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Abstract. Solid materials are responsible for many interesting pheno-
mena. There are various types of them such as deformable objects and
granular materials. In this paper, we present an MPM based framework
to simulate the wide range of solid materials. In this framework, solid
mechanics is based on the elastoplastic model, where we use von Mi-
ses criterion for deformable objects, and the Drucker-Prager model with
non-associated plastic flow rules for granular materials. As a result, we
can simulate different kinds of deformation of deformable objects and
sloping failure for granular materials.
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1 Introduction

Solid materials exist everywhere in our daily life, and are responsible for many
interesting phenomena. Deformable objects, such as chewing gum, toothpaste,
and bread dough, undergo elastic and plastic deformation when pressed or stret-
ched. While granular materials, like sand and grain, generate plastic flow and
slope failure under large deformation. The numerical simulation of these different
materials has been a problem of long standing interest and challenge.

Material Point Method (MPM) is gaining popularity in computer graphics
for simulating solid materials, due to its ability to combine the advantage of
both Lagrangian and Eulerian approaches. Recently MPM has been successfully
applied to simulate granular materials such as sand, and has effectively generated
the flow pattern and sloping phenomena [8].

In this work, we show the constitutive models which have been applied in
SPH framework also work well in MPM, sometimes even more stable. We use the
linear model for elastic deformation, and different yield criterion for the plastic
deformation for different materials [1].

In this paper we present an MPM based framework for the wide range of solid
materials including deformable objects and granular materials. We introduce a
modified version of the Drucker-Prager model with non-associated plastic flow
rules for plastic flow of granular materials. The overall framework has a stable
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running performance without the need of extensive tuning, and thus provides a
handy tool for complex solid simulation.

2 Related work

2.1 SPH simulation

SPH shares much with MPM, so here we briefly introduce some SPH based
works. SPH was first applied to simulate elastic solid materials by Libersky and
Petschek [9]. Gray et al. [6] extended this early work with a method for over-
coming the tensile instability that would otherwise lead to numerical fracture.
In these works, the strain in deformed solid materials is updated with velocity
gradient.

To simulate different materials, different yield criterions are used. Cleary
et al. [4] used Von Mises plasticity and linear isotropic hardening to simulate
elastoplastic deformation of deformable objects. Bui et al. [3] implemented the
Drucker-Prager model with associated and non-associated plastic flow rules to
simulate large deformation and post-failure of granular materials, and An et al.
[1] extended this work to 3D cases.

In computer graphics, the strain of solid materials is typically computed by
comparing the current shape of the solid materials with a reference shape. Müller
et al. [10] proposed a particle-based method for elastic, plastic and melting solid
materials, using Green-Saint-Venant strain to determine the stress tensor. To ap-
proximate the Jacobian of the deformation vector field, a Moving Least Squares
approach is employed. Solenthaler et al. [11] use SPH to approximate the Jaco-
bian of the deformation field, which can handle coarsely sampled and coplanar
particle configurations. Becker et al. [2] extended their work with a corotational
approach to correctly handle rotations. The method using the reference shape
can maintain the original shape well, but is unsuitable for applications with
extremely large deformations and topological changes.

Yan et al. [15] presented an SPH framework to uniformly handle the inte-
raction between elastoplastic solid and multiple fluids. This framework uses the
velocity gradient to update the strain, as in [6] and [1]. Here we follow this
method, and extend the solid part with our MPM method.

2.2 MPM simulation

Material Point Method(MPM) [14] has been applied to simulate a wide range of
solid materials in the past two decades. Stomakin et al. [12] used MPM for simu-
lating snow, and introduced a novel MPM method for heat transport, melting
and solidifying materials[13]. Jiang et al. [7] tuned the model in [12] to simulate
granular materials. Later Klár et al. [8] introduced the Drucker-Prager plastic
flow model into MPM to simulate sand dynamics, and Daviet et al. [5] presented
a semi-implicit scheme for granular materials.

Our MPM method is similar to the works mentioned above, but we adopt
the constitutive model which has been used in the SPH based work, showing
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that MPM based method is equally flexible and more stable than SPH for these
applications.

3 Solid Mechanics

The motion of solid materials obeys conservation of mass and conservation of
momentum. Since the conservation of mass is naturally preserved by the particle
representation, we here only focus on the conservation of momentum

Dv

Dt
=

1

ρ
∇ · σ + g (1)

where v is the velocity, ρ is the density, g is the gravity, and σ is the Cauchy
stress tensor determined by the constitutive model of solid materials.

3.1 Elastic Constitutive Model

In this section we briefly introduce the elastic constitutive model used by all the
solid materials in our framework, and leave the plasticity to section 3.2.

The stress tensor σ can be written as

σ = −PI + s (2)

where P is the pressure, and s is the deviatoric stress tensor. According to the
Hookie’s law, the rate of change of s is given by

Ds

Dt
= 2G(ε̇− 1

3
Tr(ε̇)I) (3)

where G is the shear modulus, Tr(·) is the trace operator, and ε̇ is the strain
rate tensor, which is given by

ε̇ =
1

2
(∇v +∇vT )

ω =
1

2
(∇v −∇vT ) (4)

where ω is Jaumannn rotation tensor, which is later used to handle rotations.
The velocity gradient tensor∇v is computed with MPM, which is stated in detail
in section 4.

The pressure P can be computed either in SPH scheme or with the consti-
tutive model and is updated with the constitutive model as

DP

Dt
= −KTr(ε̇) (5)

where K is the bulk modulus.
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Considering the effect of the rotation, the final equation for updating the
stress tensor σ is given as

Dσ

Dt
= 2G(ε̇− 1

3
Tr(ε̇)I) +KTr(ε̇)I + ωσ − σω (6)

It is worth mentioning that this approach can handle only small rotations, and
approaches like those in [2] or [7] are required to handle larger rotations.

3.2 Von Mises Plasticity

When the deformation of deformable objects goes beyond a threshold, the ob-
jects are unable to recover their initial shape, and the irreversible part of the
deformation is called plastic deformation. The criterion to decide when and how
the plastic deformation will take place is called yield criterion.

For deformable objects, the Von Mises criterion is commonly applied:

f(J2) = J2 − Y 2 = 0 (7)

where Y is a parameter determining the yield stress, and J2 is the second prin-
cipal invariant of deviatoric stress tensor s, given by: J2 = 1

2s : s.
Similar to [15], we assume the solid material has an elastic response at first,

calculating a trial stress tensor σtr according to Equation (6), and we can get
the trial deviatoric stress tensor by

str = σtr −
1

3
Tr(σtr)I (8)

If f(J2) > 0, then yield happens, and we update s as:

s = str

√
Y

J2
(9)

Then the stress tensor σ is calculated by

σ = s+
1

3
Tr(σtr)I (10)

3.3 Drucker-Prager Model

For granular materials, we use the Drucker-Prager model with non-associated
plastic flow rules here. As in [1], the yield condition f(I1, J2) and plastic potential
function g(I1, J2) have the following forms, respectively

f(I1, J2) =
√
J2 + αφI1 − kc = 0 (11)

g(I1, J2) =
√
J2 + αψI1 − C (12)

where I1 and J2 are, respectively, the first and second invariants of the stress
tensor σ; C is an arbitrary constant; αφ and kc are Drucker-Prager’s constants,
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which are related to the Coulomb’s material constants c (cohesion) and φ (inter-
nal friction); αψ has the same expression as αφ and is related to the dilatancy
angle ψ. These are given as

αφ =
tanφ√

9 + 12tan2φ
kc =

3c√
9 + 12tan2φ

αψ =
tanψ√

9 + 12tan2ψ
(13)

The stress-strain relationship is given by

Dσ

Dt
= 2G(ε̇− 1

3
Tr(ε̇)I) +Kε̇+ ωσ − σω

− λ̇(3αψKI +
G√
J2
s) (14)

where λ̇ is the rate of change of the plastic multiplier

λ̇ =


3αφKTr(ε̇) + (G/

√
J2)s : ε̇

9αφαψK +G
f(I1, J2) > 0

0 f(I1, J2) ≤ 0

(15)

4 Material Point Method

In MPM particles (material points) are used to track mass, momentum and
stress. Specifically, particle p holds position xp, velocity vp, mass mp, and stress
σ. The Lagrangian treatment of these quantities makes the advance step fai-
rly simple. To compute the spatial derivatives of velocity and stress, a regular
background Eulerian grid is used.

In each timestep, we first transfer the mass and momentum from particles
to the grid, and we compute the velocity gradient at the particles with the grid
information. Then we can update the stress on the particles. The forces on grid
nodes are computed, and the velocites of the grid nodes are updated. Finally
the updated velocity is transferred back to the particles.

4.1 Interpolation scheme

To transfer the quantities of particles to the grid, we use a shape function defined
as

Nh
i (xp) =

{
1
8 (1 +NxNIx)(1 +NyNIy)(1 +NzNIz) , I ∈ {Np}
0 , otherwise

(16)

where Nx = (Nx, Ny, Nz) are the natural coordinates of the evaluation position
xp, N I = (NIx, NIy, NIz) are the natural coordinates of the grid node, and
{Np} are the eight nodes of the grid cell containing xp.
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The definition of the natural coordinates is given as

Nx =
2(xp − xc)

h
(17)

where xp is the evaluation position, h is the grid spacing, and xc is the position
of the center of the cell where xp lies. Thus the natural coordinate of a position
inside the cell ranges from (-1,-1,-1) to (1,1,1).

For more compact notation, we will use ωip = Nh
i (xp) and ∇ωip = ∇Nh

i (xp).
To transfer a scalar A from grid to a particle p, we use the shape function as the
interpolation function

Ap =
∑
i

Aiωip

∇Ap =
∑
i

Ai∇ωip (18)

And likewise, to transfer particle data to a grid node i, we have

Ai =
∑
p

Apωip

∇Ai = −
∑
i

Ap∇ωip (19)

As the node i is shared by eight grid cells, all the particles in these cells contribute
to the scalar. The minus sign comes from the fact that ∇′Nh

i (xi) = −∇Nh
i (xp),

where ∇′ means the derivative operator acts on xi.

4.2 Full method

Here we outline the full update procedure.

1. Rasterize particle data to the grid. The first step is to transfer the mass
and momentum from particles to the grid. The mass is transferred using the
weighting function mn

i =
∑
pmpω

n
ip. And to conserve momentum, the velo-

city is transferred as vni =
∑
p v

n
pmpω

n
ip/m

n
i . The density is transferred as

ρni =
mn

i∑
p(mp/ρp)ωn

ip
.

2. Compute particle velocity gradient. Giving the grid cell that a particle
p lies in, the velocity gradient at the particle is computed with the velocities
of the cell’s eight nodes: ∇vnp =

∑
i v

n
i (∇ωnip)T .

3. Update particle stress σnp with the constitutive model in section 3.

4. Update velocities on grid v∗i with
Dv

Dt
= − 1

ρni
(σnp∇ωnip) + g.
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5. Grid-based body collisions on v∗i .

6. Update particle velocities. The new particle velocities are vn+1
p = (1 −

α)vn+1
PICp + αvn+1

FLIPp, where the PIC part is vn+1
PICp =

∑
i v

n+1
i ωnip and the

FLIP part is vn+1
FLIPp = vnp +

∑
i(v

n+1
i −vni )ωnip. We use α = 0 for deformable

objects and α = 0.05 for granular materials.

7. Particle-based body collisions on vn+1
p with boundaries.

8. Update particle positions using xn+1
p = xnp +∆tvn+1

p .

4.3 Grid-based Collision between different objects

The most common way of solving the interaction between different objects in
MPM is to use multiple grids, one for each object.

We can easily detect the collision of different objects by the overlap of the
nodes of different grids, and add collision constraints upon these nodes.

Let’s suppose two objects A and B are colliding with each other, and node
iA and iB are overlapping with each other. The collision would happen if the
following condition is satisfied:

(viB − viA)∇miA < 0 (20)

where viA and viB are the velocity of node iA and iB respectively, and ∇miA

is the mass gradient of object A defined as ∇miA =
∑
pmpA∇ωipA, which can

be seen as the surface normal of object A pointing outwards.
Hence the collision is handled at the surface of the objects, and only happens

when the two object are moving toward each other, and is ignored when they
are separating.

Then the velocities at node i is modified as

∆viA = (viB − viA)
miAmiB

miA +miB

∆viB = −∆viA (21)

This form of constraint ensures conservation of momentum, and enforces the
two nodes to move at the same speed. The penetration is automatically avoided
in this way. Although it gives very stable results, it leads to a perfectly inelastic
collision, and causes considerable energy lost, so it is not suitable for highly
dynamic applications.

5 Results

We have simulated several examples to demonstrate the effectiveness of our
method, including deformable objects of different plasticity, granular materials,
and the interaction between them.
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In Figure 1, a dropping bunny (left), if undergoing pure elastic deformation,
bounces up and recover its shape (middle). When plastic deformation happens
(right), it can no longer maintain its initial shape and fails to bounce up.

Fig. 1. A bouncing elastic bunny (middle) and a plastic bunny (right).

For granular materials, we set up a notched sand block as one of the cases
in [8]. In Figure 2, the block falls down and forms a pile of sand at last. The
friction between the ground and the sand is necessary for generating the sloping
failure, and we use a friction force proportional to the pressure.

Fig. 2. Sliding and sloping failure of granular materials.

In figure 3 we show a bunny dropping onto a sand ball. The sand ball itself
is undergoing deformation, and the bunny hits on it and sinks into the pile of
sand in the end.

6 Discussion and Conclusion

Comparison with SPH method. MPM is more stable. There is no need to
add artificial viscosity to eliminate the tensile and numerical instability. The
constitutive models formerly implemented in SPH method can be easily trans-
ferred to MPM, and generate good results. However, because the interpolation
of velocities from the grid to the particles brings in a loss of information, the
phenomena like fragmentations and cracks require different methods to handle,
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Fig. 3. Interaction between an elastic object and granular materials.

which will be our future work. The APIC method [7] can also be implemen-
ted to better perserve the information between the interpolation process, which
remains to be tested.

Limitations. The constitutive model we used for solid materials split the
strain into two additive part, the elastic strain and the plastic strain. While
this is simple and also a good approximation to the exact problem, to truly
handle finite deformation, it is better to use a multiplicative approach. Also
we would like to investigate more models, hardening, and transitions between
different kinds of materials. Besides, the visualization of different materials and
their combination requires further study.

Conclusion. We have presented a MPM framework for simulating various
solid materials including deformable objects and granular materials. The consti-
tutive models applied in previous SPH based works can be easily adopted to our
framework. The collision of different objects are handled in a stable way with
the use of the grid.
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