
Received October 13, 2017, accepted November 20, 2017, date of publication January 12, 2018,
date of current version February 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2792941

SAMADroid: A Novel 3-Level Hybrid Malware
Detection Model for Android Operating System
SABA ARSHAD1, MUNAM A. SHAH1, ABDUL WAHID1, AMJAD MEHMOOD2,
HOUBING SONG 3, (Senior Member, IEEE), AND HONGNIAN YU4, 5
1Department of Computer Science, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
2Institute of Information Technology, Kohat University of Science and Technology, Kohat 26000, Pakistan
3Department of Electrical, Computer, Software, and Systems Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 USA
4School of Computer Science and Network Security, Dongguan University of Technology, Shongshanhu 523808, China
5Faculty of Sciences and Technology, Talbot Campus, Bournemouth University, Bournemouth BH12 5BB, U.K.

Corresponding author: Amjad Mehmood (dramjad.mehmood@ieee.org)

ABSTRACT For the last few years, Android is known to be the most widely used operating system and this
rapidly increasing popularity has attracted the malware developer’s attention. Android allows downloading
and installation of apps from other unofficial market places. This gives malware developers an opportunity
to put repackaged malicious applications in third-party app-stores and attack the Android devices. A large
number of malware analysis and detection systems have been developed which uses static analysis, dynamic
analysis, or hybrid analysis to keep Android devices secure from malware. However, the existing research
clearly lags in detecting malware efficiently and accurately. For accurate malware detection, multilayer
analysis is required which consumes large amount of hardware resources of resource constrained mobile
devices. This research proposes an efficient and accurate solution to this problem, named SAMADroid,
which is a novel 3-level hybrid malware detection model for Android operating systems. The research
contribution includes multiple folds. First, many of the existing Android malware detection techniques are
thoroughly investigated and categorized on the basis of their detection methods. Also, their benefits along
with limitations are deduced. A novel 3-level hybrid malware detection model for Android operating systems
is developed, that can provide high detection accuracy by combining the benefits of the three different
levels: 1) Static and Dynamic Analysis; 2) Local and Remote Host; and 3) Machine Learning Intelligence.
Experimental results show that SAMADroid achieves high malware detection accuracy by ensuring the
efficiency in terms of power and storage consumption.

INDEX TERMS Accuracy, android operating system, dynamic analysis, efficiency, hybrid malware
detection, machine learning, memory usage, performance overhead, power consumption, static analysis.

I. INTRODUCTION
Android operating system is known to be the most popular
and widely used operating system. According to the Gartner
report, Android dominated the operating system market
by capturing 81.7% of total market shares by the end
of 2016 [1]. Figure 1 shows the market shares of Android
operating system on yearly basis. It can be observed that
Android has become the most widely used operating system
over the years. With the increasing popularity of Android OS
every year, Androidmalware attacks are also growing rapidly.
TrendMicro declared that number of Android malwares has
increased to 10.6 million [2].

Figure 2 depicts the yearly increase in Android malwares.
A lot of antimalware techniques have been proposed to pro-
tect Android devices frommalwares. These techniques can be

FIGURE 1. Android market shares.

classified as two main approaches: Static Analysis Approach
and Dynamic Analysis Approach. In Static analysis, appli-
cations are analyzed by scanning all the code included in
the application package instead of executing them. This is

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4321

https://orcid.org/0000-0003-2631-9223

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

FIGURE 2. Android malware growth.

useful for identifying the malicious code of applications
which only executes at specific conditions, e.g., system
reboots etc. but it cannot detect the encrypted and dynam-
ically loaded malicious code. While in Dynamic anal-
ysis, only runtime behavior of application is analyzed,
e.g., system call tracing etc. It can detect the encrypted
and dynamically loaded malicious data. A better solution
to overcome the limitations of both analysis approaches
is to use a hybrid analysis, which is a combination of
the static and dynamic analysis technique. These limita-
tions force the researchers to develop the hybrid analy-
sis mechanisms to achieve high detection rates. Although
hybrid analysis techniques succeed to achieve high accu-
racy by combining the benefits of static and dynamic anal-
ysis approaches but they fail to ensure the efficiency of
mobile resources. Existing Antimalware techniques that are
hybrid of static and dynamic analysis are either performed
on the local host (on-device) or at remote host (off-device).
On-device hybrid analysis helps to generate the quick analy-
sis results but mobile devices are usually resource constrained
and requires more hardware resources to perform the hybrid
analysis on the device. Instead, analysis on the remote server
helps to reduce the resource consumption of mobile devices
but it generates unrealistic results, thus lowering the detection
accuracy.

In this paper, a novel 3-level hybrid Android malware
detection model is proposed named as SAMADroid. It is a
hybrid between three levels for malware analysis and detec-
tion: i) Static & Dynamic Analysis; ii) Local & Remote Host;
iii) Machine Learning Intelligence. In static analysis phase,
experiments are performed for feature selection, in order to
obtain the features which can provide maximum and useful
information about the application behavior. For this pur-
pose, Drebin’s features sets are used, with little alterations.
Drebin is a static analysis malware detection framework
which detects malwares with high accuracy, although it lacks
dynamic analysis and cannot detect encrypted and dynami-
cally loadedmalicious code [3]. For dynamic analysis, system
calls are traced at runtime. Different machine learning algo-
rithms are applied and their performance is compared to get
the most accurate machine learning technique. The proposed
scheme is designed to overcome the resource efficiency prob-
lem of the existing anti-malware systems. Our contribution
includes multiple folds.

1) We thoroughly investigatemost of the existing antivirus
programs that act against malwares to protect Android
systems and categorize them on the basis of their detec-
tion methods.

2) We provide an easy and concise view of the exist-
ing malware detection and protection mechanisms and
deduce their benefits and limitations.

3) We developed a novel 3-level hybrid malware detection
model for Android operating systems, that can provide
high detection accuracy by combining the benefits of
three different levels and ensure the resource efficiency.

4) Through SAMADroid, we provide explanation to
Android users about the behavior of application. This
feature of SAMADroid helps the Android users to
become aware of behavior of different applications.

The rest of the paper is organized as follows: Section II
contains the literature review of existing Android malware
detection techniques that uses hybrid analysis. In Section III,
we explained our proposed solution, SAMADroid, which
overcomes the resource consumption problem and achieves
high detection accuracy at low mobile resource consump-
tion. Section IV comprises of experiments performed during
development of SAMADroid and the results obtained and
finally the paper is concluded in Section V.

II. LITERATURE REVIEW
Standalone static and dynamic analyses have their own lim-
itations due to which efforts have been made towards the
development of hybrid antimalware techniques. Although
the hybrid detection schemes have resolved the problem of
accuracy in malware detection up to some extent but still
they are inefficient.We have categorized the existing Android
malware detection hybrid techniques as follows:

1) Static and Dynamic Analysis
2) Static, Dynamic Analysis and Machine Learning
3) Static, Dynamic Analysis and Local, Remote Host.

A. STATIC AND DYNAMIC ANALYSIS
This category includes Android malware detection tech-
niques that uses hybrid of static and dynamic analysis to
achieve high malware detection accuracy.

Bläsing et al. [4] proposed an Android application sandbox
which can detect suspicious behavior in Android applications
by analyzing the app both statically and dynamically. In static
analysis phase, Android application is decompressed first and
then decompiled by using Baksmali tool [5]. Static patterns
are then extracted by scanning the decompiled smali files.
Static patterns include usage of Runtime.Exec() method, java
native libraries, reflection, permissions, service and IPC pro-
vision. While in the dynamic analysis phase, the application
is installed and executed on the Android emulator. Monkey
tool is used to operate the application with random user inputs
e.g. gestures, touches and clicks. AASandbox placed in the
kernel space uses loadable kernel module for execution of the
application under fully controlled environment and creates
the logs by hijacking the system calls. Mathematical behavior

4322 VOLUME 6, 2018

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

vectors are created from the static behavior logs and dynamic
behavior logs. These vectors can be used for the detection
of suspicious behavior of the application and classification
of application either manually or automatically. Through
experimentation, they have shown that the proposed method
performs correctly when they have applied a handwritten
program named fork bomb that uses Runtime.Exec() and
generated the static behavior vector and dynamic behavior
vector. The output generated by the system clearly shows that
the program uses Runtime.Exec(). The major limitation of
AASandbox is that it provides security to Android devices
by hijacking the system calls. It cannot be distributed in the
mass market because it requires the root privileges to hijack
the system calls on a device. They have not provided accuracy
and efficiency measures either.

Zhou et al. [6] have proposed DroidRanger for detection of
known and zero day malwares in popular Android markets.
They have collected 204,040 Android applications among
which 75% are from Android official market [7] and 25% are
collected from four alternative Android application markets,
eoeMarket [8], gfan [9], alcatelclub, and mmoovv. By using
static features, DroidRanger detects known malwares in two
steps: Initially it uses essential permissions, required by the
malware to perform the intended functionality, to filter the
malicious Apps. This process greatly reduces the number of
Apps for further examination in second step. After permis-
sion filtering, behavioral filtering is performed where App’s
behavior is analyzed by using information from manifest
file and API calls. This information is then mapped against
the behavior rules to detect and filter the known malwares
on the basis of their behavior. Detection of unknown mal-
wares is performed in two phases: In the first phase heuris-
tic based filtering is carried out. Two heuristics have been
considered by the authors in this scheme. In the first heuris-
tic, they focused the dynamic loading of java binary code
from remote server. Android uses DexClassLoader [10] for
dynamic loading of java code.While evaluation, authors have
found that 1055 applications used this class. This heuris-
tic enabled the system to detect zero-day malware, Plank-
ton. The other heuristic is related to dynamic loading of
native code locally such that if an app containing native
code stored in the directory other than default directory such
app’s behavior is unusual. This heuristic helps to discover
the malwares which attacks the OS kernel to get access on
the root privileges. Through this heuristic they discovered
DroidDreamLight [11], a zero-day malware from Android’s
official market. In the second phase, it performs dynamic
execution monitoring to inspect the runtime behavior of the
applications on the basis of heuristics. API calls and their
arguments are recorded in order to detect the malicious
behavior of dynamically loaded java code and system calls
are traced for detection of malicious behavior performed by
the app by dynamically loading native code. Among 204,040
applications DroidRanger successfully detected 211 infected
applications where 40 apps contained zero-day malware and
171 apps were infected from known malware. This malware

detection technique is only developed for Android markets,
not for Android devices.

B. STATIC, DYNAMIC ANALYSIS & MACHINE LEARNING
Antimalwares that are hybrid of static and dynamic analy-
sis and machine learning techniques fall into this category.
Wu et al. [12] proposedDroidDolphin, a cloud basedmalware
detection framework that uses both static and dynamic anal-
ysis for malware detection. The proposed scheme consists
of four phases: preprocessing, emulation and testing, feature
extraction and machine learning. In preprocessing phase they
used APIMonitor [13] for monitoring malicious API calls.
First of all,APIMonitor reverse engineers the APKfile, wraps
the API call with DroidBox [14] version and then repackages
the application. This process helps to identify the malicious
API calls by tracing the call logs as it generates the message
whenever the application triggers an API call. Authors have
recorded 25 API calls in this process. For emulation and
testing they installed the applications on Android Virtual
Devices and APE_BOX which is a combination of APE [15]
andDroidBox. ThroughDroidBox, 13 runtime activities were
recorded. APE enables the proposed system to simulate GUI
based events and helps to traverse application’s code path
in order to identify the malicious behaviors. Ngram model
is used for feature representation. Features extracted through
APIMonitorand APE_BOX are given as input to the SVM [16]
classifier and LIBSVM [17] is used for malware detection
model implementation. In order to evaluate the performance
of proposed scheme authors have used big training dataset
which includes 32000 malicious and 32000 benign apps.
Test set consists of 1000 benign and 1000 malicious apps.
They have compared the system’s performance with the
STREAM [18]. Through experimental results it is shown that
the proposed scheme can achieve 86.1% accuracy which is
higher than that of STREAM but at the cost of low efficiency.

Wang et al. [19] proposed a hybrid malware detection
scheme that detects known malwares and their variants
through signature based misuse detection and zero-day mal-
wares through anomaly detection. In static analysis, static
features are extracted from manifest file and disassembled
dex files through Android Asset Packaging Tool [20]. For
dynamic features extraction, Cuckoo Droid [21] is used and
a simulation tool Robotium [22] is used to enhance Cuckoo
Droid. These features, static and dynamic, are then mapped
into vector space where each dimension has a value 0 or 1.
In order to enhance the accuracy and performance, different
feature selection methods are applied for misuse and anomaly
detection. After feature selection, Linear SVC classifier [23]
is applied. If the application is classified as a malware,
the system further detects whether it is a known malware or a
variant of known malware family. On the basis of similarity
in signature it classifies the malware and updates the train-
ing database. On the other hand, if misuse detection cannot
detect the malicious behavior in application then anomaly
detection is performed. It usesOne-Class SVM classifier [24].
If any abnormal behavior is detected it classifies the app as

VOLUME 6, 2018 4323

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

zero-day malware and update the training database. For eval-
uation, they have used 12000 benign apps from different
china App stores and 5560 malware samples. Results shows
that the misuse detection can detect with 98.79% true posi-
tive rate and anomaly detector can detect with 98.76% true
positive rate.

Patel and Buddadev [25] proposed a malware detection
system that performs both static and dynamic analysis of
application under observation and then applies machine
learning technique in order to create rules. These rules are
then used to classify the application as benign or malware.
In static analysis phase, it extracts the permission related
parameters e.g. intents, services and broadcast receivers from
the manifest file by using Android Asset Packaging Tool [20].
In dynamic analysis, the system executes the application on
Android emulator [26] and extracts the features related to
user interactions, java based and native based function calls.
Once the permission based and behavior based features are
collected, they are stored into CSV file. In the next stage, fea-
ture selection is performed on the basis of information gain.
Selected features are recorded in the CSV file along with the
name of the application and class of application e.g. malware
or benign. This CSV file is then used by the rule generation
module for creating rules that are used to correctly classify
the application. It classifies the application by mapping the
permissions against the function calls e.g. if an app tries to
send message or access device id by API calls and does not
mention the permission request formessage sending or access
to device id then such an application is classified asmalicious.
For experiments authors have used datasets of various sources
(Droidkin [27] and contagioDump [28]). Experimental results
show that they achieved high detection rate of 96.4% but at
low efficiency because they performed both static analysis,
dynamic analysis and machine learning based detection on
local device which results in high scanning time, high power
consumption and high resource/storage consumption.

Shijo and Salim [29] have proposed a hybrid malware
detection technique which integrates the static analysis and
dynamic analysis and then applies machine learning for
detection. In static analysis phase, the system extracts PSI as
static features from the binary code files. On the other hand,
in dynamic analysis Cuckoo malware analyzer is used for
dynamic feature extraction by execution of application.
API call logs are extracted from the binary executable files
and their sequence is used to distinguish between malicious
and benign apps. These API call sequence are analyzed on the
basis of n-gram based method in which API call grams are
created for each file and sorted according to the occurrence
frequency in each file. API call grams below the threshold
value are eliminated and remaining call grams are used for
feature vector creation. Once the static and dynamic feature
vectors are created the proposed scheme concatenates the two
feature vectors for each file in order to produce an integrated
feature vector and input these feature vectors to two different
machine learning techniques for classification. For evaluat-
ing the performance of proposed system authors have used

Weka tool [30] and applied the two machine learning tech-
niques, SVM [31], [32] and Random Forest [33]. The data set
consists of 997 malicious files and 490 benign files. Results
show that the proposed scheme can classify the unknown
applications with 98.7% accuracy but this scheme requires
large storage and computation resources.
DroidDetector is an online system developed for detec-

tion of Android malwares [34]. It performs both static and
dynamic analysis at remote server and then applies deep
learning for separation of malwares from legitimate apps.
For static analysis, permissions and sensitive API calls are
used. These static features are extracted using 7-zip [35],
AXML-Printer2 [36], TinyXml [37] and Baksmali tools [4].
Dynamic behaviors are extracted for dynamic analysis
throughDroidBox tool. Each Android application is executed
in the DroidBox for specific period of time and its dynamic
behavior is monitored. The extracted features, both static and
dynamic, are then embed into feature vectors. These fea-
tures are given as input to deep learning model for detection
of malicious applications. For evaluation of DroidDetector,
authors have used 20,000 legitimate apps from Google Play
store and malware apps from Contagio mobile, 500 apps, and
Genome project, 1260 apps. Experimental results show that it
can detect malwares with 96.7% accuracy. Dynamic analysis
is performed at remote server for a specific period of time.
Major limitation of this technique is that malwares which do
not show malicious behavior during that monitoring interval
may evade the detection system.

Liu et al. [38] proposed a hybridmalware detection scheme
which can detect the malicious behavior by static or dynamic
analysis of the application. It initially decompiles the applica-
tion by usingApktool [39] and applies a program that analyses
the decompiled results of the application and automatically
switches the application to static or dynamic analysis pro-
cedure. If the app is successfully decompiled then static
analysis is performed where manifest file [40] is scanned and
permissions and API keywords in Smali files are extracted as
static features. Feature vector is generated from these features
and passed to machine learning classifier for classification
of the application as benign or malware. On the other hand,
if application is not correctly decompiled, as a result of any
transformation technique [41], then dynamic analysis is per-
formed on the application. Firstly, it installs and executes the
application on the experimental device and traces the system
call logs by using Strace tool [42]. Feature vector is generated
from these logs and passed to machine learning classifier
for evaluation. For performance evaluation, authors collected
malware dataset fromGnome Project and benign apps dataset
form Wandoujia [43], an Android app market, and applied
SVM [32], Naive Bayes [44] and kNN [45], [46], machine
learning algorithms, on the dataset. Experimental results of
static analysis show that the proposed scheme can achieve
99% accuracy while 90% accuracy is achieved as a result
of dynamic analysis. Limitations of this technique includes
that static analysis is performed if the application is correctly
decompiled; in that case, dynamic analysis is not performed

4324 VOLUME 6, 2018

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

on the application. Detection system will not be able to detect
the dynamically loaded data. Also, when dynamic analysis is
performed, only the executed code is analyzed. The code that
is not executed remains undetected, thus lacking the bene-
fits of static analysis if dynamic analysis is performed and
vice versa.

Saracino et al. [47] have defined the malware types on
the basis of their behavioral class. The proposed scheme
identifies the misbehavior performed by each malware type
by correlating the features extracted at four different levels:
package level, application level, user level and kernel level.
At kernel level, it monitors and hijacks the system calls.
At application level, it monitors the critical APIs to detect
the malicious behaviors. User activities are monitored at user
level and malicious events are detected when the user is
idle or not interacting the device. At the fourth level, named
as package level, proposed system identifies if the application
under observation is risky or not, on the basis of permissions
requested by the app and market information. MADAM per-
forms App Risk Assessment statically where App evaluator
analyzes the app’s metadata, collected locally and remotely
from the app market, finds if the app is risky or not and gen-
erates the list of suspicious Apps. Static features analyzed to
assess the app’s risk level are: permissions in themanifest file,
market place from where the app is downloaded, no of down-
loads of this app, developer’s reputation and user ratings.
Once the riskiness of application is identified, it is added to
the app suspicious list for monitoring at runtime for malicious
behavior detection. Global monitoring block includes system
call monitor, user activity monitor, message monitor, activ-
ity logger and classifier. System call monitor intercepts the
system calls related to file operations and networks access.
Message monitor hijacks the API calls sendTextMessage()
and sendDataMessage() while the user activity monitor iden-
tifies if the user is active or idle through the Android APIs.
The user is considered to be active if the screen is on and
user is actively interacting with it or the screen is off and the
phone call is ongoing. The action logger collects the features
from three monitors and generates a feature vector consisting
of 14 features among which 11 features represent the system
calls. The values corresponding to these system calls shows
the number of times each system call is triggered in specific
time interval. User idleness feature value is ‘0’ if the user is
idle and ‘1’ if the user is active. The last two features are
collected from message monitor which shows the number of
messages sent in a specific time interval and messages sent
to the number not in device contact list. Finally, the vector
is given as input to the kNN classifier which uses Euclidean
Distance Function [48]. The proposed scheme is tested
on dataset obtained from Genome [49], contagio mobile [50]
and virus share [51] and achieves 96.9% detection rate
which is comparable with VirusTotal [52]. Also, it is able to
detect 9 such malware families that remain undetected by
VirusTotal. MADAM has some limitations too but the major
limitation is that it requires root privileges on the device
to perform detection due to which it cannot be distributed

in the mass market. Only markets can use it for detection
of malicious apps on their store. Also, it is not very much
efficient in terms of memory usage.

Chuang and Wang [53] proposed a hybrid behavior model
for malware detection. In a proposed technique, APK file
of each Android application is preprocessed initially. The
preprocessing phase includes following steps: first of all,
the application is disassembled by the reverse engineering
tool, Androgaurd [54], in order to get the frequency of each
API call used by the application. Then the statistics are gener-
ated for API calls in malicious and benign Apps. These statis-
tics are then used for ranking the APIs on the basis of usage
difference percentage of the API. Through the statistics, it is
observed that the call frequency of dangerous APIs is higher
in malicious apps than benign Apps. As a result of application
preprocessing two feature vectors are generated, one includes
APIs preferred by the malicious apps and other includes
API preferred by the benign apps. These feature vectors
are classified by the two behavior models, normal behavior
model and malicious behavior model. LIBSVM [17] is used
to build these models. The normal behavior model is trained
on the feature set of APIs preferred by the benign apps. If new
application, under analysis, does not act like other legitimate
apps then it is classified as malware. On the other hand,
feature set of APIs preferred by the malicious apps is used
for the training of malicious behavior model. If an application
does not act like other malicious applications, then malicious
behavior model will classify it as benign app. After the sep-
arate analysis by each trained SVM model [23], the proposed
scheme combines the twomodels by using fusion logic where
score is calculated for each application. If the score value is
larger than zero, the application is classified as True (mali-
cious), otherwise False (benign). For performance evaluation
of proposed model, they have collected 3368 malware sam-
ples from Contagio mobile [55] and 6005 benign Android
apps [56]. This dataset is divided into training set (dataset A)
and test set (dataset B). Experimental results show that the
proposed hybrid model can detect the malicious apps with
96.69% accuracy and 95.25% detection rate. The proposed
scheme cannot detect the dynamically loaded malicious code
as it only performs static analysis.

C. STATIC, DYNAMIC ANALYSIS & ON-DEVICE,
OFF-DEVICE DETECTION
Rodríguez-Mota [57] proposed a 2-Hybridmalware detection
test framework which is an ongoing project and performs the
analysis and detection of malwares on the device and remote
server. The framework includes a feature collector unit which
collects different features of the application, at installation.
By analyzing these features local detector classifies the appli-
cation as legitimate, malware or risky. If application is clas-
sified as benign, the response manager allows the installation
of the App and if the App is classified as malware, response
manager allows user to cancel the installation process. In the
case of potential risk, the host based analysis does not com-
pletely classify the application as benign or malware, then

VOLUME 6, 2018 4325

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

detailed analysis is performed at remote server. The cloud
manager obtains the app’s information from feature collec-
tor and performs dynamic analysis on the data at remote
server. If anymalicious behavior is detected in the application
the remote server sends data to local device to be stored
in local database for future detection of such apps. At this
initial stage, they have collected 39 Trojan samples and listed
69 permissions requested in these malware samples. They
compared their results with [58], [59] and found that from
top 20 frequently requested permissions, 17 permissions are
reported in these cited studies. Efficiency and accuracy mea-
sures cannot be determined at this stage.

Jang et al. [60] have proposed Andro-Dumpsys, and
Android antimalware system. In Andro-Dumpsys, client
application running on the Android device captures the appli-
cation specific information and sends it to the server where
detailed analysis and emulation based execution of appli-
cation is performed. The application specific information
includes the hash code of application and package name.
If the application is available in the repository, the analysis is
performed. Otherwise apk file is forwarded to the server from
client device. Key features used for the analysis includes the
serial number of the developer certificate, which is allocated
to each developer during account registration. This feature
helps to recognize the applications developed by malware
developers quickly. Other features include suspicious API
sequence, intent filters, permissions, system commands and
the forged files. Using these features, malicious behavior
of applications is identified. Experimental results show that
Andro-Dumpsys can detect malware applications with 99%
accuracy. The major limitation of this technique is that it uses
emulation based detection, which can be easily evaded by the
malwares. Also, the sending of complete apk file to server
consumes lot of battery power and money at client device.

Talha et al. [61] proposed APK Auditor, an Android mal-
ware detection system that uses permissions as static analysis
features for malware behavior detection. It consists of three
components: 1) Signature database, which contains the signa-
tures of all the applications; 2) Android client, which provides
a service of malware analysis to the users; 3) Central server,
which is responsible for connecting android client with sig-
nature database. Central server performs the analysis without
downloading the application on the client device, thus saving
the hardware resources. It extracts the permissions requested
by the application and computes the permission malware
score (PMS). Then it combines the PMS for each application
and classifies the application as malware if the application
malware score exceeds threshold value. APK Auditor uses
Logistic Regression [62]–[64] for calculating threshold value
by using 70% of available dataset as training data. Perfor-
mance of proposed scheme is evaluated on 30% dataset.
Results shows that APK Auditor achieves 92.5% specificity
but it lacks the benefits of dynamic analysis as it cannot detect
the dynamic malicious payloads.

In [65], a detection system is proposed named Monet,
which can detect the variants of known malwares.

Monet uses static features, from manifest file and disassem-
bled code files, and dynamic behavior of applications for
detection of variants of known malware families. It consists
of client end application that executes on Android device,
monitors the applications and generates the signatures. These
signatures are forwarded to server which performs further
detection by applying signature matching algorithm and
sends back the detection results. For evaluation of Monet,
authors used dataset of 3723 malwares and 500 legitimate
applications. Through experimental results, it is shown that
Monet can detect variants of known malware families with
99% accuracy. Monet causes overall 7.4% performance over-
head and 8.3% memory overhead which is not negligible for
resource constrained smart phones. Thus, Monet is good at
accuracy but lacks resource efficiency.

A detailed comparative study of existing Android malware
detection hybrid techniques that lie in these three categories,
discussed above, is described in Table 1.

III. PROPOSED SCHEME
SAMADroid is a 3-level hybrid malware detection model for
Android devices. It is hybrid between following three levels
for malware analysis and detection.

A. LEVEL 1: STATIC AND DYNAMIC ANALYSIS
At Level 1, the hybrid of static and dynamic analysis provides
a highly accurate analysis as it combines the benefits of
two analysis techniques. Through static analysis, it scans all
the code of application and analyzes the malicious behavior
of application without executing it. In static analysis phase,
static features are extracted from the manifest file and dex
code files of the application.Motivated fromDrebin [3], same
sets of static features are used for static analysis, with a little
alteration, in order to achieve high detection accuracy. These
static feature sets are grouped as follows:
S1 : Requested Hardware Components
S2 : Requested Permissions
S2 : Application Components (Service, Receiver, Content

Provider)
S4 : Intent filters
S5 : Suspicious API calls
S6 : Restricted API calls
All the above static features are extracted using Android

Asset Packaging Tool andBaksmali tool.
In dynamic analysis phase, system executes the applica-

tion on the real device and analyzes its runtime behavior
which also includes the monitoring of dynamically loaded
and decrypted code. System calls are used as dynamic fea-
tures. Applications installed on real Android devices are ana-
lyzed by system call tracing. These system calls allow us to
overcome the limitations of static analysis and analyze the
application’s behavior in real time environment.

B. LEVEL 2: LOCAL AND REMOTE HOST
Level 2 is a hybrid of local and remote host. Detailed static
analysis is performed on the remote host to achieve highly

4326 VOLUME 6, 2018

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

TABLE 1. Hybrid malware detection techniques.

VOLUME 6, 2018 4327

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

TABLE 1. (Continued.) Hybrid malware detection techniques.

4328 VOLUME 6, 2018

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

TABLE 1. (Continued.) Hybrid malware detection techniques.

accurate results. On the local host, dynamic analysis is per-
formed to take the realistic inputs from the user instead of
using any programmed tool, Monkey Runner, which gen-
erates non-realistic random input events. On the basis of
user inputs, system call logs are generated and forwarded
to the remote server. Remote server keeps on analyzing the
behavior of application on the basis of logs and extracted
static features.

C. LEVEL 3: MACHINE LEARNING INTELLIGENCE
At Level 3, the feature vectors built from analyzed features
are given as input to the machine learning intelligence unit
to perform the detection of malicious behavior of unknown
apps and to correctly classify them. All the applications are
classified as malicious or benign. In SAMADroid, the detec-
tion operation is performed at remote host, thus keeping
all the training dataset in memory of server, which is a
resource rich system. This ultimately reduces the memory
overhead.

All the three levels of SAMADroid model are shown
in Figure 3. Following are the major components of this
model.

1) CLIENT END
An Android interface application is developed for
SAMADroid client end. It provides an interface which
includes all the applications currently installed on the device
either they are system applications or user applications. This
interface allows the users to use any application through
SAMADroid client application. When a user opens, and
runs any other application through SAMADroid, the appli-
cation runs smoothly. SAMADroid monitors the applications
in background and do not affects the operations of other
applications running on the device. If running application is
system application, there is no need to check whether it is
malicious or not, because system apps are added in the device
by the manufacturers. On the other hand, if the application is
user application, installed by user from any app-store, then

VOLUME 6, 2018 4329

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

FIGURE 3. Architectural diagram of SAMADroid.

SAMADroid hooks the Strace tool with that application and
starts tracing the system calls invoked by the user application.
For example, Messaging application is system application,
when it is run by the user, SAMADroid does not hooks the
Strace and when SubwaySurf, a user application downloaded
from Google Play Store, runs SAMADroid immediately
hooks the Strace with it. Strace only traces the system calls
instead of intercepting them. SAMADroid is designed to
trace only 10 specific system calls which includes system
calls related to file operations and network access e.g. open,
ioctl, brk, read, write, close, sendto, sendmsg, recvfrom,
recvmsg.

As long as the user applications keeps running on the
device, SAMADroid keeps on tracing the system calls of that
application and generates the log file of system calls invoked
by the user application. This log file contains the summary of
system calls such as system call names, count for each system
call, time utilized by the system calls and seconds of the time
for which the system call is executed.

Also, the identifiers of that application are sent to the
server so that it can immediately start the static analysis for
that application. Application Identifiers includes the package
name, version and market name from which the application
is downloaded. After the log file is generated by the Strace,
count for each system call is forwarded to the server. If any
system call is not found in the log file, ‘0’ value is forwarded
for that system call. SQL server database is maintained at the

server where it stores the system calls recorded for specific
applications downloaded from different app stores.

2) SERVER END
In order to make SAMADroid resource efficient for mem-
ory and power constrained Android devices, detailed static
analysis is performed at remote host. Figure 4 shows the
workflow of static analysis. On receiving identifiers from
SAMADroid client application, firstly server looks into its
database of previously classified applications and searches
the application using package name. If the application is
found in the database, its classification report is forwarded
to the client application. If the required application package
name is not found, then its package is downloaded from the
app-store. The installer name is different for different app-
stores. This helps to get the application from that specific
app market from which the user downloaded the application.

Once the application package is downloaded, static fea-
tures are extracted from it. The application package is decom-
pressed using Android Asset Packaging Tool. This module
outputs the classes.dex file and also unpacks the manifest
file. All the requested permissions, application components,
filtered intents and hardware features used by the application
are extracted from manifest file.
Baksmali tool, a tool for assembling and disassembling of

applications, is used to disassemble the application code from
classes.dex file. The output generated by this module contains

4330 VOLUME 6, 2018

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

FIGURE 4. Static analysis flow diagram.

the smali files. These smali code files contains the Android
application java code in smali language, which is assembly
like language. From the smali code files, the suspicious API
calls and restricted API calls are extracted.

Once the features are extracted, feature selection is per-
formed. Arp et al. [3] of Drebin used maximum of the
features in the static analysis and achieved high accuracy
results using these features. Same sets of features are used
in this research and different experiments are performed to
get the most useful features among them in feature selection
process. The features selected for the SAMADroid static
analysis are hardware components, requested permissions,
application components, filtered intents, restricted API calls
and suspicious API calls.

3) EMBED EXTRACTED FEATURES INTO VECTOR SPACE
The extracted features, both static and dynamic, are mapped
into vector space.

a: STATIC FEATURE VECTORS
For static feature vectors, we define a joint set S that com-
prises all observable strings contained in the 6 feature sets.

S := S1 ∪ S2 ∪ . . . ∪ S6

It is ensured that elements of different sets do not collide
by adding a unique prefix to all strings in each feature set.
In our evaluation, the set S contains roughly 44,000 different
features. Using the set S, an |S|-dimensional vector space is
defined, where each dimension is either 0 or 1. An application
x is mapped to this space by constructing a vector ϕ (x),
such that for each feature s extracted from x the respective
dimension is set to 1 and all other dimensions are 0. Formally,
this map ϕ can be defined for a set of applications X as
follows:

ϕ : X → {0, 1}|S|

For example, a malicious application sends user’s personal
data such as pictures and contacts information to remote

server. It needs to request certain permissions and hardware
components. A corresponding vector ϕ (x) for this applica-
tion looks like this

ϕ(x) 7→

. . .

0
1
. . .

1
0

. . .

android.hardware.wifi
android.hardware.telephony

}
S1

. . .

SEND_SMS
DELETE_PACKAGES

}
S2

. . .

b: DYNAMIC FEATURE VECTORS
Once the system call features are delivered to the server, these
features are then embedded into vector space. The frequency
of system call occurrence shows the behavior of application.
Malicious applications invoke specific system calls more
frequently than legitimate applications. Thus, system call
frequency representation is used in order to capture such
behavior of malware applications.

Let M = {m1,m2, . . . ,mn} represent the set of system
calls, related to Android operating system, that are used as
dynamic features such as:

m1 = open

m2 = ioctl

m3 = brk

m4 = read

m5 = write

m6 = close

m7 = sendto

m8 = sendmsg

m9 = recvfrom

m10 = recvmsg

The setM contains 10 different system calls, related to file
operations and network access, as dynamic features. Using
the setM , an |M |-dimensional vector space is defined, where

VOLUME 6, 2018 4331

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

each dimension is either 0 or 1. An application x is mapped
to this space by constructing a vector σ (x), such that for each
feature m extracted from x the respective dimension is set
to 1 and all other dimensions are 0. Formally, this map σ can
be defined for a set of applications X as follows:

σ : X → {0, 1}|M |

Following is an example of the system calls frequency
values extracted from application x and embedded into vector
space.
Let x = com.kiloo.subwaysurf
σ (x) = 0, 6219, 0, 3391, 4531, 9, 334, 0 4913, 0

c: MACHINE LEARNING INTELLIGENCE
BASED DETECTION
Once the feature vectors are generated, both static fea-
ture vector and dynamic feature vector, they are given
as input to the machine learning tool for classification.
Machine learning Intelligence is used for automatically learn-
ing a separation between malicious and benign applica-
tions. The application of machine learning spares us from
manually constructing detection rules for the extracted fea-
tures. Weka tool, v.3.6, [66] is used for machine learning
classification.

SAMADroid uses Linear Support Vector Machine (SVM)
machine learning classifier for detection of malicious appli-
cations. SVM, trained on the Drebin’s dataset of malicious
applications and legitimate applications, is applied on both
the vectors for a particular application, static feature vector
and dynamic feature vector. SVM classifies the application
as legitimate or malware.

As SVM is applied on static and dynamic feature vectors
separately, there may be three possibilities:

1) Application is classified as legitimate for both static
and dynamic feature vectors.

2) Application is classified asmalicious for both static and
dynamic feature vectors.

3) There exists contradiction in the classification results
for the two analyses, e.g. Application is classified as
legitimate for static feature vector and malware for
dynamic feature vectors and vice versa.

Thus, the final classification decision is taken as
follows:

1) Application is classified as ‘legitimate’ if both the static
analysis and dynamic analysis results shows that appli-
cation is legitimate.

2) Application is classified as ‘malware’ if classification
results for both analysis declares the application as
malicious.

3) Application is classified as ‘risky’ if one of the two
analyses declares application asmalicious and the other
declares the application as legitimate.

These classification results are forwarded to the client
application where the notification is generated for the user
if application is malicious or risky.

4) APPLICATION BEHAVIOR EXPLANATION
Once the classification results are produced at server, they
are communicated to the client application, running at real
Android device. SAMADroid notifies the users about appli-
cation’s behavior, under examination, without interrupting
other activities of user. Also, it provides the explanation to the
user about application, for the awareness of users about appli-
cations behavior. In other words, this application not only
detects the legitimate and malicious behavior of application
but also provides sufficient information to the Android users
about application’s behavior. The application information
includes the application name, package name, permissions,
services and hardware features used by the application, ver-
sion number, install date of application and also the date when
it was last updated.

Users can view the details of applications in order to make
decision of whether to continue using application or uninstall
the application

IV. EXPERIMENTATION & RESULTS
In this section, series of experiments are discussed that were
carried out during the development of SAMADroid and the
results obtained from these experiments. Different machine
learning classifiers are used in order to obtain high detection
accuracy and also their results are evaluated. There are many
evaluation parameters for machine learning classifiers on the
basis of which performance of classifiers can be evaluated.
In this research, true positive rate, false positive rate and
accuracy are used as evaluation metrics for accurate detection
of malwares.

1) True positive rate or recall: It is defined as the ratio of
positive instances correctly classified among all avail-
able positive instances.

True Positive Rate =
True Positive
Total Positives

In this research, malicious applications in dataset are
termed as positive instances because we are interested
in the detection of malicious applications. Thus, true
positive rate is the ratio between the number of mali-
cious applications correctly classified as malicious and
total number of malicious applications.

2) False positive rate: It is defined as the ratio of negative
instances incorrectly classified as positive instances
over total number of negative instances.

FalsePositiverate =
FalsePositive
TotalNegatives

Here, false positive rate is the ratio between number
of legitimate applications incorrectly classified asmali-
cious and total number of legitimate applications.

3) Accuracy: Accuracy is defined as the total number of
instances correctly classified, both positive and nega-
tive, among all the available instances.

Accuracy =
TruePositives+ TrueNegatives

TotalInstances

4332 VOLUME 6, 2018

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

Where,
True Positives = number of malware applications classi-

fied as malware
False Positives = number of legitimate applications classi-

fied as legitimate
Thus, Accuracy is the ratio between sum of correctly clas-

sified legitimate and malicious applications and total legiti-
mate and malware applications.

Besides malware detection accuracy, efficiency is also
measured in terms of performance overhead, caused by
SAMADroid application on Android device, memory con-
sumption in terms of space required by the application on the
device and power consumption.

A. DATASET
For evaluation of detection performance of proposed system,
Drebin’s dataset [3] is used. It is claimed to be the largest
dataset of real malware applications collected from Google
Play Store, Chinese App stores, Russian App markets and
other app sources such as forums, blogs and websites. Also,
the dataset contains the applications from Malware Genome
Project [49]. Another reason for using this dataset in eval-
uation is that in training and testing partitions of dataset,
malware and legitimate applications are distributed in such a
way that it avoids the overfitting of classifier. This feature of
Drebin’s dataset helps the classifiers to achieve high detection
rate on test set.

B. STATIC ANALYSIS EXPEIRMENTS
For the sake of effectiveness of static analysis module, in
SAMADroid, against malicious apps, an experiment is per-
formed to identify themost useful features. In Drebin, authors
have used maximum of the static features which they have
grouped into eight sets.
S1 : Hardware components
S2 : Requested permissions
S3 : App components
S4 : Filtered intents
S5 : Restricted API calls
S6 : Used permissions
S7 : Suspicious API call
S8 : Network Addresses
During feature selection phase, it is observed that used

permissions, in maximum of the applications, are the subset
of ones that are requested by the applications. As requested
permissions feature set is already selected so the used per-
missions feature set is dropped. Also, the network addresses
used in application are either the addresses of that specific
application location at google play store or the address of
remote server which hosts the application. Thus, network
addresses found, in any application, are different for each
application developed by different developers and there is no
any standardized way of identifying the remote host network
addresses to be malware or legitimate. On the basis of this
fact, the network addresses feature set is also dropped. The
remaining six feature sets are used and for static analysis.

TABLE 2. Detection performance comparison with Drebin.

FIGURE 5. Performance comparison with Drebin.

An experiment is performed to check that whether the
selected six feature sets can generate high accuracy than the
eight feature sets. Thus, all the six sets of static features are
extracted from malicious and non-malicious applications and
embedded into vector space.

In the first experiment, Linear SVMmachine learning clas-
sifier is applied on the dataset. The dataset is randomly split
into known partition (66%) and unknown partition (34%).
The known partition is used for the training of classifica-
tion model and unknown partition is used for testing. Same
process is repeated 10 times and computed the average of
the obtained results for each run. The average accuracy
achieved is 98.97% at a false positive rate of 0.005 or 0.5%.
Table 2 reports the comparison of average true positive rate
and false positive rate achieved by dataset of eight feature
sets, used by Drebin, and dataset of six feature sets, used by
SAMADroid.

Figure 5 depicts the comparison of average malware detec-
tion accuracy achieved by SAMADroid and Drebin, which
used the same dataset but different number of feature sets.
It can be observed that classifier learned on dataset of selected
six feature sets, extracted from applications, can detect mali-
cious applications more accurately than the dataset of eight
feature sets. Also, the false alarm rate of SAMADroid is low
i.e. 0.5%, in comparison to that of Drebin.

In order to test the performance of other classifiers on the
dataset of six feature sets, second experiment is performed.
In this experiment, different machine learning algorithms
such as Random Forest, Decision tree and Naive Bayes are
applied on dataset. These classifiers are applied on the dataset
with random percentage split where 66% data is used as
training set and 34% data is used for testing. Same process
is applied 10 times for each classifier. Table 3 reports the
average true positive rate, false positive rate and accuracy
values achieved by Random Forest, Decision Tree and Naive
Bayes classifiers.

VOLUME 6, 2018 4333

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

TABLE 3. Comparison between different machine learning classifiers on
static features.

FIGURE 6. Performance comparison of different classifiers on static
features.

TABLE 4. Comparison between different machine learning classifiers on
dynamic features.

It is observed that Random Forest achieves highest accu-
racy 99.07% at very negligible false positive rate of 0.03%.
Although Random Forest provides highest accuracy in com-
parison to SVM but at the cost of low true positive rate.
SVM provides the highest true positive rate which shows the
potential of a classifier to detect the malicious application
accurately. Figure 6 illustrates the visual representation of
comparison between different machine learning classifiers.

C. DYNAMIC ANALYSIS EXPERIMENT
In this experiment, SAMADroid is evaluated on the basis of
system calls. Feature vectors of system call frequency are
given as input to the machine learning tool, Weka. Different
machine learning classifiers such asRandomForest, Decision
tree and Naive Bayes are applied on the system calls dataset.
5-fold cross validation is applied on the dataset for each clas-
sifier and compared the results. Table 4 and Figure 7 reports
the true positive rate, false positive rate and accuracy obtained
from these classifiers. SVM and Random Forest gives highest
accuracy with lowest false positive rate.

FIGURE 7. Comparison between different machine learning classifiers on
dynamic features.

TABLE 5. Performance overhead caused by SAMADroid.

D. PERFORMANCE OVERHEAD
This section explains two experiments that are performed to
determine the performance overhead caused by SAMADroid
on real Android device. Firstly, the performance of Android
device is observed through Benchmark tool before and after
running SAMADroid. This experiment provides the overhead
caused by the SAMADroid client application while running
on the real Android device. Secondly, it provides the perfor-
mance overhead of SAMADroid withMADAM [47]. Results
shows that performance overhead caused byMADAM is high
in comparison to SAMADroid.

1) PERFORMANCE OVERHEAD BY CAUSED BY SAMADROID
In this experiment, performance overhead of SAMADroid
is measured through a standard benchmark tool, i.e. the
Quadrant Standard Edition Application [67], which is dis-
tributed through Google Play [68]. It performs bench-
mark tests which cover the CPU, Memory, I/O operations,
2D graphics and 3D graphics in order to measure the per-
formance of the device. Total score is the average of all
the performance scores obtained from the tests performed
on processor, memory, I/O, 2D and 3D. Benchmark tests
have been performed on Samsung Galaxy Grand Prime (CPU
Quad-core 1.2 GHz Cortex-A53, RAM 1GB). The device
runs Android 5.1 Lollipop. Table 5 and Figure 8 shows the
average results obtained from the five experiments performed
when the SAMADroid was running on the device and when it
was not. It is observed that the benchmark values decreased
after running SAMADroid on the device which reflects the

4334 VOLUME 6, 2018

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

FIGURE 8. Performance degradation caused by SAMADroid.

TABLE 6. Comparison of overhead caused by SAMADroid with other
related frameworks.

FIGURE 9. Comparison of SAMADroid performance overhead with
MADAM.

decrease in performance of the device. This performance
degradation is computed as percentage overhead between
the performance before and after running SAMADroid. The
overall performance impact of SAMADroid on the system
is 0.6%.

2) PERFORMANCE OVERHEAD COMPARISON WITH MADAM
In this experiment, the performance overhead caused
by SAMADroid and MADAM are compared. Table 6 and
Figure 9 explains the comparison of performance over-
head between SAMADroid and MADAM. It is observed
that overall performance overhead in SAMADroid is low
in comparison to MADAM i.e. 0.6% which is acceptable
for smartphone users. Also, in SAMADroid, memory over-
head is reduced to 1.8% in comparison to MADAM. This

TABLE 7. Comparison of device memory required for different security
applications.

FIGURE 10. Memory required for security applications.

is because in MADAM, classifier requires training set in
the memory which causes 9.4% memory overhead while
SAMADroid performs classification at remote host which
reduces the memory overhead at Android device. I/O over-
head caused by SAMADroid is also low in comparison
to MADAM.

E. RESOURCE CONSUMPTION
This section discusses about the experiments performed to
evaluate the SAMADroid on the basis of resource consump-
tion. These experiments are aimed to determine the efficiency
of SAMADroid in comparison to the other existing anti-
malware applications for Android operating system. Results
obtained from these experiments shows that SAMADroid
consumes low resources, i.e. memory and power, in com-
parison to other detection systems and is more suitable for
resource constrained Android devices.

1) MEMORY CONSUMPTION
In this experiment, SAMADroid is evaluated on the basis of
device memory consumed by the client application. Mem-
ory consumption of SAMADroid client application is com-
pared with some famous antivirus applications provided
for the mobile apps such as Avast Mobile Security [69],
AVG AntiVirus [70], Avira [71], Kaspersky Internet Secu-
rity [72], McAfee Security [73] and 360 Security [74], [75].
Table 7 and Figure 10 shows the memory required for each
application on the Android device before any scanning and
detection process. It can be observed that SAMADroid is
the light weight malware detection application for resource
constrained Android devices. It consumes very low mem-

VOLUME 6, 2018 4335

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

TABLE 8. Power consumption by different antimalwares on android
device.

FIGURE 11. Illustration of power consumed by different antimalwares.

ory space in comparison to the other malware detection
applications.

2) POWER CONSUMPTION
Another evaluation parameter used is power consumption.
This experiment is performed to measure the power con-
sumption of SAMADroid on real Android device through
App Tuneup Kit [75] and compare it with other related real
applications such as Avast Mobile Security, AVG AntiVirus,
Avira, Kaspersky Internet Security, McAfee Security and
360 Security. Table 8 and Figure 11 describes the power
consumed by different antimalware applications for the inter-
val of 5 minutes. Results shows that power consumed by
SAMADroid is moderate in comparison to the other Antimal-
wares. This happens because SAMADroidmonitors only run-
ning applications. While the other anti-malwares scan all the
applications either they are running in the background or not.
Another reason for the low power consumed by our security
system is its distinguishing feature that it only analyzes the
user applications and does not scan the system applications.
As system applications are added in the device by the device
manufacturers and are not malicious, due to this reason
SAMADroid does not scan system applications. On the other
hand, other anti-malwares scan all the user and system appli-
cations because of which they consume more battery power.
Also, SAMADroid performs static analysis at server and
dynamic analysis on the device while the other anti-malwares
listed in the Table 8 perform only static analysis and do not
analyze the runtime behavior of user applications.

V. DISCUSSION & FUTURE WORK
Although SAMADroid provides high detection accuracy at
low resource consumption but it has some limitations too.
First of all, the whole system is dependent on server commu-
nication. Classification of applications is performed at server
and the results of which are delivered to the Android device
for the sake of security provision. No malicious behavior
detection is performed at local host i.e. Android device.
Thus, if the network link gets down or congestion occurs at
channel due to which Android device cannot communicate
with the server then the performance of SAMADroid will be
reduced. Secondly, Drebin’s dataset of malicious applications
was used for training the classification model which does not
contain the most recent variants of malware types. In future,
we aim to enhance the malware dataset for SAMADroid,
including the recent malwares so that SAMADroid effec-
tively secures the Android applications against recent mal-
ware applications.

VI. CONCLUSION
This research work is based on the development of a mal-
ware detection system that can detect the malwares on the
Android devices while ensuring the low resource consump-
tion. In this research, we thoroughly investigated many of the
existing malware detection and prevention techniques, devel-
oped during the period of 7 years, 2010 to 2016. Based on the
benefits and limitations of existing antimalware techniques,
we formulated the problem that existing research lags in
detection of Android malwares accurately while ensuring the
low consumption of hardware resources of Android devices.
Thus, we proposed 3-level hybrid malware detection model
for Android operating system. To the best of our knowledge,
there does not exist any 3-level hybrid malware detection sys-
tem. Thus, SAMADroid is a novel malware detection model
which combines the benefits of static analysis, dynamic
analysis and machine learning Intelligence. Also, it operates
both on local host and remote host to achieve the resource
efficiency. SAMADroid client application is developed for
Android devices. It performs dynamic analysis on the device
and communicates with the server for static analysis and
detection results. Remote server performs the static analysis
and machine learning based detection. Through extensive
experimentation, we have shown that SAMADroid performs
better than Drebin for static analysis. It is also observed that
SAMADroid causes very negligible performance overhead
on the Android device. SAMADroid is also efficient in terms
of hardware resource usage.

REFERENCES
[1] (2017). Gartner Says Worldwide Sales of Smartphones Grew 7 Percent in

the Fourth Quarter of 2016. Accessed: Apr. 28, 2017. [Online]. Available:
http://www.gartner.com/newsroom/id/3609817

[2] Trend Micro Q2 Security Roundup Report | Androidheadlines.Com.
Accessed: Dec. 8, 2015. [Online]. Available: http://www.androidheadlines.
com/2015/08/trend-micro-q2-security-roundup-report.html

[3] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck, ‘‘DREBIN:
Effective and explainable detection of Android malware in your pocket,’’
in Proc. Symp. Netw. Distrib. Syst. Secur. (NDSS), 2014, pp. 23–26.

4336 VOLUME 6, 2018

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

[4] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak,
‘‘An Android Application Sandbox system for suspicious software detec-
tion,’’ in Proc. 5th IEEE Int. Conf. Malicious Unwanted Softw., Malware,
Oct. 2010, pp. 55–62.

[5] [Utility][Tool][Windows] Baksmali/Smali Ma. . . | Android Develop-
ment and Hacking. Accessed: Dec. 22, 2015. [Online]. Available:
http://forum.xda-developers.com/showthread.php?t=2311766

[6] Y. Zhou, Z.Wang,W. Zhou, and X. Jiang, ‘‘Hey, you, get off of mymarket:
Detecting malicious apps in official and alternative Android markets,’’ in
Proc. 19th Annu. Netw. Distrib. Syst. Secur. Symp., 2012, no. 2, pp. 5–8.

[7] Android Apps on Google Play. Accessed: Aug. 30, 2016. [Online]. Avail-
able: https://play.google.com/store?hl=en

[8] Android Games Android Application Android Phones__Excellent Soft-
ware Download Center Official Website-Billion Market. Accessed:
Aug. 30, 2016. [Online]. Available: http://www.eoemarket.com/

[9] Machine Front Network—Technology News, all in the Machine Front.
Accessed: Aug. 30, 2016. [Online]. Available: http://www.gfan.com/

[10] DexClassLoader | Android Developers. Accessed: Aug. 30, 2016.
[Online]. Available: https://developer.android.com/reference/dalvik/
system/DexClassLoader.html

[11] Update: Security Alert: DroidDreamLight, New Malware From the
Developers of DroidDream | Lookout Blog. Accessed: Aug. 30, 2016.
[Online]. Available: https://blog.lookout.com/blog/2011/05/30/security-
alert-droiddreamlight-new-malware-from-the-developers-of-droiddream/

[12] W.-C. Wu and S.-H. Hung, ‘‘DroidDolphin: A dynamic Android malware
detection framework using big data and machine learning,’’ in Proc. Conf.
Res. Adapt. Convergent Syst., Oct. 2014, pp. 247–252.

[13] API Monitor: Spy on API Calls and COM Interfaces (Freeware 32-Bit
and 64-Bit Versions!) | Rohitab.Com. Accessed: Aug. 22, 2016. [Online].
Available: http://www.rohitab.com/apimonitor

[14] DroidBox. Accessed: Aug. 22, 2016. [Online]. Available:
https://github.com/pjlantz/droidbox

[15] S. Chang, ‘‘APE: A smart automatic testing environment for Android
malware,’’ Dept. Comput. Sci. Inf. Eng., Nat. TaiwanUniv., Taipei, Taiwan,
Tech. Rep., 2013.

[16] A. Ng, Support Vector Machines for Machine Learning. Stanford, CA,
USA: Stanford Univ., 2008

[17] LIBSVM—A Library for Support Vector Machines. Accessed:
Aug. 17, 2016. [Online]. Available: http://www.csie.ntu.
edu.tw/~cjlin/libsvm/

[18] B. Amos, H. Turner, and J. White, ‘‘Applying machine learning classifiers
to dynamic Android malware detection at scale,’’ in Proc. 9th Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), Jul. 2013, pp. 1666–1671.

[19] X. Wang, Y. Yang, Y. Zeng, C. Tang, J. Shi, and K. Xu, ‘‘A novel hybrid
mobile malware detection system integrating anomaly detection with mis-
use detection,’’ in Proc. 6th Int. WorkshopMobile Cloud Comput. Services,
Sep. 2015, pp. 15–22.

[20] Android Aapt—eLinux.Org. Accessed: Aug. 13, 2016. [Online]. Available:
http://elinux.org/Android_aapt

[21] CuckooDroid Book—CuckooDroid V1.0 Book. Accessed: Aug. 19, 2016.
[Online]. Available: http://cuckoo-droid.readthedocs.io/en/latest/

[22] 10 Open Source Mobile Test Automation Tools. Accessed: Aug. 19, 2016.
[Online]. Available: http://www.testingexcellence.com/open-source-
mobile-test-automation-tools/

[23] S. R. Gunn. (1998). UNIVERSITY OF SOUTHAMPTON Support
Vector Machines for Classification and Regression. Accessed:
May 16, 2017. [Online]. Available: http://ce.sharif.ir/courses/85-
86/2/ce725/resources/root/LECTURES/SVM.pdf

[24] K.-L. Li, H.-K. Huang, S.-F. Tian, and W. Xu, ‘‘Improving one-class SVM
for anomaly detection,’’ in Proc. Int. Conf. Mach. Learn., Nov. 2003,
pp. 3077–3081.

[25] K. Patel and B. Buddadev, ‘‘Detection and mitigation of Android malware
through hybrid approach,’’ in Security in Computing and Communications.
Cham, Switzerland: Springer, 2015, pp. 455–463.

[26] Control the Emulator from the Command Line | Android Studio. Accessed:
Aug. 13, 2016. [Online]. Available: https://developer.android.com/studio/
run/emulator-commandline.html

[27] H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, ‘‘DroidKin: Lightweight
detection of Android apps similarity,’’ in Security and Privacy in Commu-
nication Systems (Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering), vol. 152. Cham,
Switzerland: Springer, 2015, pp. 436–453.

[28] M. Parkour. Contagio. Accessed: Aug. 13, 2016. [Online]. Available:
http://contagiodump.blogspot.in/

[29] P. V. Shijo and A. Salim, ‘‘Integrated static and dynamic analysis for mal-
ware detection,’’ Procedia Comput. Sci., vol. 46, pp. 804–811, Jan. 2015.

[30] Weka 3—Data Mining With Open Source Machine Learning
Software in Java. Accessed: Dec. 16, 2015. [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/

[31] A. Andrew, N. Cristianini, and J. Shawe-Taylor,An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods. Cambridge,
U.K.: Cambridge Univ. Press, 2000.

[32] A. Andrew, ‘‘An introduction to support vector machines and other kernel-
based learning methods,’’ in Kybernetes. Cambridge, U.K.: Cambridge
Univ. Press, 2013.

[33] D. Dittman, T. M. Khoshgoftaar, R. Wald, and A. Napolitano, ‘‘Random
forest: A reliable tool for patient response prediction,’’ in Proc. BIBMW,
Nov. 2011, pp. 289–296.

[34] Z. Yuan, Y. Lu, and Y. Xue, ‘‘Droiddetector: Android malware characteri-
zation and detection using deep learning,’’ Tsinghua Sci. Technol., vol. 21,
no. 1, pp. 114–123, Feb. 2016.

[35] 7-Zip. Accessed: Jun. 10, 2017. [Online]. Available: http://www.7-zip.org/
[36] AXMLPrinter2 | Android Tales. Accessed: Jun. 10, 2017. [Online]. Avail-

able: http://android.amberfog.com/?tag=axmlprinter2
[37] TinyXMLDownload | SourceForge.Net. Accessed: Jun. 10, 2017. [Online].

Available: https://sourceforge.net/projects/tinyxml/
[38] Y. Liu, Y. Zhang, H. Li, and X. Chen, ‘‘A hybrid malware detecting scheme

for mobile Android applications,’’ in Proc. IEEE Int. Conf. Consum. Elec-
tron. (ICCE), Jan. 2016, pp. 155–156.

[39] Apktool—A Tool for Reverse Engineering Android Apk Files. Accessed:
Aug. 13, 2016. [Online]. Available: https://ibotpeaches.github.io/Apktool/

[40] App Manifest | Android Developers. Accessed: Aug. 13, 2016. [Online].
Available: https://developer.android.com/guide/topics/manifest/manifest-
intro.html

[41] V. Rastogi, Y. Chen, and X. Jiang, ‘‘DroidChameleon: Evaluating Android
anti-malware against transformation attacks,’’ in Proc. 8th ACM SIGSAC
Symp. Inf., Comput. Commun. Secur. (ASIA CCS), 2013, pp. 329–334.

[42] Strace Download | SourceForge.Net. Accessed: Dec. 22, 2015. [Online].
Available: http://sourceforge.net/projects/strace/

[43] ‘Pea Pod’ Official Website. Accessed: Aug. 13, 2016. [Online]. Available:
https://www.wandoujia.com/

[44] Naive Bayesian. Accessed: Aug. 13, 2016. [Online]. Available:
http://www.saedsayad.com/naive_bayesian.htm

[45] KNN Classification. Accessed: Aug. 13, 2016. [Online]. Available:
http://www.saedsayad.com/k_nearest_neighbors.htm

[46] L. Kozma, K Nearest Neighbors Algorithm (kNN). Espoo, Finland:
Helsinki Univ. of Technol. Press, 2008.

[47] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM: Effec-
tive and efficient behavior-based android malware detection and preven-
tion,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1, pp. 83–97,
Jan. 2016.

[48] P.-E. Danielsson, ‘‘Euclidean distance mapping,’’ Comput. Graph. Image
Process., vol. 14, no. 3, pp. 227–248, Nov. 1980.

[49] Y. Zhou and X. Jiang, ‘‘Dissecting Android malware: Characterization and
evolution,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012, pp. 95–109.

[50] Contagio Mobile. Accessed: May 17, 2017. [Online]. Available:
http://contagiominidump.blogspot.com/

[51] VirusShare.Com. Accessed: May 17, 2017. [Online]. Available:
https://virusshare.com/

[52] VirusTotal—Free Online Virus, Malware and URL Scanner. Accessed:
May 17, 2017. [Online]. Available: https://www.virustotal.com/

[53] H.-Y. Chuang and S.-D. Wang, ‘‘Machine learning based hybrid behavior
models for Android malware analysis,’’ in Proc. IEEE Int. Conf. Softw.
Quality, Rel. Secur., Aug. 2015, pp. 201–206.

[54] Google Code Archive—Long-Term Storage for Google Code
Project Hosting. Accessed: Aug. 17, 2016. [Online]. Available:
https://code.google.com/archive/p/androguard/

[55] Contagio Mobile. Accessed: Aug. 17, 2016. [Online]. Available:
http://contagiominidump.blogspot.tw/

[56] Downloading Free Apks From Google Play and Alternate Markets to
Your Desktop. LID: Lost In Droid. Accessed: Aug. 17, 2016. [Online].
Available: https://machiry.wordpress.com/2012/10/01/downloading-apks-
from-google-play-to-your-desktop/

[57] A. Rodríguez-Mota, P. J. Escamilla-Ambrosio, S. Morales-Ortega,
M. Salinas-Rosales, and E. Aguirre-Anaya, ‘‘Towards a 2-hybrid Android
malware detection test framework,’’ in Proc. Int. Conf. Electron., Commun.
Comput. (CONIELECOMP), Feb. 2016, pp. 54–61.

VOLUME 6, 2018 4337

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

[58] U. Pehlivan, N. Baltaci, C. Acartürk, and N. Baykal, ‘‘The analysis of fea-
ture selection methods and classification algorithms in permission based
Android malware detection,’’ in Proc. IEEE Symp. Comput. Intell. Cyber
Secur. (CICS), Dec. 2014, pp. 1–8.

[59] S. Sheen, R. Anitha, and V. Natarajan, ‘‘Android based malware detection
using a multifeature collaborative decision fusion approach,’’ Neurocom-
puting, vol. 151, pp. 905–912, Mar. 2015.

[60] J.-W. Jang, H. Kang, J. Woo, A. Mohaisen, and H. K. Kim, ‘‘Andro-
Dumpsys: Anti-malware system based on the similarity of malware creator
and malware centric information,’’ Comput. Secur., vol. 58, pp. 125–138,
May 2016.

[61] K. A. Talha, D. I. Alper, and C. Aydin, ‘‘APK Auditor: Permission-based
Android malware detection system,’’ Digit. Invest., vol. 13, pp. 1–14,
Jun. 2015.

[62] A. Agresti, ‘‘Building and applying logistic regression models,’’ in Cate-
gorical Data Analysis, 2nd ed. Hoboken, NJ, USA: Wiley, 2003.

[63] F. Pampel, Logistic Regression: A Primer, vol. 132. Newbury Park, CA,
USA: Sage, 2000.

[64] D. W. Hosmer, Jr., S. Lemeshow, and R. Sturdivant, Applied Logistic
Regression. Hoboken, NJ, USA: Wiley, 2013.

[65] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, ‘‘Monet:
A user-oriented behavior-based malware variants detection system
for Android,’’ IEEE Trans. Inf. Forensics Security, vol. 12, no. 5,
pp. 1103–1112, May 2017.

[66] Weka 3—Data Mining With Open Source Machine Learning Software
in Java. Accessed: May 17, 2017. [Online]. Available: http://www.cs.
waikato.ac.nz/ml/weka/

[67] Quadrant Standard Edition—Android Apps on Google Play. Accessed:
May 16, 2017. [Online]. Available: https://play.google.com/store/apps/
details?id=com.aurorasoftworks.quadrant.ui.standard

[68] Android Apps on Google Play. Accessed: May 16, 2017. [Online]. Avail-
able: https://play.google.com/store

[69] Mobile Security & Antivirus—Android Apps on Google Play.
Accessed: May 16, 2017. [Online]. Available: https://play.google.com/
store/apps/details?id=com.avast.android.mobilesecurity

[70] AVG AntiVirus FREE for Android - Android Apps on Google Play.
Accessed: May 16, 2017. [Online]. Available: https://play.google.
com/store/apps/details?id=com.antivirus

[71] Avira Antivirus Security—Android Apps on Google Play.
Accessed: May 16, 2017. [Online]. Available: https://play.google.
com/store/apps/details?id=com.avira.android

[72] Kaspersky Antivirus & Security—Android Apps on Google Play.
Accessed: May 16, 2017. [Online]. Available: https://play.google.
com/store/apps/details?id=com.kms.free

[73] McAfee Mobile Security—Android Apps on Google Play.
Accessed: May 16, 2017. [Online]. Available: https://play.google.
com/store/apps/details?id=com.wsandroid.suite

[74] 360 Security—Antivirus Boost—Android Apps on Google Play.
Accessed: May 16, 2017. [Online]. Available: https://play.google.
com/store/apps/details?id=com.qihoo.security

[75] A. Mehmood, A. Khanan, A. H. H. M. Mohamed, and H.
Song, ‘‘ANTSC: An intelligent Naïve Bayesian probabilistic
estimation practice for traffic flow to form stable clustering in
VANET,’’ IEEE Access, to be published. [Online]. Available: http://
ieeexplore.ieee.org/abstract/document/7994591/, doi: 10.1109/ACCESS.
2017.2732727.

SABA ARSHAD received the B.S. degree (Hons.)
in computer science from Pir Mehr Ali Shah Arid
Agriculture University, Rawalpindi, Pakistan, and
the M.Sc. degree in computer science from the
COMSATS Institute of Information Technology,
Islamabad, Pakistan. Her research interest includes
smart device security, malware analysis and detec-
tion, machine learning, intelligent traffic system,
distributed computing, and social aware delay tol-
erant networks.

MUNAM A. SHAH received the B.Sc. and M.Sc.
degrees in computer science from the University
of Peshawar, Pakistan, in 2001 and 2003, respec-
tively, theM.S. degree in security technologies and
applications from the University of Surrey, U.K.,
in 2010, and the Ph.D. degree from the University
of Bedfordshire, U.K., in 2013. Since 2004, he has
been a Lecturer with the Department of Computer
Science, COMSATS Institute of Information Tech-
nology, Islamabad, Pakistan. He has authored over

50 research articles published in international conferences and journals. He is
an HEC Approved Supervisor. His research interests include MAC protocol
design, QoS, and security issues in wireless communication systems.

ABDUL WAHID received the Ph.D. degree from
Kyung pook National University, South Korea. He
is currently an Assistant Professor with the Depart-
ment of Computer Science, CIIT, Islamabad,
Pakistan. He is also Reviewer and a TPC member
of many conferences and journals. His research
interests include, but are not limited to, vehic-
ular ad hoc network, wireless sensor network,
underwater wireless sensor network, cyber phys-
ical systems, software defined networking, and

information-centric networking. He is currently an Associate Editor of the
IEEE ACCESS.

AMJAD MEHMOOD received the Ph.D. degree
in wireless networks from the Kohat Univer-
sity of Science and Technology, Kohat, Pakistan,
in 2014. He held a virtual post-doctoral position
at the University of Virginia, USA. He is cur-
rently holding a post-doctoral position with the
Guangdong Provincial Key Laboratory on Petro-
chemical Equipment Fault Diagnosis, Guangdong
University of Petrochemical Technology, Maom-
ing, China. In 2003, he joined the Kohat Univer-

sity of Science and Technology, where he is currently a Senior Faculty
Member and the Coordinator of M.S./Ph.D. program. He has authored over
42 academic articles in peer-reviewed international journals and conferences
around the world. His is research interest include cyber physical systems,
IoT, connected vehicles, wireless communications and networking, optical
communications and networking, smart grid communications and network-
ing, security issues in wireless networks, big data, cloud computing, and fault
diagnosis in WSNs. His research was supported by the Guangdong Univer-
sity of Petrochemical Technology, Maoming, China. He supervised many
students of B.C.S.,M.C.S.,M.S., and Ph.D. in the above-mentioned interests.
He has also been a part of reviewing and organizing different workshops,
seminar, and training sessions on different technologies. Furthermore, he has
served as a TPC Reviewer and the Demo Chair for numerous international
conferences, including CCNC, SCPA, WICOM, INFOCOM, and SCAN.
Additionally, he is a reviewer or an Associate Editor for many peer-reviewed
international journals.

4338 VOLUME 6, 2018

http://dx.doi.org/10.1109/ACCESS.2017.2732727
http://dx.doi.org/10.1109/ACCESS.2017.2732727

S. Arshad et al.: SAMADroid: Novel 3-Level Hybrid Malware Detection Model for Android Operating System

HOUBING SONG (M’12–SM’14) received the
Ph.D. degree in electrical engineering from the
University of Virginia, Charlottesville, VA, USA,
in 2012. In 2017, he joined the Department of
Electrical, Computer, Software, and Systems
Engineering, Embry-Riddle Aeronautical Univer-
sity, Daytona Beach, FL, USA, where he is cur-
rently an Assistant Professor and the Director
of the Security and Optimization for Networked
Globe Laboratory. He served as the Faculty Mem-

ber with West Virginia University from 2012 to 2017. In 2007, he was
an Engineering Research Associate with the Texas A&M Transportation
Institute. He has authored over 100 articles. His research interests include
cyber-physical systems, cybersecurity and privacy, Internet of Things, edge
computing, big data analytics, connected vehicle, smart and connected
health, and wireless communications and networking. He was the very
first recipient of the Golden Bear Scholar Award, and received the Highest
Faculty Research Award from West Virginia University Institute of Tech-
nology in 2016. He serves as an Associate Technical Editor for the IEEE
Communications Magazine. He is the Editor of four books, including Smart
Cities: Foundations, Principles, and Applications, (Wiley, Hoboken, NJ,
USA, 2017), Security and Privacy in Cyber-Physical Systems: Foundations,
Principles, and Applications, (Wiley-IEEE Press, Chichester, U.K., 2017),
Cyber-Physical Systems: Foundations, Principles, and Applications, (Aca-
demic Press, Boston, MA, USA, 2016), and Industrial Internet of Things:
Cyber manufacturing Systems, (Springer, Cham, Switzerland, 2016). He is a
Senior Member of the ACM.

HONGNIAN YU has held academic positionswith
the Universities of Sussex, Liverpool John Moor,
Exeter, Bradford, Staffordshire, and Bournemouth
in the U.K. He is currently a Professor in comput-
ingwith BournemouthUniversity. He has authored
over 200 journal and conference research papers.
He has extensive research experience in mobile
computing, modeling, scheduling, planning, and
simulations of large discrete event dynamic sys-
tems with applications to manufacturing systems,

supply chains, transportation networks, computer networks and RFID appli-
cations, modeling and control of robots, mechatronics, and neural net-
works. He has graduated over 20 Ph.D./M.Phil. and MRes research students,
is supervising eight Ph.D. students, and has examined over 20 Ph.D./M.Phil.
students’ theses as both internal and external examiner. He has held several
research grants from theUKEPSRC, the Royal Society, EU, AWM, and from
the industry. He was a recipient of the F. C. William Premium for his paper
on adaptive and robust control of robot manipulators by the IEE Council.
He is a member of EPSRC Peer Review College. He has strong research
collaboration with partners from China, France, Germany, Hungary, Italy,
Japan, and Thailand.

VOLUME 6, 2018 4339

	INTRODUCTION
	LITERATURE REVIEW
	STATIC AND DYNAMIC ANALYSIS
	STATIC, DYNAMIC ANALYSIS & MACHINE LEARNING
	STATIC, DYNAMIC ANALYSIS & ON-DEVICE, OFF-DEVICE DETECTION

	PROPOSED SCHEME
	LEVEL 1: STATIC AND DYNAMIC ANALYSIS
	LEVEL 2: LOCAL AND REMOTE HOST
	LEVEL 3: MACHINE LEARNING INTELLIGENCE
	CLIENT END
	SERVER END
	EMBED EXTRACTED FEATURES INTO VECTOR SPACE
	APPLICATION BEHAVIOR EXPLANATION

	EXPERIMENTATION & RESULTS
	DATASET
	STATIC ANALYSIS EXPEIRMENTS
	DYNAMIC ANALYSIS EXPERIMENT
	PERFORMANCE OVERHEAD
	PERFORMANCE OVERHEAD BY CAUSED BY SAMADROID
	PERFORMANCE OVERHEAD COMPARISON WITH MADAM

	RESOURCE CONSUMPTION
	MEMORY CONSUMPTION
	POWER CONSUMPTION

	DISCUSSION & FUTURE WORK
	CONCLUSION
	REFERENCES
	Biographies
	SABA ARSHAD
	MUNAM A. SHAH
	ABDUL WAHID
	AMJAD MEHMOOD
	HOUBING SONG
	HONGNIAN YU

