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Reading is a critical skill that is indispensable in modern 
society. Although reading performance is best in silence 
when no distracting stimuli are present, such ideal con-
ditions are rarely typical for daily life. Rather, much of 
everyday reading occurs in the presence of external 
auditory stimulation, such as noise from nearby traffic, 
music playing in the background, or a colleague talking 
on the phone. The interest in how auditory stimuli 
affect human performance is almost as old as modern 
psychology itself (e.g., Cassel & Dallenbach, 1918; 
Morgan, 1917). From the widespread use of personal 
radios among students in the 1940s (Henderson, Crews, 
& Barlow, 1945; L. R. Miller, 1947) to the rise in popu-
larity of the TV (Armstrong, Boiarsky, & Mares, 1991; 
Cool, Yarbrough, Patton, Runde, & Keith, 1994) and 
mobile devices (Kallinen, 2002), researchers and educa-
tors alike have been interested in whether background 
sounds can distract students from reading and other 
study-related tasks.

Over the past 8 decades, many studies have exam-
ined how experimental exposure to speech, noise, and 

music affects the reading process. Although some inter-
esting patterns of results have emerged, the research 
literature has been undermined by a fair number of 
inconsistent findings and the general lack of broader 
theoretical frameworks that can explain how auditory 
distraction during reading occurs. Although a number 
of theoretical accounts have been developed for simpler 
tasks such as serial recall, it is currently not known how 
well they can account for all the findings from reading-
comprehension tasks that have accumulated over the 
past several decades. In addition, because of the mixed 
findings on some topics, the actual magnitude of 
auditory-distraction effects—or even if they are reliably 
different from zero—is currently not well understood.
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Abstract
Everyday reading occurs in different settings, such as on the train to work, in a busy cafeteria, or at home while 
listening to music. In these situations, readers are exposed to external auditory stimulation from nearby noise, 
speech, or music that may distract them from their task and reduce their comprehension. Although many studies have 
investigated auditory-distraction effects during reading, the results have proved to be inconsistent and sometimes 
even contradictory. In addition, the broader theoretical implications of the findings have not always been explicitly 
considered. We report a Bayesian meta-analysis of 65 studies on auditory-distraction effects during reading and use 
metaregression models to test predictions derived from existing theories. The results showed that background noise, 
speech, and music all have a small but reliably detrimental effect on reading performance. The degree of disruption 
in reading comprehension did not generally differ between adults and children. Intelligible speech and lyrical music 
resulted in the biggest distraction. Although this last result is consistent with theories of semantic distraction, there was 
also reliable distraction by noise. It is argued that new theoretical models are needed that can account for distraction 
by both background speech and noise.
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In the present article, we address these issues in two 
ways. First, we present the first attempt to make a sta-
tistical synthesis of previous findings in a reading task 
to find out whether and to what extent auditory stimuli 
can interfere with reading performance. To do this, we 
adopted a Bayesian meta-analysis approach that makes 
it possible to quantify the degree of belief, given the 
data, that background sounds can disrupt reading. Sec-
ond, we used Bayesian metaregression models to test 
the predictions derived from existing theories on audi-
tory distraction and to estimate how likely it is that they 
can explain the available data. The present article starts 
with a brief overview of the literature that highlights 
the existing inconsistencies. Then, we consider theories 
that can explain auditory-distraction effects during 
reading. Finally, the predictions from these theories are 
outlined and tested.

The Effect of Background Noise, 
Speech, and Music on Reading:  
An Overview

Background noise

Background noise can be defined as any unwanted 
sounds that are not related to the reading task. Strictly 
speaking, some degree of background noise is always 
present during reading; however, the intensity of the 
background noise can vary enormously depending on 
the environment. A number of epidemiological studies 
have investigated the relationship between constant 
exposure to noise and reading and have suggested that 
long-term exposure to traffic noise is associated with 
lower reading ability in children (e.g., Haines, Stansfeld, 
Job, Berglund, & Head, 2001b; Hygge, Evans, & 
Bullinger, 2002; Papanikolaou, Skenteris, & Piperakis, 
2015; Stansfeld et al., 2005). Note, however, that only 
very few studies have examined the effect of short-term 
experimental exposure to noise.

In one early study, C. R. Johansson (1983) found that 
the reading comprehension and reading speed of 
10-year-old children did not differ between quiet condi-
tions and conditions of continuous or intermittent 
acoustical noise. More recently, Dockrell and Shield 
(2006) investigated the effect of typical classroom noise 
(which is quite different from acoustical white or pink 
noise) on reading comprehension in 8-year-old chil-
dren. Participants completed the Suffolk Reading Scale 
in one of three conditions: silence, noise consisting of 
children’s babble, and the same babble combined with 
intermittent environmental noise. The results showed 
that children performed better in the quiet condition 
than in the babble noise condition. Surprisingly, how-
ever, reading performance was best when the babble 

and the environmental noise were combined. Using 
similar sound stimuli, Ljung, Sorqvist, and Hygge (2009) 
found that road-traffic noise impaired the reading speed 
of 12- and 13-year-old children, but not their reading 
comprehension. However, a condition of children’s 
babble intermixed with irrelevant speech affected nei-
ther measure.

Studies of exposure to noise in adults have resulted 
in similarly mixed findings, sometimes even when the 
materials were identical (e.g., Martin, Wogalter, & Forlano, 
1988, Experiments 4 and 5). Although most studies have 
failed to find an effect of acoustical or environmental 
noise on reading comprehension (Gawron, 1984; Jahncke, 
Hygge, Halin, Green, & Dimberg, 2011; R. Johansson, 
Holmqvist, Mossberg, & Lindgren, 2012; Veitch, 1990), 
others have found such an effect after examining the 
mediating role of personality characteristics, such as intro-
version and extroversion (Furnham, Gunter, & Peterson, 
1994; Ylias & Heaven, 2003). In summary, studies inves-
tigating the effect of background noise on reading com-
prehension have yielded inconsistent results, although 
some of them suggest that exposure to noise may be 
detrimental.

Background speech

Background speech is a specific kind of noise that often 
occurs in daily life. Compared with environmental and 
acoustical noise, background speech has specific acous-
tic properties that make it salient to listeners. In addi-
tion, if the background speech is intelligible, it also 
carries semantic meaning (completely unintelligible 
background speech might also occur, but it is not very 
frequently encountered unless one is in a foreign coun-
try and does not understand the language). Perhaps 
owing to its semantic content, background speech is 
often rated as more distracting and more annoying than 
acoustical noise (Haapakangas et al., 2011; Haka et al., 
2009; Landström, Söderberg, Kjellberg, & Nordström, 
2002). Consistent with this subjective perception, intel-
ligible background speech has been found to disrupt 
reading comprehension in a number of experiments 
(Armstrong et al., 1991; Baker & Madell, 1965; Martin 
et al., 1988; Sörqvist, Halin, & Hygge, 2010; however, 
see Venetjoki, Kaarlela-Tuomaala, Keskinen, & Hongisto, 
2006). In addition, some evidence suggests that this 
disruption effect may be larger for participants who 
have a poorer ability to immediately suppress the irrel-
evant background speech (Sörqvist, Halin, & Hygge, 
2010; Sörqvist, Ljungberg, & Ljung, 2010).

A specific reading task that has been investigated in 
more detail in connection with background speech is 
proofreading. Proofreading is an important part of 
many professions, especially those related to teaching 
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and publishing. Proofreading is a more cognitively 
demanding task than reading alone because it also 
requires allocating attention to look for mistakes in 
addition to reading the text. There are generally two 
types of mistakes that have been investigated in proof-
reading studies: contextual mistakes, which require 
understanding the meaning of the text to detect (e.g., 
problems with pronoun agreement), and noncontextual 
mistakes, which require only processing of the current 
word to detect (e.g., spelling mistakes). Because of the 
semantic content of intelligible speech, it can be 
hypothesized that background speech would disrupt 
the detection of contextual errors more than the detec-
tion of noncontextual errors.

Some support for this prediction was found by an 
early study by Weinstein (1977), who reported that 
background speech consisting of a radio news report 
significantly impaired the detection of contextual errors 
but not the detection of noncontextual errors. However, 
Jones, Miles, and Page (1990) found exactly the oppo-
site effect in another study. The authors manipulated 
both the intelligibility of background speech (which 
was played either normally or in reverse) and the inten-
sity of the sound (50 vs. 70 dBA). They found that the 
intensity of the sound did not affect proofreading per-
formance but that normal (i.e., intelligible) speech 
reduced the number of noncontextual errors that were 
detected. Critically, however, the intelligibility of speech 
did not affect the detection of contextual errors ( Jones 
et al., 1990). More recently, Venetjoki et al. (2006) found 
that background speech reduced the overall accuracy 
on a similar proofreading task compared with continu-
ous noise. However, even though the task included 
both contextual and noncontextual errors, there was 
no significant effect of background speech on either 
error type in isolation. In a similar study, Landström 
et al. (2002) found that background speech, compared 
with broadband noise (i.e., noise consisting of a wide 
range of frequencies), did not affect proofreading per-
formance for either contextual or noncontextual errors. 
The auditory stimuli were presented at a sound inten-
sity level comparable to that used in Venetjoki et al. 
(2006), although the speech consisted of random spo-
ken statements. Finally, Smith-Jackson and Klein (2009) 
also found no effect of background speech (intermittent 
or continuous) on overall proofreading accuracy.

It is noteworthy that a few studies have also sug-
gested that the detrimental effect of background speech 
on reading and proofreading can be diminished by 
making the task harder and thus increasing participants’ 
engagement with it (Halin, 2016; Halin, Marsh, Haga, 
Holmgren, & Sörqvist, 2014; Halin, Marsh, Hellman, 
Hellström, & Sörqvist, 2014). In a few experiments, 
Halin and his colleagues showed that performance on 

a reading/proofreading task was disrupted by back-
ground speech only when the text was formatted in a 
familiar font, but not when it was formatted in an unfa-
miliar font (i.e., one that was more difficult to read). 
Likewise, performance was disrupted only when the 
text was printed normally, but not when it was visually 
degraded (i.e., harder to read). Therefore, these results 
suggest that increasing task engagement may decrease 
the detrimental effect of background speech on reading 
comprehension and proofreading accuracy (for a dis-
cussion, see Sörqvist & Marsh, 2015).

Most studies that have been considered so far have 
investigated only the end product of reading and proof-
reading (i.e., comprehension accuracy, proofreading 
accuracy, or the overall time taken to read the text). 
However, these studies do not tell us how the reading 
process is influenced on a moment-to-moment basis. 
More recently, several eye-tracking studies have 
addressed this question by showing that the effect of 
background speech on reading can also be found at 
the level of fixation durations and fixation probabilities 
(Cauchard, Cane, & Weger, 2012; Hyönä & Ekholm, 
2016; Vasilev, Liversedge, Rowan, Kirkby, & Angele, 
2017; Yan, Meng, Liu, He, & Paterson, 2017). One key 
finding from these studies is that background speech 
leads to an increased number of rereading fixations. 
Although these studies have been successful in explain-
ing when disruption by background speech occurs dur-
ing the reading process, one puzzling aspect is that 
none of the eye-tracking experiments have replicated 
the disruption effect in comprehension accuracy found 
in behavioral studies. Why this inconsistency exists 
remains unknown, but it raises questions about the 
reliability of the effect of background speech on read-
ing comprehension.

In summary, background speech has been found to 
disrupt reading comprehension and proofreading accu-
racy in a number of experiments. In addition, the avail-
able evidence suggests that this disruption is due to 
processing of the semantic meaning of the speech 
sound. These effects appear to be more reliable than 
the effect of nonspeech noise on reading, which has 
not been consistently replicated. Nevertheless, several 
recent studies have found no effect of background 
speech on reading comprehension, which casts doubt 
on its robustness and generalizability.

Background music

Unlike noise and speech, which are usually a nuisance, 
playing music in the background is often done delib-
erately as a personal choice or a habit. Interest in the 
potential effect of background music on reading started 
in the first half of the 20th century with the popularity 
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of personal radios and record players and their use by 
students. However, these early studies did not paint a 
clear picture of the relationship between background 
music and reading. Although some of them found that 
music can negatively affect reading comprehension in 
children and university students (Fendrick, 1937; 
Fogelson, 1973; Henderson et al., 1945), others found 
that background music either does not affect reading 
at all (Freeburne & Fleischer, 1952; L. R. Miller, 1947; 
Mitchell, 1949) or that it actually improves reading per-
formance (Hall, 1952). Indeed, this controversy has 
persisted until the present day; even the only two eye-
tracking studies to address this question (Cauchard 
et al., 2012; R. Johansson et al., 2012) have failed to 
find any effect of background music on fixation dura-
tions or fixation probabilities during reading.

To examine what conditions might give rise to dis-
traction, some studies have investigated whether the 
effect of background music on reading comprehension 
is modulated by personality traits (Avila, Furnham, & 
McClelland, 2011; Furnham & Allass, 1999; Furnham & 
Bradley, 1997; Furnham & Stephenson, 2007; Furnham 
& Strbac, 2002; Furnham, Trew, & Sneade, 1999; Kou, 
McClelland, & Furnham, 2017). These studies have pre-
dicted, on the basis of Eysenck’s (1967) theory of per-
sonality, that individuals high in extraversion will be 
distracted less by background music than individuals 
high in introversion because of the extroverts’ higher 
cortical arousal threshold. However, the results from 
these studies have been mixed. Although some of them 
have found such an interaction between personality traits 
and background music (Daoussis & McKelvie, 1986; 
Furnham & Bradley, 1997; Furnham & Strbac, 2002), 
others have not (Avila et al., 2011; Furnham & Allass, 
1999; Furnham & Stephenson, 2007; Furnham et  al., 
1999; Kou et al., 2017). A number of factors may have 
led to these inconsistencies, such as the way in which 
participants were classified as introverts and extroverts 
or the small sample size in some of the studies.

Another factor that has been considered is the genre 
of the music (Kallinen, 2002; L. K. Miller & Schyb, 1989; 
Mullikin & Henk, 1985; Tucker & Bushman, 1991). 
However, as the popularity of music genres changes 
with time, it is arguably better to investigate what 
aspects of the music may cause distraction. One factor 
that may play a role is participants’ preference for the 
music. For example, Etaugh and colleagues (Etaugh & 
Michals, 1975; Etaugh & Ptasnik, 1982) reported that 
preferred music decreased reading-comprehension 
scores, but only for students who rarely study while 
listening to music. In contrast, R. Johansson et al. (2012) 
found that participants had lower comprehension accu-
racy when listening to nonpreferred music compared 
with a quiet control condition, but there was no such 

effect when they listened to preferred music. In addi-
tion, they did not replicate the previous finding that 
participants’ studying habits modulated the results. 
Adding further to the confusion, Perham and Currie 
(2014) found that preferred and nonpreferred lyrical 
music (i.e., music with sung lyrics) is equally disruptive 
to reading comprehension, although they did not report 
data on students’ studying habits.

The influence of background music on reading may 
also be modulated by the acoustic properties of the 
music. Some factors that have been considered are its 
informational load (Kiger, 1989), loudness, and tempo 
(W. F. Thompson, Schellenberg, & Letnic, 2012); its 
familiarity to participants (Hilliard & Tolin, 1979); and 
its capability to induce a startle response (Ravaja & 
Kallinen, 2004). These results are quite interesting in 
terms of understanding what types of music might 
cause distraction, although they would benefit from 
further replication and extensions. In summary, previ-
ous studies suggest that certain types of music may be 
distracting, but a negative effect of background music 
on reading performance has not been consistently 
observed.

The available evidence suggests that experimental 
exposure to background noise, speech, and music may 
disrupt reading performance. The effect of background 
noise and music appears to be less consistent: Many 
studies report nonsignificant effects on reading com-
prehension. Although the effect of background speech 
on reading appears to be more reliable, several experi-
ments have also failed to find an effect in reading-
comprehension and proofreading tasks. Therefore, 
considerable uncertainty exists with respect to the mag-
nitude of these distraction effects and what aspects of 
background sounds may be responsible for them. One 
possibility is that only certain acoustical or linguistic 
properties of background sounds may account for the 
distraction. We now turn to this possibility by examin-
ing existing theories of auditory distraction.

Theories of Auditory Distraction

One of the earliest theoretical accounts of auditory 
distraction is the phonological-interference hypothesis. 
This account is based on Baddeley and Hitch’s (1974, 
1994) model of working memory, in which the phono-
logical loop acts as an acoustic store in which memories 
are registered and rehearsed through a process of sub-
vocalization. Salamé and Baddeley (1982, 1987, 1989) 
reported a series of experiments in which they showed 
that memory for visually presented digits is impaired 
by unattended speech but not by unattended acoustical 
noise. In addition, a distraction effect was observed even 
if the speech sound was in a language that participants 
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could not understand (Salamé & Baddeley, 1987). The 
authors argued that this occurs because speech sounds 
automatically gain access to the phonological loop and 
thus interfere with the encoding and rehearsal of visu-
ally presented items. Although this hypothesis is derived 
from a memory task, Salamé and Baddeley (1989) 
argued that a similar disruption may also be observed 
in more complex cognitive tasks such as reading.

Martin et al. (1988) were the first to systematically 
test the phonological-interference hypothesis in a 
reading-comprehension task. In a series of experiments, 
they found that the disruptive effect of unattended 
speech was due to the semantic properties (i.e., mean-
ing) of the speech, rather than its phonological features. 
More specifically, the authors found that English speech 
(which was intelligible to participants) was more dis-
tracting than Russian speech (which was unintelligible 
to participants). Likewise, a continuous speech stream 
of random words was found to disrupt comprehension 
more than a continuous speech stream of nonwords. 
To account for these results, Martin et al. (1988) argued 
that, unlike serial-recall tasks, reading comprehension 
requires understanding the meaning of the text. There-
fore, the semantic properties of the irrelevant speech 
can interfere with building the semantic representations 
of the text that is being read. This prediction will be 
referred to as the semantic-interference hypothesis.

The changing-state hypothesis (Hughes & Jones, 
2001; Jones & Macken, 1993; Jones, Madden, & Miles, 
1992) is another prediction derived from serial-recall 
tasks. According to this hypothesis, interference is 
caused by background sounds that exhibit considerable 
acoustic variation but not by steady-state, aperiodic 
sounds that do not have such variation ( Jones et al., 
1992). For example, a sound consisting of different 
consonants (e.g., “B, F, P, S, N”) should cause more 
interference than a sound made up of the same conso-
nant (e.g., “M, M, M, M, M”) because it exhibits more 
acoustic variation. The hypothesized mechanism 
through which interference occurs is that changing-
state sounds contain information about the serial order 
of their constituent sound elements (Hughes & Jones, 
2001). This information can then interfere with main-
taining the serial order of items in a memory task.

Although reading is a more complex cognitive task 
than serial recall of items, it also involves maintaining 
the order of words in the sentence and their syntactic 
relations. For example, because models of parallel word 
processing such as SWIFT (Saccade generation With 
Inhibition by Foveal Targets; Engbert, Nuthmann, 
Richter, & Kliegl, 2005) assume that readers can process 
multiple words at the same time, they also have to 
assume, at least implicitly, that readers are somehow 
able to maintain information about the order of these 

words in the current sentence. In addition, some mod-
els of reading comprehension (e.g., Kintsch, 1998) 
assume that word meanings are combined to form 
propositions or “idea units” according to their syntactic 
relationships (Kintsch & Rawson, 2005). Forming these 
units must also involve establishing and keeping track 
of the order of words in the sentence, as well as their 
syntactic relationships.

A final account that is relevant in a reading task is 
the duplex theory of auditory distraction (Hughes, 2014; 
Hughes, Vachon, & Jones, 2005, 2007; Sörqvist, 2010b), 
according to which auditory distraction can occur from 
two different processes: interference by process and 
attentional capture (Hughes, 2014). Interference by 
process (Marsh, Hughes, & Jones, 2008, 2009; Marsh & 
Jones, 2010) occurs when the background sound inter-
feres with a process that is important for the main task. 
For example, in a reading task, the semantic processing 
of meaningful speech would interfere with the task 
because reading also requires semantic processing to 
extract the meaning of the text. Alternatively, auditory 
distraction can also be caused by attentional capture 
(Hughes et al., 2005; Vachon, Hughes, & Jones, 2012) 
where attention is temporally directed away from the 
main task. For example, the sound “B” in the sequence 
“AAAAAABA” would capture attention because another 
“A” is expected in the sequence (Hughes, 2014; for a 
review of similar effects caused by deviant sounds, see 
Parmentier, 2014).

In a reading task, the interference-by-process part 
of the duplex theory makes the same prediction as the 
semantic-interference hypothesis by Martin et al. (1988) 
discussed earlier. The difference between the two 
accounts is very subtle: According to Marsh et al. (2008, 
2009), distraction occurs because processing the mean-
ing of the background speech depends on the same 
process used for extracting the meaning of the text that 
is being read. In contrast, Martin et al. (1988) assume 
that the semantic properties of the speech cause the 
interference. These two very similar views are difficult 
to disentangle empirically, and because they make the 
same prediction for the purposes of the present analy-
sis, we will consider them together. The second part of 
the duplex theory—attentional capture—is a very inter-
esting concept. However, because tasks such as reading 
typically involve longer exposure to sounds, it is more 
difficult to study and will not be considered further in 
this analysis.

Present Study

The review of the literature showed that background 
noise, speech, and music may be detrimental to reading 
performance but that considerable uncertainty exists as 
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to the reliability and the magnitude of such distraction 
effects. This uncertainty makes it difficult to draw firm 
conclusions about the experimental effects and their 
real-world significance. Are background sounds reliably 
disruptive to reading, and is this disruption large 
enough to be of any practical significance? In addition, 
after 80 years of research on the topic, what theoretical 
conclusions can be made about the types of back-
ground sounds that are disruptive to reading?

The present study addressed these questions by per-
forming a Bayesian random-effects meta-analysis of 
studies investigating experimental exposure to noise, 
speech, or music in the background. Both studies with 
adults and children were considered. Bayesian infer-
ence is especially suited to answer these questions 
because it enables us to directly quantify the uncer-
tainty of the estimate of auditory-distraction effects, 
given the available evidence. This in turn makes it pos-
sible to derive the probability, given the data, that back-
ground noise, speech, and music can distract readers 
from their task. Bayesian meta-analytical models have 
traditionally been used in biology and medicine (e.g., 
Sutton & Abrams, 2001; Sutton et al., 2000) but more 
recently have also been introduced to psychology and 
linguistics ( Jäger, Engelmann, & Vasishth, 2017; Marsman 
et al., 2017; Vasishth, 2015; Vasishth, Chen, Li, & Guo, 
2013; see also Kruschke & Liddell, 2018). They have 
been successfully used to address contentious research 
questions, such as the processing of relative clauses in 
Chinese (Vasishth et al., 2013) and the extent to which 
readers can preprocess words in parafoveal vision 
(Vasilev & Angele, 2017).

The two available (non-Bayesian) meta-analyses 
have addressed how background noise and music affect 
a wide range of behavioral and cognitive tasks (Kämpfe, 
Sedlmeier, & Renkewitz, 2010; Szalma & Hancock, 
2011). Although the results from these meta-analyses 
are quite interesting, their more general focus on all 
types of cognitive tasks does not make it possible to 
make firm conclusions about reading in particular. 
Kämpfe (2010) reported a separate analysis of reading-
only studies and estimated the general effect of music 
to be r = −0.11 (d = −0.22). However, this estimate was 
based on only eight studies and thus does not include 
most of the currently available data. Therefore, one of 
the contributions of the present meta-analysis was to 
estimate the general effect of background noise, speech, 
and music on reading and to calculate the probability, 
given all the available evidence, that these auditory 
stimuli are detrimental to reading performance.

The second and more important goal of the present 
analysis was to investigate which aspects of background 
sounds give rise to distraction. Although it can be infor-
mative to estimate the overall size of the effects, as 

previous meta-analyses have done, this does not tell us 
what makes these sounds distracting. As discussed pre-
viously, a few theories make specific predictions about 
what type of auditory stimuli should be distracting. 
Therefore, the second aim of the study was to test the 
predictions of these theories using Bayesian metare-
gression models (Welton, Sutton, & Cooper, 2012). As 
some of the theories outlined above were not originally 
developed in reading-comprehension tasks, it is impor-
tant to keep in mind that the present study is not a strict 
test of these theories. Rather, it aims to find out whether 
they can accommodate the existing evidence in reading 
tasks and, if not, to pave the way for the development 
of future theories.

Predictions

All of the predictions in the present analyses are sum-
marized in Figure 1. The phonological-interference 
hypothesis (Salamé & Baddeley, 1982) makes the 
unique prediction that all types of speech sounds 
should be equally distracting because they all gain 
access to the phonological store. Therefore, both intel-
ligible speech (i.e., in participants’ native language) and 
unintelligible speech (i.e., in a foreign language) should 
be equally distracting. In addition, the phonological-
interference hypothesis is not capable of explaining 
distraction by nonspeech background noise and non-
lyrical music because neither sound gains access to the 
phonological store.

The semantic-interference (Martin et al., 1988) and 
interference-by-process (Marsh et  al., 2008) accounts 
both make the prediction that only intelligible speech 
that can be processed semantically by participants 
would cause distraction. Therefore, intelligible speech 
should be more distracting than unintelligible speech. 
In addition, they also predict that (a) lyrical music 
should be more distracting than nonlyrical music 
because the former contains lyrics that are intelligible 
to participants, and (b) intelligible speech should be 
more distracting than lyrical music because, on average, 
continuous speech has more semantic content than 
lyrical music.1 However, because lyrical music that is 
intelligible to participants contains not only semantic 
information but also phonological information, it is not 
possible to rule out any involvement of phonology in 
this effect.

Finally, the changing-state hypothesis ( Jones et al., 
1992) predicts that sounds exhibiting considerable 
acoustic variation should be more distracting than 
steady-state sounds that do not exhibit such variation. 
This leads to two further predictions. First, nonlyrical 
music should be more distracting than acoustical noise 
(e.g., white or pink noise) because the former exhibits 
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more acoustic variation than the latter. Nonlyrical music 
is the strongest test of this prediction because it avoids 
any potential confounds from spoken language that 
would be present in lyrical music. Second, more com-
plex environmental noise (e.g., traffic noise or office 
noise containing phones ringing, indistinct chatter) 
should again be more distracting than steady-state 
acoustical noise because it also exhibits more acoustic 
variation.

Method

The goal of a meta-analysis is to pool evidence from 
multiple studies to estimate some parameter of interest 
(e.g., the true difference in comprehension accuracy 
between reading in silence and reading with music in 
the background). A Bayesian meta-analysis differs from 
the classical (frequentist) meta-analysis in the sense that 
it uses Bayesian inference to estimate the parameter 
and the uncertainty surrounding this estimate. Before 
performing the analysis, the researcher needs to express 
his or her prior belief about the parameter in terms of 
a probability distribution. This is known as the prior 
probability distribution, and it reflects the researcher’s 
belief about the parameter before observing the data. 
After the data are collected, a likelihood function is 
constructed, which essentially conveys how probable 

the data are for different values of the parameter (Lynch, 
2007). The result of Bayesian inference is a posterior 
probability distribution, which is the researcher’s 
updated belief about the parameter given the observed 
data.

The posterior probability distribution is derived from 
Bayes’s theorem, which states that the posterior distribu-
tion is proportional to the product of the prior probabil-
ity distribution and the likelihood (i.e., posterior ∝ prior × 
likelihood; for more details, see Lynch, 2007). In the 
meta-analysis, the observed means are the empirical 
effect sizes (i.e., the differences between conditions) 
reported in the original studies. In contrast, the poste-
rior mean of the effect sizes is simply the mean of the 
posterior probability distribution that is derived from 
the Bayesian meta-analysis. Therefore, the posterior 
mean reflects our updated belief about the size of the 
effect (i.e., the difference) in light of the observed data.

One important part of any meta-analysis is to assess 
the data for publication bias and other reporting biases. 
One common way to do this is to use what is known 
as a funnel plot (Egger, Smith, Schneider, & Minder, 
1997; Sterne et al., 2011). This is a scatter plot of all the 
effect sizes included in the meta-analysis against some 
measure of their precision, such as the standard error 
or the inverse of the standard error. More precise stud-
ies (i.e., the ones with smaller standard errors) will 

More Distracting  Equally Distracting Not Distracting

Phonological-Interference Hypothesis 
Semantic-Interference Hypothesis

Interference-by-Process Hypothesis 

Changing-State Hypothesis

Intelligible Speech Unintelligible Speech Intelligible Speech Unintelligible Speech
 

Background Noise

Nonlyrical Music 

Lyrical Music Nonlyrical Music Nonlyrical Music Acoustical Noise

Environmental Noise Acoustical Noise Intelligible Speech Lyrical Music 

Predictions of Theories on Auditory Distraction 

Semantic-Interference Hypothesis
Interference-by-Process Hypothesis

Phonological-Interference Hypothesis

Fig. 1. A schematic summary of the predictions derived from theories on auditory distraction.
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appear more narrowly at the top of the plot, whereas 
less precise studies (i.e., the ones with larger standard 
errors) will scatter more widely at the bottom. When 
there is no bias or heterogeneity between studies, the 
scatter of the plot will resemble a symmetrical inverted 
funnel (Sterne et al., 2011). Funnel plot asymmetry can 
occur if studies are missing from one side of the plot, 
thus creating an asymmetrical funnel shape. For exam-
ple, this can happen if publication bias or other reporting 
biases are preventing the dissemination of studies with 
negative findings (however, reporting biases are not the 
only possible source of asymmetry, and other factors 
need to be explored as well; see Sterne et al., 2011).

Literature search

The search of the literature was conducted by following 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines (Moher, 
Liberati, Tetzlaff, Altman, & The PRISMA Group, 2009). 
A flowchart of the process is presented in Figure 2. 
Google Scholar, Scopus, the Web of Science, and 
ProQuest Dissertations were searched with the follow-
ing keywords: “background noise AND reading,” “back-
ground speech AND reading,” and “background music 
AND reading.” Each search for one of the three back-
ground sounds was done separately. The literature 
search covered articles published before June 25, 2017. 
In addition, we examined the reference lists of all 
screened articles as well as those of previous literature 
reviews and meta-analyses on similar topics (Beaman, 
2005; Clark & Sörqvist, 2012; Dalton & Behm, 2007; 
Kämpfe et  al., 2010; Klatte, Bergström, & Lachmann, 
2013; Shield & Dockrell, 2003; Szalma & Hancock, 
2011).

When searching the literature, it is important to con-
sider relevant studies that have been conducted but 
never published in a peer-reviewed journal or an edited 
book (i.e., the so-called file-drawer problem; Rosenthal, 
1979). This issue was addressed through some of the 
databases that were searched. ProQuest Dissertations 
contains more than 2 million doctoral and masters’ dis-
sertations (Lefebvre, Manheimer, & Glanville, 2008), 
which often contain unpublished research. In addition, 
Google Scholar indexes a wide range of unpublished 
sources, such as conference proceedings, dissertations, 
reports, and preprints. Furthermore, author searches 
were carried out for researchers who have done work 
on this topic in the past 2 decades. These searches 
included researcher networking web sites, such as 
ResearchGate.net and Academia.edu, that also contain 
unpublished research (e.g., conference presentations 
or unpublished manuscripts). In the present meta-
analysis, unpublished studies accounted for 17% of all 

screened records, thus showing that the search strategy 
was effective in locating them (unpublished studies 
typically make up 8%–10% of all sources in systematic 
reviews and meta-analyses; Clarke & Clarke, 2000; 
Lefebvre et al., 2008). These unpublished studies came 
from different sources, such as dissertations, conference 
proceedings, reports, and unpublished manuscripts.

The identified articles were evaluated against the 
inclusion criteria presented in Appendix A. In short, 
the studies had to (a) experimentally manipulate back-
ground noise, speech, or music in a reading or a proof-
reading task; (b) have a sound methodological design; 
and (c) include reading in silence as a baseline condi-
tion. The inclusion criteria were developed before the 
meta-analysis with the help of a smaller, qualitative 
review of the literature. Epidemiological studies of 
extended exposure to traffic noise in children were not 
included because they answer a qualitatively different 
question and are often confounded by other variables, 
such as social deprivation (Haines, Stansfeld, Head, & 
Job, 2002). Overall, of the experiments for which eligi-
bility was assessed, 44% were included in the meta-
analysis. Although the inclusion rate may appear to be 
low, it was necessary to ensure that only studies that 
were similar enough to be analyzed together were 
included. Information about the included studies and 
their effect sizes is presented in Appendix B.

Dependent measures

The main dependent variable was reading-comprehen-
sion accuracy, which was available for 54 of the studies 
(83.1%). Therefore, most of the reported analyses are 
based on reading-comprehension accuracy. Moreover, 
effect sizes for reading speed were available for 13 
studies (20%), and these were analyzed separately. 
Finally, experiments reporting proofreading accuracy 
(n = 7; 10.7%) were also analyzed for completeness, 
but this was again done separately from the analysis 
on reading-comprehension accuracy.

For the metaregression analyses, additional informa-
tion about the type of sound manipulation was also 
extracted (e.g., whether the noise was environmental or 
acoustical, or whether the music was lyrical or nonlyri-
cal). If a study contained a background-music manipula-
tion, M. R. Vasilev listened to the songs to determine 
whether they were lyrical or nonlyrical. Only studies that 
could be unambiguously classified as either lyrical or 
nonlyrical were added to this metaregression analysis.

Effect-size calculation

Standardized effect sizes of the mean difference (g) and 
their variances were calculated from the reported 
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descriptive statistics. This was done by first calculating 
Cohen’s d for the respective design of the study and 
then applying Hedges’s g correction for small sample 
bias (Hedges & Olkin, 1985). The effect sizes were 
calculated with formulas 12.11 to 12.22 from Borenstein 
(2009). In all effect sizes, silence was the control condi-
tion. Therefore, the effects represent the standardized 
mean difference between reading in an experimental 
sound condition and reading in silence in a control 
condition. If descriptive statistics were unavailable or 
incomplete, the effect sizes were calculated by digitiz-
ing graphs (Rohatgi, 2015) or converted/approximated 

from the reported test statistics using existing formulas 
(Borenstein, 2009; Lajeunesse, 2013).2 In the analysis 
of reading-comprehension accuracy and proofreading 
accuracy, studies were coded so that negative effect 
sizes indicate lower comprehension/proofreading 
accuracy in an experiment’s sound condition. Like-
wise, in the analysis of reading speed, negative effect 
sizes also indicate slower reading speed in the experi-
mental sound condition compared with the silent con-
trol condition. One effect size was excluded as an 
outlier (see Fig. S1 in the Supplemental Material avail-
able online).

 423 Records Identified Through 
Database Searching 

118 Records Identified Through 
Other Sources 

371 Records After Duplicates Were Removed

371 Records Screened 

242 Records Excluded 

 •  Not Reading (108) 
•  Not Relevant to Analysis (49) 

 •  No Sound Manipulation (27) 

 •  Not an Experiment (22) 

 •  Other (36) 

129 Full-Text Articles Assessed for Eligibility
 (148 Experiments) 

 

 

 
65 Experiments Included in Meta-Analysis

83 Experiments Excluded

 •  Chronic Exposure to Noise (22)
 •  No Silence Baseline (17) 
 •  Methodological Issues (13) 
 •  Intervention Study (6) 
 •  Task Not Relevant to Analysis (9)
 •  Other (16) 

Identification
Screening

Eligibility
Included

Fig. 2. A flowchart illustrating the stages of the literature-search process.
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Because 55.5% of the studies used a within-subjects 
design, it was necessary to estimate the population 
correlation (ρ) between the control and experimental 
conditions (Borenstein, 2009; Szalma & Hancock, 2011). 
Eight statistically independent estimates were obtained 
from experiments for which the raw data were avail-
able, as well as one estimate from a study (L. R. Miller, 
1947) that reported the required statistics. These rep-
resented a wide range of experimental sound types and 
included measures of both reading comprehension and 
reading speed. We followed Szalma and Hancock’s 
(2011) approach to meta-analyze the obtained correla-
tions and to obtain a weighted estimate of ρ. The result-
ing weighted value of 0.74 was used to calculate the 
effect sizes for all studies that had a within-subjects 
design.

Effect sizes from within- and between-subjects stud-
ies are calculated with different standard deviation met-
rics and are thus not necessarily comparable (Morris & 
DeShon, 2002). Consistent with previous work (Kämpfe 
et al., 2010; Szalma & Hancock, 2011), the effect sizes 
from within-subjects studies were transformed to make 
them comparable with the effect sizes of between-
subjects studies. This was done using Formula 11 from 
Morris and DeShon (2002). In addition, because some 
studies yielded more than one effect size, care was 
taken to avoid statistical nonindependence in the analy-
ses (for a recent overview, see Noble, Lagisz, O’dea, & 
Nakagawa, 2017). If a study contributed multiple effect 
sizes per analysis, these were averaged together to 
include only one effect size for that study (Lipsey & 
Wilson, 2001).3

Publication bias

In the present meta-analysis, 12.3% of all included stud-
ies were from the so-called gray literature (i.e., they 
were not formally published in a peer-reviewed journal 
or in an edited book at the time of analysis). To assess 
the data for publication bias and other related biases, we 
performed a number of visual and statistical tests using 
the meta (Schwarzer, 2007) and metafor (Viechtbauer, 
2010) packages for the R software environment (R Core 
Team, 2016). The visualization of the results for reading 
comprehension is presented in Figure 3 (for the reading-
speed results, see the Supplemental Material). The fun-
nel plots (Figs. 3a and 3b) indicate that there was some 
heterogeneity in the data, but there was no clear evi-
dence of asymmetry that could indicate publication 
bias. This was confirmed by a funnel-plot test of asym-
metry performed on the basis of a weighted linear 
regression of the effect estimates on their standard errors 
(Sterne et al., 2011), which revealed no statistically sig-
nificant evidence of asymmetry for either reading 

comprehension, t(52) = −0.42, p = .67, or reading speed, 
t(11) = 0.08, p = .93. Proofreading accuracy was not 
considered here because funnel-plot tests of asymmetry 
are not recommended when there are fewer than 10 
studies; Sterne et al., 2011). In addition, metaregression 
analyses (Figs. 3e and 3f) indicated that the size of 
auditory-distraction effects was not predicted by the 
impact factor of the journal or the year of publication. 
In summary, there was no evidence to suggest that 
publication bias may have influenced the conclusions 
from the meta-analysis.

Data analysis

Meta-analysis. The common choice in meta-analysis is 
between a fixed-effects model and a random-effects 
model. A fixed-effects model assumes that all effect sizes 
that are combined are estimating the same true underly-
ing effect, which we will call θ. Therefore, the effect size 
of the ith study, Ti, is assumed to come from a normal 
distribution with some mean θ and variance σ2

i :

 Ti ∼ θ σNormal , , , , , .i i n2 1 2 3( ) = …  (1)

In this model, any variability in the estimate is due to 
sampling error alone. On the other hand, a random-
effects model relaxes this assumption by explicitly 
allowing for variability in the true effect size between 
studies (Welton et  al., 2012). In this case, Ti, the 
observed effect size of the ith study, is assumed to be 
generated by a unique underlying true effect for that 
ith study, denoted here as θi. This unique underlying 
effect θi is in turn assumed to come from a normal 
distribution with some (unknown) mean θ and a 
between-studies variance of τ2:

 Ti ∼ θ σNormal i i i n, , , , , ,2 1 2 3( ) = …  (2)

 θ ∼ θ τi , .Normal 2( )  

Therefore, the true effect sizes of individual studies in 
a random-effects meta-analysis can be informally 
thought of as random samples from a normal distribu-
tion of effect sizes (Welton et al., 2012).

In the present meta-analysis, a random-effects model 
was chosen a priori because some between-studies het-
erogeneity was expected as a result of differences in 
design, sound-intensity levels, participants, reading 
materials, and so forth. A random-effects model can 
naturally account for such sources of variability between 
studies and is often the model of choice in studies on 
language processing (e.g., Jäger et al., 2017; Vasilev & 
Angele, 2017; Vasishth et al., 2013). The full Bayesian 
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Fig. 3. Visual assessment of publication bias and other related biases in the literature on reading-comprehension accuracy 
(presentation format adapted from Nakagawa, Noble, Senior, & Lagisz, 2017, Fig. 6). The funnel plots show (a) standard error 
and (b) precision (i.e., the inverse of the standard error) as a function of effect size. The white area within the gray bounds 
shows the 95% pseudo-confidence interval; the gray bands extend this area to the 99% pseudo-confidence interval. (See the 
main text for information on how to interpret funnel plots.) The vertical lines indicate the pooled effect size, as estimated 
from a random-effects meta-analysis. The radial or Galbraith plot (c) shows the z statistic (i.e., the effect size divided by its 
standard error) of each study as a function of precision. The arc on the right side of the plot corresponds to the size of the 
individual observed effects. The interval next to the arc shows the pooled effect size and its 95% confidence interval. The gray 
area highlights the region in which z values between –2 and 2 lie and is the same as the approximate 95% confidence interval; 
on average, 95% of the studies are expected to fall within this range (Anzures-Cabrera & Higgins, 2010). The vertical scatter of 
effect sizes shows the degree of heterogeneity in the data. The scatterplot in (d) shows the relationship between effect sizes 
and sample sizes, broken down by study design type (i.e., between subjects vs. within subjects). The scatterplots (with best-
fitting regression lines) in the bottom row show the results of metaregression models examining the relationship (e) between 
effect size and publication year and (f) between effect size and impact factor of the journal where the study was published.
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model was defined as follows ( Jäger et al., 2017; Schmid 
& Mengersen, 2013):

 T s s i ni i i i i| , ~ , , , , ,θ θ2 2 1 2 3Normal ( ) = …  (3)

θ θ τ ∼ θ τi| , ,2 2Normal ( )
θ ∼ Uniform −( )10 10,

τ ∼ Uniform 0,10 .( )

Ti is the observed effect size (in Hedges’s g) in the ith 
study; θi is the true auditory-distraction effect in the ith 
study; Si

2 is the true sampling variance of the ith study, 
estimated from the within-studies variance of the sam-
pling distribution of study i; θ is the unknown true 
auditory-distraction effect estimated by the model; and 
τ2 is the unknown between-studies variance. In this 
model, precision was defined as the inverse of the 
within-studies variance of the sampling distribution. 
The last two lines in Equation 3 indicate the prior prob-
ability distributions used for θ and τ. In the present 
analysis, we used uniform priors that assign equal prob-
ability to any value on these intervals. Because these 
are vague priors, they have very little to no influence 
on the results. This was confirmed by doing a sensitivity 
analysis of the main results with alternative priors: 
Normal (0,104) for θ and Normal (0,104) I(0,) for τ (the 
normal distribution was truncated at 0). The sensitivity 
analysis indicated that the choice of priors did not influ-
ence the results (see the Supplemental Material).

Metaregression. Although random-effects meta-analysis  
can account for heterogeneity between studies, it does 
not tell us what causes this heterogeneity in the first 
place (Welton et al., 2012). However, it is possible to use 
metaregression models to investigate how different study 
characteristics (e.g., whether the background music was 
lyrical or nonlyrical) are associated with the observed 
effect sizes. Metaregression models are similar to the 
ordinary least-squares regression, but with the crucial 

difference that the estimate is adjusted by the precision of 
the studies (i.e., the inverse of the within-studies variance 
of the sampling distribution; Welton et  al., 2012). The 
model from Equation 3 was extended by adding a regres-
sion coefficient, β, for the underlying effect of the covari-
ate (the boldface type indicates the added parameters; 
Jäger et al., 2017; Welton et al., 2012):

 T s s i ni i i i i| , , , , , , ,θ ∼ θββ ββ2 2 1 2 3Normal +( ) = …xi  (4)

θ θ τ ∼ θ τi| , ,2 2Normal ( )

θ ∼ Uniform −( )10 10,

τ ∼ Uniform 0 10,( )

ββ −−∼ Uniform 10,10( ).

β is the regression coefficient for the underlying effect 
of the covariate xi; θi is the true auditory-distraction 
effect in the ith study, adjusted for the covariate effect 
xi; and θ is the unknown true auditory-distraction 
effect, also adjusted for the covariate effect xi. All 
remaining parameters have the same interpretation as 
in Equation 3. The contrasts used for the covariate xi 
are presented in Table 1. These contrasts were used to 
test the predictions outlined in the introduction.

Posterior sampling. The posterior probability distribu-
tion was sampled with JAGS (Plummer, 2003) using the R 
software environment (R Core Team, 2016). Five Markov-
chain Monte Carlo (MCMC) chains were run with 100,000 
iterations each. Checks were made to ensure that the 
starting values of the MCMC chains did not influence the 
results. The first 3,000 iterations were considered a burn-
in period and were discarded. A thinning interval of 5 
was used for the MCMC chains (i.e., every fifth sample 
was retained) to reduce the influence of autocorrelation. 
The summary of the posterior distribution was based on 

Table 1. Type of Metaregression Comparisons and the Contrast Coding of Covariates

Covariate levels Contrast coding

Comparison Level 1 Level 2 Level 1 Level 2

Nonlyrical vs. lyrical music Nonlyrical Lyrical –1 1
Lyrical music vs. intelligible speech Music Speech –1 1
Unintelligible vs. intelligible speech Unintelligible Intelligible –1 1
Acoustical vs. environmental noise Acoustical Environmental –1 1
Acoustical noise vs. instrumental music Noise Music –1 1
Child vs. adult participants Child Adult –1 1
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20,000 samples per chain (excluding the burn-in period). 
Convergence was assessed with visual inspection of the 
trace plots and with Gelman and Rubin’s (1992) conver-
gence diagnostic. The diagnostics suggested that conver-
gence had been achieved in all models.

The effective sample size (ESS) of the MCMC chains 
was calculated for every parameter and contrast of 
interest. The ESS is the size of the MCMC chain after 
adjusting it for autocorrelation (Kass, Carlin, Gelman, 
& Neal, 1998; Kruschke, 2015). All of the present analy-
ses had an ESS greater than 10,000, as recommended 
by Kruschke (2015). This was necessary for achieving 
a stable estimation of the credible interval limits: This 
estimation depends on sparse regions of the posterior 
probability distribution that are sampled less often by 
the MCMC chain (Kruschke, 2015).

The results are presented as the estimate of the effect 
sizes of interest and their corresponding 95% credible 
intervals. Unlike classical confidence intervals, credible 
intervals have the intuitive interpretation that they con-
tain the true auditory-distraction effect with 95% prob-
ability because the values within this interval make up 
95% of the posterior probability distribution (see Morey, 
Hoekstra, Rouder, Lee, & Wagenmakers, 2016). All 
probabilities reported in the article are the posterior 
probability, given the data, that auditory-distraction 
effects exist. A more detailed summary of Bayesian 
methods and their interpretation is beyond the scope 
of this article. However, Nicenboim and Vasishth (2016) 
provide an accessible overview.

Results

Meta-analysis

The results from the meta-analysis are presented in 
Table 2. In addition, forest plots are presented in Figure 
4 for the main measure of comprehension accuracy. To 
interpret the magnitude of the effects, we will consider 
Cohen’s (1988) guidelines of 0.20 for small effects, 0.50 
for medium effects, and 0.80 for large effects. Overall, 
there was a small negative effect for reading compre-
hension (Hedges’s g = −0.21), which indicates that 
background sounds generally impaired comprehension 
accuracy. Consistent with the review of the literature, 
background speech had a stronger negative impact on 
reading comprehension (Hedges’s g = −0.26) than either 
background noise (Hedges’s g = −0.17) or background 
music (Hedges’s g = −0.19). Nevertheless, the effect size 
for each of the three sound types was fairly small.

Reading speed and proofreading accuracy were also 
impaired by background sounds. However, the effect 
sizes for these two measures were very small, and the 
95% credible intervals all included 0 as a plausible 

value for the effect (note that this does not allow us to 
conclude that there is no true effect, only that it is pos-
sible that the true effect size is 0). However, the prob-
ability that these effects are negative was very high in 
all analyses (more than 90%). This means that although 
the size of the effects was small, there is a very high 
probability that background speech, noise, and music 
are detrimental to reading comprehension, reading 
speed, and proofreading accuracy.

Although it is possible to use Bayes factors to per-
form hypothesis testing (e.g., see Rouder & Morey, 
2011; Rouder, Morey, & Province, 2013), the emphasis 
in the present meta-analysis was on estimating the mag-
nitude of auditory-distraction effects. The findings from 
this meta-analysis suggest that nonnull effects almost 
certainly exist, even if their magnitude is small. There-
fore, even if a Bayes factor were to favor a null hypoth-
esis relative to some alternative hypothesis, the prior 
probability that the null hypothesis was exactly true 
would be negligible in this case. Because of this, the 
posterior probability of the null hypothesis would 
remain small.

Because our analyses included both studies with 
adults as participants and studies with children as par-
ticipants, we carried out metaregression models to test 
whether the effect sizes differed between adults and 
children. Only reading comprehension was considered 
in these analyses because there were too few child 
studies to reliably estimate differences in reading speed, 
and all proofreading studies were done with adults. The 
results are presented in Table 3. They show the esti-
mated mean difference between studies with children 
compared with studies with adults, after adjusting for 
their precision in the analysis. Overall, the difference 
between adults and children was very close to 0; thus, 
background sounds were equally detrimental to reading 
comprehension for both children and adults. One 
exception was that background noise impaired reading 
comprehension in children slightly more than it did in 
adults, but the mean difference was still quite small 
(Hedges’s g = 0.05). In addition, the effect was not 
highly reliable because there was only a 73% probabil-
ity of a true mean difference. Taken together, these 
results suggest that effect sizes for reading comprehen-
sion did not generally differ between adults and chil-
dren. For this reason, child and adult studies were 
analyzed together in all remaining analyses.

Metaregression

The results from the metaregression models testing the 
theoretical predictions outlined in the introduction are 
presented in Figures 5 and 6. Recall that the models 
yield a regression slope that shows the estimated mean 
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difference between the two groups after adjusting for 
the precision of individual studies. Consistent with the 
semantic-interference hypothesis but not with the 
phonological-interference hypothesis, there was a 99% 
probability that intelligible speech was more distracting 
than unintelligible speech (mean difference: Hedges’s 
g = −0.12). In addition, in line with both the semantic- 
and phonological-interference hypotheses, there was a 
95% probability that lyrical music was more distracting 
than nonlyrical music (mean difference: Hedges’s g = 
−0.19). Note, however, that there was no difference 
between intelligible speech and lyrical music, and the 
estimated probability of a true difference was only 54% 
(50% = no difference, because the posterior probability 
density would lie evenly to the left and right side of 0). 
This last result is surprising because, arguably, most 
people perceive lyrical music to be subjectively less 
distracting than intelligible speech. For example, it can 
be speculated that students may be more likely to 
choose to study while listening to lyrical music in the 
background than they are to study while listening to 
an audio book. However, the present results suggest 
that lyrical music and intelligible speech are equally 
distracting.

Consistent with the changing-state hypothesis, there 
was a 90% probability that environmental noise was 
more distracting than acoustical noise (mean difference: 
Hedges’s g = −0.10). However, there was only a 55% 
probability of a difference between nonlyrical music 
and acoustical noise, which suggests that the two back-
ground sound types did not generally differ. As Figure 

6b shows, the size of both effects, as estimated by a 
random-effects meta-analysis, was very close to 0. This 
result is contrary to the predicted difference from the 
changing-state hypothesis.

Discussion

In the present study, we investigated the magnitude of 
auditory-distraction effects during reading and the com-
patibility of these effects with existing theories of dis-
traction. We will first consider the overall size of the 
effects and then discuss their theoretical and practical 
implications. The main findings from the meta-analysis 
can be summarized as follows. First, background 
speech, noise, and music all had a negative effect (indi-
cating distraction) on reading-comprehension accuracy. 
The magnitude of the effects was small, but highly 
reliable, meaning that there was a very high probability 
that these sounds are detrimental to reading compre-
hension given the available evidence. Second, auditory-
distraction effects measured with reading comprehension 
did not generally differ between adults and children. 
Finally, background speech, noise, and music had a 
very small negative effect on reading speed, and back-
ground speech and noise also had a small negative 
effect on proofreading accuracy. Although both effects 
proved to be smaller than the ones observed in reading 
comprehension, there was still a high probability that 
they were negative (> 90%).

The present results provide the first comprehensive 
analysis of auditory-distraction effects in a reading task. 

Table 2. Posterior Effect Size Estimates of Auditory-Distraction Effects and 95% 
Credible Intervals From the Meta-Analysis

Type of analysis n
Mean ES 

(Hedges’s g) 95% CrI
p(ES <  

0 | Data) τ2 ESS

Reading comprehension  
 All sounds 54 –0.21 [–0.30, –0.13] > .99 0.06 91803
 Noise 12 –0.17 [–0.33, 0.002] .97 0.06 92499
 Speech 20 –0.26 [–0.36, –0.17] > .99 0.02 47662
 Music 36 –0.19 [–0.34, –0.05] > .99 0.13 93678
Reading speed  
 All sounds 13 –0.06 [–0.15, 0.02] .92 0.01 20915
 Speech 6 –0.08 [–0.20, 0.03] .92 0.01 28612
Proofreading accuracy  
 Speech and Noise 7 –0.14 [–0.42, 0.04] .94 0.04 40097
 Speecha 6 –0.09 [–0.30, 0.07] .90 0.02 41296

Note: n = number of studies in the analysis; ES = effect size; p(ES < 0|Data) = probability that 
background sounds are detrimental to reading, given the data (i.e., probability that the effect size is 
smaller than 0); CrI = credible interval; τ2 = estimated between-studies variance; ESS = effective sample 
size of the Markov-chain Monte Carlo chains for the main parameter of interest (θ).
aIntelligible speech only.
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Fig. 4. Forest plot for the main effect of background music (a), speech (b), and noise (c) on reading comprehension. Plotted are the observed 
(i.e., empirical) effect sizes with their 95% confidence intervals and the posterior effect-size estimates from the meta-analysis model with their 
corresponding 95% credible intervals. Each square’s size is proportional to the weight of the study it represents (i.e., to the inverse of the 
within-studies variance of the sampling distribution). The red diamond (with 95% credible intervals) at the bottom of each panel indicates 
the pooled estimate from the meta-analysis.
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As the review of the literature showed, interest in this 
topic has a very long history that precedes the cognitive 
revolution and, indeed, most of the work on auditory 
distraction in other cognitive tasks. Traditionally, much 
of the interest in auditory distraction in reading tasks 
has been related to its practical implications for reading 
outside the psychological laboratory, such as studying 
for an exam, reading in the classroom, or any kind of 
work that involves reading in a busy office. However, 
the inconclusive and sometimes contradictory evidence 
has made it difficult to arrive at clear conclusions until 
now. The present results advance our understanding of 
this topic by showing that external auditory input 
almost always comes at a cost for reading efficiency. 
Even though the observed cost was modest, especially 
for measures such as reading speed and proofreading 
accuracy, there was still relatively high probability that 
it reflects a true effect in the population. Therefore, the 
present study resolves some of the controversy high-
lighted in the introduction by showing that although 
general auditory-distraction effects by background 
noise, speech, and music almost certainly exist, their 
magnitude is small.

Given that there is a very high probability that back-
ground speech, noise, and music are detrimental to 
reading comprehension, why have some of the previous 
findings been so inconsistent? One possibility is that 
some of the original studies may not have had sufficient 
statistical power to detect the underlying effects. Figure 
7 shows the relationship between sample size and sta-
tistical power for a range of effect sizes, including the 
ones observed in the present meta-analysis (see 
Wallisch, 2015). This is for illustrative purposes only, 
given that statistical power is influenced not only by 
sample size and the magnitude of the true effect but 
also by such other factors as the reliability of the mea-
sure, missing data, sampling control, and so on (Hansen 
& Collins, 1994). Nevertheless, as Figure 7 clearly 

shows, statistical power is related to sample size; gener-
ally speaking, a larger number of participants are 
required to achieve sufficient statistical power to detect 
some of the auditory-distraction effects observed in the 
present study. This suggests that although most of the 
observed effects are negative in sign, statistical signifi-
cance may not always be achieved if the underlying 
effect is small and the experiment is underpowered.

Implications for theories of auditory 
distraction

The second goal of the present study was to investigate 
what properties of background sounds make them dis-
tracting and to test what theoretical frameworks can 
explain the results. This is an important question, given 
that not all studies have explicitly considered the theo-
retical implications of their work; some researchers 
have taken a more applied approach of simply testing 
whether certain types of sounds are distracting to read-
ers. More broadly, the present analyses provide a 
glimpse into how well readers can maintain focus on 
the main task (reading) while listening to a competing 
stream of auditory input that they try to ignore. The 
metaregression results provided a few key insights into 
the nature of auditory-distraction effects, as measured 
with reading-comprehension accuracy.

First, lyrical music and intelligible speech were found 
to be equally distracting, and lyrical music was found 
to be more distracting than nonlyrical music. Second, 
intelligible speech was in turn more distracting than 
unintelligible speech. Finally, environmental noise was 
more distracting than acoustical noise, but there was 
no reliable difference between nonlyrical music and 
acoustical noise. These results provide strong support 
for the notion that the presence of language in back-
ground sounds is the strongest contributor to auditory 
distraction. Indeed, the two largest distraction effects 

Table 3. Mean Difference in the Effect Size Between Child and Adult Studies: Metaregression 
Results

Analysis

Number of studies Mean  
difference 

(Hedges’s g) 95% CrI
p(ESCH > 

ESA | Data) ESSChildren Adults

Reading comprehension  
 All sounds 18 36 –0.01 [–0.10, 0.08] .43 30623
 Noise 5 7 0.05 [–0.13, 0.22] .73 29974
 Speech 5 15 0.00 [–0.12, 0.12] .51 30263
 Music 13 23 0.02 [–0.12, 0.17] .64 18498

Note: Mean difference = Posterior estimate of the mean difference (in Hedges’s g) between adult and child 
participants; CrI = credible interval; p(ESCH > ESA|Data) = probability that the effect size for child participants is 
bigger than the effect size for adult participants, given the data; ESS = effective sample size of the Markov-chain 
Monte Carlo chains for the main parameter of interest (β).
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were found for lyrical music (Hedges’s g = −0.35) and 
intelligible speech (Hedges’s g = −0.34). This last find-
ing is consistent with both the semantic-interference 
account (Martin et al., 1988) and the interference-by-
process account (Marsh et al., 2008), which predict that 
either the semantic content of spoken or sung lyrics or 

the actual process of trying to extract their meaning 
can distract readers from their main task. Nevertheless, 
these two accounts cannot explain distraction by non-
speech background noise.

The present findings are generally not consistent 
with the phonological-interference account for two 
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reasons. First, it predicts that all speech sounds should 
be equally distracting because they all would gain 
access to the phonological store; however, intelligible 
speech was reliably more distracting than unintelligible 
speech. In addition, background noise, which would 
not gain access to the phonological store, was also 
found to cause distraction. Finally, the results are only 
partially consistent with the changing-state account 
( Jones et al., 1992), which predicts that sounds with 
greater acoustic variation would cause greater distrac-
tion. This is because environmental noise was more 
distracting than acoustical noise (which is consistent 
with the theory), but nonlyrical music was not (which 
is not consistent with the theory). In both cases, envi-
ronmental noise and nonlyrical music exhibit more 

acoustic variation than acoustical noise (e.g., white or 
pink noise).

What type of theoretical framework could account 
for the present results? Clearly, none of the theories 
considered so far can account for all the findings. 
Although some theories were successful in accounting 
for some of the effects, the present results suggest that 
new theoretical models are needed that can explain all 
the evidence. This is not necessarily a limitation of 
existing theoretical accounts because, as noted previ-
ously, not all of them were originally designed to 
account for distraction effects in a reading task. In 
addition, these theories suggest very useful mecha-
nisms through which auditory distraction can occur. In 
this sense, it is more useful to consider a hypothetical 
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model that could explain the data from reading tasks 
by taking into account the contribution of these 
theories.

One such framework could be a two-component 
model in which noise and speech influence reading 
through separate processes. In the first component, 
background noise would cause a small decrement in 
comprehension. The present data cannot fully explain 
why this disruption by noise occurs, and more research 
is needed to understand this mechanism. There was 
some evidence that noise exhibiting greater acoustic 
variation is associated with greater distraction (see Jones 
et al., 1992), but other potential mechanisms need to be 
explored as well. The second component would cause 
greater decrements in comprehension from intelligible 
speech (see Marsh et  al., 2008; Martin et  al., 1988). 
Recent evidence suggests that the cognitive process of 
trying to analyze the meaning of the speech may be 
enough to cause distraction (Hyönä & Ekholm, 2016). 
Whether the semantic content and semantic representa-
tion of the speech sound are processed and cause addi-
tional distraction is an open question that needs to be 
explored in future research. This second component 
would also account for the effect of background music. 
This is because the present results suggest that distrac-
tion by background music is effectively reduced to 

distraction from the sung lyrics, as music without lyrics 
was not found to be distracting (see Fig. 6b).

The predictions of this model could be further tested 
through future experimental work. For example, previ-
ous research has mostly focused on measuring differ-
ences in reading comprehension, but only a few studies 
so far have used reading speed as a dependent variable, 
which makes it difficult to evaluate the model on the 
basis of this measure. However, the two-component 
model would make the same prediction for reading 
speed: Background noise should lead to a modest 
decrease in reading speed, and intelligible background 
speech should lead to a greater decrease in reading 
speed because of interference from semantic processing 
of the speech. Measuring eye movements during reading 
could also provide a more detailed view of auditory 
distraction because eye fixations are sensitive to the 
ongoing cognitive processing of the text (see Rayner, 
1998). For example, no studies have yet examined how 
acoustical or environmental noise may affect fixation 
durations or fixation probabilities during reading. If the 
assumption (i.e., that noise results in a small decrease 
in comprehension accuracy) of the first component of 
the model is correct, there should also be an increase in 
either fixation durations or the number of fixations when 
readers are exposed to noise in the background.
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A stronger test of semantic interference by intelli-
gible speech (i.e., the second component of the model) 
would be to study two participant populations with the 
same speech sounds. For example, monolingual speak-
ers of French should be distracted by French speech 
(intelligible), but not by the same speech translated into 
and spoken in a foreign language, such as German 
(unintelligible). Conversely, monolingual speakers of 
German should be distracted by the speech translated 
into German (intelligible), but not by the original 
French speech (unintelligible). If the magnitude of audi-
tory distraction by intelligible speech is the same in the 
two populations, this would provide strong evidence 
for semantic interference by background speech. In 
addition, lyrical music has only rarely been used to 
study distraction due to semantic interference. For 
example, the proposed model predicts that a lyrical 
song in the participants’ native language would cause 
distraction because the lyrics are intelligible, whereas 
the same song in a foreign language would not cause 
distraction because the lyrics are unintelligible (see 
Chew, Yu, Chua, & Gan, 2016). Likewise, the model 
predicts that an instrumental version of the same song 
would also cause no distraction. Another promising 
avenue would be to investigate distraction by intelli-
gible speech and lyrical music in second-language 
learners to determine the role of language proficiency 
in semantic interference. This could be done by having 
participants read a text in their native language while 
listening to background speech in their second lan-
guage. The second component of the model predicts 
that distraction will increase as a function of language 
proficiency because more proficient speakers of the 
second language would be better at semantically pro-
cessing the background speech.

Practical implications

The present results also have some practical implica-
tions for settings where readers are exposed to distract-
ing background sounds. For example, there is evidence 
that listening to music when studying or working is 
commonplace. In one survey, university students 
reported listening to music 62% of the time when study-
ing or doing homework (David, Kim, Brickman, Ran, 
& Curtis, 2015). In addition, Calderwood, Ackerman, 
and Conklin (2014) found that 59% of university stu-
dents played music in the background when they were 
asked to study as they normally do. There is also some 
evidence that listening to music at work is common; 
80% of employees report that they listen to music dur-
ing working hours (Haake, 2006). In this sense, there 
are many situations in daily life in which people can 
choose to listen to music while doing reading-related 

tasks. The present results have direct implications for 
reading in educational and work settings because they 
suggest that listening to lyrical music should be avoided 
when reading a text for comprehension. This is because 
lyrical music contains intelligible language in the form 
of sung lyrics, and this type of music was found to be 
disruptive to reading comprehension. Instead, readers 
can avoid this disruption by listening to nonlyrical (i.e., 
instrumental) music, which does not contain any intel-
ligible language.

In the two-component model outlined above, intel-
ligible lyrical music and intelligible speech are assumed 
to be equally distracting. In fact, intelligible background 
speech is often present in many work settings, particu-
larly in open-plan offices and other shared areas that 
have poor acoustic privacy (e.g., Haapakangas, Hongisto, 
Eerola, & Kuusisto, 2017; Haapakangas, Hongisto, 
Hyönä, Kokko, & Keränen, 2014; Schlittmeier & Liebl, 
2015). The present results suggest that intelligible 
speech is likely to impair performance on office tasks 
that require reading for comprehension, proofreading, 
or processing the meaning of written information. 
Because of this, limiting the amount of intelligible 
speech in open-plan offices is likely to improve reading 
performance among office workers. If this is difficult 
to achieve for practical reasons, acoustically masking 
the background speech (e.g., with natural sounds) 
might be helpful because this will decrease its intelli-
gibility and therefore its negative impact (Haapakangas 
et  al., 2011; Jahncke, Björkeholm, Marsh, Odelius, & 
Sörqvist, 2016; see also Hongisto, 2005). Furthermore, 
the present results and the proposed model also sug-
gest that readers exposed to background noise will 
likely incur a modest cost in terms of reduced compre-
hension. This suggests that external environmental 
noise should be limited in settings in which reading is 
common, such as in schools or in libraries. Finally, the 
practical implications of the present findings would 
apply equally to adults and children because the two 
groups did not generally differ in terms of auditory 
distraction during reading.

Limitations

Although metaregression is a very useful tool for testing 
how auditory distraction differs between background 
sounds or age groups, the present results are only 
observational in nature (S. G. Thompson & Higgins, 
2002). Therefore, direct evidence from laboratory 
experiments and direct comparisons of the different 
factors are required to verify these results. Nevertheless, 
we anticipate that our findings, which are based on all 
the available evidence, will prove to be very useful in 
guiding future experimental research and advancing 
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our theoretical understanding of how auditory distrac-
tion during reading occurs.

In addition, some of the metaregression analyses 
were performed on a small number of studies. How-
ever, this is not necessarily a limitation in the Bayesian 
approach that we have adopted here because the results 
simply reflect our best understanding of auditory-
distraction effects given the currently available data. 
Once more data are available, the present results can 
be easily updated via Bayes’ theorem, which will lead 
to an even more precise estimate of the effects.

Future directions

The present study grouped background sounds into 
broad categories, such as noise, speech, or music. How-
ever, real-word sounds to which readers are routinely 
exposed do not always belong to only one of these 
categories. Rather, different sounds may be present at 
the same time, such as music playing from a TV, back-
ground speech from a nearby conversation, and envi-
ronmental noise from nearby traffic. Currently, there is 
a limited understanding of how different types of 
sounds may interact to increase or decrease distraction. 
For example, there is some evidence that acoustical 
noise intermixed with background speech can reduce 
the negative impact of the speech sound by reducing 
its intelligibility (Haapakangas et al., 2011; Hongisto, 
2005; Venetjoki et al., 2006). Therefore, more research 
is needed to investigate sounds that are more complex 
and thus more representative of auditory distraction in 
the real world. In addition, previous research has not 
investigated the behavioral aspects of auditory distrac-
tion: For example, can participants’ motivation and 
goals influence how distracted they are by different 
background sounds during reading?

Another question that deserves more attention is 
how auditory distraction may differ between age 
groups. Studies with adults and children have usually 
been done in isolation, which makes it challenging to 
assess how these groups differ under the same experi-
mental conditions. The present metaregression analyses 
are arguably the only possible way of addressing this 
question with the currently available data. However, 
experiments directly comparing adults and children are 
needed to make firm conclusions. Traditionally, a great 
deal of research has focused on large-scale epidemio-
logical studies of long-term exposure to noise in 
schools, such as the Road traffic and Aircraft Noise 
exposure and Children’s cognition and Health study 
(RANCH; Stansfeld et al., 2005) and the West London 
study (Haines, Stansfeld, Brentnall, et al., 2001; Haines, 
Stansfeld, Job, et  al., 2001a; Haines, Stansfeld, Job, 
et  al., 2001b). Because of this, surprisingly little is 

known about the effect of experimental exposure to 
noise on reading in children. Eye-movement recordings 
may be particularly helpful in studying this topic 
because they can reveal subtle auditory-distraction 
effects that may not appear in behavioral measures such 
as comprehension accuracy (Cauchard et  al., 2012; 
Hyönä & Ekholm, 2016; Yan et al., 2017). Longitudinal 
studies of reading development have already made suc-
cessful use of eye tracking to study such processes as 
the development of the perceptual span (Sperlich, 
Meixner, & Laubrock, 2016), and this method also holds 
promise in understanding how children’s susceptibility 
to distraction may change during the school years and 
beyond.

Eye-tracking technology and event-related-potential 
recordings are useful methods because they can pro-
vide rich data about the time course of auditory-
distraction effects during reading. We anticipate that 
this type of evidence will be crucial for gaining a better 
understanding of when and how these effects occur 
and what their theoretical nature is. The field of eye 
movements during silent reading has already seen the 
successful development of advanced computational 
models such as the E-Z Reader (Reichle, Pollatsek, 
Fisher, & Rayner, 1998) and SWIFT (Engbert et  al., 
2005), which can simulate many empirical findings. 
Likewise, a more precise quantification of the time 
course of auditory-distraction effects can move the field 
forward by making it possible to build computational 
models that can simulate these processes and to gener-
ate new predictions.

Conclusion

Auditory distraction during reading has been a topic of 
interest for the past 80 years and, as the surge of recent 
publications shows, it is likely to continue to be an 
active area of research in the future. The present study 
was the first attempt to make a comprehensive statisti-
cal synthesis of auditory-distraction effects in a reading 
task. The results showed that background noise, speech, 
and music are almost always distracting, even if the 
distraction effects are often small in size. Sounds that 
contain intelligible language (i.e., speech or lyrical 
music) were particularly distracting, most likely because 
of their semantic properties that interfere with process-
ing the written text. The present findings also have 
some practical implications. For example, they suggest 
that listening to instrumental music while reading does 
not affect the comprehension of the text, whereas lis-
tening to lyrical music does. In addition, readers 
exposed to background noise are likely to incur a cost 
in terms of reduced comprehension, even if this cost is 
very small. Finally, the recent interest in measuring eye 
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movements during reading in the presence of back-
ground auditory input heralds the emergence of a new 
subfield that may give an even more precise under-
standing of how and when auditory distraction occurs.

Appendix A

Study inclusion criteria

•• The study investigated the effect of experimental 
exposure to background noise, speech, or music 
in a reading/proofreading task.

•• Only studies investigating the immediate effect 
of background sounds on reading/proofreading 
were included. Experiments that studied the 
effect of long-term exposure to music as an inter-
vention for reading were excluded. Studies that 
investigated the effects of long-term exposure to 
traffic noise were also excluded.

•• The study contained a condition of reading in 
silence. This served as the baseline to which 
background sound manipulations were 

compared. Studies without a silence baseline 
were excluded.

•• The study had appropriate randomization and 
counterbalancing of the sound conditions.

•• Participants were native speakers of the language 
in which they were reading.

•• The study was done with healthy, typically 
developing participants (either children or 
adults).

•• The external environment or any additional 
manipulations did not introduce confounds.

•• Participants were not tested on the content of 
the sound that they were listening to (e.g., 
speech).

•• The assessment task emphasized comprehension 
of the text rather than reproducing the text from 
memory as accurately as possible.

•• The comprehension assessment did not occur too 
long after the reading phase (usually within 10–
15 min).

•• The comprehension assessment was done in 
silence.

Table B1. A Summary of the Studies That Were Included in the Meta-Analysis and Their Effect Sizes

Study NC NE Samp Des DV Sound Sound type Db(A) g Var

Sörqvist, Halin, et al., 2010 40 A W RC S Native 72.5 –0.24 0.01
Sörqvist, Halin, et al., 2010 40 A W RS S Native 72.5 –0.05 0.01
Ljung et al., 2009 70 50 C B RC N Traffic 62 –0.16 0.03
Ljung et al., 2009 70 50 C B RS N Traffic 62 0.71 0.04
Ljung et al., 2009 70 66 C B RC S Babble 62 0.17 0.03
Ljung et al., 2009 70 66 C B RS S Babble 62 0.21 0.03
Fogelson, 1973 14 14 C B RC M Pop — –0.42 0.14
Tucker & Bushman, 1991 75 76 A B RC M Rock & roll 80 0.00 0.03
Daoussis & McKelvie, 1986 24 24 A B RC M Rock 50 –0.52 0.08
Etaugh & Michals, 1975 32 A W RC M Preferred — –0.08 0.02
Etaugh & Ptasnik, 1982 20 20 A B RC M Preferred — –0.74 0.10
Kiger, 1989 18 18 C B RC M Low load — 3.50 0.28
Kiger, 1989 18 18 C B RC M High load — –0.69 0.11
L. K. Miller & Schyb, 1989 49 49 A B RC M Classical 47.5 0.11 0.04
L. K. Miller & Schyb, 1989 49 49 A B RC M Pop 47.5 0.23 0.04
L. K. Miller & Schyb, 1989 49 49 A B RC M Vocal 47.5 –0.46 0.04
Doyle & Furnham, 2012 56 A W RC M Vocal — 0.10 0.01
Anderson & Fuller, 2010 334 C W RC M Lyrical 75 –0.28 0.00
Furnham & Strbac, 2002 76 C W RC N Office — –0.78 0.01
Furnham & Strbac, 2002 76 C W RC M Vocal/unfamiliar — –0.83 0.01
Mullikin & Henk, 1985 45 C W RC M Classical — 0.39 0.01
Mullikin & Henk, 1985 45 C W RC M Rock — –0.33 0.01
Avila et al., 2011 19 20 C B RC M Vocal/ familiar — –1.61 0.13
Avila et al., 2011 19 19 C B RC M Instrumental/

familiar
— –1.93 0.15

Freeburne & Fleischer, 1952 43 46 A B RC M Classical — 0.02 0.04

(continued)
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Study NC NE Samp Des DV Sound Sound type Db(A) g Var

Freeburne & Fleischer, 1952 43 46 A B RS M Classical — –0.35 0.04
Freeburne & Fleischer, 1952 43 42 A B RC M Pop — 0.04 0.05
Freeburne & Fleischer, 1952 43 42 A B RS M Pop — –0.40 0.05
Freeburne & Fleischer, 1952 43 40 A B RC M Semiclassical — –0.08 0.05
Freeburne & Fleischer, 1952 43 40 A B RS M Semiclassical — –0.36 0.05
Freeburne & Fleischer, 1952 43 37 A B RC M Jazz — –0.17 0.05
Freeburne & Fleischer, 1952 43 37 A B RS M Jazz — –0.61 0.05
Fendrick, 1937 61 62 A B RC M Semiclassical — –0.47 0.03
Henderson et al., 1945 19 17 A B RC M Classical — –0.12 0.11
Henderson et al., 1945 19 14 A B RC M Pop — –1.07 0.14
C. Miller, 2014 13 13 A B RC M Classical lyrical — –0.84 0.16
C. Miller, 2014 13 17 A B RC M Classical 

instrumental
— 0.13 0.13

C. Miller, 2014 13 11 A B RC M Rock lyrical — –0.38 0.16
C. Miller, 2014 13 18 A B RC M Rock 

instrumental
— –0.45 0.13

Furnham & Allass, 1999 16 16 A B RC M Complex — –0.02 0.12
Furnham & Allass, 1999 16 16 A B RC M Simple — –0.05 0.12
Furnham & Bradley, 1997 10 10 A B RC M Pop — –0.97 0.21
Furnham et al., 1999 43 49 C B RC M Instrumental — –0.12 0.04
Furnham et al., 1999 43 47 C B RC M Vocal — –0.07 0.04
Perham & Currie, 2014 30 A W RC M Disliked lyrical 70 –0.71 0.02
Perham & Currie, 2014 30 A W RC M Nonlyrical 70 –0.16 0.02
Perham & Currie, 2014 30 A W RC M Liked lyrical 70 –0.60 0.02
Kelly, 1994 13 12 A B RC M Pop 65 –0.74 0.16
Dove, 2009 28 28 A B RC M Sedative classical 62.5 0.10 0.07
Dove, 2009 28 28 A B RC M Stimulating 

classical
62.5 0.81 0.08

Dove, 2009 28 28 A B RS M Sedative classical 62.5 –0.07 0.07
Dove, 2009 28 28 A B RS M Stimulating 

classical
62.5 –0.51 0.07

Furnham et al., 1994 20 A W RC S TV drama — –0.45 0.03
C. R. Johansson, 1983 22 22 C B RC N Continuous 51 0.28 0.09
C. R. Johansson, 1983 22 22 C B RC N Intermittent 67.4 0.21 0.09
Halin, 2016 28 A W RC S Native (easy) 60 –0.89 0.03
Halin, 2016 28 A W RC S Native (difficult) 60 –0.16 0.02
Halin, 2016 28 A W RC N Traffic (easy) 60 –0.35 0.02
Halin, 2016 28 A W RC N Traffic (difficult) 60 –0.01 0.02
Halin, 2016 28 A W RC N Aircraft (easy) 60 –0.23 0.02
Halin, 2016 28 A W RC N Aircraft 

(difficult)
60 –0.01 0.02

Smith-Jackson & Klein, 2009 54 A W PR S Native 65 –0.04 0.01
Cauchard et al., 2012 30 A W RC M Instrumental 65 0.18 0.02
Cauchard et al., 2012 30 A W RC S Native 65 –0.17 0.02
Cauchard et al., 2012 30 A W RS M Instrumental 65 0.01 0.02
Cauchard et al., 2012 30 A W RS S Native 65 –0.20 0.02
R. Johansson et al., 2012 24 A W RC M Preferred 65 –0.34 0.02
R. Johansson et al., 2012 24 A W RC M Nonpreferred 65 –0.67 0.03
R. Johansson et al., 2012 24 A W RC N Cafe 65 –0.31 0.02
R. Johansson et al., 2012 24 A W RS M Preferred 65 –0.14 0.02
R. Johansson et al., 2012 24 A W RS M Nonpreferred 65 –0.10 0.02

Table B1. (Continued)
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Study NC NE Samp Des DV Sound Sound type Db(A) g Var

R. Johansson et al., 2012 24 A W RS N Cafe 65 –0.07 0.02
Weinstein, 1974 15 18 A B PRa N Teletype 70 –0.56 0.12
Weinstein, 1974 15 18 A B PRb N Teletype 70 –1.26 0.14
Weinstein, 1977 29 A W PRa S Native 68 –0.03 0.02
Weinstein, 1977 29 A W PRb S Native 68 –0.29 0.02
Martin et al., 1988, E1 36 A W RC S Native 82 –0.20 0.01
Martin et al., 1988, E1 36 A W RC S Random 82 –0.18 0.01
Martin et al., 1988, E1 36 A W RC M Instrumental 82 0.00 0.01
Martin et al., 1988, E1 36 A W RC M Random tones 82 –0.11 0.01
Martin et al., 1988, E1 36 A W RC N White 82 –0.04 0.01
Martin et al., 1988, E2 36 A W RC M Instrumental 82 0.02 0.01
Martin et al., 1988, E2 36 A W RC M Lyrical 82 –0.08 0.01
Martin et al., 1988, E4 48 A W RC N White 82 –0.11 0.01
Martin et al., 1988, E4 48 A W RC S Native 82 –0.31 0.01
Martin et al., 1988, E4 48 A W RC S Foreign 82 –0.15 0.01
Martin et al., 1988, E5 48 A W RC N White 82 –0.21 0.01
Martin et al., 1988, E5 48 A W RC S Nonword 82 –0.20 0.01
Martin et al., 1988, E5 48 A W RC S Random words 82 –0.33 0.01
Cool et al., 1994, E2 9 C W RS M Radio/generic — 0.13 0.05
Cool et al., 1994, E2 9 C W RS S Movies — 0.20 0.05
Cool et al., 1994, E2 9 C W RC M Radio/generic — –0.12 0.05
Cool et al., 1994, E2 9 C W RC S Movies — –0.22 0.05
Mitchell, 1949 91 C W RTS M Radio/generic — –0.01 0.01
Armstrong et al., 1991 33 30 A B RTS S TV ads — –0.63 0.07
Armstrong et al., 1991 33 32 A B RTS S TV drama — –0.48 0.06
Pool et al., 2000, E1 30 30 C B RC S TV soap opera 60 –0.38 0.07
Pool et al., 2000, E1 30 30 C B RC M TV music 60 –0.21 0.07
Pool et al., 2000, E2 48 24 C B RC S TV soap opera 60 –0.57 0.06
Pool et al., 2000, E2 48 24 C B RC M TV music 60 –0.10 0.06
Dockrell & Shield, 2006 52 52 C B RTS N Babble 65 –0.49 0.04
Dockrell & Shield, 2006 52 52 C B RTS N Babble/

environmental
65 0.58 0.04

Hyönä & Ekholm, 2016, E1 42 A W RC S Native 82.5 –0.17 0.01
Hyönä & Ekholm, 2016, E1 42 A W RC S Foreign 82.5 0.00 0.01
Hyönä & Ekholm, 2016, E1 42 A W RS S Native 82.5 –0.02 0.01
Hyönä & Ekholm, 2016, E1 42 A W RS S Foreign 82.5 0.06 0.01
Hyönä & Ekholm, 2016, E2 36 A W RS S Scrambled-

different
82.5 –0.15 0.01

Hyönä & Ekholm, 2016, E2 36 A W RS S Scrambled-same 82.5 –0.18 0.01
Hyönä & Ekholm, 2016, E3 35 A W RS S Native 82.5 –0.13 0.01
Hyönä & Ekholm, 2016, E3 35 A W RS S Scrambled 82.5 –0.20 0.01
Hyönä & Ekholm, 2016, E4 36 A W RS S Scrambled: 

semantic
82.5 –0.11 0.01

Hyönä & Ekholm, 2016, E4 36 A W RS S Scrambled: 
syntactic + 
semantic

82.5 –0.14 0.01

Armstrong & Chung, 2000 19 20 A B RC S Native — –0.09 0.10
Madsen, 1987, E1 50 50 A B RC M Various 75 –0.10 0.04
Sörqvist, 2010a, E1a 23 C W RC N Aircraft 57.5 –0.13 0.02
Sörqvist, 2010a, E1b 23 C W RC S Native 57.5 –0.51 0.03
Sörqvist, Ljungberg, et al., 

2010, E1
24 A W RC S Native 65 –0.46 0.02

Table B1. (Continued)
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Study NC NE Samp Des DV Sound Sound type Db(A) g Var

Sörqvist, Ljungberg, et al., 
2010, E2

42 A W RC S Native 65 –0.30 0.01

Halin, Marsh, Haga, et al., 
2014

32 A W RC S Native 65 –0.10 0.02

Halin, Marsh, Haga, et al., 
2014, E1

31 A W PRb S Native 65 –0.09 0.02

Halin, Marsh, Haga, et al., 
2014, E1

31 A W PRa S Native 65 0.20 0.02

Halin, Marsh, Haga, et al., 
2014, E2

29 A W PRb S Native 65 –0.13 0.02

Halin, Marsh, Haga, et al., 
2014, E2

29 A W PRa S Native 65 0.11 0.02

Haapakangas et al., 2011 54 A W PRb S Native 48 –0.09 0.01
Haapakangas et al., 2011 54 A W PRa S Native 48 –0.11 0.01
Baker & Madell, 1965 24 A W RC S Native — –0.70 0.03
Vasilev et al., 2017 40 A W RC N Speech spectrum 60 –0.03 0.01
Vasilev et al., 2017 40 A W RC S Foreign 60 –0.01 0.01
Vasilev et al., 2017 40 A W RC S Native 60 –0.07 0.01
Vasilev et al., 2017 40 A W RS N Speech spectrum 60 0.04 0.01
Vasilev et al., 2017 40 A W RS S Foreign 60 –0.06 0.01
Vasilev et al., 2017 40 A W RS S Native 60 –0.15 0.01
Falcon, 2017, Sample 1 22 20 C B RC M Classical 55 –0.26 0.09
Falcon, 2017, Sample 2 25 28 C B RC M Classical 55 1.32 0.09
Ahuja, 2016 20 A W RC M Liked 60 –0.71 0.04
Ahuja, 2016 20 A W RC M Disliked 60 –0.08 0.02
Kou et al., 2017 31 29 A B RC M Pop vocal 65 0.37 0.07
Kou et al., 2017 31 32 A B RC N Office 65 –0.13 0.06
Sukowski & Romanus, 2016 12 A W PR S Native 59.5 –0.62 0.05
Yan et al., 2017 42 A W RS S Native 62 –0.16 0.01
Yan et al., 2017 42 A W RS S Meaningless 62 0.06 0.01
Gillis, 2016 24 47 A B RC M Various — 0.07 0.06

Note: N C = number of participants in the control (silence) condition; N E = number of participants in the experimental (sound) condition; RC = 
Reading comprehension; RS = reading speed; RTS = reading test score; PR = proofreading accuracy; g = Hedges’s g (effect size).
aNoncontextual errors (proofreading accuracy). bContextual errors (proofreading accuracy).

Table B1. (Continued)
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Notes

1. It should be noted that the amount of semantic content may 
differ depending on the type of music. Nevertheless, the lyri-
cal music examined in this analysis also contained instrumental 
sections that had no lyrics. This was determined by listening 
to the music that was played in the original studies. Therefore, 
even though lyrics were present in the music, this was not the 
case for the whole duration of the song.
2. Four studies did not contain any information that made it 
possible to calculate the effect sizes. Because all of the studies 
were more than 25 years old, it was not possible to obtain the 
data from the authors. Therefore, these studies were discarded 
(they did not count toward the number of included studies). We 
explored the implications of this through statistical simulations 

https://osf.io/6frzn/
https://orcid.org/0000-0003-1944-8828


592 Vasilev et al.

and found no evidence that failing to include these studies 
biased the results (see the Supplemental Material).
3. One exception was the metaregression model comparing lyri-
cal and nonlyrical music. We show in the Supplemental Material 
that the way the effect sizes were chosen did not influence the 
conclusions from this analysis.
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