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Abstract. Testbed facilities play a major role in the study and evolution
of emerging technologies, such as those related to the Internet of Things.
In this work we introduce the concept of modelled testbeds, which are
3D interactive representations of physical testbeds where the addition of
virtual resources mimicking the physical ones is made possible thanks
to back-end infrastructure. We present the architecture of the Syndesi
testbed, deployed at the premises of University of Geneva, which was
used for the prototype modelled testbed. We investigate several extrap-
olation techniques towards realistic value assignment for virtual sensor
measurements. K-fold cross validation is performed in a dataset compris-
ing of nearly 300’000 measurements of temperature, illuminance and hu-
midity sensors collected from the physical sensors of the Syndesi testbed,
in order to evaluate the accuracy of the methods. We obtain strong re-
sults including Mean Absolute Percentage Error (MAPE) levels below
7%.
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1 Introduction

In the fields of computing and networking, experimental facilities and testbeds
play a key role in studying and evaluating new technologies. They provide the
necessary controlled environment and tools that enable researchers to run ex-
periments and evaluate novel protocols and architectures. They support agile
architectures that are easy to re-configure in the context of experiments and
provide additional services and tools for collecting meta-information on the ex-
periment execution (e.g. monitoring several performance metrics or providing
execution logs for post-experiment processing).

However, despite the services and the advantages provided, testbeds also
pose some limitations. By nature, each testbed facility focuses on a specific
area of interest (e.g. in Internet of Things (IoT) applications or Machine-to-
Machine (M2M) communication protocols) and therefore its architecture and
the services provided define the supported experiments. Another limiting factor
is the number of available resources and subsequently the number of experiments
that can be run simultaneously. In general, scaling up an experimental facility



2 Stephane Kundig et al.

either for increasing its size, the number of simultaneous experiments supported
or for improving its availability, infers high costs and requires significant effort.

Trying to address the aforementioned restrictions of traditional testbed fa-
cilities in IoT research, we introduce a new type of facilities; namely Modelled
Testbeds. A modelled testbed consists of two components. The first component
consists of physical IoT resources (e.g. IPv6-enabled sensor motes) that are ac-
tually deployed in the premises of the facility. The resources operate with the aid
of a back-end system that orchestrates and monitors their operation, similarly to
any other regular testbed. The second component consists of virtual resources
that quantitatively and qualitatively augment the physical component of the
testbed. In particular, a digital model of the physical component is extracted
capturing the space of the facility and the operation of the physical resources.
Then, via an intuitive Graphical User Interface (GUI), virtual resources can be
spawned and deployed within the digital model in positions that correspond
to the actual premises of the facility. The operation of the virtual resources is
simulated in a way that captures the characteristics of the physical space (e.g.
light distribution) by drawing information out of the physical sensors. This way
the simulation of the virtual resources is seeded by the physical component and,
therefore, their operation is intertwined with that of the physical resources. The
end result is a mixed set of physical and virtual resources whose operation is
transparently perceived by the end-user as a unified testbed facility.

Following, we present the architecture of Syndesi; a smart building IoT
testbed deployed at the premises of University of Geneva that has been aug-
mented with virtual resources. Using the physical component of the derived
modelled testbed, a dataset consisting of 300’000 measurements has been built.
Several numerical methods are used in order to extract the corresponding values
that seed the simulation of the virtual resources. Their accuracy in capturing the
actual conditions of the physical space is evaluated using K-fold cross validation.
The results - including Mean Absolute Percentage Error (MAPE) levels below
7% - demonstrate that high accuracy can be achieved.

2 Related Work

Experiment driven research communities in the fields of computing and net-
working heavily rely on experimenting facilities. Researchers have been trying
to alleviate the limitations that characterise testbeds mainly by federating indi-
vidual facilities into meta-testbeds. This way, individual research teams can join
forces and provide researchers with the ability to run broader and more diverse
experiments by accessing several - potentially heterogeneous - testbeds.

Such federations are feasible with tools such as those introduced in [1]. The
OneLab experimental facility, presented in [2], is a leading prototype for a flexi-
ble federation of testbeds that is open to the current Internet. GENI, the Global
Environment for Networking Innovation [3], is a distributed virtual laboratory
for transformative, at scale experiments in network science, services, and secu-
rity. The Fed4FIRE federation framework [4] is gradually enabling experiments
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that combine facilities from the different FIRE research communities while the
GEANT World Testbed Facility [5] focuses on regular computer networks. In
[6], the IoT Lab platform is presented where several IoT testbeds across Eu-
rope are federated along with crowdsourced resources (e.g. smartphones) that
are provided by the general public. In [7], authors study the technological issues
related to the provision of a web-based simulation environment for supporting
interactivity between remote scheduling and control systems and a locally resi-
dent simulation system. Finally, in [8] authors present SWiMNet; a framework
for parallel simulation of wireless and mobile Personal Communication Service
(PCS) networks, which allows realistic and detailed modelling of mobility, call
traffic, and PCS network deployment.

All the above efforts as well as additional ones in the literature, focus either
on federating different and potentially heterogeneous physical testbeds or on
providing simulation frameworks as testbeds. On the contrary, our work focuses
on the fusion of physical testbeds and simulation frameworks and in particular
on how to utilize virtual resources in order to augment physical testbeds.

3 The Syndesi Testbed

The Syndesi testbed is a system and a platform comprised of heterogenous de-
vices, sensors and resources focusing on the Internet of Things. The first version
[9] was mostly focused on providing personalized services for smart environments
combining sensor networks, electrical appliances, actuators and gateways via
various communication protocols and technologies such as Near-Field Commu-
nication (NFC), Bluetooth, ZigBee, 802.15.4, 6LoWPAN etc. That first version,
also referred as Syndesi 1.0, has been extensively updated over the last years to
the Syndesi 2.0.

3.1 Syndesi 2.0

The scope of the Syndesi 2.0 is not only to provide efficient and smart services
to its users but also to serve as system-as-a-service. Through multiple entry
points, a large number of heterogeneous devices are able to interconnect with the
testbed and provide their resources. The architecture is designed with scalability
and interoperability in mind, which allows even mobile resources and data to be
aggregated in it. Since the update, smartphone users equipped with the Syndesi
2.0 Android application, can contribute with data collected from smartphone
sensors directly into the server’s database. In addition, the Syndesi testbed is
following a RESTful architectural approach providing interoperability between
its resources, devices, services and the internet. Benefiting from Syndesi’s REST-
enabled services, external requesting systems are able to access and manipulate
textual representations of resources exposed to the Web, using a uniform set of
stateless operations.

The overall architecture of the Syndesi 2.0 testbed is shown in Fig. 1. The
core of the Syndesi 2.0 testbed is behind the gateway. The role of this gateway
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is two-fold; first it serves as a connection point for all the elements and compo-
nents as the backbone wireless sensor network (WSN), the mobile crowdsensing
smart-phone application, the web etc. Second, the gateway is implemented on
a Linux based machine which acts also as the heart of the system in which all
the information from the various components are collected and stored. Since
September 2016, this server automatically queries the testbed sensors for mea-
surements, storing the sensed data in an SQL database as well as keeping track
of active/inactive sensors. To this day, the above database contains more than
300,000 measurements and it is being utilized for improving virtual sensor value
assignment.

Syndesi 2.0 
Framework
Architecture

Gateway
Rest – CoAP Proxy

WEB

BackBone-WSN

CoAP – IPv6 – 6LoWPAN

USERS with
Bluetooth,
Smartphones,
NFC tags

Electrical Interface

WSN for User 
Identification

ZigBee

Electrical DevicesDC AC

Mobile Crowd Sensing

Fig. 1. Syndesi 2.0 framework architecture

3.2 Testbed Visualization

Traditionally, sensor testbeds are visually represented on top of floor plans, with
sensor position information being 2D. This trend is also evident in sensor network
emulator software, where visualization tools are often 2D only. We believe that
3D models are essential in order to store and represent models of testbeds, since
algorithms that require spatial information (e.g. for distance calculation) will fail
if the sensors are not co-planar, which is seldom the case in real world wireless
sensor network deployments. We propose a simple model for storing the entire
infrastructure, including buildings and interior objects spatial information as
well as the sensors spatial information. For buildings representation, we store
each block (either a wall, ceiling, floor or piece of furniture) by using 6 values:
its x,y,z position and a value for scaling on the x,y,z axis. Using these 6 values, we
can recreate rooms and interior objects which are in turn used to place sensors
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on. Regarding sensor information, only the spatial coordinates x,y,z are stored
as well as the type of sensor.

The same model is used for storing information of physical as well as virtual
sensors, making it easier for researchers to augment physical testbeds and use
physical and virtual sensors interchangeably in algorithms. In Fig. 2 we see a
screenshot of the interface that models Syndesi, which was developed with the
help of the Unity engine [10].

4 Augmentation with Virtual Resources

When navigating in the 3D-visualization interface, a researcher can create vir-
tual sensors to be added on the modelled testbed, which will have exactly the
same properties and functionalities as the physical ones. The virtual sensors can
be spawned anywhere a physical sensor could exist, i.e. in walls, windows etc,
but not mid-air, and get their values from the physical ones via extrapolation
techniques described in detail in the next section. Interaction with the virtual
sensors such as drag and drop, sensor type configuration or sensor deletion are
all provided by our interface. Once virtual sensors have been added in the 3D
model of the physical testbed, the new augmented testbed can be saved as a
separate instance, a function enabled by our back-end infrastructure, and then
re-loaded in the future for further inspection/editing. This way, based on a single
parent physical testbed, unlimited user-personalized modelled testbeds can be
created to serve researcher demands.

4.1 Value Assignment

To calculate the values assigned to the virtual sensors, two approaches are fol-
lowed. First, we look at the problem in a no-memory manner and we calculate
the virtual values at any requested time using information only of the present
moment, i.e. the values of all the physical sensors of the testbed. Then, with
the end goal of improving the overall accuracy we make use of the collected
dataset mentioned in section 3, in order to identify relational patterns between
groups of physical sensors. These patterns are later used for associating newly
spawned virtual sensors with specific subsets of the physical ones, resulting in
more realistic value assignment.

Formally, we denote a physical sensor as:

si(xi, yi, zi), si ∈ S = {s1, s2, ..., sn} (1)

where xi, yi, zi are the coordinates in space and S is the set of all n physical
sensors that belong to the testbed. Respectively, a virtual sensor is denoted as:

vi(xi, yi, zi), vi ∈ V = {v1, v2, ..., vm} (2)

where the set V consists of the m virtual sensors created until that time in
the modelled testbed. Sensor measurements for illuminance, temperature and
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Fig. 2. Interactive interface of a modelled testbed

humidity are denoted respectively as si(ill), si(tmp), si(hum) and likewise for
virtual sensors.

When a virtual sensor vk is spawned, e.g. with type illumance in an office A
containing a physical sensors, its measurement value is calculated as a weighted
average of the sensors located in the same office:

vk(ill) =
w1

˙s1(ill) + w2
˙s2(ill) + ... + wn

˙sa(ill)∑n
i=1 wi

(3)

We examined the use of the inverse and the inverse square of the euclidean
distance between vk and each of si ∈ S as weights in the above equation, given
that the spatial coordinates of virtual sensors are determined the moment it is
created. This initial approach provided average results (MAPE levels over 20%)
so we decided to use only a subset of the physical sensors s ⊂ SA to be taken
into account in the calculation. In order to extract relevant subsets we effected
the following brute force procedure using the past measurements stored in the
server database:

1. Remove all measurements from a single sensor sk.
2. Generate the powerset of S − {sk}, i.e. all possible sensor subsets excluding

the empty set.
3. Calculate the removed measurements via the weighted average using one

subset at a time.
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4. Compare calculated and actual measurements and keep the subset that pro-
duced the least absolute error.

5. Repeat for all k ∈ {1 . . . n}

With the above method, we associate every physical sensor with a specific
subset of the remaining sensors. That way, when a virtual sensor is spawned,
depending on the proximity to the physical sensors, it receives its values based
on the corresponding subset.

4.2 Evaluation of Accuracy

The dataset we conducted the evaluation comprises of a total of 295.536 measure-
ments, 94.140 for illuminance, 103.062 for temperature and 98.328 for humidity
collected from Syndesi during the period of 15-09-2016 to 31-12-2016. K-fold
cross-validation was applied to evaluate the accuracy of the method, with the
overall procedure depicted in Fig. 3. For each sensor type, the dataset was di-
vided in 10, as close to equal, folds and each time the training process was
applied in all of them but one which was kept for the testing phase. The process
was repeated until all folds were selected for testing. It is worth mentioning here
that given that a total of a sensors corresponds to 2a − 1 possible subsets the
above brute force method does not scale well; in Syndesi testbed the experiments
included 2 offices each containing 6 sensors, a setting which is computationally
affordable, but for larger infrastructures different methods are envisioned

The results of the evaluation are shown in Table 1. First, we notice that there
is minimal difference between inverse distance and inverse distance squared as a
choice for weights in the calculation function, with the latter producing slightly
better results. Overall, we observe very strong results regarding temperature and
humidity measurements with Mean Absolute Percentage Error (MAPE) values
around 1.5%. Such low values of MAPE ensure the credibility and scientific

Training module
Associated physical 

sensor subsets

Testing module
Evaluation 

Results

Training Phase

Testing Phase

k folds

.  .  .

Unused fold

keep one

Dataset

Fig. 3. Evaluation process
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Table 1. Root Mean Square Error and Mean Absolute Percentage Error average scores
after 10-fold cross validation.

Weighted average over inverse distance

Sensor: Illuminance(lux) Temperature(oC) Humidity(%)

Room
Average
RMSE

Average
MAPE

Average
RMSE

Average
MAPE

Average
RMSE

Average
MAPE

Office A
9.22 ±
0.55

3.02 ±
0.12%

0.33 ±
0.01

1.07 ±
0.02%

0.60 ±
0.02

1.50 ±
0.01%

Office B
44.4 ±
3.21

6.58 ±
0.20%

0.60 ±
0.01

1.91 ±
0.03%

1.17 ±
0.10

2.61 ±
0.05%

Weighted average over inverse distance squared

Sensor: Illuminance(lux) Temperature(oC) Humidity(%)

Room
Average
RMSE

Average
MAPE

Average
RMSE

Average
MAPE

Average
RMSE

Average
MAPE

Office A
9.39 ±
0.60

3.20 ±
0.14%

0.30 ±
0.01

0.98 ±
0.01%

0.58 ±
0.01

1.42 ±
0.01%

Office B
43.69 ±

3.41
6.57 ±
0.19%

0.61 ±
0.02

1.88 ±
0.04%

1.18 ±
0.10

2.62 ±
0.06%

correctness of experiments conducted in our modelled testbed. Illuminance is
a tougher value to predict, as it can have highly uneven distribution in space,
nevertheless the overall MAPE for all settings did not exceed 7% which is still
a good result concerning the accuracy of virtual sensors. Finally, the noticeable
difference between the two separate rooms regarding illuminance prediction (3%
MAPE for office A and 7% for office B) can be explained due to different exposure
in sunlight which result in discontinuities that are harder to predict.

5 Conclusion

In this paper we introduced the notion of modelled testbeds, which is based
on the fusion of physical testbeds and simulation frameworks. The University
of Geneva physical testbed Syndesi was modelled through an interactive GUI,
where the addition of virtual resources is made possible for the users. To as-
sign sensor measurement values to the virtual resources, several extrapolation
methods were investigated and k-fold cross validation was performed to evaluate
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their accuracy. Results from experimentation in a dataset of 300’000 ambient
temperature, illuminance and humidity measurements, collected from Syndesi,
show that extrapolation from a subset of physical sensors based on proximity
via weighted average over inverse distance squared provides optimal accuracy.
As future work, we plan to extend the merging of physical and simulated en-
vironments to include the networking layer, thus enabling a broader range of
experiments which can be conducted using modelled testbeds.
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