
2. The archaeological database — new relations?

P.N. Cheetham
Department of Archaeological Sciences, University of Bradford, Bradford, West Yorkshire BD7 IDP, U.K.
J.G.B. Haigh
Department of Mathematics, University of Bradford, Bradford, West Yorkshire BD7 IDP, U.K.

2.1 Introduction

Over two decades have passed since the foundations of
the relational data model were formalised (Codd 1970)
and today a large number of Database Management
Systems (DBMS) based on its principles are readily
available. The better of these have attained a high
degree of sophistication, running in a variety of
environments — micros, workstations, minis and
mainframes — and have achieved some standardisation
through the adoption of Standard (or Structured) Query
Language (SQL). As such, the user who invests much
time in learning to use a DBMS and its development
tools, for example INGRES, will have little problem
when the present micro is dumped and a workstation
appears on the desk. More importantly for
archaeological information, the data, its structure, and
application programs will also transfer with minimal
upheaval. This is a salutary warning to those investing
a great deal of resources in non-upwardly mobile
micro-based DBMS and they are urged to consider
employing either ORACLE or INGRES (the current
flagships of the 4th generation language multi-
environment relational DBMS) if they wish to ensure
the longevity of their work. The reference to work
rather than just to data is deliberate and the cornerstone
of this paper, for information is not just data values; it
is the context and meaning of those values that
ultimately determine the usefulness of the data. Data
structure, user interfaces, validation procedures, help
systems and applications are inextricably linked with
the raw data, giving it context and providing a crude
but non-trivial 'knowledge base' without which data
files may be useless, or even a negative resource, if
misunderstood.

Although high-quality relational DBMS did not come
into general use as commercial products until the late
1980s, deficiencies in the relational model had already
been noted in the previous decade. Important new
products are likely to become generally available soon.
Many of the major research areas of general DBMS
have direct application in the management of
archaeological data. The aim of this paper is to discuss
some of the limitations and deficiencies of currently
available relational DBMS, to review informally the
most relevant areas of development (and one area
which has yet to be developed), and to consider the
implications for mainstream archaeology.

2.2 The problem

Current DBMS are in reality crude, if effective,
information handling systems. Their main thrust and
success has been in the management of large data sets
requiring extensive cross-referencing — i.e.
'information crunching', the IT equivalent of
mathematical 'number crunching'. The need for this

emanated from the commercial sector, where money
was available to pay for developed products, and it was
in meeting commercial requirements that most effort
was expended. The relational model was seen as a
satisfactory basis for commercial databases and was
augmented with multi-user, security and recovery
facilities. At a lower level of the system, query
optimisation, file structures and indexing methods were
all improved. The main trend in current development is
towards distributed database systems which incorporate
the same facilities.

The relational data model has been adopted for the
majority of these products since the underlying model
is simple — one of its strengths — and leads to DBMS
of general application. Such DBMS have very little to
offer over manual systems except in the scale of the
information they can handle. As soon as one strays
from structures which look like the SUPPLIER-
PARTS-ORDERS or EMPLOYEE-DEPARTMENT-
PROJECT type of examples used to illustrate relational
database principles, trouble may ensue, as anyone who
has attempted to implement a bibliographic database on
a relational system may well appreciate. Current
commercial relational DBMS are notoriously bad at
handling unpredictable data and data structures, since
they were intended to be used in a situation which is
well understood and well structured. Archaeological
data hardly fits these two descriptors. Archaeologists
often start with the best intentions of producing a
database of archaeological information, but generally
end up with a database structured on subjective
recording parameters with little or no real
archaeological content. In terms of content, relational
tables such as CONTEXTS or FINDS are just arbitrary
collections of archaeological recording units whereas a
commercial DEPARTMENT table is at least a
meaningful relation which reflects the underlying
organisational structure of a company. In point of fact,
we have no idea at present, of how to structure
archaeological information in a meaningful way — for
it is the underlying organisational structure we are
seeking to determine! (see Evans (1984) for a listing of
possible imposed structures). This may seem trivial, but
arbitrarily imposed structures can impose the same
arbitrariness on the data and render it of little value in
the future. Perhaps the most honest and natural
structure is the PARTIPLE (ibid.) in which each entity
is an 'owner' or attribute of another producing a
'possessive' hierarchy (partial ordering) but without the
strictures of a true hierarchy. The relational model is
perhaps not the best for this and entity relationship or
object orientated approaches may prove more suitable,
but this is beyond the scope of this paper and only
noted to make the reader aware of the importance of
developing meaningful data structures. One major
stumbling block to any such structure is the presence of
the fourth physical dimension in archaeological data —
time.

P.N. CHEETHAM & J.G.B. HAIGH

The commercial need for correct up-to-date information
initially discouraged any attempts to introduce time
handling as a basic element of a DBMS. Extensive
research effort has recently produced working systems
to alleviate what is now an accepted deficiency. These
new developments are highly relevant to archaeological
databases. The need to record time as data also
introduces the concept of abstract data types (ADTs) of
which date and money are two of the few offered by
commercial DBMS above the base types of integer,
float and character. ADTs, such as date, provide their
own operators, functions and return values e.g. in
Datel<Date2, the less-than operator equates with 'is
before' and the system must recognise these as date
types to produce a correct comparison result. For the
expression date(Date2)-date(Datel), where dateQ is a
function to allow the addition or subtraction of date
types, the result is not an absolute date but a time
interval expressed in years, months, days, hours,
minutes and seconds. ADTs are important for defining
format and domains for data values (see Ryan this
volume), as well as meaningful operations performed
upon that data. The definition of ADTs is highly
relevant to archaeological information management
because of their ability to bind meta data permanently
within the DBMS system catalogues and not in
individual application programs or support manuals. It
is implemented on some experimental systems, but not
openly available.

Finally the problem of imparting more meaning to the
data is a wide ranging field including temporal and
ADT considerations. It extends into the handling of null
(missing) values — which in archaeology abound not
only in quantity but type, procedural data types —
which effectively hard-wire applications within the data,
and expert/intelligent interfaces — which guide users
through database operations while possessing additional
abstract knowledge essential to the correct
archaeological usage of a system. This leads on to the
whole database/knowledge base overlap which the
database and artificial intelligence (AI) camps have still
not really come to terms with, although interfaces
between the two systems are now available and are a
highly topical area of research.

While all these considerations question the virtue of the
relational model, in the medium term its simplicity,
established worth, and availability have ensured some
degree of stability. Many of the developments outlined
below have been implemented as extensions to this
basic model, often employing INGRES (Stonebraker et
al. 1976) as the basis of the prototyping system. Much
of this research emanates from the United States, often
funded by the military and supported by large
experienced teams. Since the research is highly
complex and expensive to implement practically,
archaeology may find it has little influence on the
development of systems it may eventually inherit as one
of its most fundamental tools.

2.3 Temporal databases

A fully fledged temporal database supports three
classes of time representation and handling: transaction
time, which emanates from the system clock (e.g. when
a database record was last updated); valid time, the real
world time when information is valid (e.g. the dates of

an excavation or the date of publication of an analysis);
and user-defined time (e.g. a conventional relation field
holding say a radiocarbon date). Transaction time
handling databases are termed rollback and are able to
provide time varying snapshots of the database system
itself. Valid time databases, termed historical, are
concerned with the currency of the information content
over time. A system which supports both rollback and
historical, as well as facilities for user defined time is
termed temporal (Snodgrass 1987). User defined time
is an extension of data types as outlined in section 2.5,
but it is pertinent to point out that the one usually
provided as standard — the date type — is in itself
woefully inadequate. The INGRES date type can handle
absolute dates from 1 Jan 1582 (the year the Gregorian
calendar was adopted in Europe) and time intervals of
-800 to +800 years. Neither are particularly useful in
archaeological or even historical work, suggesting that
the designers are out of touch with many potential non-
business users.

2.3a Rollback databases

Support of transaction time is extremely useful in
archaeological situations. Current databases have the
most annoying property that any updates overwrite and
irrevocably lose former data values. Changes,
intentional or unintentional, go unrecorded; although
backup and joumaling will allow a measure of
transaction history support, the information is not
readily available or in the correct form to support
comprehensive rollback facilities. It is not unknown in
archaeological recording to make occasional changes to
paper records. It is normal practice, and in museum
practice a stated guideline, that corrections should not
obliterate former information in order to allow
clarification of any ambiguities which may arise later.
It is interesting to note a case where the
computerisation of site context records has met
resistance from experienced staff on precisely these
grounds (Gordon 1991). Rollback facilities would
therefore allow the user to view the whole database as
it existed at any point in the past and, more usefully, to
recover the transaction history of an individual record.
It is in effect '...the history of database activities...',
(Snodgrass 1987:250).

2.3b Historical databases

In many cases the difference between transaction time
and valid time may be considered insignificant and
some researchers choose to ignore it (Copeland &
Maier 1984). For example, if we wished to study the
degradation of monuments from condition information
within sites and monuments records, then a transaction
history query would return changes in the condition of
a particular monument. It may return corrections as
well, although there is some disagreement about the
status of corrections as opposed to information updates
in temporal systems. Snodgrass' definition of an
historical database specifically excludes past states of
the database. In the above example, condition
information should be associated with a date at which
the site was examined. This date becomes the valid
time and is considered to remain valid until a new
condition status and associated valid time are defined.

2. THE ARCHAEOLOGICAL DATABASE — NEW RELATIONS?

Valid time and transaction time can vary markedly. If
a user wished to obtain condition information about a
group of sites at a particular date (e.g. What was the
state of preservation of certain barrows in 1975?), then
transaction time would be irrelevant if the information
was only recently computerised, or the records
appended and updated at varying times. We would like
to be able to frame queries such as:

/* Pseudo SQL query */
SELECT monumenUno,condition
FROM SMR_record
WHERE parish = 'some_parish' AND

monumenLclass = 'BARROW'
AT_VALID_TIME = 1975

Without the final clause, using the conceptual language
extension AT_VALID_TIME, the system would default
to NOW and appear as a conventional (up-to-date)
database to the user, (note: the date 1975 is not a
conventional field value of date or other type, but a
valid time date stamp on a tuple). In a conventional
'snapshot' DBMS a separate relation for condition and
date of condition would have to be created and the
same query would require the following SQL code:

/* Join tables on same SMR number */
SELECT s.monumenLno.c.condition
FROM SMR_record s,condition_rel c
WHERE s.monument_no=c.monument_no AND

s.parish = 'some_parish' AND
s.monument_class ='BARROW' AND
c.date < = 1975 /* in or before '75 */

/* Check if latest up to 1975 */
AND NOT EXISTS

(SELECT *
FROM conditionnel r
WHERE c.monument_no = r.monument_no

c.date < r.date AND
r.date < = 1975)

which is more cumbersome, and a subselect similar to
the one in the example would be required on a join to
retrieve the current condition!

The first example query is a gross simplification of
language extension requirements of a temporal DBMS.
For detailed information on temporal databases the
reader should consult Snodgrass (1987) which contains
a most readable introduction to basic concepts, a
detailed presentation of a temporal query language
TQuel and a comprehensive bibliography on the topic.

In both query examples the valid time was assumed to
be known, as the information is not archaeological but
administrative in nature. If valid times could be
assigned to archaeological data proper, then we could
apply powerful temporal query language operators such
as overlap, precede, equal and extend. TQuel
considers time as intervals rather than continuous. It is
difficult to represent instantaneous events and in
practice a valid time granularity (e.g. seconds, months
or years) must be imposed and consequently any
interval smaller than the granularity is considered
instantaneous; conversely, truly instantaneous events
are considered to extend over the granularity interval
(Snodgrass 1987). Archaeology needs multiple time
granularity as, while landscapes and material cultures
may change slowly, almost instantaneous intra-site
activities can be detected. While absolute valid time is

unlikely ever to be available for most archaeological
data, relative dating is. Unfortunately current research
assumes absolute dating is available. Since TQUEL
only supports historical states per record rather than per
field, all historical information on individual fields must
be recovered from the sequence of valid times for
entire records. What TQUEL and other systems fail to
address is potential changes over time to the underlying
structure of the database and individual records,
another area of instability frequently encountered in
connection with archaeological information.

In a temporal database it can be seen that time varying
information can be handled in a cumulative way.
Changes to subjective data such as site dating or
classification can be become current without eradicating
former views and we are therefore in a position to build
on our information base without constantly replacing it.

2.4 Null values

The useful and predictable handling of null values
within a database is highly desirable. These null values
should not be identified too closely with missing values
(see Smith 1984 for a discussion of missing values in
an archaeological context) for there are instances when
a database field may be blank but the data is certainly
not missing! Some DBMS support a null value and it is
recognised in SQL, but it is an all embracing and
problematical concept as implemented in SQL (Date
1986). Date identifies two varieties of nulls:

1. A tuple is incomplete because field data values are
unknown.

2. A field is inapplicable (e.g. an area for a linear
feature or volume of a surface).

Date's analysis underestimates the variety of null
'values' possible, and certainly encountered, in
archaeological situations. He recommends an alternative
default-value approach to nulls in which fields are
initialised to a default value defined in a field
specification; he regards this as a more intuitive
approach than the one used in SQL. An example of
default-value specification is:

DECLARE weight(noat) .. DEFAULT (-1.0)
/* A variation on Date's example syntax */

This is the way most archaeologists approach the
problem but in an undeclared way and relying on the
user and application programmer to know the null
default value and to exclude it where appropriate. For
example in SQL:

SELECT AVG(weight)
FROM artefact
WHERE weight != -1.0

which would return the average weight excluding any
nulls from the calculation. The advantage of declared
default values is that: a) The default value is explicitly
stated in the table declaration and therefore internally
documented and b) a certain amount of automation
could be achieved in that the WHERE clause condition
could be replaced as follows:

P.N. CHEETHAM & J.G.B. HAIGH

SELECT AVG(weight)
FROM artefact
WHERE NOT_DEFAULT(weight)
/* Not Standard SQL */

obviating the need for the user to know the actual
default value. Besides NOT_DEFAULT(ATTRIBUTE),
other language extension functions such as
NOT_DEFAULT_SUM(ATTRIBUTE) or
NOT_DEFAULT_AVG(ATTRIBUTE) could be
included to allow standard aggregate functions to be
evaluated in the presence of nulls without additional
programming.

While this declared approach has some merit, it has
two distinct disadvantages which Date fails to consider.
The first is the problem of data transfer between
systems. This is of great archaeological concern as its
information base is essentially cumulative and old data
will remain valid alongside new data. Default values in
Date's scheme are actual data values and therefore will
transfer their values into other data sets, leading to
possible misinterpretation. In some instances the default
value of a null may have to be assigned on the
assumption that the data will never actually need to take
on that value; this may be more of a problem for
character data than numerical. Date considers only the
first of his two possible null situations; in fact there are
several possible reasons for data to be 'missing' and it
is sometimes important to include the relevant reason as
valid data within the system. In an archaeological
context, particularly in research planning, it is often
desirable to know just why data are absent. As
databases become larger it becomes ever more critical
that the response to a query should be exactly what was
intended. The concept of 'unknown' without
qualification is counter-productive and in the case of
sensitive information such as SMR data, lack of
explicitness or consequent mis-interpretation may have
legal repercussions.

2.4a Archaeological 'unknowns'

The range of reasons for which data require null values
within a database is largely governed by practical
considerations. A list might include:

a) Not available at this time. This implies that the
record is not yet fully completed but will be
eventually, i.e. in an inconsistent state of update
similar to that of Date's first type (see above) but
not precisely equivalent as it does not mean
unknown de facto, but unknown to the system at
the current time.

b) Inappropriate attribute. This is exactly as in
Date's second case and abounds in archaeological
databases where generalised recording schémas are
often a necessity. Decomposition of relations can
eliminate this problem but may excessively
complicate applications and affect efficiency. The
inappropriate attribute could be termed a definitive
null (i.e. a void). In some cases this will be self-
evident; in a context recording record if a context
is a cut then obviously soil description fields are
redundant. In other cases such redundant fields
may not be obvious, for example: stratigraphie

c)

d)

physical relationships may include a butts field and
it would be more appropriate to state explicitly
that no butt existed, rather than to assume that the
absence of a value implies this and is not simply
a recording oversight. Such void fields could also
simplify data capture and retrieval. In the
stratigraphie case it would not be necessary to
include a CONTEXT_TYPE (e.g. Cut or Layer)
field as this would be reflected in the voiding of
the inappropriate attributes. In retrieval a void
attribute could be used to trigger a more
appropriate response. For example, in a sites and
monuments database, if an owner was also
effectively the tenant in the sense of an initial site
contact, then a pseudo SQL query could be
formed such that:

SELECT SMR_number,site_contact=tenant
FROM SMR_file
/* Assuming the system defaults to ignoring tuples
returning VOID fields in the field list */
UNION
SELECT SMR_number,owner
FROM SMR_file
WHERE VOID tenant
/* Note. For this UNION to work the tenant and owner
field must be of compatible tyj>es */

This avoids the need to duplicate details and to
retain explicitly the status, either by considering
the owner as the tenant (repeating the owner
details in the tenant field) which is not really the
case or by explicitly stating in the tenant field 'AS
OWNER' or 'NO TENANT', which requires the
user to be conversant with the actual field values
and complicates input validation. Note that in this
example, null values other than void should be
returned to make the user aware that the site
record was incomplete.

The attribute value not available. This could occur
in cases where for some reason data are lost and
may never be replaced. Examples would be the
present location of an object which has been lost
or site find co-ordinates which were never
recorded. While in character fields it may be
possible to specify 'LOST' or 'MISSING', in
numerical fields one has to resort to obscure
default values which can differentiate this truly
unknown value from the other cases in this list.

The attribute value was, but is not now, available.
This type of null or unknown occurs in cases
where the presence of an attribute is known but its
value is not. For example, if an urn was known to
be decorated but the detail has been lost then
attribute fields for the decoration detail should
exist but with null values.

Relation pot_type Relation dec_details
pot_no I pot_class pot_no \ dec_attl | dec_att2

01 URN 01

In which case it would be quite wrong to assume
that a listing of decorated pot selected in SQL as:

SELECT p.poCno, p.pot_class
FROM pot_type p,dec_type d
WHERE p.pot^no = d.pot_no

10

2. THE ARCHAEOLOGICAL DATABASE — NEW RELATIONS?

always corresponds to a usable tuple in the
dec_details relation. It would be possible to add
an additional attribute field decorated (Yes or No)
to the pot_type relation but the absence of a
referenced tuple in dec_details would not give the
user any idea of the reason for its absence. The
null indicator given to the attributes in this
situation could be identical to those in (c) but it is
the need to declare an effectively null tuple
(excepting its primary key) that differentiates this
instance from tuples which have blank fields for
other reasons.

e) The binary logic unknown. While value unknown
may be replaced by MISSING in some contexts
(e.g. an unknown weight, for we know that a
object must have a weight) we come up against
three part logic in situations of presence or
absence. In the above example of the decorated
urn, what if we were unaware as to the presence
of decoration? If we employed a decorated
attribute then we would have to cope with the
possibility of null value meaning MAYBE
decorated. Once again this could be, and if the
decorated field was omitted certainly should be,
reflected in the dec_details relation as a MAYBE
tuple which cannot be represented in the same way
as the unknown attribute value tuple, when the
presence of decoration is known but not actual
values.

f) Conscious omission of an attribute. If an attribute
is deemed inappropriate by criteria not reflected in
the recording schema, then this should be
explicitly indicated. For example a comprehensive
site finds recording system will include three
dimensional co-ordination details. It is still
common practice, on sites with large numbers of
finds, to be selective, often unpredictably, in
whether a find receives full co-ordination, two
dimensional or none at all. The attributes are not
inappropriate in the sense used in (b) above and
not unknown but OMITTED which takes the
meaning, for good or bad, that the attribute value
may or may not have been available, but was
ignored. The quality of the data is therefore open
to better scrutiny and assessment. An unknown
value may indicate poor excavation or recording,
an omitted value should reflect the strategy of the
excavator. More generally, the OMITTED null
would allow sub-sets of records from different
workers to undergo UNION with non-common
attribute columns inserted with OMITTED nulls
giving a much clearer indication of the
information content and possibilities for further
enhancement.

Perhaps more than any other discipline, archaeology
has to cope with irretrievably incomplete information.
Destroyed sites cannot be restored, long dead
antiquarians cannot be interrogated, a lost portion of an
artefact is often never found and recording standards
either do not exist or are constantly 'adjusted' to suit
the individual. The most we can hope to do is to exploit
fully the information we do have. In this, the
comprehensive handling of 'unknowns' in database
systems is an essential goal.

2.4b Internal representation of null values

With the default value approach of Date, null
representation relies on valid data of unique form. This
could be adapted to suit multiple null types, as for
example:

Null Type Character Numerical
INCOMPLETE '!!!' -1
MISSING '?'??• -2
VOID '###• -3
OMITTED 'XXX' -4

These then behave as any other values and may be used
in conditional statements in SQL queries to obtain the
required information. For example if a researcher
wished to get a listing of stone axe-hammers which
could then be used for study, the following query could
be formed:

SELECT artefact_ref,artefacLJocation
FROM generaLfile
WHERE artefacL.type = 'AXE-HAMMER',

material = 'STONE',
artefactjocation ! = '???'

The researcher would then get a listing showing which
axe-hammers were immediately accessible or may be
accessible, excluding those which were not. This
would, therefore, put the researcher in a much better
position to assess and plan any proposed work.

Another approach is hidden fields which indicate the
null status of a visible field. This would add little to
storage requirements and is a method used to represent
null valued fields in some SQL implementations. A
variation on this could be that the null status is part of
the field representation at storage level and is
interpreted appropriately when field values are retrieved
from storage. Both these have the problems of how
actually to make the user aware of the type of null
represented during screen operations, in output and
how to input them. They also require modifications of
the DBMS at the lowest levels and require query
language extensions to handle them. How they would
be downloaded to transfer to another system, preferably
in ASCII format, is also problematical and an area
where standards would need to be implemented.

It appears that the question of null valued fields is not
one of the most active areas of DBMS research.
Perhaps more fruitful solutions may be found through
the exploitation of AI/DBMS interfaces considered in
section 2.7.

2.5 Abstract Data Types

As previously mentioned above abstract data types are
extensions to the data types provided within current
DBMS, the date type being quoted as one of the few
provided as standard above the primitive character,
integer and float types. Few systems have facilities for
defining new types and these are experimental or not
generally available. Most information is abstract but
can be represented as a basic type. The DBMS has little
internal knowledge of the meaning of the data and will
happily perform aggregate functions, such as average
or sum, on any field of numerical type, whether this is
logical or not (e.g. sum site context reference numbers
or perform a union on weight and length attributes).

11

P.N. CHEETHAM & J.G.B. HAIGH

These are then virtual data types which only have full
meaning when utilised in applications where this
meaning is fully understood by the user. Thus an
Ordnance Survey grid reference (OSGR) may be stored
as type character e.g. 'SE4530056700', but it is up to the
user to provide within his application appropriate code
to convert this representation into cartesian co-ordinates
for plotting or comparison. How much more useful
would it be to represent a grid reference as an internal
data type? If the representation were well implemented,
we would expect to be able to input or retrieve a grid
reference in more than one format, e.g. as a
conventional OSGR, absolute eastings and northings, or
even in universal co-ordinates of latitude and longitude.
We would also expect a range of functions and
operators to be provided, including a function to return
the distance between two grid reference points (see
Ryan this volume). The obvious advantage is that
application programming becomes less procedural and
hence simpler; the implemented code is application
independent and fully portable to other sites using the
same DBMS. For archaeology this would help to utilise
scarce resources and expertise more productively, while
increasing the explicit meaning of stored information.

ADTs have limitless applications; another useful
example would be a statistical date type which could be
declared and used as in the following illustration in
extended SQL syntax:

/* declare table specification */
CREATE TABLE site_records (

site_name vchar(30),

radiocarbon_date stat_date)
/* field named 'radiocarbon_date'
'stat_date' */

of abstract type

/* example query */
SELECT contemporary_sites=site_name
FROM site_records
WHERE radiocarbon_date = 3000:2
/* where 3000 is in years B.P., ':' is a separator and 2 is
the specified number of standard deviations */

producing a listing of sites with radiocarbon dates
which at 2 standard deviations overlap 3000 BP
(problems of corrected/uncorrected etc. are glossed
over to keep the example clear). In addition, a user
defined ADT could also provide internal validation as
in:

CREATE TABLE pot_attributes(
pot_ref uniq_reLtype('XXNNN.NN'),

fabric_code char_code('XX': 'F[A..H]'))

where the parentheses contain format specifiers and
permissible values. These specifications can then be
used by the system in applications, to provide
validation and compatibility error messages during
compilation and run-time, easing application
development and, perhaps more importantly, internally
documenting the specifications.

While extendibility seems desirable for archaeology
there are some problems. EXODUS (Carey et al.
1986), a prototype extendible DBMS, is essentially a

powerful modular system — kernel DBMS facilities
plus software development tools. Such a system is
designed to create highly application-specific DBMS,
but the cost is the high level of expertise required of
the database implementors and the cited paper makes it
clear that this complex task would be beyond most end
users. This is echoed by Stonebraker (1988) when he
notes:

'It is clear that software houses may have the
sophistication; however, extensions may
prove daunting for the less-skilled person',
(p. 478).

This may be the great stumbling block to their
development for use in archaeology and a drastic
change from the do-it-yourself simplicity offered by
currently available DBMS. One worry is that data could
become so intimately linked to a particular extended
system that transfer of even the raw data without
degrading the 'knowledge base', never mind any ADTs
or procedural fields (see section 2.6), becomes a non-
trivial if not impossible task. None of the papers on
extendible databases address the problem of
transportability of complex data structures and extended
data types, which is impractical and short-sighted in the
ever-changing world of DBMS products.

2.6 Procedures as database extensions

While abstract data types may be appropriate in cases
of simple data types such as a single OSGR or
statistical date (see above), more complex types (e.g.
vector data for shapes) can be handled by procedures.
This introduces a field type which can take on values
that are collections of commands in a supported query
language (Stonebraker et al. 1987a). TÎie method is
argued to retain the simplicity of the relational model
while addressing situations where the model has been
considered inadequate. Among a wide range of benefits
{ibid.), of particular note are the ability to store queries
and to handle data of unpredictable composition. Stored
queries could be applied to store domain specific
algorithms and definitions of views as well as
frequently encountered conventional queries. In the case
of unpredictable composition it would be possible to
tailor attribute relations without generalised schémas
thus:

CREATE finds(
find_no = i2,
strat_unit = i2,
find_attributes=procedure)

where relations of find types might be:

roo f_tile(find_no, fab ric_ty pe .length ,b readth,...)
noor_tile(find_no,dec_method,design_code,...)
coin(find_no,level,coin_date,obv_inscription,...)

and a typical finds record could then be:

find_no=1022'
strat_unit = 724
fmd_attribute= "SELECT *

FROM ROOF_TILE
WHERE ROOF_TILE.find_no = 1022"

This allows retrieval of a particular find together with
its appropriate attributes. The approach would create

12

2. THE ARCHAEOLOGICAL DATABASE — NEW RELATIONS?

unnormalised relations if finds with differing attribute
relations were retrieved and so applications programs
must be written to accept the more complex form of the
tuples. The advantage of stored procedures is that it
goes some way towards binding meta data (information
about the relationships between relational tables and
their intended usage through stored queries and stored
algorithms) within the database itself in a standardised
and transferrable format. The logical extension of this
idea is the coupling of expert systems to DBMS.

2.7 Expert systems and relational databases

The potential of linking DBMS to expert systems (ES)
has long been recognised but because of a traditional
split between knowledge engineering and database
design the marriage of the two is a relatively recent
development (Higa & Liu Sheng 1989). The basic
premise is to get the advantages of fully developed data
management facilities with the facility of semantic
support in an intelligent front end or user interface.
This may be in a loosely coupled form with the
intelligent front end issuing requests for data to the
DBMS. 'To the DBMS, the ES appears to be just
another user', (Fishman 1986:92) — the DBMS simply
fills in the blanks as requested. Alternatively in a
tightly coupled form the DBMS is the source of the ES
database, i.e. relations are database predicates used to
directly evaluate goals. The future aim, totally
integrated knowledge-based management systems, is
still some years off, although some DBMS are
providing rules systems as in POSTGRES (Stonebraker
et al. 1987b) and Prolog/DBMS interface facilities are
available on most platforms including microcomputers.
This paper can only give a flavour of how these
developments may be applied in archaeological
situations.

The role of expert systems in archaeology is
controversial possibly due to over-expectation of their
usefulness. It has been suggested that ES will fossilise
knowledge, but conversely that one system needs to be
built, verified and agreed upon (e.g. in samian
identification), before an advance has been made (Baker
1988). The author regards this view as quite blinkered
and unappreciative of the possibilities. The value of
expert systems, if used as the basis for intelligent
interfaces to databases, is quite the reverse. Rather than
one agreed classification system (which is probably
wrong anyway!) ES could support multi-expert views of
a common dataset making it possible to classify
according to expert A or expert B. As further data are
added and inconsistencies between A and B studied, a
further expert, C, could be added thus building on, but
not replacing older, and still possibly valid, systems. In
some cases it may be possible to build rule bridges
across similar but not identical datasets so that they
may be used as one, maintaining the independence of
workers to evolve their techniques without being
hampered by out-moded standards. As a simple
illustrative example, consider a cropmark classification
system (after Edis et al. 1989) where a COMPLEX is
a combination of types ENCLOSURE, LINEAR
FEATURE, LINEAR SYSTEM, MACULA, without
differentiating between discrete or superimposed.
Another system (Palmer 1983) differentiates between
discrete or superimposed using the terms CLUSTER

COMPLEX and SUPERIMPOSED COMPLEX. By
applying the following rules:

if system Edis and type COMPLEX then
type(Palmer) is CLUSTER COMPLEX or
SUPERIMPOSED COMPLEX

if system Palmer and type CLUSTER COMPLEX or
SUPERIMPOSED COMPLEX then type(Edis
system) is COMPLEX

which can be expressed in prolog as:

/•Site type(Site ref. .Classification system,Site Class)*/

/•Convert Palmer system to Edis*/
type(Ref ,edis .complex) :

type(Ref.Palmer.suf)erimposed_complex);
type(Ref.Palmer.cluster_complex).

/•One solution*/

/*Convert Edis system to Palmer*/
type(Ref.Palmer.superimposed_complex):

type(Ref.edis.complex).

type(Ref,Palm6r,cluster_complex):
type(R6f .edis .complex).

/*Two solutions*/

This provides a naive example (the Prolog would not
actually work correctly in practice) which illustrates
both the reduction of information (Palmer to Edis
system) or uncertainty (Edis to Palmer system) resulting
from such rule bridges. Such assessment may lead to
the development of minimum standards for record
structures to avoid some problems, but not to stifle new
approaches requiring variations from the standard, thus
making past work partially useful or at least assessable.

2.8 Concluding notes

A recurring theme throughout this paper is the
acceptance of the underlying axiom that archaeology (as
a set of accepted methodologies applied to a standardise
information base) is, and may always remain,
undefmable, and that there is no correct or feasible way
of encapsulating a system which can cope with the
variety of problems associated with the data it produces
or the methodology it applies in its analysis of those
data. As such, we must develop open-ended systems
which allow continual update and feedback so that the
results, inevitably interim, can be accessed intelligently
by future generations. Computerisation in any form can
only be considered acceptable if it meets this criterion.
Bridging the gap between data and the information that
data constitutes is perhaps the greatest challenge to the
archaeological application of IT. Archaeological
database systems, in their present form, are poor
contenders to meet the challenge. Although we may
have to wait for off-the-shelf systems to become
available, there is no reason why the present technology
cannot be used or developed within the discipline
provided we are aware of the limitations — with the
right approach we may even be able to aid in the
development of general solutions as archaeology can be
considered stimulating ground for the computer
scientist. What we must avoid is unjustiflable 'black
box' systems or we may find the discipline tarred with
the familiar '...manipulation of ambiguous data by
means of dubious methods to solve a problem that has
not been defined,' leading to the ultimate indictment of
'...lies, damned lies, and archaeological information.'

13

P.N. CHEETHAM & J.G.B. HAIGH

Acknowledgments

The authors wish to acknowledge the aid of Nick Ryan
in providing certain information and references to
recent DBMS developments. The content is however,
the full responsibility of the authors alone and is the
result of background work for a SERC funded PhD, at
the University of Bradford. An oral presentation of this
paper was given at the 1990 Computer Applications in
Archaeology Conference at Southampton.

References

BAKER, K.G. 1988. "Towards an archaeological
methodology for expert systems", in C.L.N. Ruggles
& S.P.Q. Rahtz (ed.). Computer and Quantitative
Methods in Archaeology 1987, British Archaeological
Reports (International Series) 393, Oxford, British
Archaeological Reports: 229—236.

CAREY, M.J., D. FRANK, MURALKRISHNA, D.J. DEWITT,

G. GRAEFE, J.E. RICHARDSON & E.J. SHEKITA

1986. "The architecture of the EXODUS Extensible
DBMS", in Proceedings of the Object-Oriented
Database Workshop: 52—65.

CODD, E.F. 1970. "A relational model of data for large
shared data banks". Communications of the ACM,
13(6): 377-387.

COPELAND, G. & D. MAIER 1984. "Making Smalltalk a
database system", in Proceedings (1984) SIGMOD
Conference: 316—325.

DATE, C.J. 1986. Relational Database: Selected Writings,
London, Addison-Wesley.

EDIS, J., D. MACLEOD & R. BEWLEY 1989. "An
archaeologists guide to the classification of
cropmarks and soilmarks". Antiquity, 63: 112—126.

EVANS, D.M. 1984. "A National Archaeological Archive
— computer database applications", in Computer
Applications in Archaeology 1984, Birmingham,
University of Birmingham: 112—118.

FiSHMAN, D.H. 1986. "The DBMS-Expert System
connection", in G. Ariav & J. Clifford (eds.), New
Directions for Database Systems, 87—101.

GORDON, S. 1991. "How safe is your data?", in K.
Lockyear & S. Rahtz (eds.). Computer Applications
and Quantitative Methods in Archaeology 1990,
British Archaeological Reports (International Series)
565, Oxford, Tempus Reparatum: 75-79.

HiGA, K. & O.R. LIU SHENG 1989. "An Object-Oriented
methodology for database/knowledgebase coupling:
an implementation of the structured entity model in
Nexpert System", Data Base, Spring 1989: 24-29.

PAUVIER, R. 1983. "Analysis of settlement features in the
landscape of prehistoric Wessex", in G.S. Maxwell
(ed.). The impact of aerial reconnaissance on
archaeology. Council for British Archaeology
Research Report 49, London, Council for British
Archaeology: 41—53.

SMITH, D.J. 1984. "Some problems of missing data in
archaeology". Science and Archaeology, 16: 15—16.

SNODGRASS, R. 1987. "The Temporal Query Language
TQuel", ACM Transactions on Database Systems,
12(2): 247-298.

STONEBRAKER, M. (ed.) 1988. Readings in Database
Systems, California, Morgan Kaufmann.

STONEBRAKER, M., J. ANTON & E. HANSON 1987a.
"Extending a database system with procedures",
ACM Transactions on Database Systems, 12(3):
350-376.

STONEBRAKER, M., E. HANSON & C. HONG 1987b. "The
design of the Postgres Rules System", in Readings
13th International on Very Large Databases.

STONEBRAKER, M., E. WONG, P. KREPS & G. HELD

1976. "Design and implementation of INGRES",
ACM Transactions on Database Systems, 1(3):
189-222.

14

