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Abstract
Real data are usually complex and contain various
components. For example, face images have ex-
pressions and genders. Each component mainly re-
flects one aspect of data and provides information
others do not have. Therefore, exploring the seman-
tic information of multiple components as well as
the diversity among them is of great benefit to un-
derstand data comprehensively and in-depth. How-
ever, this cannot be achieved by current nonneg-
ative matrix factorization (NMF)-based methods,
despite that NMF has shown remarkable compet-
itiveness in learning parts-based representation of
data. To overcome this limitation, we propose a
novel multi-component nonnegative matrix factor-
ization (MCNMF). Instead of seeking for only one
representation of data, MCNMF learns multiple
representations simultaneously, with the help of the
Hilbert Schmidt Independence Criterion (HSIC) as
a diversity term. HSIC explores the diverse infor-
mation among the representations, where each rep-
resentation corresponds to a component. By inte-
grating the multiple representations, a more com-
prehensive representation is then established. Ex-
tensive experimental results on real-world datasets
have shown that MCNMF not only achieves more
accurate performance over the state-of-the-arts us-
ing the aggregated representation, but also inter-
prets data from different aspects with the multi-
ple representations, which is beyond what current
NMFs can offer.

1 Introduction
Finding an optimal data representation is a fundamental prob-
lem in many data analysis tasks [Tao et al., 2009; Liu et al.,
2012]. A good data representation can typically reveal the la-
tent structure of data and facilitate further processes such as
clustering, classification and recognition. Nonnegative ma-
trix factorization (NMF) as a fundamental approach for data
representation has attracted great attentions because it pos-
sesses parts-of-whole interpretations and produces superior
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practical performance [Lee and Seung, 1999].

Several variants of NMF have been proposed to seek
for more effective data representation in the recent years.
[Kong et al., 2011] proposed a robust formulation of NMF
(RNMF) to deal with large noises by L2,1-norm. [Guan et
al., 2012] then presented Manhattan NMF (MahNMF) to al-
leviate heavy tailed Laplacian noise. [Liu et al., 2012] de-
veloped a semi-supervised approach called constrained NMF
(CNMF) that takes the label information as hard constraints
to enforce data with the same label to have the same repre-
sentations. Under the assumption that the data points nearby
have more similar data representations than those far away,
[Cai et al., 2011] proposed a graph regularized NMF (GNMF)
to model the local manifold structure. Subsequently, [Wang
et al., 2016b] proposed a correntropy induced metric based
graph regularized NMF (CGNMF) to deal with noises and
preserving the intrinsic geometric structure of data simultane-
ously. [Qian et al., 2016] adopted an approximation of Earth
Movers Distance to utilize information of feature correlation.
Additionally, LANMF [Liu et al., 2016] presented a large-
cone penalty framework to obtain attractive local solutions
for NMF. Given a dataset with multiple types of features, [Liu
et al., 2013] proposed a multi-view NMF (MultiNMF) which
learns a consensus representation shared by multiple features.
AMVNMF [Wang et al., 2016a] then extended MultiNMF to
semi-supervised setting by enforcing data of same label have
the same representations regardless of features.

These NMF-based approaches, which either incorporate
regularization terms or prior information for more accurate
learning, all tend to treat the features of data as a whole and
obtain a single feature representation. However, it is well rec-
ognized that real data are complex and consist of components
[Changpinyo et al., 2013; Ou et al., 2015]. Taken the Yale
dataset1 as an example, Figure 1 illustrates the face images
consisting of multiple components including gender, facial
expressions, ethnicity, and lighting direction (under which the
images were taken), etc. Since each component mainly repre-
sents one subset of features and contains the specific informa-
tion of the data, current NMFs are unable to distinguish these
embedded components thus cannot adequately exploit diverse
information among them, which may not lead to satisfactory
representations. Hence, it becomes crucial to explore diverse

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Figure 1: Sample images of the Yale dataset. Each column shows
one subject’s faces. Images in the same rows contain same compo-
nents, such as faces with glasses and a neutral expression in row 1;
faces without glasses and a happy expression in row 2; faces lit from
left and with a neutral expression in row 3.

information from multiple components in order to represent
data more comprehensively and accurately.

In fact, the representations learnt through multiple com-
ponents will also enable us to understand data at a semantic
level. For example, when clustering the Yale dataset, current
NMFs get only one clustering solution (i.e., all face images of
a subject being grouped into one cluster) based on global fea-
tures of a single representation matrix. With representations
of multiple components, multiple clustering solutions can be
achieved. For example, one cluster of images can be faces
with glasses and another can be faces with a happy expres-
sion.

To achieve this, we propose a novel multi-component non-
negative matrix factorization (MCNMF). It captures more
comprehensive information and interprets data from differ-
ent perspectives, by leveraging the multiple components. In-
stead of factorizing the data matrix into a single basis and rep-
resentation matrix, MCNMF learns multiple representations
based on different basis matrices. The Hilbert-Schmidt Inde-
pendence Criterion (HSIC) [Gretton et al., 2005] which mea-
sures dependence in terms of a kernel dependence measure is
applied as a diversity term. With this term, we explicitly co-
regularize different components to enforce the diversity of the
jointly learned representations. An aggregated representation
is then established by combining these multiple representa-
tions. To solve the objective function of MCNMF, we derive
a new iterative updating optimization scheme, with its cor-
rectness and convergence being proven as well. Experiments
on clustering have demonstrated that MCNMF not only im-
proves the accuracy by the aggregated representation, but also
captures different semantic properties of data.

2 Brief Intro to NMF
Given a nonnegative data matrix X = [x1,x2, . . . ,xn] ∈
R

m×n, each data xf (1 ≤ f ≤ n) has m-dimensional fea-
tures. NMF [Lee and Seung, 1999] aims to find a basis ma-
trix W ∈ R

m×k and a representation matrix H ∈ R
k×n,

where the product of the two matrices can well approximate
the original matrix, represented as X ≈ WH, and k (usu-
ally k � m) denotes the reduced dimension. Formally, NMF
solves the following optimization problem to compute the op-

timal representation matrix H∗:

min
W≥0,H≥0

‖X−WH‖2F . (1)

Then the multiplicative algorithm is derived to infer W and
H [Lee and Seung, 2001]. Obviously, this standard NMF re-
gards the features of data as a whole, so can be considered as
a single component approach. Arguably, the semantic aspects
of data is much richer than what a single component can cap-
ture. To understand data thoroughly and in-depth, we propose
our multi-component NMF (MCNMF) in the following.

3 MCNMF
3.1 Objective Function
Assuming X comes with V components, we use H(i) ∈
R

k(i)×n to denote the representation with k(i)-dimensional
features that corresponds to the i-th (i ∈ {1, 2, . . . , V }) com-

ponents, and W(i) be the corresponding representation ma-

trix of H(i). Then the product of each W(i)H(i) should well

approximate X, i.e., X ≈ W(i)H(i), from each perspective.

To seek for multiple optimal representations {H(i)∗}Vi=1, we
have the following function:

min
W(i)≥0,H(i)≥0

V∑
i=1

‖X−W(i)H(i)‖2F . (2)

This will allow us to factorize X straightforwardly. However,
it may fail to explore the diverse information of multiple com-

ponents effectively as each H(i) could be very close to or even
same as each other.

For any data, xf , it comes with a pair of components,
i and j. xf ’s latent distinct information of each compo-
nent cannot be fully explored unless its representations of

two components, i.e., h
(i)
f and h

(j)
f , are enforced to be in-

dependent to each other. Given n data vectors, we assume
that each ith component is drawn from X space and the
jth component from Y space. Then, in essence, we aim
to learn a mapping function G of their representations from

S := {(h(i)
1 ,h

(j)
1 ), (h

(i)
2 ,h

(j)
2 ), . . . , (h

(i)
n ,h

(j)
n )} ⊆ X × Y ,

i.e., G: X → Y , to minimize the dependence between data
representations in the X and Y .

To do so, we employ the Hilbert-Schmidt Independence
Criterion (HSIC) due to its simplicity and neat theoretical
properties such as exponential convergence. HSIC com-
putes the square of the norm of the cross-covariance opera-
tor over the domain X × Y in Hilbert Space. As an effec-
tive measure of dependence, the HSIC has been applied to
several machine learning tasks recently [Song et al., 2007;
Zhang and Zhou, 2010; Niu et al., 2010]. Mathmatically, an
empirical estimate of the HSIC [Gretton et al., 2005] is de-
fined as

HSIC(H(i),H(j)) = (n− 1)−2tr(RK(i)RK(j)), (3)

where K(i) and K(j) are the centered Gram matrices of ker-
nel functions defined over H(i) and H(j). R = I − 1

nee
T ,

where I is an identity matrix and e is an all-one column vec-
tor.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2923



Thus, to explore the diverse information from more com-
ponents, we extend (3) and combine it with (2) to produce the
following function:

min
W(i)≥0,H(i)≥0

V∑

i=1

‖X−W(i)H(i)‖2F +α
∑

j �=i

HSIC(H(i),H(j)),

(4)

where α is the parameter of the diversity regularization term.
The first term represents the error between X and the product
of the basis and representation matrices in different compo-
nents. The second term ensures that any two of V represen-
tations be diverse to each other.

Here, we use the inner product kernel for HSIC, i.e.,

K(i) = H(i)TH(i). For notational convenience, we ignore
the scaling factor (n− 1)−2 of HSIC, and rewrite (4) to form
the final objective function as

min
W(i)≥0,H(i)≥0

V∑

i=1

‖X−W(i)H(i)‖2F + α
∑

j �=i

tr(RK(i)RK(j)).

(5)

After obtaining the optimal representation H(i)∗ of
each component, the final aggregated representation H∗

can be obtained by combining all H(i)∗, i.e., H∗ =

[H(1)∗,H(2)∗, . . . ,H(V )∗] ∈ R

∑V
i=1 k(i)×n.

3.2 Optimization
The optimization problem in (5) is not convex in both vari-

ables W(i) and H(i), so it is infeasible to find the global min-
imum. In addition, as the matrix R contains negative values,
it is technically challenging to solve (5) directly. Here we
propose an algorithm that separates the optimization of (5) to
two subproblems and optimizes them iteratively, which guar-
antees each subproblem converges to the local minima.

W(i)-subproblem: Updating W(i) with H(i) fixed in (5)
leads to a standard NMF formulation [Lee and Seung, 2001],

so the updating rule for W(i) is

W(i) ← W(i) 
 (XH(i)T )

(W(i)H(i)H(i)T )
. (6)

H(i)-subproblem: When updating H(i) with W(i) in (5)
fixed, we need to solve the following function:

min
H(i)≥0

J(H(i)) = ‖X−W(i)H(i)‖2F + α

V∑

j=1,j �=i

tr(RK(i)RK(j))

(7)

We then introduce a Lagrange multiplier matrix η =
[ηpq] ∈ R

k×n for the nonnegative constraint on H(i). Uti-

lizing ‖A‖2F = tr(ATA), we obtain the following function:

min
H(i)≥0

J ′(H(i)) = tr(XXT )− 2tr(XH(i)TW(i)T )

+ tr(W(i)H(i)H(i)TW(i)T )

+ α
V∑

j=1,j �=i

tr(RH(i)TH(i)RK(j)) + tr(ηH(i)).

(8)

Setting the derivative of J ′(H(i)) to be 0 with respect to H(i),
we have

η = W(i)TX−W(i)TW(i)H(i) − αH(i)R
V∑

j=1,j �=i

K(j)R.

(9)
Following the Karush-Kuhn-Tucker (KKT) condition for the

nonnegativity of H(i), we have the following equation:

(W(i)TX−W(i)TW(i)H(i)

− αH(i)R

V∑
j=1,j �=i

K(j)R)pqH
(i)
pq = 0.

(10)

Because R contains negative values, we decompose R into

two nonnegative parts for ensuring H(i) ≥ 0 in each iteration:

R = R+ −R−, (11)

where R+
pq = (|Rpq|+Rpq)/2 and R−

pq = (|Rpq|−Rpq)/2.
Substituting (11) into (10), we obtain

(W(i)TX−W(i)TW(i)H(i)

+ αH(i)(R+
V∑

j=1,j �=i

K(j)R− +R−
V∑

j=1,j �=i

K(j)R+)

− αH(i)(R−
V∑

j=1,j �=i

K(j)R−+R+
V∑

j=1,j �=i

K(j)R+))pqH
(i)
pq = 0.

(12)

This is the fixed point equation whose solution must satisfy

at convergence. Denote Ra = R+
∑V

j=1,j �=i K
(j)R−, Rb =

R− ∑V
j=1,j �=i K

(j)R+, Rc = R−∑V
j=1,j �=i K

(j)R−, Rd =

R+
∑V

j=1,j �=i K
(j)R+, then given an initial value of H(i),

the successive update of H(i) is:

H(i) ← H(i) 

√√√√ W(i)TX+ αH(i)(Ra +Rb)

W(i)TW(i)H+ αH(i)(Rc +Rd)
.

(13)
The correctness of the updating rule (13) can be guaranteed
by the following theorem.

Theorem 1. If the updating rule of H(i) converges, then
the final solution satisfies the KKT optimality condition.

Proof of Theorem 1. At convergence, H∞ = Ht+1 =
Ht = H, where t denotes the t-th iteration, i.e.,

H(i) = H(i) 

√√√√ W(i)TX+ αH(i)(Ra +Rb)

W(i)TW(i)H+ αH(i)(Rc +Rd)
(14)

Then for each H
(i)
pq , we have

(W(i)TX−W(i)TW(i)H(i) + αH(i)(Ra +Rb)

− αH(i)(Rc +Rd))pq(H
(i))2pq = 0.

(15)

which is equivalent to (12). �
We can now prove the convergence of the updating rule,

by making use of an auxiliary function as in [Lee and Seung,
2001]. The definition of the auxiliary function is as follows:
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Table 1: Clustering results ((mean ± standard deviation)%) on the four datasets (bold numbers represent the best results)

Metric NMF RNMF GNMF Cauchy NMF LANMF MCNMF
AC 40.48 ±3.25 38.55 ±2.76 41.58±2.54 41.45 ±4.26 39.76 ±2.70 46.42±1.95

Yale NMI 46.35 ±2.15 43.98 ±2.46 46.30 ±1.66 49.57 ±2.88 45.52 ±1.25 49.65±1.66

purity 42.91 ±2.16 41.33 ±3.36 42.67±2.73 43.39 ±3.02 42.18 ±1.64 47.15±1.45

AC 54.90±3.44 54.20 ±2.11 59.60±2.50 56.45±2.86 52.40 ±2.31 62.95±1.20

ORL NMI 76.22±1.34 75.33±1.04 77.80±1.12 74.80±1.23 73.11±1.79 79.39±1.10

purity 62.20±2.08 59.75±1.51 64.55±1.59 60.45±1.85 57.80±1.55 66.20±1.47

AC 62.49±1.56 59.57±4.83 68.39±2.62 63.49±4.34 63.17 ±3.98 69.61±1.30

COIL20 NMI 74.35±1.49 73.24±2.21 77.30±1.54 76.34±2.08 76.63±2.51 78.84±0.81

purity 66.40±1.37 64.29±3.75 69.83±2.47 67.28±2.06 67.68±3.51 70.06±1.25

AC 68.04±3.68 74.08 ±2.90 75.88 ±3.40 64.65±4.93 72.64 ±4.17 77.54±1.69

Notting-Hill NMI 60.27±3.50 64.74±2.55 62.97±2.93 56.29±2.32 64.94±3.56 66.63 ±3.33

purity 72.93±5.38 78.39±2.25 77.19±2.85 70.25±3.93 78.67±3.67 79.49±2.79

Definition 1. A function G(Q,Q′) is an auxiliary function
of the function J(Q) if G(Q,Q′) ≥ J(Q) and G(Q,Q) =
J(Q) for any Q, Q′.

The auxiliary function gives rise to the following lemma
[Lee and Seung, 2001]:

Lemma 1. If G is an auxiliary function of J ,
then J is non-increasing under the update rule Qt+1 =
argminQ G(Q,Qt).

Under the constraint in (11), we now have the specific

form of the auxiliary function G(H(i),H(i)′) for the objec-

tive function J(H(i)) in (7) based on Lemma 2.

Lemma 2. The function

G(H(i),H(i)′) = −2
∑
pq

(W(i)TX)pqH
(i)′

pq(1 + log
H

(i)
pq

H
(i)
pq

′
)

+
∑
pq

(W(i)TW(i)H(i)′)pqH
(i)
pq

2

H
(i)
pq

′

−
∑
pqk

(Ra +Rb)jkH
(i)′

pqH
(i)′

pk(1 + log
H

(i)
pqH(i)

pk

H(i)′
pqH

(i)′
pk

)

+
∑
pq

(H(i)′(Rc +Rd))pqH
(i)
pq

2

H
(i)
pq

′

(16)
is an auxiliary function for J(H(i)) in (7).

Proof of Lemma 2. We find upper bounds for each of
the two positive terms by the following lemma [Ding et al.,
2010],

Lemma 3. For any nonnegative matrices S ∈ R
n×n,

B ∈ R
g×g , F ∈ R

n×g and F′ ∈ R
n×g, with S and B being

symmetric, then the following inequality holds

tr(FTSFB) ≤
n∑

i=1

g∑
p=1

(SF′B)
F2

ip

F′
ip
. (17)

Then, we have following inequations:

tr(W(i)TW(i)H(i)H(i)T ) ≤
∑
pq

(W(i)TW(i)H′
i)pq(H

(i))2pq
(H′

i)pq
,

(18)

tr(H(Rc +Rd)H
T ) ≤

∑
pq

(H′(Rc +Rd))pqH
2
pq

H′
pq

. (19)

To obtain lower bounds for the remaining terms, we use the
inequality z > 1+ log z, ∀z > 0 [Ding et al., 2010] and have

tr(WTXHT )

≥
∑
pq

(WTX)pqH
′
pq(1 + log

Hpq

H′
pq

),
(20)

tr(H(Ra +Rb)H
T )

≥
∑
pqk

(Ra +Rb)jkH
′
pqH

′
pk(1 + log

HpqHpk

H′
pqH

′
pk

).
(21)

Collecting all bounds, we have the final auxiliary function in
Lemma 2. �

Based on the lemmas 1 and 2, we can prove the conver-
gence of the updating rule (13).

Theorem 2. The optimization problem (7) is non-
increasing under the iterative updating rule (13).

Proof of Theorem 2. Lemma 2 provides a specific form
G(H,H′) of the auxiliary function for J(H) in the problem
(7). We can have the solution for minH G(H,H′) by the
following KKT condition

∂G(H,H′)
∂Hpq

=−2(WTX)pq
H′

pq

Hpq
+2

(WTWH′)pqHpq

H′
pq

− 2
(H′(Ra +Rb))pqH

′
pq

Hpq
+ 2

(H′(Rc +Rd))pqHpq

H′
pq

= 0,

(22)
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which gives rise to the updating rule in (13). Following
Lemma 1, under this updating rule the objective function val-
ues of J(H) in (7) will be non-increasing. �

Bulk of the computation depends on the matrix mul-
tiplication in the updating rules (13) and (6), the com-

plexity of updating W(i) and H(i) is O(mnk(i)) and

O(
∑V

j=1,j �=i(k
(j)n2 + nk(j)

2
)), respectively. So the over-

all computation of MCNMF is O(
∑V

i=1(
∑V

j=1,j �=i k
(j)n2 +

k(i)mn)).

4 Experiments
4.1 Dataset
We carried several experiments on the following benchmark
datasets to show the effectiveness of MCNMF. The Yale con-
tains 11 facial images for each of 15 subjects. Sample images
are shown in Figure 1. For each subject, its face images are
either in different facial expressions (such as happy or sad), or
configurations (such as with or without glasses). The ORL2

dataset consists of 400 facial images belonging to 40 different
subjects. Similar to the Yale dataset, the images were taken
with various lighting and facial expressions. The Notting-Hill
[Cao et al., 2015] is a video face dataset, which is derived
from the movie “Notting Hill”. The faces of 5 main casts
were used, including 4660 faces in 76 tracks. The COIL20
image library3 is composed of 1440 images for 20 objects.
The 72 images of each object were captured by a fixed cam-
era at a pose intervals of 5 degree. For this dataset, we regard
the different poses and shapes as components.

4.2 Experiment Setup
We first compared MCNMF against the standard NMF [Lee
and Seung, 2001] to verify the effectiveness of exploring di-
verse information from multi-components, and then with the
state-of-the-arts: RNMF [Kong et al., 2011], GNMF [Cai et
al., 2011], Cauchy NMF [Liutkus et al., 2015] and LANMF
[Liu et al., 2016]. For each compared method, the parame-
ters were set according to the parameter settings in original
papers. For MCNMF, we varied the regularization parameter
α within [0.01, 0.05] with 0.01 interval and fixed the number
of components V = 3 (more discussion in next subsection).

In addition, we set each k(i) equals to number of clusters ac-
cording to the groundtruth of each dataset. The dimensions
of obtained optimal representations H∗ for all the compared

methods were all set to be k =
∑V

i=1 k
(i) for fair comparison.

4.3 Performance Analysis
Clustering result. We applied k-means to the obtained rep-
resentations H∗ for clustering. Since k-means is sensitive
to the initial values, we repeated the clustering process 50
times to give the average performance. Moreover, since all
the compared methods converge to local minimum, we ran
each method 10 times to avoid randomness. Similar to the

2http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
3http://www1.cs.columbia.edu/CAVE/software/softlib/coil-

20.php

work [Cao et al., 2015], we adopted three widely used eval-
uation metrics accuracy (AC) [Liu et al., 2012], normalized
mutual information (NMI) [Liu et al., 2012] and purity [Ding
et al., 2006] to assess the quality of the results with a compre-
hensive evaluation. The final average clustering results along
with standard deviations are reported in Table 1. As we can
see, MCNMF outperforms the other methods against all met-
rics and gets the lowest standard deviations on 9 of 12 results,
which demonstrate the robustness of MCNMF. Besides, it can
be noticed that GNMF performs the second best in terms of
AC, but not for other metrics. Especially, MCNMF outper-
forms GNMF with a large margin: 4.84% and 3.35% on the
Yale and ORL, respectively. This is probably because that the
images in both of the two datasets have more components,
such as different lighting and expressions. Obviously, richer
information has been explored and obtained for comprehen-
sive representations, which brings significant improvements.

Component study. We closely examined the learned rep-
resentations for each component to analyze their latent se-
mantics. In particular, we took the Yale dataset as an example.
Like the previous experiment setting, we fixed the number of
components V to 3, and applied k-means on the representa-

tion H(i) of each component to cluster the data into 3 clusters.
The result is shown in Figure 2. We can see that the each rep-
resentation has effectively captured some distinct information
(such as unhappy or surprised expressions) which is reflected
by a corresponding cluster. This result enables the under-
standing of the data from various perspectives in a semantic
level, which would be hardly achievable by current NMF-
based methods as they cannot identify components. Also,

note that from H(2) and H(3), there is a common cluster: the
right-lit faces. This is reasonable that although multiple rep-
resentations usually describe data from different perspectives,
they are not completely exclusive to each other mutually. We
further tested MCNMF on a larger dataset COIL20. Again,
the results are quite good and promising, with multiple clus-
ters being obtained through different components (right ro-
tation, pottery, etc). Figure 3 shows example results, due to
page limitation.

Parameter analysis. We tested the effect of parameter α
of MCNMF on the datasets. α varies from 0.01 to 0.05 with
an increment of 0.01. Here we presented the accuracy of
MCNMF with respect to α on Yale and ORL as examples.
Seen from Figure 4, the accuracy varies slightly showing a
relatively stable performance. Also, for all values of α, the
performance of MCNMF is consistently better than NMF (
Table 1). For example, for Yale, the worst result of MCNMF
is about 0.4182, while NMF only gets 0.4048.

We also tested the effect of the number of components V .
Here we fixed α = 0.01 and varied V from 1 to 7 with an
increment of 1. Seen from Figure 5, for both Yale and ORL,
the accuracy with multiple components (V ≥ 2) is always
better than MCNMF with V = 1 (NMF). Specifically, the ac-
curacy increases sharply when V is tuned from 1 to 3, which
indicates the effectiveness of MCNMF by exploring multi-
ple components. Then the accuracy fluctuates slightly when
V increases from 3 to 7. The fluctuation could be due to a
compromise between the amount of features for each repre-
sentation and the diverse information among them. When V
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Figure 2: Sample clustering results of the Yale dataset based on each representation H(i). Images circled in red are outliers.

Figure 3: Sample clustering results of the COIL20 dataset. Each
row, from top to bottom, represents a cluster based on the represen-

tations H(1) , H(2) and H(3) , respectively. Images circled in red
are outliers.
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Figure 4: The effect of the parameter α.

increases, more diverse information can be utilized. However,
given a fixed k =

∑3
i=1 k

(i), the increase of V will result in

reduction of the feature dimension k(i) for each representa-
tion.

Convergence analysis. Having proven the convergence of
our update rules of MCNMF in previous sections, here we ex-
perimentally demonstrate its convergence in Figure 6, where
the horizontal axis is the number of iterations and the vertical
axis is the value of objective function. It can be seen that the
objective function values are non-increasing and drop sharply
within 5 iterations on both datasets.

5 Conclusion
In this paper, we have proposed a Multi-Component Nonneg-
ative Matrix Factorization (MCNMF) approach to find multi-
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Figure 5: The effect of the number of components V .

0 5 10 15 20
0

1

2

3

4 x 106

Iteration number

O
bj

et
iv

e 
fu

nc
tio

n 
va

lu
e

Yale

0 5 10 15 20
0

2

4

6

8 x 107

Iteration number
O

bj
et

iv
e 

fu
nc

tio
n 

va
lu

e

ORL

Figure 6: Convergence curves.

representation of data by exploring embedded latent compo-
nents. Different from existing NMF-based approaches that
seek for a single representation matrix, MCNMF learns multi-
ple representations simultaneously. Utilizing Hilbert Schmidt
Independence Criterion (HSIC) as a penalty term, MCNMF
explicitly enforces the diversity of different data representa-
tions. Extensive experiments have demonstrated that MC-
NMF can not only obtain multiple representations with each
one reflecting one property of data, but also improves the ac-
curacy by aggregating multiple representations. For future
work, we will extend MCNMF to semi-supervised MCNMF
by utilizing the label information of data to obtain a much
clearer correspondence with the real component of data.
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