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Abstract 
 

Railway accident that usually cause numerous property and life losses occurred 

frequently in recent years all around the world. In general, plenty of resources such 

as financial supports and incident rescue programs are required to minimize the loss 

after an accident occurred. While due to poor information from the accident spot, 

most railway emergency management departments may face a predicament in 

setting up schemes to conduct the accident rescue. To provide more sufficient visual 

information about the accident field in drawing up a rescue planning, a realistic 3D 

virtual accident scene reconstruction technology is recommended which can present 

supplementary materials and information about the train accident, and assist relevant 

personnel to make a reliable rescue decision effectively. A photo-based 3D 

modelling framework of vehicles for measuring the position and pose of carriages 

involved in the accident is proposed. At last, we implement and examine two case 

studies to validate this reconstruction method and conclude that our methods 

perform well in the assigned reconstruction. 

 

Keywords: Train accident reconstruction, accident rescue, Photo based modelling.  

 

1  Introduction 
 

A train accident, for its severity in life and property lose, always demands huge 

resources and supports from departments of railway emergency management. Many 

train accidents still happen worldwide every year and there is approximately one 

severe accident every 2 years[1] despite the fact that the railway industry attempts to 

ensure the safety. Once a train accident occurs, it requires executing an effective 

incident rescue planning to minimize the loss. While most related departments faced 

a dilemma in drawing up scheme of accident rescue for poor information from the 

scene of an accident after a train accident occurs. Additionally, the implementation 

of traditional emergency rescue plan is time-consuming.  
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In recent decades, computer vision technology has been utilised in railway 

industry[2-5]. These works have mainly focused on operational inspection rather 

than the reconstruction of a train accident scene. A popular method in computer 

vision, named photo-based (or image-based) modelling,  provides an automatic 

approach of 3D objects modelling by deriving geometric information from 

photos[6]. This technique has been applied in various disciplines, including virtual 

reality or augmented reality[7], architecture[8, 9], earth sciences[10], even in 

forensic infography[11] and archaeometry[12] etc. However, to our best knowledge, 

literatures and practices of applying the photo-based 3D modelling technique to the 

railway industry for assisting accident rescue are rarely seen. 

 

In this paper, with using the photos took on the accident spot, we propose a 

framework which can rapidly and automatically construct a 3D virtual scene of a 

train accident. The framework uses a single photo-based modelling method and 

combine with CAD models to extract the position and pose information of carriages 

involved in an accident with high reconstruction accuracy and relatively efficient in 

computation cost. Meanwhile, adopts a geographic information system and the 3D 

visualization engine to model and display the landscapes and buildings in a train 

accident. 

 

2  Methodology 
 

It should be emphasized that the main aim of this work is to provide a visual 

reference for drawing up a rescue scheme quickly and automatically after an 

accident occurs. All the inputs we handle are images captured in the accident scene. 

Moreover, the realization of reconstruction depends on the quality of images. 

Therefore, reliable image pre-treatment process is essential for further analysis. 

For the first step, we need to recognize a panorama that can describe the complete 

picture of a train accident scene. The photos taken from the accident scene may be 

fractional and each of them only contains the information related to a particular part 

of the scene. We apply the image automatic panorama stitching algorithm[13] which 

aligns and stitches photos into a seamless panorama. 

 

2.1 Image stitching 

 
The objective of image stitching is to find all matching images, then connect sets of 

image matches to produce a panorama. We recommend Lowe’s Scale Invariant 

Feature Transform (SIFT) features for image matching thanks to its good 

performance in achieving reliable matching of multiple images and handling scale, 

rotation, blur, and affine changes of image than SURF and PCA-SIFT detector[14]. 

To automatically discover the matching relationships in unordered multi-images, the 

automatic panorama stitching algorithm proposed by Matthew Brown and David G. 

Lowe [13]is recommended in this paper. 
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By using this automatic stitching algorithm, a high-equality panorama of a train 

accident scene can be obtained, which contains all things in the accident including 

the damaged coaches/carriages, surrounding buildings and other environmental 

elements. From this panorama, we can also have a better awareness of the whole 

picture of the accident situation. This set a basis for the next stage where a feature 

extraction and matching is employed to identify the position of vehicles in the 

panorama, which is the critical information for rescue planning. 

 

 

2.2 Feature extraction and matching 

 
Once the panorama is obtained, the task of this section is confirming the 

correspondence relationship between the marked points on carriage model in world 

coordinates frame and its respond location in panorama. Hence we model it as a 

feature matching problem as shown in Figure 1.1. We can search within panorama 

for locations of vehicles, using image feature detecting and matching technology. At 

this point, the Scale Invariant Feature Transform(SIFT)   algorithm [15] is adopted 

which performs well in recognizing the pixel coordinates of vehicles in a panorama. 

SIFT is robust in detecting features under the scale, rotation, blur, illumination and 

affine changes. 
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Figure 1.1. Feature matching process             Figure 1.2. Singularity problem 

 

From Figure 1.1 we denote the green dots as the feature points which are 

extracted by SIFT method, and orange dots as these fixed points marked on the 

CAD model of a specified carriage. All the work of SIFT method is to detect some 

designated points in panorama which should correspond to the same point in CAD 

model. The introduction of CAD model can not only solve the singularity which is a 

common problem in single-view 3D reconstruction(shown in Figure 1.2), but also 

greatly reduce the time-costing of our reconstruction algorithm. Because we only 

extract few point(no more than 7 points per carriage) that is much less than the 

conventional point-cloud based reconstruction methods. 

 

2.3 3D modelling of vehicles 
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Hitherto we have obtained the panorama of the train accident scene. In the next step, 

we need to locate the spatial position and pose of the coaches/carriages contained in 

the panorama. We propose a novel photo-based 3D modelling method, which 

models this problem as a constrained non-linear least square optimization, then use 

perspective-projection calculation and projection-error minimization to solve it. 

Furthermore, based on the coupler connection relationship between 

coaches/carriages, geometric constraints are taken into account when solving the 

minimization problem. For such a constrained non-linear least square optimization 

problem, the conventional Levenberg-Marquart algorithm[16, 17] used in Bundle 

Adjustment is no longer valid, and we employ the Trust Region algorithm[18] 

instead.  

 

2.3.1   Projection Process 

 

The projection process shows how to project a 3D model to a 2D image, which is 

modelled by a perspective projection consisting of translation, rotation and scaling 

operations. Here, we use the basic pinhole camera model to illustrate the camera 

mapping process[19], then utilize the finite projective camera model, which is the 

generalized model of a pinhole camera, to implement the photo-based 3D modelling. 

The camera model is shown in Figure 3. A 3D point can find its projection on the 

image plane as the intersection of the image plane and a line defined by camera 

centre and this point. 
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Figure 3. Camera model 

 

We denote the points on a carriage using Xw=(xw, yw, zw) ∈R3, in world 

coordinate frame, and Xc=(xc, yc, zc) ∈R
3
 in camera coordinate frame, and denote 

the pixel coordinates of projection points of carriage by Xp=(u, v) ∈R2 in image 

coordinate frame. Based on the camera model[20, 21], the projection process from 

3D points on carriage onto 2D image plane can be expressed as: 

1. Rotation and translation process： 

1
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2. Lens distortion refine process： 
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3. Perspective projection process： 

0

0
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,       0 /
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In the previous formulas, s, [k1, k2,… ] are denoted as skew and distortion 

parameters, and we name K as the camera intrinsic parameters, [R | T] as the 

extrinsic parameters. For briefly expressing, the projection process is denoted as： 

 ( )
p w

X Proj R X T= ⋅ +   (1) 

 

From this section, we can understand that the extrinsic parameters [R | T] contain 

the whole information of spatial position and pose of the point Xp in panorama. 

Hence, the target of this chapter is catch the extrinsic parameter of carriages and 

recover their spatial pose and position information further. 

 

2.3.2   Position and Pose Estimation 

 

After the feature extraction and matching stage, we can get the correspondence 

relationship between marked points on carriage CAD model and their feature points 

on image plane. Suppose that there are m carriages in a train accident scene, and ni 

features on the ith carriage, and we denote the coordinates of the jth point on the ith 

carriage CAD model in world coordinate frame by ,

w

i j
X ∈R

3
, and its corresponding 

feature point in image coordinates frame by
,i jX ∈R

2
 (i=1, 2, …, m, j=1, 2, …,ni). It 

is worth emphasizing that the coordinates
,

w

i j
X in world frame is only an initial 

position of carriage model which needs to be adjusted to the camera frame by 

rotation and translation. For the ith carriage model, we denote its rotation matrix and 

translation vector by Ri and Ti respectively as shown in(1). We can then measure the 

projection error by expression: 

, ,
( )

i i

p w

i j i j
RX Proj TX⋅ += ,

, , ,

p

i j i j i j
e X X= −  

 

Let us denote the coordinates of all points on the ith carriage model in world 

coordinates frame by
,1 ,2 ,

3{ , , , }
i

w w w w

i i i i n
X X X X= ∈ RK . For every carriage, we augment w

iX  

with the coordinates of couplers
,1 ,2
,w w

i i
C C , which represent the front and rear coupler 

respectively. While
,1 ,2 , ,1 ,2{ , , , , , }

i

w w w w w w

i i i i n i iX X X X C C= K and the couplers need not to be 

matched the image feature. The main idea of this algorithm is illustrated in Figure 4. 
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Figure 4. Position and pose estimation process 

Then the main target is to estimate the extrinsic parameters [Ri | Ti]( i=1, 2, …, 

m). In this stage, we denote the position and pose information of the first carriage as: 

1 1 ,1 ,21, 1, , ,1 ,2,  { , , , , , }
i

w w w w w w w

i i i i n ij i

w

jR T X X X X CX X C= ⋅ + = % %% % % %K%  

and the i+1 th carriage’s pose and position can be expressed as: 

1 1 1 1,1 1 ,2
( )w w w w

i i i i i i
X R X C T C+ + + + += − + + %%  

The coordinates of the i+1 th carriage is based on the location of rear coupler of the 

ith carriage, and [Ri | Ti]( i=1, 2, …, m) is the variables which will be optimized as 

follows. 

 

Then we deduce the multi-carriage position and pose measuring problems to a 

non-linear least square minimization of the error in perspective projection. In 

addition, considering the coupler connection relationship between carriages, we need 

add more constraint conditions to resolve the actual measurement of locations and 

poses. We use the Trust Region algorithm[18] instead of the Levenberg-Marquart 

algorithm[16, 17] , which is adopted in BA[22], to solve the constrained non-linear 

least square problem. A reliable location and pose of a 3D model of accident vehicle 

can be obtained by solving the optimal [Ri
* 

| Ti
*
] ( i=1, 2, …, m) in (2): 

1 22

1 1, 1 1, 1, , ,1 1,2 , ,

1 2 11

1 1
( ) ( ( ( ) ) )

inn m
w w w w

j j j i i j i i i i j i j

j i ji

Proj R X T X I Proj R X C C T X I
N N

min −
= = =

⋅ + − ⋅ + ⋅ − + + − ⋅∑ ∑ ∑ %

 subject to 
2

, 2,  ,
i i

i mT ρ = …≤   (2) 

 

where Ii,j is the indicator function, which represents the feature matching result. If 

the jth feature on the ith carriage is visible in the panorama, Ii,j = 1, otherwise, Ii,j = 

0. 
,

1

in

i i j

j

N I
=

=∑ . iρ is the maximum distance between the i-1 th carriage and the i th 
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carriage. Once the optimization problem has been solved, the position and pose of 

the ith carriage in camera coordinates frame can be expressed as Ri
*
{Pi

w
}+ Ti

*
.  

 

2.4 Modelling based on calibrated or uncalibrated camera case 
 

So far, the main methodology of the photo-based 3D modelling has been discussed 

in detail. The only thing that still has not been given is the way of obtaining the 

camera intrinsic parameters, from which we can calculate extrinsic matrix [Ri* | 

Ti*](i=1, 2, …, m) for recovering the position and pose information of carriages. In 

other words, only the intrinsic matrix K, skew parameter s and distortion parameter 

kc are obtained beforehand can we solve the optimization problem. Considering 

actual application, here, we divide the method of acquiring intrinsic parameters into 

two branches: 1. Calibrate the camera before an accident occurs[21]; 2. Consider 

intrinsic parameters as optimization variables and solve them in formula (2) using 

simplified camera model to maintain the robustness of our algorithm, such as the 

pinhole model. 

 

 

3  Case study and discussion 

 
To validate and evaluate our framework in reconstructing the real rail deraiment 

accident scene, we conducted two case studies, which are occurred in Bronx, New 

York City, Dec 1st, 2014[23] and Philadelphia on May 12, 2015[24]. 

 

In this section, we reconstruct the train accident scene which displays that several 

carriages have derailed. The photo and corresponding simplified CAD carriage 

model is shown in Figure 5 and Bronx and Philadelphia 

 
Figure 6. 
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Figure 5. Rail derailment accident occurred in Bronx and Philadelphia 

 
Figure 6. Corresponding CAD models 

 

In the real derailment scene, the SIFT detector may fail in extracting a feature 

where there is no necessary texture information. In that case, appropriate manual 

intervention can improve the performance of the pose and position recognition 

algorithm.  

 
 

 
 

 Figure 7. Feature extraction results 
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In this case, it is clear that we cannot obtain the camera parameters and there are 

not enough significant texture information on the surface of carriages. So we need to 

utilize a simplified camera model (mentioned in Section 0) and manual matching 

instead of SIFT detector to accomplish the reconstruction work (Figure 7). Because 

the skew and distortion effects are ignored, briefly it may cause a large number of 

errors. In this case, the topographic information of the accident scene is utilized in 

this paper which is a key factor to improve the reconstruction performance. We 

summarize the reconstruction as the following steps: 

 

Step1. Estimate pose information of each carriage in case that geometric 

constraints are cancelled. 

Step2. Move each carriage to the zero potential energy surface (surface of terrain 

at the spot of accident scene) 

Step3. Introduce the geometric constraints, while keep the rotation matrix of each 

carriage unchanged which is solved in step1, only optimize the other variables 

(translation vector, focal length, etc.). 

Step4. Substitute all parameters acquired in previous 3 steps into equation (2), the 

pose and position information of each carriage are obtained. 

 

Once all the steps are accomplished, the 3D reconstruction result of carriages can 

closely represent the real case (Figure 8). Then integrate it into a proper 3D virtual 

geographical environment created by 3D GIS and visualization engine. A digital 3D 

train accident scene is created, which is shown in Figure 9-Figure 11. The 

reconstructed 3D digital accident scene allows users to view the 3D scene from a 

different angle and get a big picture of the relative locations and configurations of 

different objects, allowing further interactions with objects and making a rescue plan 

with 3D planning software. 

 
Figure 8. Pose and Position Reconstruction results. 
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 Figure 9. Reconstructed accident scene in Bronx 

 

  
Figure 10. Comparison between real and reconstructed accident scene 
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Figure 11. Reconstructed accident scene in Philadelphia 

 

3  Conclusion 
 

In this paper, we propose a framework to rapidly reconstruct the 3D digital scene of 

a train accident, and develop a photo-based 3D modelling method for vehicles 

involved in an accident, which helps make a development in using computer vision 

and virtual reality technique for railway emergency rescue and offers benefits to 

railway industry. The main conclusions and contributions of this work are as 

follows: 

 

(1) To meet the particular needs of railway industry, we tailor a photo-based 3D 

modelling method for the reconstruction of a train accident scene. Differing from 

conventional photo-based 3D modelling method, it can generate the 3D digital 

scene rapidly after a train accident occurs without resort to significant manual 

interventions. In extreme condition, this method only needs a single panoramic 

image of the accident scene and do not prone to the singularity problem which is 

common in the traditional single view photo-based modelling. 

 

(2)  The errors of the whole reconstruction process may be caused by the following 

reasons: 

a) The calibrated camera model is an approximation with simplified model of 

the complete camera projection. An accurate camera model is essential if 

we require a precise projection. 

b) There is a disparity between the CAD model of carriages and the real one in 

accidents scene, especially when a carriage severely damaged. 

c) There may be a bias between the recognized feature on the image plane and 

its respective point on the carriage model. This part is the main error source 

in our practice. Limited human intervention with minor effort can greatly 

reduce the error. 

The accumulation of errors may lead to a bad reconstruction, so we should 

control the main error sources. While in some special cases, it is not possible to 

avoid these errors, e.g. we may not know the calibrated camera parameters, or 

there is no significant features that can be recognized (Section 0). Fortunately, 

by the introduction of geometric constraints and topographic information, we 

can ensure the accuracy of our algorithms even in the worst situations. 

 

(3) With proposed method and applying 3D visualization technology to rendering the 

environment, the 3D scene of train accidents are obtained. By comparison, we 

find that the proposed framework has a good reconstruction performance in both 

accuracy and operability. For real derailment scene, the images used for 
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reconstruction are from the internet, while the intrinsic parameters of camera are 

unavailable. But, we also achieve plausible result. 

 

In the future, we envisage that the framework will be used in train accident rescue 

planning as well as for accident analysis by providing useful information, as well as 

helping make a reliable rescue decision effectively. There are also still many works 

to be done to improve the accuracy of 3D scene modelling and cover more 

application scene, such as at night or in foggy weather. In addition, more aided 

software tools, including modelling and visualization, also need to be developed for 

the proposed framework can be better applied in train accident rescue or education 

and training. 
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