
1070-9908 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LSP.2017.2687044, IEEE Signal
Processing Letters

IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. X, AUGUST 201X 1

Motion Capture Data Completion via Truncated
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Abstract—The objective of mocap data completion is to recover
missing measurement of the body markers from motion capture.
It becomes increasingly challenging as the missing ratio and
duration of mocap data grow. Traditional approaches usually
recast this problem as a low-rank matrix approximation problem
based on the nuclear norm. However, the nuclear norm defined
as the sum of all the singular values of a matrix, is not a good
approximation to the rank of mocap data. This paper proposes
a novel approach to solve mocap data completion problem by
adopting a new matrix norm, called truncated nuclear norm
(TrNN). An efficient iterative algorithm is designed to solve this
problem based on the augmented Lagrange multiplier. The con-
vergence of the proposed method is proved mathematically under
mild conditions. To demonstrate the effectiveness of the proposed
method, various comparative experiments are performed on
synthetic data and mocap data. Compared to other methods,
the proposed method is more efficient and accurate.

Index Terms—Motion capture, Low rank, Truncated nuclear
norm, Augmented Lagrange multiplier.

I. INTRODUCTION

MOtion capture (mocap) is widely used for acquiring and
analyzing human articulations in computer animation,

movie production, virtual reality, and medical rehabilitation
[1], [2], [3]. However, the motion data captured is not complete
even from professional systems, for example, some markers
cannot be recorded due to occlusion, ambiguities or other
factors. This problem is more severe for the mocap data
acquired by Microsoft Kinect [4], [5]. Therefore, it is essential
to complete the missing entries before further applications.
Many efforts have been devoted to deal with this issue [6],
[7], [8], [9].

In recent years, a new class of matrix-based methods was
applied to mocap data completion. The main idea of these
methods is to exploit the low-rank property of motion matrix to
remove noises and estimate the missing markers [2], [5], [10],
[11], [12], [13]. Theoretically, Candès and Recht [14] proved
that a low-rank matrix can be accurately recovered from the
observations of a small fraction of its entries by solving a
nuclear norm minimization problem. From this, Lai et al. [10]
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applied the low-rank matrix completion model to recover the
missing mocap data:

min
X
‖X‖∗ s.t. PΩ(X) = PΩ(D), (1)

where ‖ ·‖∗ denotes the nuclear norm of a matrix, D ∈ Rm×n
is the observed incomplete motion data, each column of
D represents the 3D coordinates of body markers in each
frame (m = 3∗marker number, n =frame number), X is the
corresponding complete and clean motion data and PΩ denotes
the orthogonal projection of a matrix onto the subspace of
matrices which has non-zero entries corresponding to the
observed entries in Ω and 0 otherwise. Based on [10], Feng
et al. [12] additionally took the temporal stability and noise
effect of mocap data into account, obtaining a model as follow:

min
X,S
‖X‖∗ + λ‖S‖1 +

µ

2
Θ(X), s.t. PΩ(X + S) = PΩ(D),

(2)
where S represents the sparse noises and outliers in the
observed part and Θ(·) is a temporal smoothing penalty term.
However, due to the application of nuclear norm, this method
has two major limitations. On one hand, the employed iterative
solution method involves the expensive computational task of
singular value decomposition (SVD) at each iteration, which
becomes increasingly costly as the frame numbers of motion
sequences grow [15], [16], [17], [18]. On the other hand,
nuclear norm minimization makes all of the singular values
simultaneously minimized, and thus the rank may not be well
approximated in practice [19].

As shown in Fig. 1, the information of motion sequences
is commonly dominated by the top r (≤ 30) singular values.
Motivated by this observation, this paper proposes a novel
mocap data completion method by replacing the nuclear norm
with a new matrix norm, called truncated nuclear norm (TrNN)
which is defined as the sum of the smallest min(m,n) − r
singular values.

Till now, TrNN has been successfully applied in many
fields, such as image inpainting [20], [21], [22], background
subtraction [19], multi-class classification [23], photometric
stereo [24], [25] and high dynamic range imaging [26], [27].
To the best of our knowledge, this is the first time to use TrNN
tackling the mocap data completion problem.

The main contributions of this paper can be summarized as
follows: (1) A new but effective mocap data completion model
is presented based on the truncated nuclear norm. (2) An
efficient iterative algorithm is developed to solve the model,
where each subproblem has a closed-form solution. Moreover,
a convergence analysis of the proposed algorithm is given.
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Fig. 1. Normalized singular values of motions collected from CMU mocap
database which totally includes 2605 motion sequences. All the singular
values are normalized to [0, 1]. It’s shown that the main information roughly
lies in the first 30 largest singular values.

II. TRNN REGULARIZED MOCAP DATA COMPLETION

A. Problem formulation

From the above discussion in Section I, the mocap data
completion model considered in this paper is

min
X,S
‖X‖r+λ‖S‖1+

µ

2
Θ(X), s.t. PΩ(X+S) = PΩ(D), (3)

where ‖X‖r =
∑min(m,n)
i=r+1 σi(X) denotes the truncated nucle-

ar norm (TrNN) of X (r ≤ min(m,n)), and σi(X) is the ith
largest singular value of X . Since TrNN minimization is not
a convex problem, we cannot solve (3) directly as [12]. The
following lemma gives a good surrogate of TrNN, which was
proved in [28].

Lemma 1 ([28]). The truncated nuclear norm of X can
expressed as

‖X‖r = min
L,R,U,V

1

2
(‖L‖2F + ‖R‖2F )− tr(ULRTV T ),

s.t. X = LRT , UUT = V V T = Ir,

(4)

where L ∈ Rm×d, R ∈ Rn×d, U ∈ Rr×m and V ∈ Rr×n for
any d ≥ rank(X), and Ir denotes the r × r identity matrix.

To make (3) more tractable, we use the following lemma.

Lemma 2. The model (3) is equivalent to the following
problem:

min
X,S
‖X‖r + λ‖PΩ(S)‖1 +

µ

2
Θ(X),

s.t. PΩ(X + S) = PΩ(D), PΩc(S) = 0.
(5)

The proof of this lemma (similar to Lemma 2 in [29]) is
given in the Supplementary Material.

By Lemma 1 and Lemma 2, we obtain the following
equivalent form to (3):

min
L,R,S,U,V

1

2
(‖L‖2F + ‖R‖2F )− tr(ULRTV T )

+ λ‖PΩ(S)‖1 +
µ

2
Θ(LRT ),

s.t. LRT + S = PΩ(D), UUT = V V T = Ir,

(6)

where the complete and clean motion matrix is X = LRT

and the entries of S in Ωc are assumed to take the opposite
numbers of the corresponding missing values, rather than 0.

To enforce the smoothness of X in the temporal direction,
we incorporate the similarity penalty between neighboring
frames into the term Θ(·) as follows:

Θ(X) = ‖XO‖2F , (7)

where O ∈ Rn×n is a symmetrical matrix defined by

O =


−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1

 . (8)

This term was interpreted in [12], [30], [31].

B. Solving scheme
To solve the problem (6), we develop an iterative scheme

based on the augmented Lagrange multiplier (ALM) method.
Firstly, we introduce a slack variable M and rewrite the

problem (6) together with (7) as follow:

min
L,R,S,M,U,V

1

2
(‖L‖2F + ‖R‖2F )− tr(ULRTV T )

+ λ‖PΩ(S)‖1 +
µ

2
‖MO‖2F ,

s.t. LRT + S = PΩ(D), M = LRT ,

UUT = V V T = Ir.

(9)

The introduction of M ensures that the solution to each of the
following subproblems is simple and has a closed-form.

Next, we can define the partial augmented Lagrangian
function £ := £(L,R, S,M,U, V, Y1, Y2, η) of (9) as

£ =
1

2
(‖L‖2F + ‖R‖2F )− tr(ULRTV T ) + λ‖PΩ(S)‖1

+
µ

2
‖MO‖2F + 〈Y1,M − LRT 〉+ 〈Y2, PΩ(D)− LRT − S〉

+
η

2
(‖M − LRT ‖2F + ‖PΩ(D)− LRT − S‖2F ),

where Y1, Y2 are the Lagrange multiplier matrices and η >
0 is a penalty parameter. Then, we can employ alternating
direction scheme to update each variable while fixing the other
variables, and summarize as Algorithm 1.

Specially, by simply computing, we update L, R and S as:
Lk+1 = PkR

k
(
Id + 2ηk(Rk)TRk

)−1
,

Rk+1 = PTk L
k+1

(
Id + 2ηk(Lk+1)TLk+1

)−1
,

Sk+1 = PΩc(Qk) + PΩ

(
Sλ/ηk(Qk)

)
,

(10)

where we denote
Pk := (Uk)TV k + (Y k1 + Y k2 ) + ηk(Mk + PΩ(D)− Sk),

Qk := PΩ(D)− Lk+1(Rk+1)T + Y k2 /η
k,

and Sτ is an element-wise soft-thresholding operator defined
as Sτ (x) = sgn(x) max(|x| − τ, 0) for any number x [32].

To update M , we fix the other variables and obtain

Mk+1 =
(
ηkLk+1(Rk+1)T − Y k1

)
(ηkIn + µO2)−1.

Since calculating matrix inversion is much costly when n is
very large, we analyze the eigen-decomposition O = UΛUT ,
where the eigenvector matrices UT and U actually the n-by-n
type-2 discrete cosine transform (DCT) and inverse DCT
(IDCT) matrices, respectively [33]. As a consequence, we can
get a much more economical updating rule for M :

Mk+1 = [(Mk+1)T ]T

=
{

IDCT
[
ΓDCT

(
ηkRk+1(Lk+1)T − (Y k1 )T

)]}T
,

(11)
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Algorithm 1 Mocap data completion via TrNN
Input: D,Ω, O, d, r, λ, µ, ρ, η0,maxη , ε.
1: Initialize: set (R0, S0,M0, U0, V 0, Y 0

1 , Y
0
2 ).

2: while not converge do
3: Update Lk, Rk, Sk,Mk, Uk, V k using (10), (11), (13);
4: Update Y k1 = Y k−1

1 + ηk−1(Mk − Lk(Rk)T ),
Y k2 = Y k−1

2 + ηk−1(PΩ(D)− Lk(Rk)T − Sk);
5: ηk = min{ρηk−1,maxη};
6: Check the convergence conditions:

‖PΩ(D)−Lk(Rk)T−Ek‖F
‖PΩ(D)‖F ≤ ε,

‖Lk(Rk)T−Lk−1(Rk−1)T ‖F
‖Lk(Rk)T ‖F ≤ ε;

7: end while
Output: X̃ = Lk(Rk)T , the perfect motion matrix.

where Γ is a diagonal matrix with the diagonal elements

Γii =

(
ηk + 16µ sin4 (i− 1)π

2n

)−1

, i = 1, 2, · · · , n.

Finally, we update U and V based on the following lemma.

Lemma 3. Assume G ∈ Rn×r(r < n). Then one of the
optimal solutions of the following problem

max
U∈Rr×n

tr(UG) s.t. UUT = Ir (12)

is U∗ = QPT , where P and Q are given by the reduced
SVD of G: G = PΣQT , P ∈ Rn×r, Q ∈ Rr×r, Σ ∈ Rr×r,
PTP = Ir and QTQ = QQT = Ir.

Therefore, we obtain

Uk+1 = argmax
U∈Rr×m

tr(ULk+1(Rk+1)T (V k)T ) s.t. UUT = Ir

= Qk+1
u (P k+1

u )T ,

V k+1 = argmax
V ∈Rr×n

tr(V Rk+1(Lk+1)T (Uk+1)T ) s.t. V V T = Ir

= Qk+1
v (P k+1

v )T ,
(13)

where P k+1
u , Qk+1

u and P k+1
v , Qk+1

v are given by the
reduced SVDs of Lk+1(Rk+1)T (V k)T ∈ Rm×r and
Rk+1(Lk+1)T (Uk+1)T ∈ Rn×r, respectively. Since r �
min(m,n), it’s very efficient to implement the reduced SVDs.

C. Convergence analysis

As we know, for the nonconvex problems or convex prob-
lems with multiple blocks, there is no theoretical guarantee
for its global convergence of ALM. However, we can give
a convergence result for Algorithm 1 under mild conditions,
following the analysis in [34], [35].

Theorem 1. Let W , (L,R, S,M,U, V, Y1, Y2). Assume that
the sequence {W k} generated by Algorithm 1 is bounded and
satisfies lim

k→∞
(W k+1 − W k) = 0. Then, any accumulation

point of {W k} satisfies the KKT conditions of (9).

More implementation details and the complexity analysis of
Algorithm 1, the proofs of Lemma 3 and Theorem 1 are given
in the Supplementary Material due to the space limit.
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Fig. 2. Comparison of NRE by varying rank r0 and corruption ratio cr. (a)
the proposed approach (TrNN), (b) PSVT [24], and (c) IALM [15]. The color
magnitude represents NRE.
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Fig. 3. Comparison of execution time by varying rank r0 and corruption ratio
cr. (a) the proposed approach (TrNN), (b) PSVT [24], and (c) IALM [15].
The color magnitude represents execution time in seconds.

III. EXPERIMENTAL RESULTS

In this section, the performance of the proposed method is
measured on synthetic and mocap data. All the experiments
were implemented and timed on a PC with an Intel Core i5
CPU at 2.4GHz and with 4GB of memory.

A. Synthetic data

By setting µ = 0 and Ω as the whole index set, the problem
(3) is reduced to the problem of robust principal component
analysis (RPCA). Thus, we first demonstrate the effectiveness
of the proposed approach on synthetic data.

Following [15], we use r0 and cr to represent the rank and
the corruption ratio of the given matrix. Let the raw data matrix
be D = X∗ + S∗. The low-rank matrix X∗ is written as
the product of a m × r0 matrix and a r0 × n matrix, whose
entries are generated independently from standard Normal
distribution. The sparse error matrix S∗ is uniformly chosen at
random, whose nonzero entries are independent and uniformly
distributed in U [−10, 10].

We fix m = 1000 and n = 200, and set λ = 1√
max(m,n)

,

d = r = r0, ρ = 1.5, η0 = 1.25/‖D‖2 and the stopping
tolerance ε = 10−7. We compare our approach (TrNN) with
PSVT [24]1 and IALM [15]2 by evaluating the normalized
reconstruction error (NRE) ‖X̃−X

∗‖F
‖X∗‖F and execution time over

various settings of matrix rank and corruption ratio. The
experiments are repeated by 30 times.

Fig. 2 reports the results of NRE and shows that TrNN and
PSVT can produce comparable results, but outperform IALM
as the matrix rank r0 and corruption ratio cr increase. This
is because the methods TrNN and PSVT are based on the
truncated nuclear norm, while IALM is based on the traditional
nuclear norm. Moreover, Fig. 3 reports the execution time,
which shows the proposed method TrNN performs much more
efficiently than PSVT and IALM.

1MATLAB code: http://rcv.kaist.ac.kr/v2/bbs/board.php?bo table=rs publi
cations&wr id=483

2MATLAB code: http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm
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Fig. 4. Robustness of rank estimation with respect to the randomly missing
ratio mr and continuously missing length ml. (a) Estimated ranks for mr =
[0.2 : 0.1 : 0.6], (b) Estimated ranks for ml = [20 : 10 : 60].
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Fig. 5. Illustration of the effect of truncated rank to the completing results
via RMSE. The upper row shows the RMSE for the randomly missing case
with mr = [0.2 : 0.1 : 0.6], while the lower row shows the RMSE for the
continuously missing case with ml = [20 : 10 : 60].

B. Mocap data

Like [12], denoting mr and ml as the randomly missing
ratio and continuously missing length, we generate two kinds
of incomplete mocap data: randomly missing data and contin-
uously missing data. The first one is obtained by randomly
removing mr markers from each frame, while the second
one is continuously removing ml frames for 10 randomly
selected missing markers in each frame. In this part, we
present the completion results of six motion sequences (i.e.
dance, walk, gymnastics, jump, score and boxing3) from CMU
mocap database4 in the following experiments. We perform the
simulations by fixing λ = 100√

max(m,n)
, µ = 100, ρ = 1.4, η0 =

10−5 and ε = 10−4, and repeat 20 times.
Due to the definition of the truncated nuclear norm in (4),

it is necessary to estimate the rank rank(X) of the incomplete
motion data at first. To this end, we first give an initial guess
for missing data by adopting the linear interpolation scheme
along the temporal direction, and then detect the largest jump
between adjacent singular values from SVD as in [36], [37].
Specifically, the estimated rank is set as the largest index
where the jump is beyond a specified threshold, namely,
rank(X) ≈ r̃ := max{i : |σi − σi+1| ≥ θ} (here θ = 0.1).
For both of the data-missing modes, we verify the robustness
of rank estimation with respect to the missing ratio mr and
missing length ml in Fig. 4. We observe that the estimated
ranks keep much stable as mr and ml increase. It is reasonable

3The indices of the selected motions are 05 13, 12 02, 49 02, 13 13,
10 01 and 13 17, which consist of multiple types of action.

4http://mocap.cs.cmu.edu/.
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Fig. 6. Comparison of completion results between the proposed method
(TrNN) and TSMC [12]. The upper row shows the RMSE for the randomly
missing case with mr = [0.2 : 0.1 : 0.6], while the lower row shows the
RMSE for the continuously missing case with ml = [20 : 10 : 60].

because human motion is highly articulated so that most of the
missing information can be revived through interpolation from
neighboring markers.

Next, we illustrate the effect of truncated rank r to the
motion completion results, where we adopt the metric of
Root Mean Squared Error (RMSE) defined by RMSE =
‖(X−X̃)|Ωc‖F√

|Ωc|
. As shown in Fig. 5, using the truncated nuclear

norm improves the completion results a lot except for the
randomly missing cases with mr below 0.4. This is due to
the results of these cases are already good enough (because
RMSE ≤ 0.03), and besides a small amount of randomly
missing markers don’t make the original motion structures
badly damaged, so they can be recovered well from their
(dense) neighboring markers. Most significantly, we observe
that regardless of what values mr and ml take, the RMSE
of all the cases approximately attain its minima when the
truncated rank is r = 15. Thus, we always set r = min(15, r̃)
in the following experiments.

Finally, we evaluate the performance of proposed approach
(also called TrNN as in Section III-A) by comparing to
Feng et al.’s approach (TSMC) [12]. Since Feng et al. have
demonstrated TSMC’s superior performance over many other
methods such as linear/spline interpolation, Dynammo [8] and
SVT [10], we here only compare TrNN with TSMC. In Fig.
6, we report the completion results of three motions (’jump’,
’score’ and ’boxing’) whose frame numbers are respectively
439, 801 and 4840. It is shown that TrNN outperforms TSMC
and its advantage becomes even more obvious as mr and ml
grow. Accordingly, the average execution time of TrNN for
completing these motions is 2.8976 s, 6.3003 s and 63.2687
s respectively, while TSMC took 3.7151 s, 16.1250 s and
690.2639 s. Therefore, TrNN is much more efficient than
TSMC especially for long motion sequences (e.g. more than
ten times faster for the motion ’boxing’).

IV. CONCLUSION

In this paper, we analyze the problem of mocap data
completion based on the truncated nuclear norm which takes
into account the prior information of motion matrix rank.
An efficient optimization algorithm based on the augmented
Lagrange multiplier is proposed. Extensive experiments show
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our approach outperforms the state-of-the-art methods on both
low-rank matrix recovery and mocap data completion.
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