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Abstract:  
 

Traditional vision registration technologies require the design of precise markers or rich texture 
information captured from the video scenes, and the vision-based methods have high 
computational complexity while the hardware-based registration technologies lack accuracy. 
Therefore, in this paper, we propose a novel registration method that takes advantages of RGB-D 
camera to obtain the depth information in real-time, and a binocular system using the Time of 
Flight (ToF) camera and a commercial color camera is constructed to realize the three-dimensional 
registration technique. First, we calibrate the binocular system to get their position relationships. 
The systematic errors are fitted and corrected by with the method of B-spline curve. In order to 
reduce the anomaly and random noise, an elimination algorithm and an improved bilateral filtering 
algorithm are proposed to optimize the depth map. For the real-time requirement of the system, it 
is further accelerated by parallel computing with CUDA. Then the Camshift-Based Tracking 
Algorithm is applied to capture the real object registered in the video stream. In addition, the 
position and orientation of the object is tracked according to the correspondence between the color 
image and the 3D data. Finally, some experiments are implemented and compared using our 
binocular system. Experimental results are showed to demonstrate the feasibility and effectiveness 
of our method.  
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1. Introduction 
 

Camera calibration is a procedure to compute the relationship between the coordinate in 
real-world and the image coordinate of a camera. It is an important step in computer vision fields 
and its precision largely influences the quality of different computer vision applications such as 
three-dimensional modeling [1,2], depth estimation [3,4], and augment reality [5,6]. The technique 
of 3D registration is also widely used in scene modeling [7,8], image tracking [9,10] and vision 
registration fields [11,12]. Recently, the RGB-D camera is a relatively new type of depth sensor, 
which can capture 3D data with a good frame rate, and it has a high focus in many fields of 
computer vision [13,14]. Time of flight (ToF) and structure light (SL) are two styles of RGB-D 
sensors. However, there are still many limitations such as the low resolution of the captured depth 
image, and there are too many abnormal points and noises in the captured depth data. 

In this paper, we construct a binocular system using a ToF camera and a commercial color 
camera to complete the joint calibration and registration technology for the indoor scene 
application of augment reality, as shown in Figure 1. Because of the real-time capture of the 3D 
scenes information, we can simplify the realization of occlusions between real objects and virtual 
objects to realize the human computer interactions. A new calibration model is presented for all 
cameras parameters. Then we calibrate the ToF camera to remove the abnormal points in the depth 
map and smooth the noises. An elimination algorithm and an improved bilateral filtering algorithm 
is proposed to optimize the depth map. In 3D registration, we need to convert the depth map to the 
view of the color camera. After the conversion, the 3D point cloud data is obtained with color 
information from the view of the color camera. In order to demonstrate the stableness and 



 

preciseness of joint calibration method, some applications are implemented in our binocular 
system. 
 

 
Figure1. Joint acquisition system. SR-4000(left), DH-51(middle) and our binocular system (right). 
 

The methodology for jointly calibrating and registration with color and depth camera is shown 
in the Figure 2. It begins from stereo data captured by the color and depth camera. In the 
calibration stage, corner detection for a usual 9×7 checkerboard is enforced to get the image 
points for captured image. The Harris corner detection algorithm is developed on the basis of the 
Moravec algorithm, and the systematic errors of ToF are fitted and corrected by the method of 
B-spline curve. Then a positional relationship of the two cameras is established. In the registration 
stage, a bilateral filtering algorithm is designed to optimize the depth map and reduce random 
noise, and the Camshift-based tracking algorithm is applied to capture the real object registered in 
the video stream. Then the pose of the camera is tracked according to the color image and the 
depth data, and virtual object can be well registered in the right position using our binocular 
system. 
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Figure 2. Process flow of calibration and registration with joint depth and color camera 
 

2. Related work 
 

Binocular stereoscopic vision was presented by Ishiguro in 1992 [15]. For more than twenty 
years, it has become a mature method with the improvement of feature registration algorithms and 
the development of camera calibration. The traditional registration technology can be divided into 
two categories, dynamic and static registration method. For the dynamic registration technology, 
there were tracking-based registration and vision-based registration technology. The main purpose 
of the former method was to record the position of the camera in the world coordinates and the 
direction of the optical axis to ensure the continuity of both virtual model and the real world to 
achieve accurate 3D registration [16,17]. The latter mainly calculated the position and orientation 
of the camera in the world coordinates by a given image or multiple images [18]. There are two 
widely applied methods of vision registration: one is to firstly calibrate the camera, analysis the 
reasonable positions from the captured video images, and then calculates the relative position of 
the camera. The second is to use affine transformation of the feature points for 3D registration. 
Camera calibration is to calculate the camera's intrinsic parameters, and then use the camera 
parameters and the images to calculate the direction and position of the camera, which is a 
transformation from a 2D geometric imaging plane to the 3D real scene in fact [19,20]. In order to 
get rid of the markers, the pose estimation method based on the natural texture features in the 
target scene was widely studied [21-23]. Such methods need no markers in the scene. But they 



 

need to track the natural feature points in the image, and then deduce the movement of the camera 
to estimate the pose. 

There are two main acquisition methods of the depth map, active depth acquisition method and 
passive depth acquisition technology. The active technology acquires depth information by 
emitting energy beams (laser, electromagnetic waves, and ultrasonic) to the target and detect 
echoes. The passive technology does not need to manually set the emitting source, but use the 2D 
images of the scenes in the natural light to reconstruct 3D information. With the development of 
the optical imaging technology, a variety of high-precision optical measuring instruments have 
been successfully developed, which provides accurate access to the depth information. The most 
commonly used active depth acquisition methods were time of flight (ToF) method [24,25] and 
the structural light (SL) method [26]. Some off-the-shelf devices are based on the above two 
concepts. Kinect v1, ASUS Xtion Pro Live and Structure Sensor were based on the SL idea, but 
Kinect v2 was based on the ToF concept [27-30]. The calibration of depth camera has been widely 
applied since the release of the Kinect v1. Different calibration methods based on depth camera 
have been researched by various organizations[31-33]. Paper [34] proposed a calibration method 
for the depth sensor, which used the disparity data from IR camera and RGB image to calibrate the 
external and internal parameters. An empirical model was designed to decrease the distortions of 
IR sensor [35], which was useful for some depth camera. But it had some limitations in 
automation and accuracy. Zhang [36] presented a classic method of calibration which used the 
maximum likelihood estimation to obtain internal parameters. However, its drawback is distortion 
of parameters for projectors and cameras, which are not compensated or estimated.   

There are two problems in current depth camera. One is the implement of distortion along with 
the camera during the calibration procedure. Another is the adjust of systematic errors producing 
from the inaccuracy of in-factory calibration. This paper addressed these problems using a 
two-step calibration step to get all of the geometric parameters of depth camera. The experimental 
design are discussed with different test models and method comparisons in the end. 
 
3. Calibration for the system of binocular stereoscopic vision 
 
3.1 The principle of ToF camera 

ToF camera is a device that provides an active light source. It emits modulated infrared lights 
to the surrounding environment. There is a specific sensor inside of the camera to collect the 
reflected back infrared lights. The emitted infrared signal will be reflected by the objects in the 
environment, and the CCD chip inside the camera will collect the reflected signals. After sampling 
on each pixel, mixing the reflected infrared signal and the modulated internal reference signal, a 
correlation function can be obtained as shown in Equation 1. The phase difference of the infrared 
signal can be calculated by the correlation function, and consequently we can obtain the distance 
between the ToF camera and the target object. 
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where g( )t is the modulated reference signal, s( )t  is the infrared signal that is reflected and 
captured by the camera. t  is the phase difference of the periodic variation of the reference signal 
inside the ToF camera. The waveform of the infrared signal emitted from the ToF camera is usualy 
a signal, so g( )t and s( )t can be defined as: 

g( ) cos( )t wt=                                 (2) 
( ) cos( )s t b a wt φ= + +                               (3) 

where ω  is the modulation frequency, a  is the amplitude of the incident signal, b is the 
correlated offset of the signal, and φ  is the phase difference associated with the distance from 
the ToF camera to the target object. The correlation function obtained in the case of a sinusoidal 
signal is described in Equation 4: 
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determine the correlation function ( )c t respectively. The demodulation of the correlation 
function is accomplished by sampling the correlation function ( )c t . Its parameters can be 
obtained by the following equations: 
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Where I is the intensity of the incident infrared light. We can obtain the depth of the object by 

4
cd φ
πω

=  , whereφ  is known and c is the speed of light 83 10c m s≈ × . 

After the depth value is obtained, with the intrinsic parameters of the ToF camera, we can 
obtain the target object’s 3D coordinates based on Equation 8-10.  
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where f  is the focal length of the camera, xd and yd  are the actual length of a pixel in the 

direction of x and y, respectively. cX , cY are the normalized coordinates of the pixels relative to 
the optical center. 

However, as a new device, the ToF camera has many aspects that need to be improved, such 
as low resolution of the depth maps, system error, depth data inaccuracy caused by spatial depth 
discontinuity, motion blur and so on. 

 
3.2 Calibration for the binocular system 
 
3.2.1 Calibration for commercial cameras 

We use the traditional method to calibrate the commercial color cameras, which requires 
scorner detection to obtain the corresponding relationship between image pixels and points on the 
calibration board before calibration. The Harris corner detection algorithm is developed on the 
basis of the Moravec algorithm [37]. It is a point feature extraction operator based on the signal 
autocorrelation function. 

This method uses a local detection window, and examines the average energy change in the 
window when it slightly moves in all directions. When the energy change exceeds a predefined 
threshold, it is considered that the central pixel of the window is a corner. The change of the 
grayscale in the window is calculated by the differential operator, which makes the corner 
detection rotational invariant. Suppose the grayscale value of a pixel (x, y) is f (x, y), the grayscale 
change in the window can be described as Equation 11: 
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where u, v, and W are the coefficient of the Gaussian window at position (u, v). In order to 
improve the anti-noise ability, we use the following Gauss window [38] to apply Gaussian 
smoothing to the image: 
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where W is the function of Gaussian window. 
3.2.2 ToF Camera Calibration 

The ToF camera used in this paper is the SR4000 with the resolution of 176 144× , so we use 
the traditional black and white checkerboard to calibrate the camera. This method needs to collect 
grayscale images of the checker board. Although the ToF camera is not able to obtain grayscale 
images, it can generate intensity maps that record the intensity of the reflected infrared light. Since 
the checkerboard has only black and white colors, the black area absorbs most of the light, and the 
white area reflects most light back. So flection intensity map is equivalent to a grayscale image for 
checkboards. 

Figure 3 left is an intensity map obtained by the ToF camera. In the background where no 
infrared light is reflected is black. The closer an object is to the camera, the brighter it is. And the 
intensity map of the checkerboard is the same as the grayscale image generated by a normal 
camera. 

The intensity map obtained by a ToF camera has low resolution, and there are noises. So it is 
difficult to accurately detect corners when calibrating them with a calibration board. The images 
obtained from a ToF camera is much different from images obtained from pinhole imaging 
systems. Both the grayscale images and the intensity maps have a certain degree of distortion. 
Therefore, we need to preprocess the intensity map before calibration. The intensity map is 
upsampled to improve its resolution from 176 144×  to 528 432× as shown in Figure 3 right.  

To model the system error of the ToF cameras, one method is to assume that the system error 
is linear [39], which is proved wrong in many studies. The distribution of the system error is 
periodic, similar to the sine function. In this paper, we use cubic B-spline curve [40] to model and 
correct the system error. It can well fit the system error of the ToF cameras. The B-spline recursion 
is defined as in Equation 13: 
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where kp  is a group of input with n + 1 control points. d is the order parameter, and the blending 

function ,k dB  is a polynomial with order of d-1. 
 

 
Figure 3. The change of sampling on gray image, The left is 176*144 and right is 528*432. 
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where {u0, u1,…, un+k}is a non-decreasing sequence of nodes, and k is the order of the curve. We 
compute the blending function with its uniform way. 

We take pictures of the checkerboard placed in front of the camera every 5cm starting from 
the position 0.6m away from the camera. And then we calculate the distance between the 



 

checkerboard and the color camera, which is converted to the view of the ToF camera according to 
the positional relationship between the two cameras in the binocular system. While taking photos 
of the checkerboard, the ToF camera also measures the distance between the checkerboard and the 
ToF camera. Therefore, we can figure out the system error curve using the cubic B-spline 
interpolation. 

 
3.2.3 Calibration between the ToF camera and the 2D color camera 
 
The calibration between the ToF camera and the normal color camera is the key issue for all 
algorithms that is based on the depth acquisition using the ToF cameras. Because the ToF cameras 
can cause distortions as we mentioned earlier, we interpolate the intensity map to improve the 
accuracy of corner detection to correct the distortion. 

In this paper, we use the checkerboard to calibrate based on the binocular stereoscopic 
method, and get the extrinsic parameters of the two cameras, tofR ， tofT and cR ， cT , using the 
Matlab Calibration Toolbox. The parameters represent the orientation and position of the two 
cameras in the world coordinate system, i.e., the coordinate system defined by the checkerboard, 
respectively. [ ]w  represents the world coordinate system defined on the checkerboard, 
[ ]tof represents the visual coordinate system on the ToF camera, and [ ]c  represents the visual 
coordinate system on the normal camera. So we have 

[ ] [ ] toftof w M=
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Thus, the normal camera can be expressed in the ToF camera coordinate system as: 
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According to Equation18 we can determine the positional relationship of the two cameras. 
 
4. ToF depth map processing 
 
4.1 Detection of abnormal points 

Because the resolution of the ToF camera is only 176 144× , and there are lots of noises in the 
obtained depth data, it is impractical to use the raw data obtained from the ToF camera directly. 
The low resolution will lead to inaccuracy of the captured depth information at positions with 
sudden depth changes in the scene. Abnormal points are irrelevant information which may degrade 
the performance of the subsequent filtering algorithm, so they must be removed. In this paper, we 
take advantages of the two cameras that both color and depth information can be acquired at the 
same time to remove the abnormal points. 

Firstly, we utilize the intensity map generated by the reflected infrared lights to remove the 
abnormal points. The intensity of each pixel can reflect the reliability of the depth information. 
Too strong intensity indicates an excessively saturated pixel, which should be removed. Too weak 
intensity indicates that the received signal is not strong enough to calculate reliable depth 
information. Therefore, we only preserve the pixels with intensity in the range of [20%，80%]. 

Secondly, we evaluate the reliability of every pixel. The change of color is usually 
synchronised with the change of depth [41]. So if a huge difference of depth value is detected in 
the area of similar color, it indicates the probability of anomalies of the depth value in this area. In 
contrast, we allow big change of depth value where color is also of large difference. According to 
this feature we use Equation 19 to evaluate the reliability of each pixel. Several times of iteration 
of Equation 19 can determine how a reliable pixel is. 
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where s represents the reliability of a pixel. It is a weighted value of the reliabilities of the 
i-neighborhood pixels. d is the depth value of the pixel. ijw  is defined as in Equation 20: 
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where c can be obtained by 
1 ( )
3

c R G B= + + , which indicates the intensity of the color 

calculated from the color image. When the calculated value stabilizes after several times of 
iteration, the depth value is lower than a specified threshold that should be removed. 

4.2 Optimization of the depth maps using an improved Bilateral Filtering Algorithm  
After the abnormal points removed, some noises that can degrade the accuracy of the 

subsequent 3D registration may still exist. Thus, the depth map needs to be denoised. We take 
advantage of the feature that continuous depth corresponds to similar color to extend the bilateral 
filter algorithm, which filters the depth data using color information. The extended bilateral 
filtering algorithm is shown in Equation 21 and 22: 
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   (22) 
where pw  is the normalization factor. Because the ToF cameras cannot acquire color information 
of the scenes, we use the corresponding color information provided by the 3D data in the weighted 
calculation. ss  determines the size of the neighborhood in the filtering, Is  determines the 

range of valid color values, and ds  determines the range of valid depth values. The improved 
bilateral filtering algorithm can well preserve the boundaries of 3D data, and effectively remove 
the internal random noises. The details of the algorithms are as follows: 
 
Pseudo code of the Bilateral Filtering Algorithm 1 
for each pixel p in pN  

（1） Initialization: pd =0, 0pw =  

（2） For each pixel q in pN  

(a) ( ) ( ) ( )
s d Ip q p qw G p q G d d G I Is s s= − − −  

(b) p qd wd+ =  

(c) pw w+ =  

（3） Normalization: /p p pd d w=  
end for 
 
4.3 Bilateral filtering algorithm acceleration 
 The improved bilateral filtering algorithm calculates a weighted average of the depth values 
of the current pixel based on the depth and color values of its neighborhood pixels. This method 
can well preserve the boundaries of 3D data, while removing noises insides the object. The 
resolution of the ToF camera is 176 144× . Because the depth value of every pixel is related to the 
depth values of its neighborhood, we need to store the captured depth and color information from 
each frame in the global memory, so that the neighboring depth and color information of the 
current pixel can be accessed by every computing thread to enable parallel computing. We divide 
the depth map to 11 9×  blocks, each contains 16 16×  threads. Each thread computes the depth 



 

value of one pixel. Thus, the parallel computing can accelerate the computation of the depth data 
for each frame.  

Because the data are stored in the global memory, the index of each pixel is global. However, 
the indices of the blocks and threads are local. Therefore, we use Equation 23 and 24 to get the 
global index of a pixel using the local indices of the blocks and the threads. 

 row=blockIdx.y*blockDim.y+threadIdx.y (23) 

col=blockIdx.x*blockDim.x+threadIdx.x (24) 

where row and col represent the abscissa and ordinate of the to be processed pixel, respectively. 
 
4.4 Generation of the depth maps in the view of the color camera 

We obtain the color information and the depth information with two different cameras 
respectively. However, the two cameras have different views, so we need to convert the captured 
depth data into the view from the color camera if we want to use them in augmented reality. 

ToF depth image

3D reconstruction

Optimized depth 
imageColor image

Depth image from 
the color camera

 
Figure 4. Generation process of the depth map in the view of the color camera 

 
As shown in Figure 4, we assume each pixel of the optimized depth map captured by the ToF 

camera is corresponding to a point in the physical space. According to the previously calibrated 
intrinsic parameters of the ToF camera, we can obtain the 3D coordinate of each pixel in the depth 
map. If we establish a world frame on the ToF camera, as the position of the color camera in the 
world frame is already obtained from the binocular calibration, the calibration of the intrinsic 
parameters of the color camera is also completed. We project the reconstructed 3D data to the 2D 
image plane of the color camera, so that the relationship between the color image and the 3D 
space is established. Because of the difference between the views of the two cameras, only partial 
3D data are obtained in the color image. 

 
5. 3D registration based on depth maps 
 
5.1 Determining the areas to be registered using video tracking technology 

This paper uses the video tracking technology to dynamically track the area superimposed by 
the virtual object in the image [42]. The tracking algorithm consists of a pre-processing stage and 
a real-time stage. In the pre-processing stage, to accurately recognize and track colors, the RGB 
video image needs to be converted to a more stable color space that is adaptive to the subsequent 
histogram calculation. In the real-time stage, the color histogram and probability distribution of 
the tracked color are needs to be solved to realize tracking in each frame of images. The tracking 
algorithm in this paper is based on the Camshift algorithm. 



 

This algorithm firstly computes a histogram of hues of all colors in the window by sampling 
the hue channel (H). And then calculate the probability of a pixel being used as the target pixel by 
searching the histogram model of each pixel in the video for the matching histogram. Video 
images can be converted to a probability distribution map of colors using this method, namely, 
histogram back projection. For ease of display, the color probability map is converted to an 8-bit 
grayscale projection. The pixel value with probability of 1 is set to 255, the pixel value with 
probability of 0 is set to 0, and the other pixels are converted to their corresponding gray values. 
So the brighter pixels in the gray scale projection indicates that the pixel has higher possibility to 
be the target pixel. 
The idea of the Camshift window search algorithm is as follows: 
(1) Select a search window W of size S from the color probability distribution map; 
(2) Define (x,y) as a pixel in the search window, I(x,y) as the pixel value at the position of (x,y) in 
the projection.The zero-order matrix M00 and the first order matrix M01，M10 of the search window 
are shown in Equation 25: 
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x y

M I x y=∑∑ , 01 ( , )
x y

M xI x y=∑∑ , 10 ( , )
x y

M yI x y=∑∑     (25) 

(3) Based on Equation 25, we can obtain the centroid position (xc , yc)of the search window as:  
01 10

00 00

,c c
M Mx y
M M

= =                         (26) 

(4) Reset the size of the search window S to the function of the color probability distribution in the 
search window above. 
(5) Iterate steps (2)(3) and (4) until the convergence condition is met, i.e., the change of the 
centroid position is less than a predefined threshold, or the maximum of iteration times has 
reached. And then continue to the next frame. 

At the end of the calculation of the current frame, the position and size of the next search 
window of the next frame are set by the centroid position and the zero order matrixM00 obtained 
from the current frame. And then we can calculate the second order matrix of the search window 
Z20、Z02 and Z11. 
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The direction angle of the long axis of the target that is searched for in this frame is: 

11 00
2 2

20 00 02 00

2( )1 arctan
2 ( ) ( )

c c

c c

Z Z x y
Z Z x Z Z y

θ
 −

=  − − − 
                (28) 

assume that: 
2

20 00 ca Z Z x= − , 11 00 c cb Z Z x y= − , 
2

02 00 cc Z Z y= −           (29) 
so the length of long axis and the short axis of the target can be calculated by Equation 29 
respectively. 
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Repeating the aforementioned processes will realize the continuous calculation of the search 
window and the continuous tracking of the search target.  

 
5.2 Calculate the camera's position and orientation based on the depth map 

After the tracking area in a color image determined, this area can always be tracked and 
identified, regardless of how the camera is moving. Its color information and 3D data can be 
obtained from the images we acquired in the previous section. The 3D data is based on the 
coordinate system with the ToF camera as the origin, whose position and orientation are fixed 
relative to the coordinate system. However, the camera’s position and orientation determined by 
the 3D registration technology are relative to the markers. Therefore, we need to figure out the 
position and orientation of the tracking area relative to the camera, i.e., the position and 
orientation of the tracking area relative to the world coordinates defined on the ToF camera. 

The relative position of the camera and the tracking area can be obtained directly from the 



 

depth map. Considering that the resolution of the ToF camera is only 176 144× , but the resolution 
of the color image is 800 600× , so after the 3D data is projected into the image space of the color 
camera, some of the areas have no corresponding 3D data in the image space. In order to find the 
locations more accurately, if the 3D data of a certain area is too little, this area will be discard; 
otherwise if the 3D data of a certain area is dense enough, it will be retained. In this paper, the 
resolution of the color image is 800 600× , where the tracking areas are divided into small squares 
with size of 5 5× . We count the valid points inside the square, i.e., the number of pixels with 3D 
data, and calculate the position of the square in the world coordinate system. If the total number of 
valid points inside a square is greater than a threshold, the square is considered to be valid. 
Finally, the average position of all valid squares of a tracking area is obtained, which is the 3D 
position of the tracking area in the scene. 

After the 3D position of the tracking area is determined, we need to find out the orientation of 
the camera relative to the markers. Assume that the tracking area in the 3D scene is a plane, or we 
select a tracking area as far as possible to be a plane. Therefore, we can fit the point cloud data of 
the tracking area into a plane in the 3D space using the least squares method. The normal vector of 
the plane in the camera’s coordinate system is considered as the orientation of the camera relative 
to the tracking object. 

Specifically, we denote the plane to be fitted as 1 0Ax By Cz+ + + = . Suppose there are n 
valid points in a tracking area, the fitting equation can be expressed in the following matrices.  

i.e., 
1 1 1 1

1
1n n n

x y z A
B

x y z C

−     
     = −     
     −     

    

Pre-Multiply both sides by  

1 1 1
T

n n n

x y z

x y z

 
 
 
  

   ，
1 1 1 1 1 1 1 1 1 1

1
1

T T

n n n n n n n n n

x y z x y z A x y z
B

x y z x y z C x y z

−         
         = −         
         −         

          

Simplify and get 

1 1 1 1 1

1 1

1 1

1
1
1

n n

n n

n n n n n

x x x y z A x x
y y B y y
z z x y z C z z

−         
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         −         

 

    

 

 

By solving the coefficients A, B, and C, the normal vector of the fitting plane （A，B，C） can 
be obtained. In the coordinate system of the ToF camera, the fitted value of C can be greater than 
zero, less than or equal to zero. We chose the normal vector that is always facing the camera, so 
that the value of C is less or equal to zero. If the value of C is greater than zero, the normal vector 
will be (-A，-B，-C). We define the initial normal vector of the plane is (0, 0, -1), so the rotation 
axis of the plane is n=( , , ) (0,0, 1)A B C × − , and the rotation angle is θ =arccos

2 2 2

( , , ) (0,0, 1)A B C
A B C

⋅ −

+ +

. So far 

we have figured out where the virtual object should be placed and its orientation. The 3D 
registration technology has been completed. 
 
6. Results and discussion 
 

The experiment of this paper is built with Window 7 operating system, Intel(R) Core(TM) 
4*E7300, 4G memory, GTX480, a ToF camera Mesa Imaging SR4000, and a commercial color 
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camera Daheng HV51CMOS. A 9 6×  black and white checkerboard of 2cm side length was 
applied for calibration.  

6.1 Calibration experiment for the TOF camera 

We took intensity images of the checkerboard with different positions and orientations, some 
chosen images are shown in Figure 5. After upsampling the intensity maps, we could get the 
calibration result of the intrinsic parameters of the ToF camera using the Matlab Calibration 
Toolbox. Table 1 shows three sets of results of the calibration. 

    

    
 

Figure 5. Sample images captured by our system. The intensity maps of the checker board 
taken by the ToF camera (top row), The images of the checkerboard taken by a commercial 

color camera (bottom row). 
 
The results of our experiment are shown in Table1.  
Table1. Successful checkerboard recognitions for our method, OpenCV, OCamCalib[44] 

Camera Setup Total images Our method OpenCV OCamCalib 
Our binocular system 80 75 25 61 
IDS uEye setup [45] 80 80 79 80 
GoPro setup [46] 80 80 71 77 

 
As shown in the Table1, our method 75 out of 80 checkerboards are recognized, but OpenCV 

only 25 and OCamCalib can detect 61. Our method is not only found but also recognized highly 
accurately. And the found points are used in estimating the intrinsic and extrinsic parameters. 

Figure 6 illustrates the location and orientation of the black and white checkerboard. It can be 
seen that the checkerboard is placed in the vicinity of 1m because clearer intensity maps can be 
obtained at this area based on the exposure parameters of the ToF camera we set. We placed the 
checkerboard in different positions and orientations for the accuracy of the calibration. 

 

 
Figure 6.  

 



 

Table 2 The result of the intrinsic parameters of the ToF calibration 
Parameters Value 

Focal length
 

( , )x yf f  254.60，253.99 248.96，248.62 250.17，249.51 

Optical center
 

( , )x yc c  90.07，78.54 88.95，77.01 90.50，78.80 

Radial distortion 1 2( , )r r  -0.9031，0.7380 -0.8719，0.6609 -0.8770，0.6704 

Tangential distortion 1 2( , )t t  -0.0239，-0.0006 -0.0192，0.001 -0.0220 -0.0022 

 
It is obvious in Table 2 that there is a certain fluctuation in the calibration results of the 

intrinsic parameters for the ToF camera, and the distortion parameters of the images taken by the 
ToF camera are relatively large. We need to correct the distortions of the intensity images before 
the binocular stereoscopic calibration. Figure 7 shows the intensity images before and after the 
distortion correction based on the distortion parameters. It is clear that the image is severely 
distorted in Figure 7(a), and the image has been greatly improved after correction in Figure 7(b). 
 

  
（a）before distortion correction（b）after distortion correction 

Figure 7.  A comparison between the intensity maps before and after distortion 
correction 

 
In order to verify the calibration results of the intrinsic parameters of the ToF camera, we 

back project the 3D checkerboard’s corners in the physical space to the image space of the camera 
using the obtained intrinsic parameters. The back projection result is shown in Figure 8. 

 

 
Figure 8. The back projection result 
 

It is clear that the 3D checkerboard’s corners are correctly projected back to the image, 
indicating that the calibration result is accurate. 

In order to correct the depth of the ToF camera, we usea vision-based method to obtain the 
reference data. However, due to the low resolution of the ToF cameras, the accuracy of the 



 

obtained reference data can be unsatisfying. Especially when the calibration object is too far from 
the ToF camera, the image of the object will be blurry that the corners are difficult to identify. In 
this paper, we solve this problem using a binocular system that consists of a commercial color 
camera and a ToF camera. Because the color camera can provide images of high resolution and the 
vision methods based on color camerasare more mature, we firstly obtain the reference data using 
the color camera, and then convert the reference data to the view of the ToF camera according to 
the positional relationship bwetween the two cameras. To obtain this positional relationship, the 
two cameras need to take pictures of the same calibration object in the physical space at the same 
time, and then the positional relationship can be calculated based on the position of the two 
cameras and the checkerboard. The binocular system can be calibrated using the 17 images taken 
by each camera, and the binocular calibration results is shown as follows: 

   1.0000   0.0045   -0.0055    -59.2204 
  -0.0043   0.9994    0.0357    -15.9121
   0.0056  -0.0357    0.9993     30.2864
   0             0               0              1.0000

 
 
 
 
 
   

In order to obtain the reference data for correcting the system errors of the depth camera, we 
take color pictures of the checkerboard which is placed every 5cm from the position that is 0.6m 
away from the binocular system, and measured the distance between the cameras to the 
checkerboard using the ToF camera. The distance from the color camera to the checkerboard can 
be obtained using vision-based methods. And the distance from the ToF camera to the 
checkerboard can be calculated using the relative positional relationship between the two cameras, 
which will be used as reference data. After all the reference data and measured data are obtained, 
we get the system error curve of the ToF camera using uniform cubic B-spline interpolation as 
shown in Figure 9. 

 
Figure 9 The interpolated system error curve of the ToF camera 

 
It is clear that the system error curve is oscillatory, so the assumption that the system error is 

linear is wrong, and it is difficult to express the system error in polynomials. 
Figure 10 shows the distribution of the reprojection error of the ToF camera. It appears 

relatively scattered because of the impact from the exposure time, illumination, and the reflectivity 
of the measured object. In the practical, using of the system requires to correct the errors 
according to the actual environment and camera parameters. 

To further illustrate the accuracy of our method, we test whether increasing the number of 
checkerboards would enhance the accuracy of calibration. We examine between 3-17 patterns, as 
shown in Figure 11. It is easy to see that the increasing the number of patterns lead to smaller standard 
deviations (STDs) of the errors, thus it can get better accuracy. Therefore, we recommend no less than10 
planes to obtain enough accuracy when calibration.  

 
 



 

 
Figure 10 The reprojection error of the ToF camera 

 

 
Figure 11. Calibration accuracy vs. the number of patterns 

 
6.2 Filtering and depth data test 

 

  
Figure 12 A comparison between before and after the anomalies removal 

 
Figure 12 left shows the raw data generated by the ToF camera. The system errors have been 

removed. It is clear that the image contains plenty of abnormal points and noises. Figure 12 right 
shows the same image with the abnormal points removed. The removal result is satisfying. 

Figure 13 left shows the 3D point cloud data before filtering. There are many random noises 
in this figure. Figure 13 right shows the same image processed by the improved bilateral filtering 
algorithm, which effectively removed the noises. 



 

  
Figure 13 A comparison between before and after filtering 

 
We apply the following method to verify the accuracy of the filtered data. Suppose each pixel 

of the optimized depth map corresponds to a point in the scene, so we can reconstruct the 3D point 
cloud data of the scene according to the depth map and the intrinsic parameters of the ToF camera. 
Giving the position of the color camera in the world frame, we obtain a 2D image of the scene by 
projecting the 3D point cloud to the image plane of the color camera. As shown in Figure 14, it is 
clear that the reconstructed object coincides with the image taken by the color camera, indicating 
that our filtering algorithm is valid. 

 
Figure 14 Point cloud data is projected to the view of color camera 

 
6.3 Registration and test 

During the experiment, we tracked two areas in the videos in real time, one is a hand and the 
other is a book. The tracking algorithm determined the range of the hand and the book in the color 
images space, and then retrieved the corresponding 3D point cloud data of the hand and the book 
from the optimized depth map that had been projected into the view of the color camera. The 
plane where the hand or the book was contained was fitted using the least squares method and 
displayed in the image space. As shown in Figure 15, the position and orientation of the hand and 
the book are different, and the result accurately shows the difference, indicating that the obtained 
depth map is accurate. In this paper, we implement a 3D registration method by tracking common 
objects instead of deliberate makers or markers with rich textures. Meanwhile we can effectively 
implement functionalities such as collision detection, occlusion between real and virtual objects, 
and layered positioning due to that we can obtain the depth information on all objects of in the 
scene. 

 
 

Figure 15 The 3D registration results of different objects 



 

 
Figure 16 shows the use of our method to complete the registration of the virtual teapot to the 

book and the hand. With the positional and directional change of the book or the hand, the 
position and orientation of the virtual teapot also changes. It is clear that the teapot is well 
integrated with the book and the hand.  
 

 
 

Figure 16 The results of integration with a single virtual object 
 

Our system can realize multiple virtual objects’ 3D registration of different levels of depth. 
Moreover, the binocular feature of this system facilitates real-time configuration of the positions 
of the virtual objects. As shown in Figure 17, we registered a virtual globe and a virtual teapot on 
a real desktop. 
 

  
Figure 17 The results of integration with multiple virtual objects 

 
7. Result 
 

For meeting the accuracy and stability application of vision registration, a binocular stereo 
system that consists of a ToF camera and an ordinary industrial camera is built in our paper. We 
first calibrate the ToF camera and industrial camera to get their internal parameters and the 
relationship of position. We fit the systematic errors of the ToF camera using B-spline curve and 
use the curve to correct the system errors of the distance data obtained by the ToF camera. 
However, the distance data acquired by the ToF camera contains a lot of outliers and noises due to 
the defect of the hardware and the difficult light condition. With the help of the color information 
we design an algorithm of removing the outliers and an algorithm of smoothing the depth map. We 
get a refined depth map. Then we use a real-time tracking technology to determine the area where 
the virtual object needs to be registered. The position and orientation of the camera relative to the 
area in the real world from the depth map are calculated. In the end, we test some interactive 
applications of our method, and an AR system is designed and implemented using the binocular 
system. In the further, we will optimize and improve our method to meet the specific application 
of outdoor scene.  
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