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Abstract The segmentation of a point cloud is one of
the key technologies for three-dimensional reconstruc-
tion, and the segmentation from three-dimensional views

can facilitate reverse engineering. In this paper, we pro-
pose a self-adaptive segmentation algorithm, which can
address challenges related to the region-growing algo-

rithm, such as inconsistent or excessive segmentation.
Our algorithm consists of two main steps: automat-
ic selection of seed points according to extracted fea-

tures and segmentation of the points using an improved
region-growing algorithm. The benefits of our approach
are the ability to select seed points without user inter-

vention and the reduction of the influence of noise. We
demonstrate the robustness and effectiveness of our al-
gorithm on different point cloud models and the results

show that the segmentation accuracy rate achieves 96%.

Keywords Point Cloud; Segmentation; Seed Point;
Region Growing

1 Introduction

With the increasing use of computer graphics tech-
nology in conjunction with agricultural knowledge, re-

search on the morphological structure and physiolog-
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ical function of plants is entering a digital and visu-
al stage. Digital content creation using real-world da-
ta has gained a great deal of attention over the past

decades [1]. Segmentation is necessary in reverse en-
gineering, where models are reconstructed from points
acquired on the surface of the object by laser scanners.

Additionally, agricultural and forestry plants have dif-
ferent structures with respect to their leaves, branches,
and fruits. Thus, different parts of the models need to

adopt different modeling methods to guarantee the pre-
cision and effectivity of the reconstruction. Segmenting
the point cloud of different structures effectively is one

of the key technologies for high-precision reconstruc-
tion of reverse engineering, and is also useful in other
applications, such as three-dimensional (3D) city mod-

eling, feature recognition, geometry compression, and
industrial site modeling [9]. We propose an algorithm
for segmenting an unorganized set of points of a 3D ob-

ject and dividing the points into several proper subsets
with similar attributes, which mainly include distance,
density, normal, and curvature.

1.1 Related work

In current reverse engineering, a point cloud is typi-

cally divided into regions with similar topological struc-
tures to facilitate surface reconstruction. Existing seg-
mentation methods mainly include edge-based segmen-

tation, surface-based segmentation, and a combination
of these two methods.

In edge-based segmentation, the boundary line con-

nected by boundary points is the fundamental base
for the segmentation. Wang et al. [24] proposed a seg-
mentation algorithm for point cloud models of build-

ings. Their algorithm extracts buildings according to
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the boundary of the point cloud models. The boundary

corresponds to discontinuities in depth or height, and
therefore distinguishes one building from other build-
ings and objects on the ground. However, this method

is very sensitive to noise. Dai et al. [6] developed a seg-
mentation method for a point cloud distributed in the
principal direction of tree models. The algorithm calcu-

lates the principal curvature and direction of the points
from the tree point cloud models and uses this informa-
tion to define an energy function. It then determines

the segmentation of the leaves and branches according
to the defined energy function and obtains the final seg-
mentation results by separating the leaves and branch-

es. The algorithm has a high operating efficiency, but
its application is limited to tree models. Guillaume et
al. [12] calculated the curvature tensor-based triangle

mesh and used it to segment points into surface patch-
es. Then, they adjusted the boundaries to obtain the
segmentation of patch edges.

Surface-based segmentation uses local surface at-
tributes as a similarity measure and merges the points

with similar attributes [20]. It can also provide infor-
mation with abstract expressions, which is useful for
expression and analysis [16]. This method usually per-

forms better than edge-based segmentation. Richtsfeld
et al. [21] proposed a segmentation method using radi-
al reflection to estimate model shapes. The algorithm

mainly extracts the model shapes of surfaces. Rabbani
et al. [20] proposed a constraint-based segmentation al-
gorithm that can extract smooth regions in point cloud

models. However, its segmentation results depend heav-
ily on the parameter settings. Yamauchi et al. [25] pro-
posed mesh segmentation with a mean shift algorith-

m. It is based on normal clustering using an adaptive
mean shift algorithm and performs segmentation using
the region-growing algorithm. The authors algorithm

was originally proposed for the segmentation of images
[5].

The mixed method involves combining methods based
on edges and surfaces. Zhang et al. [28] used a statisti-

cal method to extract feature lines; however, it is affect-
ed by noise and sampling quality. Lari [15] proposed a
segmentation algorithm that can quickly extract linear

features in the point cloud data instead of segment-
ing the entire point cloud data, which leads to some
limitations regarding the segmentation result. Zhana et

al. [27] proposed a segmentation algorithm based on a
color model to segment buildings, but this algorithm
cannot be applied to point cloud models that do not

contain color information, thereby greatly limiting its
application potential. Dorninger et al. [8] proposed a
point cloud segmentation algorithm based on paramet-

ric space. The algorithm clusters point cloud data in

the space defined by the parameterization of the point

cloud. However, this method is difficult to apply to un-
organized point cloud data models. Gomes et al. [11]
used 3D moving fovea to process parts of a scene us-

ing different levels of resolution. This approach can be
used to identify objects in a point cloud. Gelfand et
al. [10] presented shape segmentation using local slip-

page analysis. The shapes are defined as symmetrical,
which includes cylinders, planes, spheres, and surfaces
of revolution. The method merges initial surfaces and is

sensitive to the size of patches. In [17], Marshall et al.
proposed an improved least-squares fitting algorithm,
which can segment the primitives (cylinders, spheres,

and cones) from range data. In [16], Li et al. present-
ed an improved algorithm to fit primitives using global
relations, which can be obtained through constrained

minimization. Pu et al. [19] performed building segmen-
tation and extracted features using surface growing ac-
cording to direction and size derived from convex hull-
s. Ochmann et al. [18] filtered out clutter outside the

building, which was caused by mirrors and windows.
This method obtains point labeling of a buildings room
and is also homogeneous within each room. Kaick et al.

[14] proposed a shape segmentation algorithm, which
can optimize decomposition based on characterization
according to the expected geometry of a shape. Demir

et al. [7] used similarities to segment and detect the
shape of a point cloud.

1.2 Overview and contributions

The aforementioned point cloud segmentation meth-
ods are mostly used for point cloud models or 2.5-

dimensional depth images in specific application sce-
narios. Many of the methods involve a large number of
parameters that have a substantial influence on the final

segmentation result. These segmentation algorithms en-
counter many limitations when applied to unorganized
3D point cloud data. 3D scanners capture unorganized

point cloud data, which makes it difficult to determine
the topological relationship between points. The feature
information corresponding to different parts is vastly d-

ifferent and it is difficult for these algorithms to obtain
an ideal segmentation result. To address the aforemen-
tioned issues, we propose a self-adaptive point cloud

segmentation algorithm to effectively segment different
unordered point cloud data and lay a foundation for the
3D high-precision reconstruction of plants. The com-

plete segmentation algorithm is provided in Algorithm
1. It is mainly divided into two steps: select seed points
and segment the points. The first step mainly consist-

s of the calculation of representativeness and diversity
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values. The second step mainly consists of the calcu-

lation of constraints. The calculations are described in
detail in Sections 3 and 4, respectively.

To summarize, our contributions are as follows:

– Our point cloud segmentation algorithm automati-

cally selects seed points without user intervention,
thereby suitably expressing similarity and guaran-
teeing the consistency of the segmentation results.

– The algorithm can confirm the number of seed points
automatically instead of requiring user interaction.
Our algorithm enhances its adaptability by using an

automatic calculation.
– The algorithm can also rearrange the location of a

noised point, thereby reducing the effect of noise.

– We consider the connectivity of points and use a
semiautomatic region-growing algorithm by reduc-
ing the number of parameters, thereby balancing be-

tween the degree of under- and over-segmentation.

Algorithm 1 Self-adaptive segmentation method

for a point cloud

Inputs: Unorganized set of points U = {pi}i∈I ⊂ R3;
neighbor-finding function Ω().

1: Calculate the initial radius and the points whose total
distance is minimum(See Eq.(1)).

2: while(Ω(x).size) is changed do
3: Calculate neighborhood size α(See Eq.(2)).
4: end while
5: for i=0 to U.size do
6: Calculate density ρRep

i (See Eq.(3)).
7: end for
8: Sort the points in descending order
9: for j=0 to U.size do
10: Calculate distance δDiv

j (See Eq.(4)).

11: Calculate attribute value spAtt
j

12: end for
13: Get seed list SL

14: Get the normal and point connectivity(See Sect.3)
15: Segment the point cloud on the basis of list SL(See Al-

gorithm 2 and Sect.3)

2 Seed point calculation

In reverse engineering, mass research is a bottom-

up method, which starts from the seed points and us-
es the region-growing algorithm. One problem for this
method is the difficulty of selecting seed points. Thus,

we present an algorithm that can automatically select
seed points, which have a high dense density compared
to its surrounding neighbors with lower density and a

large diversity with other seed points.

2.1 Feature calculation

Representativeness values calculation Representativeness
can be measured by a point that has a higher density

than its neighbors. There has been extensive research
on density calculation, but most works require artificial
parameters to set the radius. To reduce user interven-

tion and enhance adaptability, the implementation of
an automatic process is necessary.

The input is an unorganized set of points U = {pi}i∈I ⊂
R3. A bounding box that has the minimal area and en-
closes all the points can be constructed. Then we can
obtain the initial radius as follows:

α0 =
distd
3
√
N

(1)

where distd is the diagonal length of the input U ’s

bounding box and N is the number of points in U . Ad-
ditionally, it is necessary to compute a point mp ∈ U
(see Fig. 1), which has the total minimum distance to

a set of points. It can be obtained as follows:

mp = argmin
∑
i∈I

||mp− pi|| (2)

Fig. 1: Point mp has the total minimum distance

According to the initial neighborhood size and point
mp, the neighborhood size can be computed automati-

cally. It is adapted during iteration processing and can
be described as follows:

αi = αi−1 +∆L

∆L =
1

K

∑
pi∈Nhbdmp

θ||mp− pi||φ(n,npi)npi∑
pi∈Nhbdmp

θ||mp− pi||φ(n,npi)

(3)

where || · || is the L2−norm, n is the normal vector of
the point, Nhbdmp = {pi|pi ∈ U ∧ ||mp − pi|| < αi}
under a neighborhood size αi and K is the number of

points in Nhbd; that is, the points can be obtained from
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fixed distance neighbors (FDNs). For a given point and

radius αi, the FDNs select all the points within the area
(Fig. 2). For an FDN search, the number of neighbors
K changes according to the density. The weight and

spatial functions are defined by

θ (r) = e−r2/(α/2)2 , φ(n,ni) = e
−(

1−nT ni)

1−cos(nT ni)
)
.

Eq. (3) is calculated by iterating until the value of K is

constant. The computation of the radius is suitable for
different models and enhances adaptability.

Fig. 2: Neighbors of a point

After neighborhood size α has been obtained, the
representativeness value, that is, the density of each
point in U , is defined as

ρRep
i = 1 +

∑
j∈I\{i}

θ(||pi − pj ||) (4)

To avoid excessive segmentation, we sort all the data
points in descending order according to density.

Diversity values calculation To ensure the diversity of

the seed points, the diversity can be measured by com-
puting the minimum distance between point pi and oth-
er points with densities that are higher than that of

point pi [22]. We define the diverse distance as follows:

δi
Div = minj<i ||pi − pj || (5)

For the point with the highest density, it can be

noted that

δi
Div = max

i ̸=j
||pi − pj || (6)

The diversity values are similar to those obtained
using the maximum marginal relevance algorithm [2],
which is used to remove points that are similar to those

already selected. The maximum marginal relevance al-
gorithm compares a point with selected points, whereas
we compare a point with all other points, thus our al-

gorithm has higher global diversity.

2.2 Automatic selection of seed points

As mentioned previously, the seed point is charac-

terized by a higher density than its neighbors and by a
relatively large distance from points with other higher
densities to ensure the stability of this process. There-

fore, we determine it using the following formula:

spAtt
i = log ρRep

i + log δDiv
i (7)

We use the aggregation and flame datasets to eval-

uate the performance of selecting seed points in two
dimensions, as shown in Fig. 3. Clearly, the algorith-
m tends to find seed points that are both dense and a

large distance from other seed points. Next, we sort the
points in descending order according to the value of sp.
Then we generate the set of seed points SL.

For the region-growing process, we select one point
in SL as a seed point in the sequence. Until the seed

point operation is complete, the subsequent points are
selected as seed points individually. Our algorithm can
thus adaptively select seed points and automatically set

the number of seed points. It can address the problem of
inconsistent segmentation results caused by the random
selection of seed points.

3 Segmentation

After seed point selection, a semi-automatic region-
growing algorithm is used for segmentation. The region-

growing algorithm is a surface-based method and in-
volves clustering points with similar attributes into the
same region with respect to the seed points.

In the region-growing process, another difficulty is
determining whether the point should be added in a

given region because the decision is susceptible to noise.
To address this difficulty, we consider the connectivity
of points and use an improved normal as a constraint.

3.1 Estimation of normal

Traditionally, the normal is equivalent to the normal
of the least-squares plane of the point and its neighbor-
hood. Using principal component analysis (PCA) [8]

to estimate the normal produces poor approximations
because of the existence of surface discontinuities and
noise. Surface discontinuities are mainly caused by e-

qually weighting the incorrect contributions of points
[3]. Thus, we use an improved constrained nonlinear
least-squares algorithm to adaptively determine the weight

of each point contribution, which can be expressed as
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(a) (b)

(c) (d)

Fig. 3: Identify seed points and illustrate their location in datasets: a the decision of seed points in the aggregation
dataset, colored points represent the seed points; b identify the location of seed points in the aggregation dataset;
c present the seed points in the flame dataset; d the location of seed points in the flame dataset

follows:

argmin
n

1

2

K∑
k=1

e−λ(oTk n)
2

(oTk n)
2

s.t.||n||2 = 1

λ =
|K|
|N |

(8)

where ok = pk−p, pk is the neighbors of point p, n rep-
resents the normal vector and weighting e−λ(oTk n) can

adaptively deflate the contribution of the high orthog-
onality mismatch defined by λ.

If the input point cloud has severe noise, we rear-

range the location of the noised point. We use the fol-
lowing to obtain the location of adjustment:

argmin
p̃,n

1

2

k∑
i=1

e−λ((pk−p̃)Tn)
2

((pk − p̃)Tn)2 (9)

where p̃ is the adjusted location. Figs. 4(a) and (b)
show the adjustment of noise by which we can reduce
the influence of noise. We apply PCA and Eq. (9) to

the mimosa model, which is provided in [13]. The re-
sults are shown in Fig. 4. Comparing Figs. 4(c) and
(d), we observe the improvement of the algorithm in

the estimation of the normal.

3.2 Point Connectivity

To measure connectivity, the adjacency matrix is

constructed, which is obtained from the surface curva-
ture estimation that describes the connectivity for the
unorganized set of points.

Based on FDN information and the curvature, an
adjacency matrix SA is built, and the matrix is sym-

metric. If pi, pj are connected, SAi,j = 1, otherwise
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(a) (b)

(c) (d)

Fig. 4: Results of normal estimation: a nonlinear least-squares algorithm to adjust noise, b adjusted result of noise,

c PCA normal estimation, d nonlinear least squares normal estimation

SAi,j = 0. Considering connectivity, we assume that
if points pi, pj are FDNs of each other and the cur-

vature is less than the mean curvature in FDNs, then
SAi,j = 1.

We now consider computing the curvature using the
method of moment-based surface analysis, which is ro-
bust to noise [4]. For a surface M and neighborhood

ball B with radius α, the zero moment of point p can
be defined as

M0
α(p) :=

∫
Bα(p)∩M

pdp (10)

and the first moments as

M1
α(p) =

∫
Bα(p)∩M

(p−M1
α(p))⊗ (p−M0

α(p))dp

=

∫
Bα(p)∩M

p⊗ pdp−M0
α(p)⊗M0

α(p)

(11)

where q ⊗w = (qiwj)i,j=1,2,3. Because of the definition
of a moment-based surface via local integration, these

moments are robust to noise. Additionally, the curva-
ture at point p can be computed using the zero and first
moments shift:

ς = G(
||M0

α(p)− p||λmin

αλmax
) (12)

where λmin and λmax are the eigenvalues at point p in
the first moment, G = 1

α+K2 with neighborhood size α
obtained from Eq. (3), and K is the number of neigh-

bors.

3.3 Region growing

The basic purpose of the segmentation algorithm
is to subdivide the points into meaningful subsets with

high similarity, while avoiding over- and under-segmentation.
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The details of the segmentation steps are provided in

Algorithm 2 and the implementation process is further
described below.

We denote the current region by the set Rc, the cur-
rent seed region by Sc, and the segment list by SegList.
A seed is chosen from the set of seed points SL.

Algorithm 2 Point cloud segmentation

Inputs: Unorganized set of points U = {pi}i∈I ⊂ R3 ;
Seed List SL = {seed1, seed2, ..., seedn}; neighbor-
finding function Ω(); Symmetric adjacency matrix SA.

Initialize: Region List RL = ∅, Available points list A ←
U

1: while {A} is not empty do
Current region {Rc} ← ∅, Current seeds {Sc} ← the

seed point from SL

2: for i=0 to Sc.size() do
3: Find the neighbors of the current seed point

{Nbhd} ← Ω(Sc[i])
4: for j=0 to Nbhd.size() do
5: Current neighbor pl ← Nbhdj
6: if pl∈A and cos(|⟨βpl

, βseed⟩|) < σ then
7: Remove pl from {A}

pl ← {Rc}
8: if SA(seed, pl) = 1 then
9: pl → Sc
10: end if
11: end if
12: end for
13: end for
14: Add current region to the segment list Rc→ RL

15: end while

The implementation process is as follows:

1. Select the first data point seed1 in SL as the initial
current seed point and insert it into the current seed

region Sc.
2. Obtain the neighbors of the current seed point that

satisfy cos(|⟨βpl
, βseed⟩|) < σ. The neighbor will be

added to the current region Rc. σ represents the
threshold of the normal. As σ → 1, we have fewer
segments, and in the extreme case, all the points

belong to one segment. Similarly, as σ → 0 , we
have more segments, and in the extreme case, each
point belongs to one segment. Thus, σ provides a

balance between over- and under-segmentation.
3. If the points are connected, add the neighbor to the

current seed region Sc and remove it from SL.

4. Delete the current seed point in seed region Sc and
remove the data point from U .

5. Select the next data point in the current seed region

Sc as the current seed point, return to Step (2), and
execute until the seed region Sc is null.

6. Save Rc in the segment list RL. Select the next data

point in SL as the current seed point, return to Step

(1), and end the segmentation when all the points

are segmented.

4 Result and Analysis

To evaluate the segmentation result of our proposed
algorithm, we compare it with the segmentation algo-

rithms of Rabbani et al. [20] and Rodriguez et al. [22].

(1) Segmentation of mimosa

Figure 5 shows the segmentation result for the mi-

mosa point cloud using the three algorithms (the seed
points are circled in the figure).

Comparing parts 1 to 3 in Fig. 5(a) and part 1 in

Fig. 5(c), it is clear that the Rabbani et al. algorithm
[20] excessively segments single leaves, and from part
4, we observe that the algorithm failed to separate the

stems from the leaves of the mimosa and lacked suffi-
cient segmentation strength. Comparing parts 1 and 2
in Fig. 5(b) and part 1 in Fig. 5(c), we observe that

the Rodriguez et al. algorithm [22] also excessively seg-
mented single leaves and insufficiently segmented the
connection parts of the stems and leaves. In Figs. 5(c)

and 5(d), we can observe that each part of the mod-
el has a seed point, which has a higher density and is
far from the other seed points. Moreover, the algorithm

effectively distinguished between stems and leaves. It
obtained accurate resulting segments and avoided the
problems of over- and under-segmentation.

(2) Segmentation of a plant

Comparing part 1 in Figs. 6(a) and (c), we observe

that the Rabbani et al. algorithm [20] excessively seg-
mented single leaves and from part 2, we observe that
the algorithm failed to separate the stems from the

leaves of the plants. Comparing part 1 in Figs. 6(b) and
(c), we note that the Rodriguez et al. algorithm [22] al-
so excessively segmented single leaves. As shown in Fig.

6(d), our algorithm maintained point connectivity and
effectively segmented the stems and leaves.

(3) Segmentation test of maize

Fig. 6 shows the result of segmenting a 3D point
cloud of maize using the three algorithms.

Comparing part 1 in Figs. 7(a) and (c), it is clear

that the Rabbani et al. algorithm [20] resulted in over-
segmentation. Comparing parts 1 and 2 in Fig. 7(c), we
observe that the Rabbani et al. algorithm [20] resulted

in under-segmentation. Comparing part 1 in Figs. 7(b)
and (c), it is clear that the Rodriguez et al. algorithm
[22] also resulted in under-segmentation. Finally, com-

paring part 2 and part 1 in Fig. 7(b), the Rodriguez
et al. algorithm [22] resulted in over-segmentation. Fig.
7(c) shows the segmentation result of our algorithm.

Fig. 7(d) shows that the seed points have a high density
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(a) (b)

(c) (d)

Fig. 5: Results obtained by the different methods of segmenting a single object: a segmentation of Rabbani et al.

[20]; b segmentation of Rodriguez et al. [22]; c our method: eight seed points are selected, the representativeness
and diversity values are shown in d; d the decision of seed points in two dimension

and an obvious division from the other seed points. The

result demonstrates that the seed points are reasonable
and effective. Our method can accurately segment a s-
ingle object from multiple objects.

(4) Segmentation of other models

We conducted further tests on further models. Fig.
8 presents some segmentation results of models that we

obtained from [14] and [26]. We note that the algorithm
is robust when applied to these models and preserves
the connectivity of the point cloud. Although the focus

of our algorithm is the segmentation of a single point
cloud model into meaningful subsets, we also show in
Fig. 9 a test that applied our algorithm to scenes with

multiple models. In the test, we segmented an indoor
scene. We can observe that if the model has obvious d-
ifferences in parts and structures, our method can seg-

ment it effectively.

Fig. 9: Segmented indoor scene with multiple models

(5) Robustness test to noise

We added different levels of Gaussian noise to the
models to evaluate the robustness of our approach. Noise

of 0.3% and 0.6% were added to the models. The result-
ing segments are shown in Fig. 10.

To evaluate the accuracy of clustering, we used the

common metric of purity [23], which calculates the max-
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(a) (b)

(c) (d)

Fig. 6: Comparison of the plant model segmentation results using the three algorithms: a segmentation of Rabbani

et al. [20]; b segmentation of Rodriguez et al. [22]; c our method: five seed points are selected; d the decision of
seed points in two dimension.

(a) (b)

(c) (d)

Fig. 7: Results obtained by the different methods when segmenting a single object from multiple objects: a, b and
c the original model. b; c; and d Rabbani et al. [20], Rodriguez et al. [22], and our method, respectively: six seed

points are selected; d the decision of seed points in two dimension.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m) (n)

(o) (p) (q) (r)

(s) (t) (u) (v)

Fig. 8: Extended evaluation of our method on different objects
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(a) (b)

(c) (d)

Fig. 10: Segmented the models with different levels of Gaussian Noise. a 0.3% noise; b 0.6% noise; c, and d are

the segmentation results with noise

(a) σ = 0.02 (b) σ = 0.1159 (c) σ = 0.4

(d) σ = 0.04 (e) σ = 0.146 (f) σ = 0.32

Fig. 11: Segmented the point cloud using different strengths σ
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Table 1: The purity of point cloud model

S/N Model Data size
Region growing [20] Rodriguez et.al [22] Our method
parameter/purity parameter/purity parameter/purity

1 Mimosa 40551 K=50, ς=0.152, σ=0.1159/0.54 dc=0.015, Num=8/0.78 σ=0.1159/0.97
2 Plant 23096 K=30, ς=0.166, σ=0.146/0.83 dc=0.1456, Num=7/0.86 σ=0.146/0.98
3 Maize 23320 K=30, ς=0.45, σ=0.40/0.77 dc=0.16, Num=6/0.89 σ=0.40/0.97

imum number of points in cluster i corresponding to

class j:

purity(R,C) =
1

N

∑
i

max
j

|regioni ∩ classj | (13)

where R = {region1, region2, · · ·, regioni} represents

the set of segmenting in RL;N stands for the total num-
ber of points in U , and C = {class1, class2, · · ·, classi}
represents the result of segmenting.

In the Rabbani et al. algorithm [20], three param-
eters need to be set: the number of neighbors K, cur-
vature threshold ς, and normal threshold σ. In the Ro-

driguez et al. algorithm [22], two parameters need to
be set: cutoff distance dc and cluster number Num. In
our method, only one parameter needs to be set: nor-

mal threshold σ. We segmented the point cloud using
different strengths. Fig. 11 illustrates the effect of σ. It
is clear that σ provides a balance between over- and

under-segmentation.

For the experiments, Table 1 provides the necessary
data. Fig. 12 shows the purity of the three algorithms.

We observe that our algorithm effectively achieved the
segmentation of the point cloud, with an increase in the
purity of the segmentation of 0.26 and 0.13 compared

with the Rabbani et al. [20] and Rodriguez et al. [22]
algorithms, respectively.

Fig. 12: Quantitative evaluation of the segmentation
algorithm

Fig. 13: Segmented point cloud with a limitation

5 Conclusion and Limitation

(1) Our self-adaptive point cloud segmentation al-
gorithm automatically selects seed points and guaran-

tees the consistency of the segmentation results. The
algorithm reduces both the setting of parameters and
the effect of noise, which can enhance the adaptability

of the algorithm. The only user-specified parameter re-
quired by our method provides a balance between over-
and under-segmentation. According to the test result-

s, our algorithm effectively segmented the point cloud
and achieved a segmentation rate of up to 96%.

(2) However, the algorithm demonstrated better seg-
mentation results for models with obvious differences in

parts and structures, and exhibited a certain limitation
for models with similar structures; the limitation can
be seen in Fig. 13.
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