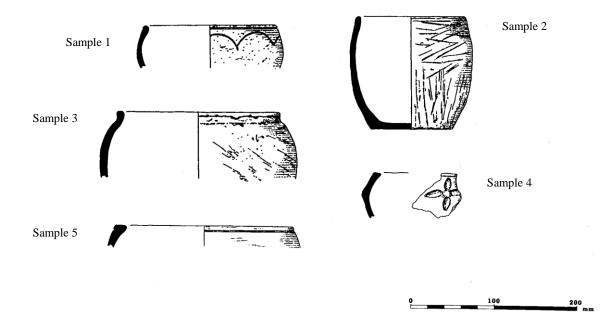
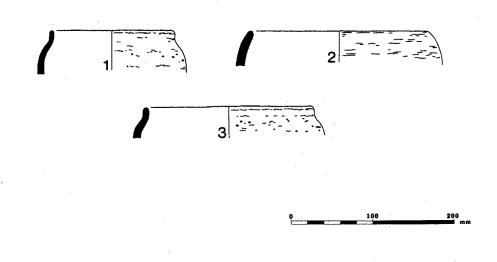

Figure 4.15. Vessels sampled from Maiden Castle (illustrations from Wheeler 1943, figures 68, 69 and 74).

Figure 4.16. Vessels sampled from Southdown Ridge. Illustrations taken from Cooper and Brown 2014, figures 6.2, 6.3, 6.4, 6.5 and 6.7.

Figure 4.17. Vessels sampled from Southdown Ridge. Illustrations taken from Cooper and Brown 2014, figures 6.2, 6.3, 6.4, 6.5 and 6.7.

Figure 4.18. Vessels sampled from Gussage All Saints. Illustrations from Wainwright 1979, figures 58, 59 and 60.

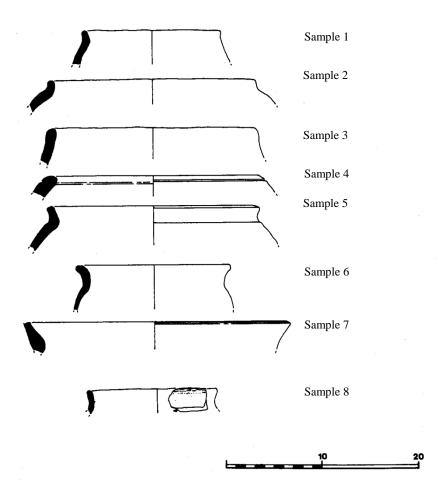

Figure 4.19. Vessels sampled from Gussage All Saints. Illustrations from Wainwright 1979, figures 53, 57, 59, 60, 62, 64 and 67.

Figure 4.20. Vessels sampled from Barton Field, Tarrant Hinton. Illustrations from Brown 2006, figures 23 (sample 1: no. 30; sample 2: no. 31; sample 3: no. 36) and 24 (sample 4: no. 45: sample 5: no. 48).

Figure 4.21. Vessels sampled from Bradford Down, Pamphill. Illustrations from Field 1983, figure 12 (samples 1-3).

Figure 4.22. Vessels sampled from Oakley Down, Wimborne St. Giles. Illustrations from Brown 1995, figure 9.

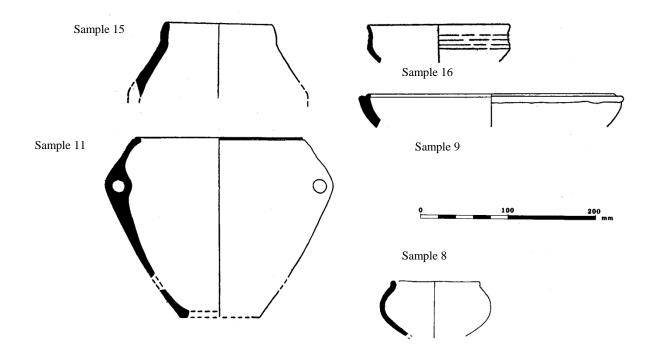


Figure 4.23. Vessels sampled from Allard's Quarry, Marnhull. Illustrations from Williams 1951, fig. 7, 21 (AQ sample 15), fig. 9, 49 (AQ sample 16), fig. 15, 108 (AQ sample 11) and fig. 15, 113 (AQ sample 9). Illustration of sample 8 is author's own.

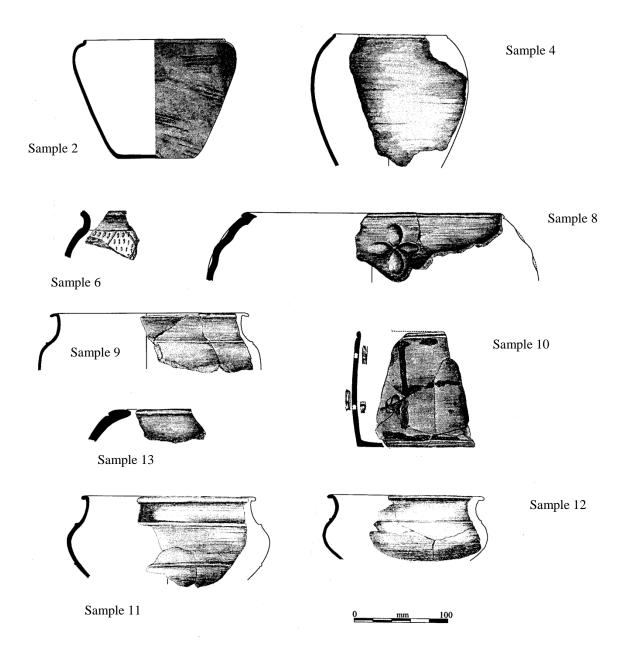
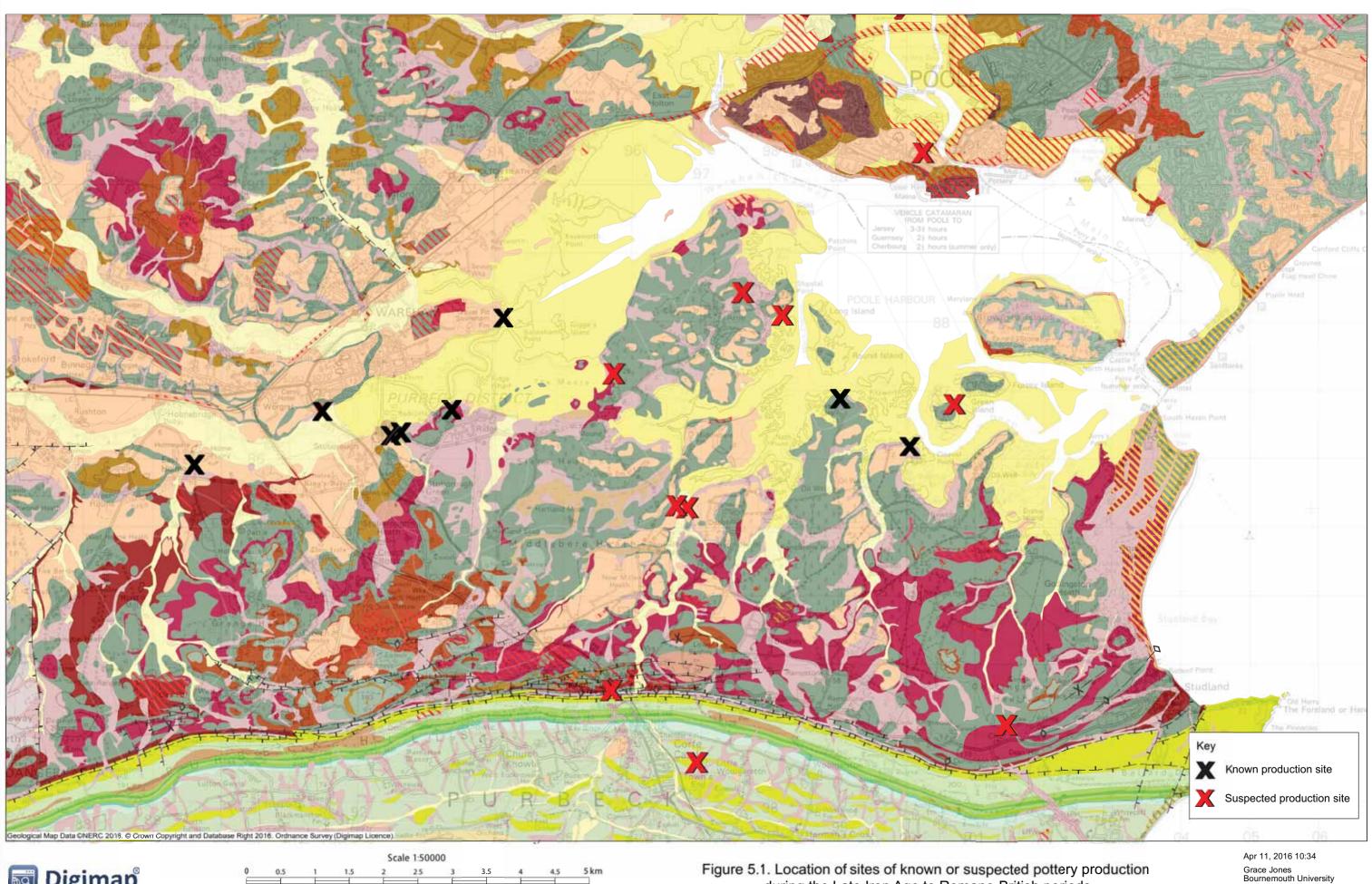



Figure 4.24. Vessels sampled from Sigwells, South Cadbury. Illustrations supplied by Richard Tabor.

Digimap[®]

Figure 5.1. Location of sites of known or suspected pottery production during the Late Iron Age to Romano-British periods

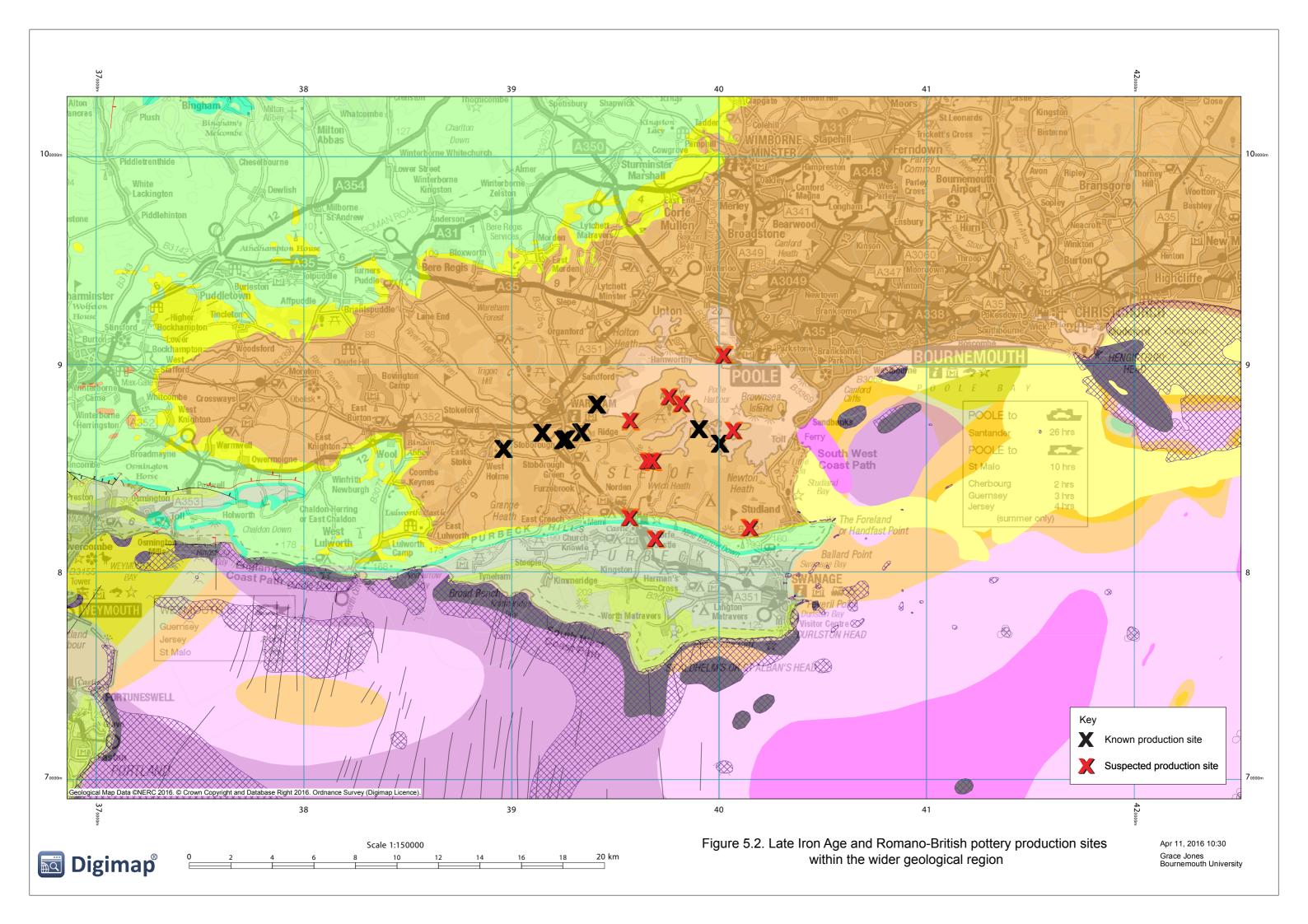
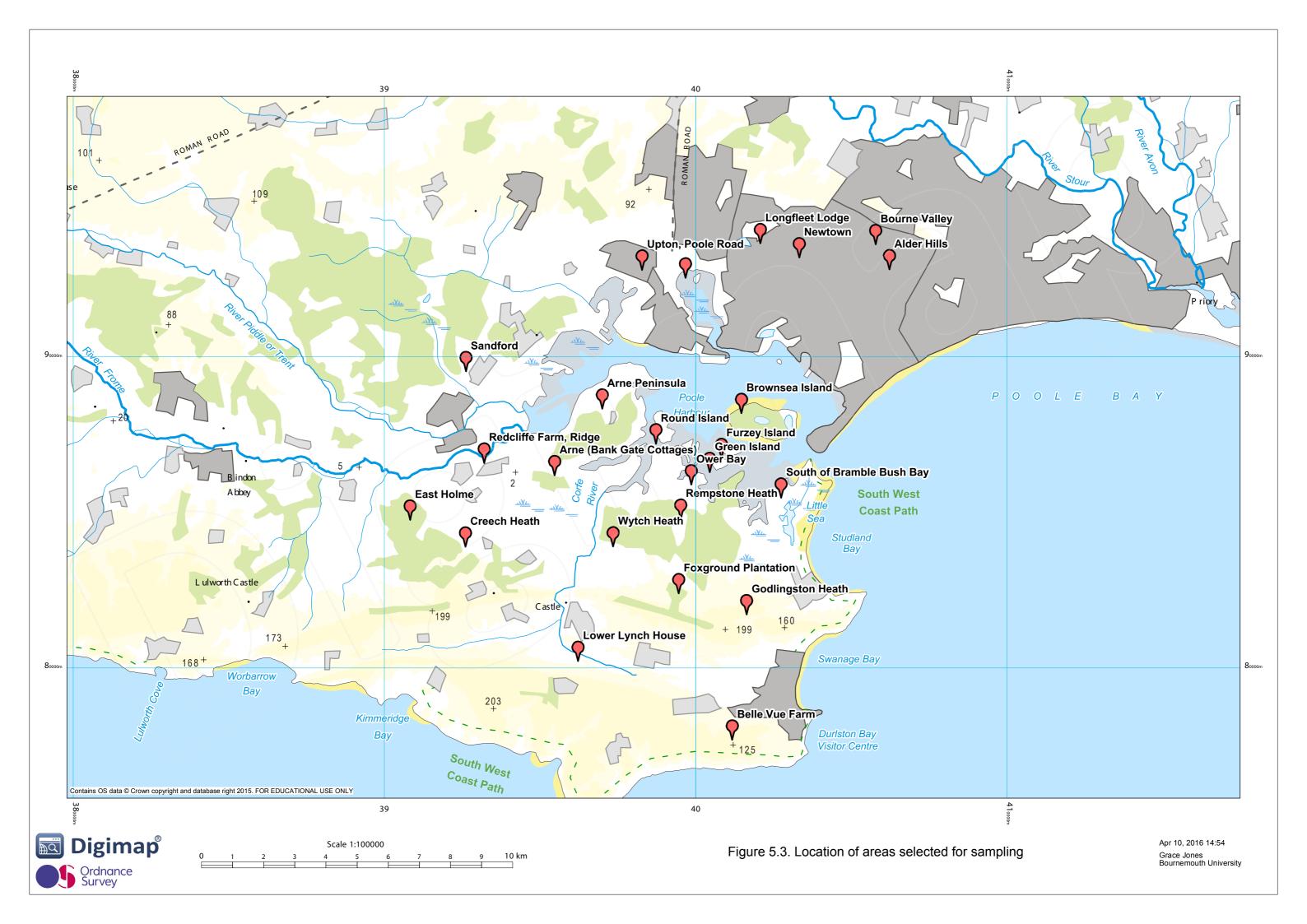
Figure 5.1a. Legend for Figure 5.1

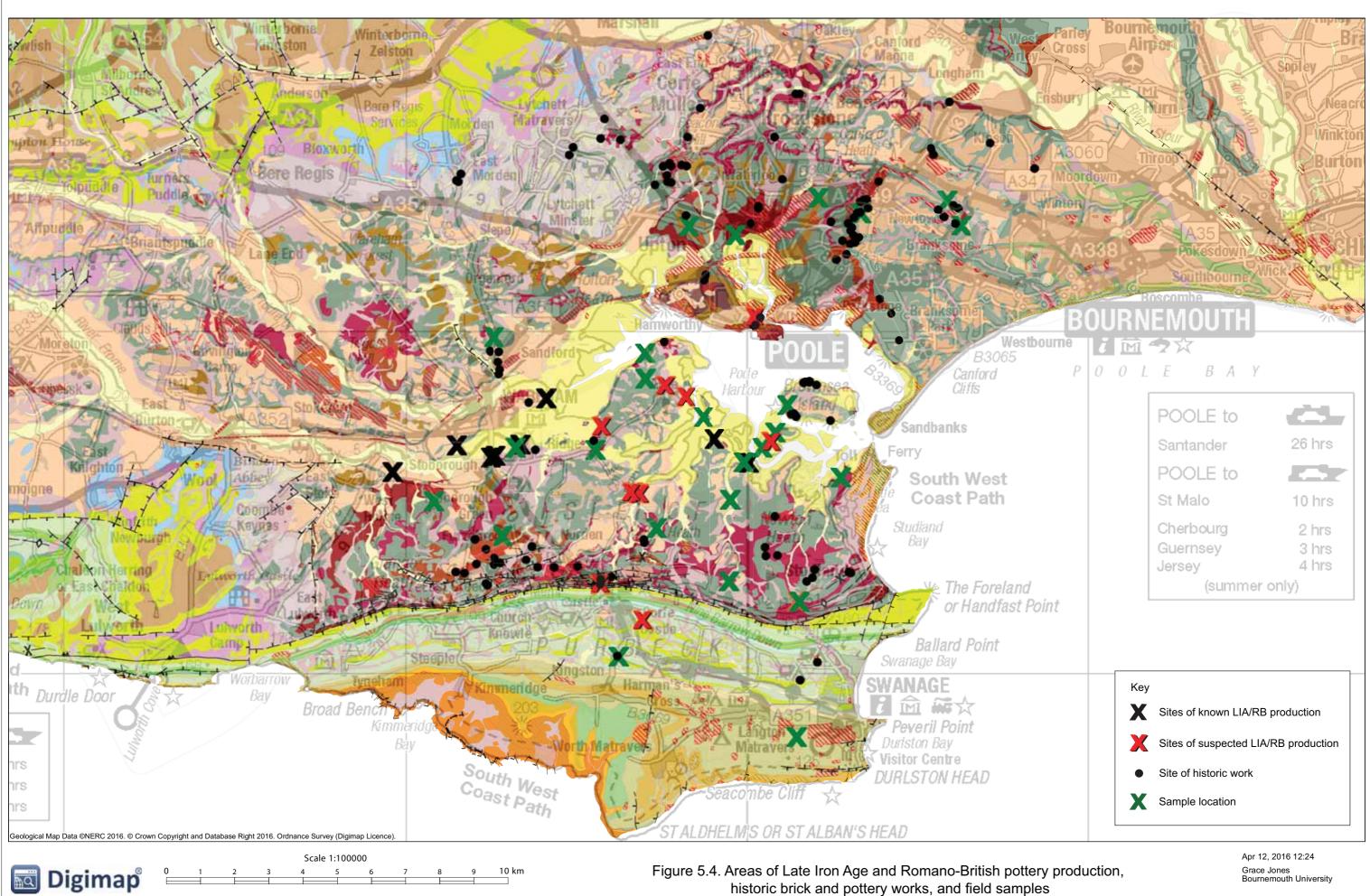
Bedrock	Lewes Nodular Chalk Formation - Chalk(LECH-	
Poole Formation - Sand(POOL-SANDU)	CHLK) Parkstone Clay Member -	_
Oakdale Clay Member - Sand(OAKC-SANDU)	Clay, Silty(PKC-SICL)	
Wealden Group -	Superficial Deposits	
Sandstone(W-SDST) Oakdale Sand Member -	Storm Beach Deposits - Gravel [Unlithified Deposits	
Sand(OAKS-SANDU)	Coding Scheme](STOB-V)	
Creekmoor Clay Member - Clay, Silty(CKMC-SICL)	Clay-With-Flints Formation - Clay, Silt, Sand And Gravel	
Gault Formation - Mudston	e, [Unlithified Deposits Coding	
Sandy(GLT-SAMDST) Poole Formation - Sand, S	Scheme](CWF-XCZSV)	
And Clay(POOL-SSCL)	Gravel [Unlithified Deposits Coding Scheme](HEAD-	[
Parkstone Sand Member - Clay, Silty(PKS-SICL)	XCZSV)	
Holywell Nodular Chalk Formation - Chalk(HCK- CHLK)	Tidal Flat Deposits - Gravel [Unlithified Deposits Coding Scheme](TFD-V)	
Broadstone Clay Member - Clay(BRTC-CLAY)	Blown Sand, 1 - Sand [Unlithified Deposits Coding	[
London Clay Formation - Clay, Silt And Sand(LC-	Scheme](BSA1-S) Alluvium - Clay, Silt, Sand	
CLSISA)	And Gravel [Unlithified Deposits Coding Scheme]	[
Lower Greensand Group - Sandstone(LGS-SDST)	(ALV-XCZSV)	
Creekmoor Clay Member - Clay(CKMC-CLAY)	River Terrace Deposits, 3 - Sand And Gravel [Unlithified	
Zig Zag Chalk Formation -	Deposits Coding Scheme] (RTD3-XSV)	
Chalk(ZZCH-CHLK) Poole Formation - Clay,	River Terrace Deposits, 7 -	
Silty(POOL-SICL)	Sand And Gravel [Unlithified Deposits Coding Scheme]	
Creech Brick Clay Member Clay(CBBC-CLAY)	(RTD7-XSV)	_
Parkstone Clay Member -	River Terrace Deposits, 9 - Sand And Gravel [Unlithified	
Clay(PKC-CLAY) Broadstone Sand Member	Deposits Coding Scheme] (RTD9-XSV)	
And Oakdale Sand Member (Undifferentiated)	Blown Sand - Sand	
Sand(BROS-SANDU)	Schemel(BSA-S)	
Branksome Sand Formatio Sand(BRKS-SANDU)	n - Tidal Flat Deposits - Clay And Silt [Unlithified Deposits	
Seaford Chalk Formation, Newhaven Chalk Formatio	Coding Scheme](TFD-XCZ)	
And Culver Chalk Formatic	LIOALFIALDEDOSIIS -	
(Undifferentiated) - Chalk(SSCK-CHLK)	[Unlithified Deposits Coding Scheme](TFD-XVSZC)	
Creech Barrow Limestone Member - Limestone(CRBI	River Terrace Deposits, 12 -	
LMST)	Deposits Coding Schemel	
Creekmoor Sand Member Sand(CKMS-SANDU)	(1112-7,31)	
Broadstone Sand Member	Sand And Graver [Officialited	
Sand(BRTS-SANDU) Upper Greensand Formation	Deposits Coding Scheme]	L
Sandstone(UGS-SDST) Wealden Group -	Peat - Peat [Unlithified	
Mudstone(W-MDST)	Deposits Coding Scheme] (PEAT-P)	
West Park Farm Member - Clay, Silty(WPF-SICL)	Head, 1 - Clay, Silt, Sand And Gravel [Unlithified Deposits	
Portsdown Chalk Formatio Chalk(PCK-CHLK)		
Broadstone Clay Member - Clay, Silty(BRTC-SICL)	Marine Beach Deposits -	
Oakdale Clay Member - Cl	ay, Sand [Unlithified Deposits Coding Scheme](MBD-S)	
Silty(OAKC-SICL) Parkstone Sand Member -	River Terrace Deposits, 8 - Sand And Gravel [Unlithified	
Sand(PKS-SANDU)	Deposits Coding Scheme]	
	(RTD8-XSV)	

River Terrace Deposits, 2 - Sand And Gravel [Unlithified Deposits Coding Scheme]	
(RTD2-XSV) Tidal Flat Deposits - Clay, Silt And Sand [Unlithified Deposits Coding Scheme] (TFD-XCZS)	
River Terrace Deposits, 4 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD4-XSV)	
River Terrace Deposits, 5 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD5-XSV)	
River Terrace Deposits, 11 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RT11-XSV)	
River Terrace Deposits (Undifferentiated) - Sand And Gravel [Unlithified Deposits Coding Scheme](RTDU-XSV)	
River Terrace Deposits, 10 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTDX-XSV)	
River Terrace Deposits, 13 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RT13-XSV)	
River Terrace Deposits, 1 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD1-XSV)	
Artificial Ground	
Worked Ground (Undivided) - Void(WGR-VOID)	
Made Ground (Undivided) - Artificial Deposit(MGR- ARTDP)	
Infilled Ground - Artificial Deposit(WMGR-ARTDP)	
Mass Movement	
Landslide Deposits - Unknown/Unclassified Entry(SLIP-UKNOWN)	
Linear Features	
Alteration Areas	
Faults	
Fault, inferred, displacement unknown	·+
Fold Axes	
Axial plane trace of major anticline	-•
anticline Axial plane trace of major syncline	-X
anticline Axial plane trace of major syncline Fossil Horizons	-x
anticline Axial plane trace of major syncline Fossil Horizons Landforms	-X
anticline Axial plane trace of major syncline Fossil Horizons	-X

🗹 Geology Roam

Digimap[®]


Figure 5.2a

Legend for figure 5.2

Bedrock	
Lower Chalk Formation And Middle Chalk Formation (Undifferentiated) - Chalk(LMCK-CHLK)	
Bembridge Limestone Formation - Limestone(BEL- LMST)	
Inferior Oolite Group - Limestone(INO-LMST)	
Barton Group, Bracklesham Group And Bagshot Formation (Undifferentiated) - Sandstone (Undifferentiated) And Siliciclastic Argillaceous- Rock(BABB-SDST +	
AROC) London Clay Formation - Siliciclastic Argillaceous- Rock(LC-AROC)	
Headon Beds And Osborne Beds (Undifferentiated) - Siliciclastic Argillaceous- Rock And Sandstone (Undifferentiated)(HEOS- AROC + SDST)	
Kellaways Formation - Siliciclastic Argillaceous- Rock And Sandstone (Undifferentiated)(KLB- AROC + SDST)	
Fuller'S Earth Rock Member - Limestone(FER-LMST)	
Blue Lias Formation And Charmouth Mudstone Formation (Undifferentiated) - Siliciclastic Argillaceous- Rock(BLCR-ARIOC)	
Bridport Sand Formation - Sandstone (Undifferentiated)(BDS- SDST)	
Lower Greensand Group - Sandstone (Undifferentiated)(LGS- SDST)	
Duriston Formation - Siliciclastic Argillaceous-Rock And Limestone(DURN-AROC + LMST)	
Fuller'S Earth Formation - Siliciclastic Argillaceous- Rock(FE-AROC)	
Upper Greensand Formation - Sandstone (Undifferentiated)(UGS-	
SDST)	

Reading Formation - Siliciclastic Argillaceous- Rock And Sandstone (Undifferentiated)(RB-	
AROC + SDST)	
Bagshot Formation - Sandstone (Undifferentiated)(BGS- SDST)	
Combrash Formation - Limestone And Siliciclastic Argillaceous-Rock(CB- LMST + AROC)	
Kimmeridge Clay Formation - Siliciclastic Argillaceous- Rock(KC-AROC)	
Lambeth Group - Sandstone (Undifferentiated) And Siliciclastic Argillaceous- Rock(LMBE-SDST + AROC)	
Weald Clay Formation - Siliciclastic Argillaceous- Rock(WC-AROC)	
Penarth Group - Siliciclastic Argillaceous-Rock And Limestone(PNG-AROC + LMST)	

Figure 5.4a. Legend for Figure 5.4

Bedrock	
Portland Sand Formation - Sandstone(POSA-SDST)	
Parkstone Clay Member - Clay, Silty(PKC-SICL)	
Ridgeway Member - Mudstone(RID-MDST)	
Mupe Member -	
Limestone(MUP-LMST) Newhaven Chalk Formation -	
Chalk(NCK-CHLK) Poole Formation -	
Sand(POOL-SANDU)	
Oakdale Clay Member - Sand(OAKC-SANDU)	
Wealden Group - Sandstone(W-SDST)	
Oakdale Sand Member - Sand(OAKS-SANDU)	
Creekmoor Clay Member - Clay, Silty(CKMC-SICL)	
Boscombe Sand Formation -	
Sand(BOSS-SANDU) West Park Farm Member -	
Sand(WPF-SANDU) Gault Formation - Mudstone,	
Sandy(GLT-SAMDST) Poole Formation - Sand, Silt	
And Clay(POOL-SSCL) Tarrant Chalk Member -	
Chalk(TACH-CHLK) Parkstone Sand Member -	
Clay, Silty(PKS-SICL)	
Warren Hill Sand Member - Sand(WNH-SANDU)	
West Park Farm Member - Sand, Gravelly [Unlithified	
Deposits Coding Scheme] (WPF-SV)	
Durlston Formation - Limestone(DURN-LMST)	
Holywell Nodular Chalk	
Formation - Chalk(HCK- CHLK)	
London Clay Formation - Conglomerate(LC-CONG)	
Warmwell Farm Sand Member - Sand(WRMS-	
SANDU) Stair Hole Member -	
Limestone(SHO-LMST)	
Peveril Point Member - Limestone And Mudstone,	
Interbedded(PEP-LSMD) Broadstone Clay Member -	
Clay(BRTC-CLAY) London Clay Formation -	
Clay, Silt And Sand(LC- CLSISA)	
Seaford Chalk Formation And Newhaven Chalk	
Formation (Undifferentiated) - Chalk(SNCK-CHLK)	
Lower Greensand Group - Sandstone(LGS-SDST)	
Portsdown Chalk Formation -	
Chalk(PCK-CHLK) Portland Freestone Member -	
Limestone(POFR-LMST)	

Zig Zag Chalk Formation -Chalk(ZZCH-CHLK) Poole Formation - Clay, Silty(POOL-SICL) Creech Brick Clay Member -Clay(CBBC-CLAY) Lulworth Formation Limestone(LULW-LMST) Parkstone Clay Member -Clay(PKC-CLAY) **Broadstone Sand Member** And Oakdale Sand Member (Undifferentiated) -Sand(BROS-SANDU) Lytchett Matravers Sand Member - Sand(LYMS-SANDU) Branksome Sand Formation -Sand(BRKS-SANDU) Barton Clay Formation -Clay(BAC-CLAY) Spetisbury Chalk Member -Chalk(SPCH-CHLK) Seaford Chalk Formation, Newhaven Chalk Formation And Culver Chalk Formation (Undifferentiated) -Chalk(SSCK-CHLK) Lyndhurst Member - Sand, Silt And Clay(LY-SSCL) **Creech Barrow Limestone** Member - Limestone(CRBL-LMST) Broadstone Clay Member -Sand(BRTC-SANDU) Worbarrow Tout Member -Limestone(WOT-LMST) Kimmeridge Clay Formation -Mudstone(KC-MDST) Haymoor Bottom Clay Member - Clay, Silty(HAYC-SICL) Portland Stone Formation -Limestone(POST-LMST) Creekmoor Sand Member -Sand(CKMS-SANDU) Broadstone Sand Member -Sand(BRTS-SANDU) Upper Greensand Formation -Sandstone(UGS-SDST) Wealden Group -Mudstone(W-MDST) Branksome Sand Formation -Clay(BRKS-CLAY) West Park Farm Member -Clay, Silty(WPF-SICL) Creekmoor Clay Member -Clay(CKMC-CLAY) Broadstone Clay Member -Clay, Silty(BRTC-SICL) Oakdale Clay Member - Clay, Silty(OAKC-SICL) Parkstone Sand Member -Sand(PKS-SANDU) Lewes Nodular Chalk Formation - Chalk(LECH-CHLK) Portland Cherty Member -Limestone(POCH-LMST) Superficial Deposits

🗹 Geology Roam

🚾 Digimap

Figure 5.4a. Legend for Figure 5.4 continued

Fault, observed, displacement unknown Fault, inferred, displacement

Axial plane trace of major

Axial plane trace of lower hinge of major monocline, barbs on steep limb Axial plane trace of major

Lithostratigraphical line,

Oil-shale bed, inferred

Lithostratigraphical line,

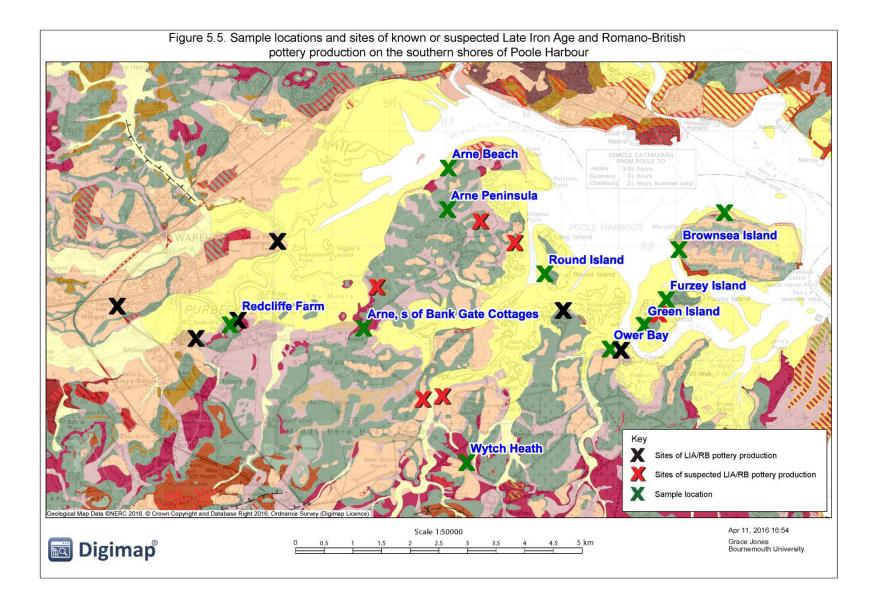
unknown Fold Axes

anticline

syncline Fossil Horizons Landforms Mineral Veins *Rock Units*

inferred

observed


. ____

Deposits Coding Scheme] (RTD6-XSV)	
Peat - Peat [Unlithified Deposits Coding Scheme] (PEAT-P)	
Head, 1 - Clay, Silt, Sand And Gravel [Unlithified Deposits Coding Scheme](HEAD1- XCZSV)	
Marine Beach Deposits - Sand [Unlithified Deposits Coding Scheme](MBD-S)	
River Terrace Deposits, 8 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD8-XSV)	
River Terrace Deposits, 2 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD2-XSV)	
Tidal Flat Deposits - Clay, Silt And Sand [Unlithified Deposits Coding Scheme] (TFD-XCZS)	
River Terrace Deposits, 4 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD4-XSV)	
River Terrace Deposits, 5 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD5-XSV)	
River Terrace Deposits, 11 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RT11-XSV)	
River Terrace Deposits, 11b - Sand And Gravel [Unlithified Deposits Coding Scheme] (RT11B-XSV)	
River Terrace Deposits (Undifferentiated) - Sand And Gravel [Unlithified Deposits Coding Scheme](RTDU-XSV)	
River Terrace Deposits, 10 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTDX-XSV)	
River Terrace Deposits, 13 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RT13-XSV)	
Artificial Ground	
Worked Ground (Undivided) - Void(WGR-VOID)	
Made Ground (Undivided) - Artificial Deposit(MGR- ARTDP)	
Infilled Ground - Artificial Deposit(WMGR-ARTDP)	
Mass Movement	
Landslide Deposits - Unknown/Unclassified Entry(SLIP-UKNOWN)	
Landslide Deposits - Clay(SLIP-CLAY)	
Linear Features	
Alteration Areas	
Faults	

Digimap[®]

Figure 5.5a. Legend for Figure 5.5

DiGMapGB-50 Rock Unit ((1:50 000) Rock Unit)

Bedrock		Pea
Oakdale Sand Member -		Dep (PE
Sand(OAKS-SANDU)		Hea
Creekmoor Clay Member -		Gra
Clay, Silty(CKMC-SICL)		Coc
Poole Formation - Sand, Silt And Clay(POOL-SSCL)		XCZ
Parkstone Sand Member -		Mar San
Clay, Silty(PKS-SICL)		Coo
Broadstone Clay Member -		Rive
Clay(BRTC-CLAY)		San
Poole Formation - Clay,		Dep
Silty(POOL-SICL)		(RT
Parkstone Clay Member - Clay(PKC-CLAY)		Rive
Branksome Sand Formation -		Dep
Sand(BRKS-SANDU)		(RŤ
Broadstone Sand Member -		Tida
Sand(BRTS-SANDU)		Silt
Creekmoor Clay Member -		Dep (TFI
Clay(CKMC-CLAY) Broadstone Clay Member -		Rive
Clay, Silty(BRTC-SICL)		San
Oakdale Clay Member - Clay,		Dep
Silty(OAKC-SICL)		(RT
Parkstone Sand Member -		Rive
Sand(PKS-SANDU)		San Dep
Parkstone Clay Member -		(RT
Clay, Silty(PKC-SICL) Oakdale Clay Member -	_	Rive
Sand(OAKC-SANDU)		San
uperficial Deposits		Dep
		(RT Rive
Tidal Flat Deposits - Gravel [Unlithified Deposits Coding		(Un
Scheme](TFD-V)		Ġra
Blown Sand, 1 - Sand		Coc
[Unlithified Deposits Coding		Rive
Scheme](BSA1-S)		San Dep
Alluvium - Clay, Silt, Sand And Gravel [Unlithified		(RT
Deposits Coding Scheme]		Stor
(ALV-XCZSV)		Gra
River Terrace Deposits, 3 -		Coo
Sand And Gravel [Unlithified		Hea Gra
Deposits Coding Scheme] (RTD3-XSV)		Coc
River Terrace Deposits, 7-		XCZ
Sand And Gravel [Unlithified		Artifi
Deposits Coding Scheme]		Wor
(RTD7-XSV)		Voi
River Terrace Deposits, 9- Sand And Gravel [Unlithified		Mad
Deposits Coding Scheme]		- Ar
(RTD9-XSV)		ART
		Infil
Blown Sand - Sand		Dep
[Unlithified Deposits Coding		Mass
[Unlithified Deposits Coding Scheme](BSA-S)		
[Unlithified Deposits Coding Scheme](BSA-S) Tidal Flat Deposits - Clay		Linea
[Unlithified Deposits Coding Scheme](BSA-S) Tidal Flat Deposits - Clay And Silt [Unlithified Deposits		Linea Alte
[Unlithified Deposits Coding Scheme](BSA-S) Tidal Flat Deposits - Clay And Silt [Unlithified Deposits Coding Scheme](TFD-XC2) Tidal Flat Deposits -		
[Unlithified Deposits Coding Scherne](BSA-S) Tidal Flat Deposits - Clay And Silt [Unlithified Deposits Coding Scherne](TFD-XCZ) Tidal Flat Deposits - Gravel, Sand, Silt And Clay		Alte
[Unlithified Deposits Coding Scheme](BSA-S) Tidal Flat Deposits - Clay And Silt [Unlithified Deposits Coding Scheme](TFD-XCZ) Tidal Flat Deposits - Gravel, Sand, Silt And Clay [Unlithified Deposits Coding		Alte Fau
[Unlithfied Deposits Coding Scheme](DSA-S) Tidal Flat Deposits - Clay And Silt [Unlithified Deposits Coding Scheme](TFD-XCZ) Tidal Flat Deposits - Gravel, Sand, Silt And Clay [Unlithified Deposits Coding Scheme](TFD-XVSZC)		Alte <i>Fau</i> Fa un Folo
[Unlithified Deposits Coding Scheme](BSA-S) Tidal Flat Deposits - Clay And Silt (Unlithified Deposits Coding Scheme](TFD-XCZ) Tidal Flat Deposits - Gravel, Sand, Silt And Clay [Unlithified Deposits Coding Scheme](TFD-XVSZC) River Terrace Deposits, 6-		Alte Fau Fa Un Folo Fos
[Unlithified Deposits Coding Scherne](DSA-S) Tidal Flat Deposits - Clay And Silt [Unlithified Deposits Coding Scherne](TFD-XCZ) Tidal Flat Deposits - Gravel, Sand, Silt And Clay [Unlithified Deposits Coding Scherne](TFD-XVSZC)		Alte <i>Fau</i> Fa un Folo

Peat - Peat [Unlithified Deposits Coding Scheme] (PEAT-P)	
Head, 1 - Clay, Silt, Sand And Gravel [Unlithified Deposits Coding Scheme](HEAD1- XCZSV)	
Marine Beach Deposits - Sand [Unlithified Deposits Coding Scheme](MBD-S)	
River Terrace Deposits, 8 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD&XSV)	
River Terrace Deposits, 2 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD2-XSV)	
Tidal Flat Deposits - Clay, Silt And Sand [Unlithified Deposits Coding Scheme] (TFD-XCZS)	
River Terrace Deposits, 4 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD4-XSV)	
River Terrace Deposits, 5 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD5-XSV)	
River Terrace Deposits, 11 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RT11-XSV)	
River Terrace Deposits (Undifferentiated) - Sand And Gravel [Unlithified Deposits Coding Scheme](RTDU-XSV)	
River Terrace Deposits, 1 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD1-XSV)	
Storm Beach Deposits - Gravel [Unlithified Deposits Coding Scheme](STOB-V)	
Head - Clay, Silt, Sand And Gravel [Unlithified Deposits Coding Scheme](HEAD- XCZSV)	
Artificial Ground	
Worked Ground (Undivided) - Void(WGR-VOID)	
Made Ground (Undivided) - Artificial Deposit(MGR- ARTDP)	
Infilled Ground - Artificial Deposit(WMGR-ARTDP) Mass Movement	
Linear Features	
Alteration Areas	
Faults	
Fault, inferred, displacement	
Fault, interred, displacement unknown	
Fold Axes	
Fossil Horizons	
Landforms	
Mineral Veins Rock Unite	
Rock Units	

Geology Roam

🚾 Digimap

Geological Map Data @NERC 2016. @ Crown Copyright and Database Right 2016. Ordnance Survey (Digimap Licence).

Figure 5.5a Legend for Figure 5.5

Figure 5.6. Ower Bay, view to the north-east

Figure 5.7. Augering for sample 3, Ower Bay

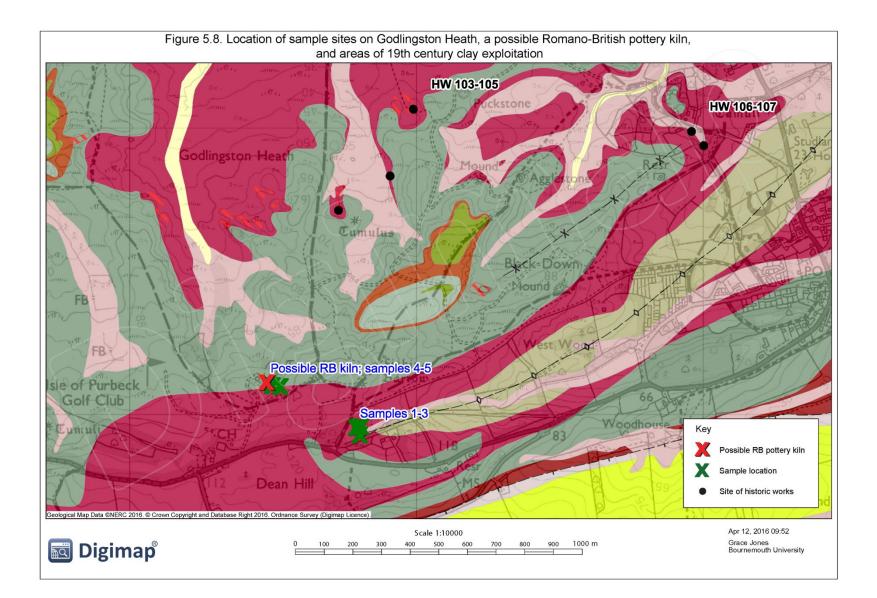


Figure 5.8a. Legend for Figure 5.8

eology 1:10 000		Mineral Veins
Bedrock		Rock Units
London Clay Formation - Clay, Silt And Sand(LC-		
CLSISA)		
Creekmoor Clay Member -		
Clay(CKMC-CLAY)		
Broadstone Sand Member		
And Oakdale Sand		
Member (Undifferentiated) - Sand(BROS-SANDU)		
Broadstone Clay Member - Sand(BRTC-SANDU)		
Broadstone Clay Member -		
Clay(BRTC-CLAY)		
Parkstone Sand Member -		
Sandstone(PKS-SDST)		
Portsdown Chalk Formation		
- Chalk(PCK-CHLK)		
Parkstone Sand Member -		
Sand(PKS-SANDU)		
Parkstone Clay Member - Clay(PKC-CLAY)		
Branksome Sand Formation	_	
- Sandstone(BRKS-SDST)		
Branksome Sand Formation		
- Sand(BRKS-SANDU)		
Superficial Deposits		
Head - Clay, Silt, Sand And		
Gravel(HEAD-XCZSV)		
Alluvium - Clay, Silt, Sand		
And Gravel(ALV-XCZSV)		
Artificial Ground		
Made Ground (Undivided) - Artificial Deposit(MGR-	7777	
ARTDP)	2223	
Mass Movement		
Linear Features		
Alteration Areas		
Faults		
Normal fault, inferred;		
crossmarks on downthrow	т	
side		
Fold Axes		
Axial plane trace of major		
anticline		
Axial plane trace of major		
syncline	-x	
Fossil Horizons		
Landforms		
Mineral Veins		
Rock Units		
eology 1:25 000		
eology 1:25 000		
Bedrock		
Superficial Deposits		
Artificial Ground		
Mass Movement		
Linear Features		
Alteration Areas		
Faults		
Fold Axes		
Fossil Horizons		
Landforms		

DiGMapGB-25 Rock Unit,DiGMapGB-10 Rock Unit ((1:10 000) Rock Unit)

Geology Roam

🚾 Digimap

Geological Map Data @NERC 2016. @ Crown Copyright and Database Right 2016. Ordnance Survey (Digimap Licence).

Figure 5.9. Godlingston Heath, view from sample 2 location, looking towards Agglestone Cottage

Figure 5.10. Location of published grid reference for Romano-British pottery kiln, Godlingston Heath

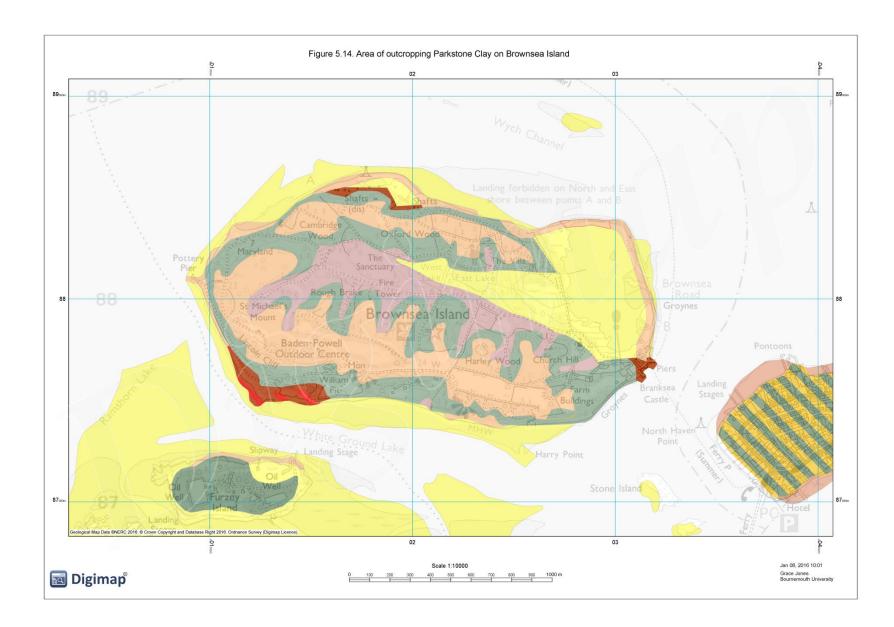
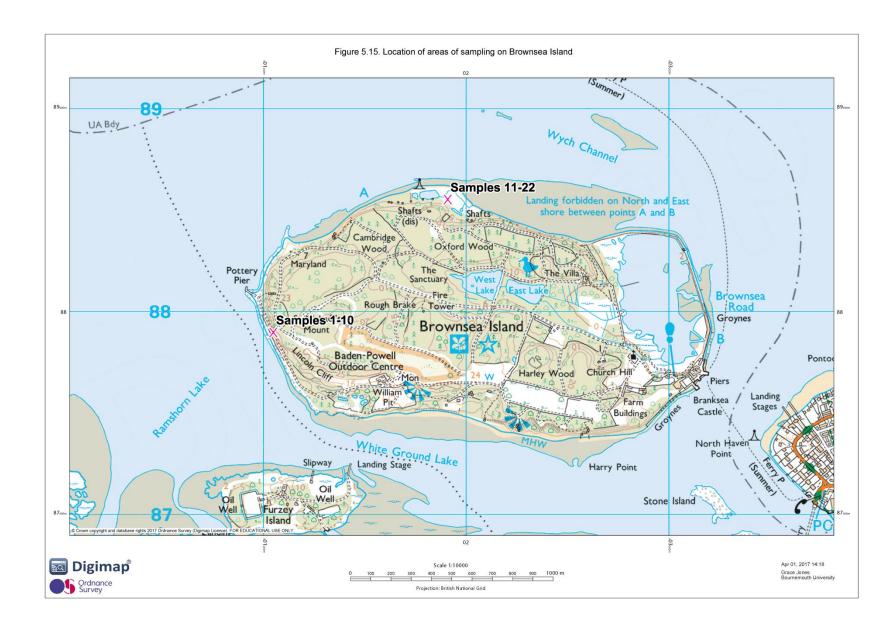

Figure 5.11. Location of samples 1 and 2, Foxground Plantation

Figure 5.12. The clay loam pit at Sandford (samples 5-6)

Figure 5.13. Pine plantation at Wytch Heath


Figure 5.14a. Legend for Figure 5.14

DiGMapGB-50 Rock Unit ((1:50 000) Rock Unit)

Bedrock	
Branksome Sand Formation - Sand(BRKS-SANDU)	
Parkstone Clay Member - Clay, Silty(PKC-SICL)	
Poole Formation - Sand, Silt And Clay(POOL-SSCL)	
Superficial Deposits	
River Terrace Deposits, 6 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD6-XSV)	
Marine Beach Deposits - Sand [Unlithified Deposits Coding Scheme](MBD-S)	
River Terrace Deposits, 8 - Sand And Gravel [Unlithified Deposits Coding Scheme] (RTD8-XSV)	
Blown Sand - Sand [Unlithified Deposits Coding Scheme](BSA-S)	
Storm Beach Deposits - Gravel [Unlithified Deposits Coding Scherne](STOB-V)	
Tidal Flat Deposits - Gravel [Unlithified Deposits Coding Scheme](TFD-V)	
Head - Clay, Silt, Sand And Gravel [Unlithified Deposits Coding Scherne](HEAD- XCZSV)	
Tidal Flat Deposits - Clay And Silt [Unlithified Deposits Coding Scheme](TFD-XCZ)	
Artificial Ground	
Made Ground (Undivided) - Artificial Deposit(MGR- ARTDP)	
Mass Movement	
Linear Features	
Alteration Areas Faults	
Faults Fold Axes	
Fossil Horizons	
Landforms	
Mineral Veins	
Rock Units	

Geology Roam

Geological Map Data @NERC 2016. @ Crown Copyright and Database Right 2016. Ordnance Survey (Digimap Licence).

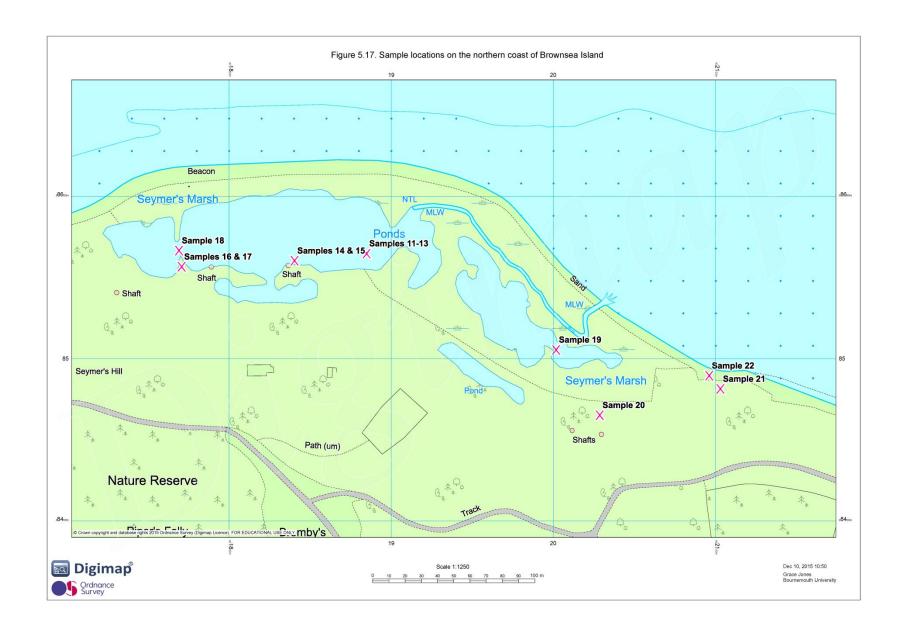


Figure 5.18. Section of clay along the south-western shores of Brownsea Island (SZ 01025 87929)

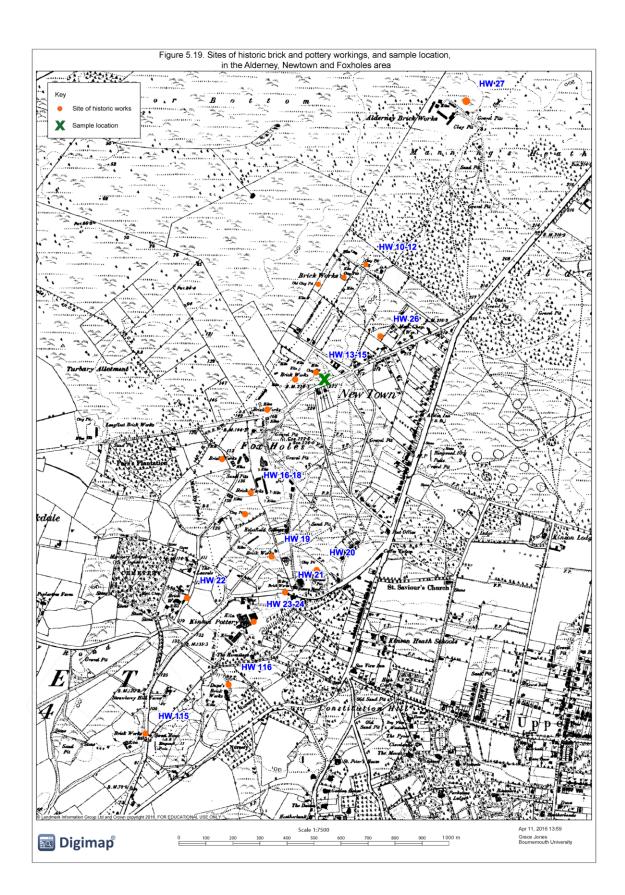


Figure 5.20. A view from the corner of no. 42 Walton Road looking to the south-west towards Jewsons and the Kinson Pottery Estate (and beyond to Poole Harbour), over the clay pit of an unnamed brickworks (point 20).

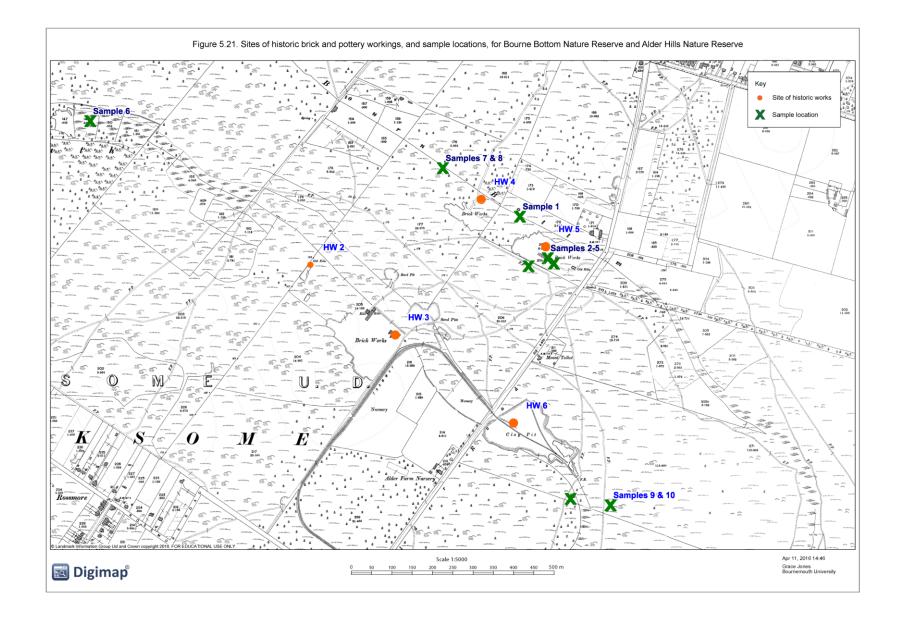


Figure 5.22. Cliff section on the western side of Furzey Island

Figure 5.23. Cliff on western side of Green Island

Figure 5.24: Cliff collapse on Round Island, view looking west towards the cottages

Figure 5.25: Colour variability in the clay on Round Island

Figure 5.26. Disused clay pit at Lower Lynch House

Figure 5.27. Drawing of a brick kiln near to Corfe Castle

Figure 5.28. Example of a vitrified brick from Lower Lynch House

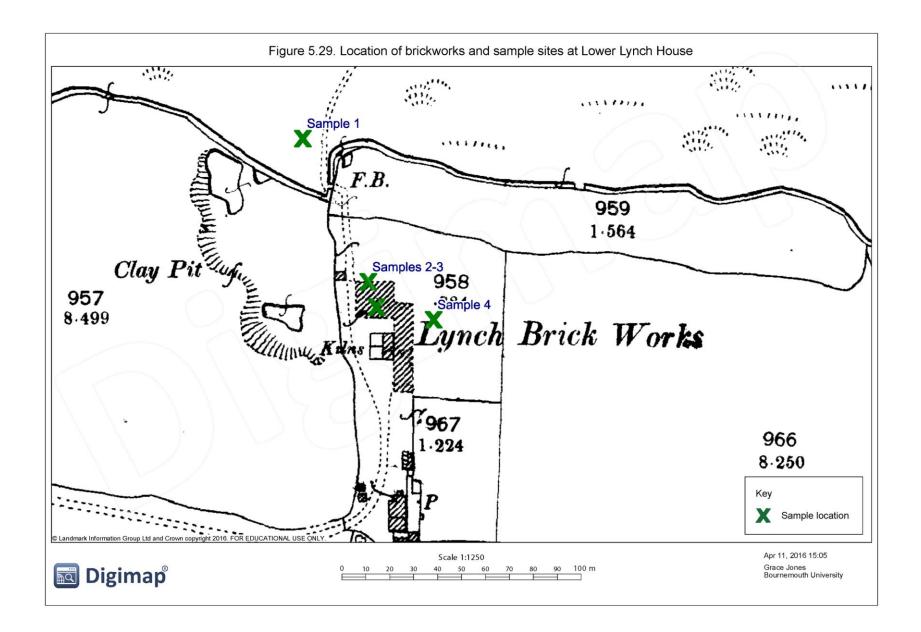


Figure 5.30: Location of sample 1, Corfe Common, Lower Lynch Farm

Figure 5.31. Location of sample 2, Lower Lynch Farm

XP= crossed polarised light; PPL= plane polarised light; FV=field of view

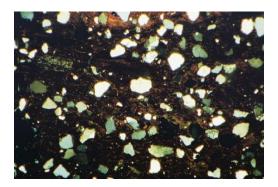


Fig. 6.1a Green Island, pottery sample 1 (XP, FV: 6.8mm)

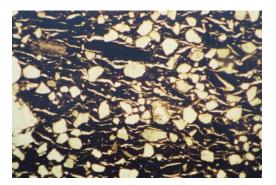


Fig. 6.1b Green Island, pottery sample 1 (PPL, FV: 6.8mm)

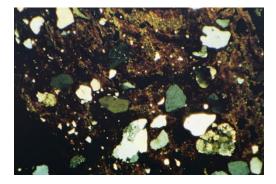


Fig. 6.2a Green Island, pottery sample 3 (XP, FV: 6.8mm)

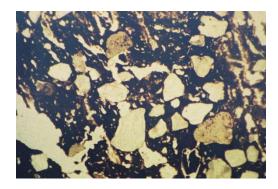


Fig. 6.2b Green Island, pottery sample 3 (PPL, FV: 6.8mm)

Fig. 6.3a Elongated argillaceous inclusion in Green Island pottery sample 15 (XP, FV: 3mm)

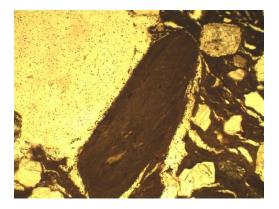


Fig. 6.3b Elongated argillaceous inclusion in Green Island pottery sample 15 (PPL, FV: 3mm)

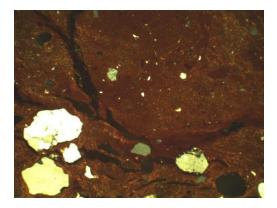


Fig. 6.4a Green Island, pottery sample 19 (XP, FV: 6mm)

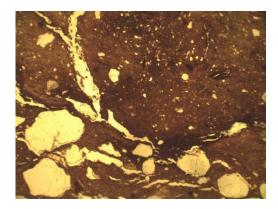


Fig. 6.4b Green Island, pottery sample 19 sample 1 (PPL, FV: 6mm)

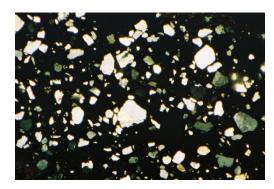


Fig. 6.5a Wytch Farm Oilfield pottery, sample 23 (XP, FV: 6.8mm)

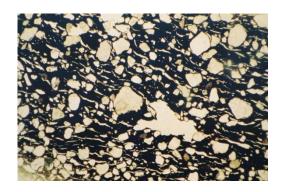


Fig. 6.5b Wytch Farm Oilfield pottery, sample 23 (PPL, FV: 6.8mm)

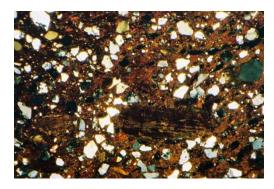


Fig. 6.6a Wytch Farm Oilfield pottery, sample 14 (XP, FV: 6.8mm)

Fig. 6.6b Wytch Farm Oilfield pottery, sample 14 (PPL, FV: 6.8mm)

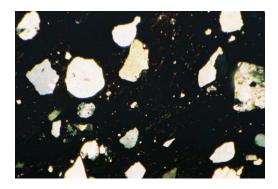


Fig. 6.7a Wytch Farm Oilfield pottery, sample 2 (XP, FV: 6.8mm)

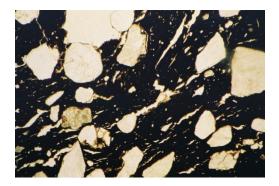


Fig. 6.7b Wytch Farm Oilfield pottery, sample 2 (PPL, FV: 6.8mm)

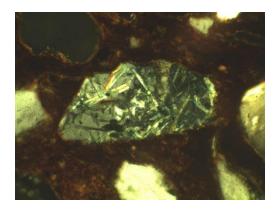


Fig. 6.8a Wytch Farm Oilfield, pottery sample 17 (XP, FV: 1.5mm)

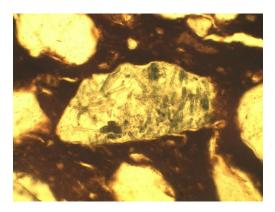


Fig. 6.8a Wytch Farm Oilfield, pottery sample 17 (PPL, FV: 1.5mm)

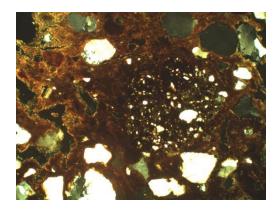


Fig. 6.9a Wytch Farm Oilfield, pottery sample 10 (XP, FV: 6.8mm)

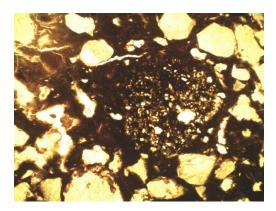


Fig. 6.9b Wytch Farm Oilfield, pottery sample 10 (PPL, FV: 6.8mm)

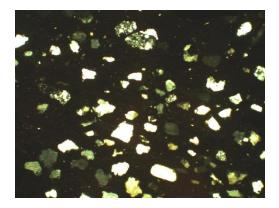


Fig. 6.10a Redcliff, Ridge, pottery sample 4 (XP, FV: 6mm)

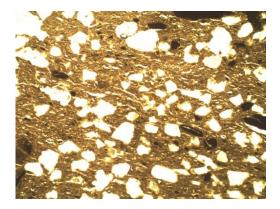


Fig. 6.10b Redcliff, Ridge, pottery sample 4 (PPL, FV: 6mm)

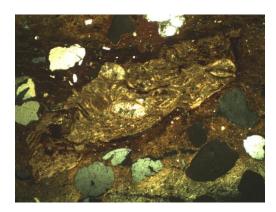


Fig. 6.11a Rope Lake Hole pottery sample 24 (XP, FV: 6mm)

Fig. 6.11b Rope Lake Hole pottery sample 24 (PPL, FV: 6mm)

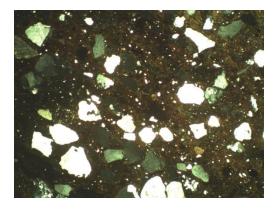


Fig. 6.12a Rope Lake Hole pottery sample 25 (XP, FV: 6mm)

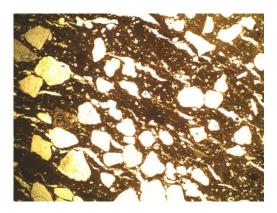


Fig. 6.12b Rope Lake Hole pottery sample 25 (PPL, FV: 6mm)

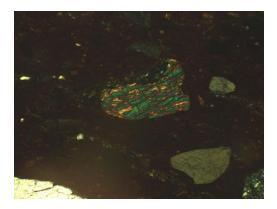


Fig. 6.13a Rope Lake Hole pottery sample 14 (XP, FV: 1.5mm)

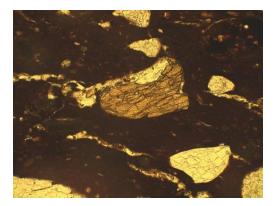


Fig.6.13b Rope Lake Hole pottery sample 14 (PPL, FV: 1.5mm)

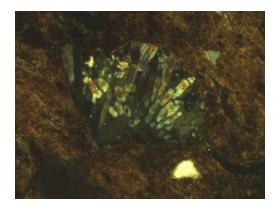


Fig. 6.14a Rope Lake Hole pottery sample 14 (XP, FV: 1.5mm)

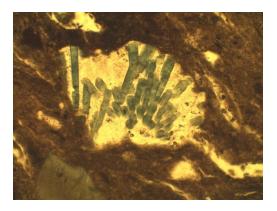


Fig. 6.14a Rope Lake Hole pottery sample 14 (PPL, FV: 1.5mm)



Fig. 6.15a Hengistbury Head pottery sample 4 (XP, FV=6mm)

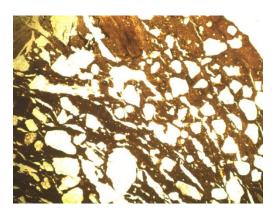


Fig. 6.15b Hengistbury Head pottery sample 4 (PPL, FV=6mm)

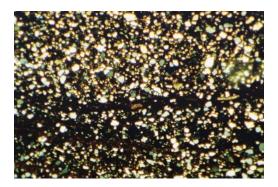


Fig. 6.16a Gussage All Saints pottery sample 9 (XP, FV=6.8mm)



Fig. 6.16b Gussage All Saints pottery sample 9 (PPL, FV=6.8mm)

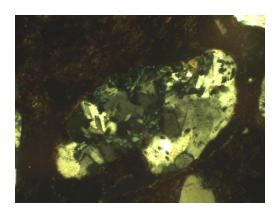


Fig. 6.17a Gussage All Saints pottery sample 10 (XP, FV=1.5mm)

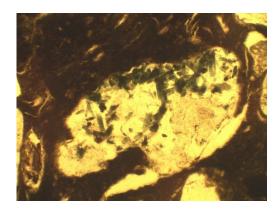


Fig. 6.17a Gussage All Saints pottery sample 10 (PPL, FV=1.5mm)

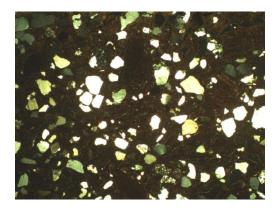


Fig. 6.18a Gussage All Saints pottery sample 36 (XP, FV=6.8mm)

Fig. 6.18a Gussage All Saints pottery sample 36 (PPL, FV=6.8mm)

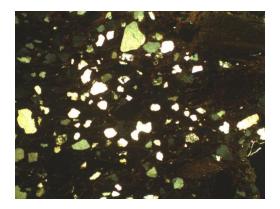


Fig. 6.19a Barton Field, Tarrant Hinton pottery sample 5 (XP, FV=6mm)

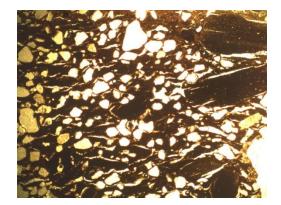


Fig. 6.19b Barton Field, Tarrant Hinton pottery sample 5 (PPL, FV=6mm)

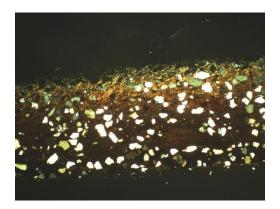


Fig. 6.20a Bradford Down, Pamphill pottery sample 2 (XP, FV=6mm)

Fig. 6.20b Bradford Down, Pamphill pottery sample 2 (PPL, FV=6mm)

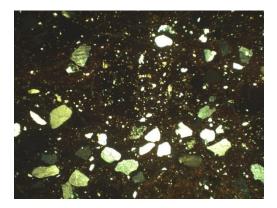


Fig. 6.21a Bradford Down, Pamphill pottery sample 3 (XP, FV=6mm)

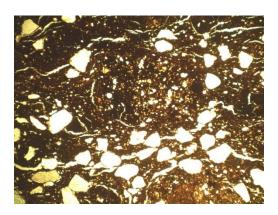


Fig. 6.21b Bradford Down, Pamphill pottery sample 3 (PPL, FV=6mm)

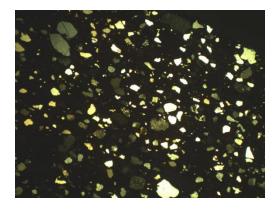


Fig. 6.22a Bradford Down, Pamphill pottery sample 1 (XP, FV=6mm)

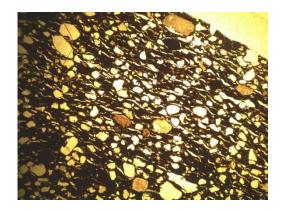


Fig. 6.22b Bradford Down, Pamphill pottery sample 1 (PPL, FV=6mm)

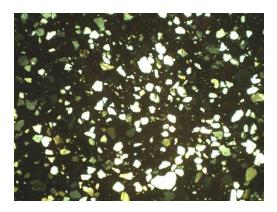


Fig. 6.23a Oakley Down pottery sample 1 (XP, FV=6mm)

Fig. 6.23b Oakley Down pottery sample 1 (PPL, FV=6mm)

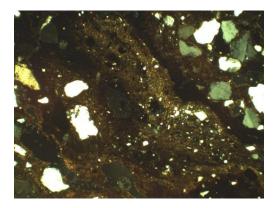


Fig. 6.24a Allard's Quarry pottery sample 9 (XP, FV=6mm)

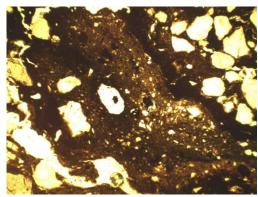


Fig. 6.24b Allard's Quarry pottery sample 9 (PPL, FV=6mm)

XP= crossed polars; PPL= plane polarised light; FV=field of view

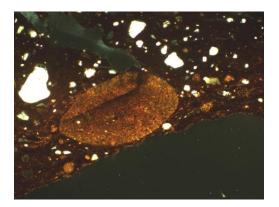


Fig. 7.1a Foxground Plantation, clay sample 1 (XP, FV: 3mm)

Fig. 7.1b Foxground Plantation, clay sample 1 (PPL, FV: 3mm)

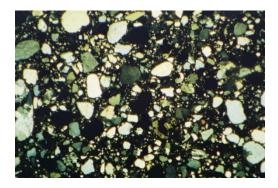


Fig. 7.2a Arne Peninsula clay, sample 2A (XP, FV: 6.8mm)

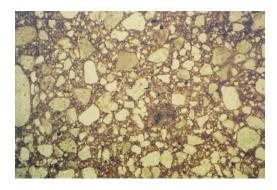


Fig. 7.2b Arne Peninsula clay, sample 2A (PPL, FV: 6.8mm)

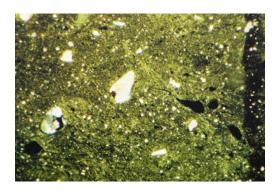


Fig. 7.3a Arne Peninsula clay, sample 2B (XP, FV: 6.8mm)

Fig. 7.3b Arne Peninsula clay, sample 2B (PPL, FV: 6.8mm)

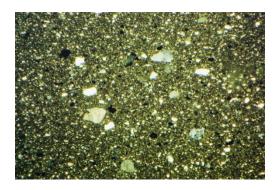


Fig. 7.4a Ower Bay clay, sample 3 (XP, FV: 6.8mm)

Fig. 7.4b Ower Bay clay, sample 3 (PPL, FV: 6.8mm)

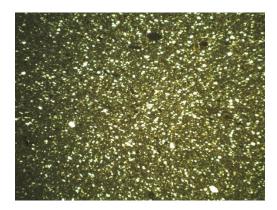


Fig. 7.5a Redcliffe Farm clay, sample 2 (XP, FV: 6mm)

Fig. 7.5b Redcliffe Farm clay, sample 2 (PPL, FV: 6mm)

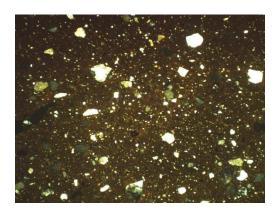


Fig. 7.6a Wytch Farm clay, sample 1A (XP, FV: 6mm)

Fig. 7.6b Wytch Farm clay, sample 1A (PPL, FV: 6mm)

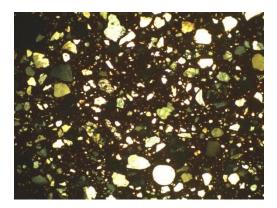


Fig. 7.7a Wytch Farm clay, sample 1B (XP, FV: 6mm)

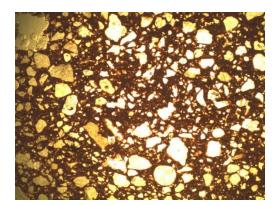


Fig. 7.7b Wytch Farm clay, sample 1B (PPL, FV: 6mm)

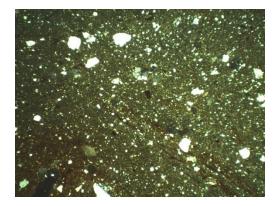


Fig. 7.8a Godlingston Heath clay, sample 1 (XP, FV: 6mm)

Fig. 7.8b Godlingston Heath clay, sample 1 (PPL, FV: 6mm)

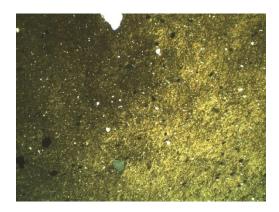


Fig. 7.9a Godlingston Heath clay, sample 5 (XP, FV: 6mm)

Fig. 7.9b Godlingston Heath clay, sample 5 (PPL, FV: 6mm)

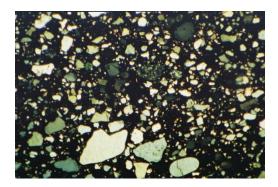


Fig. 7.10a Upton Poole Road, clay sample 3 (XP, FV=6.8mm)

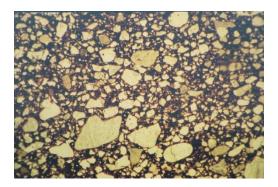


Fig. 7.10b Upton Poole Road, clay sample 3 (PPL, FV=6.8mm)

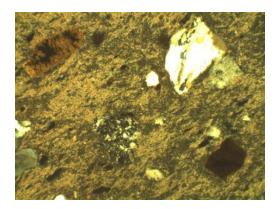


Fig. 7.11a Brownsea Island, clay sample 20 (XP, FV=1.5mm)

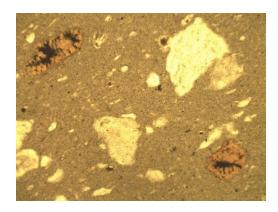


Fig. 7.11b Brownsea Island, clay sample 20 (PPL, FV=1.5mm)

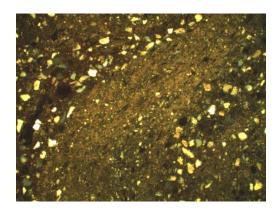


Fig. 7.12a Brownsea Island, clay sample 2 (XP, FV=3mm)

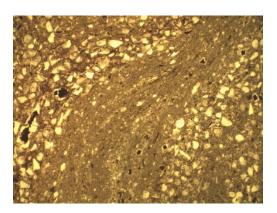


Fig. 7.12b Brownsea Island, clay sample 2 (PPL, FV=3mm)

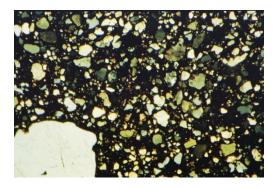


Fig. 7.13a Bourne Valley, clay sample 5 (XP, FV=6.8mm)

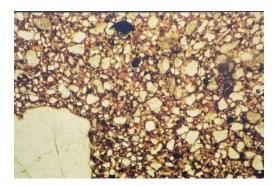


Fig. 7.13b Bourne Valley, clay sample 5 (PPL, FV=6.8mm)

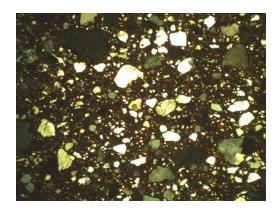


Fig. 7.14a Creech Heath, clay sample 4 (XP, FV: 6mm)

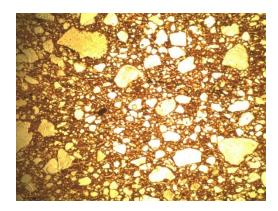


Fig. 7.14b Creech Heath, clay sample 4 (PPL, FV: 6mm)

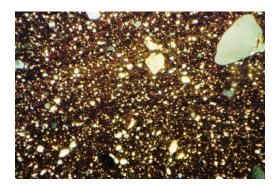


Fig. 7.15a Lower Lynch Farm, clay sample 3 (XP, FV=6.8mm)

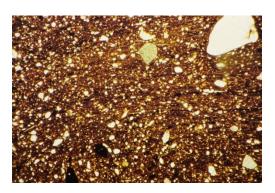


Fig. 7.15b Lower Lynch Farm, clay sample 3 (PPL, FV=6.8mm)

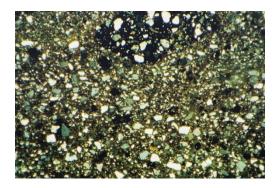


Fig. 7.16a SE Purbeck, clay sample 2 (XP, FV=6.8mm)

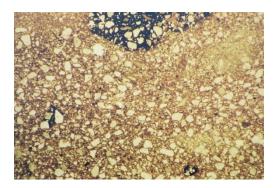


Fig. 7.16b SE Purbeck, clay sample 2 (PPL, FV=6.8mm)

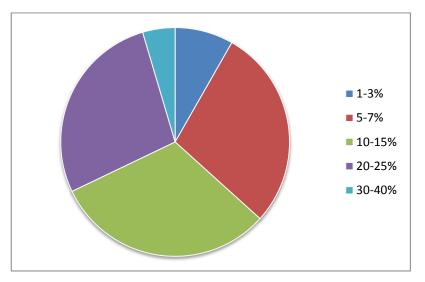


Figure 7.17. Proportion of silt-sized quartz in the clay samples.

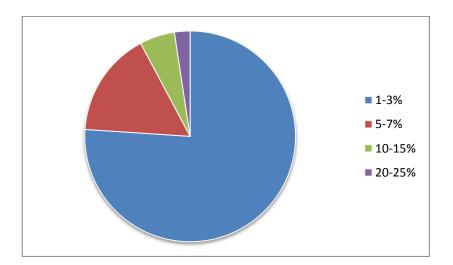


Figure 7.18. Proportion of silt-sized quartz in the pottery samples.

Histograms to show percentages of grain sizes present in the clay and pottery samples, generated using a Petrog point counter. VF=very fine; F=fine; M=medium; C=coarse; VC=very coarse; G=granules; P=pebbles; Slt=silt; S=sand.

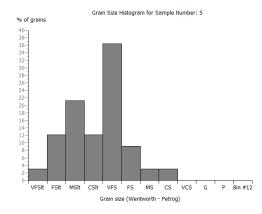


Fig. 7.19 Godlingston Heath, clay sample 5

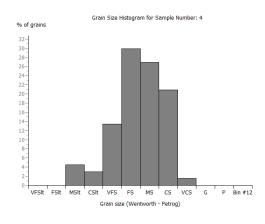


Fig. 7.20 Sandford, clay sample 4

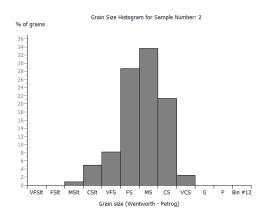


Fig. 7.21 Upton Poole Road, clay sample 2

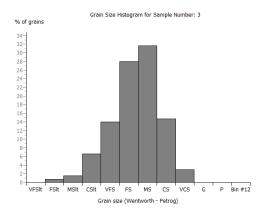


Fig. 7.22 Upton Poole Road, clay sample 3

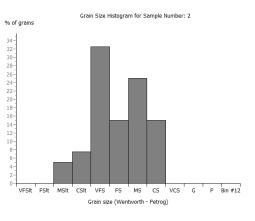


Fig. 7.23 East Holme, clay sample 2

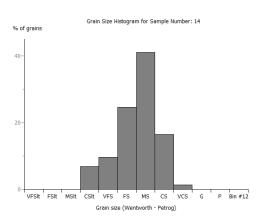


Fig. 7.24 Brownsea, clay sample 14

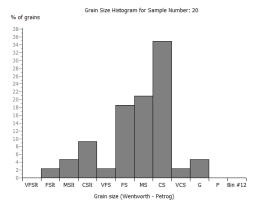


Fig. 7.25 Brownsea, clay sample 20

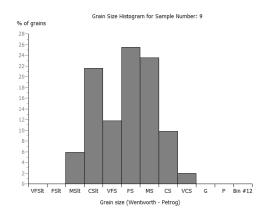


Fig. 7.26 Bourne Valley, clay sample 9

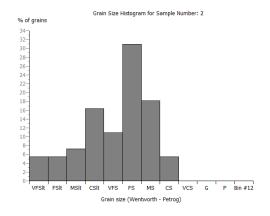


Fig. 7.27 Creech Heath, clay sample 2

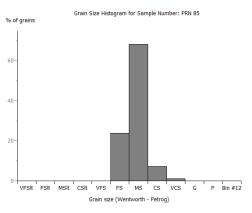


Fig. 7.28 Green Island, pottery sample 1

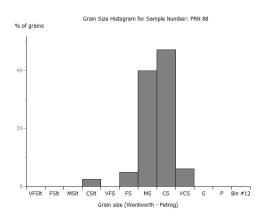


Fig. 7.29 Green Island, pottery sample 2

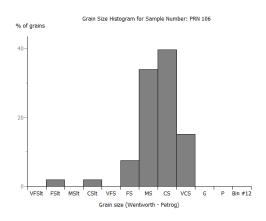


Fig. 7.30 Green Island, pottery sample 3

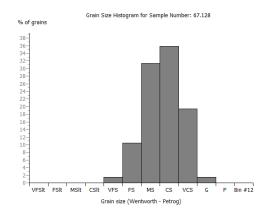


Fig. 7.31 Maiden Castle, pottery sample 18

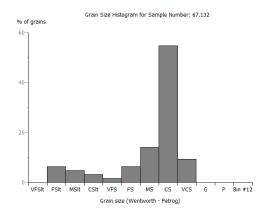


Fig. 7.32 Maiden Castle, pottery sample 20

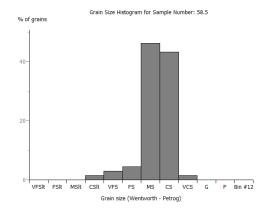


Fig. 7.33 Wytch Farm Oilfield, pottery sample 14

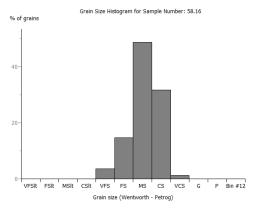


Fig. 7.34 Wytch Farm Oilfield, pottery sample 15

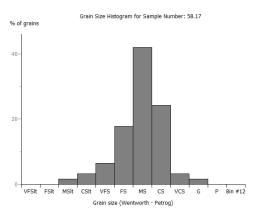


Fig. 7.35 Wytch Farm Oilfield, pottery sample 16

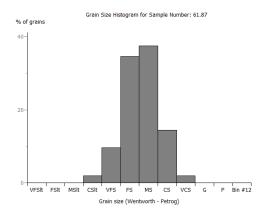


Fig. 7.36 Wytch Farm Oilfield, pottery sample 24

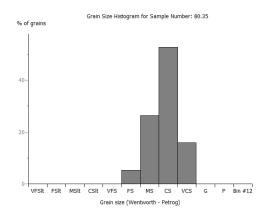


Fig. 7.37 Rope Lake Hole, pottery sample 19

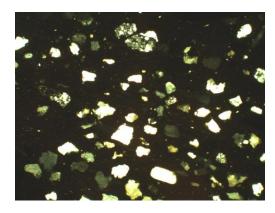


Fig. 7.38 Redcliff, Ridge, pottery sample 4 (XP, FV: 3mm)

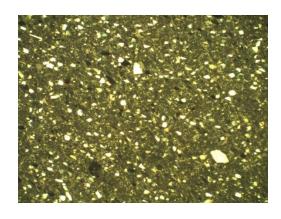


Fig. 7.40 Redcliffe Farm, clay sample 2 (XP, FV: 3mm)

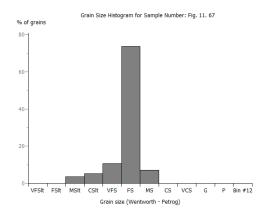


Fig. 7.39 Redcliff, Ridge, pottery sample 4

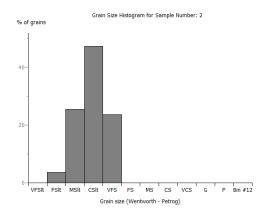


Fig. 7.41 Redcliffe Farm, clay sample 2

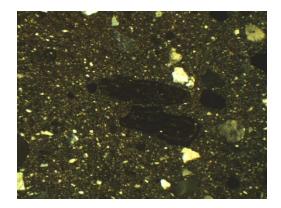


Fig. 7.42a Shale and sand added to Arne Beach clay sample 2 (XP, FV: 3mm)

Fig. 7.42b Shale and sand added to Arne Beach clay sample 2 (PPL, FV: 3mm)

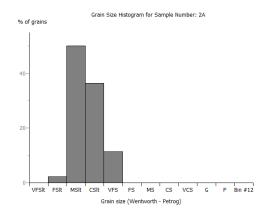


Fig. 7.43 Arne Beach, sample 2A

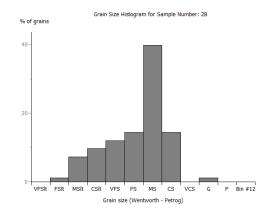


Fig. 7.44 Arne Beach, sample 2B

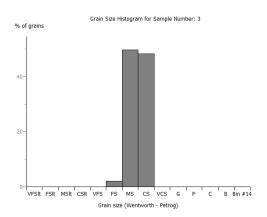


Fig. 7.45 Furzey Island, sample 3, sand

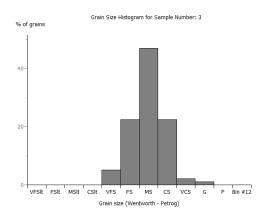


Fig. 7.46 Rempstone, sample 3, sand

BLANK PAGE

Additional data for Chapter 2 - Background: geology, previous work and considerations of ceramic provenance studies

A1. Research by Belinda Coulston

Belinda Coulston used petrological and compositional analysis to examine the Iron Age pottery from Maiden Castle, Dorset. The chemical analysis was deemed necessary to identify the clay source, as Coulston argued that provenancing by petrological analysis alone is only suitable in areas of 'extreme geological variation' (Coulston 1989, 23). Nonetheless, she stressed that pottery analysis should start with petrology to ascertain the size, shape and frequency of the quartz grains, and the information used to group otherwise homogeneous sherds. A summary of her research is provided in Chapter 2, and further details presented below.

During petrological analysis, Coulston used point-counting as a method of determining the percentage volume of a mineral in section, in 89 slides. Coulston (after Galehouse 1969) suggested that 'an optimal number of points to count' is 300 as below this the accuracy decreases rapidly but above this increases only slowly. She recorded three variables during point-counting: quartz, matrix and voids. Other inclusions thought to derive from the sand, e.g. flint, were counted as quartz, and those thought to derive from the clay, e.g. shale, were counted as matrix (Coulston 1989, 110). She determined the percentage of quartz as the number of quartz grains counted, divided by the total number of counts, multiplied by 100. This calculation was used in the statistical analysis of the compositional data.

Six fabric groups were identified by eye. The quartz grains in Fabrics 1 and 2 were 0.3-0.4mm in diameter, however they were more tightly packed in Fabric 1. In Fabric 3 the quartz grains were typically 0.5mm in diameter, rising to 0.6mm in Fabric 4, 0.7mm in Fabric 5 and 0.9mm in Fabric 6 (Coulston 1989, 234-7).

During compositional analysis, 18 elements were measured in 168 samples using NAA, but only 13 had a mean standard deviation of 10% or less, so the statistical analysis was reduced to comprise Al, Ti, Dy, V, Ce, Th, Cr, Hf, La, Cs, Sc Rb, Fe, but expanded to contain calcium. Fifteen chemical groups were initially identified within the Durotrigian samples, but this was found to be a result of the diluting effect of the quartz, and counteracted using Dilution Assessment procedures, after Mommsen *et al* (1988). The element profiles of each group were compared and 'the degree of similarity between the profiles is given by a 'Goodness of Fit' (GOF) coefficient: the smaller the coefficient, the more similar the profiles, and the higher the probability that the two are related by dilution' (Coulston 1989, 379). This resulted in the 15 groups reduced to five, Groups A-E.

The groups were then compared to each other using statistical analysis, to check their validity. The data was corrected for the sand temper using the results of the point counting (of 89 samples) 'to define a calibration line against the aluminium content of the sherds, which allowed a much larger sand-corrected data set to be obtained, without the need for further point counting' (Coulston 1989, 409). In a comparison of Groups A and B, four elements were found to be significant discriminators: lanthanum, cerium, dysprosium and hafnium; but all were present in the sand in significant quantities (Coulston 1989, 437). It was therefore suggested that Group B was a deviation of Group A, caused by variation in the quantity of sand temper (*ibid.*). A comparison of Groups A and C found lanthanum, cerium and dysprosium to be the most discriminating elements, with caesium, vanadium and chromium also acting as discriminators (Coulston 1989, 439). Groups A and C were identified as being distinct. Comparison of Groups A and D again found the elements in the sand as the major discriminators (Dy, Ce, La, Hf), with three other discriminators also indentified: thorium, titanium and caesium. Group A was distinct from Group D. A comparison of Groups A and E found nine elements were discriminators (in order of decreasing significance: Dy, La, Ce, Cs, Fe, Sc, V, Th, Rb) and group E, although loose, was distinct to Group A (Coulston 1989, 443). In summary, there were no significant differences between Groups C and E and Coulston suggested Group E may be 'a collection of Group C anomalies' (Coulston 1989, 447). Groups A and B are probably part of a single group, Group D may be associated (Coulston 1989, 447-465). Groups C and E represented a different clay source to Groups A, B and D.

Coulston attempted to identify if there was any correlation between these compositional groups and the forms of the vessels, but found each group was utilised for a range of Late Iron Age forms (Table A1). She stated that Group D contained fewer of the common forms (JC3.1 and BC3.3: bead-rimmed jars and bowls) and more of the less abundant forms (JC4.2 and JC4.41: flat-rimmed jars, and JC3.12: jar with twisted rim) and may therefore represent a single workshop. However, the groups are represented by too few samples to draw any clear conclusions. Coulston suggested separation of the Group D pottery was supported by the grain size of the samples, but again the evidence is far from conclusive with the group containing examples of all of the archaeological fabric groups (A0: one sample; A1: six samples; A2: 13 samples; A3: two samples; D9: one sample) (Coulston 1989, 469).

She also examined variability within specific types and found that the commonly occurring bead-rimmed jars and bowls (Brown 1991, JC3.1 and BC3.3) are not compositionally distinct, nor are the bowls with expanded, grooved rims (Brown 1991, BC3.42). In terms of rarer forms, she analysed one of two handled tankards (Brown 1991, BC3.12) found at Maiden Castle. It was identified as an outlier in her analysis but she suggested it showed some similarity to a vessel of possible French origin (Coulston 1989, 474). Furthermore, her analysis of a cordoned bowl (Brown 1991, BD1/2) also found this vessel to be an outlier, and petrological analysis indicated it was much finer than the other vessels analysed.

The most discriminating elements amongst the 'pre-Durotrigian' pottery (PD) were noted as dysprosium, cerium and lanthanum. Four compositional groups were identified (PD1-4), with PD Groups 2, 3 and 4 related to each other. Pre-Durotrigian Group 1 was not clearly defined using compositional analysis, but petrological analysis revealed the presence of small, black rounded pellets, not see in the other groups (Coulston 1989, 429). Pre-Durotrigian Group 4 was the most diluted and was suggested to 'represent a distinct source of essentially the same clay bed as was used for PD Groups 2 and 3' (Coulston 1989, 433). The fabric of most of the pre-Durotrigian samples in this group (D6, in Brown 1991) was rarely seen in the other groups, and this may be significant, as the fabric, and by default its clay source, was thought to have continued in use into the Late Iron Age period and 'represents a specific source of the same clay bed as was exploited for the other [pre-Durotrigian] sandy fabrics' (Coulston 1989, 520).

Coulston took sand samples from Shipstal Point, Kimmeridge and Swanage Bay. In terms of the source of the temper for the pottery, the sand from Kimmeridge Bay was too shelly and the hafnium concentration of the Wealden Sands from Swanage Bay was too high for this to be considered as a possible temper source (Coulston 1989, 190). The two samples of sand taken from Shipstal Point differed 'significantly in all elements' but those present in significant amounts, when compared to the pottery, were the same (Coulston 1989, 189). This suggested the Shipstal Point sand was the most likely temper source for the pottery.

Form	Description	А	В	С	D	E	
BA4.11	Bowl with flaring rim and well-defined shoulder				1		1
BB1	Tripartite bowl with flaring rim and facetted shoulder	1					1
BC3.11	Bowl with straight or slightly curved walls and fooring base	1		1			2
BC3.2	Bowl with plain or bead rim and slightly curving wall	3	2				5
BC3.22	War cemetery' bowl, may be ribbed	2					2
BC3.3	Round-bodied bowl with beaded rim	10	3	2	1		16
BC3.42	Bowl with expanded, grooved rim	2	2		1		5
BC3.51	High shouldered, shallow bowl with short upstanding or beaded rim	1					1
BC3.7	Shallow bowl with beaded rim		1				1
BD4.2	Bowl with upright neck or slightly everted rim	1	-				1
BD8.0	Unknown	1					1
JB	Jar	1					1
JC1.1	Large, barrel-shaped jar with slightly upstanding, flattened	1		1	1		2
JC1.1	rim			1	1		2
JC2.0/	Jar with high, rounded shoulder and rounded profile	2		1	1		4
JC2.1							
JC2/	Round-shouldered jar, miscellaneous	1					1
JC3							
JC3.1	Round-shouldered jar with beaded rim	15	1	1	7	3	27
JC3.1	Round-shouldered jar with beaded rim and countersunk lug		1				1
CSL							
JC4.1	Flat-rimmed jar, small and usually undecorated	2			3		5
JC4.2	Flat-rimmed jar, large and often decorated	13	4		4		21
JD3.0	S-profiled jar		1				1
JD4.4	Jar with rounded profile and elongated, lipped rim	2				2	4
JD4.5	Jar with rounded profile and short, out-turned rim and squat		1		1		2
	neck						
JE4.2	Necked jar (Brailsford 1958, type 5)	1					1
LID	Lid	3					3
PB1.1	Saucepan pot with straight or slightly curved wall, and	1		1			2
	rounded or beaded rim						
		63	16	7	20	5	108

Table A1. Compositional grouping of Durotrigian pottery by Coulston (1989), presented by form (after Brown 1987)

BLANK PAGE

Additional data for Chapter 3 - Pottery and Brick Production around Poole Harbour and Wareham

B.1 Major brick and pottery producers operating around Poole during the 19th and 20th centuries

B1. 1 Poole Pottery

The Patent Architectural Pottery was established in Hamworthy in 1854. The range of products being manufactured was summarised by Llewellynn Jewitt in 1878 (cited in Hawkins 1980), as:

"patent coloured and glazed bricks and mouldings, semi-perforated and pressed: patent mosaic, tessellated, encaustic, vitreous, and other glazed wall tiles; embossed and perforated tiles; quarries and fire-clay goods, etc. – the clays used being Purbeck clay, Cornish china clay and Fareham clay, while those for plain quarries are from the Canford estate" (Hawkins 1980, 16).

In 1861 the chief technician at the Architectural Pottery, James Walker, left the firm and set up his own works, manufacturing a similar range of tiles, on the East Quay, Poole. Within five years the business had failed, and was finally bought by Jesse Carter in 1873.

The Carter family became known for their mural wall tiles panels. Two of Jesse Carter's sons, Charles and Owen, joined the family business in 1881, whilst another of his sons, William, opened a brickworks at Foxholes, Parkstone, and in 1884 bought the Kinson Pottery. Jesse Carter's business success enabled him to take over the rival Architectural Pottery at Hamworthy in 1895. The two sites became known as the Poole Potteries (Hawkins 1980, 25), with work at the East Quay site concentrating on the more decorative, glazed tiles and faience, whilst the Hamworthy works produced the plain floor tiles (Furnival 1904, 197). Their range of goods began to extend into decorative, domestic pottery, with Owen Carter experimenting with glazes and is credited with creating the tube-outlined decorative

panels and mosaic work (Myers 1973, 15). From the beginning of the 20th century, Poole Pottery had added vases, bowls, dishes, candlesticks and decorative garden wares to their repertoire (Hawkins 1980, 30). In 1901 the Carters took over another building at Hamworthy, previously known as the Blue Works, for the production of white and cream glazed tiles, and therefore became known as the White Works (Hawkins 1980, 33).

Furnival's 1904 book on decorative tiles indicates that the clay used for the red tiles produced by the Poole Potteries came from clay beds owned by the Carters at Corfe Mullen. He also states that 'Poole is the centre of the most celebrated clayfields of the world', and notes the geographical advantage in terms of export of goods (Furnival 1904, 197-8). The workforce at the potteries declined during the First World War, as did the market for decorative tiles and pottery, but the factory adapted and created new lines, including glazed pottery buttons and beads (Myers 1973, 19). There was a great deal of artistic experimentation and freedom during this period, and the production of a new ware 'made from a red or salmon body which was coated with grey or cream slip and then dipped in a semi-opaque tin glaze with an "orange peel" texture' (Myers 1973, 20). A report for Carter and Co, written in 1920 by Cyril Carter, son of Charles, gives an idea of the scale of the scale of production, with tiles exported to Canada, South America, India and China (Hawkins 1980, 66). Investment in a new ceramic marble kiln allowed them to create a glaze for architectural materials. The 1920 report also indicates the importance of the pottery to UK markets, supplying:

"1,000 yards of tiles for the Ebbw Vale Iron Works and their new offices and power houses in South Wales; 2,700 yards at Caley's chocolate factory at Norwich; 600 yards for the Metropolitan Water Board; 1,400 yards for the Glory Mills, High Wycombe" (Hawkins 1980, 66).

In 1921 Cyril Carter joined with two designers, Harold Stabler and John Adams, forming a new, subsidiary company, Carter, Stabler & Adams (CSA). They added pottery figurines and other modelled ceramics, creating the Durban Ware Memorial in the early 1920s (Myers 1973, 25). The new venture, CSA, was a studio pottery at the forefront of design. In the late 1920s the red/salmon coloured body was phased out and a white/buff body used instead, supplied by the tile works. During the 1930s the pottery produced a range of twintone tablewares, but the advent of World War II

saw another decline in production. To revive the business at the end of the war a new factory was proposed and a new line of tableware went into production. From the 1950s to the 1990s the pottery went from strength to strength, with mass production of a number of lines but still retaining a craft section where potters, such as Guy Sydenham, exercised artistic freedom. In 1963 the firm officially became Poole Pottery Ltd, merging with Pilkingtons. Unfortunately, the business went into decline at the end of the 20th century, and closed in 2006. It was taken over by the Lifestyle Group Ltd and production restarted in Staffordshire, with design work still carried out at Poole but no manufacturing at the site. It is now owned by Denby.

B1.2 George Jennings and the South-Western Pottery

George Jennings is credited with the invention of public flushing toilets. He supplied the toilets for over 800,000 visitors to the 1851 Great Exhibition at Crystal Palace, who paid a penny to use them, and hence the term 'spend a penny'. This inventive engineer patented a method of manufacturing stoneware pipes and, after a visit to Poole in search of suitable clay sources, he decided to set up his own business to manufacture them. Jennings hired a manager from the Bourne Valley Pottery and work started on the construction of the pottery in 1855. Within a couple of years large scale production of Jennings' drainpipes and saddles was well underway, expanding into bricks, chimney pots, and a wider range of drainage pipes and fittings. Jennings died in 1882 but his works continued in business until 1967 (information from Poole Museum displays, 2014).

B1.3 Pike Brothers

The Pike Brothers, originally clay miners from Devon, began to exploit the deposits of ball clay on the northern side of the Purbeck Ridge from the end of the 18th century (Myers 1973, 9). Kelly's Directory of 1923, a trade directory, notes the extent of the Pike Brothers' business:

'The clay mines and quarries of Messrs. Pike Brothers at Church Knowle are many acres in extent, and thousands of tons of potters' fire, pipe, tile and other kinds of clay are annually sent to all parts of the world; the railway laid down from the pits by Mr W. J. Pike with a gradual incline to the boats at the mouth of the river Frome, conveys the clay at a very trifling cost' (OPC Dorset 2017)

B1.4 Branksea Clay and Pottery Company

Brownsea Island was for sale in 1852 when Colonel William Waugh and his wife Mary visited the island. She was an amateur geologist and noted white clay deposits on the ground. The Colonel, appreciating the possible economic importance of such deposits, then commissioned a geologist to assess the clay. The geologist confirmed the value of the clay as being in the region of a million pounds, prompting the Waughs to purchase the island, at a cost of £13,000 (Battrick and Lawson 1978, 19-20). Waugh built a large pottery, three storeys high, at the south-western end of the island. The seven circular brick kilns were able to fire 70,000 bricks in a firing (*ibid*. 23). Approximately 100m to the west was another smaller pottery and associated kiln, for the production of chimney pots, fire bricks and ornate architectural ceramics. The clay was mined from the outcrops of Parkstone Clay on the north of the island. A village, Maryland, was built to house the 200 incoming workers, as well as two piers. A tramway connected the pottery to the piers, with horse-drawn trucks taking the products to the piers to be shipped.

Despite their success in the manufacture of sanitary wares and bricks, the clay was not suited to the manufacture of the fine ceramics that the Waughs hoped to produce, and the more utilitarian ceramics would not provide the necessary return for the considerable expenditure of the venture. The London Bank, which had funded the works, and of which the Colonel was a director, went bankrupt, leaving the Waughs to flee to Spain and most of the villagers to leave the island. Brownsea was sold again in 1873 to the Rt. Hon. George Cavendish-Bentinck M.P. who operated the potteries under the *The Branksea Island Co. Ltd*, but in 1887 they were finally closed for good (Battrick and Lawson 1978, 30).

B1.5 Sandford Pottery, Keysworth Pottery and Sibley Pottery

Clay has been exploited in the Sandford area from at least the 1840s, when Gore Heath was leased for clay digging (Buxton 2012, 26). In 1792 clay was dug at Nundico, with a brick kiln known to have existed here in 1830 (ibid.). Brick kilns of 19th century date are also known from Organford and Trigon. The site of the Sandford Pottery had been in use for brick making from the mid to late 1840s and kilns are known from 1853. The pottery works (originally known as the Victoria Works) was constructed between 1856 and 1860, with the aim of producing fine china, and pottery workers were brought in from Worcestershire and Staffordshire (Buxton 2012 26). The clay pits were located on the other side of the Wareham to Poole road to the factory and the clay had to be transported by railway through a tunnel under the road. Within a couple of years of opening, the white-firing clay that the owners hoped to exploit to manufacture china tablewares had been exhausted and the pottery closed in 1861. In 1866 it was re-opened as a different venture, to extract oil from shale, again failing, but in 1895 was taken over for the production of saltglazed drainpipes and fittings (Buxton 2012, 26). By 1920 the clay had been exhausted and was brought in from Creekmoor, and later from near the Baker's Arms in nearby Lytchett Minster. Sandford Pottery closed in 1966.

A second pottery was opened in Sandford in 1910, Keysworth Pottery, by Lady Amy Baker. Lady Baker used a mixture of red and white clay to create a pottery known as Dorset Marble, and also designed tongue and groove bricks (Buxton 2012, 28). The pottery was in operation until 1930. Keysworth Brickyard was in operation from the 1880s (Buxton 2012, 16). A third pottery opened in 1922, Sibley Pottery, producing brightly coloured tablewares until 1939 (Buxton 2012, 29). Famous clients included Lawrence of Arabia and the widow of Thomas Hardy (Purbeck Mineral and Mining Museum 2011).

B1.6 Kinson Potteries

The potteries at Kinson (formerly known as the Kinson Clayfields and Fired Pottery Company) are said to have exploited 'three different qualities' of clay, all 'under a great depth of sand' (Lands 1980, 48). Work started in the earlier part of the 19th

century, increasing with the building boom in Poole and Bournemouth, and by 'the 1860s the works had twelve kilns, a boiler, engine house, drying sheds, stables and offices' (Lands 1980, 48). The factory produced drainpipes and chimney pots, but also refractory chimney flue bricks for an oilfield in Collingwood, Canada. One of the bricks, stamped 'KINSON, POOLE' was found in a field at Collingwood and returned to the Kinson potteries in 1969 (Lands 1980, 48). The works were purchased by William Carter in 1884, at a point when the business was in decline. It was renamed Kinson Potteries and continued to produce drainpipes, as well as terracotta and stoneware goods. Towards the end of the life of this business, in the 1950s, they moved into decorative pottery, manufacturing fused glass and stoneware dishes. By 1970 the potteries had closed (Lands 1980, 48-9).

B1.7 Elliott's Potteries

Clay suitable for brickmaking was discovered on a farm at Cudnell, Bear Cross (located 8.5km to the north-east of Hamworthy), and a brickworks went into operation from 1880 to 1900, making handmade bricks. When the clay was exhausted, the brickworks moved to higher ground at West Howe (Poole Lane), the location of better quality clay, including the ball clay. In 1912 production was extended to drainpipes, terracotta goods and roofing tiles, as well as bricks. In 1927 stoneware drainpipes and bricks suitable for domestic fireplaces were added to the repertoire. The Bear Cross works were said to be the largest 'employer of labour in the locality', employing 80-100 people at its height (Bevans and Gillett 1993, 16). Another handmade brick company, the 'Kinson Steam Brickworks', was located near to Elliott's Potteries (Lands 1980, 49).

B1.8 The Bourne Valley Potteries

The Bourne Valley Potteries were opened in 1853 by Sharp, Jones and Company Ltd. The business was expanded in 1886 to include land at Bourne Bottom, and the two sites were connected by a standard gauge railway line (Wilson, 1962).

B1.9 Upton Brickworks

Bricks were made at Upton from at least the mid-19th century. The clay was dug by hand, placed in buckets and taken to the kilns, located up to 1 mile away, using a wire ropeway (Upton Millennium Project 2000). The handmade bricks were fired in a continuous kiln during the summer. Production was at its height during the 1950s, with clay still being moved across the works using the buckets and ropeway rather than motor vehicles. The brickworks exploited the Oakdale Clay, the clay colour varying from pale/medium orange to pale yellow. Lytchett Minster Church is thought to have been built from the pale yellow firing bricks (Purbeck District Council 2012). Three types of brick were manufactured, Farnhams (sandblasted, red bricks), reds (sandblasted, red bricks but a different shape) and commons (not sandblasted). The works closed in 1968 as the cost of coal used to fire the kilns made the venture uneconomical (Upton Millennium Project 2000).

BLANK PAGE

Additional data for Chapter 4: The ceramic assemblages sampled for analysis

Fabric	Year of ex	cavation		
	1969		2010	
	Number	Weight (g)	Number	Weight (g)
Imported wares	12	213		
Micaceous fabric, French import	1	150		
?imported ware, micaceous	1	2		
Samian	3	12		
Terra Nigra	4	19		
Whiteware	3	30		
Poole Harbour wares	262	4126		
PH ware (v coarse)	15	158	5	41
PH ware (coarse)	33	345	37	193
PH ware (medium)	184	3186	219	2405
PH ware (fine)	23	285	9	182
PH ware (mixed sizes)			18	235
Sandy ware, ?PH	7	152		
Other coarsewares	3	32		
Calcareous fabric			2	13
Greyware with calcareous inclusions	2	18		
Grog-tempered	1	14		
Vesicular fabric			1	13
Total	277	4371	291	3082

Table C1. Fabrics identified in the Green Island assemblage from the 1969 and 2010 investigations (data from author)

Form	Form	Excav	ation
code		1969	2010
Jars			
R6	Flat-rimmed jar	12	4
R4/R33	Bead-rimmed jar, tight bead defined by groove	11	3
R25	Necked jar, Brailsford type 5	5	
R13	High-shouldered jar with upstanding rim	3	
R13:lug	High-shouldered jar with upstanding rim and coutnersunk handle	1	
R29/R3	Everted rim jar	2	1
R22	Jar with short neck and out-turned rim	2	
R7	Upright-necked jar with proto-bead rim and slight internal bevel	1	2
R8	Small jar with upright neck and bead rim, defined by two horizontal grooves		1
R9	Jar with rounded profile and short, out-turned rim	1	2
R14	Jar with proto-bead rim	1	
R15	Necked jar with out-turned rim, slack-shouldered	1	
R23	Round-bodied jar with folded bead rim	1	
R32	Narrow-necked jar with out-turned rim and bead effect	1	
Bowls and	lids		
R18	Round-bodied bowl with bead rim	27	
R11	Bowl with expanded grooved rim	9	
WA22	Flat-rimmed bowl (RB)	2	
R2	Round-bodied vessel, probably a bowl, with beaded rim, defined by groove	1	3
R31	Bowl with short neck, out-turned rim and carinated shoulder	1	
R5	Hemispherical bowl with flat-topped, squared rim	1	1
R11: lid	Bowl/lid with epanded grooved rim	1	
R10	Lid with beaded rim	2	1
R17	Plain rounded rim from bowl or lid	2	
R21/R24	Lid with plain rounded rim	2	
R16	Lid with irregularly beaded rim	1	
Bowl/jar, u	ncertain		
R19	Bead-rimmed vessel unspecified	36	
R26	Necked vessel, unspecified	14	
R30	Vessels with out-turned/everted rims, unspecified	10	
R1	Round-bodied vessel with proto-bead rim		2
R34	Bead-rimmed vessel with groove under rim and internal bevel	2	
R27	Necked vessel with out-turned beaded rim, flattened on top	2	
R12	Bead-rimmed vessel with grooved rim	1	
Saucepan p	pot	I	<u> </u>
R20	Saucepan pot with feint groove around rim	1	
Handles		l	1
H2	Countersunk handles	2	
Total		159	21

Table C2. Forms of Poole Harbour wares identified from the 1969 and 2010 excavations at Green Island (quantification by number of vessels)

Fabric/phase	6D	6E	6F	6G	6H	7A	Mean for all phases
A: Poole Harbour sandy wares	24.3	28.8	53.9	77.1	84.2	93.2	71.3
B: flint-gritted	0.7	2.0	1.3	0.7	0.6	0.9	0.9
C: Shelly wares	8.1	3.2	3.3	4.5	2.0		3.0
D: Non-PH sandy wares	47.5	32.1	22.6	10.0	7.7	4.8	13.6
E: Compact, fine clays	6.0	2.5	1.6	0.5	0.3		0.9
F: Oolitic	4.9	16.6	11.2	4.1	3.2	0.9	6.0
G: Grog-tempered	0.4	0.6	0.2	0.1	0.2		0.2
H: Mixed coarse temper	8.1	12.3	3.9	1.4	0.6	0.2	2.6
I: Limestone-gritted		1.8	1.6	1.3	0.8		1.1
J: SW British wares		0.1	0.4	0.3	0.3		0.3
K: Armorican fine ware					0.0		

Table C3. Percentage of later prehistoric fabric groups present in each phase from the 1985-6 excavations at Maiden Castle (adapted from Brown 1991, Table 66)

Table C4. Early Iron Age forms from Gussage All Saints (information from Wainwright 1979)

				No. o	f vessel	ls in ea	ch fal	oric g	roup	
Vessel type no	Vessel type description	Total no. of vessels	% in Group 1 fabrics	1	2	3	4	5	6	7
1	Coarse, shouldered jars	303	1.0	3	285	2	1		12	
2	Fine shouldered jars	46	2.2	1	34				11	
3	Coarse round shouldered bowls	95	4.2	4	89				2	
4	Fine round shouldered bowls	64	4.7	3	48				13	
14	Strap lugs	15	20	3	9				3	
6	Coarse globular jars	22			17		1		4	
8	Globular bowls	11			9				2	
9	Haematite coated bowls	29			27			2		
10	Straight-sided dishes	2			2					
13	Externally expanded rims	5			2		2		1	
19	Wasters (?large shouldered jar; no rim)	1			1					
27	Furrowed bowls	1					1			
	Total	594		14	523	2	5	2	48	0

Table C5. Early to Middle Iron Age forms from Gussage All Saints (information from
Wainwright 1979)

				No. of	f vessel	ls in ea	ch fat	oric g	roup	
Vessel type no	Vessel type description	Total no. of vessels	% in Group 1 fabrics	1	2	3	4	5	6	7
5	Saucepan pots	157	3.2	5	132	7	13			
21	Shallow bowls	48	18.8	9	35		4			
11	Angular bowls	18			16				1	
	Total	223		14	183		17		1	

Table C6. Middle Iron Age forms from Gussage All Saints (information from Wainwright 1979)

				No. o	f vesse	ls in ea	ch fal	oric g	roup		
Vessel	Vessel type description	Total no.	% in	1	2	3	4	5	6	7	
type		of vessels	Group								
no			1 fabrics								
7	Large jars with everted rims	18	11.1	2	15				1		
20	Proto-bead rim bowls and jars	211	25.2	53	155	2	1				
23	Flat rimmed barrel jars	41	65.9	27	11		2				1
30	Necked bowls	5	60	3	2						
22	Deep bowls	41			38				3		
25	Barrel jars	23			16	3	3				1
26	Bowls with externally expanded rim	9			7				2		
	Total	352		85	248	5	6	0	6	2	

Table C7. Middle to Late Iron Age forms from Gussage All Saints (information from Wainwright 1979)

				No. o	f vesse	ls in ea	ch fal	oric g	roup	
Vessel type no	Vessel type description	Total no. of vessels	% in Group 1 fabrics	1	2	3	4	5	6	7
28	Cordoned bowls	45	91.1	41	3				1	
48	Globular jars	13	7.7	1	9	1	1	1		
24	Large jars with bead rims	6			4		2			
	Total	64		42	16	1	3	1	1	

				No. of	vessel	s in ea	ch fab	oric gi	roup		
Vessel type no	Vessel type description	Total no. of vessels	% in Group 1 fabrics	1	2	3	4	5	6	7	
29	Moulded rims	4			4						
35	Miscellaneous bead rims	941	97.8	920	19		1				1
36	Bead rim bowls	153	96.1	147	2		4				
37	Bead rim jars	14	92.9	13			1				
38	Jars with upright rims	172	98.8	170	2						
39	Hengistbury Class B bowls	38	52.6	20	18						
40	Flat rimmed jars	139	96.4	134	4		1				
41	Fine bowls with hollow necks and simple rims	40	97.5	39	1						
42	Shouldered bowls	6	66.7	4	2						
43	Shallow dishes	2	100	2							
44	Bowls with hollow necks and rolled rims	67	98.5	66			1				
45	Bowls with a channel round the rim	10	100	10							
46	Corrugated jars	1	100	1							
47	Large storage jars	18	66.7	12	1		3				2
49	Tankards	2	100	2							
53	Flagons	1	100	1							
54	Lids	46	97.8	45							
55	Countersunk lugs	53	98.1	52							
56	Platters	2	100	2							
57	Burnished jars	6	100	6							
58	Multiple bead rims	3	100	3							
	Total	1714		1649	49	0	11	0	0	3	

 Table C8. Late Iron Age forms from Gussage All Saints (information from Wainwright 1979)

Form	Form group	Fabrics	s (after Bro	wn 2006)			
		Ala	A1b	Alc	A1d	Ale	Total
Bowls and	l dishes				I		
BC3.1	Straight-sided bowl with bead rim		4				4
BC3.2	Bowl with plain or bead rim and slightly curving wall, footring base	3	4				7
BC3.3	Bowl with rounded profile, plain or beaded rim, flat base	5	24	3	1		33
BC3.41	Shallow bowl with plain expanded rim		1				1
BC3.42	Bowl with expanded and grooved rim	1	1	1			3
BC3.7	Bowl with curved wall and channel round the rim						0
BD1	Wide-mouthed bowl with at least two cordons	1					1
BD2.1	Wide-mouthed bowl with single cordon	3	2				5
BD2.2	Wide-mouthed bowl with single cordon	1					1
BD4.2	Simple bowl with with upright neck or slack profile with everted rim	6	1				7
BD4.4	Necked bowl with sharp shoulder angle	1					1
BD7.0	Tazze	2	1				3
DI0	Shallow, open vessel with straight or slightly curved walls and chamfered base		3				3
Jars		I			I		
JB4.2	Barrel-shaped jar with lug handles at the shoulder	2					2
JC1.1	Barrel-shaped jars with flattened rim top		1	1			2
JC2.0	High-shouldered jars		1	3	1	1	6
JC2.2	Barrel-shaped jars			2			2
JC2.3	High-shouldered jars		2	2	1		5
JC3.1	High-shouldered jar with beaded rim	2	27	5			34
JC3.1/B	High-shouldered jars with short upstanding or beaded rims	2	13	3			18

Table C9. Forms present at Barton Field, Tarrant Hinton, in Poole Harbour fabrics (information from Brown 2006)

Form	Form group	A1a	A1b	A1c	A1d	Ale	Total
JC3.11	High-shouldered jar with lid-seated rim			1			1
JC4.1	Flat-rimmed jar (small)		11				11
JC4.2	Flat-rimmed jar (large)		14	5	1		20
JD3.0	S-profiled jar	1					1
JD4.1	Tripatrite jar with everted rim, rounded shoulder	2	3				5
JD4.4	Jar with rounded profile, elongated lipped rim		5				5
JD4.41	Jar with rounded profile, elongated lipped rim and countersunk lugs	1	4	3			8
JD4.2	Jar with everted or elongated rim and sharp shoulder angle, decorated		2				2
JD4.43	Small jar with elongated, hollowed rim, resembles a butt beaker	1					1
JD4.5	Jar with rounded profile and short, out-turned rim, squat neck		б	1			7
JE1.1	Ovoid jar with cordons on body and upstanding or out-turned rim	1					1
JE4.0	High shouldered necked jar	5	7	2			14
JE4.2	Necked jar (Brailsford type 5)	4	15	1			20
Saucepa	n pots		L				
PB1.0	Saucepan pot, straight sided or slightly curved	3	1	1			5
Lids					I	I	
L1	Lid with flattened profile	2	2				4
L2	Lid with curved profile	2	8				10
Bases			L				
B1	Pedestal base, sometimes with omphalos	5	1				6
B2	Pedestal base, no omphalos	3	3				6
B3	Footring base		2				2
B4	Flat base with outstanding foot		1				1
B5	Plain, flat base	2	19	9	1	1	32
Totals		61	189	43	5	2	300

BLANK PAGE

Additional data for Chapter 5 - Fieldwork

Details of the sites of 19th and 20th century clay exploitation ('historic workings') in the Poole Harbour region are presented in Table D1. The clay types are presented in full below. Summaries of the colours (taken with the aid of a Munsell Soil-Color Chart) and shrinkage rates of the briquettes are given in Tables D2-D29.

Key for abbreviations of deposits

ALV: Alluvium **BRKS: Branksome Sand BRTS: Broadstone Sand BRTC:** Broadstone Clay CBBC: Creech Brick Clay Member CKMC: Creekmoor Clay HEAD: Head LC: London Clay MGR: Made Ground OAKC: Oakdale Clay OAKS: Oakdale Sand POOL: Poole Formation PKC: Parkstone Clay **RTD:** River Terrace Deposits W: Wealden Group WRMS: Warmwell Farm Sand WRWS: Warmwell Sand

HW No.	Site	Location	Easting	Northing	Type of site	Deposit	Map year
1	South Western Pottery	Parkstone	403832	90972	Pottery	РКС	1890s
2	Old Kiln	Branksome	405571	93592	Kiln (?brick)	HEAD	1900s
3	Brick works	Branksome	405745	93383	Brick Works	HEAD	1900s
4	Brick works	Branksome	406010	93712	Brick Works	HEAD/PKC	1900s
5	Brick works	Branksome	406161	93630	Brick Works	HEAD/PKC	1900s
6	Clay pit	Branksome	406087	93182	Clay pit (?brick)	HEAD	1900s
7	Creekmoor Brick and Tile Works	Creekmoor	400325	93731	Clay pit (brick and tile)	СКМС	1880s
8	Creekmoor Brick and Tile Works	Creekmoor	400344	93655	Clay pit (brick and tile)	СКМС	1880s
9	Creekmoor Clay Pit	Creekmoor	400089	93200	Clay pit (?brick)	СКМС	1920s
10	Newton Vale Brickworks	N of Newtown, S of Alderney	403301	93840	Clay pit (brick)	MGR/BRKS	1880s
11	Newton Vale Brickworks	N of Newtown, S of Alderney	403406	93866	Clay pit (brick)	РКС	1880s
12	Newton Vale Brickworks	N of Newtown, S of Alderney	403481	93914	Clay pit (brick)	РКС	1880s
13	New Town Brick Works	New Town	403106	93374	Brick Works	РКС	1880s
14	New Town Brick Works	New Town	403216	93496	Brick Works	РКС	1880s
15	New Town Brick Works	New Town	403290	93514	Clay pit (brick)	РКС	1880s
16	Fox Holes Brick Works	Foxholes	402946	93195	Brick Works	РКС	1880s
17	Fox Holes Brick Works	Foxholes	403050	93077	Brick Works	РКС	1880s
18	Fox Holes Brick Works	Foxholes	403029	92992	Clay pit (brick)	РКС	1880s
19	Kinson Brick Works	Foxholes	403097	92849	Brick Works	РКС	1880s
20	Brick works	Foxholes	403268	92802	Clay pit (brick)	BRKS	1880s
21	Brick works	Kinson	403158	92727	Brick Works	BRKS	1880s
22	Brick works	Oakdale	402787	92680	Brick Works	РКС	1880s

Table D1. Details of sites of historic workings (HW) for brick and pottery production

HW No.	Site	Location	Easting	Northing	Type of site	Deposit	Map year
23	Kinson Pottery	Oakdale	403020	92596	Pottery	РКС	1880s
24	Kinson Pottery	Oakdale	403153	92631	Clay pit (pottery)	РКС	1880s
25	Longfleet Brick Works	Longfleet	402439	93338	Clay pit (brick)	POOL	1880s
26	Newton Vale Tile Works	N of Newtown	403529	93643	Tile Works	BRKS	1920s
27	Alderney Brick Works	Alderney	403845	94422	Clay pit (brick)	РКС	1880s
28	Lytchett Matravers	Lytchett Matravers	394901	95425	Clay pit (?brick)	LC	1880s
29	Lytchett Matravers Brick Works	Lytchett Matravers	394798	95188	Clay pit (?brick)	LC	1880s
30	Old clay pit	Lytchett Matravers	395822	96249	Clay pit (?brick)	HEAD/WRWS	1880s
31	Old clay pits	Lytchett Matravers	395705	95671	Clay pit (?brick)	BRTC	1880s
32	Jubilee Brick Works	Lytchett Matravers	396283	95642	Brick Works	BRTC	1880s
33	Beacon Hill Pottery	Beacon Hill	397647	94434	Pottery	POOL	1880s
34	Old clay pit	Beacon Hill	397765	94363	Clay pit (?pottery)	OAKC	1880s
35	Old clay pit	Beacon Hill	397633	94591	Clay pit (?pottery)	BRTC	1880s
36	Brick works	Beacon Hill	397760	94898	Brick Works	POOL	1880s
37	Clay pit	Beacon Hill	397508	94869	Clay pit (?brick)	BRTC	1880s
38	Clay pit	Beacon Hill	397725	94950	Clay pit (brick)	BRTC	1880s
39	Old clay pit	Beacon Hill	398212	94938	Old clay pit	POOL	1880s
40	Old clay pit	Beacon Hill	397283	94326	Old clay pit	POOL	1880s
41	Clay pit	Beacon Hill	398061	94908	Clay pit	BRTC	1900s
42	Clay pit	Broadstone	400801	95713	Clay pit (brick)	BRTC	1880s
43	Gravel Hill Brick Works	Dunyeats Hill	401434	96982	Clay pit (brick)	BRTC	1880s
44	Gravel Hill Brick Works	Dunyeats Hill	401512	96976	Clay pit (brick)	BRTC	1880s
45	Broadstone Pottery	Darby's Corner	401031	94484	Pottery	CKMC/HEAD	1920s
46	Lynch Brick Works	Corfe Common	396191	80535	Clay pit (brick)	W	1880s
47	Creech Brick Works	Creech Barrow Hill	392337	82636	Clay pit (brick)	CBBC	1900s
48	Creech Brick Works	Creech Barrow Hill	392382	82593	Brick Works	BRKS	1900s
49	Clay pit	Breach Plantation	391455	82987	Clay pit (?pottery)	WGR/PKC	1900s
50	Clay pit	Breach Plantation	391753	82924	Clay pit (?pottery)	РКС	1900s

HW No.	Site	Location	Easting	Northing	Type of site	Deposit	Map year
51	Old clay pit	Furzebrook	391988	83927	Clay pit (?pottery)	BRTC	1880s
52	Old clay pit	Furzebrook	392069	83200	Clay pit (?pottery)		1880s
53	Old clay pit	Furzebrook	392340	83654	Clay pit (?pottery)		1880s
54	Clay pit	Furzebrook	392591	83425	Clay pit (?pottery)		1880s
55	Clay pit	Furzebrook	392574	83193	Clay pit (?pottery)		1880s
56	Old clay pit	Furzebrook	392765	83251	Clay pit (?pottery)		1880s
57	Old clay pit	Furzebrook	393522	83339	Clay pit (?pottery)		1880s
58	Clay pit	Norden	393882	83112	Clay pit (?pottery)	BRTC	1880s
59	Clay pit	Norden	394344	83126	Clay pit (?pottery)	BRTC	1880s
60	Old clay pit	Norden	395031	83146	Clay pit (?pottery)	BRTC	1880s
61	Norden Clay Works	Norden	395696	82740	Clay pit (?pottery)	WGR/CKMC	1880s
62	Norden Clay Works	Norden	396003	82844	Clay pit (?pottery)	WGR/CKMC	1880s
63	Norden Clay Works	Norden	395689	82651	Shaft	WGR/CKMC	1880s
64	Thrasher's Pit	Thrasher's Heath	396947	83946	Clay pit (pottery)	BRTC	1890s
65	Thrasher's Pit	Thrasher's Heath	396980	83860	Thrasher's Pit	BRTC	1890s
66	Hamworthy Junction Brick Works /Hamworthy Junction Pottery	Hamworthy	398777	91677	Clay pit	OAKC	1880/1920s
67	Hamworthy Junction Brick Works /Hamworthy Junction Pottery	Hamworthy	398711	91522	Clay pit	OAKC	1880/1920s
68	White Works Pottery	Hamworthy	400212	90205	Pottery	OAKC	1920s
69	Architectural Pottery	Hamworthy	400360	90391	Pottery	OAKS	1920s
70	Elliott's Brickworks	Bear Cross	405905	96778	Brick Works		1900s
71	Elliott's Brickworks	Bear Cross	Unknown	Unknown	Brick and Pottery Works	Unknown	Not on map
72	Brick works	West Howe	405380	95381	Clay pit (brick)	MGR/BRKS	1920s
73	Brick works	West Howe	405461	95204	Clay pit (brick)	MGR/BRKS	1920s

HW No.	Site	Location	Easting	Northing	Type of site	Deposit	Map year
74	Brick works	East Howe	407096	95550	Clay pit (brick)	POOL	
75	Brick works	Moordown	408405	94788	Clay pit (brick)	BRKS	1870s
76	Brownsea Pottery	Brownsea Island	401300	87568	Pottery	РКС	1880S
77	Brownsea Pottery	Brownsea Island	401437	87526	Kilns	РКС	1880S
78	Brownsea Pottery	Brownsea Island	401389	87601	Clay pits (pottery)	РКС	1880S
79	Brownsea Pottery	Brownsea Island	402023	88437	Clay pit (pottery)	РКС	1880S
80	Brownsea Pottery	Brownsea Island	401856	88522	Clay pits (pottery)	РКС	1880S
81	Brownsea Pottery	Brownsea Island	401646	88520	Clay pit (pottery)	РКС	1880S
82	Brownsea Pottery	Brownsea Island	402024	88460	Shafts	РКС	1880S
83	Brownsea Pottery	Brownsea Island	401816	88579	Shafts	РКС	1880S
84	Brownsea Pottery	Brownsea Island	401636	88540	Shafts	РКС	1880S
85	Brownsea Pottery	Brownsea Island	401711	88558	Shafts	РКС	1880S
86	Barnes Brick Works	Brownsea Island	402425	87418	Clay pit (brick)	BRKS	1880s
87	Brick works	Lilliput	404440	89771	Clay pit (brick)	BRKS	1880s
88	Blake Hill Pottery	Blake Hill	404202	90539	Pottery	BRKS	1900s
89	Brick works	Corfe Mullen	398607	96555	Clay pit (brick)	POOL	1900S
90	Brick works	Hill View	398230	95715	Brick Works	POOL	1900S
91	Brick works	Morden	391607	94642	Clay pit (brick)	LC	1880s
92	Morden Brick Yard	Morden	391481	94452	Clay pit (brick)	WRMS	1880s
93	Morden Brick Yard	Morden	391542	94409	Clay pit (brick)	LC	1880s
94	Ridge Clay Works	Arne	393792	86563	Clay Works	BRTC	1880s
95	Sandford Works	Sandford	392464	89438	Clay pit (pottery)	OAKC	1880s
96	Brick Yard	Sandford	392749	89412	Brick Yard	RTD4/BRTS	1880s
97	Clay pit	Sandford	392694	89116	Clay pit (?pottery)	RTD4/BRTS	1880s
98	Brick Yard	Sandford	392760	88902	Clay pit (brick)	WGR/OAKC	1880s
99	Clay pit	Sandford	392736	88776	Clay pit	OAKC	1880s
100	Old clay pit	Newton Heath	400519	83702	Clay pit (?pottery)	BRTC	1880s
101	Old clay pit	Newton Heath	400553	83451	Clay pit (?pottery)	BRTC	1880s

HW No.	Site	Location	Easting	Northing	Type of site	Deposit	Map year
102	Old clay pit	Newton Heath	400882	83476	Clay pit (?pottery)	BRTC	1880s
103	Old clay pit	Newton Heath	401992	83066	Clay pit (?pottery)	BRTC	1880s
104	Old clay pit	Newton Heath	401907	82832	Clay pit (?pottery)	BRTC	1880s
105	Old clay pit	Newton Heath	401730	82711	Clay pit (?pottery)	BRTC	1880s
106	Brick works	Wadmore, Studland	402962	82990	Kilns	BRTC	1900s
107	Brick works	Wadmore, Studland	403006	82942	Possible location of clay pit	BRTC	1900s
108	Newton Clay Works	Newton Heath	400852	84610	Clay pit (pottery)	BRTC	1880s
109	Godlingston Brick and Tile Works	Godlingston	402044	80334	Brick and tile works	W	1900s
110	Brick works	Godlingston	401560	79814	Brick Works	W	1900s
111	Brick kiln	Arne	395532	86838	Brick kiln	BRTC	1880s
112	Swineham Farm	Wareham	393609	87943	Centre point for Bestwall Quarry site	RTD2/BRTC	N/A
113	Brick pit	Sleight	398849	98688	Brick pit (listed by Bristow et al 1991)	ALV/LC or WPF	1920s
114	Brickworks	Oakdale	402597	92148	Brickworks	РКС	1880s
115	Dupe's Brickworks	Oakdale	402900	92300	Brick kiln	РКС	1880s
116	Clay pits south-west of Halfway Inn	Norden	393700	84000	Clay pits	РКС	ADS/NT
117	Lytchett Brick Works	Upton	398195	93422	Brick works, kiln	OAKC	1930s

D1. Briquettes made from samples of Creekmoor Clay

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	286	10 YR 3/2, very dark grayish brown	2.5Y 5/2, grayish brown	5YR 7/6, reddish yellow	600°	16
1	289	10 YR 3/2, very dark grayish brown	2.5Y 5/2, grayish brown	5YR 7/6, reddish yellow	800°	16
1	287	10 YR 3/2, very dark grayish brown	2.5Y 5/2, grayish brown	5YR 7/6, reddish yellow	1000°	18
2	291	10 YR 5/2, grayish brown	2.5Y 6/2, light brownish gray	5YR 7/6, reddish yellow	600°	8
2	292	10 YR 5/2, grayish brown	2.5Y 6/2, light brownish gray	5YR 7/6, reddish yellow	800°	8
2	293	10 YR 5/2, grayish brown	2.5Y 6/2, light brownish gray	7.5YR 8/3, pink	1000°	Exploded
3	294	10 YR 5/2, grayish brown	2.5Y 6/2, light brownish gray	5YR 7/6, reddish yellow	600°	6
3	295	10 YR 5/2, grayish brown	2.5Y 6/2, light brownish gray	5YR 7/6, reddish yellow	800°	8
3	296	10 YR 5/2, grayish brown	2.5Y 6/2, light brownish gray	7.5YR 8/4, pink	1000°	10

Table D2. Forming and firing colours of briquettes from clay from Upton Country Park (Creekmoor Clay)

D2. Briquettes made from samples of Oakdale Clay

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
4	214	10YR 6/4, light yellowish brown	2.5Y 8/3, pale brown	2.5YR 7/6, light red	600°	6
4	217	10YR 6/4, light yellowish brown	2.5Y 8/3, pale brown	2.5YR 7/6, light red	800°	6
4	217	10YR 6/4, light yellowish brown	2.5Y 8/3, pale brown	7.5YR 8/3, pink	1000°	6

Table D3. Forming and firing colours of briquettes from clay from Sandford (Oakdale clay)

Table D4. Forming and firing colours of briquettes from clay from East Holme (Oakdale clay)

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	327	$2.5Y_{1}$ 8, white [white page]) with	10YR_/2 8, very pale brown	5YR 8/4, pink	600°	6
		streaks of 2.5YR 4/8, red	(white page)			
1	328	$2.5Y_{1}$ 8, white [white page]) with	10YR_/2 8, very pale brown	7.5YR 8/3, pink	800°	6
		streaks of 2.5YR 4/8, red	(white page)	-		
1	329	2.5Y_/1 8, white [white page]) with	10YR_/2 8, very pale brown	7.5YR_/2 8.5, pinkish white	1000°	6
		streaks of 2.5YR 4/8, red	(white page)	(white page)		
2	332	2.5Y_/1 8, white [white page]) with	10YR_/2 8, very pale brown	5YR 8/4, pink	600°	10
		streaks of 2.5YR 4/8, red	(white page)	_		
2	331	2.5Y_/1 8, white [white page]) with	10YR_/2 8, very pale brown	7.5YR 8/3, pink	800°	8
		streaks of 2.5YR 4/8, red	(white page)	-		
2	333	2.5Y_/1 8, white [white page]) with	10YR_/2 8, very pale brown	7.5YR_/2 9, pale yellowish pink	1000°	10
		streaks of 2.5YR 4/8, red	(white page)	(white page)		

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
_	_				fired to	(%)
1	211	5YR 5/2, reddish gray	10YR 7/2, light grey	7.5YR 8/3, pink	600°	8
1	212	5YR 5/2, reddish gray	10YR 7/2, light grey	7.5YR 8/3, pink	800°	8
1	213	5YR 5/2, reddish gray	10YR 7/2, light grey	10YR 8/3, very pale brown	1000°	Exploded
2	208	5YR 5/2, reddish gray	10YR 7/2, light grey	5YR 8/4, pink	600°	8
2	209	5YR 5/2, reddish gray	10YR 7/2, light grey	5YR 8/4, pink	800°	8
2	210	5YR 5/2, reddish gray	10YR 7/2, light grey	10YR 8/3, very pale brown	1000°	8

Table D5. Forming and firing colours of briquettes from clay from Longfleet Lodge (Oakdale clay)

Table D6. Forming and firing colours of briquettes from clay from Upton, Poole Road (Oakdale clay)

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	236	10YR 6/4, light yellowish brown	2.5Y 7/4, pale brown	5YR 6/8, reddish yellow	600°	6
1	235	10YR 6/4, light yellowish brown	2.5Y 7/4, pale brown	5YR 7/8, reddish yellow	800°	4
1	234	10YR 6/4, light yellowish brown	2.5Y 7/4, pale brown	5YR 7/6, reddish yellow	1000°	6
2	232	7.5YR 5/4, brown	10YR 6/4, light brown	2.5YR 5/8, red	600°	4
2	230	7.5YR 5/4, brown	10YR 6/4, light brown	2.5YR 6/8, light red	800°	4
2	233	7.5YR 5/4, brown	10YR 6/4, light brown	2.5YR 5/8, red	1000°	4
3	227	10YR 5/4, yellowish brown	2.5 Y 6/6, olive yellow	2.5YR 5/8, red	600°	4
3	228	10YR 5/4, yellowish brown	2.5 Y 6/6, olive yellow	2.5YR 5/8, red	800°	4
3	229	10YR 5/4, yellowish brown	2.5 Y 6/6, olive yellow	2.5YR 5/8, red	1000°	4

D3. Briquettes made from samples of Broadstone Clay

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature fired to	Shrinkage (%)
2	33	Not recorded	10YR 7/2, light grey	7.5YR_/2 8, pinkish white (white page)	600°	10
2	34	Not recorded	10YR 7/2, light grey	7.5YR_/2 8.5, pinkish white (white page)	800°	6
2	35	Not recorded	10YR 7/2, light grey	2.5Y_/19, white (white page)	1000°	12
3	37	Not recorded	2.5Y 7/2, light grey	7.5YR 8/3, pink	600°	4
3	38	Not recorded	2.5Y 7/2, light grey	5YR 8/3, pink	800°	4
3	39	Not recorded	2.5Y 7/2, light grey	2.5Y_/2 8.5, pale yellow (white page)	1000°	4
5	30	Not recorded	2.5Y 7/2, light grey	5YR 7/4, pink	600°	4
5	31	Not recorded	2.5Y 7/2, light grey	5YR 7/4, pink	800°	6
5	32	Not recorded	2.5Y 7/2, light grey	10YR_/2 8.5, very pale brown (white page)	1000°	6
6	40	Not recorded	10YR 7/2, light grey	Exploded	600°	Exploded
6	41	Not recorded	10YR 7/2, light grey	2.5YR 8/4, pink	800°	6
6	42	Not recorded	10YR 7/2, light grey	10YR_/2 8.5, very pale brown (white page)	1000°	10
7	26	Not recorded	10R, 6/4, pale red	10R 6/4, pale red	800°	12
8	23	Not recorded	2.5Y, 8/2, pale brown	5 YR 8/4, pink	600°	8
8	24	Not recorded	2.5Y, 8/2, pale brown	5YR 8/3, pink	800°	4
8	25	Not recorded	2.5Y, 8/2, pale brown	10 YR _/2 9, pale orange yellow (white page)	1000°	6
9	18	Not recorded	2.5Y 8/1, white	5YR 8/2, pinkish white	600°	6
9	19	Not recorded	2.5Y 8/1, white	10YR_/2 8, very pale brown (white page)	800°	6
9	20	Not recorded	2.5Y 8/1, white	7.5YR_/2 8.5, pinkish white (white page)	1000°	8
10	20a	Not recorded	2.5Y 7/3, pale brown	5 YR 7/4, pink	600°	4
10	21b	Not recorded	2.5Y 7/3, pale brown	7.5YR 7/4, pink	800°	4
10	22	Not recorded	2.5Y 7/3, pale brown	10 YR _/2 8.5, very pale brown (white page)	1000°	6

Table D7. Forming and firing colours of briquettes from clay from south of Bramble Bush Bay (Broadstone clay)

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
	-				fired to	(%)
1	275	7.5YR 5/1, gray	10YR 8/1, white	10YR_/1 8.5 white (white page)	600°	4
1	276	7.5YR 5/1, gray	10YR 8/1, white	10YR_/2 8.5 very pale brown	800°	2
				(white page)		
1	277	7.5YR 5/1, gray	10YR 8/1, white	10YR_/2 9.5, pale orange yellow	1000°	4
				(white page)		
2	281	10YR 6/3, brown	$2.5Y_{2}$ 8, pale yellow (white	5YR 8/4, pink	600°	6
			page)			
2	278	10YR 6/3, brown	2.5Y_/2 8, pale yellow (white	5YR 8/3, pink	800°	4
			page)			
2	280	10YR 6/3, brown	2.5Y_/2 8, pale yellow (white	7.5YR_/2 8.5, pinkish white	1000°	4
			page)	(white page)		
3	282	10YR 5/2, greyish brown	2.5Y 8/1, white	5YR 8/2, pinkish white	600°	4
3	283	10YR 5/2, greyish brown	2.5Y 8/1, white	5YR 8/2, pinkish white	800°	6
3	284	10YR 5/2, greyish brown	2.5Y 8/1, white	$7.5YR_{2}$, pale yellowish pink	1000°	6
				(white page)		

 Table D8. Forming and firing colours of briquettes from clay from Ower Bay (Broadstone clay)

 Table D9. Forming and firing colours of briquettes from clay from Arne Peninsula (Broadstone clay)

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	339	10YR 6/2, light brownish grey	$10YR_{1}$ 8, white (white	10YR_/2 8.5 very pale brown	600°	4
			page)	(white page)		
1	340	10YR 6/2, light brownish grey	$10YR_{1}$ 8, white (white	10YR_/2 8.5, very pale brown	800°	4
			page)	(white page)		
1	342	10YR 6/2, light brownish grey	$10YR_{1}$ 8, white (white	10YR_/1 9 white (white page)	1000°	4
			page)			
2	338	10YR 6/2, light brownish grey	10YR_/1 8, white (white	7.5YR_/2 8, pinkish white (white	600°	4
			page)	page)		
2	337	10YR 6/2, light brownish grey	$10YR_{1}$ 8, white (white	7.5YR_/2 8.5, pinkish white	800°	4
			page)	(white page)		
2	335	10YR 6/2, light brownish grey	10YR_/1 8, white (white	10YR_/2 9 pale orange yellow	1000°	2
			page)	(white page)		

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	240	10YR 6/4, light yellowish brown	2.5Y 8/2, pale brown	5YR 8/4, pink	600°	4
1	241	10YR 6/4, light yellowish brown	2.5Y 8/2, pale brown	5YR 8/4, pink	800°	6
1	242	10YR 6/4, light yellowish brown	2.5Y 8/2, pale brown	10YR_/2 8.5, very pale brown	1000°	6
			-	(white page)		
2A	243	10YR 4/2, brown	2.5Y 6/2, light brownish gray	5YR 8/4, pink	600°	2
2A	244	10YR 4/2, brown	2.5Y 6/2, light brownish gray	5YR 8/4, pink	800°	2
2B	250	2.5 Y 7/3, pale brown	2.5Y 8/2, pale brown	7.5YR 8/3, pink	600°	4
2B	249	2.5 Y 7/3, pale brown	2.5Y 8/2, pale brown	7.5YR 8/3, pink	800°	6
2B	248	2.5 Y 7/3, pale brown	2.5Y 8/2, pale brown	10YR_/2 9.5, pale orange yellow	1000°	6
		_	-	(white page)		
2A/2B	245	2.5Y 6/3, light yellowish brown	2.5Y 7/2, light gray	5YR 8/4, pink	600°	2
2A/2B	246	2.5Y 6/3, light yellowish brown	2.5Y 7/2, light gray	7.5YR 8/4, pink	800°	6
2A/2B	247	2.5Y 6/3, light yellowish brown	2.5Y 7/2, light gray	10YR_/2 8.5, very pale brown	1000°	6
				(white page)		

Table D10. Forming and firing colours of briquettes from clay from Arne, south of Bank Gate Cottages (Broadstone clay)

Table D11. Forming and firing colours of briquettes from clay from Arne Beach (Broadstone clay)

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1A	407	10YR 6/3, pale brown	10YR 8/1, white	7.5YR 8/2, pinkish white	800°	8
1B	408	10YR 6/3, pale brown	10YR 8/1, white	7.5YR 8/2, pinkish white	800°	4
2A	409	10YR 6/3, pale brown	2.5Y 8/2, pale brown	5YR 8/4, pink	800°	6
2B	410	10YR 6/3, pale brown	2.5Y 8/2, pale brown	5YR 8/4, pink	800°	4

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
-	_				fired to	(%)
1	2	Not recorded	2.5Y 6/2, light brownish grey	5YR 7/6, reddish yellow	600°	12
1	1	Not recorded	2.5Y 6/2, light brownish grey	5YR 7/6, reddish yellow	800°	10
2	3	Not recorded	2.5Y 6/6, olive yellow	2.5YR 6/8, light red	600°	8
2	4	Not recorded	2.5Y 6/6, olive yellow	2.5YR 6/8, light red	800°	6
2	5	Not recorded	2.5Y 6/6, olive yellow	2.5YR 6/8, light red	1000°	10
3	6	Not recorded	2.5Y 6/6, olive yellow	2.5YR 6/8, light red	600°	6
3	7	Not recorded	2.5Y 6/6, olive yellow	2.5YR 6/8, light red	800°	6
4	9	Not recorded	10YR 6/3, pale brown	5YR 7/6, reddish yellow	600°	6
4	10	Not recorded	10YR 6/3, pale brown	5YR 7/6, reddish yellow	800°	6
4	12	Not recorded	10YR 6/3, pale brown	10YR 8/3, very pale brown	1000°	8
5	14	Not recorded	2.5Y 7/3, pale brown	5YR 8/4, pink	600°	6
5	15	Not recorded	2.5Y 7/3, pale brown	5YR 8/4, pink	800°	8
5	16	Not recorded	2.5Y 7/3, pale brown	10 YR _/2 8.5, very pale brown	1000°	5
				(white page)		

Table D12. Forming and firing colours of briquettes from clay from Godlingston Heath (Broadstone clay)

Table D13. Forming and firing colours of briquettes from clay from Redcliffe Farm, Ridge (Broadstone clay)

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	300	7.5YR 5/2, brown	10YR 6/2, light brownish gray	5YR 7/4, pink	600°	6
1	299	7.5YR 5/2, brown	10YR 6/2, light brownish gray	5YR 8/3, pink	800°	6
1	301	7.5YR 5/2, brown	10YR 6/2, light brownish gray	10YR_/2 8.5, very pale brown	1000°	6
				(white page)		
2	306	10YR 4/3, brown	10YR 6/2, light brownish gray	5YR 7/4, pink	600°	4
2	308	10YR 4/3, brown	10YR 6/2, light brownish gray	5YR 8/4, pink	800°	6
2	307	10YR 4/3, brown	10YR 6/2, light brownish gray	7.5YR 8/2, pinkish white	1000°	6

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	186	10YR 6/4, light yellowish brown	2.5Y 7/4, pale brown	5YR 5/6, yellowish red	600°	14
1	187	10YR 6/4, light yellowish brown	2.5Y 7/4, pale brown	2.5YR 5/6, red	800°	Exploded
1	185	10YR 6/4, light yellowish brown	2.5Y 7/4, pale brown	2.5YR 6/8, light red	1000°	Exploded
2	189	10YR 5/6, yellowish brown	2.5Y 6/6, olive yellow	5YR 5/6, yellowish red	600°	12
2	190	10YR 5/6, yellowish brown	2.5Y 6/6, olive yellow	Exploded, none recovered	800°	Exploded
2	188	10YR 5/6, yellowish brown	2.5Y 6/6, olive yellow	2.5YR 5/8, red	1000°	14

Table D14. Forming and firing colours of briquettes from clay from Foxground Plantation (Broadstone clay)

Table D15. Forming and firing colours of briquettes from clay from Rempstone Heath (Broadstone clay)

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	271	10YR 5/3, brown	10YR 7/2, light grey	5YR 7/6, reddish yellow	600°	8
1	272	10YR 5/3, brown	10YR 7/2, light grey	5YR 7/6, reddish yellow	800°	8
1	274	10YR 5/3, brown	10YR 7/2, light grey	7.5YR_/2 8.5, pinkish white	1000°	10
				(white page)		

Table D16. Forming and firing colours of briquettes from clay from Sandford (Broadstone clay)

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature fired to	Shrinkage (%)
5	219	10YR 6/2, light brownish gray	2.5 Y 8/1, white	10YR_/2 8.5 (white page), very pale brown	600°	6
5	220	10YR 6/2, light brownish gray	2.5 Y 8/1, white	10YR_/2 8.5 (white page), very pale brown	800°	8
5	221	10YR 6/2, light brownish gray	2.5 Y 8/1, white	10YR_/2 8.5 (white page), very pale brown	1000°	8
6	222	10YR 6/2, light brownish gray	2.5 Y 8/1, white	7.5YR_/2 8.5 (white page), pinkish white	600°	6
6	223	10YR 6/2, light brownish gray	2.5 Y 8/1, white	7.5YR_/2 8.5 (white page), pinkish white	800°	6
6	224	10YR 6/2, light brownish gray	2.5 Y 8/1, white	10YR_/2 8.5 (white page), very pale brown	1000°	8

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1A	192	10YR 5/3, brown	2.5Y 6/4, light yellowish brown	2.5YR 6/8, light red	600°	8
1A	193	10YR 5/3, brown	2.5Y 6/4, light yellowish brown	5YR 6/8, reddish yellow	800°	8
1A	195	10YR 5/3, brown	2.5Y 6/4, light yellowish brown	2.5YR 6/8, light red	1000°	6
1B	196	10YR 5/4, yellowish brown	2.5Y 7/4, pale brown	2.5YR 6/8, light red	600°	4
1B	197	10YR 5/4, yellowish brown	2.5Y 7/4, pale brown	5YR 6/8, reddish yellow	800°	4
1B	198	10YR 5/4, yellowish brown	2.5Y 7/4, pale brown	2.5YR 6/8, light red	1000°	4
2	201	10YR 5/3, brown	2.5Y 6/4, light yellowish brown	2.5YR 6/8, light red	600°	2
2	202	10YR 5/3, brown	2.5Y 6/4, light yellowish brown	5YR 6/8, reddish yellow	800°	4
2	203	10YR 5/3, brown	2.5Y 6/4, light yellowish brown	2.5YR 6/8, light red	1000°	4
3	204	10YR 5/4, yellowish brown	2.5Y 6/4, light yellowish brown	2.5YR 6/8, light red	600°	6
3	205	10YR 5/4, yellowish brown	2.5Y 6/4, light yellowish brown	5YR 6/8, reddish yellow	800°	8
3	206	10YR 5/4, yellowish brown	2.5Y 6/4, light yellowish brown	2.5YR 7/6, light red	1000°	8

Table D17. Forming and firing colours of briquettes from clay from Wytch Heath (Broadstone clay)

D.4 Briquettes made from samples of Parkstone clay

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
	_				fired to	(%)
1A	94	2.5Y 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	600°	4
1A	95	2.5Y 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	800°	6
1A	96	2.5Y 4/1, dark gray	10YR 5/1, gray	10YR 8/1, white	1000°	6
1B	98	2.5Y, 3/1, very dark gray	2.5Y 5/1, gray	7.5YR 8/1, white	600°	6
1B	99	2.5Y, 3/1, very dark gray	2.5Y 5/1, gray	5YR 7/3, pink	800°	8
1B	100	2.5Y, 3/1, very dark gray	2.5Y 5/1, gray	7.5YR 8/3, pink	1000°	8
2	102	7.5YR 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	600°	4
2	103	7.5YR 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	800°	6
2	104	7.5YR 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	1000°	8
3	106	7.5 YR 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	600°	4
3	107	7.5 YR 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	800°	6
3	108	7.5 YR 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	1000°	6
4	110	7.5 YR 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	600°	4
4	111	7.5 YR 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	800°	4
4	112	7.5 YR 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	1000°	6
5	114	10 YR 3/1 very dark gray	10YR 5/2, grayish brown	7.5YR 7/4, pink	600°	6
5	115	10 YR 3/1 very dark gray	10YR 5/2, grayish brown	7.5YR 8/4, pink	800°	6
5	116	10 YR 3/1 very dark gray	10YR 5/2, grayish brown	5YR 7/4, pink	1000°	6
6	118	2.5Y 4/1, dark gray	10YR 5/1, gray	5YR 7/4, pink	600°	Exploded
6	119	2.5Y 4/1, dark gray	10YR 5/1, gray	5YR 7/3, pink	800°	6
6	120	2.5Y 4/1, dark gray	10YR 5/1, gray	7.5YR 8/3, pink	1000°	8
7	68	2.5Y 3/1, dark gray	2.5Y 5/1, gray	5YR 7/4, pink	600°	8
7	69	2.5Y 3/1, dark gray	2.5Y 5/1, gray	5YR 7/4, pink	800°	6
7	70	2.5Y 3/1, dark gray	2.5Y 5/1, gray	7.5YR 8/3, pink	1000°	8
8	64	2.5Y 3/1, very dark gray	2.5Y 5/1, gray	5YR 7/4, pink	600°	8
8	65	2.5Y 3/1, very dark gray	2.5Y 5/1, gray	5YR 7/4, pink	800°	8
8	66	2.5Y 3/1, very dark gray	2.5Y 5/1, gray	7.5YR 8/3, pink	1000°	8
9	122	10YR 4/1, dark gray	10YR 6/1, gray	5YR 7/4, pink	600°	4
9	123	10YR 4/1, dark gray	10YR 6/1, gray	5YR 7/4, pink	800°	4
9	124	10YR 4/1, dark gray	10YR 6/1, gray	7.5YR 7/3, pink	1000°	4

 Table D18. Forming and firing colours of briquettes from clay samples from Brownsea Island (Parkstone clay)

10	126	10YR 7/1, light gray	2.5Y 7/1, light gray	7.5YR 8/2, pinkish white	600°	4
10	127	10YR 7/1, light gray	2.5Y 7/1, light gray	5YR 8/2, pinkish white	800°	4
10	128	10YR 7/1, light gray	2.5Y 7/1, light gray	10YR 7/3, very pale brown	1000°	4
11	130	10YR 4/2, dark grayish brown	10YR 5/2, grayish brown	5YR 7/4, pink	600°	4
11	131	10YR 4/2, dark grayish brown	10YR 5/2, grayish brown	5YR 7/4, pink	800°	6
11	132	10YR 4/2, dark grayish brown	10YR 5/2, grayish brown	7.5YR 8/3, pink	1000°	6
12	134	10YR 6/4, light yellowish brown	2.5Y 7/3, pale brown	2.5YR 7/6, light red	600°	6
12	135	10YR 6/4, light yellowish brown	2.5Y 7/3, pale brown	5YR 7/6, reddish yellow	800°	6
12	136	10YR 6/4, light yellowish brown	2.5Y 7/3, pale brown	7.5YR 7/4, pink	1000°	6
13	138	10YR 6/4, light yellowish brown	2.5Y 7/3, pale brown	5YR 7/6, reddish yellow	600°	6
13	139	10YR 6/4, light yellowish brown	2.5Y 7/3, pale brown	5YR 7/6, reddish yellow	800°	6
13	140	10YR 6/4, light yellowish brown	2.5Y 7/3, pale brown	7.5YR 8/3, pink	1000°	6
14	142	7.5YR 6/2, pinkish grey	10YR 7/2, light grey	5YR 7/4, pink	600°	8
14	143	7.5YR 6/2, pinkish grey	10YR 7/2, light grey	5YR 8/3, pink	800°	8
14	144	7.5YR 6/2, pinkish grey	10YR 7/2, light grey	7.5YR_/2 8.5, pinkish white	1000°	8
				(white page)		
15	146	5YR 6/3, light reddish brown	7.5YR 8/2, pinkish white	5YR 8/3, pink	600°	8
15	147	5YR 6/3, light reddish brown	7.5YR 8/2, pinkish white	5YR 8/3, pink	800°	Exploded
15	148	5YR 6/3, light reddish brown	7.5YR 8/2, pinkish white	5YR 8/3, pink	1000°	10
16	150	10 YR 5/3 brown	2.5Y 8/2, pale brown	7.5YR 8/4, pink	600°	4
16	151	10 YR 5/3 brown	2.5Y 8/2, pale brown	7.5YR 8/3, pink	800°	6
16	152	10 YR 5/3 brown	2.5Y 8/2, pale brown	10YR_/2 8.5, very pale brown	1000°	6
				(white page)		
18	154	7.5YR 6/3, light brown	$10YR_{2}$ 8, very pale brown	5YR 8/4, pink	600°	4
			(white page)			
18	155	7.5YR 6/3, light brown	10YR_/2 8, very pale brown	5YR 8/4, pink	800°	4
			(white page)			
18	156	7.5YR 6/3, light brown	10YR_/2 8, very pale brown	10YR_/2 8.5, very pale brown	1000°	4
			(white page)	(white page)		
19	160	7.5 YR 6/3, light brown	10YR 6/2, light brownish gray	5YR 7/4, pink	600°	Exploded
19	161	7.5 YR 6/3, light brown	10YR 6/2, light brownish gray	5YR 7/4, pink	800°	Exploded
20	158	7.5 YR 6/3, light brown	10YR 8/1, white	$7.5YR_{2}$ 8.5, pinkish white	600°	6
				(white page)		
20	159	7.5 YR 6/3, light brown	10YR 8/1, white	$7.5YR_{2} 8.5$, pinkish white	800°	6
				(white page)		
21	164	5 YR 4/1, dark gray	10YR 6/1, gray	$2.5Y_{1}$ 9, white (white page)	600°	6

21	163	5 YR 4/1, dark gray	10YR 6/1, gray	$2.5Y_{1} 8.5$ white (white page)	800°	6
21	162	5 YR 4/1, dark gray	10YR 6/1, gray	2.5Y_/1 8.5 white (white page)	1000°	6
22	166	5 YR 4/1 dark gray	10YR 6/1, gray	$2.5Y_{1} 8.5$ white (white page)	600°	6
22	168	5 YR 4/1 dark gray	10YR 6/1, gray	10YR_/1 8.5 white (white page)	800°	6
22	167	5 YR 4/1 dark gray	10YR 6/1, gray	$2.5Y_{19}$, white (white page)	1000°	6
23	169	5YR 4/1 dark gray	10YR 6/1, gray	2.5Y_/1 8.5 white (white page)	600°	2
23	170	5YR 4/1 dark gray	10YR 6/1, gray	10_1. 8.5 white (white page)	800°	4
23	171	5YR 4/1 dark gray	10YR 6/1, gray	2.5Y_/1 9, white (white page)	1000°	4

Table D19. Forming and firing colours of briquettes from clay samples from Creech Heath (Parkstone clay)

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	251	7.5YR 5/3, brown	7.5YR 8/4, pink	2.5YR 6/8, light red	600°	6
1	252	7.5YR 5/3, brown	7.5YR 8/4, pink	2.5YR 7/6, light red	800°	8
1	253	7.5YR 5/3, brown	7.5YR 8/4, pink	5YR 7/6, reddish yellow	1000°	10
2	262	10YR 6/3, pale brown	2.5Y 7/3, pale brown	5YR 7/6, reddish yellow	600°	6
2	259	10YR 6/3, pale brown	2.5Y 7/3, pale brown	5YR 8/4, pink	800°	8
2	260	10YR 6/3, pale brown	2.5Y 7/3, pale brown	7.5YR 8/3, pink	1000°	8
3	264	7.5YR 5/2, brown	2.5Y 7/2, light gray	5YR 7/6, reddish yellow	600°	4
3	265	7.5YR 5/2, brown	2.5Y 7/2, light gray	5YR 7/6, reddish yellow	800°	6
3	263	7.5YR 5/2, brown	2.5Y 7/2, light gray	7.5YR 8/3, pink	1000°	6
4	257	7.5YR 5/4, brown	10YR 7/4, very pale brown	2.5YR 6/8, light red	600°	6
4	256	7.5YR 5/4, brown	10YR 7/4, very pale brown	5YR 6/8, reddish yellow	800°	6
4	255	7.5YR 5/4, brown	10YR 7/4, very pale brown	5YR 7/6, reddish yellow	1000°	6

Table D20. Forming and firing colours of briquettes from clay samples from Newtown (Parkstone clay)

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	56	2.5Y 3/1, very dark gray	10YR 5/1, gray	5YR 7/4, pink	600°	4
1	57	2.5Y 3/1, very dark gray	10YR 5/1, gray	5YR 7/4, pink	800°	4
1	58	2.5Y 3/1, very dark gray	10YR 5/1, gray	7.5YR 8/3, pink	1000°	6
2	59	2.5Y 4/1, dark gray	10YR 6/1, gray	7.5YR 7/4, pink	600°	8
2	60	2.5Y 4/1, dark gray	10YR 6/1, gray	5YR 7/4, pink	800°	8
2	61	2.5Y 4/1, dark gray	10YR 6/1, gray	10YR 8/3, very pale brown	1000°	8

Sample	Briquette	Colour when formed	Colour when dry	Colour when fired	Temperature fired to	Shrinkage
1	92	2.5Y 2.5/1 black	2.5Y 3/2, very dark grayish brown	7.5YR 8/4, pink	800°	(%) 20
2	88	2.5Y 3/2, very dark grayish brown	2.5Y 4/2, dark grayish brown	5YR 5/8, yellowish red	800°	2
3	85	2.5Y 4/2, dark grayish brown	2.5Y 6/3, light yellowish brown	5YR 6/8, reddish yellow	800°	12
4	82	2.5Y 3/2, very dark grayish brown	2.5Y 5/2, grayish brown	5YR 6/8, reddish yellow	800°	8
5	79	2.5Y 3/3, dark olive brown	2.5Y 5/4, light olive brown	5YR 5/8, yellowish red	800°	4
6	72	2.5Y 5/4, light olive brown	2.5Y 6/8, olive yellow	2.5YR 5/8, red	600°	4
6	73	2.5Y 5/4, light olive brown	2.5Y 6/8, olive yellow	2.5YR 5/8, red	800°	4
6	74	2.5Y 5/4, light olive brown	2.5Y 6/8, olive yellow	2.5YR 5/8, red	1000°	4
7	76	2.5Y 4/2, dark grayish brown	2.5Y 5/2, grayish brown	7.5YR 5/6, strong brown	800°	2
8	63	7.5YR 5/1, gray	10YR 7/1, light gray	7.5YR_/2 8.5, pinkish white	800°	8
				(white page)		
9	44	2.5Y 6/3, light yellowish brown	2.5Y 8/2, pale brown	5YR 7/3, pink	500°	10
9	45	2.5Y 6/3, light yellowish brown	2.5Y 8/2, pale brown	2.5YR 7/4, light reddish brown	600°	8
9	46	2.5Y 6/3, light yellowish brown	2.5Y 8/2, pale brown	2.5YR 7/4, light reddish brown	800°	8
9	47	2.5Y 6/3, light yellowish brown	2.5Y 8/2, pale brown	5YR 8/3, pink	1000°	8
10	52	2.5Y 7/3, pale brown	2.5Y_/2 8, pale yellow (white page)	7.5YR 7/2, pinkish gray	500°	4
10	49	2.5Y 7/3, pale brown	2.5Y_/2 8, pale yellow (white page)	7.5YR 8/3, pink	600°	2
10	50	2.5Y 7/3, pale brown	2.5Y_/2 8, pale yellow (white page)	5YR 8/3, pink	800°	2
10	51	2.5Y 7/3, pale brown	2.5Y_/2 8, pale yellow (white page)	7.5YR_/1 9, white (white page)	1000°	2

Table D21. Forming and firing colours of briquettes from clay samples from Bourne Valley and Alder Hills (Parkstone clay)

D4. Briquettes made from samples of Poole Formation clays

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
	_				fired to	(%)
1	367	10 YR6/3, pale brown to 10YR	10YR 7/3, very pale brown	5YR 7/4, pink	600°	8
		5/4, yellowish brown				
1	369	10 YR6/3, pale brown to 10YR	10YR 7/3, very pale brown	5YR 8/4, pink	800°	6
		5/4, yellowish brown		-		
1	370	10 YR6/3, pale brown to 10YR	10YR 7/3, very pale brown	7.5YR 8/3, pink	1000°	8
		5/4, yellowish brown		-		
2	374	10YR 5/3, brown	10YR 7/2, light gray	2.5Y_/8.5 white (white page)	600°	4
2	371	10YR 5/3, brown	10YR 7/2, light gray	10YR_/1 8.5 white (white page)	800°	6
2	373	10YR 5/3, brown	10YR 7/2, light gray	2.5Y_/2 9, very pale yellow	1000°	4
				(white page)		

 Table D22. Forming and firing colours of briquettes from clay samples from Furzey Island (Poole Formation)

Table D23. Forming and firing colours of briquettes from clay samples from Green Island (Poole Formation)

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	381	10YR 6/2 light brownish gray	10YR_1 8, white (white page)	10YR_/1 8.5 white (white page)	600°	4
1	380	10YR 6/2 light brownish gray	10YR_1 8, white (white page)	10YR_/1 8.5 white (white page)	800°	4
1	382	10YR 6/2 light brownish gray	10YR_1 8, white (white page)	10YR_/1 9 white (white page)	1000°	2
2	378	10YR 6/2 light brownish gray	10YR_1 8, white (white page)	7.5YR_/2 8.5, pinkish white	600°	6
				(white page)		
2	377	10YR 6/2 light brownish gray	10YR_1 8, white (white page)	5YR 8/2, pinkish white	800°	6
2	375	10YR 6/2 light brownish gray	10YR_1 8, white (white page)	10YR 8/3, very pale brown	1000°	4
3	391	10YR 6/2 light brownish gray	10YR_/1 8.5, white (white	10YR_/1 8.5 white (white page)	600°	6
			page)			
3	389	10YR 6/2 light brownish gray	10YR_/1 8.5, white (white	5YR 8/2, pinkish white	800°	2
			page)	-		
3	388	10YR 6/2 light brownish gray	10YR_/1 8.5, white (white	10YR 8/2, very pale brown	1000°	4
			page)			

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	366	10 YR 6/2, light brownish gray	$2.5Y_{1} 8.5$ white (white page)	5YR 8/3, pink	600°	4
1	363	10 YR 6/2, light brownish gray	$2.5Y_{1} 8.5$ white (white page)	5YR 8/2, pinkish white	800°	4
1	365	10 YR 6/2, light brownish gray	$2.5Y_{1} 8.5$ white (white page)	10YR_/2 8.5, very pale brown	1000°	4
				(white page)		
2	358	2.5 Y 7/2, light gray	$2.5Y_{1}$ 9 white (white page)	5YR 8/3, pink	600°	4
2	357	2.5 Y 7/2, light gray	$2.5Y_{1}$ 9 white (white page)	$7.5YR_{2}$ 8.5, pinkish white	800°	4
				(white page)		
2	355	2.5 Y 7/2, light gray	$2.5Y_{1}$ 9 white (white page)	10YR_/2 9, pale orange yellow	1000°	4
				(white page)		
3	359	2.5 Y 8/1 white	$2.5Y_{1} 8.5$ white (white page)	5YR 8/2, pinkish white	600°	4
3	361	2.5 Y 8/1 white	$2.5Y_{1} 8.5$ white (white page)	$7.5YR_{2}$ 8.5, pinkish white	800°	4
				(white page)		
3	360	2.5 Y 8/1 white	$2.5Y_{1} 8.5$ white (white page)	10YR_/2 9, pale orange yellow	1000°	4
				(white page)		
4	350	10 YR 5/3, brown	10YR_/2 8, very pale brown	5YR 8/4, pink	600°	6
			(white page)			
4	348	10 YR 5/3, brown	10YR_/2 8, very pale brown	5YR 8/4, pink	800°	4
			(white page)			
4	347	10 YR 5/3, brown	$10YR_{2}$ 8, very pale brown	7.5YR 8/3, pink	1000°	4
			(white page)			
5	351	10 YR 6/2, light brownish gray	10YR_/1 8, white (white page)	5YR 8/3, pink	600°	4
5	354	10 YR 6/2, light brownish gray	10YR_/1 8, white (white page)	5YR 8/2, pinkish white	800°	2
5	353	10 YR 6/2, light brownish gray	$10YR_{1}$ 8, white (white page)	10YR 8/3, very pale brown	1000°	4

Table D24. Forming and firing colours of briquettes from clay samples from Round Island (Poole Formation)

D5. Briquettes made from samples of Wealden Clay

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	266	10YR 5/4, yellowish brown	10YR 5/6, yellowish brown	2.5YR 4/8, red	600°	10
1	268	10YR 5/4, yellowish brown	10YR 5/6, yellowish brown	2.5YR 5/8, red	800°	12
1	269	10YR 5/4, yellowish brown	10YR 5/6, yellowish brown	5YR 4/6, yellowish red	1000°	16

Table D25. Forming and firing colours of briquettes from clay samples from Belle View Farm

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	302	10YR 4/4, dark yellowish brown	2.5Y 5/4, light olive brown	5YR 5/6, yellowish red	600°	12
1	304	10YR 4/4, dark yellowish brown	2.5Y 5/4, light olive brown	5YR 5/8, yellowish red	800°	12
1	303	10YR 4/4, dark yellowish brown	2.5Y 5/4, light olive brown	2.5YR 4/6, red	1000°	12
2	311	10YR 4/2, dark grayish brown	2.5Y 5/4, light olive brown	2.5YR 5/6, red	600°	12
2	310	10YR 4/2, dark grayish brown	2.5Y 5/4, light olive brown	2.5YR 5/8, red	800°	10
2	312	10YR 4/2, dark grayish brown	2.5Y 5/4, light olive brown	5YR 5/8, yellowish red	1000°	12
3	317	10YR 4/6, dark yellowish brown	10YR 5/6, yellowish brown	2.5YR 4/8, red	600°	10
3	316	10YR 4/6, dark yellowish brown	10YR 5/6, yellowish brown	2.5YR 5/8, red	800°	10
3	314	10YR 4/6, dark yellowish brown	10YR 5/6, yellowish brown	2.5YR 5/8, red	1000°	12
4A	323	10YR 5/3, brown	2.5Y 6/4, light yellowish brown	5YR 5/6, yellowish red	600°	8
4A	322	10YR 5/3, brown	2.5Y 6/4, light yellowish brown	5YR 5/6, yellowish red	800°	8
4A	324	10YR 5/3, brown	2.5Y 6/4, light yellowish brown	5YR 5/6, yellowish red	1000°	10
4B	320	2.5Y 4/2, dark grayish brown	5Y 7/2, light gray	7.5YR 6/6, reddish yellow	600°	10
4B	319	2.5Y 4/2, dark grayish brown	5Y 7/2, light gray	7.5YR 7/6, reddish yellow	800°	8
4B	318	2.5Y 4/2, dark grayish brown	5Y 7/2, light gray	7.5YR 7/6, reddish yellow	1000°	10

Table D26. Forming and firing colours of briquettes from clay samples from Lower Lynch House

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature	Shrinkage
					fired to	(%)
1	385	10YR 5/6, strong brown	10YR 6/6, brownish yellow	2.5YR 5/6, red	600°	10
1	386	10YR 5/6, strong brown	10YR 6/6, brownish yellow	2.5YR 5/6, red	800°	8
1	383	10YR 5/6, strong brown	10YR 6/6, brownish yellow	5YR 5/8, yellowish red	1000°	8
2	394	2.5YR 4/2, dark yellowish brown to 2.5 YR 4/3, olive brown	2.5Y 6/3, light yellowish brown	7.5YR 6/4, light brown	600°	8
2	393	2.5YR 4/2, dark yellowish brown to 2.5 YR 4/3, olive brown	2.5Y 6/3, light yellowish brown	5YR 6/4, light reddish brown	800°	4
2	395	2.5YR 4/2, dark yellowish brown to 2.5 YR 4/3, olive brown	2.5Y 6/3, light yellowish brown	5YR 6/6, reddish yellow	1000°	8
3	398	5Y 4/1, dark grey to 5YR 5/1, grey	2.5Y 5/3, light olive brown	10YR 6/4, light yellowish brown	600°	6
3	396	5Y 4/1, dark grey to 5YR 5/1, grey	2.5Y 5/3, light olive brown	7.5YR 6/4, light brown	800°	8
3	399	5Y 4/1, dark grey to 5YR 5/1, grey	2.5Y 5/3, light olive brown	7.5YR 6/6, reddish yellow	1000°	8
4	406	10YR 3/2, very dark greyish brown	7.5YR 5/2, brown	5YR 5/6, yellowish red	600°	6
4	405	10YR 3/2, very dark greyish brown	7.5YR 5/2, brown	2.5YR 5/6, red	800°	6
4	403	10YR 3/2, very dark greyish brown	7.5YR 5/2, brown	2.5YR 5/6, red	1000°	8
6	402	5Y 5/2, olive grey	5YR 6/2, light olive gray	10YR 6/4, light yellowish brown	600°	12
6	400	5Y 5/2, olive grey	5YR 6/2, light olive gray	7.5YR 6/4, light brown	800°	10
6	401	5Y 5/2, olive grey	5YR 6/2, light olive gray	5YR 5/6, yellowish red	1000°	10
7	343	10YR 4/4, dark yellowish brown	10YR 5/4, yellowish brown	2.5YR 5/6, red	600°	12
7	345	10YR 4/4, dark yellowish brown	10YR 5/4, yellowish brown	2.5YR 5/6, red	800°	10
7	344	10YR 4/4, dark yellowish brown	10YR 5/4, yellowish brown	2.5YR 5/8, red	1000°	10

Table D27. Forming and firing colours of briquettes from clay samples from South-East Purbeck

D5. Briquettes made from samples of Kimmeridge Clay

Table D28. Forming and firing colours of briquettes from clay samples from Kimmeridge Bay

Sample	Briquette	Colour when formed/in the field	Colour when dry	Colour when fired	Temperature fired to	Shrinkage (%)
1	411	2.5YR 4/3, olive brown	10YR 5/6, yellowish brown	2.5YR 4/8, red	800°	Exploded

D7. Briquettes made from samples of Barton Clay

Sample	Briquette	Colour when formed/in the	Colour when dry	Colour when fired	Temperature	Shrinkage (%)
		field			fired to	
2	177	10YR 4/1, dark grey	2.5Y 5/2, grayish brown	7.5YR 6/6, reddish yellow	600°	6
2	178	10YR 4/1, dark grey	2.5Y 5/2, grayish brown	5YR 6/6, reddish yellow	800°	6
2	179	10YR 4/1, dark grey	2.5Y 5/2, grayish brown	5YR 6/6, reddish yellow	1000°	6
3	181	10YR 3/1, very dark gray	2.5Y 5/1, gray	7.5YR 6/6, reddish yellow	600°	2
3	182	10YR 3/1, very dark gray	2.5Y 5/1, gray	5YR 6/6, reddish yellow	800°	2
3	183	10YR 3/1, very dark gray	2.5Y 5/1, gray	5YR 6/6, reddish yellow	1000°	2

BLANK PAGE

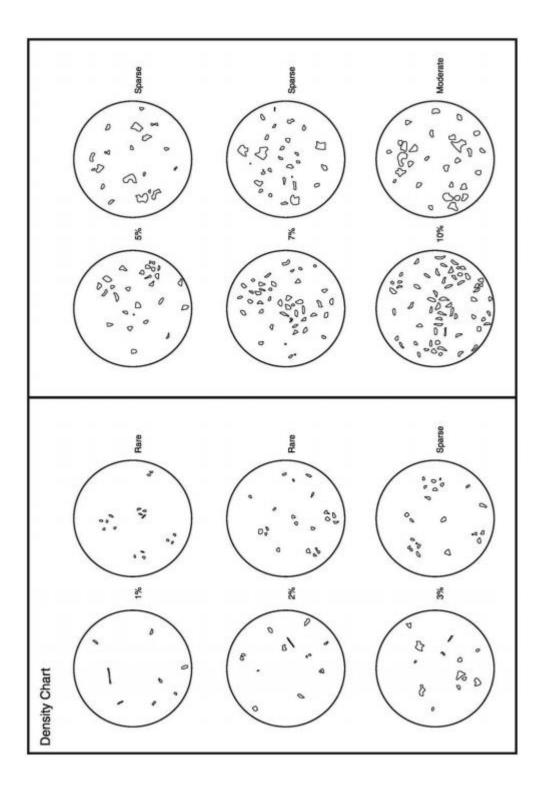
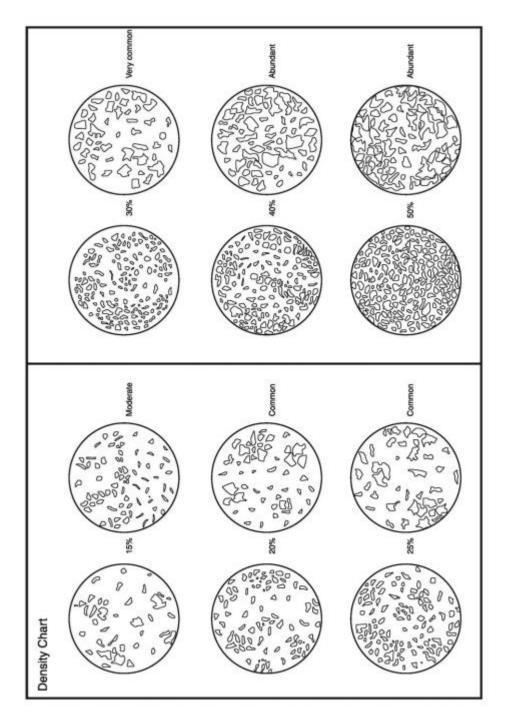
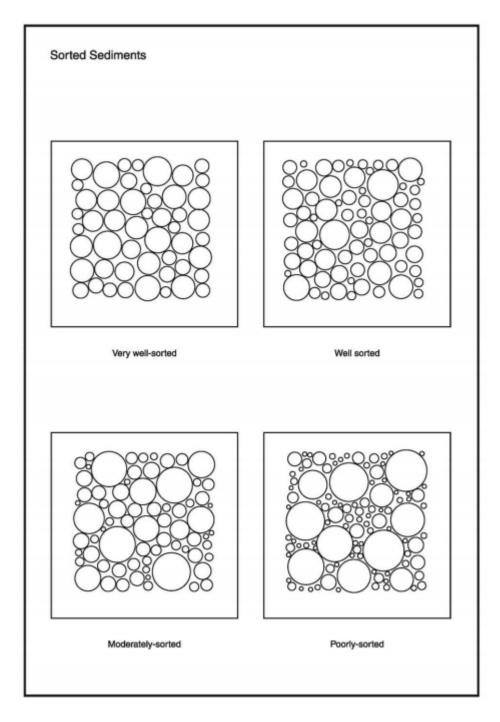
Additional data for Chapter 6: petrological analysis of pottery samples

Additional details are provided here in support of Chapter 6, the petrological analysis of the pottery. The methodology used for the qualitative analysis of the thin-sections of the pottery, and the clay, follows that described for the macroscopic analysis of pottery, as detailed in the Guidelines of the Prehistoric Ceramics Research Group (PCRG 2010).

The Wentworth Scale of grain-size classification was used to describe the size of quartz grains (from PCRG 2010, Appendix 7, after Adams *et al.* 1984, table 1) -

Size in mm. of class boundar	y Class term
056	Boulders
256	Cobbles
64	Pebbles
4	Granules
2	Very coarse sand
1	Coarse sand
0.5	Medium sand
0.25	Fine sand
0.125	Very fine sand
< 0.0625	Coarse silt to clay

The density, sorting and shape charts used to describe the pottery are presented below (Figures E1-E4). There then follows a summary of the petrological data of the pottery samples, in Tables E1-E17. The full petrological descriptions are not included as they are collectively greater than 50,000 words in length, but are available from the author.

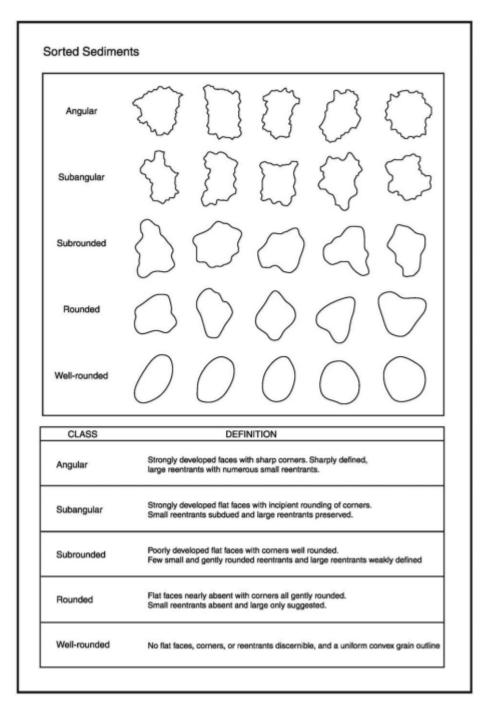

Figure E1. Inclusion density charts used for petrological analysis (from PCRG 2010, Appendix 3)

Figure E2. Diagram of sorting of inclusions used for petrological analysis (from PCRG 2010, Appendix 3)

Figure E3. Diagram of sorting of inclusions used for petrological analysis (from PCRG 2010, Appendix 4)

Figure E4. Diagram of sorting of inclusions used for petrological analysis (from PCRG 2010, Appendix 4)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Green Island	1	1	2	7	15	2	0	0	7	0	0	0	0	2	0	3	1	5	0	0	0	0	0
Green Island	2	3	2	3	3	15	0	0	7	0	0	0	2	1	0	1	2	5	0	0	2	0	0
Green Island	3	3	2	3	3	3	3	0	5	1	0	0	0	1	0	3	2	5	0	0	0	0	1
Green Island	4	2	3	3	10	3	0	0	5	0	0	0	0	0	0	3	3	7	0	0	2	0	0
Green Island	5	3	3	10	20	5	0	0	5	0	0	0	1	1	0	2	1	3	0	0	0	0	0
Green Island	6	2	2	2	10	5	0	0	5	2	0	0	0	1	0	3	3	5	0	0	0	0	0
Green Island	7	2	1	1	2	10	1	0	3	1	0	0	2	1	0	5	2	7	0	0	2	0	0
Green Island	8	2	2	3	10	3	0	0	5	2	0	1	0	1	0	5	2	7	0	0	0	0	0
Green Island	9	2	2	7	10	5	0	0	5	1	0	0	1	1	0	1	2	3	0	0	0	0	1
Green Island	10	2	2	3	5	10	0	0	5	1	1	0	0	1	0	3	1	7	0	0	0	0	0
Green Island	11	1	1	2	7	5	0	0	3	2	0	0	0	0	0	2	20	3	0	0	0	0	0
Green Island	12	7	2	5	10	3	0	0	3	1	0	0	1	0	0	0	3	2	0	0	0	0	1
Green Island	13	1	2	3	10	3	0	0	5	0	0	0	0	1	0	7	1	7	0	0	0	0	0
Green Island	14	1	5	5	10	3	0	0	3	0	2	0	1	1	0	7	3	5	0	0	3	0	0
Green Island	15	2	2	3	20	3	1	0	3	1	0	0	0	2	0	20	5	5	0	1	0	0	0
Green Island	16	2	2	3	15	1	0	0	5	0	0	0	0	2	0	15	2	5	0	0	0	0	0

Table E1a. Percentages of inclusions present in pottery samples from Green Island, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous inclusions	Equant argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Green Island	17	2	2	3	10	3	0	0	5	1	0	0	1	1	0	7	3	10	0	0	0	0	0
Green Island	18	2	3	3	10	1	0	0	3	0	0	0	0	0	0	5	2	0	0	0	0	0	0
Green Island	19	2	2	5	15	10	3	0	5	0	1	0	0	2	0	0	1	3	0	0	0	0	0
Green Island	20	3	3	10	10	1	1	0	3	2	0	0	0	2	0	3	2	3	0	0	0	0	0
Green Island	21	2	7	5	15	0	0	0	5	0	0	0	0	2	0	0	2	5	0	0	2	0	1

Table E1b. Percentages of inclusions present in pottery samples from Green Island, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quart	Z							Other	inclu	sions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous incs.	Eq. argillaceous incs.	Opaques	Shell	Limestone/mic. calcite	Iron oxides	Feldspar	Tourmaline
West Creech	1	2	2	3	7	5	3	0	7	0	0	0	1	2	0	5	5	5	0	0	0	0	0
West Creech	2	2	2	1	3	5	5	0	10	0	0	0	1	2	0	3	7	3	0	0	0	0	0
West of Corfe River	3	1	1	1	10	5	2	0	3	0	0	1	1	1	1	3	0	1	0	0	0	0	0
West Creech	4	2	1	3	10	5	5	0	7	0	0	0	0	2	0	10	1	3	0	0	0	0	0
West Creech	5	1	1	1	5	5	2	0	5	0	0	1	1	0	0	1	1	3	0	0	0	0	0
West Creech	6	2	2	2	5	5	3	2	7	1	0	0	2	1	0	1	2	7	0	0	0	0	2
West Creech	7	2	2	2	5	3	5	2	10	0	0	0	1	2	0	1	1	5	3	1	2	0	0
West Creech	8	1	1	2	5	5	0	0	5	1	1	0	1	3	0	3	2	2	0	0	2	0	1
West Creech	9	2	5	3	3	3	0	0	5	0	0	0	0	2	0	1	10	0	0	0	0	0	0
West of Corfe River	10	1	1	2	5	5	0	0	7	0	0	0	2	2	0	5	2	5	0	0	2	0	1
Furzey Island	11	1	2	3	10	2	0	0	7	2	0	0	1	2	0	7	2	1	0	0	0	0	0
West Creech	12	2	5	7	7	5	0	0	3	0	0	0	0	0	0	7	0	0	0	0	2	0	0
West of Corfe River	13	2	2	2	3	3	5	0	7	0	1	0	0	2	0	1	1	5	0	0	0	0	1
East of Corfe River	14	2	5	3	7	1	0	0	5	1	0	0	1	1	0	7	3	2	0	0	2	0	0
East of Corfe River	15	1	2	3	7	5	1	0	7	0	0	0	0	1	0	2	0	3	0	0	0	0	1
Ower Peninsula	16	7	3	7	10	2	0	0	5	0	0	0	2	2	0	7	3	3	0	0	0	0	0
West Creech	17	1	2	5	7	3	1	0	7	0	0	0	0	1	1	0	0	3	0	0	1	0	1
East of Corfe River	18	10	10	5	7	2	0	0	3	0	0	0	1	0	0	5	0	0	0	0	0	0	1
West Creech	19	2	2	1	3	5	5	0	3	1	1	0	0	2	0	3	2	2	0	0	0	0	0

Table E2a. Percentages of inclusions present in pottery samples from Wytch Farm Oilfield, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
West Creech	20	2	3	3	5	3	1	0	5	0	0	0	1	0	0	5	2	3	0	0	0	0	1
West Creech	21	2	5	2	3	5	2	0	5	0	0	0	0	0	0	1	0	7	0	0	2	0	0
Ower Peninsula	22	5	5	10	7	1	0	0	2	0	1	0	0	2	0	1	2	2	0	0	0	0	0
Ower Peninsula	23	2	7	7	7	5	1	0	5	0	0	0	0	0	0	1	0	0	0	0	0	0	0
East of Corfe River	24	1	5	7	7	2	0	0	5	0	0	0	0	0	0	5	2	3	0	0	0	0	0

Table E2b. Percentages of inclusions present in pottery samples from Wytch Farm Oilfield, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	sions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous I nclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Redcliff	1	3	5	10	10	3	0	0	5	0	0	0	0	1	0	0	0	2	0	0	5	0	0
Redcliff	2	3	2	10	10	2	0	0	3	0	1	0	0	1	0	1	20	7	0	0	0	0	0
Redcliff	3	2	7	10	7	2	0	0	3	0	0	0	0	2	0	0	0	5	0	0	0	0	0
Redcliff	4	2	7	15	5	1	0	0	2	0	0	0	0	2	0	5	2	7	0	0	0	0	1
Redcliff	5	2	7	15	5	1	0	0	3	0	0	0	0	2	0	15	2	7	0	0	0	0	0

Table E3. Percentages of inclusions present in pottery samples from Redcliff, Ridge, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quai	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Bestwall Quarry	1	3	7	7	5	3	0	0	5	0	0	0	0	2	0	7	0	5	0	0	0	0	0
Bestwall Quarry	2	1	2	10	10	2	0	0	3	0	0	0	0	2	0	10	3	7	0	0	0	0	0
Bestwall Quarry	3	2	2	3	10	2	0	0	2	0	0	0	0	1	0	10	2	7	0	0	0	0	0
Bestwall Quarry	4	2	2	3	10	1	0	0	2	0	0	0	0	2	0	3	1	7	0	0	0	0	0
Bestwall Quarry	5	2	2	7	10	5	0	0	2	0	0	0	0	2	0	3	1	7	0	0	5	2	0
Bestwall Quarry	6	3	3	7	7	3	0	0	2	0	0	0	0	1	0	25	3	5	0	0	0	0	1
Bestwall Quarry	7	3	3	5	15	2	0	0	2	0	0	0	0	2	0	20	2	10	0	0	1	1	1
Bestwall Quarry	8	3	3	5	15	2	0	0	2	0	0	0	0	2	0	25	2	10	0	0	1	0	0

Table E4. Percentages of inclusions present in pottery samples from Bestwall Quarry, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	sions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous inclusions	Equant argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
East Holme	1	2	7	10	10	5	0	0	5	1	0	0	0	2	0	5	0	7	0	0	0	0	1

Table E5. Percentages of inclusions present in pottery sample from East Holme, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Eldon's Seat	1	2	2	2	10	7	2	0	3	0	0	0	0	1	0	0	0	7	0	5	5	0	2
Eldon's Seat	2	1	1	1	3	2	3	0	2	0	0	0	0	0	0	10	10	5	0	1	3	0	0
Eldon's Seat	3	1	1	2	3	3	0	0	7	0	0	0	0	1	0	10	10	15	0	0	3	0	1
Eldon's Seat	4	2	2	2	7	7	3	1	3	0	0	0	0	0	0	5	0	7	0	7	2	0	0
Eldon's Seat	5	2	3	3	5	2	1	0	5	0	0	0	0	2	2	2	0	7	0	5	0	0	2
Eldon's Seat	7	1	1	2	5	1	0	0	2	0	0	0	0	0	1	10	5	7	0	0	3	0	0
Eldon's Seat	8	5	2	3	10	3	2	0	3	0	1	0	0	0	0	10	5	3	0	7	1	0	2
Eldon's Seat	9	2	1	2	7	7	0	3	3	0	0	0	0	1	1	10	5	7	0	3	5	0	4
Eldon's Seat	10	2	1	1	5	7	2	0	3	0	0	0	0	1	0	7	2	5	0	2	3	0	2
Eldon's Seat	11	5	2	2	3	10	5	0	5	0	0	0	0	0	0	0	0	5	0	1	3	0	0

Table E6. Percentages of inclusions present in pottery samples from Eldon's Seat, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Rope Lake Hole	1	2	3	3	5	3	0	0	3	0	0	0	1	2	0	3	2	7	0	3	0	0	2
Rope Lake Hole	2	2	2	2	5	3	2	0	2	0	2	0	0	1	0	2	2	7	3	3	3	0	1
Rope Lake Hole	3	7	5	3	5	2	0	0	3	0	0	0	0	2	2	0	0	5	0	0	0	0	2
Rope Lake Hole	4	2	2	2	5	7	2	0	2	0	0	0	0	2	2	7	7	10	0	3	0	0	0
Rope Lake Hole	5	2	1	3	7	2	0	0	2	0	1	0	0	2	0	3	1	5	5	20	0	0	2
Rope Lake Hole	6	1	2	5	15	2	0	0	3	0	0	0	0	2	0	5	2	5	0	1	0	0	1
Rope Lake Hole	7	1	2	3	10	2	0	0	7	0	0	0	2	1	0	2	0	5	0	7	0	0	0
Rope Lake Hole	8	1	1	2	2	5	1	0	2	0	0	0	0	0	0	7	7	10	0	0	1	0	0
Rope Lake Hole	9	1	1	7	2	2	0	0	2	0	0	0	1	2	0	5	2	5	2	20	0	0	3
Rope Lake Hole	10	7	3	7	7	3	0	0	3	3	0	0	0	1	0	0	0	3	0	1	0	0	0
Rope Lake Hole	11	7	10	5	3	3	0	0	5	0	0	0	0	1	0	1	0	5	0	0	0	0	0
Rope Lake Hole	12	3	3	3	5	5	2	0	2	0	0	0	0	2	0	0	2	3	20	10	0	0	1
Rope Lake Hole	13	1	1	2	7	7	1	0	3	1	0	0	0	1	0	1	2	15	0	2	2	0	1
Rope Lake Hole	14	2	2	2	3	3	5	0	2	0	0	0	0	1	0	3	2	10	2	5	3	0	5
Rope Lake Hole	15	3	1	3	7	5	0	0	2	0	2	0	0	2	0	1	0	20	0	2	0	0	1

Table E7a. Percentages of inclusions present in pottery samples from Rope Lake Hole, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Rope Lake Hole	16	2	2	2	2	5	3	2	2	0	0	0	0	2	0	0	2	7	10	5	0	0	1
Rope Lake Hole	17	2	1	1	3	3	3	3	2	0	0	0	1	1	1	5	2	10	0	5	2	0	5
Rope Lake Hole	18	20	5	3	3	3	0	0	5	0	0	0	0	2	1	2	0	3	0	0	0	0	2
Rope Lake Hole	19	2	2	2	5	5	2	0	3	1	0	0	2	1	0	2	0	5	0	7	2	0	2
Rope Lake Hole	20	3	3	2	3	3	3	2	2	0	0	0	0	1	0	3	2	10	0	2	0	0	1
Rope Lake Hole	21	2	1	1	5	5	2	0	3	0	0	0	0	1	2	1	10	7	0	2	7	0	5
Rope Lake Hole	22	7	7	3	5	5	2	3	3	0	0	0	0	0	1	2	0	7	0	10	2	0	2
Rope Lake Hole	23	2	1	3	5	3	2	0	2	0	0	0	0	1	0	0	0	7	8	20	0	0	1
Rope Lake Hole	24	1	2	2	2	5	5	0	2	1	0	0	0	1	0	1	0	5	2	5	0	0	1
Rope Lake Hole	25	10	7	5	5	5	0	0	5	0	0	0	0	2	0	1	0	5	0	1	0	0	0
Rope Lake Hole	26	2	2	2	5	3	2	0	2	0	0	0	0	2	1	15	10	7	0	5	3	0	1
Rope Lake Hole	27	2	1	1	2	3	2	0	1	0	0	0	1	0	0	5	10	15	0	3	0	0	1
Rope Lake Hole	28	1	2	2	2	3	7	2	3	2	0	0	0	1	0	0	2	3	3	2	0	0	0
Rope Lake Hole	29	1	2	5	7	5	3	0	3	0	0	0	0	2	0	15	10	15	0	0	0	0	1
Rope Lake Hole	30	2	2	2	3	7	0	0	7	0	0	0	0	2	1	2	2	15	0	3	0	0	1
Rope Lake Hole	31	1	1	1	2	5	5	0	2	0	0	0	0	1	0	1	2	7	2	3	2	0	1

Table E7b. Percentages of inclusions present in pottery samples from Rope Lake Hole, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Football Field, Worth																							
Matravers	1	20	10	10	7	3	0	0	5	0	1	0	0	2	0	1	1	20	0	0	0	0	1
Football Field, Worth																							
Matravers	2	3	3	7	10	3	0	0	5	0	0	0	0	2	0	0	0	5	0	0	0	0	3
Football Field, Worth																							
Matravers	3	5	3	3	15	2	0	0	5	0	0	3	1	2	0	0	0	2	0	0	0	0	0
Football Field, Worth																							
Matravers	4	1	3	7	10	2	1	0	7	2	0	1	0	0	0	1	1	0	0	0	0	0	0
Football Field, Worth																							
Matravers	5	1	5	7	10	10	3	0	7	0	0	0	0	2	0	0	1	3	0	2	5	0	4
Football Field, Worth																							
Matravers	6	1	2	5	7	10	0	0	5	0	0	0	0	2	0	0	1	5	0	0	0	0	1
Football Field, Worth																							
Matravers	7	2	2	5	5	10	2	0	2	0	0	0	0	3	0	2	7	7	0	0	7	0	3
Football Field, Worth Matravers	8	2	2	3	10	10	3	0	5	2	0	1	0	2	0	5	5	2	0	0	0	0	0

Table E8. Percentages of inclusions present in pottery samples from Football Field, Worth Matravers, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Maiden Castle	1	3	3	3	3	7	3	0	3	1	0	2	0	1	0	1	0	7	0	0	0	0	2
Maiden Castle	2	3	3	3	5	7	0	0	5	1	0	1	0	1	0	1	0	7	0	10	2	0	1
Maiden Castle	3	10	20	20	5	1	0	0	0	0	0	0	0	1	0	0	0	3	0	0	0	0	0
Maiden Castle	4	5	10	7	5	5	2	0	7	0	1	0	2	1	1	5	1	3	0	0	10	0	2
Maiden Castle	5	10	20	10	3	1	0	0	0	0	0	0	0	3	0	0	0	2	0	0	0	1	0
Maiden Castle	6	15	15	10	3	2	0	0	1	0	2	0	0	1	0	0	0	3	0	0	0	1	0
Maiden Castle	7	5	3	2	5	7	0	0	2	0	0	2	0	2	0	0	7	7	0	0	0	0	0
Maiden Castle	8	3	2	2	5	5	0	0	5	2	0	0	0	0	0	3	3	7	5	3	7	0	0
Maiden Castle	9	2	5	5	7	5	2	0	3	0	0	0	1	2	0	0	0	5	0	0	2	0	0
Maiden Castle	10	3	2	5	5	10	0	0	5	2	0	0	0	2	0	1	0	5	0	3	0	0	0
Maiden Castle	11	5	5	10	7	5	1	0	3	1	0	0	0	0	0	1	0	5	0	2	0	0	0
Maiden Castle	12	2	2	3	5	5	1	0	7	1	0	0	0	1	0	0	0	7	0	1	3	0	0
Maiden Castle	13	3	3	5	20	2	0	0	5	0	0	0	0	3	0	2	0	2	0	0	1	0	0
Maiden Castle	14	20	15	7	5	5	0	0	2	0	0	0	0	1	0	0	1	2	0	0	0	0	1
Maiden Castle	15	20	10	10	5	3	0	0	2	0	2	0	1	1	0	0	0	1	0	0	0	0	0
Maiden Castle	17	25	15	5	5	3	0	0	2	1	0	0	1	3	0	0	1	0	0	0	0	0	0
Maiden Castle	18	5	3	2	5	10	7	2	1	3	0	0	2	1	0	3	1	7	2	3	7	0	0

Table E9a. Percentages of inclusions present in pottery samples from Maiden Castle, identified using qualitative petrological analysis (el.: elongated; eq: equant)

Table E9b. Percentages of inclusions present in pottery samples from Maiden Castle, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Maiden Castle	19	5	2	2	5	7	0	0	3	1	0	0	2	1	0	1	0	7	0	2	3	0	0
Maiden Castle	20	5	3	2	3	5	2	0	5	0	1	0	0	1	0	0	0	7	2	5	7	0	1
Maiden Castle	21	2	2	7	25	2	0	0	5	1	0	0	1	3	0	2	1	2	0	3	0	0	1
Maiden Castle	22	5	3	7	10	3	0	0	3	1	0	0	0	2	0	3	1	3	0	3	0	0	0
Maiden Castle	23	2	2	5	10	3	0	0	5	2	0	0	0	1	0	1	1	5	0	1	0	0	0
Maiden Castle	24	5	7	7	15	2	0	0	3	0	0	0	0	2	0	0	0	1	0	0	0	0	0
Maiden Castle	25	5	2	5	10	7	2	0	3	1	0	0	0	1	0	3	0	3	0	3	3	0	1
Maiden Castle	26	2	2	5	5	5	0	0	3	0	0	0	0	1	0	0	2	7	0	2	0	0	0
Maiden Castle	27	3	2	3	7	3	0	0	7	2	0	0	0	3	0	1	1	7	1	2	0	0	0
Maiden Castle	28	2	2	5	10	5	0	0	3	0	0	3	0	2	0	2	1	3	0	2	3	0	0
Maiden Castle	30	2	1	5	7	3	2	0	5	0	0	0	0	2	0	0	0	3	2	3	0	0	0
Maiden Castle	31	7	7	7	5	2	0	0	3	1	0	0	1	2	0	2	0	7	0	0	0	0	0

		Quar	tz							Othe	r inclu	sions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Southdown Ridge	1	2	3	7	10	7	0	0	5	1	0	0	0	1	0	0	0	3	3	2	0	0	1
Southdown Ridge	2	5	2	5	10	2	1	0	7	1	0	0	1	0	0	0	0	0	0	5	0	0	1
Southdown Ridge	3	5	7	15	5	3	2	0	5	0	0	0	1	7	0	0	0	3	0	2	0	0	1
Southdown Ridge	4	10	7	7	10	3	0	0	5	0	0	0	0	3	0	2	0	3	1	1	1	0	0
Southdown Ridge	5	5	5	7	10	7	0	0	5	0	0	0	0	2	0	0	0	0	0	0	0	0	0
Southdown Ridge	6	15	10	10	7	2	0	0	3	0	0	0	3	2	0	2	2	7	0	1	0	0	1
Southdown Ridge	7	7	3	3	10	7	1	0	7	0	0	0	0	1	0	0	0	5	0	0	0	0	0
Southdown Ridge	8	2	2	2	15	7	0	0	7	0	0	0	0	1	0	10	3	7	0	0	1	0	0
Southdown Ridge	9	20	15	7	2	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Southdown Ridge	10	3	5	7	15	1	0	0	7	0	0	0	0	1	0	0	0	5	0	0	0	0	1
Southdown Ridge	11	7	10	7	7	5	0	0	7	0	0	0	0	1	0	2	0	7	0	0	3	0	1
Southdown Ridge	12	3	3	3	5	10	0	0	7	0	0	0	2	0	0	1	0	0	0	0	0	0	0
Southdown Ridge	13	3	2	7	7	7	0	0	5	0	0	0	2	1	0	2	1	7	0	0	1	0	1
Southdown Ridge	14	5	7	7	5	5	0	0	3	0	0	0	0	2	0	0	0	3	0	2	3	0	1
Southdown Ridge	15	3	1	2	5	3	0	0	3	0	0	1	0	3	0	0	0	10	0	10	2	0	0
Southdown Ridge	16	30	7	10	10	5	2	0	3	1	1	0	0	2	0	0	0	7	0	0	0	0	0
Southdown Ridge	17	2	2	5	10	7	0	0	3	0	0	2	1	1	0	7	3	5	0	5	7	0	0

Table E10. Percentages of inclusions present in pottery samples from Southdown Ridge, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Hengistbury Head	1	5	7	10	5	3	0	0	3	0	1	0	0	1	0	3	2	7	0	0	0	0	1
Hengistbury Head	2	3	3	10	10	2	0	0	5	0	0	0	0	2	0	3	2	5	0	0	0	0	0
Hengistbury Head	3	10	2	7	7	7	2	0	7	0	0	0	0	1	0	0	0	2	0	0	0	0	0
Hengistbury Head	4	2	2	3	15	5	2	0	5	0	2	2	0	0	0	5	2	5	0	0	0	0	1
Hengistbury Head	5	2	3	5	15	5	0	0	5	0	0	0	0	1	0	5	0	5	0	0	0	0	1

Table E11. Percentages of inclusions present in pottery samples from Hengistbury Head, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous incs	Equant argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Gussage All Saints	1	3	2	7	10	5	0	0	3	3	0	0	0	2	0	5	2	5	0	2	0	0	0
Gussage All Saints	2	10	7	10	10	2	0	0	7	2	0	0	0	2	0	0	5	7	0	0	7	0	0
Gussage All Saints	3	10	7	7	10	2	2	0	5	1	0	0	0	3	0	0	7	7	0	0	0	0	0
Gussage All Saints	9	20	15	15	3	0	0	0	0	0	0	0	0	0	0	0		3	0	0	0	0	0
Gussage All Saints	10	5	5	7	7	7	1	0	5	0	0	0	0	2	1	7	0	5	0	2	0	0	0
Gussage All Saints	11	3	5	3	7	10	0	0	5	0	0	0	1	3	0	1	2	3	0	0	0	0	0
Gussage All Saints	12	10	10	7	10	2	0	0	5	2	0	0	0	2	0	0	5	2	0	0	7	0	0
Gussage All Saints	13	10	7	5	7	7	2	0	5	1	0	0	0	2	0	3	2	5	1	1	0	0	0
Gussage All Saints	16	7	5	7	10	7	0	0	5	3	0	1	0	1	0	3	2	5	0	2	0	0	0
Gussage All Saints	17	20	10	10	10	2	0	0	5	0	0	0	0	2	0	0	0	5	0	0	0	0	0
Gussage All Saints	19	20	15	15	3	1	0	0	0	0	0	0	0	0	0	0		3	0	2	0	0	0
Gussage All Saints	21	20	15	10	5	5	2	0	5	0	0	1	0	2	0	0	2	5	0	0	0	0	0
Gussage All Saints	25	10	7	10	10	3	0	0	7	3	0	0	0	1	0	0	2	10	0	0	0	0	0
Gussage All Saints	26	10	10	10	7	2	0	0	5	1	0	1	0	3	0	0	3	7	0	0	0	0	1
Gussage All Saints	27	2	2	3	10	3	0	0	3	3	0	0	0	3	0	10	5	10	0	0	2	0	0
Gussage All Saints	32	3	7	7	10	2	0	0	5	0	0	0	0	2	0	3	0	2	1	2	2	0	1
Gussage All Saints	35	2	3	7	15	2	0	0	5	0	0	0	0	0	0	10	5	10	0	0	2	0	0
Gussage All Saints	36	2	5	5	15	3	0	0	5	1	0	0	0	2	0	15	3	10	0	1	7	0	1

Table E12. Percentages of inclusions present in pottery samples from Gussage All Saints, identified using qualitative petrological analysis

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Barton Field, Tarrant Hinton	1	5	5	3	3	7	3	2	5	0	1	0	1	1	0	5	5	7	0	1	0	0	0
Barton Field, Tarrant Hinton	2	10	3	3	7	5	0	0	0	3	0	1	0	2	0	0	1	7	0	0	2	0	0
Barton Field, Tarrant Hinton	3	10	3	5	3	7	0	0	2	3	0	2	0	5	0	0	2	7	0	0	0	0	0
Barton Field, Tarrant Hinton	4	2	3	5	10	5	0	0	3	2	0	1	1	2	0	7	2	5	0	2	0	0	0
Barton Field, Tarrant Hinton	5	2	3	7	20	3	0	0	5	0	1	0	1	2	0	20	2	5	0	2	0	0	0

Table E13. Percentages of inclusions present in pottery samples from Barton Field, Tarant Hinton, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	sions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Bradford Down	2	2	10	10	5	0	0	0	2	2	0	0	0	2	0	5	3	3	0	0	0	0	0
Bradford Down	3	20	5	5	15	5	0	0	2	0	0	1	1	1	0	0	2	7	0	0	0	0	0

Table E14. Percentages of inclusions present in pottery samples from Bradford Down, Pamphill, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	sions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Oakley Down	4	2	2	3	10	3	0	0	5	0	0	1	0	2	0	7	0	15	0	0	10	0	1
Oakley Down	5	2	2	2	10	7	2	0	10	3	0	0	0	0	0	0	0	7	0	0	7	0	0
Oakley Down	6	7	10	10	20	3	0	0	7	2	1	0	0	2	0	0	0	5	0	0	0	0	0
Oakley Down	7	2	2	2	5	10	2	0	7	0	0	0	0	5	0	0	0	15	0	0	0	0	0

Table E15 Percentages of inclusions present in pottery samples from Oakley Down, Wimborne St. Giles, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	sions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Allard's Quarry	1	10	15	10	7	1	0	0	0	0	0	0	0	1	0	0	5	3	0	0	5	0	1
Allard's Quarry	2	10	10	10	3	1	0	0	0	0	0	0	0	0	0	0	2	3	0	0	0	1	0
Allard's Quarry	3	2	5	10	15	3	0	0	5	0	0	0	0	2	0	5	1	3	0	2	0	0	1
Allard's Quarry	4	5	20	10	7	3	0	0	5	2	0	0	0	2	0	0	0	3	0	2	3	0	0
Allard's Quarry	5	20	10	10	5	1	0	0	1	0	0	0	0	0	0	0	2	10	0	2	0	1	0
Allard's Quarry	6	3	3	5	15	7	2	0	5	1	0	0	1	2	0	3	1	7	0	2	2	0	0
Allard's Quarry	8	3	15	10	7	3	0	0	5	0	0	0	0	1	0	15	3	3	0	2	2	0	0
Allard's Quarry	9	5	7	7	10	3	0	0	7	1	0	2	0	3	0	1	1	3	0	1	0	0	0
Allard's Quarry	10	2	5	10	10	2	0	0	3	1	0	2	0	1	0	3	1	10	0	0	0	0	0
Allard's Quarry	11	3	3	7	10	2	0	0	0	0	0	0	0	0	0	5	1	2	0	15	3	0	1
Allard's Quarry	13	2	3	10	10	2	0	0	5	0	0	0	2	0	0	5	5	5	0	2	5	0	0
Allard's Quarry	14	3	7	10	10	5	0	0	5	1	0	0	0	1	0	0	0	2	0	15	0	0	0
Allard's Quarry	15	10	10	10	5	2	0	0	0	0	0	0	0	0	0	0	0	1	0	15	1	0	0
Allard's Quarry	16	20	10	10	5	1	0	0	1	0	0	0	0	1	0	0	0	3	0	5	0	1	0
Allard's Quarry	17	5	5	7	15	2	0	0	5	2	0	0	0	3	0	0	2	15	0	1	0	0	0
Allard's Quarry	19	5	10	7	5	3	0	0	3	0	0	0	0	0	0	7	2	7	0	2	3	0	0
Allard's Quarry	20	2	5	5	5	10	2	0	5	1	0	0	0	3	0	0	2	3	0	1	0	0	0

Table E16a. Percentages of inclusions present in pottery samples from Allard's Quarry, Marnhull, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Allard's Quarry	21	10	15	10	3	2	0	0	2	1	0	0	0	2	0	5	2	2	0	2	0	0	0
Allard's Quarry	22	2	7	10	7	1	3	0	3	0	0	0	0	1	0	7	0	3	0	7	0	0	0
Allard's Quarry	24	3	5	5	7	10	0	0	5	1	0	0	0	2	0	2	0	0	0	2	2	0	0
Allard's Quarry	26	10	10	10	5	3	0	0	1	1	0	0	0	1	0	0	2	5	0	7	2	0	1
Allard's Quarry	27	5	10	15	5	0	0	0	1	0	0	0	0	0	0	0	0	5	0	0	0	0	0
Allard's Quarry	28	3	10	15	5	1	0	0	0	0	0	0	0	0	0	0	3	5	0	2	5	0	0
Allard's Quarry	29	5	10	15	7	0	0	0	3	0	0	1	0	3	0	0	0	2	0	1	0	0	0
Allard's Quarry	30	2	3	5	10	3	0	0	5	0	0	1	0	2	0	5	1	5	0	3	2	0	0

Table E16b. Percentages of inclusions present in pottery samples from Allard's Quarry, Marnhull, identified using qualitative petrological analysis (el.: elongated; eq: equant)

		Quar	rtz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	El. argillaceous inclusions	Eq. argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
South Cadbury Environs	1	2	2	5	15	3	1	2	5	1	0	0	0	2	0	3		7	0	2	3	0	0
South Cadbury Environs	2	3	3	10	10	1	0	0	7	0	0	1	1	2	0	0	0	5	0	0	0	0	0
South Cadbury Environs	3	3	7	10	3	1	0	0	7	0	0	0	0	2	0	0	3	3	0	0	0	1	0
South Cadbury Environs	4	2	2	5	10	3	0	0	5	0	0	0	0	2	0	3	0	5	0	2	0	0	1
South Cadbury Environs	5	2	2	10	7	2	0	0	5	0	0	0	0	3	0	0	0	1	5	5	0	0	0
South Cadbury Environs	6	5	3	7	10	2	0	0	5	0	0	0	1	2	0	2	0	2	0	2	0	0	0
South Cadbury Environs	7	5	10	10	7	3	0	0	5	0	0	0	0	2	0	1	0	2	2	1	0	0	0
South Cadbury Environs	8	1	2	5	7	2	1	0	5	0	0	0	0	2	0	5	0	7	0	0	0	0	1
South Cadbury Environs	9	2	7	15	1	0	0	0	7	0	0	0	0	2	0	1	2	2	0	0	0	0	0
South Cadbury Environs	10	2	3	10	3	0	0	0	3	0	0	0	0	2	0	5	2	3	0	0	0	0	0
South Cadbury Environs	11	15	5	10	7	2	0	0	3	0	0	0	0	2	0	0	2	3	0	0	0	0	0
South Cadbury Environs	12	7	7	10	2	0	0	0	7	0	0	0	0	2	0	0	3	2	0	0	0	0	0
South Cadbury Environs	13	2	10	7	7	3	0	0	3	2	1	0	1	3	0	7	2	5	0	0	5	0	1

Table E17. Percentages of inclusions present in pottery samples from Sigwells, South Cadbury Environs, identified using qualitative petrological analysis (el.: elongated; eq: equant)

BLANK PAGE

Additional data for Chapter 7: Petrological analysis of the clay samples, and comparison of the pottery and clays

Table F1. Percentages of inclusions present in the Poole Formation (undifferentiated) clay samples, identified using qualitative petrological
analysis

		Quar	rtz							Othe	r inclu	sions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous inclusions	Equant argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Round Island	1	15	3	2	1	0	0	0	1	0	1	0	0	0	0	0	0	3	0	0	0	0	0
Round Island	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Round Island	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Round Island	4	2	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0
Round Island	5	7	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
Green Island	1	20	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
Green Island	2	20	5	7	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
Green Island	3	40	15	5	2	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
Furzey Island	1	15	15	3	3	2	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	1
Furzey Island	2	5	2	1	1	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	1	0	0

		Quar	tz							Othe	r inclu	isions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous inclusions	Equant argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
South of Bramble Bush Bay	2	7	5	2	2	2	0	0	1	1	0	0	0	0	0	0	0	2	0	0	1	0	1
South of Bramble Bush Bay	3	20	10	2	0	1	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0
South of Bramble Bush Bay	5	20	10	3	1	0	0	0	1	0	2	0	0	0	0	0	0	3	0	0	0	0	0
South of Bramble Bush Bay	6	7	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	1	0	0
South of Bramble Bush Bay	8	7	3	2	1	0	0	0	0	0	2	0	0	0	0	0	0	3	0	0	1	0	0
South of Bramble Bush Bay	9	10	10	1	1	1	0	0	1	0	2	0	0	0	0	0	0	1	0	0	2	0	1
South of Bramble Bush Bay	10	30	20	10	5	1	0	0	1	0	1	0	0	0	0	0	0	5	0	0	0	0	1
Godlingston Heath	1	10	3	2	2	2	0	0	2	0	0	0	1	0	0	0	2	10	0	0	1	0	1
Godlingston Heath	2	20	2	2	1	1	1	0	2	1	1	0	0	0	0	0	0	7	0	0	1	0	0
Godlingston Heath	3	15	2	2	1	1	0	0	2	0	1	0	0	0	0	0	0	2	0	0	0	0	0
Godlingston Heath	4	10	15	7	2	0	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	1
Godlingston Heath	5	3	2	2	1	1	0	0	1	0	0	0	0	0	0	0	0	2	0	0	1	0	0
Foxground Plantation	1	7	7	3	3	0	0	0	3	0	0	0	0	0	0	5	5	7	0	0	0	0	0
Foxground Plantation	2	7	5	5	2	1	0	0	2	0	0	0	0	0	0	5	2	7	0	0	0	0	0

Table F2a. Percentages of inclusions present in the Broadstone clay samples, identified using qualitative petrological analysis

Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline	Quartzite	Ferruginous	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous incs.	Equant argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Wytch Heath	1A	10	3	2	3	1	0	0	2	0	0	0	0	1	0	0	0	5	0	0	0	0	0
Wytch Heath	1B	10	7	10	15	3	2	0	5	0	0	0	0	2	0	0	0	1	0	0	0	0	1
Wytch Heath	2	7	10	10	10	3	2	0	7	0	0	0	0	2	0	0	0	2	0	2	0	0	2
Wytch Heath	3	10	10	7	7	3	1	0	3	0	2	0	0	2	0	0	0	3	0	1	1	0	2
Redcliffe Farm	1	20	2	1	1	1	0	0	1	0	0	0	0	0	0	0	0	3	0	0	0	0	0
Redcliffe Farm	2	15	15	2	1	0	0	0	1	0	0	0	0	0	0	0	1	3	0	0	2	0	1
Sandford	5	10	5	1	0	0	0	0	0	0	2	0	0	0	0	0	0	5	0	0	2	0	0
Sandford	6	7	3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	5	0	0	3	0	0
Arne Peninsula	1	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	1	0	1
Arne Peninsula	2	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	1	0	0
Arne - Bank Gate Cottages	1	7	2	2	5	3	1	0	2	0	0	0	1	0	0	0	0	3	0	0	1	0	1
Arne - Bank Gate Cottages	2A	10	10	15	15	15	2	0	15	0	0	0	1	1	0	0	0	1	0	2	0	0	2
Arne - Bank Gate Cottages	2A/2B	7	5	5	5	5	1	0	5	0	0	0	1	1	1	0	0	1	0	2	0	0	1
Arne - Bank Gate Cottages	2B	5	2	1	2	1	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1
Rempstone Heath	1	10	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0
Ower Bay	1	7	3	2	2	1	0	0	1	0	0	0	0	0	0	0	0	7	0	0	0	0	1
Ower Bay	2	20	10	5	2	1	0	0	1	0	0	0	0	0	0	0	0	3	0	2	0	0	0
Ower Bay	3	10	3	3	3	3	1	0	2	0	1	0	0	0	0	0	0	2	0	0	0	0	1
Arne Beach	1A	20	15	2	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0
Arne Beach	1B	20	15	2	7	2	0	0	1	0	0	1	0	1	0	5	1	7	0	0	0	0	1
Arne Beach	2A	25	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0
Arne Beach	2B	25	7	5	10	7	0	0	2	0	0	0	0	1	0	7	1	7	0	0	0	0	1

Table F2b. Percentages of inclusions present in the Broadstone clay samples, identified using qualitative petrological analysis

		Quar	tz	I	n	1	1	1		Othe	r inclu	usions		1	1			1	1		1	1	
्ध S Upton Country Park	L Sample	L Coarse silt to clay	4 Very fine	Fine 3	2 Medium	r Coarse	O Very coarse	0 Granules	Polycrystalline quartz	0 Quartzite	⊖ Ferruginous sandstone	⊙ Sandstone	© Siltstone	Rlint/chert	$_{\odot}$ Rock with tourmaline lathes	• Elongated argillaceous inclusions	o Equant argillaceous inclusions	Dpaques	o Shell	⊖ Limestone/micritic calcite	ی Iron oxides	⊖ Feldspar	Tourmaline
Upton Country Park	2	2	2	2	3	1	0	0	5	0	0	0	0	1	0	0	0	7	0	0	5	0	0

		• 1	1
Iable F3 Percentages of inclusions	nresent in the Creekmoor clay samples	identitied using a	ualitative netrological analysis
Tuble 1 5. 1 creeniuges of inclusions	present in the Creekmoor clay samples,	, ומכחווקוכם משוחד קו	admante perfological analysis

		Quar	rtz							Othe	er incl	usions	5										
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous inclusions	Equant argillaceous I nclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Longfleet Lodge	1	7	2	1	1	0	0	0	1	0	0	0	0	0	0	0	0	40	0	0	5	0	0
Longfleet Lodge	2	7	2	3	2	0	0	0	1	0	0	0	0	0	0	0	0	5	0	0	3	0	0
Upton, Poole Road	1	7	5	7	7	5	0	0	7	0	0	0	0	2	0	0	1	2	0	0	5	0	2
Upton, Poole Road	2	7	5	7	7	5	0	0	7	0	0	0	0	5	0	0	0	1	0	0	5	0	1
Upton, Poole Road	3	7	10	7	7	5	2	0	7	0	0	0	1	3	0	0	0	1	0	0	1	0	1
East Holme	1	5	2	3	3	7	0	0	7	0	1	0	0	1	2	0	0	2	0	0	0	0	0
East Holme	2	5	2	3	3	2	0	0	2	0	1	0	0	1	0	0	0	1	0	0	0	1	0
Sandford	4	5	3	5	5	7	3	0	5	0	1	0	0	2	0	0	0	5	0	0	2	0	1

Table F4. Percentages of inclusions present in the Oakdale clay samples, identified using qualitative petrological analysis

		Qua	rtz							Othe	r inclu	sions											
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous inclusions	Equant argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Brownsea Island	1	10	10	5	1	0	0	0	0	0	2	0	0	0	0	0	0	7	0	0	0	0	1
Brownsea Island	1b	10	10	3	1	0	0	0	0	0	2	0	0	0	0	0	0	10	0	0	0	0	0
Brownsea Island	2	10	10	7	1	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	1
Brownsea Island	3	10	10	3	1	0	0	0	0	0	1	0	0	0	0	0	0	10	0	0	0	0	0
Brownsea Island	4	15	7	1	1	0	0	0	0	1	1	0	0	0	0	0	0	7	0	0	1	0	1
Brownsea Island	5	10	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	1
Brownsea Island	6	10	7	2	1	1	0	0	0	0	1	0	0	0	0	0	0	7	0	0	1	0	0
Brownsea Island	7	7	3	1	1	0	0	0	0	0	2	0	0	0	0	0	0	3	0	0	0	0	1
Brownsea Island	8	10	10	2	3	2	1	0	1	1	1	0	0	0	0	0	1	10	0	0	0	0	0
Brownsea Island	9	20	5	3	5	3	0	0	2	3	1	0	1	0	0	0	0	10	0	0	1	0	1
Brownsea Island	10	25	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	1
Brownsea Island	11	2	7	10	40	2	0	0	3	0	0	0	3	0	0	0	0	2	0	0	2	0	2
Brownsea Island	12	7	3	3	3	0	0	0	3	0	1	1	0	0	0	0	0	10	0	0	2	0	0
Brownsea Island	13	5	5	3	3	1	0	0	2	0	0	0	0	0	0	0	0	15	0	0	1	0	1
Brownsea Island	14	7	5	3	7	1	2	0	3	0	0	0	0	0	0	0	0	7	0	0	2	0	1
Brownsea Island	15	3	2	3	3	1	0	0	2	0	2	0	1	0	0	0	0	10	0	0	2	0	1

Table F5a. Percentages of inclusions present in the Parkstone clay samples, identified using qualitative petrological analysis

Site	Sample	Silt	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polyc. quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline	El. arg. incs	Eq. arg. incs	Opaques	Shell	Limestone/ calcite	Iron oxides	Feldspar	Tourmaline
Brownsea Island	16	7	3	2	3	1	0	0	2	0	2	0	1	0	0	0	0	7	0	0	3	0	0
Brownsea Island	18	10	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	5	0	0	3	0	0
Brownsea Island	19	10	1	0	2	2	0	0	2	0	0	0	0	0	0	0	0	5	0	0	3	0	1
Brownsea Island	20	2	2	2	3	5	1	0	3	2	1	0	0	0	0	0	1	2	0	0	2	0	1
Brownsea Island	21	20	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
Brownsea Island	22	20	3	1	1	1	0	0	1	0	0	0	0	0	0	0	0	5	0	0	3	0	0
Brownsea Island	23	20	3	1	1	0	0	0	2	0	0	0	0	0	0	0	0	10	0	0	0	0	1
Bourne Bottom	9	3	3	2	5	1	1	0	5	0	0	1	0	2	0	0	1	7	0	1	5	0	1
Bourne Bottom	10	20	1	2	2	2	0	0	2	0	0	0	0	1	0	0	0	10	0	0	1	0	1
Bourne Bottom	8	10	5	3	3	3	1	0	2	0	0	0	0	1	0	0	2	5	0	0	5	0	1
Bourne Bottom	7	30	10	10	15	5	1	0	2	0	0	0	1	0	0	0	0	10	0	0	0	0	1
Bourne Bottom	6	20	7	5	7	7	0	0	2	0	0	0	2	1	0	0	0	2	0	0	0	0	1
Bourne Bottom	5	10	10	10	7	3	2	1	3	0	0	0	2	2	0	0	0	5	0	0	0	0	1
Bourne Bottom	4	20	10	10	10	3	3	0	2	0	1	0	0	2	0	0	0	5	0	0	1	0	0
Bourne Bottom	3	5	7	7	7	2	2	0	2	1	1	0	0	2	0	0	1	10	0	0	7	1	0
Bourne Bottom	2	10	5	7	7	3	0	1	3	0	1	0	0	2	0	0	0	3	0	0	2	0	0
Bourne Bottom	1	30	5	3	3	2	0	0	2	0	1	0	0	0	0	0	0	3	0	0	2	1	1
Alderney/Newtown	1	10	10	3	5	2	0	0	2	0	2	0	0	0	0	0	0	10	0	0	0	0	1
Alderney/Newtown	2	10	10	3	5	0	0	0	1	0	0	0	0	0	0	0	0	5	0	0	0	0	1

Table F5b. Percentages of inclusions present in the Parkstone clay samples, identified using qualitative petrological analysis

Site	Sample	Silt	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polyc. quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline	El. arg. incs	Eq. arg. incs	Opaques	Shell	Limestone/ calcite	Iron oxides	Feldspar	Tourmaline
Creech Heath	1	10	5	3	1	1	0	0	2	0	0	0	0	0	0	0	0	3	0	0	0	0	1
Creech Heath	2	7	5	3	3	2	0	0	2	0	0	0	0	0	0	0	0	7	0	0	3	0	1
Creech Heath	3	40	7	3	3	3	0	0	2	0	0	0	0	0	0	0	0	3	0	0	0	0	1
Creech Heath	4	20	10	7	10	3	0	0	7	0	0	0	0	2	0	0	0	2	0	0	0	0	1

Table F5c. Percentages of inclusions present in the Parkstone clay samples, identified using qualitative petrological analysis

			Quar	tz							Othe	er inclu	isions											
Site	Sample		Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous inclusions	Equant argillaceous inclusions	Opaques	Shell	Limestone/micritic calite	Iron oxides	Feldspar	Tourmaline
Belle Vue Farm		1	20	5	3	1	0	0	0	1	0	1	0	0	2	0	0	0	15	0	0	0	0	0
Lower Lynch House		1	20	10	3	2	0	0	0	2	0	0	0	0	1	1	0	0	10	0	0	0	0	1
Lower Lynch House		2	20	7	5	3	3	0	0	3	0	0	0	2	1	0	0	0	5	0	0	0	0	1
Lower Lynch House		3	20	10	3	2	1	1	0	2	0	2	0	0	1	0	0	0	7	0	0	0	0	1
Lower Lynch House	4A		20	5	5	2	3	1	0	2	0	2	1	0	1	0	0	0	15	0	0	0	0	0
Lower Lynch House	4B		10	1	0	2	1	0	0	1	1	0	0	0	0	0	0	0	3	0	0	2	0	1
SE Purbeck		1	20	15	15	1	0	0	0	2	0	1	0	0	0	0	0	0	3	0	0	2	0	1
SE Purbeck		2	15	15	10	10	0	0	0	2	0	2	0	2	1	0	0	0	7	0	1	1	0	2
SE Purbeck		3	20	20	10	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	1
SE Purbeck		4	20	10	10	3	1	0	0	2	0	0	0	0	0	0	0	0	7	0	0	1	0	1
SE Purbeck		6	10	10	10	7	2	0	0	2	0	5	0	0	1	0	0	2	7	0	0	0	0	1
SE Purbeck		7	15	15	10	5	3	0	3	2	0	1	0	2	1	0	0	0	5	0	0	0	0	1

Table F6. Percentages of inclusions present in the Wealden clay samples, identified using qualitative petrological analysis

		Qua	rtz							Othe	er incl	usions	5										
Site	Sample	Coarse silt to clay	Very fine	Fine	Medium	Coarse	Very coarse	Granules	Polycrystalline quartz	Quartzite	Ferruginous sandstone	Sandstone	Siltstone	Flint/chert	Rock with tourmaline lathes	Elongated argillaceous inclusions	Equant argillaceous inclusions	Opaques	Shell	Limestone/micritic calcite	Iron oxides	Feldspar	Tourmaline
Hengistbury Head	2	20	20	0	0	0	0	0	0	0	2	0	0	0	0	0	0	5	0	0	0	0	1
Hengistbury Head	3	20	20	0	0	0	0	0	0	0	2	0	0	0	0	0	0	5	0	0	0	0	0

Table F7. Percentages of inclusions present in the Barton clay samples, identified using qualitative petrological analysis

•

Site	Sample	No. of grains measured	Min. size measured (mm)	Max. size measured (mm)	Mean grain size (mm)	Standard deviation	Skewness	(Residual) kurtosis	Modal grain size
Creech Heath	2	55	0.0066	0.8855	0.1814	0.1826	0.5147	6.1762	Fine sand
Godlingston Heath	5	33	0.0046	0.5009	0.0886	0.101	0.166	9.81	Very fine sand
Upton Poole Road	2	122	0.0233	1.4213	0.3526	0.2579	0.4742	5.9818	Medium sand
Upton Poole Road	3	136	0.0116	1.686	0.3221	0.2727	0.6303	9.7793	Medium sand
Brownsea Island	14	73	0.0491	1.0123	0.327	0.276	0.5072	3.634	Medium sand
Brownsea Island	20	43	0.0147	2.8696	0.5046	0.5897	0.7765	12.1367	Coarse sand
Arne Beach	2a	44	0.0118	0.1001	0.0365	0.0202	-0.5722	5.1914	Medium silt
Arne Beach	2b	83	0.0131	2.0212	0.3042	0.3887	0.6246	17.8451	Medium sand
East Holme	2	40	0.0259	0.6502	0.2383	0.1925	0.1579	2.3877	Very fine sand
Bourne Bottom Nature Res.	9	51	0.0164	1.7192	0.2602	0.2895	0.1593	13.6723	Fine sand
Redcliffe Farm	2	55	0.0131	0.097	0.048	0.1168	0.4285	2.1778	Coarse silt
Sandford	4	67	0.0251	1.1424	0.3202	0.2385	0.6198	3.6551	Fine sand

Table F8. Descriptive statistics of clay samples analysed using quantitative petrological analysis

Table F9. Descriptive statistics of sand samples analysed using quantitative petrological analysis

Site	Sample	No. of grains measured	Min. size measured (mm)	Max. size measured (mm)	Mean grain size (mm)	Standard deviation	Skewness	(Residual) kurtosis	Modal grain size
Furzey Island	3	143	0.1601	0.938	0.5277	0.1725	0.46	2.6696	Medium sand
Rempstone	3	98	0.063	2.088	0.4172	0.3158	-0.0359	15.4907	Medium sand

Site	Sample	No. of grains measured	Min. size measured (mm)	Max. size measured (mm)	Mean grain size (mm)	Standard deviation	Skewness	(Residual) kurtosis	Modal grain size
Green Island	GI 1	97	0.1464	1.205	0.3398	0.1383	-0.6104	17.2447	Medium sand
Green Island	GI 2	83	0.0399	1.4082	0.5457	0.334	1.6535	5.0999	Coarse sand
Green Island	GI 3	53	0.0135	1.4585	0.5955	0.3165	2.1948	2.9142	Coarse sand
East of Corfe River	WFO 14	67	0.469	1.0093	0.4712	0.2334	1.8228	3.2559	Medium sand
East of Corfe River	WFO 15	82	0.084	1.6633	0.4579	0.2513	0.5768	7.6833	Medium sand
Ower Peninsula	WFO 16	62	0.0246	2.6515	0.4408	0.3972	0.5725	16.7979	Medium sand
East of Corfe River	WFO 24	104	0.0469	1.0407	0.3233	0.2199	-0.0005	4.4502	Medium sand
Maiden Castle	MC 18	67	0.1169	2.0617	0.6907	0.4509	0.0867	3.5339	Coarse sand
Maiden Castle	MC 20	64	0.0116	1.6724	0.6037	0.3949	1.5528	3.3074	Coarse sand
Rope Lake Hole	RLH 19	19	0.1406	1.8035	0.6373	0.3712	0.3347	5.8599	Coarse sand
Redcliff	RR 4	57	0.0169	0.2923	0.1621	0.0622	2.1012	3.0325	Fine sand

Table F10. Descriptive statistics of pottery samples analysed using quantitative petrological analysis

Туре	Site	Sample	VF silt	F silt	M silt	C silt	VFS	FS	MS	CS	VCS	G
Clay	Brownsea	20	0	2.3	4.7	9.3	2.3	18.6	20.9	34.9	2.3	4.7
Clay	Brownsea	14	0	0	0	6.8	9.6	24.7	41.1	16.4	1.4	0
Clay	Bourne Valley	9	0	0	5.9	21.6	11.8	25.5	23.5	9.8	2	0
Clay	Arne Beach	2A	0	2.3	50	36.4	11.4	0	0	0	0	0
Clay	Arne Beach	2B	0	1.2	7.2	9.6	12	14.5	39.8	14.5	0	1.2
Clay	East Holme	2	0	0	5	7.5	32.5	15	25	15	0	0
Clay	Creech Heath	2	5.5	5.5	7.3	16.4	10.9	30.9	18.2	5.5	0	0
Clay	Godlingston Heath	5	3	12.1	21.2	12.1	36.4	9.1	3	3	0	0
Clay	Upton Poole Rd	2	0	0	0.8	4.9	8.2	28.7	33.6	21.3	2.5	0
Clay	Upton Poole Rd	3	0	0.7	1.5	6.6	14	27.9	31.6	14.7	2.9	0
Clay	Redcliffe Farm	2	0	3.6	25.5	47.3	23.6	0	0	0	0	0
Clay	Sandford	4	0	0	4.5	3	13.4	29.9	26.9	20.9	1.5	0
Pottery	Rope Lake Hole	RLH 19	0	0	0	0	0	5.3	26.3	52.6	15.8	0
Pottery	East of Corfe River	WFO 14	0	0	0	1.5	3	4.5	46.3	43.3	1.5	0
Pottery	East of Corfe Rive	WFO 15	0	0	0	0	3.7	14.6	48.8	31.7	1.2	0
Pottery	Ower Peninsula	WFO 16	0	0	1.6	3.2	6.5	17.7	41.9	24.2	3.2	1.6
Pottery	East of Corfe River	WFO 24	0	0	0	1.9	9.6	34.6	37.5	14.4	1.9	0
Pottery	Green Island	GI 1	0	0	0	0	0	23.7	68	7.2	1	0
Pottery	Green Island	GI 2	0	0	0	2.4	0	4.8	39.8	47	6	0
Pottery	Green Island	GI 3	0	1.9	0	1.9	0	7.5	34	39.6	15.1	0
Pottery	Maiden Castle	MC 18	0	0	0	0	1.5	10.4	31.3	35.8	19.4	1.5
Pottery	Maiden Castle	MC 20	0	6.3	4.7	3.1	1.6	6.3	14.1	54.7	9.4	0
Pottery	Redcliff	RR 4	0	0	3.5	5.3	10.5	73.7	7	0	0	0
Sand	Furzey Island	3	0	0	0	0	0	2.1	49.7	48.3	0	0
Sand	Rempstone	3	0	0	0	0	5.1	22.4	46.9	22.4	2	1

Table F11. Percentage of all size categories of grains for clay, pottery and sand samples. Data from point-counting (VF=very fine; F=fine; M=medium; C=coarse; S=sand; G=granules)

Site	Sample no.	Matrix	Grains	Authigenic minerals	Voids
Creech Heath	2	81	17.7	1	0.3
Godlingston Heath	5	91.6	7	0.07	0.07
Upton Poole Road	2	59.3	40.7		
Upton Poole Road	3	54	44.7	0.7	0.6
Brownsea Island	14	70	22.3	2	5.7
Brownsea Island	20	82	13.3		3.7
Arne Beach	2a	85	14.7		0.3
Arne Beach	2b	68	27.7		4.3
East Holme	2	83	13.3		3.7
Bourne Bottom Nature Reserve	9	78.7	14.3	2.7	4.3
Redcliffe Farm	2	80.7	18.3		1
Sandford	4	74.3	22	0.3	3.3

Table F12. Percentages of grains, minerals, voids and clay matrix of the clay samples (data from point-counting)

Site	Sample	Matrix	Grains	Authigenic minerals	Bioclastic grains	Voids
Green Island	GI 1	56.3	32	0.3		11.3
Green Island	GI 2	59.7	27.3	0.3		12.7
Green Island	GI 3	75.7	17.7			6.7
Maiden Castle	MC 18	67.3	21.3	1		10.3
Maiden Castle	MC 20	66	21.3			12.7
Wytch Farm	WFO 14	60.3	22	0.3		17.3
Wytch Farm	WFO 15	63	27.3			9.7
Wytch Farm	WFO 16	76	20.3	0.3		3.3
Wytch Farm	WFO 24	60.3	34.3	0.3		5
Rope Lake Hole	RLH 19	72.2	20		1.1	6.7
Redcliffe Farm	RR 4	80.7	19			0.3

Table F13. Percentages of grains, minerals, voids and clay matrix of the clay samples (data from point-counting)

Data												
	Upton Poole Road, sample 2	Upton Poole Road, sample 3	Brownsea, sample 14	Brownsea sample 20	Bourne Bottom, sample 9	Creech Heath, sample 2	Godlingston Heath sample 5	Redcliffe Farm, sample 2	Sandford, sample 4	East Holme, sample 2	Arne Beach, sample 2A	Arne Beach, sample 2B
Quartz - Monocrystalline	83	93	57	28	32	46	29	55	56	30	44	65
Quartz - Polycrystalline	33	39	7	7	7	7	1		6	9		6
Quartzite			2	3	1				2	1		2
Flint/chert	5	1		1	1							
Sandstone		1										
Limestone					1							
Argillaceous inclusions (elongated)												10
Argillaceous inclusions (equant)			1	1	1				1			
Opaques		2	6	3	8	3	3		1			
Tourmaline	1								1			
Clay matrix	178	162	210	246	236	243	391	242	223	249	255	204
Voids		2	17	11	13	1	3	3	10	11	1	13
Total	300	300	300	300	300	300	427	300	300	300	300	300

 Table F14. Inclusions present in the clay samples, by count. Data from quantitative textural analysis, with Petrog point counter

 Data

Data	Sample												
	WFO 14	WFO 15	WFO 16	WFO 24	GI 1	GI 2	GI 3	MC 18	MC 20	RLH 19	RR 4		
Quartz - Monocrystalline	50	64	40	75	59	48	37	48	33	13	55		
Quartz - Polycrystalline	6	11	9	19	31	20	11	5	20	4	1		
Quartzite	5	1			2	7	1	3	6				
Flint/chert	2	2	6		2	4	3		4		1		
Sandstone				1	1	2							
Limestone	2	1	1					3		1			
argillaceous inclusions (elongated)		3	5	7	1		1	5					
Argillaceous inclusions (equant)	2			1		1							
Microcline									1				
Iron	1							3			1		
Opaques			1	1	1	1							
Plagioclase feldspar										1			
Clay matrix	181	189	228	181	169	179	227	202	198	65	242		
Voids	52	29	10	15	34	38	20	31	38	6	3		
Total	300	300	300	300	300	300	300	300	300	90	300		

Table F15. Inclusions present in the pottery samples, by count. Data from quantitative textural analysis, with Petrog point counter Key -WF: Wytch Farm Oilfield; GI: Green Island; MC: Maiden Castle; RLH: Rope Lake Hole; RR: Redcliff, Ridge

BLANK PAGE

Appendix G. Additional data for Chapter 8: Compositional analysis

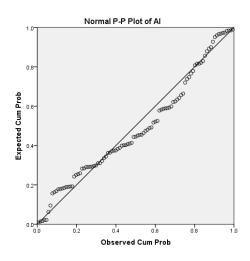


Figure G1a P-P plot of Al (raw data, all samples)

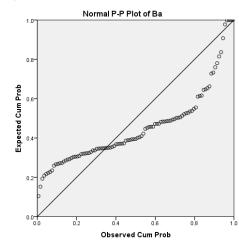
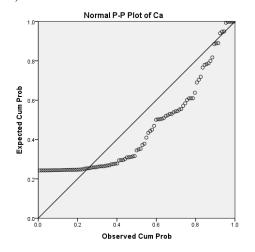
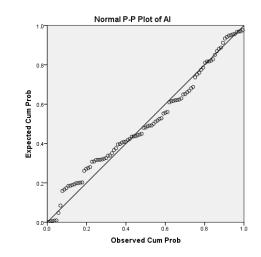
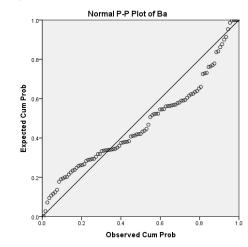


Figure G2a P-P plot of Ba (raw data, all samples)

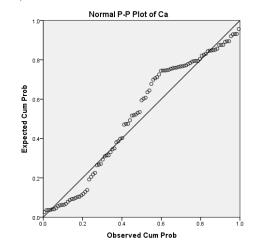
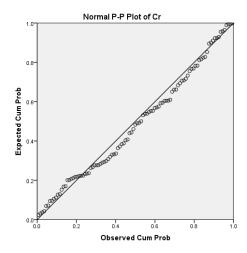
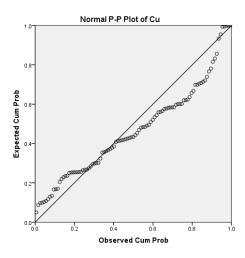
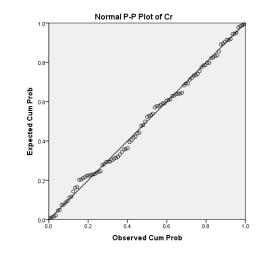

Figure G3a P-P plot of Ca (raw data, all samples)

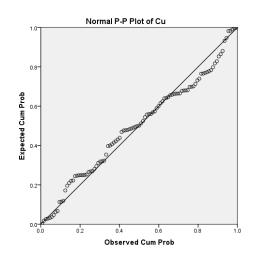
Figure G1b P-P plot of Al (log₁₀ data, all samples)

Figure G2b P-P plot of Ba (*log*₁₀ *data, all samples*)

Figure G3b P-P plot of Ca (*log*₁₀ *data, all samples*)


Figure G4a P-P plot of Cr (raw data, all samples)


Figure G5a P-P plot of Cu (raw data, all samples)

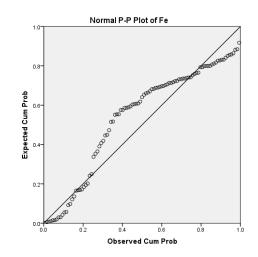

Figure G6a P-P plot of Fe (raw data, all samples)

Figure G4b P-P plot of Cr (log₁₀ data, all samples)

Figure G5b P-P plot of Cu (log₁₀ data, all samples)

Figure G6b P-P plot of Fe (*log*₁₀ *data, all samples*)

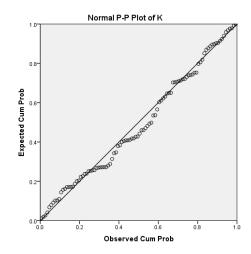


Figure G7a P-P plot of K (raw data, all samples)

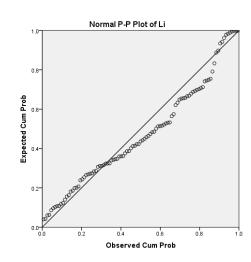


Figure G8a P-P plot of Li (raw data, all samples)

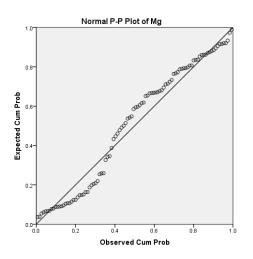


Figure G9a P-P plot of Mg (raw data, all samples)

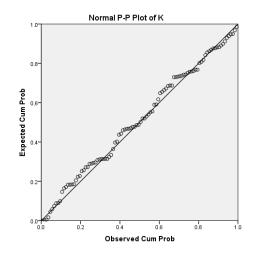
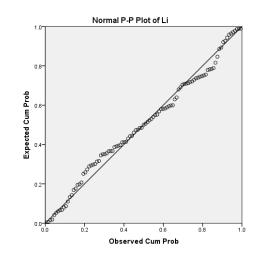
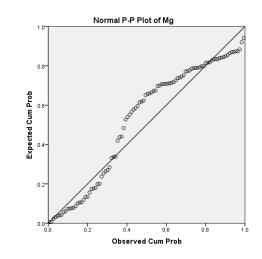
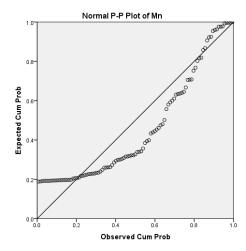
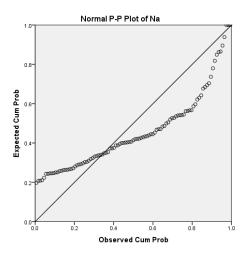
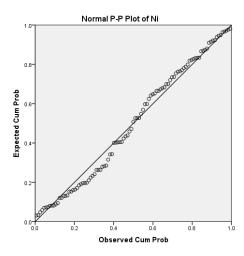




Figure G7b P-P plot of K (log₁₀ data, all samples)

Figure G8b P-P plot of Li (*log*₁₀ *data, all samples*)

Figure G9b P-P plot of Mg (log₁₀ data, all samples)

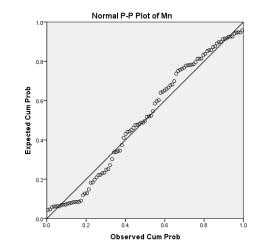

Figure G10a P-P plot of Mn (raw data, all samples)

Figure G11a P-P plot of Na (raw data, all samples)

Figure G12a P-P plot of Ni (raw data, all samples)

Figure G10b P-P plot of Mn (log₁₀ data, all samples)

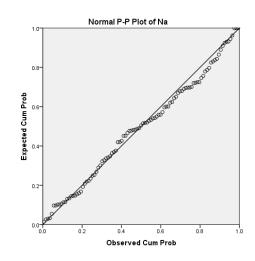
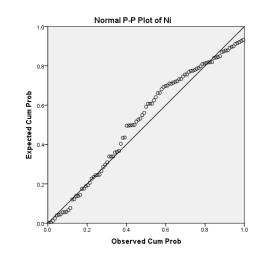



Figure G11b P-P plot of Na (log₁₀ data, all samples)

Figure G12b P-P plot of Ni (log₁₀ data, all samples)

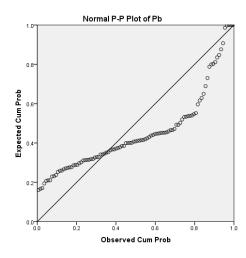


Figure G13a P-P plot of Pb (raw data, all samples)

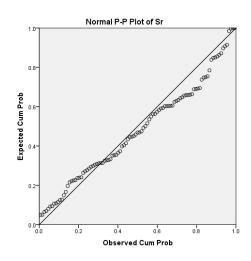


Figure G14a P-P plot of Sr (raw data, all samples)

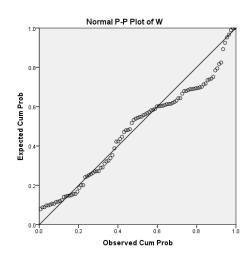
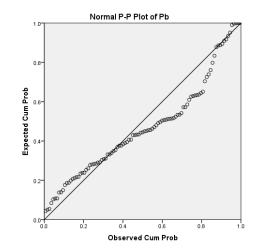
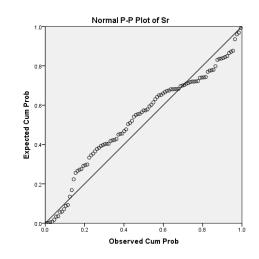
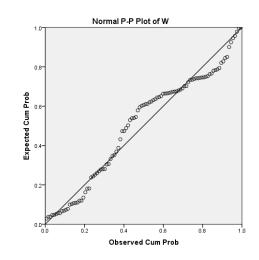
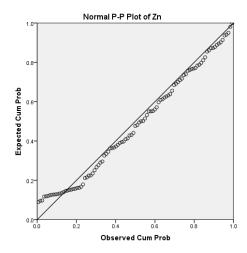
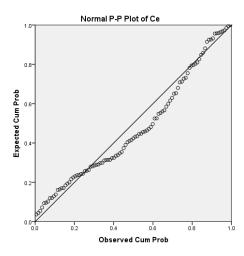
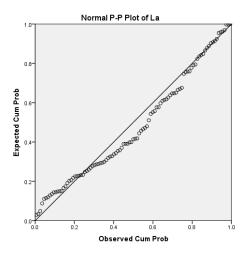




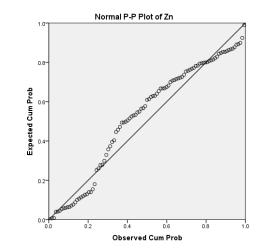
Figure G15a P-P plot of W (raw data, all samples)

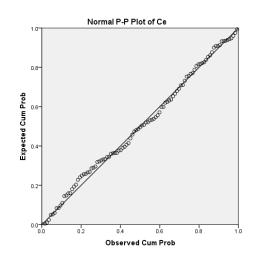
Figure G13b P-P plot of Pb (log₁₀ data, all samples)

Figure G14b P-P plot of Sr (log₁₀ data, all samples)


Figure G15b P-P plot of W (log₁₀ data, all samples)


Figure G16a P-P plot of Zn (raw data, all samples)


Figure G17a P-P plot of Ce (raw data, all samples)

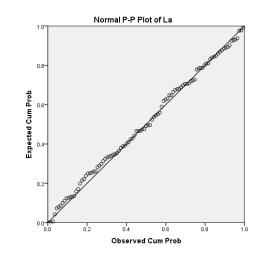

Figure G18a P-P plot of La (raw data, all samples)

Figure G16b P-P plot of Zn (log₁₀ data, all samples)

Figure G17b P-P plot of Ce (log₁₀ data, all samples)

Figure G18b P-P plot of La (*log*₁₀ *data, all samples*)

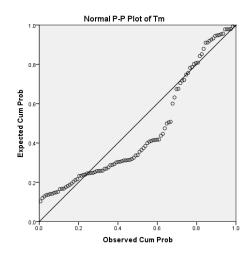


Figure G19a P-P plot of Tm (raw data, all samples)

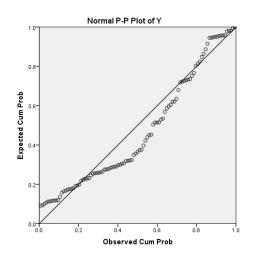


Figure G20a P-P plot of Y (raw data, all samples)

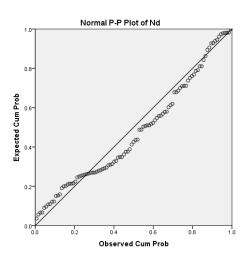
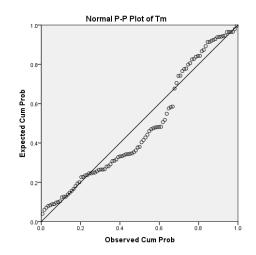
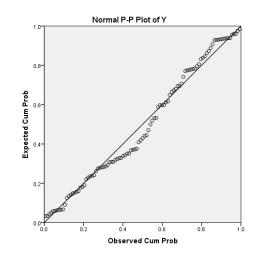




Figure G21a P-P plot of Nd (raw data, all samples)

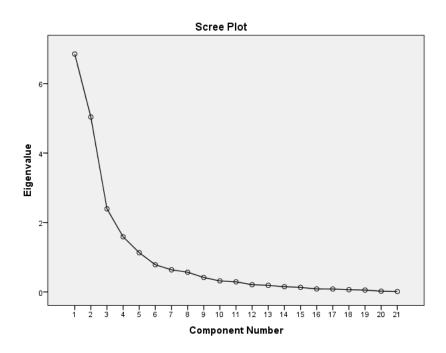

Figure G19b P-P plot of Tm (*log*₁₀ *data, all samples*)

Figure G20b P-P plot of Y (log₁₀ data, all samples)

Figure G21b P-P plot of Nd (log₁₀ data, all samples)

Figure G22. Scree plot to show principal components with Eigen values >1, *for all pottery, clay and shale samples (log*₁₀ *data).*

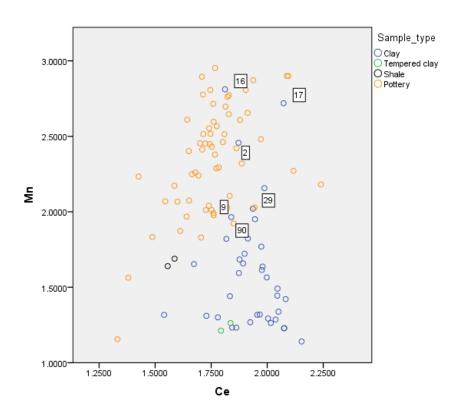


Figure G23. Bivariate plot of Mn and Ce, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

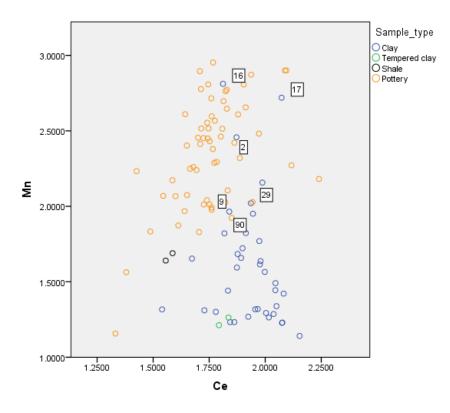


Figure G24. Bivariate plot of Mn and Ce, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

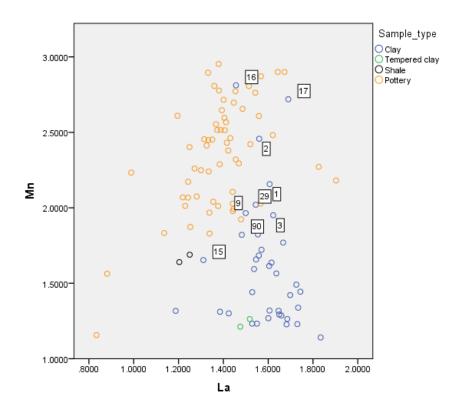


Figure G25. Bivariate plot of Mn and La, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

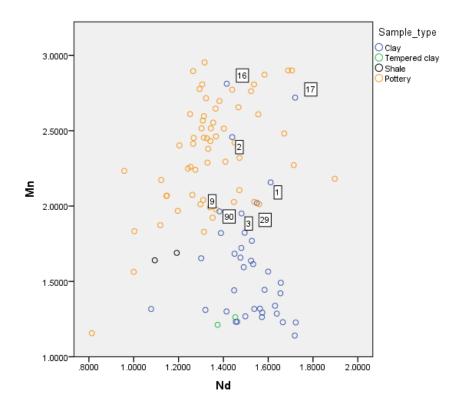


Figure G26. Bivariate plot of Mn and Nd, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

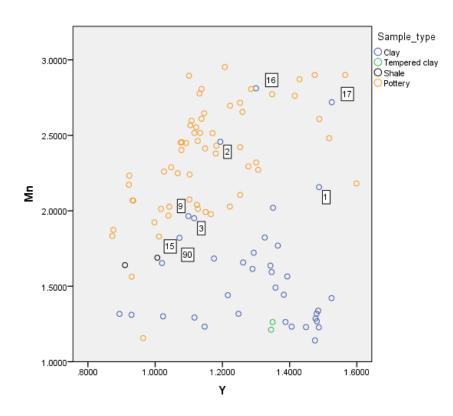


Figure G27. Bivariate plot of Mn and Y, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

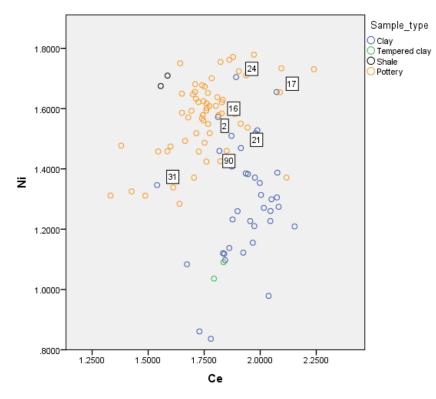


Figure G28. Bivariate plot of Ni and Ce, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

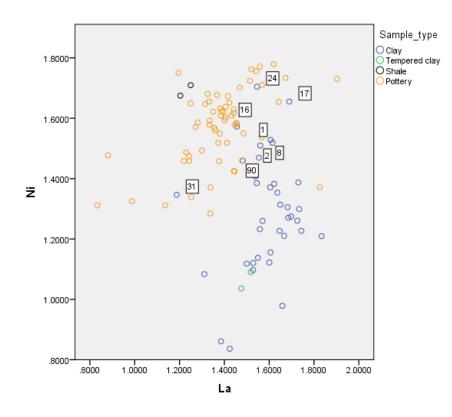


Figure G29. Bivariate plot of Ni and La, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

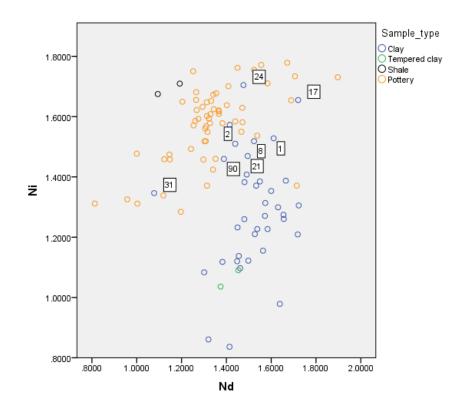


Figure G30. Bivariate plot of Ni and Nd, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

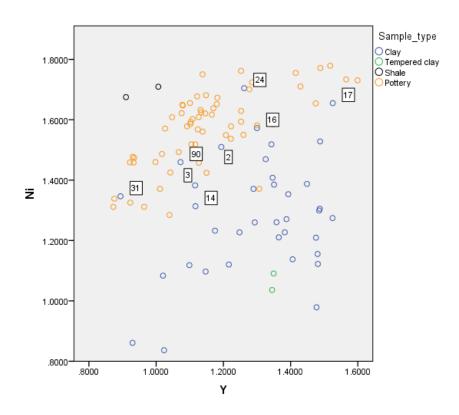


Figure G31. Bivariate plot of Ni and Y, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

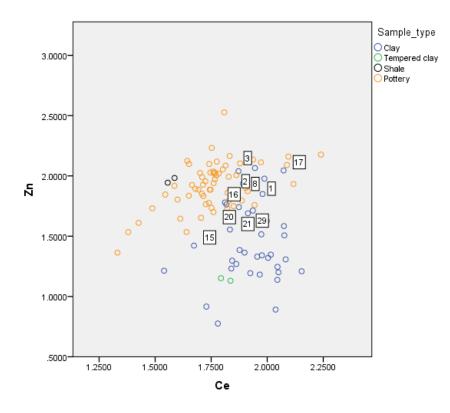


Figure G32. Bivariate plot of Zn and Ce, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

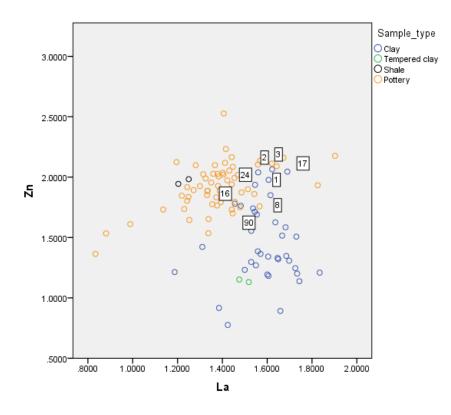


Figure G33. Bivariate plot of Zn and La, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

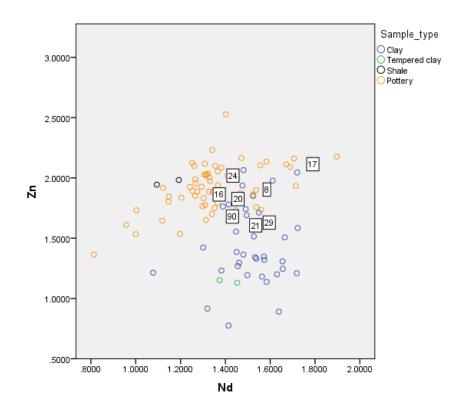


Figure G34. Bivariate plot of Zn and Nd, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).

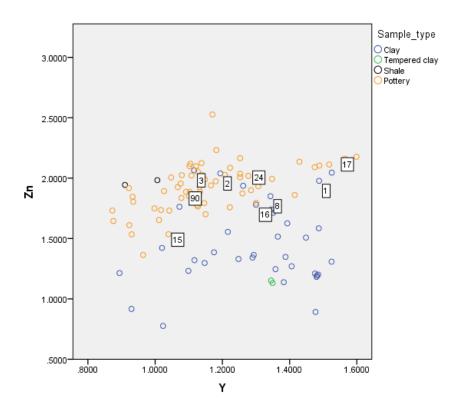
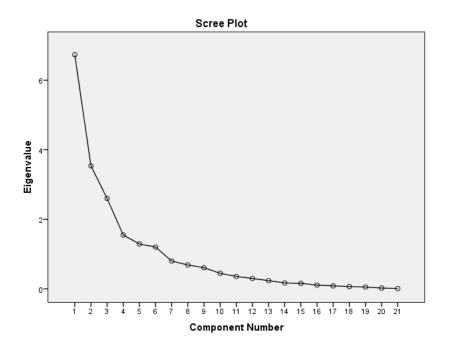
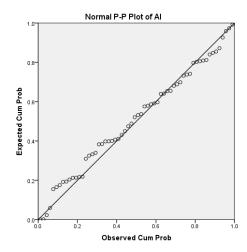
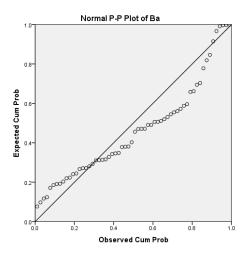
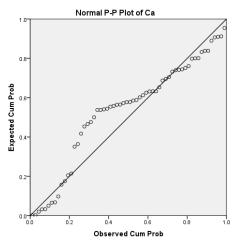
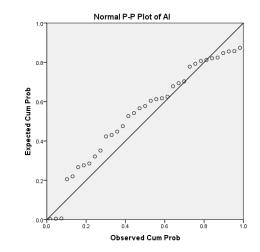
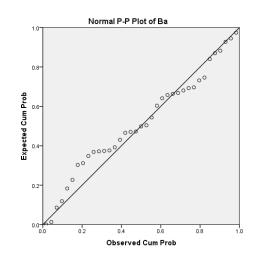


Figure G35. Bivariate plot of Zn and Y, of all samples (log_{10} data). Closest clay samples to the pottery are highlighted (ICP sample numbers).


Figure G36. Scree plot of principal components of pottery samples (log₁₀ data).


Figure G37a P-P plot of Al (log₁₀ data, pottery samples)


Figure G38a P-P plot of Ba (*log*₁₀ *data, pottery samples*)

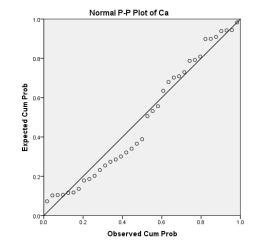

Figure G39a P-P plot of Ca (*log*₁₀ *data, pottery samples*)

Figure G37b P-P plot of Al (log₁₀ data, clay samples)

Figure G38b P-P plot of Ba (*log*₁₀ *data, clay samples*)

Figure G39b P-P plot of Ca (log₁₀ data, clay samples)

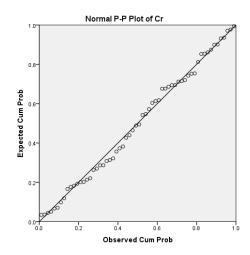


Figure G40a P-P plot of Cr (log₁₀ data, pottery samples)

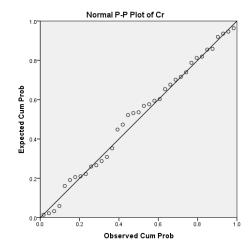
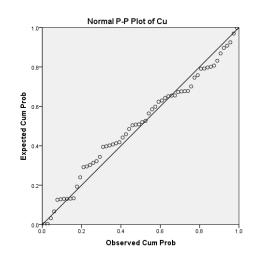
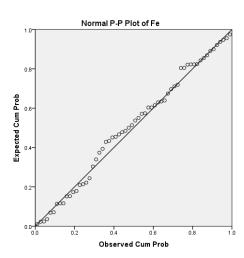
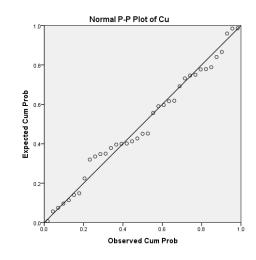
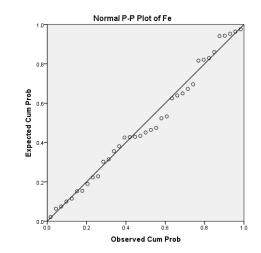


Figure G40b P-P plot of Cr (log₁₀ data, clay samples)


Figure G41a P-P plot of Cu (log₁₀ data, pottery samples)

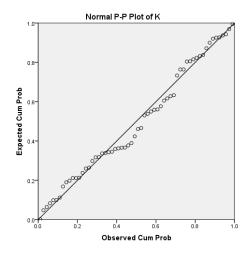
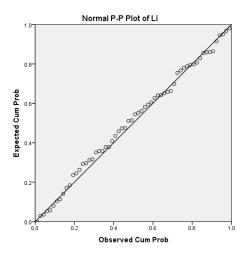
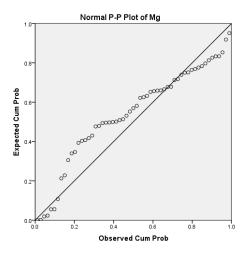
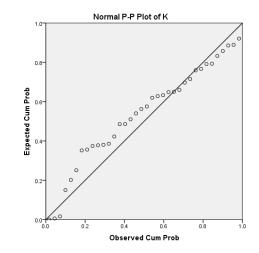
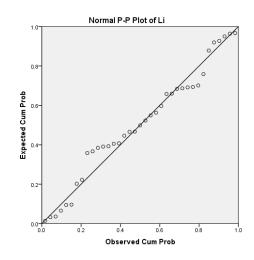

Figure G42a P-P plot of Fe (*log*₁₀ *data, pottery samples*)

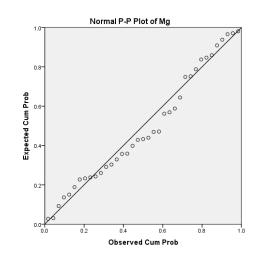
Figure G41b P-P plot of Cu (log₁₀ data, clay samples)

Figure G42b P-P plot of Fe (*log*₁₀ *data, clay samples*)

Figure G43a P-P plot of K (log₁₀ data, pottery samples)


Figure G44a P-P plot of Li (log₁₀ data, pottery samples)


Figure G45a P-P plot of Mg (log₁₀ data, pottery samples)

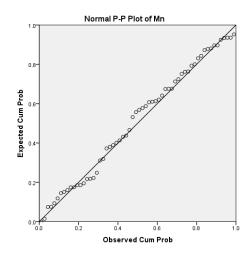

Figure G43b P-P plot of K (log₁₀ data, clay samples)

Figure G44b P-P plot of Li (*log*₁₀ *data, clay samples*)

Figure G45b P-P plot of Mg (log₁₀ data, clay samples)

Figure G46a P-P plot of Mn (log₁₀ data, pottery samples)

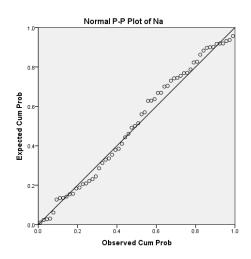
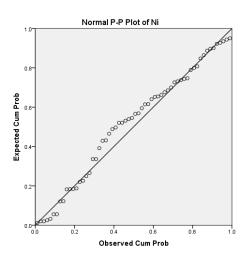
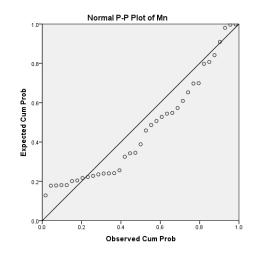
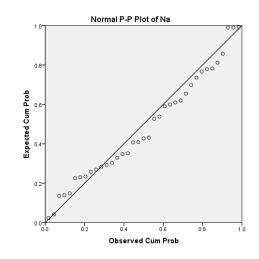
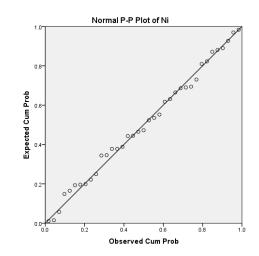
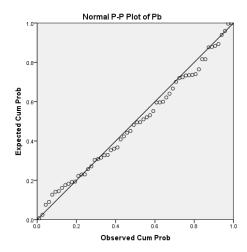


Figure G47a P-P plot of Na (log₁₀ data, pottery samples)


Figure G48a P-P plot of Ni (log₁₀ data, pottery samples)


Figure G46b P-P plot of Mn (log₁₀ data, clay samples)

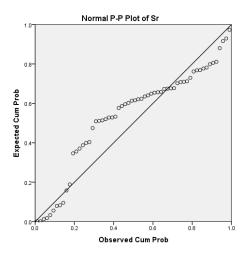
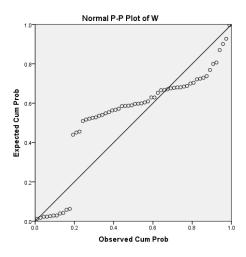
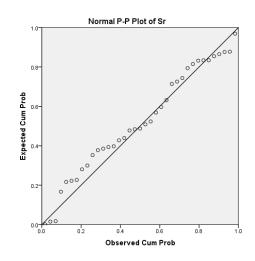

Figure G47b P-P plot of Na (*log*₁₀ *data, clay samples*)

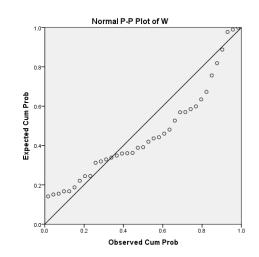
Figure G47b P-P plot of Ni (log₁₀ data, clay samples)

Figure G49a P-P plot of Pb (log₁₀ data, pottery samples)

Figure G50a P-P plot of Sr (log₁₀ data, pottery samples)






Figure G51a P-P plot of W (log₁₀ data, pottery samples)

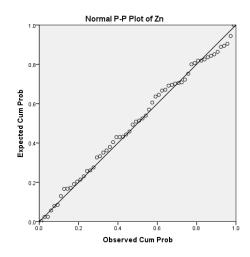
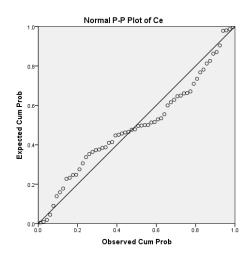
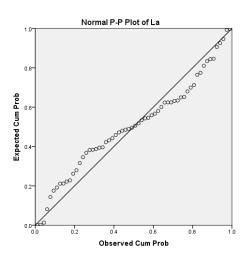
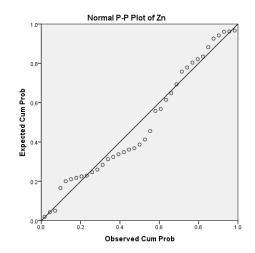
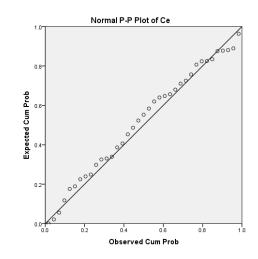

Figure G49b P-P plot of Pb (log₁₀ data, clay samples)

Figure G50b P-P plot of Sr (*log*₁₀ *data, clay samples*)

Figure G51b P-P plot of W (log₁₀ data, clay samples)

Figure G52a P-P plot of Zn (log₁₀ data, pottery samples)


Figure G53a P-P plot of Ce (log₁₀ data, pottery samples)

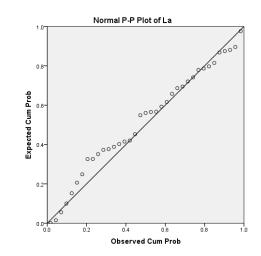
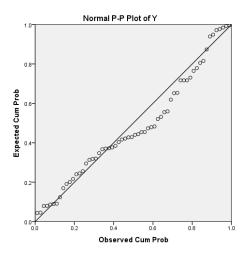
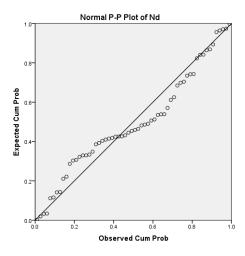
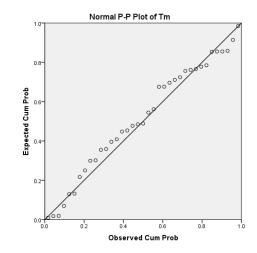
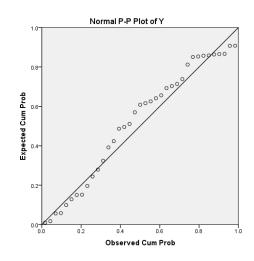

Figure G54a P-P plot of La (*log*₁₀ *data, pottery samples*)

Figure G52b P-P plot of Zn (log₁₀ data, clay samples)


Figure G53b P-P plot of Ce (*log*₁₀ *data, clay samples*)


Figure G54b P-P plot of La (*log*₁₀ *data, clay samples*)


Figure G55a P-P plot of Tm (*log*₁₀ *data, pottery samples*)


Figure G56a P-P plot of Y (log₁₀ data, pottery samples)

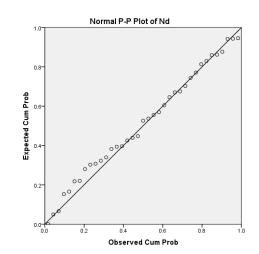

Figure G57a P-P plot of Nd (log₁₀ data, pottery samples)

Figure G55b P-P plot of Tm (*log*₁₀ *data, clay samples*)

Figure G56b P-P plot of Y (log₁₀ data, clay samples)

Figure G57b P-P plot of Nd (log₁₀ data, clay samples)

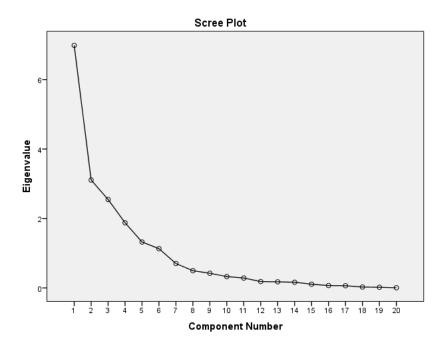


Figure G58. Scree plot of principal components of pottery samples from Wytch Farm, Green Island, Hengistbury Head, Maiden Castle, Southdown Ridge, Gussage All Saints and Barton Field; excluding Mg.

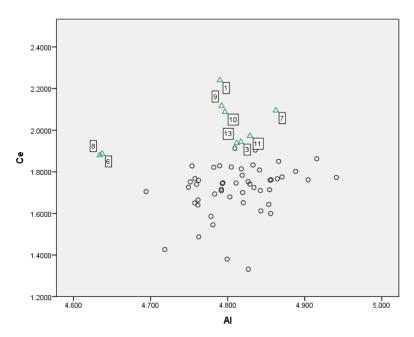


Figure G59. Bivariate plot of Al-Ce for the pottery log_{10} data, highlighting possible outliers (ICP case number).

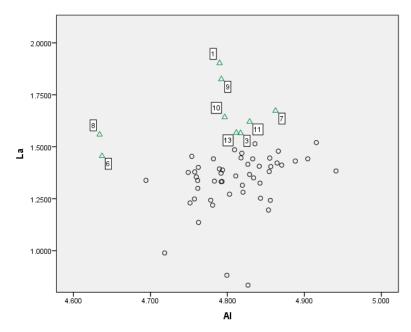


Figure G60. Bivariate plot of Al-La for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).

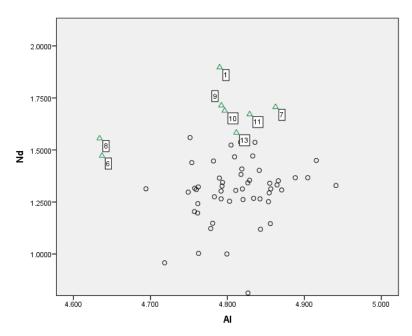


Figure G61. Bivariate plot of Al-Nd for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).

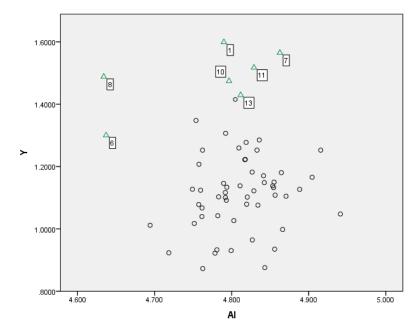
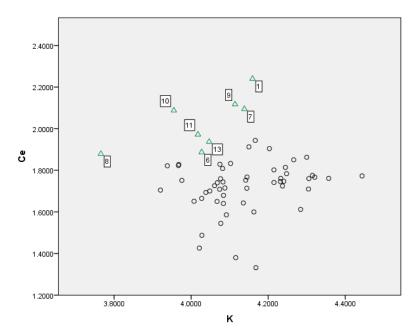



Figure G62. Bivariate plot of Al-Y for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).

*Figure G63. Bivariate plot of K-Ce for the pottery log*₁₀ *data, highlighting possible outliers(ICP case numbers).*

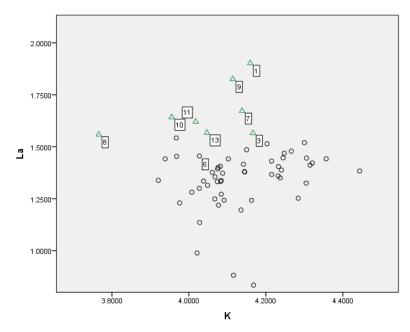


Figure G64. Bivariate plot of K-La for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).

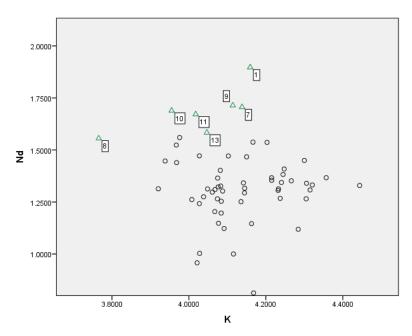


Figure G65. Bivariate plot of K-Nd for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).

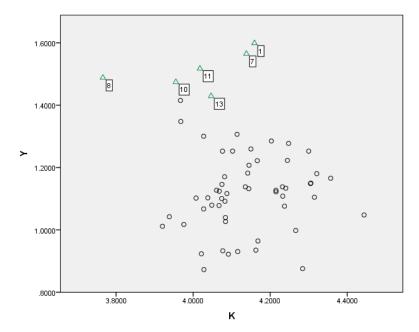


Figure G66. Bivariate plot of K-Y for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).

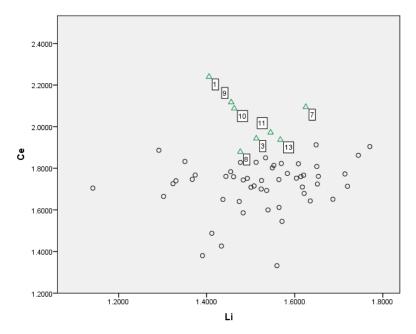


Figure G67. Bivariate plot of Li-Ce for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).

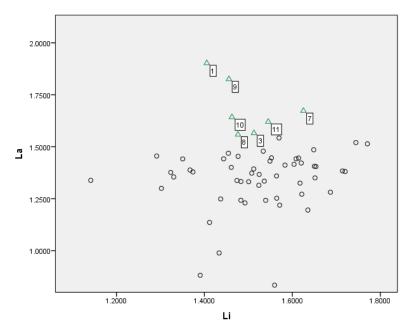


Figure G68. Bivariate plot of Li-La for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).

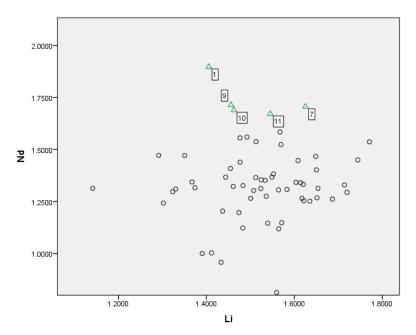


Figure G69. Bivariate plot of Li-Nd for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).



Figure G70. Bivariate plot of Li-Y for the pottery log_{10} data, highlighting possible outliers (ICP case numbers).

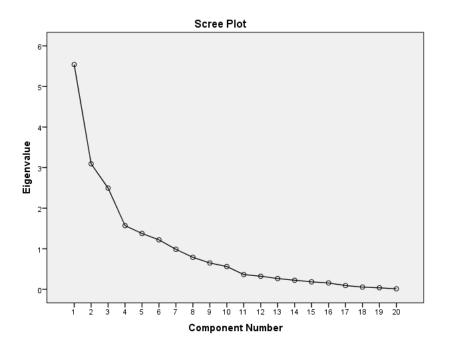


Figure G71. Scree plot of the principal components of the raw data of the pottery samples, excluding Mg.

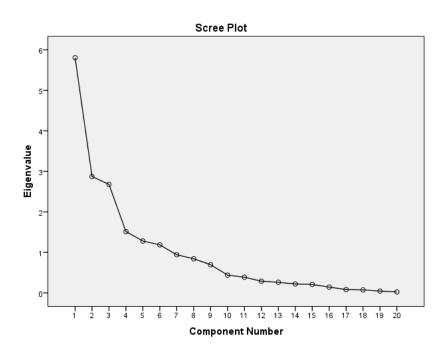
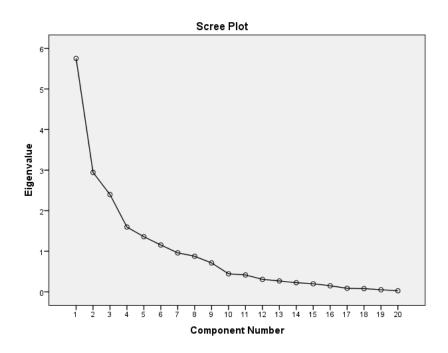
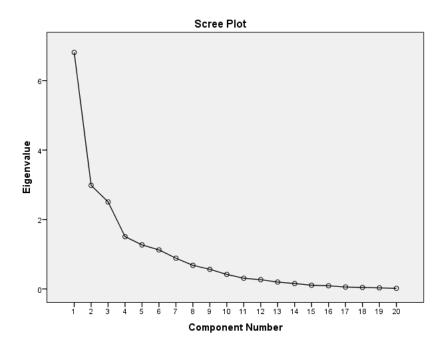




Figure G72. Scree plot of principal components of raw data for pottery samples, excluding Mg and samples 40, 45-50.

Figure G73. Scree plot from PCA of pottery, raw data, excluding Mg and samples 40, 45-50, 52 and 95.

*Figure G74 Scree plot from PCA of pottery log*₁₀ *data, excluding Mg and samples 40, 45-50, 52 and 95.*

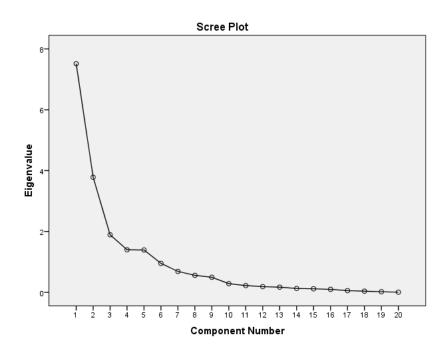


Figure G75. Scree plot of principal components for the clays and compositional group 1 of the pottery (raw data, excluding Mg).

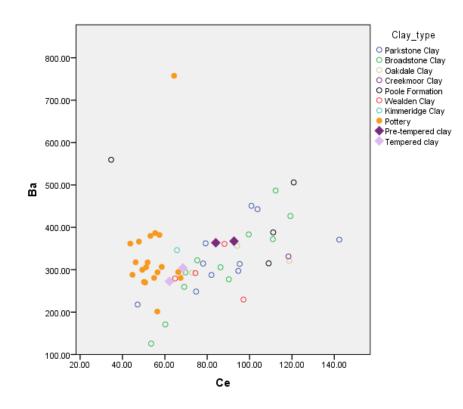


Figure G76. Bivariate plot of Ba and Ce for raw data of pottery group 1.

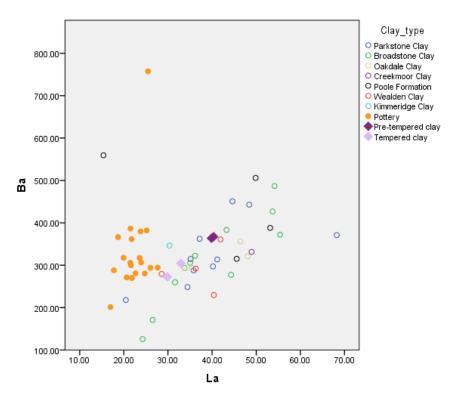


Figure G77. Bivariate plot of Ba and La for raw data of pottery group 1

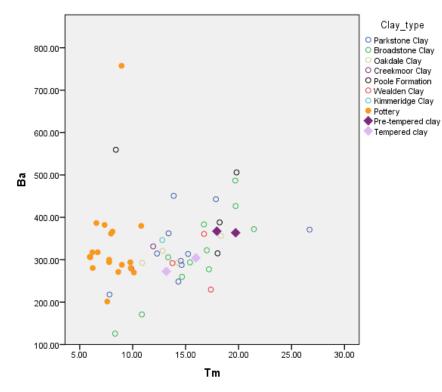


Figure G78. Bivariate plot of Ba and Tm for raw data of pottery group 1.

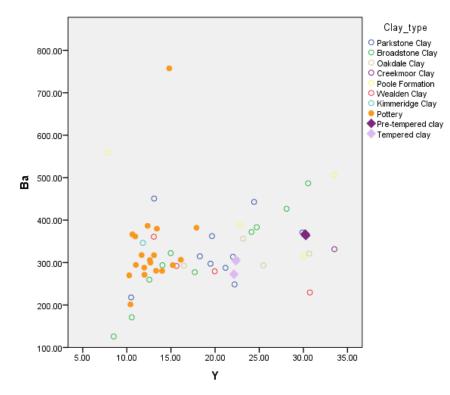


Figure G79. Bivariate plot of Ba and Y for raw data of pottery group 1.

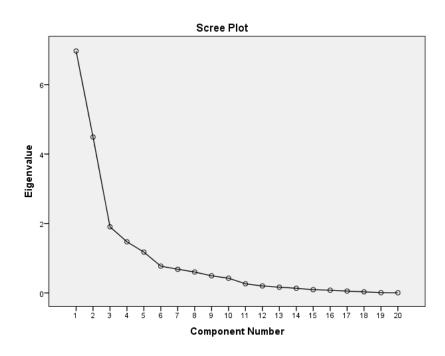


Figure G80. Scree plot of principal components for the clays and compositional group 2 of the pottery (raw data, excluding Mg).

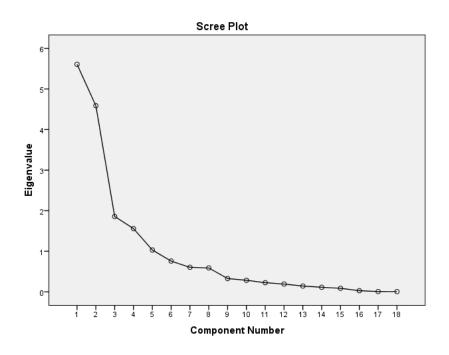


Figure G81. Scree plot of principal components for the clays and compositional group 3 of the pottery (raw data, excluding Al, K, Mg).

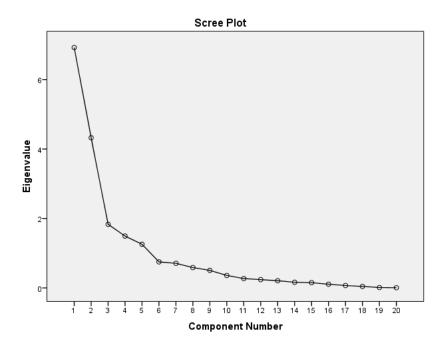
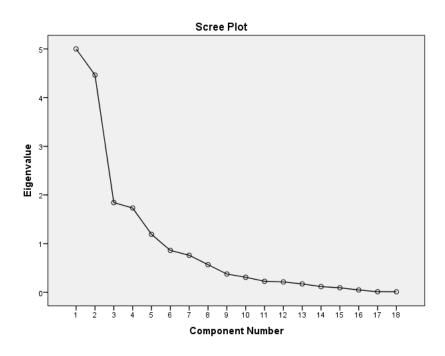



Figure G82. Scree plot of principal components for the clays and compositional group 4 of the pottery (raw data, excluding Mg).

Figure G83. Scree plot of principal components for the clays and compositional group 5 of the pottery (raw data, excluding Al, K, Mg).

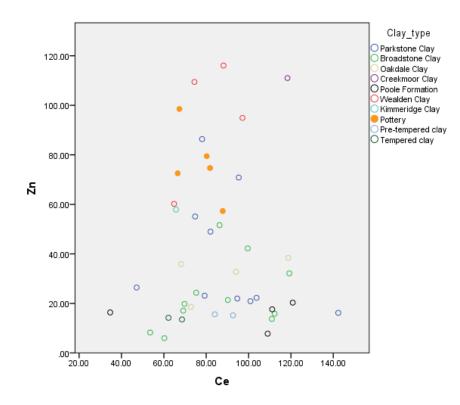


Figure G84. Bivariate plot of Zn and Ce for raw data of pottery group 5.

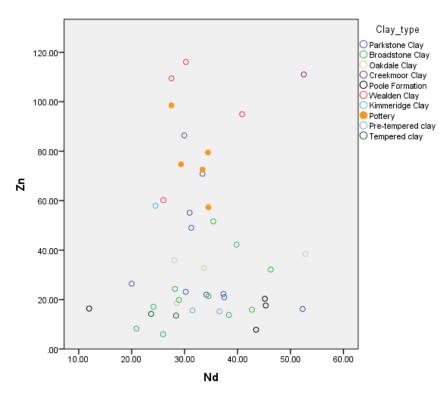


Figure G85. Bivariate plot of Zn and Nd for raw data of pottery group 5.

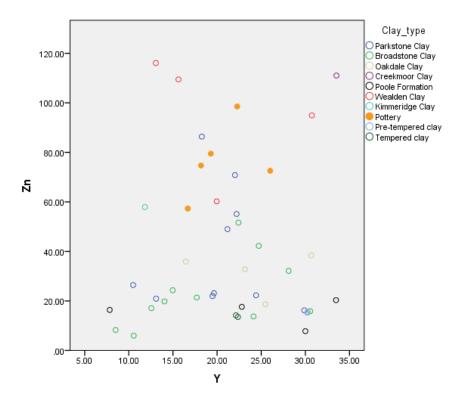


Figure G86. Bivariate plot of Zn and Y for raw data of pottery group 5.

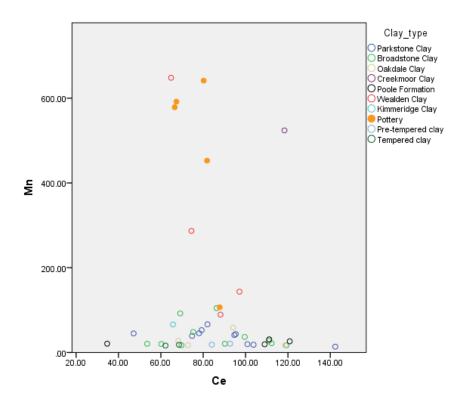


Figure G87. Bivariate plot of Mn and Ce for raw data of pottery group 5.

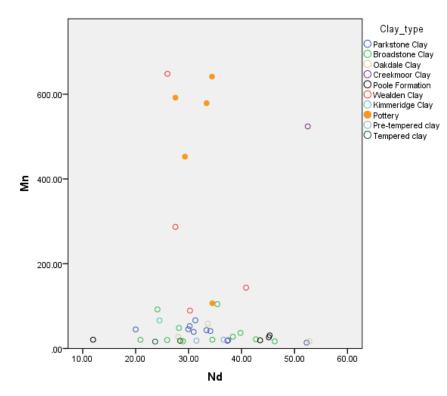


Figure G88. Bivariate plot of Mn and Nd for raw data of pottery group 5.

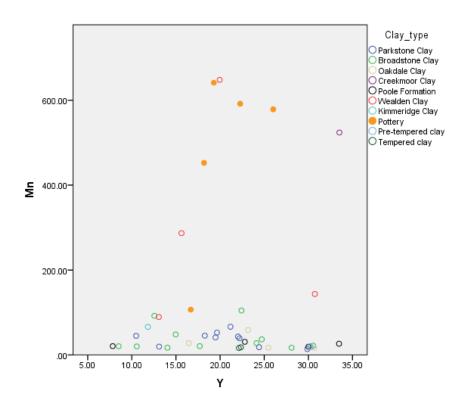


Figure G89. Bivariate plot of Mn and Y for raw data of pottery group 5.

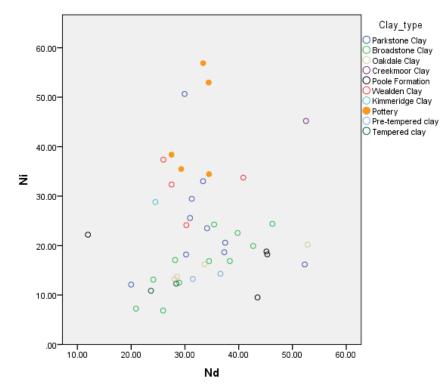


Figure G90. Bivariate plot of Ni and Nd for raw data of pottery group 5.

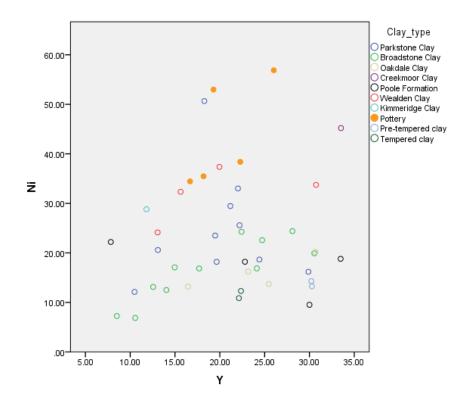


Figure G91. Bivariate plot of Ni and Y for raw data of pottery group 5.

BLANK PAGE

Appendix G. Additional tables for Chapter 8

		Wilks' Lambda							
							Exac	t F	
Step	Entered	Statistic	df1	df2	df3	Statistic	df1	df2	Sig.
1	Tm	.306	1	2	93.000	105.374	2	93.000	.000
2	Ni	.222	2	2	93.000	51.594	4	184.000	.000
3	Pb	.163	3	2	93.000	44.853	6	182.000	.000
4	Mn	.138	4	2	93.000	38.153	8	180.000	.000
5	Ва	.126	5	2	93.000	32.303	10	178.000	.000
6	Li	.111	6	2	93.000	29.370	12	176.000	.000
7	Cu	.101	7	2	93.000	26.753	14	174.000	.000

Table G1. Elements used in the discriminant function analysis of all clay, pottery and shale samples

At each step, the variable that minimizes the overall Wilks' Lambda is entered.

a. Maximum number of steps is 42.

b. Minimum partial F to enter is 3.84.

c. Maximum partial F to remove is 2.71.

d. F level, tolerance, or VIN insufficient for further computation.

T 11 CO D' ' '	C 1	1 • 6 11 1	
Table G2. Discriminant	functions used in th	ie analysis of all clay,	pottery and shale samples

Eigenvalues						
				Canonical		
Function	Eigenvalue	% of Variance	Cumulative %	Correlation		
1	5.193 ^a	89.6	89.6	.916		
2	.605 ^a	10.4	100.0	.614		

a. First 2 canonical discriminant functions were used in the analysis.

Table G3. Wilks' Lambda test of significance in discriminant analysis of all clay, pottery and shale samples

Wilks' Lambda						
Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.		
1 through 2	.101	206.678	14	.000		
2	.623	42.573	6	.000		

Table G4. Discriminant functions used in the analysis of the clay samples, excluding tempered samples 37 and 39

Eigenvalues						
				Canonical		
Function	Eigenvalue	% of Variance	Cumulative %	Correlation		
1	3.818 ^a	94.7	94.7	.890		
2	.215 ^a	5.3	100.0	.421		

a. First 2 canonical discriminant functions were used in the analysis.

Table G5. Significance of the discriminant functions for the analysis of the clay samples, excluding tempered samples 37 and 39

Wilks' Lambda						
Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.		
1 through 2	.171	52.127	12	.000		
2	.823	5.743	5	.332		

Table G6. Functions used in the analysis of pottery and classified clay samples

Eigenvalues						
				Canonical		
Function	Eigenvalue	% of Variance	Cumulative %	Correlation		
1	7.866 ^a	83.5	83.5	.942		
2	.963 ^a	10.2	93.7	.700		
3	.328 ^a	3.5	97.2	.497		
4	.237 ^a	2.5	99.7	.438		
5	.027 ^a	.3	100.0	.163		

a. First 5 canonical discriminant functions were used in the analysis.

b.

Table G7. Wilks' Lambda table for significance of the pottery and classified clay samples

Wilks' Lambda						
Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.		
1 through 5	.034	290.665	40	.000		
2 through 5	.302	102.994	28	.000		
3 through 5	.593	44.983	18	.000		
4 through 5	.787	20.611	10	.024		
5	.974	2.302	4	.680		

Table G8. Principal components extracted from clay, pottery and shale data

Component Matrix [®]					
	Component				
	1	2	3	4	5
Al	.466	.626	459		
Ва		.459		534	
Ca	749	.460			
Cr		.610			
Cu	410				548
Fe	769				
к		.613	550		
Li		.629	460		
Mg	680	.562			
Mn	725	.421	.400		
Na	.654	.407			
Ni	655	.609			
Pb		.445		.570	
Sr		.665		549	
W					.629
Zn	713	.553			
Ce	.708	.492	.466		
La	.729	.484	.424		
Tm	.896				
Y	.619	.431	.521		
Nd	.665	.437	.549		

Component Matrix^a

Extraction Method: Principal Component Analysis.

a. 5 components extracted.

Correlation strength	Correlation	Elements
Very strong (positive)	.8-1.0	Al – K (basic metal – alkali metal)
		Ca – Mn (alkaline earth – transitional metal)
		Zn – Mn (transitional metals)
		Zn – Ni (transitional metals)
		Ce – La (lanthanide series)
		Ce - Y (lanthanide series – transitional metal)
		Ce – Nd (lanthanide series)
		La - Y (transitional metal - lanthanide series)
		La – Nd (lanthanide series)
		Y - Nd (transitional metal - lanthanide series)
Strong (positive)	.679	Al - Cr (basic metal – transitional metal)
Strong (positive)	.0 .77	Ca - Fe (alkaline earth – transitional metal)
		Ca - Mg (alkaline earths)
		Ca - Ni (alkaline earth – transitional metal)
		Ca - Zn (alkaline earth – transitional metal)
		Fe - Mg (transition metal – alkaline earth)
		Fe – Mn (transitional metals)
		Fe – Ni (transitional metals)
		Fe – Zn (transitional metals)
		Mg – Mn (alkaline earth – transitional metal)
		Mg – Ni (alkaline earth – transitional metal)
		Mg – Zn (alkaline earth – transitional metal)
		Ce – Tm (lanthanide series)
		La – Tm (lanthanide series)
Moderate (positive)	.459	Al – Li (basic metal – alkali metal)
		Al – Na (basic metal – alkali metal)
		Al – Ce (basic metal - lanthanide series)
		Al – La(basic metal - lanthanide series)
		Al – Tm (basic metal - lanthanide series)
		Ba – K (alkaline earth – alkali metal)
		Ba – Sr (alkaline earths)
		Ca – Cu (alkaline earth – transitional metal)
		Ca – Sr (alkaline earths)
		Cr – K (transition metal – alkali metal)
		Cr – Pb (transition metal – basic metal)
		Cu – Ni (transitional metals)
		Cu – Pb (transition metal – basic metal)
		Cu – Zn (transitional metals)
		K – Li (alkali metals)
		K - Na (alkali metals)
		Li – Pb (alkali metal – basic metal)
		Na – Ce (alkali metal - lanthanide series)
		Na - La (alkali metal - lanthanide series)
		Na – Tm (alkali metal - lanthanide series)
		Na $-$ Y (alkali metal - lanthanide series)
		Na – Nd (alkali metal - lanthanide series)
		Sr - La (alkaline earth – lanthanide series)
		Tm - Y (lanthanide series)
Strong (nagoting)	6 70	Tm - Nd (lanthanide series)
Strong (negative)	679	Ca – Tm (lanthanide series)
		Fe – Tm (transitional metal - lanthanide series)
		Mn – Tm (transitional metal - lanthanide series)

Table G9. Summary of correlation matrix produced in a principal components analysis of all pottery, clay and shale samples $(log_{10} data)$

Moderate (negative)	459	Fe – Na (transition metal – alkaline earth)
		Mg – Tm (alkaline earth - lanthanide series)
		Na – Fe (alkali metal – basic metal)
		Ni – Tm (transitional metal - lanthanide series)
		Zn – Tm (basic metal - lanthanide series)

Table G10. Component matrix of principal components for pottery samples

		C	omponent M	atrix ^a					
	Component								
	1	2	3	4	5	6			
AI		.706	.429						
Ва		.493			.549				
Ca	.577	.414	606						
Cr			.631						
Cu						.750			
Fe	.424		.581		418				
к		.770							
Li		.576							
Mg	.467	.677							
Mn	.665			.531					
Na	.712								
Ni	.747			.445					
Pb			.454		.482				
Sr	.620		487						
W									
Zn	.731			.463					
Ce	.858								
La	.872								
Tm			.635		.464				
Y	.807	462							
Nd	.804	444							

Extraction Method: Principal Component Analysis.

Correlation strength	Correlation	Elements
Very strong (positive)	.8-1.0	Ca – Sr (alkaline earths)
		Ce – La (.966) (lanthanide series)
		Ce – Y (lanthanide series)
		Ce – Nd (.967) (lanthanide series)
		La – Y (lanthanide series)
		La – Nd (.926) (lanthanide series)
		Y – Nd (lanthanide series)
Strong (positive)	.679	Al – K (basic metal – alkali metal)
		Al – Li (basic metal – alkali metal)
		Al – Mg (basic metal – alkaline earth)
		Cr – Fe (transitional metals)
		K – Mg (alkali metal – alkaline earth)
		Mn – Ni (transitional metals)
		Mn – Zn (transitional metals)
		Na – Sr (alkali metal – alkaline earth)
		Ni – Mn (transitional metals)
		Ni – Zn (transitional metals)
		Ni – Y (transitional metals)
Moderate (positive)	.459	Al – Na (basic metal – alkali metal)
		Ba – Sr (alkaline earths)
		Ca – Mg (alkaline earths)
		Ca – Mn (alkaline earth – transitional metal)
		Ca – Na (alkaline earth – alkali metal)
		Ca – La (alkaline earth – lanthanide series)
		Fe – Ni (transitional metals)
		Fe - Y (transitional metal - lanthanide series)
		K - Al (alkaline earth – basic metal)
		K – Li (alkali metals)
		K – Na (alkali metals)
		Li - Al (alkali metal - basic metal)
		Li - K (alkali metals)
		Li – Mg (alkali metal – alkaline earth)
		Mg - Na (alkaline earth – alkali metal) Mg - Sr (alkaline conthe)
		Mg – Sr (alkaline earths) Mn – Sr (transition metal – alkaline earth)
		Mn - Ca (transition metal – alkaline earth) Mn - Ca (transition metal – alkaline earth)
		Mn - Ce (transition metal – arkanne earth) Mn - Ce (transitional metal - lanthanide series)
		Mn - La (transitional metal - lanthanide series)
		Mn - Y (transitional metal - lanthanide series) Mn - Y (transitional metal - lanthanide series)
		Mn - Nd(transitional metal - lanthanide series)
		Na - Ce (alkali metal - lanthanide series)
		Na - La (alkali metal - lanthanide series)
		Na - Y (alkali metal - lanthanide series)
		Na - Nd (alkali metal - lanthanide series)
		Ni – Ce (transitional metal - lanthanide series)
		Ni - Nd (transitional metal - lanthanide series)
		Ni – Fe (transitional metals)
		Ni – La (transitional metal - lanthanide series)
		Pb – Tm (basic metal - lanthanide series)
		Sr - Ce (alkaline earth – lanthanide series)
		Sr - La (alkaline earth – lanthanide series)
		Zn – Ce (transitional metal - lanthanide series)
		Zn - La (transitional metal - lanthanide series)
		Zn – Y (transitional metal - lanthanide series)
		Zn – Nd (transitional metal - lanthanide series)
	 	

Table G11. Correlation coefficients for the pottery samples (log₁₀ data)

Moderate (negative)	459	Al – Mg (basic metal – alkaline earth)
		Ca – Tm (alkaline earth – lanthanide series)
		Mg – Al (alkaline earth – basic metal)
		W – Y (transitional metal - lanthanide series)
		Tm – Pb (lanthanide series – basic metal)

Table G12. Variables used in a discriminant function analysis of the chemical groups within the pottery samples, defined by a principal components analysis

			Wilks' Lambda										
							Exa	act F		Д	pprox	kimate F	
Step	Entered	Stat.	df1	df2	df3	Statistic	df1	df2	Sig.	Statistic	df1	df2	Sig.
1	Na	.401	1	4	52.000	19.383	4	52.000	.000				
2	Y	.199	2	4	52.000	15.822	8	102.000	.000				
3	к	.125	3	4	52.000					13.201	12	132.579	.000
4	W	.086	4	4	52.000					11.591	16	150.335	.000
5	Cu	.064	5	4	52.000					10.324	20	160.148	.000

Variables Entered/Removed^{a,b,c,d}

At each step, the variable that minimizes the overall Wilks' Lambda is entered.

a. Maximum number of steps is 42.

b. Minimum partial F to enter is 3.84.

c. Maximum partial F to remove is 2.71.

d. F level, tolerance, or VIN insufficient for further computation.

Table G13. Discriminant	functions	identified f	or possible	chemical	groups in potter	v data
	J		r r r r r r r r r r r r r r r r r r r		0.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	<i>J</i>

	Eigenvalues										
				Canonical							
Function	Eigenvalue	% of Variance	Cumulative %	Correlation							
1	2.718 ^a	55.3	55.3	.855							
2	1.675 ^a	34.1	89.4	.791							
3	.401 ^a	8.2	97.6	.535							
4	.120 ^a	2.4	100.0	.327							

a. First 4 canonical discriminant functions were used in the analysis.

Table G14. Wilks' Lambda test for possible chemical groups in pottery data

Wilks' Lambda									
Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.					
1 through 4	.064	140.093	20	.000					
2 through 4	.238	73.118	12	.000					
3 through 4	.638	22.945	6	.001					
4	.893	5.762	2	.056					

Table G15. Component matrix of PCA for of pottery samples from Wytch Farm, Green Island, Hengistbury Head, Maiden Castle, Southdown Ridge, Gussage All Saints and Barton Field; excluding Mg

F	-	Co	omponent M	atrix ^a					
		Component							
	1	2	3	4	5	6			
AI			.701						
Ва			.522			.414			
Ca	.559	706							
Cr		.628		441					
Cu				.717		404			
Fe	.400	.718							
к			.688						
Li			.633		507				
Mn	.844								
Na	.678			405					
Ni	.812								
Pb		.471		.406	.535				
Sr	.611	599							
W				.482		.495			
Zn	.778								
Ce	.913								
La	.918								
Tm		.625	421			.464			
Y	.879								
Nd	.850								

Extraction Method: Principal Component Analysis.

		C	omponent M	atrix ^ª		
			Comp	onent		
	1	2	3	4	5	6
AI		.810				
Ва						.432
Ca			763			
Cr	.541		.538			
Cu					466	.652
Fe	.592		.450		438	
К		.841				
Li		.659				
Mn	.449		459	.531		
Na	.543	.537				
Ni	.740			.492		
Pb						.448
Sr		.465	577			
W	50.4					
Zn	.531			.440		
Ce	.873					
La Tan	.852		054			
Tm	000		.654			
Y	.888					
Nd	.860			-		

Table G16. Component matrix of the raw data of the pottery samples, excluding Mg

Extraction Method: Principal Component Analysis.

Table G17. Component matrix of principal components of raw data for pottery samples, excluding Mg and samples 40, 45-50

-		C	omponent M	atrix ^a		
			Comp	onent		
	1	2	3	4	5	6
AI	.588	.417	.582			
Ва				499	.429	
Ca		628	.458			
Cr		.754				
Cu						.742
Fe		.637				
к	.464		.731			
Li	.502				.499	
Mn	.501	549		.478		
Na	.690		.438			
Ni	.754			.412		
Pb						.501
Sr	.461	417	.482		100	
W	100				.462	
Zn	.486				.503	
Ce	.855					
La Tm	.860	.519	504			
Y	.765	.519	521 416			
r Nd	.765 .753		410			
NU	.103				-	

Extraction Method: Principal Component Analysis.

Table G18. Component matrix from PCA of pottery, raw data, excluding Mg and samples 40, 45-50, 52 and 95 (raw data)

-			Comp		Component							
	1	2	3	4	5	6						
AI	.594		.674									
Ва				439	.409							
Ca		738										
Cr		.682	.415									
Cu						.761						
Fe		.683		.412								
к	.499		.758									
Li	.487				.541							
Mn	.484	453		.527								
Na	.693		.418									
Ni	.737			.452								
Pb		.422										
Sr	.490	542										
W					.492							
Zn	.457			.419	.483							
Ce	.857											
La	.870											
Tm		.685										
Y	.784		434									
Nd	.745		440									

Component Matrix^a

Extraction Method: Principal Component Analysis.

Table G19. Component matrix from PCA of pottery, log_{10} data, excluding Mg and samples 40, 45-50, 52 and 95 (log_{10} data)

Component Matrix ^a								
			Comp	onent				
	1	2	3	4	5	6		
AI	.560		.706					
Ва						.623		
Ca	.618	679						
Cr		.630	.543					
Cu					457	.549		
Fe		.751						
К	.482		.744					
Li	.436				.625			
Mn	.683			.436				
Na	.715							
Ni	.745							
Pb	.405	.502						
Sr	.681	537						
W		.423			.407			
Zn	.683			.505				
Ce	.868							
La	.883							
Tm		.747		423				
Υ	.778							
Nd	.774		426					

Component Matrix^a

Extraction Method: Principal Component Analysis.

a. 6 components extracted.

b.

*Table G20. Elements used in the discriminant function analysis of all the log*₁₀ pottery data, excluding samples 40, 45-50, 52 and 95

							Wilks' Lambda							
							Exact F				Approximate F			
			Stat.				Stat.				Stat.			
S	Step	Entered		df1	df2	df3		df1	df2	Sig.		df1	df2	Sig.
1		Y	.263	1	6	44.000	20.592	6	44.000	.000				
2	2	К	.074	2	6	44.000	19.188	12	86.000	.000				
3	;	Ce	.041	3	6	44.000					13.792	18	119.279	.000

Variables Entered/Removed^{a,b,c,d}

At each step, the variable that minimizes the overall Wilks' Lambda is entered.

a. Maximum number of steps is 40.

b. Minimum partial F to enter is 3.84.

c. Maximum partial F to remove is 2.71.

d. F level, tolerance, or VIN insufficient for further computation.

*Table G21. Discriminant functions used in the analysis of the log*₁₀ *pottery data, excluding samples 40, 45-50, 52 and 95*

Eigenvalues									
				Canonical					
Function	Eigenvalue	% of Variance	Cumulative %	Correlation					
1	4.336 ^a	60.6	60.6	.901					
2	2.551 ^a	35.6	96.2	.848					
3	.273 ^a	3.8	100.0	.463					

a. First 3 canonical discriminant functions were used in the analysis.

Table G22. Wilks' Lambda test of significance in discriminant analysis of the log_{10} pottery data, excluding samples 40, 45-50, 52 and 95

Wilks' Lambda							
Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.			
1 through 3	.041	143.236	18	.000			
2 through 3	.221	67.887	10	.000			
3	.786	10.861	4	.028			

Table G23. Elements used in the discriminant function analysis of all the raw pottery data, excluding samples 40, 45-50, 52 and 95

			Wilks' Lambda										
		o					Exact F			Approximate F			
Step	Entered	Stat.	df1	df2	df3	Statistic	df1	df2	Sig.	Stat.	df1	df2	Sig.
1	Na	.268	1	4	46.000	31.480	4	46.000	.000				
2	Ce	.096	2	4	46.000	25.031	8	90.000	.000				
3	AI	.054	3	4	46.000					19.536	12	116.705	.000
4	Cu	.039	4	4	46.000					15.689	16	132.005	.000
5	Y	.027	5	4	46.000					13.839	20	140.248	.000

Variables	Entered/Removed ^{a,b,c,d}
-----------	------------------------------------

At each step, the variable that minimizes the overall Wilks' Lambda is entered.

a. Maximum number of steps is 40.

b. Minimum partial F to enter is 3.84.

c. Maximum partial F to remove is 2.71.

d. F level, tolerance, or VIN insufficient for further computation.

Table G24. Discriminant functions used in the analysis of the raw pottery data, excluding samples 40, 45-50, 52 and 95

Eigenvalues									
				Canonical					
Function	Eigenvalue	% of Variance	Cumulative %	Correlation					
1	5.404 ^a	60.3	60.3	.919					
2	3.190 ^a	35.6	95.9	.873					
3	.298 ^a	3.3	99.3	.479					
4	.066 ^a	.7	100.0	.248					

a. First 4 canonical discriminant functions were used in the analysis.

Table G25. Wilks' Lambda test of significance in discriminant analysis of the raw pottery data, excluding samples 40, 45-50, 52 and 95

Wilks' Lambda								
Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.				
1 through 4	.027	162.645	20	.000				
2 through 4	.172	79.086	12	.000				
3 through 4	.723	14.611	6	.024				
4	.938	2.867	2	.238				

Table G26. Component matrix of principal components for the clays and compositional group 1 of the pottery (raw data, excluding Mg)

Component Matrix ^a								
			Component					
	1	2	3	4	5			
AI	.855							
Ва		.487		498				
Ca	487		.628					
Cr	.555	.405						
Cu		.587	422		507			
Fe	520	.435	404					
К	.824							
Li	.470	.541						
Mn	496	.594						
Na	.558			411				
Ni	449	.769						
Pb		.509	444		520			
Sr		.606	.623					
W					.661			
Zn		.665						
Ce	.922							
La	.940							
Tm	.898							
Y	.786			.411				
Nd	.857							

Component Matrix ^a								
			Component					
	1	2	3	4	5			
AI	.822							
Ва			.762					
Ca	492	.469	.436					
Cr	.507	.515			558			
Cu		.647		482				
Fe	413	.541			442			
К	.791							
Li		.594						
Mn		.651						
Na	.460			416				
Ni		.862						
Pb		.567		486				
Sr	.521	.487	.471					
W		.485		.621				
Zn		.810						
Ce	.942							
La	.952							
Tm	.884							
Y	.790							
Nd	.890							

Table G27. Component matrix of principal components for the clays and compositional group 2 of the pottery (raw data, excluding Mg)

-			Component		
	1	2	3	4	5
Ва	.597		.737		
Ca		.663			.409
Cr		.432		.409	502
Cu		.640		574	
Fe		.625			
Li	.483	.412			
Mn		.692			.441
Na	.412		.559		
Ni		.862			
Pb		.572		534	
Sr	.671	.428			
W		.491		.523	
Zn		.872			
Ce	.941				
La	.931				
Tm	.792				
Y	.805				
Nd	.901				

Table G28. Component matrix of principal components for the clays and compositional group 3 of the pottery (raw data, excluding Al, K, Mg)

Table G29. Component matrix of principal components for the clays and compositional group 4 of the pottery (raw data, excluding Mg)

	Component Matrix ^a										
-			Component								
	1	2	3	4	5						
Ва		.420	611								
Ca	674										
Cr		.658			586						
Cu		.423		583							
Fe	644				433						
Li		.665									
Mn	693										
Na			463								
Ni	661	.586									
Pb		.415	.481	610							
Sr	486	.592									
W				.453							
Zn	730	.510									
Ce	.858										
La	.887										
Tm	.919										
Υ	.732										
Nd	.826										
AI	.513	.750									
К		.753	511								

Table G30. Component matrix of principal components for the clays and
compositional group 5 of the pottery (raw data, excluding Al, K, Mg)

Component Matrix ^a							
-			Component				
	1	2	3	4	5		
Ва			.783				
Ca	.768		.448				
Cr		.535			.690		
Cu	.417			.634			
Fe	.663						
Li		.587					
Mn	.739						
Na				.457			
Ni	.703	.548					
Pb		.484		.590			
Sr		.488	.654				
W				468			
Zn	.719	.493					
Ce	578	.777					
La	649	.709					
Tm	786						
Y	448	.622			403		
Nd	495	.769					

BLANK PAGE

Supplementary information for Chapter 9: Typology

This section provides details on the sites of recovery of the vessels that were used to draw together the typology of the Poole Harbour forms, including comments on fabric and rim diameter, where available.

H. 1. Early Iron Age forms

H. 1. 1. Jars

I.JA.1 High, angular shouldered jar with flaring rim

Present at Rope Lake Hole in sandy and calcareous fabrics (Davies 1987, RLH form 20).

I.JA.2 Jar/vessel with internal hooked/flanged rim

This form was identified at the Wytch Farm Oilfield sites (Lancley and Morris 1991, type 113).

I.JA.3 'High-shouldered jar with upright or slightly flared rim and fingertip or fingernail decoration on the rim top and/or shoulder' (Brown 1987, 208)

One example was illustrated from Hengistbury Head (Brown 1987, JB1.0).

I.JA.4 'Shouldered jars with upstanding rims which are usually slightly flattened' (Brown 1987, 208). Similar to I.JA.3 but undecorated.

One example illustrated from Hengistbury Head, in the early H19 fabric (Brown 1987, 208, JB2.0). Examples from Quarry Field have a rim diameter range of 180-220mm (Seager Smith 2002, R4). A thick-walled jar with flared and squared rim

from Eldon's Seat may also be of this type, but was broken at the shoulder and the form is uncertain, however it was red-finished and appears otherwise plain. It was identified as a Poole Harbour ware as part of this research, and found in a Period II context (Cunliffe 1968, fig. 15, 104).

Forms I.JA.3 and I.JA.4 are together equivalent to Gussage All Saints form 1, but of the 303 examples from the site, only three were identified in Poole Harbour fabrics. A finer version of the shouldered jars at Gussage were assigned to form 2 (Wainwright 1979), with Poole Harbour wares accounting for only one of the 46 vessels identified to the type. One vessel of this form was recorded in a Poole Harbour fabric at Oakley Down, but not illustrated (Brown 1996).

I.JA.5 Large, round-shouldered jar with upright rim

One example was illustrated from Hengistbury Head (JB3.0).

I.JA.6 'Large barrel-shaped jars with slack shoulders, in coarse fabrics with roughly finished surface' (Brown 1987, 208)

Present at Hengistbury Head in the early H19 fabric, and Maiden Castle (JB4.0), from a phase 6D, in a coarse-grained fabric.

H.1.2. Bowls

I.BO.1 Carinated bowl, steeply angled, cordon below inclining rim

A red-finished example with incised-line and stabbed-dot decoration infilled with white paste was recorded from Rope Lake Hole (Davies 1987, form 1). Body sherds with similar decoration have been found in Poole Harbour fabrics at Quarry Field, Compact Farm (Seager Smith 2002, fig. 1.31, 54).

I.BO.2 Furrowed, carinated bowls, usually red-finished

Recorded as form 5 at Rope Lake Hole (not illustrated) but with two listed from Period 1 deposits and two from Period 2, all in fine to coarse-grained Poole Harbour fabrics (Davies 1987). A red-finished, furrowed bowl from Football Field, Worth Matravers was thin-sectioned as part of this research and identified as a Poole Harbour ware.

H. 2 Early to Middle Iron Age

H. 2. 1. Jars

II.JA.1 Slack-profiled jar, upright or slightly inclining rim, wall thickening towards the rim

Eleven examples identified at Rope Lake Hole (Davies 1987, type 21), one from a Period 1 context, five from Period 2 and five residual in Period 3; in fine to coarsegrained fabrics. Rim diameter range of illustrated forms: 140-160 mm. It has also been identified at Wytch Farm Oilfield (Lancley and Morris 1991, type 110), with a rim diameter range 160-220 mm.

II.JA.2 Carinated jar with high, angled shoulder, plain inclining rim

Found at Rope Lake Hole (Davies 1987, type 23) in a coarse-grained fabric.

II.JA.3 Large, barrel-shaped to ovoid jars with flattened rim top

A complete example was recovered from Quarry Field, (Seager Smith 2002, R2), with a rim diameter of 240 mm, a height of 400 mm and base diameter of 190 mm. It was associated with the Early Iron Age (7th to 5th century BC) occupation of the site. Also at Barton Field, Tarrant Hinton (Brown 2006, form JC1, fig. 25.80, LIA) with a rim diameter of 200 mm and a height of 210 mm.

H. 2. 2. Bowls

II.BO.1 Small open bowl or cup with plain, undifferentiated rim and rounded walls

Found at Quarry Field and thought to be of Early Iron Age date, but recovered from later contexts. Rim diameter range of 100-120 mm (Seager Smith 2002, R25).

II.BO.2 Carinated bowl with upright wall above the carination

A red-finished example was identified from Eldon's Seat, Period II.

II.BO.3 Shouldered bowl with concave neck and slightly everted rim

One example from an Early Iron Age context at West Creech, in a very coarse fabric (Lancley and Morris 1991, type 126). Coarse and fine shouldered bowls were identified at Gussage All Saints (Wainright 1979, types 3 and 4), but with few examples in Poole Harbour fabrics (4% of type 3 and 3% of type 4).

II.BO.4 Steeply angled, carinated bipartite bowl

Bowls of this type were popular at Rope Lake Hole (Davies 1987, types 2 and 3) where they were usually red-finished and ranged in rim diameter from 100-300 mm, but tending towards smaller vessels. They were made in Poole Harbour sandy fabrics as well as calcareous fabrics. A carinated bowl from Oakley Down (Brown 1996, fig. 9, 19) was recorded in a Poole Harbour ware, but petrological analysis carried out as part of this research revealed a glauconitic fabric. Similar vessels were also recovered from Quarry Field, recorded there as R3 (Seager Smith 2002).

II.BO. 5 Round-shouldered bowl

Two examples were illustrated from Hengistbury Head, in the earlier H19 Poole Harbour fabric.

This was the most commonly occurring form at Rope Lake Hole, found in fine to coarse-grained fabrics, with most examples exhibiting a red-finished surface (Davies 1987, type 4). Of the 39 vessels of this type from Period 1 deposits at the site, 36 were in Poole Harbour fabrics, 83 of the 88 Period 2 examples were also from this source, along with 58 of the 64 vessels from Period 3 and 4 contexts. Of the illustrated examples, four are small (120-150 mm rim diameter), two are medium (160-170 mm) and one is large (240 mm rim diameter), however the author noted that the 150-160 mm range was the most commonly occurring (Davies 1987, 152). This form was also common in the Eldon's Seat II assemblage, although the proportion in Poole Harbour fabrics is not known. One example was illustrated from Hengistbury Head (Brown 1987, fig. 156, 1203).

II.BO.7 Open bowl with internally flanged, flat-topped rim, often red-finished on both surfaces

This form has been found at Rope Lake Hole (Davies 1987, type 6, periods 1-4, rim diameter range 240-360 mm) and in Late Iron Age contexts at Quarry Field (Seager Smith 2002, R22).

H. 3. Middle Iron Age

H. 3. 1. Jars

III.JA.1 Slack-profiled, bag-shaped (low-waisted) jar with slightly everted rim

Found at Rope Lake Hole (Davies 1987, form 22, Periods 2-4).

III.JA.2 Large jar with grooved rim giving a twisted rim effect, may have handle/lug

This form was present in Middle Iron Age deposits at West Creech, in a coarselygritted fabric (Lancley and Morris 1991, form 124, rim diameter range 220-260 mm), and Maiden Castle, in a medium-grained fabric (Brown 1991, two illustrated examples with rim diameters of 220 mm).

III.JA.3 High-shouldered jar with beaded rim, two grooves outline edge of the rim top

One example illustrated from Maiden Castle in a medium-grained fabric, and from Green Island (1969 excavation) in a fine-grained fabric, rim diameter 150 mm.

III.JA.4 Large, globular jar with short neck and flattened rim

One example illustrated from Maiden Castle in a coarse-grained fabric with redfinished surface. Also two from Green Island (1969 excavation), one in a finegrained fabric and one in a medium-grained fabric, rim diameter 160 mm.

III.JA.5 Round-profiled jars, rims thickened and rolled out to form proto-bead

Examples have been illustrated from Hengistbury Head (JC2.0, H19 fabric, rim diameters 100-150 mm; A4a fabric, rim diameter 260 mm); Wytch Farm Oilfield (Lancley and Morris 1991, type 122; rim diameter range of 100-150 mm); Gussage All Saints (Wainwright 1979, Period 2, type 20, 53 of the 211 examples were in Poole Harbour wares); Maiden Castle (Brown 1991, three illustrated examples in medium and coarse-grained fabrics, the measurable rim diameters are 160 mm; Barton Field (Brown 2006, fig. 23, 30, in a very coarse-grained Poole Harbour fabric; fig. 23, 36 may also be a Poole Harbour ware but this was not confirmed during petrological analysis); Bestwall Quarry (Lyne 2012, fig. 139, 1; rim diameter 240 mm) and Green Island (1969 and 2010 excavations, eight examples in medium-grained fabrics, of the measureable rim diameters, four were small [100-150 mm] and one was larger [220 mm]) and Quarry Field (Seager Smith 2002, R9; rim diameters 120-180 mm).

This form was found at Gussage All Saints (GAS type 7), but only two of the 18 examples from the site were identified as Poole Harbour wares.

III.JA.7 Shouldered jar with out-turned, beaded rim and fingertip decoration around shoulder

This form has been recorded from Gussage All Saints.

H. 4. Middle to Late Iron Age

H. 4. 1. Jars

IV.JA.1 Ovoid jar with plain rim

This form was made in fine to coarse-grained fabrics. It has been recorded at Wytch Farm Oilfield (Lancley and Morris 1991, type 112, rim diameters 100-190 mm, and type 135, rim diameters 140-220 mm); Maiden Castle (three illustrated examples, 140-170 mm rim diameter); Bradford Down, Pamphill (Field 1983, one illustrated example of 220 mm rim diameter); Bestwall Quarry (Lyne 2012, fig. 139, 2, 180 mm rim diameter, with vertical oval finger impressions above the shoulder area) and Green Island (1969 and 2010 excavations, rim diameters 120-140 mm).

IV.JA.2 Barrel-shaped jar with slightly out-turned rim

This form was made in fine to very coarse-grained fabrics and has been identified at Maiden Castle (two illustrated examples have rim diameters of 140 mm and 240 mm); Hengistbury Head (one illustrated example, 190 mm rim, decorated with two short diagonal lines) and Wytch Farm Oilfield (Lancley and Morris 1991, type 133). An Early to Middle Iron Age example of this form was recorded from Oakley Down (Brown 1996, fig. 9, 3), but petrological analysis carried out as part of this research indicated a glauconitic fabric.

IV.JA.3 High-shouldered, round bodied jar with short, upstanding rim, often has countersunk lug handles

This was a commonly occurring form and found in a range of fabrics, from fine to very-coarse grained. Examples of this type of vessel have been found at a number of sites including Hengistbury Head, Maiden Castle, Bradford Down, Rope Lake Hole, Bestwall Quarry and Green Island. A possible example from Oakley Down (Brown 1996, fig. 9, 4) was found to be in a glauconitic fabric when thin-sectioned as part of this research. Of the illustrated examples from these sites, 12 were classed as small (100-140 mm rim diameter), 14 as medium (150-210mm) and six as large (220-280 mm). The profiles of five were reconstructed, with heights of 260-280 mm for two vessels with a rim diameter of 140mm; a height of 180 mm for two vessels of 160-170 mm rim diameter and a height of 330 mm for a vessel of 230 mm rim diameter. Six Late Iron Age examples were illustrated from Bradford Down, Pamphill (Field 1983, fig. 13, 28, 30-34), with a rim diameter range of 150-220 mm.

IV.JA.4 Large, barrel-shaped jar, rim is internally bevelled and pulled on the exterior

Found at Wytch Farm Oilfield (Lancley and Morris 1991, type 123), Rope Lake Hole (Davies 1987, type 27), Hengistbury Head (Brown 1987, decorated with horizontal parallel rows of dots), Maiden Castle (Brown 1991) and Quarry Field (Seager Smith 2002, R23). The illustrated rim diameters of 80-260 mm indicate it was made in a range of sizes.

IV.JA.5 Long-necked, slack-shouldered jar, may have a slightly expanded rim

Recorded from Wytch Farm Oilfield (Lancley and Morris 1991, type 125, rim diameter range 200-250 mm) and Rope Lake Hole (Davies 1987, the very large type 24 and medium-sized type 26).

Present at Hengistbury Head (Brown 1987, one illustrated example is decorated with the eyebrow motif), Wytch Farm Oilfield (Lancley and Morris 1991, type 119, rim diameter range of 140-200 mm, one illustrated example is decorated with a tooled wavy line); Maiden Castle and Rope Lake Hole (Davies 1987, type 25).

IV.JA.7 Bead-rimmed jar with even, curved shoulders, plain bases (sometimes with pre-firing perforations), profile may be quite ovoid, may have countersunk lug handles

These jars were made in a range of fabrics, from fine-grained to very coarse wares. They have been recovered from a wide range of sites. Of the 103 examples illustrated from Hengistbury Head (JC3.0), Maiden Castle, Barton Field and Bestwall Quarry, and recorded from Green Island, 37 were small vessels (100-140 mm rim diameter), 34 were medium-sized (150-200 mm), 19 were large (210-260 mm), two were very large (290-300 mm rim diameter) and 13 could not be measured. The heights of seven of the vessels are known (Table 8.1). At Wytch Farm they were recorded under form type 103 where they were small vessels (60-120 mm rim diameter). Fifty two examples were recorded from Barton Field, Tarrant Hinton, the illustrated examples comprise four small vessels (130-140 mm rim diameter), two medium (160-200 mm) and one large vessel (210 mm). Six Late Iron Age examples were illustrated from Bradford Down, Pamphill (Field 1983, fig. 12, 12-17), with a rim diameter range of 100-250 mm. They were found in Late Iron Age contexts at Quarry Field, with rim diameters in the range of 120-200 mm, examples with countersunk lug handles were recorded as R12 and those without as R10 (Seager Smith 2002). Two examples from Rope Lake Hole also have countersunk handles (Davies 1987, types 15 and 16, fig. 81, 54-55). In conclusion, these vessels that were made in a range of sizes, but small to medium-sized vessels (100-200 mm rim diameter) may have been the most popular.

Rim diameter (mm)	Height (mm)
110	114
110	117
130	156
140	150
170	200
210	270
220	250

Table H1. Dimensions of form IV.JA.7 vessels with complete profiles.

IV.JA.8 Flat-rimmed jar, may have countersunk lug handles

Of the 1309 vessels of this form identified by rim form from Wytch Farm, 136 were flat-rimmed jar type 101 (10.4%; Lancley and Morris 1991, microfiche). Of the 177 rims recorded from Green Island (1969 and 2010 excavations), 17 were flat-rimmed jars (9.6%). They were made in a range of fabric types, from fine to very coarsegrained wares, with no obvious correlation between size and fabric. Of the 44 illustrated examples from Hengistbury Head, Maiden Castle, Barton Field and Bestwall Quarry, and those recorded from Green Island, two were classed as small (100-140 mm rim diameter), seven as medium (150-200 mm), eight as large (210-260 mm), and 12 as very large (>290 mm, including three of >370 mm), but 15 were too fragmentary to measure, presumably because they derived from vessels with very large diameters. At Wytch Farm, the rim diameter range was noted as 140-280 mm. Despite their large size, the vessel walls were quite thin, on average 8-9 mm, although some of the largest vessels had a wall thickness of up to 15 mm. The jars were occasionally decorated, the illustrated examples from the above mentioned sites included seven with the petal motif, two with the eyebrow motif, one with three overlapping eyebrows and one with a dimple and wavy line. One of the vessels with an eyebrow had a grooved/channel-topped rim. The surfaces were often smoothed or burnished.

At Ower, they are recorded as type 7, dated to the 1st century AD (Woodward 1987, fig. 46, 77-79). Two variants were recorded at Gussage All Saints – type 23, thought to be an earlier type, with all examples from dated contexts coming from phase 2 deposits, and type 40, a phase 3 form, and 'in effect finer wheel-thrown versions of

ceramic type 23', the illustrated rim diameters are 400 mm and 500 mm (Wainwright 1979, 64). Of the 41 examples of type 23, 27 were recorded in Poole Harbour fabrics, and of the 139 examples of type 40, 134 were in Poole Harbour wares. Seven Late Iron Age examples were illustrated from Bradford Down, Pamphill (Field 1983, fig. 12, 18-23, 26, including two with oval fingertip impressions), with a rim diameter range of 190-250 mm. Five examples were recorded from Oakley Down (Brown 1996, form 4, fig. 9, 6, rim diameter 220 mm). It was found in Late Iron Age contexts at Quarry Field, with rim diameters in the range of 180-300 mm (Seager Smith 2002, R6). It was also present at Rope Lake Hole as types 29 and 31, illustrated examples have rim diameters of 240-300 mm and one has the impressed petal motif (Davies 1987, fig. 81, 69-71).

IV.JA.9 Barrel-shaped jar with short, upright rim

One example from Hengistbury Head, in the A4a fabric, burnished.

H. 4. 2. Bowls

IV.BO.1 Open bowl with dropped internal flange

Found at Rope Lake Hole (Davies 1987, type 8).

IV.BO.2 Open, round-bodied bowl with lid-seating

Examples have been recorded at Rope Lake Hole from Period 2 and 3 contexts (type 14, fabric 7, 200 mm rim diameter) and Wytch Farm Oilfield (type 118, 1st century AD, rim diameter range 180-260 mm).

IV.BO.3 Round-bodied bowl with everted rim

This form was recorded at Rope Lake Hole (Davies 1987, type 12), Maiden Castle (as part of BD4.2) and Gussage All Saints (type 21), although the illustrated examples of the latter indicate a range of bowls was recorded under this type code. Most of the Gussage type 21 examples came from Phase 2 contexts, with five from

Phase 1; nine of the 48 examples were in Poole Harbour fabrics. Form type 41 at Gussage vessels were very similar in form, almost all (39 of 40) were in Poole Harbour wares and came from Phase 3 contexts (Wainwright 1979).

IV.BO.4 Open, round-bodied shallow bowl with plain rim, may have been used as lids

There were 16 examples from most of the Wytch Farm Oilfield sites (except Furzey Island), with an internal rim diameter range of 115-180 mm (Lancley and Morris 1991, type 115). The form was also present at Rope Lake Hole (type 7), with a rim diameter range of 150-300 mm.

IV.BO.5 Plain, open bowl with flat-topped rim

Two examples were recovered from Green Island (1969 and 2010 excavations), in a medium-grained fabric, with rim diameters of 160 mm and 200 mm. It was also recorded at Rope Lake Hole (Davies 1987, type 9).

IV.BO.6 Round-sided bowl with squared rim, slight internal bevel

Found at Rope Lake Hole (Davies 1987, type 13), Maiden Castle and Quarry Field (Seager Smith 2002, fig. 1.30, 47, 160 mm rim diameter).

IV.BO.7 Simple hemispherical bowls with thickened out-curved rim top

Present at Maiden Castle (one illustrated example, BC1.1) and Ower Peninsula and West Creech (Lancley and Morris 1991, type 117, rim diameter range 240-270 mm).

IV.BO.8 Shallow bowl with curved sides and expanded rim, often flattened

This bowl form was recorded from all of the Wytch Farm sites (type 116, fig. 59, nos. 34-35), in fine to medium and medium to coarse-grained fabrics, with a rim diameter range of 160-280 mm. It has also been found at Rope Lake Hole (Davies

1987, type 13, fig. 81, no. 58), Quarry Field, Compact Farm (Seager Smith 2002, R1, rim diameter range 280-300 mm), Hengistbury Head (Brown 1987, ill. 158, 428), Oakley Down (Brown 1996, form 20), Allard's Quarry (Williams 1950, 69, fig. 9, 46) and Maiden Castle (Brown 1991, fig. 152, 3, fig. 161, 5, Wheeler 1943, fig. 69, 146-7, rim diameter range 240-260 mm). Similar shaped-vessels have also been identified as lids at Maiden Castle.

IV.BO.9 Bowl with curved sides and slightly expanded grooved rim

This form was found at most of the Wytch Farm Oilfield sites (with the exception of Furzey Island), predominantly in a fine to medium-grained fabric, but also with medium to coarse-grained and very coarse fabrics. In the Ower Peninsula report it was identified as type 16, a Gallo-Belgic copy of the 1st century AD (Woodward 1987, fig. 47, 100-103). It was found in medium and coarse-grained fabrics at Maiden Castle. The rim diameter range of the Wytch Farm examples, and illustrated examples from Maiden Castle and Hengistbury Head, was 200-360 mm. Three examples were illustrated from Bradford Down, Pamphill (Field 1983, fig. 14, 69-71, rims 150-230 mm). Two were illustrated from Bestwall Quarry, both large, 270-280 mm (Lyne 2012, fig. 140, 12, fig. 141, 9). Ten examples from Green Island (1969) were mostly in fine to medium-grained fabrics but one was in a very coarse-grained fabric. The rim diameters of four were measurable, at 140 mm, 200 mm, 220 mm and 380 mm. The coarsest example appears to have been designed as a lid.

H. 4. 3. Saucepan pots

IV.SP.1 'Vessels with straight or slightly curved sides and rounded or beaded rim tops' (Brown 1987, 212)

This form was present in a number of different fabrics at Hengistbury Head (PB1), with two Poole Harbour examples illustrated. One was burnt or overfired, in the A4a fabric, 140 mm rim diameter, the other was in the A2 fabric, 260 mm rim diameter. Other examples have been recognised at Maiden Castle (Brown 1991, illustrated example in a medium-grained fabric). The form is present at Gussage All Saints

(type 5), but only five of the 157 examples were identified as Poole Harbour wares. It has also been recorded from Allard's Quarry. Four of six examples from Oakley Down were assigned a Poole Harbour source, however the illustrated example (Brown 1996, fig. 9, 5) was thin-sectioned as part of this research and found to be glauconitic. Five vessels from Barton Field, Tarrant Hinton were recorded as Poole Harbour wares under code PB1. A complete profile of a vessel recorded under code JC2.2 is a probable proto-saucepan pot (Brown 2006, fig. 23, 31) and thought to be made in a Poole Harbour ware fabric, although petrological analysis carried out here did not confirm or refute this. One example has been found at Green Island (1969) in a medium-grained fabric, with a rim diameter of 120 mm. The mineralogical and chemical analysis carried out as part of this project suggests that the Poole Harbour potters did make this form but it does not appear to be common, and may have been a product of a particular workshop.

H. 5. Late Iron Age

H. 5. 1. Jars

V.JA.1 Round-bodied jar with out-turned double bead rim

This form has been identified at Wytch Farm (Lancley and Morris 1991, type 106) and Green Island (2010 excavation).

V.JA.2 Very high-shouldered jar with a well-defined, thickened beaded rim

Identified at Wytch Farm (Lancley and Morris 1991, type 136), Rope Lake Hole (Davies 1987, part of type 15) and Hengistbury Head.

V.JA.3 Globular jar with short, out-turned or pulled rim; may have countersunk lug handles

Examples identified from Rope Lake Hole (Davies 1987, type 27, 100-130 mm rim diameter), Hengistbury Head, Maiden Castle (part of JD4.4), Bestwall Quarry and

Green Island (1969 excavation, 90 mm rim diameter). Vessels of this form from Quarry Field were quite late in date, with lattice or other linear decoration (Seager Smith 2002, R27, 120-160 mm rim diameter). The vessels were made in medium and coarse-grained fabrics.

V.JA.4 Tripartite jars with everted rims and rounded shoulders; plain and undecorated

Examples have been recorded from all of the Wytch Farm Oilfield sites, with a rim diameter range of 140-220 mm (Lancley and Morris 1991, type 114). Here, 92% of the 109 examples were in the fine to medium-grained fabric, with 8% in a medium to coarse-grained fabric. Two were illustrated from Bestwall Quarry, both in a fine-grained fabric and small in size (140-150 mm), one with a height of 160 mm and one decorated with a wavy line below the rim (Lyne 2012, fig. 139, 7 and 11). One has also been recorded from Green Island (2010), in a coarse-grained fabric, rim diameter 240 mm. The form has also been found at Quarry Field (Seager Smith 2002, R8, rim diameters 120-180 mm), Hengistbury Head (JD4.11, two of the illustrated examples were measurable at 140 mm and 160 mm), Bradford Down (Field 1983, fig. 13, 43, 45-47, 49, 50, rim diameters 100-200 mm), Oakley Down (Brown 1996, fig. 9, 7-8, rim diameters 160 mm and 220 mm), Barton Field (in a fine-grained fabric, 140 mm rim diameter, one was complete, 170 mm high).

V.JA.5 Tripartite jars with everted rims and rounded shoulders; decorated with tooled horizontal or diagonal lines, impressed circles or rouletting.

Identified at Hengistbury Head (JD4.12) and Bradford Down, Pamphill (Field 1983, fig. 13, 42, 150 mm rim diameter).

V.JA.6 Jar with short, out-turned rim. The body of the vessel is burnished with the exception of a matt zone decorated with linear burnish or tooled lines and dots.

Ten examples are illustrated from Hengistbury (JD4.42), all in the A4a fabric and all smoothed or burnished. Four are small (110-140 mm rim diameter), four are medium

(160-190 mm) and two are large (220-240 mm). The vessel walls are 5-9 mm. All are decorated, three exhibiting a matt zone with lines and dots, another has horizontal grooves at the shoulder with diagonal lines below and diagonal lines on the body; one has short, curved lines around the neck, the body of one vessel is decorated with dots, another lattice and one has overlapping vertical zig zag and diagonal lines.

V.JA.7 Jars with rounded profile and short, out-turned rim, separated from the body of the pot by a short, squared indentation, almost a squat neck. May have countersunk lug handles.

Thirty examples of this form were illustrated from Hengistbury (JD4.5), all in the A4a fabric and all smoothed or burnished. The illustrated examples from Green Island (1969 and 2010), Bestwall Quarry, Hengistbury Head, Maiden Castle, Bradford Down and Barton Field reveal the vessels were made in a wide range of sizes, including eight small vessels (110-140mm rim diameter), 16 medium vessels (160-200mm), 10 large vessels (210-260mm) and four very large vessels (280-350mm). This form has also been identified at the Wytch Farm sites (as part of Lancley and Morris 1991, types 106, 107, 121 and 130; fig. 58, 18 and fig. 59, 20, 25 and 31), Ower Peninsula (Woodward 1987, type 12, fig. 46, 93-94), Gussage All Saints (Wainwright 1979, type 57) and Quarry Field (Seager Smith 2002, R24).

V.JA.8 Round-bodied jar with upright neck and out-turned rim, decorated with a matt zone defined by horizontal grooves and short vertical grooved lines between

This form has been identified at Hengistbury Head. The illustrated examples have rim diameters of 110 mm, 140 mm and 200 mm.

V.JA.9 Ovoid jars with cordons placed at intervals down the entire length of the body, and pedestal bases, often with an omphalos' (Brown 1987, 209, JE1.0)

Five examples were illustrated from Hengistbury in Poole Harbour fabrics (Brown 1991, three in A2 and two in A4b), all were burnished. They were limited in rim diameter range, 140-160 mm, with a wall thickness of 5-6 mm.

V.JA.10 'Jars with well-defined, out-turned rim and grooves or fine striations on shoulders' (Brown 1987, 210, JE3.1).

There was just one illustrated example from Hengistbury in the A4a Poole Harbour fabric.

V.JA.11 'High shouldered necked jars with upstanding or curved rims', characterised by a single cordon at the neck/shoulder junction (Brown 1987, 210). May have linear burnished decoration below the cordon.

Six examples were illustrated from Hengistbury, one in the A2 fabric and five in A4a, all were burnished (JE4.1). Two were small (100-150 mm rim diameter), four were medium in size (160-200 mm), all with a wall thickness of 6-8mm. Other examples have been illustrated from Bestwall Quarry, in a fine-grained fabric, with impressed eyebrow motifs on the shoulder (Lyne 2012, fig. 141, 6, rim diameter 240 mm), and at Quarry Field (Seager Smith 2002, R29, 200 mm rim diameter).

V.JA.12 High shouldered, necked jars, with upright or everted rims, corresponding to Brailsford's Type 5. Neck may be decorated with a burnished zig zag/wavy line, body may have wavy lines or cross-hatched burnish on a matt zone. May have countersunk lug handles.

This form was usually well burnished or smoothed. Of the illustrated examples from Hengistbury (Brown 1987, JE4.2) and Bestwall Quarry (Lyne 2012), three were small (100-150 mm rim diameter), nine were medium-sized (160-190 mm), five were large (220-260 mm) and one was very large (300 mm); the wall thickness of all examples was 6-9 mm. Twenty examples were recorded from Barton Field, Tarrant

Hinton, in fine-grained fabrics. Four were illustrated, with rim diameters of 160-200 mm. One had a complete profile, revealing a height of 240 mm (rim diameter 160 mm), it had countersunk lug handles and was decorated with a wavy line at the neck and burnished lattice on the body (Brown 2006, fig. 24, 38). The upright-rimmed necked jars from Wytch Farm were recorded as type 108, with a rim diameter range of 120-200 mm (Lancley and Morris 1991). Those with flared rims were assigned to type 109, with a rim diameter range of 200-260 mm. At Gussage All Saints, 170 of 172 examples of this form (Wainwright 1979, type 38) were in Poole Harbour fabrics, and had a rim diameter range of 120-230 mm. Larger versions, generally undecorated, were assigned to type 47, with 12 of the 18 examples in Poole Harbour fabrics. Examples from other sites include Ower Peninsula (Woodward 1987, type 1, fig. 44, 58-60), Rope Lake Hole (Davies 1987, type 34), Maiden Castle (Brown 1991, JE4.2, illustrated vessels were 150-180 mm in rim diameter), Eldon's Seat (Cunliffe and Phillipson 1969, fig. 19, 210), Bradford Down, Pamphill (Field 1983, fig. 13, 38, 40-42, 44 and 48, rim diameter range 120-230 mm) and Quarry Farm (Seager Smith 2002, R16, rim diameters of 120-260 mm).

Seven necked jars were recorded from Green Island, six were the more classic type, as identified by Brailsford, but one was much a much small, elegant vessel with upright neck and out-turned rim forming a bead. It is high-shouldered and decorated with at least one rounded fingertip impression. The base is footed and slightly concave. It was made from a very coarse fabric yet is very well burnished and thin-walled (4-5 mm).

V.JA.13 Low-waisted, round-bodied jar with out-turned, lid-seated rim

One example at Hengistbury (Brown 1991, JD4.42), it is burnished surface and decorated with dots and vertical lines on the body.

V.JA.14 Jar with low carination, upright rim and groove at base of the neck

One example illustrated from Hengistbury.

V.JA.15 Barrel-shaped jar with sharp rim angle, grooved at base of rim

One example illustrated from Hengistbury.

V.JA.16 Small jar resembling a butt-beaker, with an elongated hollow rim

One example from Barton Field, Tarrant Hinton (Brown 2006, JD4.43).

H. 5. 2. Bowls

V.BO.1 'Bowl with straight or slightly curved sides and foot-ring base' (Brown 1987, 210, BC3.11), also known as 'War Cemetery' bowls

Examples include vessels from Hengistbury (three examples illustrated, 140-150 mm in rim diameter, with shallow examples 63 mm in height and deeper examples, 94-96 mm in height); Rope Lake Hole (Davies 1987, fig. 81, 59, 140 mm rim diameter), and Wytch Farm (Lancley and Morris 1991, 160 mm rim diameter). Two bowls from Quarry Field represent variations of this type, one has lattice decoration on the exterior, indicating a late date, and one has vertical line decoration (Seager Smith 2002, R15, rim diameter range: 140-240 mm).

V.BO.2 'Bead rim bowl with gently curving sides and foot-ring base' (Brown 1987, 210)

Ten examples of this bowl form were illustrated from Hengistbury Head (BC3.2), six are small (120-150 mm rim diameter) with one profile indicating a height of 60 mm; two are medium-sized (160 mm rim), one of which is 110 mm tall; two vessels were large or very large (240 mm and 280 mm), all were in A4a fabric with well-finished surfaces. It has also been found at Wytch Farm (Lancley and Morris 1991, fig. 59, 38-39, Ower Peninsula and West Creech), Maiden Castle (Brown 1991, BC3.2) and Rope Lake Hole (Davies 1987, fig. 82, 78).

V.BO.3 'Bowls with rounded profile, plain flat bases and beaded or undifferentiated rim' (Brown 1987, 210, BC3.3)

The illustrated examples from Maiden Castle (in coarse to fine-grained fabrics) and Hengistbury include one very small example, of 40 mm rim diameter, 17 small vessels (100-140 mm rim diameter) and 10 medium vessels (150-200 mm), one of which was 120 mm tall. Bowls of this type with flat bases, but also examples with pedestalled bases, were classed together at Gussage All Saints (Wainwright 1979, type 36), with 147 of 153 examples identified as Poole Harbour products. Twenty seven examples were recorded from Green Island (1969 and 2010 excavations), all in medium-grained fabrics with the exception of one in a very coarse-grained fabric. The rim diameters of 17 were measurable, indicating 14 small vessels (100-150 mm) and three larger vessels (200 mm, 220 mm and 240 mm). Thirty three examples from Barton Field, Tarrant Hinton were mostly in fine-grained fabrics, the four illustrated examples have a rim diameter range of 140-160 mm, one with a height of 135 mm (Brown 1996). Four examples were illustrated from Bestwall Quarry, again in a finegrained fabric, with three of 150-160 mm rim diameter, and one of 180 mm (Lyne 2012, fig. 139, 12, fig. 140, 1 and 11, fig. 141, 8). The form has also been identified at Rope Lake Hole (Davies 1987, as part of type 15) and Quarry Field (Seager Smith 2002, fig. 1.30, 35, part of form R17, rim diameter 160 mm, with cordon around belly of the vessel).

V.BO.4 'Shallow bowls with straight or convex sides and bead rim' (Brown 1987, 210, BC3.0)

At Wytch Farm, such vessels were recorded as type 102 (Lancley and Morris 1991) and at Rope Lake Hole as type 13 (Davies 1987).

V.BO.5 Bowl with high, fairly sharp shoulder and short upstanding or beaded rim, usually shallow; undecorated

The 18 illustrated examples from Hengistbury (BC3.51) indicate this bowl was made in a range of sizes, with seven small examples (rim diameters 100-140 mm), three medium bowls (150-190 mm), six large bowls (220-260 mm) and two very large bowls (280-320 mm), with a wall thickness of 4-9 mm. The height of one was established as 63 mm (100 mm rim). All were smoothed or burnished. The form has also been found at Gussage All Saints (part of form type 42) and at Green Island (1969).

V.BO.6 'Bead-rimmed, high shouldered bowl with zones of decoration defined by grooves. The decoration usually consists of a roughened strip with pairs of vertical lines' (Brown 1987, 211, BC3.52).

The five illustrated vessels from Hengistbury Head are all large or very large, 240 mm to 300 mm in rim diameter, with a wall thickness of 6-9 mm.

V.BO.7 'Bowls with elongated, slightly out-turned rim, some resembling a necked bowl. The shoulder is generally, but not always high' (Brown 1987, 211, BC3.6).

The seven illustrated examples are smaller than the form V.BO.6 bowls, with five examples of 160 mm rim diameter and one of 180 mm (the rim of one was missing). The walls are 6-8 mm thick.

V.BO.8 'Wide mouthed bowls with at least two cordons at or above shoulder level and pedestal or pedestal with omphalos base. These bowls are wheel-made and generally finished to a very high standard with black burnished surfaces' (Brown 1987, 211, BD1.0).

The illustrated examples from Hengistbury include one small vessel (130 mm rim diameter), one medium vessel (160 mm) and five large vessels (240 mm rim), all with a wall thickness of 5 mm. Four were in the A2 fabric, one is A4a and two in A4b. All cordoned bowls from Gussage All Saints were assigned to form type 39 (Wainwright 1979), regardless of the number of cordons. Twenty of 38 examples were in Poole Harbour wares, 'they are British-made copies originating in the same areas as the typical Durotrigean pottery' (Wainwright 1979, 64). One was recorded from Barton Field, Tarrant Hinton (Brown 2006).

V.BO.9 'Wide mouthed bowls with a single cordon at the junction of the neck and shoulder' (Brown 1987, 211, BD2.0)

The illustrated examples of the Poole Harbour examples from Hengistbury suggest a relatively restricted rim size, with three examples of 140 mm, 11 of 160-180 mm and one larger example at 230 mm, with a wall thickness of 5-8 mm. All have well finished surfaces. Two were illustrated from Barton Field, Tarrant Hinton (Brown 2006, fig. 24, 37 and 44), 160-200 mm in rim diameter, in fine-grained fabrics.

V.BO.10 Wide-mouthed bowls with a single cordon at the neck/shoulder junction, but none below

The four Poole Harbour vessels illustrated from Hengistbury suggest it was made in a range of sizes (rim diameters: 100 mm, 180 mm, 200 mm and 240 mm; wall thickness of 6-9 mm). All had well-finished surfaces. The form has also been recovered from Rope Lake Hole (Davies 1987, type 11), Gussage All Saints (type 28, vessels 206 and 246) and a complete profile from Barton Field, Tarrant Hinton (Brown 2006, fig. 22, 28, rim diameter 160 mm, height 125 mm).

V.BO.11 Wide-mouthed bowls with single cordon at neck/shoulder junction, and additional cordon(s) below.

The three illustrated examples from Hengistbury (BD2.12) in Poole Harbour fabrics have well-finished surfaces and a rim diameter range of 130-160 mm. The form has also been identified at Gussage All Saints and Bradford Down, Pamphill, however the origin of the latter is unknown (Field 1983, fig. 12, 25, rim diameter 120 mm).

V.BO.12 Necked bowl with slightly everted rim

This form was made in a wide range of fabrics, but is found in Poole Harbour fabrics at a number of sites including Hengistbury (Brown 1987, BD4.0), Gussage All Saints (Wainwright 1979, form 30), Wytch Farm (Lancley and Morris 1991, type 129, Ower Peninsula, rim diameter range 120-200 mm), Barton Field (Brown 2006,

fig. 24, 53, rim diameter: 140 mm, height: 85 mm) and Bestwall Quarry (Lyne 2012, fig. 141, 5, 200 mm rim diameter and fig. 142, 6, 150 mm rim). The 18 illustrated examples in Poole Harbour fabrics at Hengistbury included nine small examples (100-140 mm rim diameter), six medium (160-200 mm) and one large (240 mm); two could not be measured.

V.BO.13 Necked bowl with elongated, out-turned rim and groove/shallow indentation on or below the shoulder

TThe four illustrated examples from Hengistbury Head were all 120 mm in diameter, with a wall thickness of 5 mm.

V.BO.14 'Bowls with a sharp shoulder angle' including bipartite and tripe vessels (Brown 1987, 212, BD4.4)

This form type includes examples of French origin and some of Poole Harbour or other local sources.

V.BO.15 Bead-rimmed bowls with curved walls and cordon or groove around the waist

This form has been identified at Hengistbury Head (Brown 1987, BD5.1, illustrated examples are 140 mm in rim diameter), Maiden Castle (Brown 1991, fig. 163, 17, 140 mm rim) and Ower Peninsula (Lancley and Morris 1991, type 154, fig. 60, 47, rim diameter range 60-160 mm).

V.BO.16 Shallow, bead-rimmed bowls with a sharp shoulder angle

The examples from Hengistbury Head (BD5.3) were made in Poole Harbour fabrics and other wares probably made more closely to the site. Three bowls were illustrated, one of 180 mm rim diameter, one of 220 mm, the third was not measurable. *V.BO.17* Bead-rimmed bowl with sharply angled shoulder, defined by a cordon or facet. Burnished linear decoration may be present on the lower half of the body.

Five are illustrated from Hengistbury Head, with three small vessels (120-140 mm rim diameter) and two very large examples (280 mm and 360 mm).

V.BO.18 Tazze

Four examples in Poole Harbour wares were illustrated from Hengistbury Head, although the rims of only two were present, measuring 140 mm and 220 mm. Poole Harbour versions have also been recovered from Southdown Ridge (Cooper and Brown 2014, fig. 6.10, 72) and a possible example, although without grooves or cordons, from Maiden Castle (Wheeler 1943, fig. 74, 229). Three examples were recorded from Barton Field, Tarrant Hinton, in fine-grained Poole Harbour fabrics, one was illustrated (Brown 2006, fig. 24, 58, 160 mm rim diameter with a single cordon at the carination).

V.BO.19 Bowl with double bead rim

A single example has been noted from Hengistbury Head, with burnished surfaces and a rim diameter of 240 mm. It has also been found at Gussage All Saints (Wainwright 1979, type 58, rim diameter range 140-220 mm). A vessel from Ower Peninsula also had a double bead, but the vessel was too fragmentary to identify the profile (Lancley and Morris 1991, fig. 59, 26).

V.BO.20 'High-shouldered bowl with simple rim, small external flange; slipped and burnished' (Seager Smith and Davies 1993, type 34, 235)

This form has been found at a number of sites including Greyhound Yard (Seager Smith and Davies, Type 34), Poundbury (Fig. 89. 58), Ower Peninsula (Lancley and Morris 1991, type 132), Barton Field, Tarrant Hinton (Brown 2006, fig. 25, 77) and Gussage All Saints (Wainwright 1979, type 45, and with one example [fig. 48, 686] recorded under type 28).

V.BO.21 Straight-sided cup, upper wall flares out slightly, with rounded rim and footring base

One example, with burnished surface, was illustrated from Hengistbury Head.

H. 5. 3. Dishes and platters

V.DP.1 'Shallow, open vessels with straight or slightly curved walls, and chamfered base' (Brown 2006, 68)

Three examples were recorded from Barton Field, Tarrant Hinton (Brown 2006, fig. 25, 76; 160 mm rim diameter). This form also incorporates bowl type R19 from Quarry Field (Seager Smith 2002, rim diameters 160-180 mm). Seager Smith notes late 1st century BC/early 1st century AD parallels from Flagstones, Dorchester, and mid 1st century AD examples from Trumpet Major (Seager Smith 2002, 51).

V.DP.2 Shallow platter, highly burnished

Two variations were identified from Ower, thought to be a local variations of a Gallo-Belgic form, possibly copying CAM 1 (Lancley and Morris 1991, type 155; Woodward 1987, type 17, fig. 47, 111-113), and one perhaps imitating CAM 2A (Lancley and Morris 1991, type 156; Woodward type 17, fig. 47, 108). Two examples were found at Gussage All Saints (Wainwright 1979, type 56) and one vessel was illustrated from Bestwall Quarry (Lyne 2012, fig. 140, 13).

H. 6. Other forms

V.OT.1 Tankard

Two examples were found at Maiden Castle, both during Wheeler's excavation, and two at Gussage All Saints (Wainwright 1979, type 49, rim diameters: 140 mm and 160 mm). Other examples have been recorded from Ower (Lancley and Morris 1991, type 137, 200 mm rim diameter; Woodward 1987, type 34, fig. 49, 174). None of the

handled variety were found at Hengistbury Head, however non-handled examples were assigned to this class (Brown 1987, BC3.12).

V.OT.2 Narrow necked jar or flagon, may have cordoned or corrugated neck

Examples of this type have been identified at Ower (Lancley and Morris 1991, type 150, fig. 60, 46) and Gussage All Saints (Wainwright 1979, type 46), amongst others. One example was illustrated from Bradford Down, Pamphill (Field 1983, fig. 13, 39), possibly a two-handled jug, broadly of mid 1st century AD date.

V.OT.3 Butt beaker

This copy of a Gallo-Belgic form has been recovered from a number of sites, including Ower (Woodward 1987) and Winterbourne Kingston.

V.OT.4 Strainer

H. 7. Lids

V.LI.1 Lid with beaded rim

Ten examples were illustrated from Hengistbury Head, two were small (140-150 mm rim diameter), three were medium (180-200 mm), one was large (230 mm) and one was very large (280 mm). Two examples were illustrated from Barton Field, Tarrant Hinton (Brown 2006, fig. 25, 74-75), 210 mm in diameter, one was decorated with burnished diagonal lines. An example from Bestwall Quarry had a domed lid, but may have alternatively been designed/used as pedestal bowl (Lyne 2012, fig. 140, 14, 220 mm diameter, 116 mm high). Four examples were recorded from Green Island (1969 and 2010 excavations, rim diameters: 180 mm, 200 mm, 230 mm and 260 mm).

Five published examples from Hengistbury Head ranged from 250-380 mm in rim diameter and two from Maiden Castle were 220 mm and 300 mm in diameter. The smaller example from Maiden Castle is in the same style as a form IV.BO.9 bowl (BC3.42).

V.LI.3 Lid with plain or beaded rim, horizontal groove on body

Two examples were illustrated from Hengistbury Head, with rim diameters of 120 mm and 180 mm. There was also one unstratified example from Maiden Castle, 190 mm in diameter (Brown 1991, fig. 164, 6).

V.LI.4 Lid with internal ledged rim

Three examples were illustrated from Hengistbury Head, with rim diameters of 170 mm, 180 mm and 250 mm. One example was illustrated from Barton Field, Tarrant Hinton (Brown 2006, fig. 25, 73), 250 mm in diameter, with a burnished spiral/loop pattern.

V.LI.5 Plain rim

Three examples were illustrated from Hengistbury Head, with rim diameters of 140 mm, 230 mm and 260 mm. Four examples were recorded from Green Island (1969), with rim diameters of 200 mm, 240 mm and 260 mm. One was decorated with burnished zig zag lines, and appears identical to an example from Hengistbury Head (Brown 1987, fig. 211, 1314).