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Abstract—The dominant application in today’s Internet is
content streaming, which is increasingly relying on caches to
meet the stringent conditions on the latency between content
servers and end-users. These systems routinely face the challenges
of limited bandwidth capacities and network server failures,
which degrade caching performance. In this paper, we study
the problem of optimally allocating content over a resilient
caching network, in which each cache may fail under some
situations. Given content request rates and multiple routing
paths, we formulate an optimization problem to maximize the
expected caching gain, i.e., the reduction of latency due to
intermediate caching. The offline version of this problem is
NP-hard. We first propose a centralized, offline algorithm and
show that a solution with (1-1/e) approximation ratio to the
optimal can be constructed. We then propose a distributed ascent
algorithm based on the concave relaxation of the expected gain.
Informed by the results of our analysis, we finally propose a
distributed resilient caching algorithm (DR-Cache) that is simple
and adaptive to network failures. We show numerically that
DR-Cache significantly outperforms other candidate algorithms
under synthetic requests, as well as real world traces over a class
of network topologies.

I. INTRODUCTION

Today a common method of delivering content to end users
is through the use of caching infrastructures [24] [16]. By
keeping copies of content in a set of universally deployed or
distributed cache nodes, these infrastructures enable content
requests to be served as close as possible to the end users,
reducing as such latency costs and contributing to improve
quality of experience.

As the Internet is evolving, however, its resilience to failures
is becoming more critical. By analyzing the IS-IS routing
updates of the Sprint network, an operational IP backbone
network, the authors in [18] showed that failures are not
uncommon events in networks. In addition, it was demon-
strated in [12] that network failures can even occur in highly
reliable data centers. In recent years, several initiatives have
investigated edge cloud computing architectures to enable
caching services in the network edge [14], [25]. However,
small servers deployed in edge clouds are more likely to fail
due to power supply shutdowns, hardware failures and so on
[11]. In fact, it is reported that IT downtime due to equipment
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failures costs enterprises billions of dollars a year [1]. In the
area of information-centric networking (ICN), the authors in
[6] investigated the provision of information resilience through
a caching approach based on the concept of modularity.

Failures and caching performance are inherently tied to-
gether in cache networks since failures result in further
searching and routing which, in turn, can significantly increase
latency. Substantial effort has been invested over time in the
development of novel approaches to drive caching decisions in
cache networks, e.g., content/service placement strategies [2],
[3], [5], [17], [21], [22] and replication schemes [7], [9], [20],
[26]. However, one of the main limitations of these approaches
is that they do not explicitly take network failures into account
when making caching decisions.

In this paper, we propose an optimal and distributed content
allocation algorithm (DR-Cache) that maximizes the expected
caching gain in the presence of failures across a cache network.
DR-Cache is a lightweight algorithm that does not need a
priori knowledge of content request patterns and requires only
a minimal quantity of information exchanged between cache
nodes. In addition, network failure probability is explicitly
taken into account in caching decision which shows significant
improvement on system performance compared with tradi-
tional non-resilient caching algorithms.

The main contributions of this paper are as follows:
(1) We formulate an optimization problem to determine the
optimal content allocation across a resilient cache network,
which captures both routing latency and network failures. The
deterministic and combinatorial version of this problem is NP-
hard. We propose a centralized, offline algorithm to achieve a
solution with an approximation ratio of 1− 1/e.
(2) Since the request information and network topology is
usually not known in advance, we then propose a distributed
gradient ascent algorithm based on the concave relaxation of
the expected caching gain, and show that it can converge to a
solution with a (1− 1/e) approximation ratio to the optimal.
(3) Informed by the results of our analysis, we propose
a distributed resilient caching algorithm (DR-Cache) that is
simple and adaptive to network failures.
(4) We conduct extensive numerical studies under both syn-
thetic requests and real world traces over a range of network
topologies. We show that DR-Cache significantly outperforms
other candidate algorithms. Content retrieval latency is reduced



by up to 57%, while the number of failed requests is reduced
by 8% and routing overhead is reduced by 16.7%.

Related Work and Organization

The key focus of this work is to propose a content allocation
scheme to incorporate network failures, specifically in caching
systems, to achieve low latency. Our ideas are built and
borrowed from a large body of existing work in this area.
However, to the best of our knowledge, DR-Cache is the first
caching system that employs replication and captures network
failures to reduce latencies.

Due to network failures, maintaining a single copy of
each piece of content in a cache network can result in low
performance due to content unavailability. Replication [9], [23]
has been used to increase content redundancy, which further
improves the performance in terms of cache hits. However,
[15] showed that simple universal replication strategies are not
optimal when there is a significant variation in the popularity
of content: cache space can be wasted on less popular contents.

Many studies provide insights on the offline caching op-
timization problem [2], [5], [10], [13], [19], [20]. The one
most close to our problem is [15], we rely and expand upon
this work. [15] considered a caching network and assumed
that only a fixed and unique path is used for routing the
request and that all caches (servers) are stable. However, in
our framework, due to network failures, i.e., instability of each
node, we assume that multiple paths are available for each
request. These are the two major differences with [15]. Since
we capture network failures using multiple paths, showing that
(i) there exists a centralized, offline algorithm that can achieve
a constant approximation ratio to the optimal; and (ii) there
exists a distributed resilient caching algorithm that is simple
and adaptive to network failures without prior knowledge of
network topology and request information, are quite intricate.
These are main contributions in this paper.

The paper is organized as follows. We introduce the model
and formally formulate our optimization problem in Section II.
We present the centralized algorithm in Section III. Distributed
gradient ascent algorithm and distributed resilient caching
algorithm (DR-Cache) are presented in Section IV. Finally,
we provide extensive numerical results in Section V, and we
present our conclusions in Section VI.

II. ANALYTICAL MODEL

We consider a general cache network, in which each node
has a finite cache capacity to store content and failures can
occur on any node. We use “node” as a general term to indicate
a router in Information/Content Centric Networks (ICN/CCN
[16]) or a server in Content Distribution Networks (CDN) [24]
and edge cloud clusters [14], [25]. We assume that there exists
an origin server, which is the persistent store of the content
requested by end users. Each end user generates requests for
content, which are forwarded through the network towards the
origin server. Content requests are satisfied on the occurrence
of the first “cache hit”. Here, we consider the case that there
exists multiple paths for each request, but only one path is

used for routing each time. Whenever a cache hit occurs,
the requested content is sent back along the reverse direction
of the path. Intermediate nodes can then cache the requested
content to serve future requests. Our objective is to determine
the optimal content allocation that maximizes the expected
caching gain.
Cache Network: We represent the cache network as a general
graph G = (V,E). Each node has a finite cache capacity,
denote it as Cj ∈ N+ for j ∈ V. Let N = {1, 2, · · · , n} be
the set of equal-size content in the library considered in our
system. For each node j ∈ V and content i ∈ N , we denote

xj,i =

{
1, if node j caches content i,
0, otherwise.

(1)

Denote the global allocation as X = {xj,i}j∈V,i∈N ∈
{0, 1}|V |×|N|. Thus based on the capacity constraint on each
node, we have ∑

i∈N
xj,i ≤ Cj , ∀j ∈ V. (2)

Network Resilience: We capture the resilience of each node
with a stability score sj ∈ [0, 1] for j ∈ V. A higher value
of sj means node j is more stable, while a smaller sj value
means that node j is more likely to fail. In other words, node
j fails with probability (1−sj) over the timeframe under con-
sideration. As shown in [11], [12], the failure probability of a
node is affected by a combination of several factors. However,
deriving an exact model to predict the failure probability is out
of the scope of this work.

A request routed along a path fails if one of the intermediate
nodes on the path is broken. For example, given a path with
four nodes (p1, p2, p3, p4) and suppose node p3 caches the
requested content. If node p2 breaks, the request fails since it
cannot reach node p3. Therefore, it is prudent for each node to
take the stability information (including that of itself and other
nodes along the path) into account when it decides to cache the
content. In this work, we propose an algorithm under which
node j makes a decision to cache the requested content i with
probability fj,i, which relies on the stability of each of the
nodes on the path. More details are presented in Section IV.
Content Requests and Routing Latency: We assume that
requests to content are routed along paths in G. We denote
a request as (i,Pi), where i is the requested content, and Pi
is a set of corresponding paths. We assume that each content i
can be routed along a set of possible paths Pi = (Pi1, · · · ,PiI),
for constant I ∈ N+. The probability of routing along path Pil
is given by qil , we denote the probability distribution over Pi
as Qi = (qi1, · · · , qiI), satisfying

∑I
l=1 q

i
l = 1. Once a request

is generated, one path is used for routing, and a new path
is selected only if that path fails. Formally, a path Pil is a
sequence {pil,1, · · · , pil,|Pi

l |
} of nodes pil,j such that the edge

(pil,j , p
i
l,j+1) ∈ E, for j = 1, · · · , |Pil | − 1. We say that a

request (i,Pi) is well routed in G, if there exist a set of paths
Pi and an origin server, which is the end node pi

l,|Pi
l |

on each
possible path Pil , that contains the requested content i.



We denote all the requests as R. Also each request arrives
according to an independent Poisson process, we denote the
request rate by λ(i,Pi) for request (i,Pi) ∈ R.

A request (i,Pi) ∈ R is routed over the cache network G
following a path Pil ∈ Pi. Once it reaches a cache storing
that content, a response message is generated and carries the
requested content and the stability information of each node
on the path. The response message is passed along the reverse
direction of Pil to the end-user who sent the request. We
assume that each edge along the path has a delay (latency)
d(u,v) > 0,∀(u, v) ∈ E. Since we consider a symmetric
routing, i.e., d(u,v) = d(v,u), the delay from searching and
responding are identical, our objective of maximizing caching
gain is equivalent to maximizing caching gain from response
messages. Therefore, in the following, we only consider the
delay from response messages. For brevity, in the remainder
of this section, we remove the superscript .i of each node pil,j
on path Pil ∈ Pi.

Therefore, if a request (i,Pi) ∈ R is well routed in the
network G, the corresponding delay can be expressed as

L(i,Pi) = L(i,Pi)(X)

=

I∑
l=1

qil

|Pi
l |−1∑
k=1

u(spl,k+1
)dpl,k+1pl,k

k∏
j

(1− xpl,j ,i), (3)

where u(·) is a continuous and decreasing convex function on
[0, 1] with u(0) < M for M < ∞ and u(1) = 1. It captures
the impact of node stability along the path on the latency.
Intuitively, (3) means that if node pl,k+1 caches content i, then
the corresponding delay should be the sum of delay associated
with all edges on the reverse path from node pl,k+1 to the
end-user, since all nodes between them do not store content
i. Equation (3) represents the expected delay a request (i,Pi)
can experience when it is routed along the path Pi. Note that if
any of the intermediate nodes between pl,1 and pl,k+1 breaks,
the request on this path fails, which results in a large latency.
Thus, we use u(·) in (3) to capture this feature. For example, if
node pl,k is unstable, the value of u(spl,k) is high, then another
path with more stable nodes might be selected to minimize the
corresponding delay for the request (i,Pi).

Therefore, the total expected delay for all requests (i,Pi) ∈
R is defined as
L(X) =

∑
(i,Pi)∈R

λ(i,Pi)L(i,Pi) =

∑
(i,Pi)∈R

λ(i,Pi)

I∑
l=1

qil

|Pi
l |−1∑
k=1

u(spl,k+1
)dpl,k+1pl,k

k∏
j

(1− xpl,j ,i).

(4)

Caching Gain Optimization: Now, if we consider the case that
there is no cache available in the network, i.e., all requests
from end-users are served by the origin server, then the
expected delay is given as

L0 =
∑

(i,Pi)∈R

λ(i,Pi)

I∑
l=1

qil

|Pi
l |−1∑
k=1

u(spl,k+1
)dpl,k+1pl,k . (5)

Our objective is to find a feasible allocation X to minimize
the total expected delay, which is equivalent to maximizing
the expected caching gain, defined as

G(X) = L0 − L(X) =
∑

(i,Pi)∈R

λ(i,Pi)

I∑
l=1

qil

|Pi
l |−1∑
k=1

u(spl,k+1
)

· dpl,k+1pl,k

1−
k∏
j

(1− xpl,j ,i)

 . (6)

Hence, we consider the following optimization problem
max G(X)

s.t. xj,i ∈ {0, 1}, ∀j ∈ V, i ∈ N ,∑
i∈N

xj,i ≤ Cj , ∀j ∈ V. (7)

Theorem 1. The optimization problem in (7) is NP-hard.

The proof is straightforward from [8]. In this paper, we aim
at designing a distributed algorithm that captures the resilience
of the network and produces a feasible allocation within a
constant approximation ratio to the optimal, without knowing
the request information and network topology.

III. CENTRALIZED ALGORITHM

Before presenting distributed algorithms, we first consider a
centralized, offline algorithm that achieves a constant approx-
imated solution to (7) in polynomial time. It is easy to check
that the optimization problem defined in (7) is a submodular
optimization problem under matroid constraints [8] and there
exists a 1/2-approximation algorithm that can be constructed.
In the following, we consider the randomized swap rounding
algorithm [8] that can improve the approximation ratio to
1− 1/e.

The centralized approximation algorithm consists of two
steps: (1) We turn the integer programming problem to a
convex optimization problem whose solution is equal to or
greater than the optimal one by relaxing the binary variable
xj,i from {0, 1} to [0, 1], ∀j ∈ V and ∀i ∈ N . We show that
the obtained solution is within a constant approximation from
the optimal solution to the original problem. (2) We round
the possibly fractional solutions from the convex optimization
to possible solutions to the original integer problem. In the
following, we present the key steps of the application of
randomized swap rounding scheme [8] in our problem, and
refer the interested reader to [8] for further details.

A. Convex Relaxation

The objective of convex relaxation is to relax the origi-
nal integer programming to a convex optimization problem.
Suppose that the binary variables xj,i for all j ∈ V and
i ∈ N are independent Bernoulli random variables. Let F be
the corresponding joint probability distribution in [0, 1]|V |×|N|.
Denote fj,i as the marginal probability that node j ∈ V caches
content i ∈ N . Then, we have

fj,i = PF [xj,i = 1] = EF [xj,i], (8)



where PF [·] and EF [·] are the probability and expectation with
respect to (w.r.t.) F . Denote the corresponding relaxed global
allocation as F = {fj,i}|V |×|N|. Then we have

EF [G(X)]

=EF

[ ∑
(i,Pi)∈R

λ(i,Pi)

I∑
l=1

qil

|Pi
l |−1∑
k=1

u(spl,k+1)dpl,k+1pl,k

·

(
1−

k∏
j

(1− xpl,j ,i)

)]

=
∑

(i,Pi)∈R

λ(i,Pi)

I∑
l=1

qil

|Pi
l |−1∑
k=1

u(spl,k+1)dpl,k+1pl,k

· EF

[
1−

k∏
j

(1− xpl,j ,i)

]

(a)
=

∑
(i,Pi)∈R

λ(i,Pi)

I∑
l=1

qil

|Pi
l |−1∑
k=1

u(spl,k+1)dpl,k+1pl,k

·

(
1−

k∏
j

(1− EF
[
xpl,j ,i

]
)

)
,G(F ), (9)

where (a) holds true since all nodes are independent and
unique on a feasible path. This is known as multi-linear
relaxation of G(X) [8]. Now consider the following relaxed
convex optimization problem

max G(F )

s.t. fj,i ∈ [0, 1], ∀j ∈ V, i ∈ N ,∑
i∈N

fj,i ≤ Cj , ∀j ∈ V. (10)

If we denote the optimal solutions to (7) and (10) by X∗ and
F ∗, respectively. Then we immediately have

G(X∗) ≤ G(F ∗), (11)

since (10) achieves the maximization of the same objective
function over a larger domain.

However, (9) is not concave, in order to achieve a convex
optimization problem, we consider the following approximated
function

G̃(F̃ ) =
∑

(i,Pi)∈R

λ(i,Pi)

I∑
l=1

qil

|Pi
l |−1∑
k=1

u(spl,k+1
)dpl,k+1pl,k

·min

1,

k∑
j=1

fpl,j ,i

 , (12)

which is concave.
Now we consider the following relaxed approximated con-

vex optimization problem

max G̃(F̃ )

s.t. fj,i ∈ [0, 1], ∀j ∈ V, i ∈ N ,∑
i∈N

fj,i ≤ Cj , ∀j ∈ V. (13)

Theorem 2. [8] Given the optimal solutions F ∗ to (10) and
F̃ ∗ to (13), we have(

1− 1

e

)
G(F ∗) ≤ G̃(F̃ ∗) ≤ G(F ∗). (14)

Hence, from (11) and (14), we know the optimal solution
to (10) is within a constant factor from that of (7). Also note
that the convex optimization problem (13) can be solved in
strongly polynomial time [8]. In the following, we show that
the optimal solution F̃ ∗ can be rounded to a feasible solution
to (7) in finite steps.

B. Randomized Rounding

Convex relaxation enables us to solve a convex optimization
problem and obtain an optimal solution F̃ ∗, however, this
solution may not satisfy the constraint of the original problem,
i.e., F̃ ∗ may contain fractional solutions. Hence, to produce a
constant approximation solution to (7), F̃ ∗ has to be rounded.
Here, we use the randomized swap rounding scheme [8].

We use the following rounding steps: (i) Denote fj′,i as
a convex combination of fpl,j ,i, i.e., fj′,i =

∑I
l=1 q

i
lfpl,j ,i,

where
∑I
l=1 q

i
l = 1; (ii) Merge any two components in fj′,i

into a new component with the coefficient equals to the sum of
the corresponding coefficients of the merged two components;
(iii) Continue the merge operation of I − 1 steps to obtain
the new variable fj′,i, and repeat the process for all possible
content i ∈ N , after which we obtain |N | × |V | variables for
the caching probability of these content in the network; (iv)
If all are integer, we are done; otherwise, pick two fractional
variables, since the capacity is integer, there must exist at least
two fractional solutions; (v) transform the mass between these
two variables, after which at least one of them becomes 0 or
1 and the objective function is at least as good as before after
the transform [8]; (vi) repeat step (iv) and (v) until there are
no fractional solutions. Denote the obtained integral solution
as X̃. The caching gain G after each rounding step is at least
as good as that at previous step [8].

Theorem 3. Following the above randomized rounding policy,
the rounding solutions X̃ satisfies(

1− 1

e

)
G(X∗) ≤

(
1− 1

e

)
G(F ∗) ≤ G̃(F̃ ∗) ≤ G(X̃),

(15)

hence there exists a
(
1− 1

e

)
approximation solution to (7).

Since the number of variables in the networks is finite, the
above rounding steps conclude in finite steps.

IV. DISTRIBUTED RESILIENT CACHING ALGORITHM

In many applications, the requests and network topology are
usually dynamic and not a priori known. Hence, a distributed
algorithm that can provide an optimal content allocation with-
out knowing the requests and adapt to changes are preferred.
In this section, we design distributed algorithms for caching
decision-making to improve content reachability in resilient
caching networks.



A. Gradient Ascent Algorithm

A natural decentralized approach to maximizing G̃(F̃ ) is
to gradually move the random variables towards the optimal
point using the gradient ascent algorithm. Since G̃(·) is con-
cave, the algorithm converges to a solution within a constant
approximation ratio (1 − 1/e) to the optimal solution to the
original optimization problem (7) by Theorem 3.

However, we cannot directly compute the gradients from a
centralized viewpoint since G̃(·) is not differentiable over the
whole feasible region, we need to consider the subgradient.
Similar to the solution in [15], each node needs to estimate
the subgradient relying only on the local request and response
information. Once we achieve a solution to (13), which may
contain a fractional solution, we need to determine the allo-
cation of content in each cache. Since each node needs to
determine the cache content in a distributed way, we cannot
directly use the randomized swap rounding.

We address both these issues by showing that the sub-
gradients can be estimated in a distributed way only with
information arrival at each node, and we can easily obtain
a feasible randomized rounding solution. The proposed ap-
proach is based on the algorithm presented in [15] that we
significantly extend by taking into account multi-path routing
and network failures. We briefly introduce the gradient ascent
algorithm as applied to our problem, referring the interested
readers to [15] for further details.
Algorithm Overview: We measure the information and update
the caching allocation upon each request. Each node has its
own marginal fj ∈ [0, 1]|N | for j ∈ V , i.e., j keeps track of
its own marginal probability fj,i of caching content i. We call
fj as the state of node j. Upon each request, each node adapts
its state vector fj and then reshuffles the content in the cache.

To be more specific, upon the k-th request, node j first
estimates its own subgradient gj of G̃(F̃ ) w.r.t.s to fj with
the information available from the request, i.e., gj(F̃ (k)) ∈
∂fj G̃(F̃ (k)), where ∂fj G̃(F̃ (k)) is the set of subgradients of
G̃ w.r.t. fj . Given this subgradient, node j computes its own
state as

fj(F̃
(k+1))← PSj

(
fj(F̃

(k)) + ηkgj(F̃
(k))
)
, (16)

where ηk > 0 is the step size and PSj is the projection to
node j’s set of Sj = {fj ∈ [0, 1]|N | :

∑
i∈N fj,i = Cj}.

Now we describe how to compute the estimate gj of
the subgradient ∂fj G̃(F̃ (k)) upon each request, which only
requires the information available at each local node from the
response message traversing the node. We drop the superscript
(k) for brevity. Consider a request (i,Pi) and suppose that path
Pil ∈ Pi is selected, then:
(i) a request message is sent out along the path until it hits
a node that caches content i. Every time it traverses an edge
(j′, j) ∈ E, node j adds the latency dj′,j to latency counter
H and its stability score sj to counter χ, then we have
Hj,i =

∑j−1
k=1 dk,k+1, and χj,i =

∑j−1
k=1 skdk,k+1;

(ii) a response message is sent down in the reverse di-
rection carrying the latency counter information as well as

request stability counter χ and cache stability counter ψ.
If a node caches the content, it adds its cache stability to
the counter ψ and subject the score to counter χ. Since
the response message traverses every node on the reverse
direction of the path, every node on the path learns the
values of these counters: ψk,i =

∑j−1
k skdk+1,k1xk,i=1 and

χk,i =
∑j−1
k′=1 sk′dk′+1,k′ −

∑j−1
k skdk+1,k;

(iii) given the information learned from the request, each node
k computes its estimate:

fk,i = (χk,i + ψk,i) /Hk,i. (17)

Note that, only nodes on the reverse path that the request
(i,Pi) traverses need to compute it.

Finally, given fj(F̃
(k+1)), each node j ∈ V reshuffles its

cached content independently of other nodes in the network,
i.e., node j selects a random variable xj,i = 1 with probability
fj,i(F̃

(k+1)) independently of any other nodes in V with a
joint distribution satisfying F .

Remark 1. It is easy to show that the estimate of the subgradi-
ent is unbiased. We skip the technical proofs demonstrating the
unbias of the estimator and the convergence of the algorithm
due to space constraints.

B. Distributed Resilient Caching Algorithm

The gradient ascent algorithm has a drawback that the
estimation of the gradient and the decision of caching are made
at the end of a request, which may incur additional traffic to
retrieve the requested content. In the following, we propose a
new distributed resilient caching algorithm (DR-Cache) that is
simple and does not have the above drawback.
Algorithm Overview: Consider a request (i,Pi) ∈ R. Suppose
a path Pil is selected from Pi with probability qil . Note that
under our model, a request is routed on only one path each
time. For simplicity, we remove the subscribe .l, and denote
the path as Pi directly.
Step 1: Once the request (i,Pi) is generated, it is then sent
along the path Pi until it reaches one node that caches the
content i, i.e., xj,i = 1 for j = 1, · · · , |Pi|. The request
message for a request (i,Pi) contains a request stability
counter χ and the current latency H . Whenever the request
traverses a node along the path, the stability score of the
node is added to the counter χ and the latency counter H
is increased by that along the edge:

χj,i =

j−1∑
k=1

skdk,k+1, ∀j = 1, · · · , |Pi|,

Hj,i =

j−1∑
k=1

dk,k+1. (18)

Step 2: Upon finding the cached content i (suppose it is node
j on the path Pi), a response message carrying content i is
sent back to the end user along the reverse path. The response
message for a request (i,Pi) contains a request stability
counter χ, a cache stability counter ψ and the latency counter
H. Note that H does not change along the reverse path.



Therefore, node k on the reverse path learns the following
information:

Hk,i ≡ Hj,i, where xj,i = 1 and k = 1, · · · , j,

χk,i = χj,i −
j−1∑
k

skdk+1,k, k = 1, · · · , j,

ψk,i =

j−1∑
k

skdk+1,k1xk,i=1. (19)

Step 3: Based on the received information, node k computes
the probability of caching content i. This computation captures
the stability of nodes on the path, as well as the latency to find
a node (say node j as above) on the path that caches content
i, which is defined as follows

fk,i = 1− 1

Hk,i
(θχ,kχk,i + θψ,kψk,i) · gk(pk,i), (20)

where pk,i is the popularity of content i at node k and gk(·) is
a decreasing smooth function. θχ,k and θψ,k are two weighted
parameters, representing the greediness of caching.
Step 4: Finally, after computing the probability, node k decides
to cache content i with probability fk,i. If a content needed to
be evicted, then an eviction policy (e.g. random replacement
(RR), FIFO or LRU [17]) is applied.

The above steps are summarized in Algorithm 1. Note that
node k decides to cache the content directly without computing
fk,i if there is available cache capacity (line 13− 15).

Algorithm 1 Distributed Resilient Caching Algorithm

1: When node k receives a message
2: if request message for content i from node k′ then
3: Hk,i = Hk′,i + dk′,k
4: if k has the requested content then
5: ψk,i = skdk′,k
6: χk,i = χk′,i − skdk′,k
7: send the response message back
8: else
9: χk,i = χk′,i + skdk′,k

10: forward the request to next hop
11: else if response message with content i from node k′ then
12: update content popularity pk,i
13: χk,i = χk′,i − skdk′,k
14: if Ck > 0 then //Ck is available capacity of k
15: cache the content, update Ck = Ck − 1
16: ψk,i = ψk′,i + skdk′,k
17: else
18: Compute caching probability fk,i
19: if the decision is to cache the content then
20: ψk,i = ψk′,i + skdk′,k
21: Replace the content using an eviction policy
22: forward the response message to the next hop

Remark 2. Some key ideas behind Algorithm 1:
(a) χ captures the stability of all nodes on the path towards
the end user. ψ indicates the stability of the nodes that have
cached the content on the response path.

(b) From Equation (20), we can see that (i) If (χ+ ψ)/H is
small, the content should be cached only in unstable nodes,
thus the current node should cache the content with higher
probability such that the content could serve future requests
even if those unstable nodes fail; (ii) If (χ + ψ)/H is large,
the content should be cached in stable nodes. Thus the current
node sets lower caching probability for this content to save
space for other content; (iii) If the content i is more popular
at node k, then it should be cached with a higher probability,
this is captured by the popularity function gk(·).
(c) Caching probability increases when response message is
close to end-user (see the example in section IV-C).

C. Illustrative Example

1 5 4 3 2 6 
1 0.9 0.8 0.7 0.6 0.5 

Stability score Node has the content Node sends request Request path 

Response path 

Fig. 1: Illustrative Example of a Simple Path.
We begin our analysis of the aforementioned insights with a

simple but representative example as shown in Figure 1, where
node 6 stores the requested content. We consider a simple case
when gk(pk,i) = 1 and θχ,k = θψ,k = 1 for ∀i ∈ N , k ∈ V,
then the decision probability in (20) reduces to

fk,i = 1− (χk,i + ψk,i) /Hk,i. (21)

W.l.o.g., we assume the latency of each link is 1, and stability
scores are given as 0.5, 0.6, 0.7, 0.8, 0.9 and 1, respectively.
TABLE I: χk,i, ψk,i and fk,i updated on the response path
Node χk,i ψk,i Hk,i fk,i χ∗k,i ψ∗k,i
6 4.5 0 6 3.5 1
5 3.5 1 6 0.25 2.6 1
4 2.6 1 6 0.4 1.8 1
3 1.8 1 6 0.53∗ 1.1 1 + 0.7 = 1.7
2 1.1 1.7 6 0.53 0.5 1.7
1 0.5 1.7 6 0.63∗ 0 1.7 + 0.5 = 2.2

For the request message, (χ,H) is carried along the mes-
sage, and based on Algorithm 1, the information updated
from node 1 to node 6 are as follows: (0.5, 1), (1.1, 2),
(1.8, 3), (2.6, 4), (3.5, 5) and (4.5, 6). Since node 6 caches
the requested content, a “cache hit” occurs. Upon the oc-
currence of a cache hit, the content is sent back along the
reverse direction of the path. A response message containing
(χ, ψ,H) are sent back at the same time. Each node learns
this information, updates its own (χ, ψ,H) and then computes
its own probability of caching this content through Equa-
tion (21) (assume that all nodes are full, i.e. Ck = 0). Denote
(χj , ψj , Hj) as the message node j receives from parent node
and (χ∗j , ψ

∗
j , Hj) as the message node j sends to its child

node. Hence, we have (χj , ψj , Hj) = (χ∗j+1, ψ
∗
j+1, Hj+1)

for j = 1, · · · , 5. From the request message, we have
(χ6, ψ6, H6) = (4.5, 0, 6). Since node 6 caches the content,
then (χ∗6, ψ

∗
6 , H6) = (3.5, 1, 6) = (χ5, ψ5, H5). Given this

information, nodes compute the probability fk based on (21)
as shown in Table I. Suppose nodes 3 and 1 decide to cache
the content, then they add their stabilities to ψ∗.



V. NUMERICAL STUDIES

We evaluate the performance of Algorithm 1 (DR-Cache)
through a series of experiments using both synthetic and real
traffic traces over a class of network topologies. We compare
DR-Cache with traditional non-resilient path replication (PR)
algorithms using different eviction policies: random replace-
ment (RR), FIFO and LRU [17]. We find that DR-Cache
can significantly outperform traditional PR algorithms. The
highlights of the evaluation results are:
• DR-Cache can reduce the number of failed requests up

to 8%, and improve the caching gain as much as 57%,
compared to PR.

• DR-Cache reduces the routing overhead as much as
16.7% compared to PR.

TABLE II: Network Topologies and Experiment Parameters
Network |V | |E| |N | |R| |N ∗| |R∗|
Abilene 12 15 70 20352 73 2857

Nobel EU 28 41 162 27119 169 4144
Zib54 54 81 313 33169 325 9382

Erdos-Renyi 100 915 578 37159 600 13432

A. Methodology

Experiment setup: The networks we consider are summarized
in Table II, including one synthetic network (Erdos-Renyi
(ER)) and three real backbones. The size of these networks
ranges from 12 to 100 nodes. |N | and |R| represent the
number of unique contents and requests under synthetic traffic,
respectively, whereas |N ∗| and |R∗| are corresponding num-
bers under real traffic traces [4]. The failure probability of
devices is usually less than 50% in real systems [12], [18].
Thus, we associate each node (cache) with a stability score,
randomly chosen as sj ∈ [0.5, 1] in numerical experiments.
As nodes’ stabilities are stochastic variables, we run each
simulation 100 times to get the mean result. We evaluate the
performance of candidate algorithms by varying the cache size
of each node from 1− 10% of the total number of content.

We generate the synthetic traffic as follows. We first ran-
domly select an origin server and assume that it has all the
requested contents. To ensure path overlap, we randomly select
|Q| nodes from V that are the only nodes to generate requests.
We generate a set of requests starting from a random node
in Q, with the requested content selected from N following
a Zipf distribution with parameter 1.2. In order to confirm
that our results also hold in real systems, we run similar
experiments using traces from IRCache project [4], with an
attention on data gathered from the SD Network Proxy in
Feb. 2013. A detailed study shows that these traces capture
the regional traffic and exhibit significant non-stationaries due
to daily traffic fluctuations.
Evaluation metrics: Our primary metrics for comparisons
are number of failed requests, average time caching gain per
request and routing overhead across the resilient networks.
Number of failed request: A request is routed over the shortest
path between user and the origin server. If failures occur on the
path, then a 3-hop scoped-flooding [27] is chosen. A request
is said to be failed if it cannot be satisfied using flooding.

Average time caching gain per request: we measure the
caching gain Ḡ using the latency defied as follows

Ḡ = L0 − L(X), (22)

where L0 is the latency without caching, and L(X) is the
latency when requests are served from intermediate nodes with
content allocation X. For simplicity, we set the latency d of
all edges equals to 1 in our experiments. In such a case, the
average time caching gain is equivalent to the average number
of hops saved.
Routing Overhead: The number of requests routed through 3-
hop scoped-flooding, which introduces substantial volume of
traffic to the networks.

In DR-Cache, when a request for content i reaches node
k, it decides to cache it with probability fk,i, given in Equa-
tion (20). In our numerical experiments, we need to consider
the specific values of the parameters θχ,k, θψ,k and gk(pk,i).
Following the discussion on the impact of these parameters
on fk,i in Section IV-B, here we consider three classes of the
form for fk,i, denoted as F1, F2 and F3,

F1 = 1− (χ+ ψ)/H, (23)
F2 = 1− (θχχ+ θψψ)/H, (24)
F3 = 1− log10((1− pk,i)/pk,i) · (χ+ ψ)/H, (25)

where pk,i ∈ (0, 1] is the popularity of content i seen by node
k, which is updated whenever node k receives a content. In
the following, we characterize the impact of θχ,k, θψ,k and
gk(pk,i) on the performance of candidate algorithms through
F1, F2 and F3.

B. DR-Cache vs. PR using LRU

We first compare the performance of DR-Cache using F1,
F2 and F3 with the traditional non-resilient PR under synthetic
traffics of Nobel EU network. LRU is applied to both if an
eviction occurs. We consider the cache size of each node to
be C = 1%, 5% and 10% of the total number of content.

The performance of DR-Cache using F1, F2 with different
values of (θχ, θψ), F3 and PR are shown in Figure 2. It is ob-
vious that increasing the cache size improves the performance
for all algorithms. More importantly, we observe, even with the
simplest form F1, DR-Cache always outperforms PR in terms
of lower number of failed requests and higher time caching
gain. Since F1 does not capture all necessary information for
cache decision-making, the performance gain is limited. For
example, F1 reduces around 3% number of failed requests
compared to PR.

As discussed in Section IV-B, θχ and θψ capture the greed-
iness of caching decision-making. From (24), if we choose
smaller values of θχ and θψ (e.g. θχ = θψ = 0.8 in Figure 2),
we manually increase the caching probability at each node
since F2 > F1 with other parameters fixed. Similarly, choosing
larger values of θχ and θψ (e.g. θχ > 1 and θψ > 1) forces the
caching probability of each node to be decreased as F2 < F1.
In particular, if the values of θχ and θψ make F2 < 0, the
node never caches this content when the cache is full.



We characterize the impact of θχ and θψ on the performance
through F2, shown in Figure 2. We can see: (i) F2 outperforms
PR in all cases; (ii) smaller values degrade the performance,
the performance of F2 with θχ = θψ = 0.8 is worse than F1

in terms of larger number of failed requests and smaller value
of caching gain. Intuitively, smaller value of θχ = θψ = 0.8
increases the caching probability compared to F1, however, in
real applications or even with the synthetic traffic we consider,
most content (70−80%) have only been requested once, there
is no need to increase caching probabilities. We also simulate
other smaller values of θχ, θψ, similar trends exist and are
omitted here due to space constraints. We mainly focus on the
case θχ, θψ > 1, i.e., decreasing the greediness of caching.
(iii) We analyze multiple combinations of θχ, θψ > 1, and
all cases we consider significantly improve the performance,
shown in Figure 2. For example, when C = |N | × 1%, θχ =
θψ = 3 results in best performance w.r.t. lower failed requests
and larger caching gain. However, this is not the best choice
for C = |N | × 5% and C = |N | × 10%. Note that further
increasing θχ, θψ results in a decrease in performance as F2 ≤
0, nodes never cache new content.
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Fig. 2: PR vs. DR-Cache using F1, F2 and F3.

Intuitively, more popular content should be cached with a
higher probability, however, neither F1 nor F2 captures the
content popularity. Finally, we introduce content popularity
into decision-making, given in Equation (20). With the anal-
ysis above of the impact θχ and θψ on the performance,
for simplicity, we consider the case that θχ = θψ = 1
and gk(pk,i) = log10((1 − pk,i)/pk,i). Note that gk(pk,i)
is decreasing in pk,i, hence F3 is increasing in pk,i. It is
consistent with the idea that more popular content should
be cached with higher probability. Moreover, as we have
observed, most content have pk,i < 0.01, i.e., gk(pk,i) > 1. As
a result, F3 is consistent with the observation that F2 improves
the performance with θχ, θψ > 1. We can see in Figure 2
that F3 significantly outperforms all other algorithms. Similar
trends hold under other networks using both synthetic and real
traces, and hence are omitted here due to space constraints.
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Fig. 3: Performance vs. different eviction policies with cache
size C = |N | × 1%. Superscript ∗ represent real traffic trace.

C. DR-Cache vs. PR using Different Eviction Policies

The results discussed in Section V-B are with LRU eviction
policy. Now we compare the performance of DR-Cache and
PR with other candidate eviction policies: RR, FIFO and LRU.
Due to space limitations, we only present the results for C =
|N |×1%, similar trends observed for C = |N |×5% and C =
|N |×10%. Furthermore, through the analysis in Section V-B,
here we only consider DR-Cache using F3. The results for
both synthetic and real traffic traces are given in Figure 3.

Again, DR-Cache outperforms PR under any eviction policy
used here. For instance, considering Abilene network with
LRU, DR-Cache (RLRU ) reduces 8% of the number of failed
requests while improves the caching gain as much as 57%
compared to PR (PLRU ). Also we note that LRU always out-
performs RR and FIFO in both DR-Cache and PR algorithms.
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Fig. 4: Performance vs. Different Cache Sizes.
D. Impact of Cache Size on Performance

In this subsection, we characterize the impact of cache size
on the performance. We increase the cache size by 1% of the
total number of contents each time. Due to space limitations,
we show the results for C1 = |N |× 1%, C2 = |N |× 5% and



C3 = |N |×10%. Also we consider LRU in DR-Cache (RLRU )
and PR (PLRU ). From Figure 4, we notice that increasing
the cache size enhances the performance under all cases, as
expected. More interestingly, DR-Cache can achieve better
performance than PR even with smaller cache size, i.e., DR-
Cache improves the cache efficiency. For example, in Nobel
network, DR-Cache with cache size C2 has less number of
failed requests than that for PR with cache size C3.
E. Performance in Stable Network

Now we investigate how DR-Cache performs in stable
networks (node stability scores equal to 1), i.e., no failed
requests. From Figure 5, we can see that DR-Cache still
achieves better performance for most of these networks. This is
because under DR-Cache, the caching probability is increased
when the response message is close to end-users (see Remark
2(c), section IV-B), which improves the caching gain.
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Fig. 5: Time Caching Gain in Stable Networks.
F. Overhead in Routing

In our numerical experiments, given a set of feasible paths,
we choose the shortest path first under both DR-Cache and PR
algorithms. If this path fails, then a 3-hop scoped-flooding is
used. In practice, network-wide flooding is rarely used due to
its significant traffic overhead. In this subsection, we study the
overhead induced by DR-Cache and PR, shown in Figure 6.
We can see that DR-Cache significantly outperforms PR. For
example, in Abilene network with capacity C1, the overhead,
in terms of flooding requests can be significantly reduced by
16.7% if using DR-Cache rather than PR.
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Fig. 6: Percentage of Using Scope-flooding.
VI. CONCLUSION

This paper aims to design a distributed algorithm for making
caching decisions in unreliable networks. We proposed both a
centralized algorithm and DR-Cache - a simple and adaptive
distributed algorithm for disruptive networks. We evaluated
DR-Cache against traditional path replication (PR) algorithms
using several network topologies with both synthetic and
real traffic traces. The numerical results showed that DR-
Cache significantly outperforms PR. In future work, we will
incorporate both node and link failures into the formulation.
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