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Abstract—The inhomogeneity of intensity and the noise of
image are the two major obstacles to accurate image segmen-
tation by region-based level set models. To provide a more
general solution to these challenges and address the difficulty of
image segmentation methods to handle an arbitrary number of
regions, we propose a region-based multi-phase level set mothed,
which is based on the multi-scale local binary fitting(MLBF)
and the Kullback-Leibler (KL) divergence, called KL-MMLBF.
We first apply the multi-scale theory and multi-phase level
set framework to the local binary fitting model to build the
multi-region multi-scale local binary fitting (MMLBF). Then
the energy term measured by KL divergence between regions
to be segmented is incorporated into the energy function of
MMLBE. KL-MMLBF utilizes the between-cluster distance and
the adaptive kernel function selection strategy to formulate the
energy function. Being more robust to the initial location of the
contour than the classical segmentation models, KL-MMLBF can
deal with blurry boundaries and noise problems. The results of
experiments on synthetic and medical images have shown that
KL-MMLBF can improve the effectiveness of segmentation while
ensuring the accuracy by accelerating this minimization of this
energy function and the model has achieved better segmentation
results in terms of both accuracy and efficiency to analyze the
multi-region image.

Index Terms—Image segmentation, Kullback-Leibler diver-
gence , Multi-scale Local Binary Fitting, Multi-region , Active
contour model

I. INTRODUCTION

MAGE segmentation is a process of partitioning an image

into homogeneous regions according to the image’s features
such as color, texture, shape, etc. [1], and it is very important
for visual information analysis processes such as object de-
tection [2], computer vision [3]. A number of segmentation
algorithms have been proposed over the last few decades
(41, [51, [61, 71, [8], [9], [10], [11], [12], [13], [14], [15].
Amongst the approaches, the active contour model (ACM)
proposed by Kass et al. [6] is one of the most successful PDE-
based models. However, ACM has some drawbacks such as its
difficulty in handling topological changes and its dependency
on parameterization.

To overcome the drawbacks, many methods have been
proposed. The Chan-Vese(CV) model [9] has advantages in
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processing images with weak boundaries and is able to detect
an object’s inside contour. However, Since CV assumes that
regions to segment are intensity homogeneous, it cannot be
directly applied to the inhomogeneous intensity image rep-
resented by the means of piecewise constants. Based on the
level set model [10], the Local Binary Fitting(LBF) model
[12], Local Chan-Vese(LCV) model [16], Local and Global
Intensity Fitting(LGIF) model [17] were proposed during last
decades to improve the segmentation ability of CV model. As
a result both the segmentation efficiency and effectiveness of
these models are enhanced. But these models are sensitive to
the position of the initial curve and come with the higher
computational complexity. Liu and Cheng [18] propose a
novel region-based model(KL-MLBF model), which adopts
multi-scale theory into LBF model and modifies the energy
function by incorporating a new energy term( Kullback-Leibler
divergence [19]) expressed as between-cluster distance. By
maximizing the new term, KL-MLBF achieves segmentation
of high accuracy term.

Despite of the advantages above, one main problem of the
level set representation lies in the fact that a level set function
is restricted to the separation of two regions. To alleviate this
limitation of the level set, many methods have adapted the
level set for multiple region segmentation such as MRI of the
abdomen, aerial images of crops and farmlands, images and
videos of sporting events [10], [20], [21], [22], [23]. Most
of these approaches use N level set functions to segment N
objects and rely on coupling terms to avoid overlaps and gaps
[21], [24]. These methods have the advantage that each object
can be independently specified in both its own topology and
its internal and external speeds. However, coupling terms do
not forbid certain object interactions, so these approaches can
still produce overlaps and gaps in practice. As well, most are
not formulated to consider the relationships between objects,
and memory requirements become daunting as the number of
objects to be segmented grows. In [25], a level set function is
assigned to each region. This framework has been adapted to
classification in [26]. In another approach, the bi-model case
is extended to tri-model segmentation [27]. Both techniques,
however, assume an initially fixed number of regions. This
assumption is omitted in [21] where the number of regions
is estimated in a preliminary stage by means of a Gaussian
mixture estimate of the image histogram. This way, the number
of mixture coefficients determines the number of regions.
However, this kind of estimation is only loosely connected
to the energy functional that is minimised. A considerably



different approach is proposed in [8], where the level set
functions are used in such a way that N regions are represented
by only logy, NV level set functions. Unfortunately, this will
result in empty regions if less than N regions are present
in the image. These empty regions have undefined statistics,
though the statistics still appear in the evolution equations.
Leventon et al. [28] use a Gaussian model to describe their
shape priors. They assume a uniform distribution over pose
parameters that include translation and rotation. Paragios and
Deriche [21] avoid this assumption by calculating the means
of a Gaussian mixture estimation of the image histogram.
The number of mixture coefficients determines the number of
regions to be segmented. Altogether, the prominence of level
set based segmentation is yet lost as soon as more than two
regions come into play.

In this paper, we extend the KL-MLBF model and gen-
eralize multi-phase level set framework which can handle the
multi-region inhomogeneous images segmentation. We call our
new model as KL-MMLBF.
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Fig. 1. The sensitivity to initial location of level set function in LBF (a)
Three kinds of initialization of the level set function; (b)-(d) The segmentation
results of the corresponding LBF model

II. KULLBACK-LEIBLER DIVERGENCE INCORPORATED
WITH MULTI-REGION MULTI-SCALE LOCAL BINARY
FITTING

The sensitivity of the local binary fitting model to the initial
position of the level set is illustrated in Fig.1. Although the
variation of the initialization position is very small, as shown
in Fig.1 (a), the segmentation results are quite different, as
shown in Fig.1 (b)-(d). Obviously, the model is very sensitive
to the initial position. The analysis of the force generated
by the model shows that, for binary image, the force is
“borderline”, i.e. the larger the contrast in the region is, the
stronger the force in the models. Likewise, the smaller the
image contrast is, the weaker the force of the model is. So
when the initialization level set is away from the boundary of
the target, the level set evolves slowly. As the zero level set
approaches the border region, it will evolve more quickly. A
new zero level set will derive soon, and it’s easy to cause
”double ring” effect, as shown in Fig.1 (d). Consequently,
the model can only achieve local solution. The main cause
of the local force is the Gauss kernel used in LBF model.
Comparing the LBF model and the Chan-Vese model, we can
conclude that: (1) the kernel size of LBF model in the level set
is inversely related to the initial position and the sensitive to
Gauss noise; (2) The kernel size of LBF model is proportional
to processing precision of the segmentation of inhomogeneous
image.

To overcome the sensitivity to initial position and enhance
the robustness to noise of the level set of existing models, we

present in this section our proposed KL-MMLBF model which
is based on KL divergence and multi-region multi-scale local
binary fitting (MMLBF). The KL-MMLBF model, which can
be regarded as an extended or improved LBF model, is more
robust to the initial position of the level set and Gaussian
noise. It can also reduce the number of iterations required
for convergence. Compared with other classical segmentation
models such as LBF, LGIF and LCV, KL-MMLBF is more
effective to deal with the non-uniform image segmentation and
multi-region image.

A. Multi-region Multi-scale Local Binary Fitting Model
(MMLBF)

In order to solve multi-region image segmentation problem,
we extend the MLBF model to multi-region, as shown in Fig.
2, where m is the level set number. The two level set functions
split the image into three non-overlapping sub regions in Fig.
2(a), and in Fig. 2(b) the two level set functions split the image
into four non-overlapping sub regions. We use the energy
functional extremum problem shown in Eq.(1) to describe the
multi-region multi-scale local binary fitting model (MMLBF):
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where N = 2" is number of partition areas. The definition
of other parameters is the same as that in the MLBF model
[18].
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Fig. 2. Tllustration of multi region image segmentation. (a) Domain partition
into 3 regions, (b) Domain partition into 4 regions

B. Formulation of the Level Set Model

To illustrate the formulation, we start with the multi-region
multi-scale level set to solve the minimization of the energy
function. Take 4-phase image segmentation model as an ex-
ample, for the purpose of illustration, let us write the above
energy for NV = 2" = 4 phases or classes (and therefore using
m= 2 level set functions). The two-step iterative method steps
are as follows.



Firstly, fix the level set function, update ¢y (x), k = 1,2 ;
updates f; ;,¢=1,2,3,4, j =1,...,n, according to Eq. (2) .
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the zero level set contour of ¢. [ (|Ve(x)| — 1)%dx is the
regularization term which makes the computation accurate and
stabilizes the evolution.

Secondly, fix f;;, ¢ =1,2,3,4,j=1,---,n, and update
the level set function ¢y (z), k = 1,2 , The gradient descent
method is often applied to minimize the energy function with
respect to the level set function ¢ [19], [29] . The multi-scale
fitting energy f;; are kept fixed, and the energy function is
minimized by using the gradient descent method to solve the
gradient flow equation:
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The updating schemes can be found in Algorithm 1. When
m = 1, then N = 2™ = 2, we obtain the KL-MLBF model,
Which is a special case of KL-MMLBF model with one level
set only[18].

In terms of numerical implementation, the calculation of the
local fitting mean in the proposed MLBF model and MMLBF
model requires roughly n times that in traditional local binary
fitting model (n is the number of Gaussian kernel). However,
despite of the increase in the computational complexity, our
model converges faster in parallel implementation than LBEF,
because MMLBF can calculate in parallel N x n local fitting
means, and the number of iterations computation is reduced.

III. EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

We apply the KL-MMLBF model on various images and
compare the segmentation results with three existing approach-
es: LBF, LCV and LGIF. A HP desktop is used for the
experiments: Intel(R) Core (TM) i5-3470 CPU, 3.20 GHz,
4 GB RAM, and Matlab 2011b on Windows 7. For all the
experiments, the time step At for iteration is set to 0.1, the
parameters A1, Az, A3, Ay and v are all set to 1, and the
number of multi-scale kernel n is set to 3. The parameter p
of the length constraint term varies with images.

Algorithm 1 KL-MMLBF model

Input: the parameters \; = Ao = A3 = Ay = v = 1,
At = 1, the number of multi-scale kernel n = 3, the
number of level set m = 2.

Output: the whole energy functional for segmentation
(9)-;
For j=1,2,---|n
Fori=1,2,--.,2™

Calculate the multi-scale kernel k,
Calculate the Gaussian probability distribution
1 _ u(y>2—gi<m)|2
For k=1, 2
Fix the level set function, update ¢y (x), update f; ;,
according to Equation (2).
End for (k)
End for (i)
End for (j)

For j=1,2,--- |n
Fort=1,2,---,2™
For k=1, 2
Fix f; ;, update the level set function ¢y (z),
according to Equation (3) by the gradient descent method.
End for (k)
End for (i)
End for (j)




A. Accuracy of Contour Location

The effectiveness of the KL-MMLBF model is evaluated
by applying it to both synthetic and medical images, as
shown in Fig. 3. The first column in Fig. 3 illustrates the
initial contours and the second to the fifth column are the
segmentation results by using LBF, LGIF, LCV and our KL-
MMLBF model respectively. The images shown in Fig. 3 from
top to bottom are denoted as the image 1 to the image 10. The
experimental results show that the segmentation of LBF model
is comparatively better than the LCV model and the LGIF
model, which energy function is constructed for non-uniform
images, but have some issues for the image 9 and 10. Although
the local-order energy is introduced to reduce the number of
local optimal solutions, the LGIF model is still trapped in
the local optimal solution, which leads to the unsatisfactory
segmentation results. Instead the proposed model seeks the
global optimum solution by introducing KL energy, namely
global information. by the result that the KL-MMLBF model
has better segmentation ability than the other three models.

We also apply KL-MMLBF to the natural images from the
Berkeley segmentation dataset BSDS300 [30], which contains
more than 300 images. More than 100 images are randomly
selected from the dataset for the experiment. Representatively,
here the segmentation results of 6 images are shown in Fig.
4. The columns in Fig. 4 from left to right are the original
images, the manual segmentation results, the results obtained
with LBF, LGIF, LCV and KL-MMLBF, respectively. It can be
clearly seen that KL-MMLBF has achieved the result which is
closer to that of the manual segmentation than the other three
models. Table I presents the evaluation results using the metric
with €,,¢4n [31] in Fig. 4. It can be seen that KL-MMLBF has
the lowest e,,cqn Scores, indicating its superior performance
over other models.

TABLE I
EVALUATION RESULTS USING THE METRIC WITH €meqn [31] IN FIG. 4
Test images LBF LCV LGIF KL-MMLBF
1 2.1986 7.4150 0.1588 0.1382
2 1.8291 1.5925 0.9890 0.6015
3 15.2778 2.5773 12.8043 0.2796
4 10.778 3.7735 12.3804 2.2796
5 7.854 5.3236 4.4741 3.8701
6 8.7278 2.3273 2.0883 1.8129

B. Speed of Evolution Convergence

The KL-MMLBF’s efficiency can be reflected by the itera-
tion times required for obtaining the final contour and the total
CPU time taken to complete the segmentation. The iteration
times and the CPU time required for the segmentation as
in Fig. 3 and Fig. 4 are shown in Table II and Table III.
Table II tells that KL-MMLBF requires fewer iteration times
than the other three models in general. From Table III, it
is obvious that only the iteration times of LCV model for
segmenting the image 4 is less than that of KL-MMLBF. This
is because the LCV model falls into a local optimum, which
needs fewer iteration times. But the segmentation result of
LCV is worse than that of KL-MMLBF as shown in Fig. 4.
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Fig. 3.  Comparison of the segmentation results with synthetic and medical
images. (a) Original images, (b) LBF, (c) LGIF, (d) LCV, (e) KL-MMLBF

Worth to note that, the CPU time spent for LGIF to obtain the
final segmentation results is less than that for KL-MMLBF in
four images. However the segmentation results of these images
are rather poor, as shown in Fig. 4, and the reason is the same
as in analysis of Table II. In contrast, the segmentation results
of KL-MMLBF are more accurate than the other three models,
and it has been proved objectively in the section IIL.A.

C. Robustness Against Initial Position

In order to validate the KL-MMLBF’s robustness to the
initial position of the level set, we compared it with LBE,
LGIF and Order-LBF [32]. Fig. 5 shows the experimental
results of medical images which are typical with intensity
inhomogeneity. Note that the characteristics of some vessel



(a) Original images  (b) Manual (c) LBF (d) LGIF () LCV  (f) KL-MMLBF

Fig. 4. Comparison of the segmentation results with natural images

TABLE II
COMPARISON OF SPEED FOR THE EXPERIMENT SHOWN IN FIG. 3

Test images LBF LGIF LCV KL-MMLBF
(image size) CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations

1(79*75) 4.5934 250 9.1589 300 3.6374 200 2.1246 110

2(95%72) 0.80496 40 3.2876 100 2.8183 150 0.66016 30
3(111*110) 1.924 95 5.7829 147 2.963 150 1.3253 60
4(103*131) 6.274 300 5.1286 147 3.8407 200 2.1782 100
5(252*185) 2.9208 90 7.3743 100 3.5102 130 2.3652 70
6(119*78) 3.4654 185 6.7317 190 3.3102 190 3.5017 180
7(180*170) 4.0258 180 9.7792 190 3.773 190 4.0474 180
8(549*357) 69.7826 350 87.7608 350 78.6312 350 67.3824 300
9(252*185) 2.9208 94 7.3743 105 3.5202 100 2.3652 80
10(252*185) 3.4654 100 6.7317 110 3.5109 90 3.0217 85

TABLE III
COMPARISON OF SPEED FOR THE EXPERIMENT SHOWN IN FIG. 4

Test images LBF LGIF LCV KL-MMLBF
(image size) CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations
1(481%321) 28.0367 230 7.4294 200 21.8822 200 18.4019 150
2(481%321) 28.2309 220 10.0456 220 21.782 190 25.3336 200
3(481%321) 61.5956 500 13.6884 300 21.8537 180 18.9407 150
4(481%321) 30.0458 500 34.8194 600 73.4609 900 29.9546 290
5(481%321) 29.2190 500 18.3457 300 29.1878 400 24.4507 100

6(481%321) 30.2 66 260 22.9769 220 22.4559 220 19.8737 200
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Fig. 5. Segmentation results with different initial locations: (a) initial contour,
(b) LBF, (c) LGIF, (d) Order-LBF, (e¢) KL-MMLBF

regions are quite weak, which renders it a nontrivial task to
segment the vessels in the images. Fig. 5(a) shows various
initial contours for the vessels image, while the corresponding
segmentation results of LBF, LGIF, Order-LBF and KL-
MMLBF are shown from Fig. 5(b) to Fig. 5(e), respectively.
From the results shown in Fig. 5(b) and Fig. 5(c), we can see
that, though LBF and LGIF are able to handle the intensity
inhomogeneity to certain extent, they are sensitive to the initial
position of the level set. Especially, the continuously shrinking
level set leads to the worst results shown in the row 2 and the
column (b), failing to detect any contour. In other words, if a
better initial contour is chosen, LBF and LGIF can produce
satisfactory segmentation results; otherwise, these two models
will only achieve a local solution which doesn’t satisfy the
global optimization. The Order-LBF model in the Fig. 5(d)
can obtain almost the same segmentation results for various
initial contours, demonstrating its global property. However,
it can’t achieve the optimal segmentation results. The results
in the Fig. 5(e) show that KL-MMLBF is more capable to
cope with the intensity inhomogeneity. The results prove that
KL-MMLBF is robust for initial contour and effective to deal
with the problems caused by intensity inhomogeneity.

D. Robustness Against Noise

To verify the robustness of KL-MMLBF to noise, firstly the
experiments are performed on images contaminated by various
degrees of Gaussian noise, whose standard deviations are 0,
15, 20, 25. Segmentation results are shown in Fig. 6, in which
the red curve indicates the position of initialized zero level
set, and the green curve is the final segmentation results. In
Fig. 6, row 1-2, row3-4 and row 5-6 show the segmentation
results of LBF model, Order-LBF model and KL-MMLBF
model, respectively. It can be seen that, compared with LBF
model, Order-LBF model has stronger robustness to noise,
but in some cases, still cannot segment correctly, while KL-
MMLBF model can effectively segment target contours in
various situations. Because the KL energy in the proposed
model enhances the differences between regions, the noise
can be processed accurately and better segmentation results
can be obtained. The energy functions are constructed based
on local information in other models, therefore, the accuracy

(b) =15 (d)o=25

(a) 0=0 (c) 0=20

Comparison of image segmentation results with various degrees of

Fig. 6.
Gaussian noises

(a) p=0 () p=0.04 (d) p=0.06

Fig. 7. Comparison of segmentation results of images with different levels
of salt and pepper noise (Where P is the parameter of Salt Pepper noise in
Matlab)

(b) p=0.02

of segmentation will be seriously affected by the noise, the
segmentation result becomes worse as the noise increases.
Compared with other models, KL-MMLBF model can obtain
better segmentation results, and has good robustness to noise.
Moreover, it can be observed that, in the experiment of Gauss
noise, the number of iterations to segment the target contours
are increased with the increase of the degree of noise pollution.

Then the experiments are performed on images contaminat-
ed by different level Salt and Pepper noise. In the experiment,
the model parameters are same as that for Gaussian noise
(in Fig. 6). Comparative experimental results are shown in
Fig. 7, in which the red curve indicates the position of
initialized zero level set, and the green curve indicates the
final segmentation results. From the top to bottom rows show



(e) KL-MMLBF model

Fig. 8. Segmentation results of multi-phase multi-scale image segmentation
model (¢; and ¢2 have same initialization)

segmentation results of LBF model, Order-LBF model, kl-
MMLBF model, respectively. According to the segmentation
results we can conclude that, compared with other models,
KL-MMLBF model has better robustness to Salt and pepper
noise. Despite of this, all models have poor robustness to
salt and pepper noise. The main reason is that the mean
fitting kernel function of each model for the experiments is
Gaussian function, which has inherent capability of de-noising
for the Gaussian noise. Meanwhile, the weighted average with
Gaussian kernel is performed in calculating the local energy
fitting item, so it is possible to further reduce the impact of
Gaussian noise. However for salt and pepper noise, it is known
that the rank-order based filter, especially the median filter has
good inhibitory effect on the salt and pepper noise, while the
Gaussian low-pass filter is not effective on the salt and pepper
noise. Therefore, the poor robustness of the model on salt
and pepper noise robustness is mainly caused by using the
Gaussian kernel function which is not effective on salt and
pepper noise.

E. Multi-region Image Segmentation

The Fig.8 and Fig.9 are multi-region images. In Fig.8, the
segmentation results of the LCV model are better than those of
the LBF model and the LGIF model, and are also comparable
with the results of the KL-MMLBF model. The LCV model,
to some extent, is a CV model. The results shown in Fig. 8(b)
also demonstrate that the LBF model is not a good model to
segment the almost piece-wise image. The LGIF model which
is a combination of the CV model and to some degree the
LBF model is not appropriate too. It is obvious that the KL-
MMLBF model outperforms the LBF model, LCV model and
the LGIF model in this case.

Overall, we can conclude from the results in Fig.8 (where
¢1 and ¢, have same initialization) and Fig.9 (where ¢; and
¢2 have different initialization) that, LBF, LCV and LGIF, in
some cases, can offer better segmentation results which are

(c¢) LCV model (d) LGIF model

(e) KL-MMLBF model

Fig. 9. Segmentation results of multi-phase multi-scale image segmentation
model (¢1 and ¢2 have different initialization)

comparable with that of the KL-MMLBF model. However,
the results also show that these comparing models are unstable
for the initial position. It has been demonstrated that the KL-
MMLBF model is more stable and has the fine properties
of both the global information based model and the local
information based model.

IV. CONCLUSION

In this paper, we have proposed a level set method for
image segmentation based on multi-region multi-scale local
binary fitting modelMMLBF) and Kullback-Leibler (KL)
divergence. The construction of MMLBF is based on the LBF
model, in which the Gaussian kernels with different scale
parameters and multi-phase level set framework are introduced
to deal with the segmentation of inhomogeneous images.
We have introduced a new energy term represented by the
KL divergence into MMLBF to estimate the between-cluster
distance energy. The experiments on synthetic images, med-
ical images and natural images from the Berkeley BSDS300
dataset have demonstrated that KL-MMLBEF can achieve more
accurate segmentation results than existing approaches such as
LBF, LGIF, LCV and Order-LBF. In terms of robustness, our
experiments have proved that KL-MMLBF are more robust
to noise and initial contour than other models. However, KL-
MMLBEF faces difficulty on the increase of the computational
complexity. In our future work, We will analyze the approach
to find ways to reduce its complexity.
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