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*e paper is motivated by a present lack of clear model performance guidelines for shelf sea and estuarine modellers seeking to
demonstrate to clients and end users that a model is .t for purpose. It addresses the common problems associated with data
availability, errors, and uncertainty and examines the model build process, including calibration and validation. It also looks at
common assumptions, data input requirements, and statistical analyses that can be applied to assess the performance of models of
estuaries and shelf seas. Speci.cally, it takes account of inherent modelling uncertainties and de.nes metrics of performance based
on practical experience. It is intended as a reference point both for numerical modellers and for specialists tasked with interpreting
the accuracy and validity of results from hydrodynamic, wave, and sediment models.

1. Introduction

Although a need to standardise model build, calibration, and
validation processes around one agreed approach is widely
acknowledged, only limited guidance is available (e.g., [1, 2])
and often ambiguous and sometimes con6icting advice if
o7ered in the grey literature (e.g., [3, 4]). A wide variety of
di7erentmodelling practices are employed by consultants and
academics, and frequently insu9cient attention is given to the
potential errors associated with the measured (and modelled)
data used for model calibration and validation.*is can result
in poormodel performance and unreliable model predictions.
Without an agreed methodology and a performance standard
for model calibration and validation, there is a risk that the
quality of di7erent approaches will vary, e7orts will be wasted
following ine9cient or inappropriate calibration methods,
and inconsistencies in methodologies will make model in-
tercomparisons problematic.

*is paper provides an evidence-based review and
presents examples of calibration data sources and of model
calibration and validation practices for estuarine and shelf sea
models. It is intended to provide guidance to the assessment

and use of model calibration data and to o7er procedural
clarity and simpli.cation to the model calibration and vali-
dation process. In doing so, it acknowledges that some degree
of compromise between the complexity of the natural system
and the model representation must be reached. For this
reason, the paper does not address complex modelling issues
around wave-driven currents, littoral drift, and shoreline
evolution where specialist models (e.g., the nonhydrostatic
version of XBeach and CFD) must be employed.

Since the accuracy of the model calibration depends
critically on the calibration data used, attention is given to
some of the most common issues associated with data quality.
*e paper also provides (a) the end users of model data more
specialist guidance on modelling approaches, (b) the cali-
bration procedures most frequently applied, and (c) the
uncertainty in the model predictions. *e paper draws on
practical experience of modelling and expands on the earlier
and limited guidance on the model calibration and validation
that focus on Eulerian point-based criteria de.ning model
performance (e.g., [2, 5, 6]). It also takes account of results and
recommendations from modelling case studies where cali-
bration issues have been the focus of the work (e.g., [7–10]).
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Speci�cally, the paper describes (1) general factors that
must be considered at the outset of all numerical modelling
activities, (2) the quantitative assessment of model per-
formance, (3) data sources and modelling guidelines for hy-
drodynamic, wave, and noncohesive and cohesive sediment
models, and (4) morphological models. Special attention is
given to one of the greatest challenges to the modelling
community concerned with measuring and modelling sedi-
ment transport and associated erosion and accretion.While the
focus of the work is based on practical applications ofmodelling
shelf sea and estuarine processes, many of the issues discussed
are relevant to a wide range of geophysical models.

2. What Is Model Calibration and Validation?

It is important from the outset to de�ne the terms commonly
used by numerical modellers: (a) calibration is a process
which requires the adjustment of certain model parameters
to achieve the best performance of the model for speci�c
locations and applications; (b) veri�cation ascertains if the
model implements correctly the assumptions made; and (c)
validation seeks to establish the agreement between the
predictions and the observations (e.g., [11]). Validation is
achieved by running the model using data covering an al-
ternative period and/or a di�erent location without making
any additional adjustment to the model parameters (e.g.,
[12]). Of course, the accuracy of the model outputs cannot be
proved to be greater than the accuracy of the original cal-
ibration data used, and validation does not imply veri�ca-
tion, nor does veri�cation imply validation. However, in
practice, when measured data are available for the system
being modelled, validation is often blended with veri�cation
[11]. If a comparison of measurements and model results
suggests that the predictions from the model are close to the
measurements, then the implemented model is assumed to
be both a veri�ed implementation of the assumptions and
a valid representation of the system being modelled.

Irrespective of the model accuracy, the model calibration
must express (a) express the level of agreement achieved; (b)
express how realistic is the representation of the processes,
and (c) de�ne the criteria by which it has been judged as
being �t for purpose. �e quantitative assessment of data
error, accuracy, and uncertainty in models then de�nes
metrics against which model performance can be judged.

As an illustration of the typical calibration and validation
processes applied in most coastal and estuarine models,
a schematic diagram of steps followed for a hydrodynamic
model is shown in Figure 1. In the initial model run, model
parameters are set to the recommended values provided by
the modelling software guidance (i.e., “factory settings”).
Critical parameters a�ecting model performance (e.g., bed
roughness) are then adjusted to achieve the best possible
agreement between model predictions and measurements.
Care must be taken to ensure the values set for these adjusted
parameters are physically meaningful and appropriate [1].
Achieving a good model calibration for the wrong reasons is
as bad as a poorly calibrated model.

A useful �rst step in the calibration and validation process
is the determination of the most sensitive parameters in the

model.While expert judgment can be helpful, less-experienced
model users should undertake sensitivity analyses. Here, the
aim is to determine the rate of change in model output with
respect to changes in model inputs (parameters). To undertake
sensitivity analyses, it is necessary to identify key model pa-
rameters and to de�ne the parameter precision required for the
calibration (e.g., [13]). Sensitivity analysis approaches can be
(a) local, where parameter values are changed one at a time, or
(b) global, where all parameters are adjusted simultaneously.
Both approaches have drawbacks. For example, the sensitivity
of one parameter often depends on the value of other related
parameters so that the correct values of other �xed parameters
cannot be determined. In global sensitivity analyses, many
simulations are required. Despite these drawbacks, both ap-
proaches provide insight into the sensitivity of the model
parameters and are necessary steps in the model calibration
process. However, “manual” calibration of models, where
parameters are adjusted in a stepwise fashion, can be very
time-consuming and ine�cient.

�e second step in the calibration process is undertaken to
reduce the uncertainty in the model predictions. Normally,
this uses carefully selected values for model input parameters
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Figure 1: Schematic diagram of typical model calibration and
validation steps required for a hydrodynamic model.
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and compares model predictions with observed data for the
same conditions. In common with the process described in
step 1, this is often done iteratively without any .xed rule and
is guided by the experience of the user and knowledge of the
processes being modelled. *e third step in the calibration
process involves validation of the model output of interest
(e.g., water level, 6ow speed, and direction). Validation in-
volves running a model using parameters that were de-
termined during the calibration process and comparing the
predictions to observed data not used in the calibration.

*e use of automated techniques for model calibration is
now widespread (e.g., [14]). Typically, autocalibration pro-
cedures rely on Monte Carlo or other sampling schemes to
estimate the best choice of values for multiple input pa-
rameters. For example, the autocalibration procedure de-
scribed by van Liew et al. [15] is based on the shuJed
complex evolution algorithm of Duan et al. [16], which
allows for the calibration of model parameters based on
a single objective function. While autocalibration can pro-
vide a powerful, labour-saving tool that can be used to
substantially reduce the frustration and subjectivity that
frequently characterises manual calibrations, care must be
exercised when using these approaches to ensure the the-
oretical boundaries for each speci.c input parameter are not
violated.

Frequently, the evaluation of postcalibration numerical
model results is subjective and based on specialist in-
terpretation of graphical output only. Examples of this
approach include water-level curves or discharge time series,
current vector distributions, and spreading patterns of heat
and spills. Indeed, for many practitioners, a good visual .t
between model predictions and observations is often su9-
cient to demonstrate good model performance without the
need to quantify this further. Objective measures of model
performance are also not new and are used, for example, in
the Deltares (semi-) automated model calibration tools and
in adjoint modelling (e.g., [17]). However, the increasing
complexity of model functionality, and the use of model
output by technical end users requiring information on
model accuracy to reduce risks, has led to an increasing need
for better guidance on how to quantify and evaluate the
performance of models. A description of the calibration
process applied to a biological-physical model [18] provides
a useful example of typical procedures followed in the
calibration process.

3. General Considerations

Irrespective of the model being used, there are several ge-
neric elements that require consideration prior to and
during the model build phase. *ese elements will each
impact on model performance and include bathymetry, bed
roughness, model grid setup, the incorporation of speci.c
structures and features, data accuracy and uncertainty, and
model boundary conditions.

3.1. Bathymetry. One of the most common problems asso-
ciated with the calibration of a hydrodynamicmodel concerns

errors in the underlying bathymetric data.*e use of accurate
bathymetry is pivotal in all shelf sea and estuarine modelling
studies, and e7ort is required to ensure that the best possible
bathymetric information is used. As standard practice, the
analysis of bathymetric data should ensure (e.g., through
a data review of the study area) that the most recent ba-
thymetry survey data are used. Key features and contours
should be checked against historical maps and charts. LiDAR
data across water surface must be discarded. Suitable grid
dimensions should be determined that re6ect the spatial
distribution of the bathymetric data, and where data are al-
ready gridded, poor interpolations/reductions/extrapolations
onto model grids must be identi.ed by reference to the
original data sources.

A summary of bathymetric and topographic data
requirements for models is shown in Table 1 [3]. Here,
a distinction is made between application types, with the
most exact being associated with scheme designs (e.g., 6ood
defences) with less accuracy required for appraisal and/or
strategy studies. *ese distinctions are used in other tables
and are useful as they de.ne the accuracy of key data re-
quired to build a model for di7erent applications. *e
correct use of the most appropriate data for a given ap-
plication can save time and e7ort. While Table 1 re6ects the
bathymetric and topographic data requirements for mod-
elling estuaries, including speci.cations for average dis-
tances between survey positions, the minimum acceptable
channel cross-section spacing, survey age, and the age and
resolution for LiDAR data, they provide equally useful
guidelines for shelf sea models.

Careful checks on the horizontal and vertical survey datum
should always be undertaken prior to any model runs, and
models should always aim to use a common reference datum.
Typically for vertical positions, national reference points (e.g.,
Ordnance Datum Newlyn (ODN) in the UK), chart data
(related to the lowest astronomical tide or to mean lower low
water), or mean sea level (MSL) is used widely. However, while
national reference points are useful in local-scale models, MSL
has wider utility in larger regional models at all geographical
locations. In the UK waters, the Vertical O7shore Reference
Frame (VORF (http://www.ucl.ac.uk/vorf)) provides spatial
maps of values that can be used to convert between vertical
data. Similarly, VERTCON [19] and more recently VDATUM
(http://vdatum.noaa.gov/) in the USA allow vertically trans-
formation of geospatial data among a variety of tidal, ortho-
metric, and ellipsoidal vertical data. In addition, satellite
altimetry data can also be used to inform the o7set between
one or more tidal layers and the relevant satellite or geoid-
based datum.

To illustrate a simple datum error, Figure 2(a) shows
nearshore bathymetry from a coastal location in southern
Portugal with a clear vertical datum problem. *is issue is
resolved in Figure 2(b) using a simple datum correction.*is
is a simple case for illustrative purposes only, and often
datum errors are more complex and harder to correct.

Other errors can arise in hydrodynamic models due to
(a) changes in charting properties (e.g., older Admiralty
charts from the UK projected to OSGB which has now
changed to WGS84), (b) data types, which have inherent
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weaknesses (e.g., poorly interpolated bathymetry which may
lead to an underestimation of depth and thus tidal volume),
and (c) postprocessing using GIS or other “smoothing”
software. To minimise the errors introduced in the model
bathymetry, it is recommended initially to visually inspect
the raw bathymetry using suitable software (e.g., Matlab or
Fledermaus). Abrupt changes in elevations and spikes in data
should be treated with caution. It is also helpful to examine
gradients, and where possible, to compare interpolated data
with known soundings.

Careful consideration should be given to data in-
terpolation since interpolation routines can vary signi.-
cantly between programs, and the options available (e.g.,
linear, nearest neighbour, inverse distance weighted, and
spline methods) can also result in signi.cantly di7erent
answers. Furthermore, some interpolation methods are
better suited to sparse data sets (e.g., inverse distance
weighted) and others to well-populated data distributions
(e.g., nearest neighbour). *e selection of the interpolation
methods should always recognise this. It is important also
to consider the scale of features on the bed that requires
resolving in a model. For example, large bedforms, such as
sand banks, redirect 6ows and must be resolved in the
model. Smaller bedforms such as sand waves provide
a resistance to the 6ow that can be parameterised through
the bed friction term. Eliminating the need to resolve these
features individually can reduce the model run time. In
other applications, sand waves may need to be resolved on

an individual basis to assess, for example, migration rates
and pipeline or cable routes.

Time and care spent ensuring that the underlying ba-
thymetry has been correctly interpolated (datum, pro-
jection) and that it is free of spurious values and correctly
represents the features of interest will contribute to im-
proving model performance. Without good underlying
bathymetric data, the task of trying to calibrate a hydrody-
namic model will be extremely di9cult, especially in shallow
coastal and estuarine areas. For example, Cea and French
[20] have investigated how errors in bathymetry can impact
on the performance of estuarine shallow water models. *ey
demonstrate that correcting errors in the measured depth
can be signi.cantly more e9cient than a “classic” calibration
approach based only on adjustment of the hydrodynamic
roughness of the bed.*eir proposed bathymetry calibration
framework may o7er improved performance from the
current generation of numerical models. Further guidance
on the use of bathymetry in models is given by Plant et al.
[21, 22] and Mourre et al. [23].

3.2. BedRoughness. *e hydrodynamic roughness of the bed
(hereafter termed “bed roughness”) is a primary calibration
variable for all coastal and estuarine models. It is also es-
sential for modelling other processes accurately such as
sediment transport and wave attenuation. Irrespective of
the method chosen for de.ning bed roughness, values are

Table 1: Bathymetry and topographic data requirements for models (A � design; B � appraisal; C � strategy; and U � unsatisfactory); from
Defra/EA [3].

Type Average distance between surveyed
depths (m)

Minimum channel cross section
spacing (km)

Time since survey
(years)

LiDAR age
(years)

LiDAR
resolution (m)

A ≤200 0.1 ≤5 ≤2 ≤1.0
B 200–500 0.5 5 to 10 2 to 5 1 to 2
C 500–1000 1.0 10 to 20 5 to 10 2 to 5
U >1000 >1.0 >20 >10 >5
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Figure 2: (a) Bathymetry with a clear vertical datum problem and (b) the same bathymetry after datum correction.
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typically manipulated iteratively by the user within the
ranges reported in the literature. Any bed roughness can be
generally assigned to a so-called equivalent sand roughness,
ks [24]. *e equivalent sand roughness depends on the ar-
rangement (pattern), distance (density), and shape of the
roughness elements such as sand grains and ripples.
However, in most models, bed roughness is typically par-
ameterised by (a) a drag coe9cient de.ned at a speci.ed
height above the bed, (b) the Manning number, n [25], or (c)
the Chézy number, C [26].

To illustrate the range of drag coe9cient values appro-
priate for di7erent estuarine and coastal environments, Table 2
shows empirically derived values of the drag coe9cient C100
measured at 1m above the bed for di7erent bottom types. In
the absence of data to de.ne the bed roughness accurately,
these “typical” values are often employed in model applica-
tions. However, in many cases, this is an oversimpli.cation,
and care must be taken to obtain as much information as
possible about bed characteristics so that appropriate bed
roughness values can be assigned.

In “industry-standard” models such as MIKE21 and
Delft3D, “roughness maps” can be used to de.ne the spatial
distribution of bed roughness values across the model
domain. A good account of this approach is given by
Lefebvre and Lyons [27]. Figure 3 presents a typical ex-
ample of a bed roughness map showing the spatial dis-
tribution of (a) the measured median grain size, D50,
obtained from seabed samples and (b) the derived drag
coe9cient, Cd, which accounts for D50 and bedforms de-
tected in a multibeam survey.

Bed roughness has beenmapped by an ADCP (e.g., [28]),
and high-resolution bathymetry and granulometry samples
have been used by Huybrechts et al. [29] to derive bed
roughness maps used in a TELEMAC model (cf. [30, 31]).
Recently, the use of high-resolution multibeam sonar has
provided bathymetric data at a resolution of less than 1m
and revealed the details of sea bed features (e.g., DORIS
(http://www.dorsetwildlifetrust.org.uk/doris.html)) as well
as provided information on sediment properties. *e use of
these data in modelling studies is currently experimental and
requires high computing power to resolve the details.
However, it o7ers the possibility of better de.ning bed
roughness and thus may contribute signi.cantly to reducing
the e7ort needed for model calibration.

3.3. Model Grid Setup. *e selection and setup of the model
grid is a very important initial stage in the model build
process. While some models still employ regular grid
structures, most models now employ some form of 6exible
mesh usually comprising triangular elements. *is approach
allows high resolution of areas of interest and lower reso-
lution over areas where bathymetry and/or processes are
largely spatially invariant. In virtually all coastal and estu-
arine applications, the use of 6exible mesh models provides
the best model grid solution (e.g., [32]).

Taking a generic estuarine model as an example, some
key points about model grids emerge: (a) the model grid
should be designed to ensure the grid resolution can de.ne
the main morphological features (including structures) that
could have in6uence on hydrodynamics; (b) narrow chan-
nels and banks should have at least three grid cells (pref-
erably 5) to determine the base or crest widths; (c) as far as
possible areas of increased grid resolution should follow the
course of the main channels, particularly in a curvilinear
grid; and (d) when considering the location of upstream and
downstream boundaries in the model, boundaries should
not be .xed too close to areas of interest. However, this may
be constrained by the actual aims of the modelling as well as
available boundary data. Further examples of the issues
arising when de.ning a model grid are given by Hsu et al.
[33], Kernkamp et al. [34], Liu and Ren [35], and Maynard
and Johnson [36].

Table 3 shows an example of the typical model grid
resolution required for estuarine models intended for studies
of water levels and 6ow velocities [3]. Table 3 indicates also the
minimum number of model grid points required to correctly
represent features such as channels and sand banks in the
model. Similar grid requirements apply equally to coastal
models. It is noted that a .ne grid resolution (<2m) is re-
quired to correctly represent the deliberate breaching of 6ood
defences when designing managed realignment schemes.

During the process of grid generation, irrespective of the
modelling software used, interpolation of the bathymetry
will take place. Again using the example of a generic es-
tuarine model to illustrate some key points, the following
checks should be made on completion of bathymetric in-
terpolation processes: (a) the gridded bathymetry must show
the same characteristics as the original bathymetry; (b) the
gridding process must not displace and/or narrow/constrict
channels; (c) di7erent interpolation methods should be
assessed; (d) channels must not be widened or narrowed,
particularly when these make up a considerable proportion
of the estuary cross section; and (e) depths adjacent to the
boundaries should be inspected to ensure correct in-
terpolation has occurred.

A further key point to note concerns the spatial reso-
lution in the computational grid of a given model. Typically,
a model prediction is only applicable at the spatial resolution
de.ned by the computational grid. In contrast, the mea-
surements, typically used to calibrate and verify model
predictions, are obtained at a single location and represent
the local environment only. *us, when comparing a model
prediction with a measured value at a point, consideration
must be given to the tolerance of this spatial resolution. Most

Table 2: Empirically derived values of the drag coe9cient (at 1m
above the bed) for di7erent bottom types; from Soulsby [50].

Bed type C100

Mud 0.0022
Mud/sand 0.0030
Silt/sand 0.0016
Sand (unrippled) 0.0026
Sand (rippled) 0.0061
Sand/shell 0.0024
Sand/gravel 0.0024
Mud/sand/gravel 0.0024
Gravel 0.0047
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often, the grid cell most closely colocated with the declared
deployment location is used in model/measurement in-
tercomparisons. If the grid size is large, the single point
measurement may not be representative of the wider area in
the model grid element. Conversely, if the instrument is
deployed on a mooring line that has the capacity to move
(such as a wave buoy), then, through time, the instrument
may pass through multiple grid points if the model has
a .ne-scale resolution.

In some circumstances, data extraction from a grid cell
adjacent to the measurement location may better represent
the actual conditions at the measurement point if that point
lies close to the boundary of a model element. Depending on
the model grid resolution, it is advisable therefore to extract
model outputs from all grid cells adjacent to the measure-
ment location and to make comparisons with the
observations.

Taking the modelling of 6uvial bedforms as an example,
El Kheiashy et al. [37] discuss the selection of an appropriate
model grid. In common with many modelling applications,

a compromise must be reached between the resolution
needed to de.ne the bathymetry accurately and the con-
sequent execution time required for a certain grid resolution.
*eir study showed that the apparent bed resistance (shear
stress) and bedform steepness decreased with increasing grid
spacing. Increasing the grid spacing also created arti.cial
bedform .elds giving rise to grid-dependent resistance. *e
model grid therefore has a signi.cant in6uence on the model
predictions. It is therefore important to be aware of these
issues when interpreting model results and to check them
whenever possible against all available data sources.

3.4. Model Boundary Conditions. Experienced modelling
practitioners will ensure that the intended boundary type
is being used at each open boundary and that the cell no-
tation and order of data are correct. Indeed, most industry-
standard models (e.g., Delft3D) give a visual representation
of the boundaries for checking purposes. It is recommended
practice to align boundaries with the dominant 6ow direction,

Table 3: Recommended model grid resolution for 6ood studies in estuaries (A � design; B � appraisal; C � strategy; and U � unsatisfactory);
from Defra/EA [3].

Type Resolution for water level (m) Resolution for 6ow velocity (m) Grid point needed to resolve key features†

A ≤5 ≤2 >8
B 5 to 10 2 to 4 5 to 7
C 10 to 25 4 to 6 3 to 4
U >25 >6 <3
†Channels, sand banks, etc.
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Figure 3: (a) Measured median grain size, D50, obtained from seabed samples and (b) the derived drag coe9cient, Cd, which accounts for
D50 and bedforms detected in a multibeam survey.
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tidal characteristics (avoiding amphidromes), waves, or geo-
graphic features.

*e input data to estuarine and shelf sea model bound-
aries typically fall into 2 types: (a) a water level and (b) a 6ux
(discharge). A water-level boundary is normally obtained
from existing models or measurements. In the case of model-
derived boundary data, knowledge of how the boundary data
are produced by the larger model is required to de.ne the
accuracy and reliability (e.g., the number of constituents used
and the spatial and temporal resolution). However, a water-
level boundary may not be applicable in areas with little or no
tidal height variation.

Noting that a 6ux (discharge) carries momentum and
water-level variations across the model domain have to
generate momentum, it can be argued that a 6ux (discharge)
boundary condition is a more robust option for model
calibration purposes. However, it is usually much more
di9cult to describe and apply. Reliance on water levels only
can lead to serious model underperformance, and wherever
possible, attempts must bemade to use water level and 6ux at
the model boundaries.

Since the appropriate model calibration accuracy can be
obtained, the following boundary condition issues also need
to be fully understood: (a) spikes in modelled boundary data
attributable to instabilities in the original boundary data and
(b) the selection of boundary data from larger model domain
in unsuitable locations (e.g., close to land domain or ele-
ments that dry).

A 6ux (discharge) can be applied at any model boundary
(e.g., the point of freshwater input into an estuarine model).
Generally, these data are provided by measurements or
derived from a coarser-scale model. *e quality of these data
depends on the accuracy of the measuring device or model.
It is recommended that in areas of small tidal variation, or
where multiple boundaries are included, at least one
boundary is of a 6ux (discharge) type. It may be noted that
using 6exible grids (or nested models), the model domain
can be extended to provide more robust boundary condi-
tions owing to the large phase di7erences and gradient ef-
fects across the model domain. However, in practice, many
model setups use only water levels as the primary driving
force, and in many applications, this proves to be successful.

It is recommended that if measured tidal levels are used
as model boundary conditions, then these are checked to
ensure consistent phase and amplitude with values obtained
from the harmonic constituents. While there will be small
di7erences in amplitude attributable to meteorological ef-
fects, the phase should be very similar.

4. Assessing Model Performance

In engineering and environmental modelling studies, the use
of quantitative model evaluation methods is perceived as
providing more objective, consistent, and reproducible model
validation and assessment. However, it is also self-evident that
the identi.cation of systematic or random errors in model
results can also be detected quickly by the human eye. In
practice, the assessment of model output is most e7ective
when both qualitative and quantitative approaches are

employed. For example, in most shelf sea or estuarine ap-
plications, a combined visual and quantitative evaluation may
be achieved by presenting the spatial distribution of current
vectors for visual examination together with statistics that
quantify di7erences between measured and predicted current
speeds from several locations. *ese statistics can provide
useful additional information about spatial coherence, cor-
relations, and consistency and will often indicate explanations
and origins of the possible di7erences between the model
results and the measurements.

It is also important that model results receive expert
assessment, ideally against a conceptual understanding of
processes in each model domain established using a range of
data resources. *is might include some obvious checks on
current speed, phase, and direction as well as more detailed
investigations of sedimentation patterns. It is recommended
that the initial assessment of model performance by what-
ever means should be undertaken before running models for
extended periods. However, the period chosen for this
preliminary examination depends on the processes being
modelled. For example, a model of tidal currents run over
one or two tidal cycles should be su9cient to determine how
well the model is performing and which adjustments might
be necessary. On the other hand, a model of sediment
transport may require considerable time before the e7ects of
net sediment movement are evident through changes in the
bathymetry.

4.1. Error, Accuracy, and Uncertainty of Model Calibration
Data. As it de.nes the metric against which model per-
formance will be judged, the assessment of error, accuracy,
and uncertainty in the data used for model calibration is an
important step in the modelling process. Indeed, the ac-
curacy of a numerical model is governed in part by the
degree of error present in the model calibration data. It is
essential therefore to quantify error, accuracy, and un-
certainty through understanding of the instrumentation, the
instrument deployment method, and its location as well as
any data postprocessing issue.

It is necessary to distinguish between systematic and
randommeasurement errors. All measurements are prone to
systematic errors resulting, for example, from imperfect
instrument calibration (zero error) and changes in the en-
vironmental conditions. Similarly, random errors are usually
present in a measurement or other observations and result
from inherently unpredictable 6uctuations in the readings of
a measurement apparatus or in the experimenter’s in-
terpretation of an instrumental reading or the environment.
Di7erent results for ostensibly the same repeated mea-
surement are a clear indication of a random error. *e error
can be quanti.ed by comparing multiple measurements and
reduced by averaging multiple measurements. Systematic
errors cannot be detected this way because they always
“push” the results in the same direction. However, when
identi.ed, they are easier to eliminate from a data set using
trend removal techniques (e.g., regression analysis).

Instruments collecting data from di7erent spatial loca-
tions may also apply range-dependant spatial averaging to
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the recorded data, leading to variable spatial resolution. For
example, the horizontal averaging across spreading ADCP
beams results in a measurement footprint that increases in
size with distance from the instrument. Taking as an example
the calibration of a 2D depth-averaged hydrodynamic model
using ADCP data, it is .rst necessary to derive the depth-
mean current from the ADCP measurement. *is requires
making assumptions about the vertical structure of the
marine boundary layer (often occupying the region from the
bed to the air-water interface) before time and spatially
averaging the ADCP data to obtain a depth-mean current
speed. *ese data processing steps introduce errors which
are di9cult to quantify. *ese problems are further com-
pounded when attempting to extract a meaningful depth-
mean representation of the current direction, especially in
areas subject to signi.cant current veering (e.g., adjacent to
sand banks). Furthermore, if a given measurement footprint
is within a highly turbulent 6ow .eld, then the accuracy of
the mean 6ow measurement will be governed by the sam-
pling time and can lead to signi.cant errors if the 6ow is not
sampled correctly at that location. With this example in
mind when comparing predictions from a grid point in
a model with measurements from single or multiple loca-
tions, attention must be given to spatial and temporal in-
consistencies that might lead to calibration error and/or bias.

4.2. Sensitivity Analyses. Sensitivity analyses are used to
study how the uncertainty in the output from a model can be
apportioned to di7erent sources of uncertainty in its inputs.
Sensitivity analyses are undertaken by varying input pa-
rameters (within a range, i.e., physically realistic) and ex-
amining the model response. Sensitivity analyses can be
useful for a range of purposes including (a) testing the
robustness of model resulting in the presence of uncertainty,
(b) increasing the understanding of the relationships be-
tween input and output variables in a model, (c) identifying
errors in the model by encountering unexpected relation-
ships between inputs and outputs, and (d) simplifying
models by identifying model inputs that have no e7ect on
the output, or identifying and removing redundant parts of
the model structure. Sensitivity analyses can also help to
reduce uncertainty by identifying the model inputs that
cause the greatest uncertainty in the output, thereby
allowing adjustments to increase the robustness of the
model. Importantly, by making model results more un-
derstandable, compelling, or persuasive, sensitivity analyses
can enhance interactions between modellers and the end
users of modelling output. Sensitivity analyses are therefore
a vital part of evaluating if a model is .t for purpose, and
time must be set aside in any modelling study to undertake
a credible model sensitivity study.

One area of sensitivity analysis that requires special
consideration concerns the sensitivity of a given model to
errors in the input data (e.g., bathymetry, water level, and
depth-mean current speed). *is is especially important
when there are errors and/or uncertainty in more than one
input data set which can result in compounded errors in the
model output. For example, in an estuarine sediment

transport model, errors in the water depth and/or current
speed at a given location will result in an over- or un-
derestimation of the bed shear stress. Since sediment
transport is related to a power of the bed shear stress
(typically quadratic for bed load and cubic for suspended
load), small errors in predicted bed shear stress can result in
large errors in predicted gross and net sediment transport.

4.3. Time Series and Statistical Output. In many cases, the
presentation of data in time-series format helps to reveal the
goodness of .t between model and observation data, with
gaps between observed and predicted data indicating vi-
sually discrepancies between the model predictions and the
calibration data. Calibration should aim to minimise these
discrepancies, and statistical analysis should be used to
quantify the goodness of .t. Additionally, it is also in-
formative to compare like-with-like values using a scatter
plot showing observed versus modelled values. Some ex-
amples are provided below.

To quantify the temporal aspect of the model calibration
further, statistical approaches are used to demonstrate that
con.dence can be placed in the model performance over
temporal time scales in a clear and understandable way. *e
Danish Hydraulics Institute, DHI, Quality Indices Matrix
calculating several goodness-of-.t statistics for comparison
between observations and simulated results is an appropriate
methodology to adopt. When necessary, and when data
quality permits, additional types of analysis may be ap-
propriate, such as Brier skill score analysis [38] or indices of
agreement (e.g., [39]).

Simple statistics that demonstrate the level of agreement
between measured/observed data and model prediction at
a chosen location in themodel domain include themean and
peak di7erences (often expressed as a percentage) and the
standard deviation. In addition, there are several quality
indices that can be used to demonstrate the statistical
agreement between model predictions and observations
(Table 4). In the table, Oi and Si are the measured and
predicted values of a given parameter at time ti, respectively,
and Ni is the total number of data points. *e statistics are
now de.ned.

Accuracy expresses the di7erence between the measured
and modelled data which is de.ned as dif i � Si −Oi. In all
cases, the aim should be to reduce the value of difi to the
smallest value practicable. Ideally, a minimum difi should
not exceed 10%, although this will be highly variable
depending on the parameter being considered and the ac-
curacy of the calibration data used in the model. *e ac-
curacy of the modelled data can also be quanti.ed using the
root mean square error (RMSE) statistic (Table 4). *e
RMSE value is often expressed as a percentage, where lower
values indicate less residual variance and thus better model
performance.

*e bias expresses the di7erence between an estimator’s
expectation and the true value of the parameter being esti-
mated and can be de.ned as being equal to the mean error in
the data. Systematic bias re6ects external in6uences that may
a7ect the accuracy of statistical measurements. Detection bias
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is where a phenomenon is more likely to be observed and/or
reported for a set of study subjects. Reporting bias involves
a skew in the availability of data, such that observations of
a certain kind may be more likely to be reported and con-
sequently used in research.

�e agreement or otherwise betweenmeasured/observed
data and model prediction time series is frequently quan-
ti�ed using the Pearson product-moment coe�cient, R
(Table 4). It is essential to test the statistical signi�cance of
the correlation coe�cient. In most cases, the Pearson
method (one- or two-tailed) is appropriate. In statistical
signi�cance testing, if the null hypothesis is true, the p value
is the probability of obtaining a test statistic at least as
extreme as the one that was observed. One often “rejects the
null hypothesis” when the p value is less than 0.05 or 0.01,
corresponding, respectively, to a 5% or 1% chance of
rejecting the null hypothesis when it is true. When the null
hypothesis is rejected, the result is said to be statistically
signi�cant. In estuarine and shelf sea modelling studies,
statistical signi�cance at around the 95% con�dence level is
judged to be acceptable for most practical applications.

A range of statistical indices of model performance has
been developed (e.g., [40–43]). �e widely used Brier skill
score, BSS [38], and Willmott’s dimensionless index of
agreement [44] compare themean square di�erence between
the prediction and observation with the mean square dif-
ference between baseline prediction and observation. For
example, perfect agreement gives a BSS score of 1, and
negative values indicate that predictions are worse than
the baseline value. van Rijn et al. [45] provides an inter-
pretation of BSS values where 0<BSS< 0.3, 0.3<BSS< 0.6,
0.6<BSS< 0.8, and BBB> 8 indicated poor, reasonable/fair,
good, and excellent, respectively. However, it has been
recognised that the larger errors, when squared, overweight
the in�uence of those errors on the sum of squared errors.
�is issue has recently been addressed byWillmott et al. [46]

who present a nontrivial improvement to the earlier index of
agreement recommended for a wide range of model per-
formance applications. Examples of model skill assessments
for estuarine models are given by Sheng and Kim [47] and
Warner et al. [48].

�e scatter index, SI, is the RMSE normalised with the
mean value. In most cases, the scatter index provides a useful
indication of the model performance. However, taking wave
model results as an example, the scatter index may appear to
understate the skill of the model, as it tends to be large in
shelf sea applications. �e reason is that the RMSE of the
signi�cant wave height is normalised with the average sig-
ni�cant wave height, which is usually rather small in shelf sea
regions. For example, an RMSE of 0.25m in the signi�cant
wave height in complex �eld conditions seems reasonable,
but if the mean value is only 0.5m, the scatter index attains
the rather high value of 50%. �e diagnostic model per-
formance indexMPI indicates the degree to which themodel
reproduces the observed changes of the waves. Like the
scatter index, it is de�ned in terms of RMSE values in the
form MPI� 1− (RMSE/RMSC). Here, the de�nition of
RMSC is identical to that of RMSE, except that all Si values
are replaced by the incident Oi values. For a perfect model
(RMSE� 0), the value of the MPI would obviously be 1,
whereas it would be 0 for a model that (erroneously) predicts
no changes (RMSE�RMSC) (cf. [49]).

5. Hydrodynamic Models

5.1. Data Sources. Water-level gauges and pressure sensors
typically provide information on the water level relative to
a de�ned datum at a suitable temporal resolution (typically no
more than 30-minute intervals). Ideally, water level and current
information should be obtained from as many key locations
within the model domain as possible, and speci�cally, in areas
of interest and areas of signi�cant variation. Typically, errors

Table 4: Example statistics to demonstrate the level of agreement between measured/observed data and model prediction.

Quality index Example Formulae

Accuracy Root mean square error RMSE �
��������������
1
Ni
∑

Ni
i�1 (Si −Oi)

2
√

Bias Average bias Bias � ∑
Ni

i�1
1
Ni
(Si −Oi)

2

Correlation
Pearson product-moment coe�cient:

Oi � 1
Ni
∑
Ni

i�1
Oi and Si � 1

Ni
∑
Ni

i�1
Si

R � ∑
Ni
i�1 (Si − Si)(Oi −Oi)���������

∑
Ni
i�1 (Si − Si)

2
√ ���������

∑
Ni
i�1 (Oi −Oi)

2
√

Skill

Brier skill score (BSS): Xp is the postevent condition
predicted by the model, Xm is the measured postevent

condition, and Xb is the preevent condition.
Skill: index of agreement [44], whereX andX are time
series and time average of model and observed values

BSS � %〈
∣∣∣∣Xp −Xm

∣∣∣∣2%〉
%〈|Xb −Xm|2%〉[ ]

Skill � 1− ∑|Xmod −Xobs|2
∑(|Xmod −Xobs|+|Xobs −Xobs|)2

Agreement Scatter index SI �
�����������
1
Ni
∑

Ni
i�1 (Si −Oi)

2
√

1
Ni
∑

Ni
i�1 Oi

× 100
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associated with these kinds of data include (a) incorrect time
references (e.g., GMT/BST), (b) errors in datum corrections
(see below), (c) errors in correctly de.ning the measured data
locations in the model domain, and (d) instrument calibration
error. Problemswith themeasuring device often appear as o7sets
and/or spikes in the measured data. Spikes should be either
removed or substituted with arti.cial data. Interpolation over
large gaps in the data should not be attempted, and alternative
data sources with better temporal cover should be sought.

To de.ne the con.dence limits of the measured data,
a quality review is required. *is may result in the rejection
of some data, or the adoption of other data with stated
caveats. *e more data that are available (depending on
quality, format, and spatial and temporal resolution), the
more reliable the model calibration is likely to be. To
minimise potential uncertainties in model performance and
to optimise model calibration, common misunderstandings
and typical errors and uncertainties in hydrodynamic model
input data are described below along with some suggested
approaches which can aid model setup and calibration.

5.2. Performance Guidelines

5.2.1. Water Level. A model calibration for water level
should include examination of amplitude, phase, and
asymmetry. Speci.cally, the test should look at (a) di7er-
ences in maximum and minimum surface elevations; dif-
ferences in tidal phase, at high and low water; and RMSE
(noting that this is not corrected for bias, and unless the bias
is insigni.cant, this parameter can be di9cult to interpret),
(b) bias, and (c) scatter index (SI). It is recommended that
the minimum-level model performance required for shelf
sea areas is (a) water levels to within ±0.10m (or to within
10% and 15% of spring and neap tidal ranges, resp.) and (b)
timing of high water to within ±15 minutes. For estuaries, it
is recommended that the minimum-level model perfor-
mance required is (a) water levels to within ±0.10m at the
mouth, ±0.30m at the head (or to within 10% and 15% of
spring and neap tidal ranges, resp.) and (b) timing of high
water at the mouth to within ±15min, ±25min at the head.

5.2.2. Current Speed. In 2D depth-average hydrodynamic
models, current speed predictions should be examined with
respect to amplitude, phase, direction, and asymmetry. Spe-
ci.cally, the test should look at (a) di7erences in peak 6ow
speeds (ebb and 6ood tides), (b) mean 6ow direction, (c)
RMSE, (d) bias, and (e) SI. However, appropriate depth-
average current speed values must normally be derived from
either point measurements at some reference height in the
water column or measured vertical current pro.le data (e.g.,
ADCP data). In both cases, depth-average current speed can be
calculated using the 1/7 power law (e.g., [50], p. 49) or similar.
Normally for 3D hydrodynamic models, ADCP data can be
used directly for calibration at one or more levels in the model.
However, if the model layers are large in vertical extent, they
may span one of more ADCP measurement bins, and the 1/7
power law or similar must be applied to interpolate an ap-
propriate current speed value for the model layer.

It is recommended here that predicted current speeds
from 2D and 3D hydrodynamic models in shelf sea areas and
estuaries be less than ±0.20m/s (or ±10% to 20%) of the
measured speed. To express the accuracy of tidal current
speed predictions by models, Cefas (www.cefas.defra.gov.
uk/media/.../report-on-.rst-asmo-workshop.pdf, accessed
March 2014) expresses performance in terms of error in the
maximum predicted velocity so that errors of< 0.05m/s,
< 0.1m/s, < 0.2m/s, and > 0.2m/s express very good, good,
moderate, and poor performance, respectively.

Results from statistical analyses of model performance need
to be interpreted with care. *e RMSE value provides a quan-
titative measure of how good the model .ts the data based on
the mean of the data. However, if there is signi.cant bias in the
data, then the goodness of this .t is not an appropriate statistic
to use. It is recommended here that bias<0.2, SI<0.5, and
RMSE<0.2 demonstrate a statistically signi.cant .t.

5.2.3. Current Direction. Since current direction is derived
from vector quantities, it cannot be treated in the same way as
other parameters (e.g., speed). However, the accuracy of pre-
dicted current direction can be examined using time-series plots
and quanti.ed, for example, using bias and SI statistics. To
remove ambiguity from current direction data, the following
steps are recommended: (a) detect whether the absolute dif-
ference between the directions is greater than 180°; (b) if it is
greater than 180°, then add 360° to the lesser direction before
subtracting the greater direction; or (c) if it is less than 180°, then
calculate the absolute di7erence between the directions. *is
method returns an absolute (positive) value describing the dif-
ference in directions which will be always less than 180°. For
practical applications, it is suggested that preserving the sign
(negative or positive) of the direction di7erence is not necessary,
and it prevents a meaningful mean bias to be calculated from
those di7erences. Once the absolute di7erence between the di-
rections has been calculated, it is possible to calculate the bias. For
shelf sea areas and estuaries, the minimum-level model per-
formance is recommended here to be±10° and±15°, respectively.

5.2.4. Bed Shear Stress. Except for some specialist research
instruments, for example, a .eld-deployable shear plate
prototype reported by Oebius [51] and laboratory-based
shear plates reported by Grass et al. [52] and Rankin and
Hires [53], no reliable direct way of measuring the bed shear
stress is yet available. For most practical applications, the use
of measurements to calibrate/validate bed shear stress values
predicted by a model is therefore not possible.

When considering bed shear stress in the context of
hydrodynamic and/or sediment transport, it is critically
important to distinguish between the skin friction compo-
nent of total bed shear stress responsible for sediment
mobilisation and transport and the form drag imposed on
the 6ow by pressure losses in the wake of bed obstacles such
as bedforms. Most models predict the total bed shear stress
using the quadratic stress law. *is relates a depth-average
6ow speed to stress via a drag coe9cient that characterises
the hydrodynamic “roughness” of the bed. For skin friction
bed shear stress, the roughness parameter expresses the drag
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attributable only to sediment grains. Form drag (in part re-
sponsible for maintaining suspended sediment status) is then
obtained through a partitioning approach. It is very important
to understand how a model deals with drag partitioning and to
use any resulting estimate of bed shear stress correctly. Soulsby
[50] provides a clear account of bed shear stress components
and their calculation and application.

When dealing with subgrid-scale bedforms, it is normal to
parameterise bed roughness using a friction coe�cient or an
equivalent grain roughness. �is can vary spatially (and in
some cases temporally) and provides ameans ofmoderating or
enhancing the local bed shear stress and thereby “tune” the
model against observational �ow data. �is needs to be un-
dertaken with care to avoid implementation of unrealistic
friction coe�cient values, and guidance on appropriate friction
coe�cients should be sought (e.g., software Guides for the
model being used; Soulsby [50]). To avoid signi�cant over- or
underestimation of sediment transport, it is recommended
that bed shear stress requires estimation to within ±0.05N/m2

for shelf sea and estuarine models. However, small errors in
bed shear stress can be compounded over time, especially in
morphological models. It is also noted that bed shear stress
data can be usefully postprocessed to obtain estimates of
bedforms and bed load and suspended transport using a range
of empirical formulae [50]. However, these estimates are
constrained by the data used to generate them and the accuracy
of the algorithms used to estimate hydrodynamic stresses.

A simple illustration of a depth-average hydrodynamic
model calibration using bed roughness is shown in Figure 4.
Figure 4(a) shows time series of measured and predicted
current speed at locations P1 and P2 in the mouth of a small
tidal inlet. In this initial model run, a drag coe�cient, Cd,
value of 0.035 is assumed, leading to an underestimation of
the current speed by the model. Reference to available bed
sediment data suggests that a Cd value of 0.02 is more ap-
propriate resulting in much better agreement between the
measured and predicted current speed values (Figure 4(b)).
However, it is also noted recently that erosion had occurred
in the inlet since the last bathymetric survey. Iterative ad-
justments to the water depth in a subsequent series of model
runs �nally resulted in very good agreement between the
measured and predicted current speed (Figure 4(c)). �e
lowering of the bed of the inlet channel by 0.45m was
subsequently con�rmed by a repeat bathymetric survey
undertaken after the modelling was completed.

As a further example of calibration targets to achieve,
required hydrodynamic model performance statistics for
estuarine �ooding models from Defra/EA [3] are shown in
Table 5. �e statistics include RMSE for storm surge ele-
vation (hsurge), RMSE for high water levels (hmax), the tol-
erances for predicted peak water levels, RMSE for �ow
velocity (U), the tolerances for predicted �uvial inputs (Q),
the �ood area required to be predicted correctly for two or
more historical �oods (A), and the predicted �ood depth
error (derr). While these statistical tests are speci�c to the
�ooding application and are exacting since �ood predictions
must be accurate, they are typical of the model performance
criteria that should be used for all shelf sea and estuarine
models.

6. Wave Models

6.1. Data Sources. Typically, there are four sources of data
available for use in wave model calibration: visual obser-
vations; buoys and platforms; satellites; and numerical
models driven by surface wind �elds. Each has a di�erent
level of con�dence and uncertainty, and good accounts of
wave measurement and data are given by Steele et al. [54],
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Figure 4: Simple examples of a hydrodynamic model calibration:
(a) measured (P1 and P2) and predicted (M1 andM2) water levels at
two locations with Cd set to 0.0035 in the model; (b) the same
plot as (a) with Cd � 0.002; and (c) the same plot as (a) with the
bathymetry corrected by +0.45m.
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Komen et al. [55], Krogstad et al. [56, 57], and Lindroth and
Leijon [58].

6.1.1. Visual Observations. Visual observations of wave
parameters (height, period, and direction) taken from ships
of opportunity are sometimes available for long periods
(decades). *is data source has clear limitations and many
potential errors, particularly in stormy weather (cf. [59]).
Other signi.cant limitations include the number of obser-
vations and extent of data coverage which is typically limited
to shipping lanes. However, in the past, there are many areas
of the world where wave measurements by other means are
absent and visual observations may be the only source of
information.

6.1.2. Buoy and Platforms. Surface-following buoys are the
most common instrument used to measure waves, with
deployment depths between 10m and a few hundred metres
(cf. [56, 57, 60]). *ere is a large variation in the quality of
the data available from these devices depending on their age
and type. Typically, the latest devices can capture an estimate
of the main wave parameters (signi.cant wave height, Hs,
mean and peak period, Tm and Tp, and the related directional
information such as mean direction, mean directional
spread, kurtosis, and skewness for the full 2D spectrum).
Typically, the measurements are taken at 1-hour intervals.
Wave-measuring buoys are accurate instruments, and the
related error forHs is usually only a few percent. Uncertainty
occurs due to sampling variability and resolution of the
frequency distribution (peak periods). In the high Hs range,
the buoys tend to “slip” around the highest crests. In doing
so, this introduces a negative bias in estimation of the higher
wave height values.

6.1.3. Remote Sensing. Satellite altimeter and scatterometer
data are now available from a range of platforms (e.g., ERS2,
ASCAT METOP-A, Krogstad and Barstow [61]). *e al-
timeter provides information on wind speed and wave
height, and the scatterometer provides a wider band of
information on wave and wind parameters. However, in
areas of complex geometry (typically shelf sea and estuarine
areas), satellite data usually provide a poor estimate of sea
state due to the strong spatial gradients which cannot be well
resolved by the satellite sensors. Other limitations include
poor temporal coverage due to satellite overpass frequency
which can prevent acquisition of high-frequency time series

for a chosen location. However, developments reported by
Young et al. [62] demonstrate clearly that useful global wave
data sets can now be assembled using data from a range of
remote sensing platforms and that these data have high
utility in regions of the world where wave data are scarce.
Wave data can also be obtained using HF (e.g., [63]) and
X-band (e.g., [64]) radar systems and through the use of
video (cf. Argus Video [65]). Although these approaches
require some calibration, each has a capability of measuring
nearshore waves and can help calibrate and validate wave
models in complex regions where re6ection, refraction, and
di7usion processes may be present.

6.2. Performance Guidelines. Typically, for waves, the re-
quired model performance at the calibration and validation
stage is judged to be acceptable if the wave model outputs are
biased to within (a) ±10% of the mean observed height, (b)
±20% of the mean observed period, and (c) ±15° of the mean
observed direction. Considering design, appraisal, and
strategy applications, Table 6 provides practical wave model
performance guidelines concerned with model resolution,
minimum record (or hindcast) lengths required to de.ne
extreme wave statistics, and RMSE values for Hm0 and av-
erage peak Hm0 [3].

*ese wave model performance statistics are intended
only a guide, and often more stringent agreement between
observed and modelled data may be required. Equally, these
criteria might be too exacting for all regions of the modelled
area. Meeting these criteria for at least 90% of positions/time
combinations is likely to be a less stringent and acceptable
criterion in most circumstances. In cases where waves from
more than one direction are present simultaneously (e.g.,
swell and wind sea), mean wave direction is meaningless and
reference must be made to the directional wave spectra to
characterise the observed and modelled wave .eld. Scatter
plots and correlation statistics are also useful to demonstrate
agreement between measured and modelled wave direction
for multidirectional sea states. It is also helpful in some
circumstances to examine directional wave spreading since
many third-generation spectral wave models tend to un-
derestimate this parameter (cf. [66, 67]).

Examples of useful plots that help assess wave model
performance are shown in Figure 5 which shows measured
Hs, Tp, and direction data from the SWAN model [68] and
measured values from a Directional Waverider buoy. Good
agreement between the model and the observations is
demonstrated. Figure 6(a) shows a scatter diagram of

Table 5: Model performance statistics for 6ood studies in estuaries including storm surge elevation (hsurge), high water levels (hmax),
predicted peak water levels, 6ow velocity (U), predicted 6uvial inputs (Q), 6ood area predicted correctly for two or more historical 6oods
(A), and predicted 6ood depth error (derr) (A � design; B � appraisal; C � strategy; and U � unsatisfactory); from Defra/EA [3].

Type RMSEforhsurge (m) RMSEforhmax (m) Predictedpeakwater level (mm) RMSEforU (m/s) Q (%ofmeasured6ows) A (%) derr (m)
A <0.20 <0.20 ±150 ≤0.1 ±5 >95 ≤0.10
B 0.20 to 0.35 0.20 to 0.25 ±250 ≤0.2 ±10 >90 ≤0.20
C 0.35 to 0.50 <0.30 ±350 ≤0.3 ±15 >80 ≤0.30
U >0.50 >0.30 >350 >0.3 >15 <80 >0.30
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measured and modelled Hs. Here, the line of unity indicates
that the model slightly overestimates Hs. In Figure 6(b),
a peak over threshold (POT) analysis for modelled and
measured Hs data is shown. �ese diagrams both help
identify agreement or otherwise between measured and
modelled wave data, and it is recommended that these visual
checks are used when evaluating wave predictions.

In the case of spectral wave models, it is also helpful to
examine the frequency domain di�erences in the energy
distribution between model and measured spectra.�e same
approach applies to directional wave spectra, noting how-
ever, that it is unusual to have measured wave spectra from
more than one location in the model domain.

7. Sediment Models

Accurately simulating the behaviour of sediments in nu-
merical models presents one of the greatest challenges. �e
principal aim of sediment models is to reproduce the ob-
served spatial and temporal variations in observed erosion
and accretion. Here, guidance is provided for the cali-
bration of numerical models for sand (sediment coarser
than sand (e.g., shingle) cannot be represented reliably
through 2-dimensional modelling) (median grain di-
ameter,D50> 63 µm) and silt/mud (D50< 63 µm). Attention
is �rst given to the essential data required to successfully
calibrate sediment models of estuaries and open shelf sea

environments. �e methods used to measure bed load,
suspended load, and net sediment transport are reviewed
brie�y, drawing attention to potential errors and un-
certainties that must be considered in the model calibration
process [69]. �e issues associated with the calibration of
cohesive, noncohesive, and mixed grain-size sediment
models are then discussed.

It is emphasised from the outset that a primary re-
quirement of all sediment modelling is accurate information
about the physical properties of the sediment (grain-size
distribution, bulk density, porosity, etc.), bedforms (active
and moribund), and the spatial distribution and thickness of
the sediments. Also, sight should not be lost of the fact that
although the physical characteristics of sediments may be
well expressed, biological mediation and the behaviour of
some cohesive sediment remain di�cult to parameterise in
models [70], and although some of these problems can be
overcome using in situ measurements (e.g., �eld �umes
[71]), these are costly to deploy and are not normally un-
dertaken in practice.

7.1. Data Sources. Obtaining suitable data of su�cient
quality for the calibration of a sediment model is a widely
recognised challenge [72]. In addition to sediment data
obtained directly from in situ water and bed samples (grabs),
typically, there are two primary types of data which are

Table 6: Model performance statistics for wave models (A � design; B � appraisal; C � strategy; and U � unsatisfactory); from Defra/EA [3].

Type Model resolution (km) Record length (years) RMSE,Hm0 (m) RMSE average peak,Hm0 (m)
A ≤12 ≥30 ≤0.4 ≤0.10
B ≤12 ≥20 ≤0.5 ≤0.12
C ≤12 ≥10 ≤0.6 ≤0.15
U >12 <10 >0.6 >0.15
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required for the calibration of sediment models: (a) mea-
surements of the sediment transport �ux (bed load and
suspended load) over time scales of a few tidal cycles and (b)
measurements of bed-level changes attributable to local
erosion and accretion to provide information on net sedi-
ment transport over a period of weeks and months. A
comprehensive review of instrumentation used to measure
sediment transport is given by Williams [73].

7.1.1. Measuring Bed Load and Bedforms. In estuaries and
shelf sea environments, bed load is the dominant mode of
sediment transport for sand. Sediment traps, frequently used
to measure bed load in rivers, have been deployed in es-
tuarine and shelf sea environments with mixed success (cf.
[74]). �e Arnhem, Helley–Smith, and Delft Nile samplers
are the most commonly used devices owing to their ro-
bustness and ease of handling in the �eld. However, their
accuracy depends on the number of samples collected which
may be restricted by high analysis costs.

As an alternative to traps, bed load is sometimes esti-
mated using �uorescent tracers (e.g., [32]) and less fre-
quently using magnetic tracers (e.g., [75]). �e method

involves deploying a quantity of a material at a known lo-
cation and subsequent sampling campaigns on a grid of
sample positions to determine the dispersion of the material.
Both approaches use materials with the same dynamic be-
haviour as the natural sediments and with su�ciently dis-
tinct characteristics to make it easily detectable in very
low concentrations (http://www.partrac.com/ (accessed on
1 August 2014)). Sediment tracing techniques have values in
studies examining the sediment �ux and have been used
e�ectively to study dredging impacts and disruptions to
sediment supply attributable to structures. A comprehensive
review of tracing techniques and options is given by Black
et al. [76].

Passive acoustic techniques using hydrophones to record
the sediment-generated noise, SGN, arising during bed load
transport of coarse sediments have been used (e.g., [77]) but
to be e�ective, they require objective calibration which can
be very costly. However, improvements to processing
software and computing power now allow automated
analysis of video images to detect particle displacements at
subsecond temporal resolution for the entire �eld of view
and the visual analysis of bed load images in providing useful
data. Attempts to quantify bed load have also exploited the
bottom tracking feature of ADCPs in combination with
conventional pressure di�erence samplers. Together, these
instruments can be used to determine the bed load transport
velocity and bed load transport rate, respectively (e.g., [78,
79]). Rates of bed load transport have also been inferred from
rates of bed form migration measured using rotary sonar
devices (e.g., [80, 81]). At a much larger scale, remote sensing
techniques have been applied to link large bedform migra-
tions with bed load sediment transport rates (e.g., [82]).

7.1.2. Measuring Suspended Load. Only very �ne sand, silt,
and mud are transported in suspension in estuarine and
shelf sea environments. In the simplest approach used to
quantify the suspended load, water samples are collected in
situ to determine the concentration of suspended particulate
matter (SPM) and the grain-size distribution either at the
surface or at a speci�ed depth in the water column using, for
example, triggered water bottles or pump sampling (cf. [83,
84]). Samples can be collected either at discrete times or at
set times throughout a tidal cycle. �ere is a low-to-
moderate level of certainty in the resultant SPM data
owing to potential errors in the way the water samples are
collected, the short temporal sampling period, and the
presence of varying quantities of organic particles. �e
deployment of colocated current meters enables the sedi-
ment �ux to be determined, which in turn can provide useful
information on sediment resuspension and settling velocity.

Turbidity meters can provide continuous or discrete
measure of SPM concentrations by detecting the attenuation
of light passing through the instrument’s sampling volume.
�ey are best suited to suspensions of silt and clay-size
particles. Self-logging turbidity meters are capable of re-
cording accurately turbidity at a single depth within the
water column for long periods [85]. Turbidity data are also
obtained using a CTD probe (conductivity, temperature, and
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analysis of Hs between modelled and measured wave data.
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depth) equipped with a turbidity sensor. In estuaries and
shelf sea locations, CTDs are normally lowered and raised
through the water column for a period of 12.5 hours to
provide information on the temporal changes in the SSC
pro.le during a tidal cycle. However, there is the potential
for the sensors to become fouled over time giving erroneous
data, especially if the sensor becomes exposed during low
water and the optical systems are compromised by sediment
and/or biological .lms, leading to unrealistically high tur-
bidity values. In addition, the gain setting (sensitivity of the
instrument) must be correctly adjusted to accommodate the
range of SPM concentrations in the area. For example,
turbidity measurements could reach the upper limit of the
instrument if the gain setting is too low or barely register
turbidity if the gain setting is too high. *is problem can be
overcome using an instrument with a logarithmic response
which allows measurements of SPM spanning several orders
of magnitude. Although overcoming the problems associ-
ated with saturation and aliasing, the overall instrument
precision is reduced as a result.

Optical turbidity instruments are calibrated using pri-
mary solutions such as formazin, and turbidity is expressed
in formazin turbidity units (FTU) or nephelometric tur-
bidity units (NTU). *e main problem with this approach
arises when conversions are made between FTU (or NTU)
and in situ water samples where di7erences can be as large as
±200% [86]. Furthermore, the material in suspensionmay be
a complex mixture of organic and inorganic particles which
adds further complexity to the conversion between FTU and
SSC. Calibration is therefore required to get the concen-
tration of SPM into meaningful units for sediment mod-
elling purposes (e.g., mg/l). *is can be achieved either by
collecting water samples at speci.c times to calibrate the
measurements or by calibrating the instrument in laboratory
conditions for a range of concentrations before and after
deployment. It is important that calibration is performed
over an applicable range of SPM concentration values.
However, there are additional problems attributable to
6occulation when measuring muddy sediments. In these
cases, water sampling can destroy the delicate structures, and
changes in temperature/salinity can enhance or reduce
6occulation potential. Both factors can lead to errors, and
thus, these kinds of data must be treated with caution in the
context of model calibration [87].

Optical backscatter sensors (OBSs) measure turbidity
and suspended solids concentrations by detecting infrared
light scattered from SPM (cf. [88, 89]). OBS instruments are
best suited to suspensions of silt and clay-size particles. *e
response of the OBS sensors strongly depends on the size,
composition, and shape of the suspended particles, and
calibration like that used for turbidity sensors is required to
obtain SPM concentration data. OBS instruments are subject
to the same problems with biofouling and other optical
contamination as turbidity sensors (e.g., [90]). SSC pro.les
can be obtained using vertical arrays of OBS. Further in-
formation is given by, for example, Kineke and Sternberg
[91], Hoitink and Hoekstra [92], and Boss et al. [93].

Aerial and satellite remote sensing imagery can be used
in some circumstances to indicate the advection rate and

direction of suspended sediment plumes in the surface and
near-surface layers of the water column. Remote sensing
algorithms have been widely used to extract information on
suspended sediment concentrations from multispectral
sensor data (e.g., [94, 95]).

For sand-size particles, the use of multiple-frequency
acoustic backscatter (ABS) to measure the concentration of
suspended sediment is becoming more widespread. In-
version techniques can be applied to obtain suspended
sediment concentration (SSC) pro.les directly (e.g., [96]),
and information about the grain size in suspension can also
be extracted (e.g., [97]). Typically, these instruments mea-
sure SSC at intervals of 1 cm up to a fewmetres above the bed
where the bulk of suspended sediment is present. SSC
pro.les can also be derived from ADCP data, albeit with less
spatial resolution, using a similar acoustic inversion tech-
nique (e.g., [98]). While one or more samples are required
for calibration and measurements are spatially averaged, the
instrument can provide useful SSC pro.le information over
extended periods.

7.1.3. Estimations of Net Sediment Transport. In many
modelling studies, the required outcome concerns the
prediction of net sediment transport over periods of days,
weeks, or months. *ere are several useful data that can
assist the model calibration process for this aim. In areas
where frequent (e.g., annual) maintenance dredging is un-
dertaken, information is likely to be available to describe the
frequency and volumes of sediment removed. *ese data
can be used to de.ne changes in bed levels (e.g., accretion
amounts and rates over known periods), and through
comparisons between predicted accretion rates and rates
derived from dredging data, it may be possible to calibrate
a sediment model, albeit with limited accuracy (e.g., [99]). In
addition, dredging volume data can also be used to provide
an indication of the interannual variability of accretion and
guide the modelling process. However, owing to sediment
loss during the dredging activities and to uncertainty about
the bulk density of the material removed, these measure-
ments may not be as accurate as might be desired and should
only be used to provide an indication of the volumes of
sediment accreting in the area. It is not possible to attribute
accretion to a mode of transport, and thus, sediment for-
mulae that predict total sediment transport must be used.

Several acoustic systems have been developed to image
the bed at a large scale including echo sounding devices and
side-scan and multibeam sonar (e.g., [100–102]). *ese data
can be used to determine net sediment budgets and
transport pathways and assist model calibration (e.g., [103,
104]). Repeat subtidal bathymetric surveys can provide
valuable information on bedform mobility from which net
sediment responses can be determined (e.g., [105]). At the
scale of estuaries, Mason et al. [77] illustrate how areas and
volumes of sediment accretion and erosion can be estimated
using the waterline method employing remote sensing and
hydrodynamic modelling. Recent advances in LiDAR
now make it possible to penetrate water to depths exceeding
10m provided water clarity is good enough and thus allow
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subtidal survey opportunities (e.g., [106]). Monitoring of
large-scale changes in morphology and/or bathymetry in
coastal and estuarine environments brought about by sedi-
ment mobilisation, transport, and accretion can also now be
measured routinely with systems such as ARGUS (http:
//www.planetargus.com/ (accessed on 1 August 2014)) and
X-band radar (http://www.oceanwaves.de/ (accessed on
1 August 2014)) (e.g., [107]). Although remote sensing would
never be selected to generate a primary bathymetric data set,
it has been used in situations where monitoring of rapid
bathymetric changes may be required (e.g., following beach
nourishments, breaching, etc). Bathymetric and topographic
survey data are obtained at irregularly spaced locations. To
make the data usable in a numericalmodel, it is necessary to use
an interpolation routine to transform the data onto a grid of
regularly spaced data points. Care must be taken to select the
most appropriate interpolationmethod as any error will impact
on calculations of change in bathymetry and topography.

LiDAR data are especially useful for intertidal areas.
Although spatial positioning is accurate (typically ±5 cm),
the vertical accuracy is at best ±20 cm. Furthermore,
standing water on the beach can result in spurious data, and
signi.cant postprocessing may be required. Although the
use of LiDAR to determine accurate accretion and erosion
rates is not recommended, it does provide extensive (and
rapid) spatial cover which may prove to be useful in several
applications. In some instances, an assessment of changes in
beach topography might be enhanced through reference to
.xed, identi.able structures (e.g., quay walls and engi-
neering structures) which can be used to calibrate repeat
surveys.

7.2. Sediment Transport Models. Shelf sea and estuarine
models normally provide output de.ning the predicted
cumulative erosion/sedimentation for a stated bulk density
giving the cumulative change in bed level over the model
period. Total sand transport is usually expressed as a net
value over a speci.ed period, allowing transport vectors to be
plotted which may be comparable with information directly
available from the literature.

A wide range of sediment transport formulae are
available to predict bed load transport, suspended load
transport, and total load transport of noncohesive and co-
hesive sediments (e.g., [108]). All are derived to represent the
best .t to empirical data sets derived in the laboratory or in
some cases from the .eld. *e sediment calibration data
available will determine the accuracy of the model and limit
how much validation is possible. Typically, a sediment
model will be calibrated using SSC data, with validation
utilising measured sedimentation rates (e.g., [109]). It is
important to keep in mind that the sediment transport
model is driven by modelled hydrodynamics and that highly
nonlinear relationships exist between bed shear stress, 6ow
turbulence, and sediment mobilisation, transport, and ac-
cretion. *us, any limitation with the initial hydrodynamic
calibration could impact signi.cantly on the sediment
model. It is therefore critically important to obtain the best
hydrodynamic calibration possible.

When modelling sediment transport, it is important to
recognise the heterogeneity of the seabed and the homo-
geneity of most sediment transport models. It is therefore
essential that roughness maps previously described are used
to characterise as accurately as possible the physical prop-
erties of the sediments (grain roughness) and the mor-
phology of the bed (form drag). It should be remembered
when interpreting model outputs that, since sediment
transport formulae are empirical and are based on a limited
amount of calibration data from laboratory and/or .eld
studies, the prediction of sediment responses to hydrody-
namic forcing is at best limited to accuracy of no more than
a factor of two ([110–112]).

7.2.1. Sediment Properties. As the physical and dynamic
properties of noncohesive sediments are less complex, the
amount of information needed to setup and calibrate sand
transport models is less than that required for mud. In the
absence of measurements, the speci.c density, porosity, and
bulk density for quartz sand are assumed to be 2650 kg/m3,
0.45 kg/m3, and 1460 kg/m3, respectively. *e median grain
diameter (D50) is normally measured using grain-size analysis
of samples or published data (e.g., BGS (http://www.bgs.ac.
uk/discoverymetadata/13605549.html)). While the spatial
distribution of sand-sized sediment and information on the
depth of any deposit is helpful, it is rarely available, leading to
ambiguity about sediment source limitations. Information
about bedforms is available either from observations de-
scribed above or generated through theoretical equations
linking bedform dimensions with the sediment grain size and
the hydrodynamic regime [50]. *e threshold bed shear
stress, a critical parameter in sediment models de.ning the
bed shear stress required to mobilise the sediments, is nor-
mally calculated using a selected empirical formula (e.g., [50])
and expressed as a Shields parameter.

For cohesive sediment transport models, the following
sediment data are normally required: sediment density;
grain size; settling velocity; and the threshold bed shear
stress for erosion and deposition. If this information cannot
be obtained from in situ measurements and/or analysis of
samples, Whitehouse et al. [113] provide a good account of
formulae for deriving some useful properties of cohesive
sediments. It is common practice to measure “wet” sediment
density in situ using a density probe which can then be
converted to “dry” density (e.g., [113]). To obtain the correct
dry density required by some models, it is recommended
that the porosity factor is changed until the wet density is the
same as the measured density. Typically, porosity values
between 0.75 and 0.98 should be applied for sediments
consolidated for less than 1 year and then 0.25 to 0.75 for
longer periods of consolidation.

Typical settling velocities for mud range from 0.003m/s
to 0.0001m/s and can be calculated based on the grain size (if
known) using empirical formulae (cf. [113]). However,
caution must be exercised when using this approach due to
6occulation, which can increase signi.cantly the size (and
hence settling velocity) of particles in suspension.*ese may
also incorporate organic matter in their matrix, thereby
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a7ecting the density (and possibly reducing the settling
velocity). Furthermore, sampling of suspended sediments in
situ frequently destroys the 6ocs or alters signi.cantly their
physical properties. *ere is no simple solution to this
problem, and modelling assumptions and limitations must
be stated clearly. Although knowledge of mineralogy, sa-
linity, turbulent kinetic energy, and water temperature
makes it possible to calculate the potential 6oc size, this is
further complicated by temporal and spatial variations in
these parameters. It is also noted that many mud models use
the SSC as a parameter for de.ning the settling velocity, not
grain size.

*e critical bed shear stress for erosion, τcrit_E, can be
estimated using the Mitchener et al. [114] formula which
accounts for sediment density. Several methods to measure
τcrit_E exist and comprise laboratory devices to analyse
samples from the .eld and carousel 6umes for .eld de-
ployment [71]. *ese can be very e7ective and allow in-
vestigation of how τcrit_E changes as erosion of a given
sample proceeds (normally increasing). As with most sed-
iment dynamics, extreme care should be exercised when
attempting to parameterise physical properties and pro-
cesses using empirical approaches. *e critical bed shear
stress for deposition, τcrit_D, is frequently used as a calibra-
tion parameter. However, it is highly dependent on the
local conditions. Generally, values between 0.1N/m2 and
0.3N/m2 provide e7ective calibration settings for mud
models. It is important to note that the default value in some
models may not be appropriate for a case (e.g., in Delft3D

τcrit_D� 1000N/m2 and must be changed prior to any model
runs). Examples to guide the use and calibration of cohesive
sediment models are provided by van Kessel et al. [115] and
Carniello et al. [116].

7.3. Performance Guidelines

7.3.1. Noncohesive and Cohesive Sediments: Suspended
Sediments. Sediment model calibration success can be
assessed visually by comparing measured and predicted
average concentrations over a set period, typically a spring-
neap cycle. Example time series of measured water level and
measured and predicted SSC over a period of 8 days are
shown in Figure 7. In this case, SSC is measured continu-
ously using a turbidity instrument. A second example of
model output and SSC calibration data is shown in Figure 8.
In this case, SSC data were obtained fromwater samples. Both
Figures 7 and 8 demonstrate that the general pattern of SSC is
similar for the modelled and measured data. For most ap-
plications, the aim should be to achieve a model calibration of
±20% of the measured average concentrations. In areas where
time series of SSC measurements are available from multiple
sites, a calibration level of ±30% for average SSC atmost of the
sites would be deemed as a good level of calibration. If there
are only discrete values of SSC from water samples (or
a handheld turbidity probe), experience shows that calibra-
tion of only ±40% is achievable since the discrete measure-
ments are subject to higher levels of uncertainty.
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Figure 7: Time series of (a) measured water level and (b) SSC (continuous) and predicted SSC from a calibrated cohesive sediment model.

Advances in Civil Engineering 17



7.3.2. Noncohesive and Cohesive Sediments: Sedimentation.
Provided su�cient good quality data are available, sedi-
mentation rates provide one of the best means of validat-
ing the longer-term performance of sediment models and
provide an integrated view of the net result of modelled
suspended sediments and bed load. Given the complexity of
sediment transport and the errors associated with mea-
surements and empirical sediment transport formulae al-
luded to above, it is normal practice to apply a scaling factor
to the modelled sediment transport rates. In e�ect, this is
a global correction factor to the sediment transport rates
predicted by the model that provides an e�ective means of
matching the model predictions of sedimentation with the
observations.�e scaling factor has no physical meaning and
simply represents many complex physical processes not
present within the model including, for example, biological
and sediment consolidation factors which can signi�cantly
alter the physical properties of the sediment with respect to
mobilisation and transport.

As a general rule, the scaling factor should be less than 5.
Higher values indicate a more signi�cant issue with the
accuracy of the modelling, or with site-speci�c complexity,
that may require a nonstandard approach. In such cases, the
model approximations cannot be relied upon to describe
sedimentation/accretion, and �eld monitoring is recom-
mended to supplement the model de�ciencies.

Dredging data are frequently used as a measure of long-
term sedimentation and are normally expressed as the
volume of sediment removed from an area per year. Al-
though such data are useful, they are frequently complicated
by a poorly de�ned relationship between the dredged vol-
ume and the rarely provided bulk density value which can
give rise to signi�cant errors. Recourse must be made to
estimated bulk density values, and sensitivity analyses
should be used to quantify sedimentation for a plausible
range of values. When validating a model using dredging
data, the volume of sediment accumulation predicted by the
model (normally over a 15-day spring-neap cycle) would
normally be scaled to match as closely as possible the
measurements. In recognition of the many sources of errors

and uncertainty, a model predicting the dredged volumes to
within 50% of the measured rates is normally deemed to be
satisfactory for most practical applications. For example, in
study of the Humber, the modelled sedimentation volume
was 2,180,000m3/yr, while the average volume of sediment
dredged was 1,830,000m3/yr, with the values ranging from
790,000m3/yr to 3,915,000m3/yr over a 5-year period (Mott
MacDonald, per. com.).

8. Morphological Models

Morphological modelling in estuarine and coastal envi-
ronments is challenging, and useful description of the range
of approaches employed is provided by Roelvink [117]. �e
primary limitation to the accuracy of morphological models
concerns the length of time over which the model is run,
with results from long runs (e.g., monthly–decadal) likely to
deviate signi�cantly from reality [118, 119].

From the outset, it is very important to establish
a conceptual understanding of sediment transport and
historical morphological changes in each study area before
attempting a morphological model. �is must draw together
existing evidence and provide a qualitative description of the
process controls and how the morphology of the system
responds to these drivers. For long-term assessments of
morphology, this also requires consideration of climate
change factors. A conceptual understanding can provide the
hypothesis (e.g., sources and sinks) with which to test the
performance of the model and to provide some guidance on
expected magnitudes and directions of sediment transport
and the associated morphological changes.

�e largest constraint to calibrating morphological
models is the availability of high-quality data sets that ad-
equately describe the model parameters over a su�cient
length of time. In an assessment of data requirements by
Splinter et al. [120], it was concluded that (a) calibration of
a seasonally dominated site required longer data sets but was
less sensitive to sampling interval and (b) calibration of
a storm-dominated site required shorter and more fre-
quently sampled data sets. Most studies show that mor-
phological calibrations that are based on short observational
records (i.e.,< one year) are not robust. To determine initial
estimates of calibration coe�cients and to hindcast short-
term (1–5 years) shoreline variability, Splinter et al. [120]
recommend monthly monitoring programs for at least two
years. For longer-term predictions of morphology, longer
data sets are required to improve the performance of the
models.

Morphodynamic models of shelf sea and estuarine en-
vironments usually comprise a controlling programme that
invokes sequentially subroutines predicting hydrodynamics
(e.g., [68, 121, 122]), sediment transport (e.g., [123]), and bed
level (via the sediment continuity equation). �ese are all
then linked via the well-established morphodynamic feed-
back loop (e.g., [124, 125]). Examples of morphological
models include (a) the deterministic process-based model
Delft3d-MOR (e.g., [126]), suitable for short-term mor-
phology predictions, (b) ASMITA (e.g., [127]), a semi-
empirical model using large process-based units which can
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Figure 8: Details of measured water level and SSC (intermittent
samples) and predicted SSC from a calibrated cohesive sediment
model.
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iterate towards an equilibrium condition and predict large-
scale changes in sediment balances (sediment budget) over
medium- to long-term periods, and (c) XBeach, a deter-
ministic process-based model suitable for predicting mor-
phological changes resulting from storm impacts (e.g., [128,
129]). An example of outputs from an XBeach model setup
to predict the impact of a shore-normal groyne is shown in
Figure 9.

However, bed-level changes occur over long time scales
compared with the hydrodynamic forcing, and thus until
recently, owing to computational limitations, shelf sea
morphodynamicmodels have been unable to predict very far
into the future using traditional morphodynamic upscaling
techniques such as the “continuity correction” method. To
overcome this limitation, Lesser et al. [122] and Roelvink
[130] have developed the morphological acceleration factor
(MORFAC) concept to enable morphological predictions to
extend over decadal (e.g., [131]) and centennial [132] time
scales.

Whilst the certainty in predicting morphology cannot be
proven, it may be possible to bound the uncertainty using

sensitivity analysis for key process drivers and to determine
a range of possible outcomes. Where possible, a range of
di7erent morphological modelling approaches should be
applied, and where there is general agreement between
approaches, then it may be possible to draw additional
con.dence from the results using an ensemble of model
outputs.

De.ning what is and what is not a good morphological
model performance depends on the spatial and temporal
scales considered. At a minimum: (a) the observed/measured
sedimentation-erosion patternsmust be broadly in agreement
with the model outputs; (b) contour plots of measured and
computed sedimentation and erosion need to agree as closely
as practicable; (c) predicted volume changes over control
areas must agree as closely as practicable with soundings or
dredging .gures; and (d) the shape, migration, and area
change of measured and computed cross sections are required
to agree.

*e incomplete description of the physics un-
derpinning morphological processes and an imperfect
knowledge of the initial conditions and parameters will
always lead to increasing errors in the model predictions
and limit the ability of shelf sea and estuarine morpho-
dynamic models to accurately predict the future true state
of the environment.

9. Improving Predictions and Reducing
Uncertainty

An alternative emerging approach to address the problem
of model prediction uncertainties involves the application
of data assimilation techniques. *ese techniques keep
model parameters .xed and produce an updated model
state that matches as closely as possible the true state by
combining observational data with model predictions. *is
updated model state is then used to initiate the next model
forecast. However, even if the initial system state can be
described 6awlessly, model parameters simplify the
physical processes and, by doing so, will result in the
growth of prediction errors. At present, assimilation
methods being developed to improve morphological
forecast reliability are producing encouraging results (e.g.,
[133–137]). For example, ad hoc data assimilation schemes
and techniques using more re.ned heuristic tuning of
model state variables are being used to improve the per-
formance of suspended sediment transport models (e.g.,
[138, 139]).

Two main types of uncertainty pervade morphological
models: (a) scenario uncertainty stems from uncertainty
about the nature of the future weather and weather events
(magnitude and frequency) responsible for driving mor-
phological change and (b) response uncertainty relates to the
uncertainty in predicting how the morphological system will
respond to given forcing conditions. To reduce uncertainty
in morphological model predictions, the ensemble approach
widely adopted by a climate change scientist (e.g., [140]) may
prove to be helpful. *e ensemble modelling approach aims
to address uncertainty arising from two main sources: (a)
incomplete description of the physical processes bringing
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Figure 9: Examples of XBeach model output: (a) baseline ba-
thymetry; (b) baseline erosion/accretion after 8 tidal cycles with
oblique waves; (c) scheme starting bathymetry with a shore-normal
groyne; (d) scheme erosion/accretion after 8 tidal cycles with
oblique waves; and (e) snapshot of tidal and wave-induced 6ows
around the groyne.
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about morphological changes and (b) limited computing
power that constrains how accurately processes can be par-
ameterised in models. For example, in models of estuaries or
shelf sea systems, subgrid scale processes such as turbulence
can only be represented in a simple way. *ere are two
possible routes to take in ensemble modelling: (a) perturbed-
physics studies investigate how model predictions are a7ected
by the choice of input parameters through running system-
atically a single model with di7erent parameter values and (b)
multimodel studies investigate how predictions di7er between
di7erent models. *e e7ect of the initial conditions of the
model can also be tested using both approaches.

10. Summary and Conclusions

*e modelling guidance presented in the paper has drawn on
published guidelines and on the extensive practical experience
of the authors and their colleagues using a range of model types
in modelling projects concerned with, for example, managed
realignment, environmental impact assessments for o7shore
wind farms, tidal energy, coastal defences, dredging/disposal
sites, beach and estuarine morphodynamics, barrages, and
cooling water discharges. Statistical guidelines to establish
calibration standards for a minimum level of performance for
coastal and estuarine hydrodynamic and sediment models are
summarised in Table 7 and are based in part on the recom-
mendations from Evans [1] and Bartlett [2].

While naturally these guidelines remain open to challenges
from modellers requiring more exacting model performance,
they have been found to deliver models with a good prognostic
performance across a broad range of metrics and recognise the

practical limitations imposed onmodel calibration processes by
the accuracy and the temporal and spatial resolutions of the
available calibration data. *eir use in coastal and estuarine
modelling studies is therefore recommended.

Nomenclature

ADCP: Acoustic Doppler current pro.ler
ADV: Acoustic Doppler velocimeter
AWAC: Acoustic waves and currents
BST: British Summer Time
CD: Chart datum
CTD: Conductivity, temperature, and depth
DHI: Danish hydraulics institute
DGPS: Di7erential global positioning system
DEM: Digital elevation model
D50: Median grain diameter
D90: 90% .ner than
FTU: Formazin turbidity units
GMT: Greenwich Mean Time
HAT: Highest astronomical tide
HF: High frequency
hmax: Maximum wave height
Hm0: Hs computed using spectral analysis
Hs: Signi.cant wave height
JONSWAP: Joint North Sea Wave Project
LAR: Largest astronomical range
LAT: Lowest astronomical tide
LiDAR: Light detection and ranging
MHWN: Mean high water of neap tides
MHWS: Mean high water of spring tides

Table 7: Statistical guidelines to establish calibration standards for a minimum level of performance for coastal and estuarine hydrodynamic
and sediment models. *e table is based in part on the recommendations from Evans [1] and Bartlett [2].

Model predictions RMSE Bias R SI
Bathymetry ±2.5% of the mean water depth <0.10 >0.95 <10%

Water level (coast) ±0.1mor10%of themeasured level (spring tide);±15%
(neap tide) <0.10 >0.95 <10%

Water level (estuary) ±0.1m(mouth);±0.3m(head)or 10%of themeasured
level (spring tide); ±15% (neap tide) <0.20 >0.95 <15%

Water-level phase (coast) ±15 minutes <0.20 >0.90 <20%
Water-level phase (estuary) ±15 minutes (mouth); ±25 minutes (head) <0.25 >0.90 <20%
Average current speed ±0.1m/s or ±10% to 20% of the measured speed <0.10 >0.95 <10%

Peak current speed
Within<0.05m/s (very good), <0.1m/s (good),
<0.2m/s (moderate), and <0.3m/s (poor) of the

measured peak speed
<0.15 >0.90 <15%

Current direction (coastal) ±10° of the measured direction <0.25 >0.90 <20%
Current direction (estuary) ±15° of the measured direction <0.30 >0.90 <20%
Bed shear stress ±10%N/m2 of the measured mean stress <0.10 >0.95 <10%
Wave height ±10% of the measured mean observed height <0.15 >0.95 <10%
Wave period ±20% of the measured mean observed period <0.20 >0.90 <20%
Wave direction ±30% of the measured mean observed direction <0.25 >0.90 <25%
Mean SPM concentration ±20% of the mean measured SPM concentration <0.20 >0.90 <20%
Accretion based on dredge volumes ±50% of the measured dredge volume N/A N/A N/A
Temperature ±0.5° — — —
Salinity ±1 psu — — —
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MLWS: Mean low water of spring tides
MLWN: Mean low water of neap tides
MSL: Mean sea level
N: Newton
Ni: Total number of data
NTU: Nephelometric turbidity units
OBS: Optical backscatter sensors
ODN: Ordnance Datum Newlyn
OSGB: Ordnance Survey Great Britain
Oi: Observed wave data
POT: Peak over threshold
PT: Pressure transducer
Q: Sediment transport
QA: Quality assurance
QMS: Quality management system
R: Pearson product-moment correlation

coe9cient
RMS: Root mean square
SET: Sedimentation erosion table
SI: Scatter index
Si: Simulated or model data
SSC: Suspended sediment concentration
Tm: Mean wave period
Tp: Spectral peak wave period
Tz: Mean wave period
WGS84: *e new world geodetic system
WW3: WaveWatch 3
G: Gram
kg: Kilogram
ks: Equivalent sand roughness
l: Litre
mg: Milligram
s: Second
ε: Rate of turbulent energy dissipation
κ: Rate of turbulent kinetic energy production
μ: Micron (10−6m)
θ: Wave direction (degrees)
θm: Mean wave direction (degrees)
τ: Bed shear stress (N/m2).
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