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Abstract Describing a scene via still images is impor-
tant for a wide spectrum of fields, ranging from arts
science. In this paper, we propose a concept, named
Action Snapshot, to summarize the virtual scene with a
single still image (snapshot). The input to our method is
a scene which contains one or two characters, each per-
forming an animation sequence. The goal of our method
is to obtain the optimal pose of characters and view-
point direction which is maximally meaningful in terms
of information transmission. Our method is applicable
to scenarios involving characters performing different
types of activities. We use digital relief generation, one
unique form of art creation, to validate our method.
it can facilate the personalized artworks and souvenirs
quickly prototyped for industry products. A user study
is conducted to experimentally compare the outcome
of computer-selected poses and viewpoints with partic-
ipants’ selection. The results show that the proposed
method can assist in the selection of informative poses
and perspectives from an animation-intensive scenario.

Keywords Scene Snapshot; Information Entropy;
Pose Selection; Viewpoint Selection

1 Introduction

The need to display human activities in still images has
long been one of the main forms of artistic creations.
Examples include the cave painting, the oil painting,
the relief sculptures and the thumbnail generation of
animation and video sequences in recent years (Fig-
ure 1). The creation of such static images is artistical-
ly challenging since it often involves multiple factors,
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(a) (b)

Fig. 1: (a) Oil painting (Oath of the Horatii) by
Jacques-Louis David. (b) Relief on the Monument to
the People’s Heros in Beijing.

such as behavior, emotion, and storytelling consider-
ation. For example, in the case of relief sculpture, a
sculptor needs to choose the best pose and perspective
of a character (e.g. character a in Figure 1(b)). Such
a problem is difficult to resolve because the selection-
s of pose and viewpoint are often intertwined. Recent
years saw a large numbers of productions of feature
animation and visual effects films, which creates the in-
creasing demand for optimal generation of thumbnail
for these sequences.

The goal of this research is to address this challenge
and generate a still image for a virtual scene with an-
imated character performances. We name this image
as Action Snapshot. Specifically, we need to select the
optimal character pose and viewpoint to maximimally
convey the information contained in the scenario to the
viewers. It is worth pointing out that it is technical-
ly challenging, if not impossible, to provide a definite
answer to such problem with artistic creation and sub-
jective preferences. Therefore, a snapshot as proposed
in this work is an informal summary of the whole scene
and serves as a reference to users. We accomplish the
goal of scene snapshot and make the following contri-
butions accordingly:
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– We select the optimal pose from an animation se-
quence by considering multiple factors, including lo-
cal information (joint rotations) and global infor-
mation (environmental contacts and inter-character
interactions). The pose is selected to demonstrate
significant changes in motion and relevant features,
which contain the maximum information about the
scene.

– We introduce the metric of Projected Motion Area
(PMA) to quantitatively evaluate the information
contained in a viewpoint direction and selects the
viewpoint direction with the maximum value of PMA.
Different from viewpoint selection for static geome-
try, the Projected Motion Area considers the whole
animation sequences of multiple characters.

– We validate the application of our approach in a
case study of digial relief generation in particular.
We used the technology of 3D printing to verify our
approach and demonstrated our results in a variety
of scenarios, ranging from dancing performance to
sport activities. A user study is conducted to ex-
perimentally evaluate computer-selected poses and
viewpoints with real human’s perception.

The remainder of this paper is organized as follows.
First, Section 2 reviews existing works related to pose
and viewpoint selection. We then present details on how
to select the optimal pose and viewpoint direction in
Section 3. The results of our method are presented and
evaluated by a user study analysis in Section 4. Sec-
tion 5 concludes this paper with discussions of advan-
tages and limitations of our approach.

2 Related Work

2.1 Pose Selection

Pose selection from an animation sequence plays an
important role in terms of assisting artist to produce
a piece of relief for carving. Therefore, extraction and
analysis of the proper pose selection can guide the pro-
duction of relief work and consequently help artists to
generate a piece of fine artwork. The problem of se-
lecting an optimal pose from an animation sequence is
similar to key-frame extraction [9]. Key-frame extrac-
tion aims to extract and blend a series of frames to
approximate the original motion. The number of key-
frames is less than that of the original sequence, but
still greater than one. For example, researchers are able
to select around 8% of the frames from motion capture
sequences to create key-frame sequences [8]. In com-
parison, the generation of a relief must maximize the
information conveyed in a single static posture [3].

Conventional methods select the key frames by min-
imizing the errors between the original motion sequences
and the reconstructed ones [9,8]. However, the poses
extracted in this way are most likely to be the most-
repeated poses, which, from the point of information
theory, contain less information. In addition to this
error-minimization framework, researchers have also pro-
posed selecting the staggered poses by encoding coor-
dinated timing among movement features in different
body parts of a character [6].

2.2 Viewpoint Selection

A second problem addressed in this paper is to select
an optimal projection direction given a selected pose.
This is similar to the problem of viewpoint selection for
a 3D mesh. To address the viewpoint selection problem,
researchers have proposed various measures to quanti-
tatively assess the goodness of a view. A collection of
these measures (or view descriptors), including surface
visibility, viewpoint entropy, silhouette stability, mesh
saliency and symmetry, can be found in [21].

A related problem is how to determine an optimal
camera path for an animated character motion. Some
researchers have proposed to choose a camera path by
maximizing the space swept out by the character skele-
ton [16]. This is useful for determining the viewpoint in
a dynamic scenario. However, the generation of relief
requires selecting the projection direction for a specific
pose, rather than a whole sequence. Our method first
selects the optimal pose and then determines the pro-
jection direction for the selected pose. By doing so, the
problem of determining the projection direction shares
its similarity with the conventional problem of view-
point selection for a static mesh.

2.3 Bas-relief Generation

Digital fabrication is a way of preserving cultural her-
itage and one of its applications is relief generation [1,
17]. Reliefs generated from 3D objects have been con-
sidered as a promising approach to create bas-reliefs,
allowing the reuse of existing 3D models. The challenge
in this process is to visibly retain fine details of an orig-
inal 3D object while compressing its depths to produce
an almost planar result.

Song et al. [22] were the first to describe a method
to generate bas-reliefs from 3D shapes automatically
instead of projecting a 3D shape to the viewing plane.
Subsequently, researchers developed different feature-
preserving methods to generate bas-relief models with
rich details [12,27,13,23,2,4,5]. The existing techniques
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are well designed and can produce visually pleasant and
faithful reliefs while preserving the appearance, accu-
racy and details. These methods can preserve details
and present a good visual effect, even with a high com-
pression rate [15]. Researchers also presented a novel
method for bas-relief generation with additional intu-
itive style control [10].

A large amount of attention has been paid to the ef-
fectiveness and efficiency of relief generation algorithm-
s. Using techniques introduced in [14,30,31,11], dig-
ital reliefs can be generated in real time on a GPU
or parallel system, so that a relief-style animation can
be generated from a given 3D animation sequence. Re-
searchers introduced gradient-based mesh deformation
method which could be used to generate plane surface
bas-reliefs, curved surface bas-reliefs and shape editing
of the bas-reliefs interactively [29]. These techniques
can generate relief animation sequences, however, for
actual relief carving, it is not clear which pose to select
to produce the physical relief. Current techniques do
not address this question, even though it is one of the
important considerations for artists during the process
of relief creation.

Recently, Schüller [20] proposed a unified framework
to create bas-reliefs with the target shapes, viewpoints
and space restrictions. Their approach is similar to our
research; however, our work starts with an animation
sequence, and proposes a novel framework that unique-
ly includes pose and viewpoint selections in our relief
creation. This aspect distinguishes our work from its
predecessors.

3 Methodology

Our goal is to generate a still image from a scene se-
quence of character animation. This involves two sub-
tasks: selection of the optimal pose and the optimal
viewpoint direction. The following sections explain our
approaches to address these two tasks.

3.1 Pose Entropy and Selection

This section describes the algorithm to select the most
informative pose from an animation sequence. Although
there is no consensus about what determines a good
pose, the quality is intuitively related to how much in-
formation they give us about the whole performance.
This paper proposed a novel method, based on the in-
formation theory, to quantitatively evaluate the infor-
mation contained in a pose.

In information theory, entropyH is the average amoun-
t of information (I) contained in each message received.

Here, a message stands for an event, sample or charac-
ter X drawn from a distribution of data stream. This is
mathematically formulated as the following expression
[24]:

H(X) = E(I(X)) = E(−logb(P (X))) (1)

where b is the base of the logarithm and can be set to 2,
e, or 10, depending on the unit of entropy. In addition,
I(X) denotes the information contained in a variable
X. This work chooses b = 2 (the unit of the entropy
is a bit). When taken from a finite sample, the entropy
can explicitly be written as:

H(X) =
∑
i

P (X)I(X) = −
∑
i

P (X)logb(P (X)) (2)

Pose entropy H(X) considers the information con-
tained in both the local and global features in the mo-
tion sequence. The local features refer to the joint ro-
tation information and the global features refer to the
event information. Such events include the contact be-
tween foot and the ground plane and the interactions
between characters. The pose (or a specific frame in an
animation sequence) is selected as the optimal pose if
its pose entropy H(X) has the maximum value among
the whole animation frames.

3.1.1 Local Feature - Joint Information

A character pose is essentially a vector of the global
transformation of the hip joint and the local rotation of
other joints that represent the relative position of each
joint to its parent joint. Selection of the most informa-
tive pose is of practical application in the animation
industry. Extreme poses, as animators call them, are
ones where the characters perform perceptual events of
significant motion changes [6,28]. These selected pos-
es convey the information characterizing geometric as-
pects of the movement and are used as key-frames in
an animation sequence. Similar to the work in [6], the
information embedded in local joint rotations is evalu-
ated based on the changes of motion trajectory for each
joint.

For the jth joint, its motion trajectory is represented
as mj ∈ RNframe×3 (Nframe is the number of frames in
this motion sequence). Significant changes in the body
poses create regions of higher curvature in the joint tra-
jectory. A typical case is the spinning in a ballet perfor-
mance, where the local joints remain almost constant
while the motion trajectory of each joint delivers its
information in the world space.

The discrete measure of the rotational curvature for
the jth joint is defined in [6]

κji =
nji · eji
||eji||

(3)
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nji is the unit normal vector of the jth joint at the
frames i, and eji is the edge vector of the jth joint
between the frames i and i + 1, as illustrated in Fig-
ure 2. This returns a curvature in a range of [0, 1] and
preserves the extrema of the curvature of the original
motion data [6].

Different joints have different effects on the overall
behavior of the character, and thus different significance
with respect to visual information delivery. Therefore,
the curvature is further weighted by the influence of the
limb length and motion magnitude. The longer the limb
is and the faster the joint rotates, the greater weight is
applied to the curvature at this frame.

ωji = |xj − xj+1| × |∆mji| (4)

here xj is the position of jth joint in world space, |∆mji|
is the joint angle difference between two frames.

The information conveyed by joint rotation in a par-
ticular frame is calculated as:

Hi(Xlocal) = −plocali log2(p
local
i ) (5)

plocali =

Njoint∑
j=0

ωjiκji

Fig. 2: Sketch of motion trajectory of joint Jj . The in-
formation contained in the joint rotations in measured
by the change in the curvature of joint trajectories.

3.1.2 Global Feature - Event Information

In addition to joint information, global features, such
as interaction with the environment and other charac-
ters, are also considered when extracting the most in-
formative pose. In most cases, especially for task-based
or context-based animation, it is the interaction with
the environment and other characters that conveys the
most information about the motion performed by the
character.

All skeleton joints are iterated to check the interac-
tion with the environment and other characters. Previ-
ous work only considers the foot contact event [6]. The

Fig. 3: Detection of global features. The temporal
events when environmental interactions happen are de-
tected. Postures with such interactions are assumed to
transfer greater information than those without such
interactions. In the example of running, when the foot
strikes and lifts from the ground, the postures are se-
lected and highlighted in the color of cyan.

inclusion of other joints allows other cases to be con-
sidered, for example ball handling in the movements of
basketball and hand-shaking with another virtual char-
acter. Interaction events are detected by searching for
joints whose world coordinates remain constant with
respect to a specific object (for example, the ground
plane), within a given tolerance, for a given minimum
length of time. After finding such an interaction, it is
propagated to the following frames until the relative po-
sition between the joint and environment exceeds the
tolerance.

Event information is modeled as a binary signal (1
indicates an interaction event and 0 indicates no inter-
action). After iterating through all poses, the interac-
tion probability for each joint is modeled as

pglobalj =
Ninteraction
Nframe

(6)

where Ninteraction is the number of the frames con-
taining interaction and Nframe is the total number of
frames. By formulating the problem in this way, the
joint where less interaction occurs contains more infor-
mation, and thus contains more entropy:

H(Xglobal) = −
Njoint∑
j=1

pglobalj log2(p
global
j ) (7)

3.1.3 Weighted Pose Entropy

The local and global information are assumed to be in-
dependent and a common approach of considering these
two factors simultaneously is to use the weighted sum
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formulation:

H(X) = ωlocalH(Xlocal) + ωglobalH(Xglobal) (8)

However, this formulation introduces an additional
problem: how to properly set the weight values. The
magnitude of each component H(Xlocal), H(Xglobal) d-
iffers from the other, thereby making it difficult for user-
s to choose the appropriate weight values ωlocal, ωglobal.
To solve this problem, both the local and global compo-
nents are normalized by their respect maximum (H(Xglobal)max,
H(Xlocal)max) values and minimum (H(Xglobal)min,H(Xlocal)min)
values [7]:

H(X) = ωlocalH
∗(Xlocal) + ωglobalH

∗(Xglobal) (9)

H∗(Xlocal) =
H(Xlocal)−H(Xlocal)min

H(Xlocal)max −H(Xlocal)min

H∗(Xglobal) =
H(Xglobal)−H(Xglobal)min

H(Xglobal)max −H(Xglobal)min

After normalization, the values of each component will
fall into a range of [0, 1]. In this case, the manipulation
of the weights ωlocal, ωglobal directly relates the output
of the pose selection to a preference for either local or
global information.

Based on Equation 9, a pose is selected as the most
informative posture in an animation sequence if the en-
tropy value of this frame is the maximum value in the
animation sequence.

3.2 Projected Motion Area and Viewpoint Selection

Finding the optimal viewpoint is as important as se-
lecting meaningful poses for characters. To measure the
goodness of a viewpoint, existing researchers have pro-
posed a few view descriptors, such as projection area,
viewpoint entropy, surface visibility and mesh saliency
[21]. However, previous works generally select the view-
point for a static geometry. In contrast, our task needs
to consider the temporal information contained in an
animation sequence.

In this work, we propose the concept of Projected
Motion Area (PMA) to determine the optimal view-
point of the action. Motion area is the area swept by a
body link Lj/j+1 within a fixed time interval (normal-
ly between the ith and (i + 1)th frames) [16]. Figure 4
sketches the motion area and its projection. The body
link is connected by two joints where the jth joint is
the parent of the (j+1)th joint. The trajectory of each
joint in the world space are given as a curve with of
dimension N × 3. A projection plane in the orthogonal
projection is only dependent on the viewing direction.
The projection matrix P(ν) derives from the viewing
direction ν can be expressed as P(ν) = [ν1 ν2]

T , where

Fig. 4: Sketch of motion area (on the left) and it-
s projection area (on the right) for one skeleton link
(Jj , Jj+1) in two consecutive frames (i, i + 1). Weight-
ed Projection Area is a weighted sum of the projection
areas of all skeleton links in multiple frames.

ν1, ν2 are basis vectors of the projection plane and are
both perpendicular to ν.

For a complete animation sequence, we sum up the
projected motion area of all joints and frames:

Pma =

Nframe∑
i=1

Njoints∑
j=1

MAproj
MAorig

(10)

whereMAproj ,MAorig are the areas of the original mo-
tion area (the polygon on the left of Figure 4) and its
projection area (the polygon on the right of Figure 4).

The optimal viewpoint V ∗ is found by computing
Pma for all sample points on the viewpoint sphere and
selecting the one with the maximum Pma:

V ∗ = max
ν

Nchar∑
k=1

Pma,∀ν ∈ Ω (11)

where Nchar is the number of characters in the anima-
tion performance, and Ω is the set of all sample points
on the viewpoint sphere.

4 Results

We used the Intel Xeon(R)(W3680) CPU (six cores
clocked at @ 3.33GHz) to compute all our results. Table1
presents a summary of the statistics on the models and
computing time. As can be seen from the data, the time
cost to find the optimal pose is largely determined by
the number of frames. After the pose is determined, the
time cost to find the optimal viewpoint does not present
significant differences. It is worth noting conventional
methods of viewpoint entropy [24] computes the pro-
jection area for each triangular face, which means that
the time cost for finding the optimal viewpoint grows
linearly with the number of triangular faces. However in



6 First Author, Second Author

Animation Dancing Basketball
Dunking

Basketball
Shooting

Soccer
Kicking

Running Two-person
Arguing

Two-person
Boxing

No. Mesh Faces 75537 3191 6061 3206 3191 6412 6412
No. Frames 1096 35 540 525 66 1992 150
No. Joints 38 29 29 29 29 58 58
Time for pose selec-
tion

4.33 0.25 2.06 1.97 0.31 10.62 2.37

Time for viewpoint
selection

2.16 0.32 1.01 1.06 0.28 4.69 0.57

Table 1: Statistics of the animation sequences used in this work. The unit of time cost is second.

(a) Dancing (b) Running

(c) Soccer Kicking (d) Basketball Shooting

(e) Two-person Arguing (f) Two-person Boxing

Fig. 5: Pose entropy in a variety of activities. A pose with higher colour brightness means a pose with more
information about the whole action.

our method, the time cost to find the optimal viewpoint
is dependent on the number of skeleton joints, instead
of the number of mesh faces.

4.1 Pose Selection

We apply our method of selecting the appropriate pose
to a variety of human activities (see Figure 5 for result-
s). The examples include ballet dancing, normal run-
ning, soccer kicking, basketball shooting, arguing and
boxing between two persons. Our method can success-
fully identify the critical events in an animation se-
quence, with the assistance of the global feature when
computing the pose entropy. This includes the moments

of striking the soccer and releasing the basketball. In
the example of two-person arguing, the critical event
is identified when one person initializes body contacts
with another person.

Figure 6 presents both the local and global pose
entropy for the ballet performance in Figure 5a. Both
terms are normalized into a range of [0, 1]. For the
local pose entropy, we observe that the peaks occur
at the moments when the character is performing ex-
treme poses. For the global pose entropy, the frames
with non-zero values correspond exactly to the events
of contacts between end-effectors (hands and feet) and
the ground. In this example, the local and global en-
tropy are summed together with equal weights (ωlocal
and ωglobal in Equation 9). By doing so, the local pose
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entropy outweights the global component due to their
larger value in this example of ballet performance.
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(a) Local pose entropy
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(b) Global pose entropy

Fig. 6: Pose entropy of the ballet performance of ar-
madillo. (a) Local pose entropy. The three peaks corre-
spond to the three selected poses in Figure 5(a). (b)
Global pose entropy. The spikes indicate the frames
where the interaction between end-effectors and envi-
ronment happens.

(a) Screenshot of animation sequence

(b) Pose entropy H(X)

Fig. 7: Pose entropy of an animation sequence of per-
forming a basketball dunk.

Figure 7 presents an example animation sequence
of a basketball dunk, showing both the screenshots and
pose entropy. The result shows that the extreme poses,
when the character’s links (both arms and legs) are fully
stretched, have the highest pose entropies and thus are
selected as the most informative poses.

4.2 Viewpoint Selection

After the optimal pose is determined, the next step is
to find the appropriate viewpoint which conveys the

information efficiently. The results in this section verify
the effectiveness of the proposed method to determine
the optimal viewpoint.

Three different methods were tested and compared
with their selected projection direction (Figure 5(a-f)).
The methods include our proposed method, [16] and
[24]. The results show that the standard method to
compute viewpoint entropy with surface visibility does
not achieve a satisfactory result (Figure 9). In com-
parison, the results of our method (Figure 8) and the
standard method of motion area (Figure 10) are simi-
lar. This is because the specific projection direction for
this pose coincides with the global projection direction.

4.3 Relief Generation

We here apply our selections of pose and viewpoint to
a specific field: digital relief generation. This task is
closely related to our problem, since that a piece of
relief is an artistic work with embodied story-telling.
The creation of relief is not only art-inspiring but also
technical challenging.

Once optimal pose and viewpoint have been select-
ed, we add saliency information into digital relief gen-
eration as proposed in [25]. Saliency defines the level of
significance of an observed local feature or object and
links the distribution of human attention to visual en-
counters. In addition to a bilateral filter that integrates
spatial and intensity information, we adopt a cross-
bilateral filter that provides an extensible approach to
generating bas-relief by taking different information in-
to consideration, such as height, perspective direction,
color, lighting and texture. The visual perception infor-
mation is defined as the angle between the surface nor-
mal and view direction.The visual information is added
as a third Gaussian kernel in our filter. An input mod-
els may be transformed directly into a piece of relief by
a linear compression, but such an operation may cause
local features to be lost and the resulting relief look
dull because of the lack of incorporated depth informa-
tion. Instead, the height information is processed with
a non-linear compression as implemented in [25].

The technology of additive manufacturing, or com-
monly known as 3D Printing, is used to prototype the
relief models in Figure 11 . The printer model is Projet
3510 SD. The 3D printer mesh volume is 298x185x203mm,
the resolution is 345x375x790DPI, the precision is 0.025-
0.05mm, and the material is VisiJet M3 X. The size of
the printed bas-reliefs is 100mm×100mm×4mm. 1

1 the parameters is available at
:http://www.magicfirm.com/professional-3d-printer/ProJet-
3510SD
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(a) (b) (c) (d) (e) (f)

Fig. 8: Result of viewpoint selection for the selected poses in Figure 5 with our method.

(a) (b) (c) (d) (e) (f)

Fig. 9: Result of viewpoint selection for the selected poses in Figure 5 with the method in [21].

(a) (b) (c) (d) (e) (f)

Fig. 10: Result of viewpoint selection for the selected poses in Figure 5 with the method in [26].

(a) (b) (c)

Fig. 11: Relief generation with different projection di-
rection for Pose 1 in Figure 5(a). Each corresponds to
the selected projection direction in Figure 5(a) respec-
tively.

4.4 User Study

User studies play a similar fundamental role in eval-
uating the accuracy and applicability of the proposed
method. Therefore, we conducted a user study to vali-
date and evaluate the outcomes of our proposed method
[19,18]. 100 undergraduate students (50 male and 50 fe-
male) are hired as participants in this experiment. Be-
fore the experiment, the participants were informed of

(a) (b) (c)

Fig. 12: 3D printed reliefs with different projection di-
rection for Pose 1 in Figure 11.

the content and procedure of the study and fill in some
background data.

4.4.1 Conduction

The user study is designed as two parts, one is for the
pose selection, and the other one is for the viewpoint
selection according to the selected poses.

(a) Pose selection
Participants were asked to watch 6 animation videos

rendered as 24 frames per second and 1920x1080 pixels
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(a) (b) (c)

(d) (e) (f)

Fig. 13: User study results of pose selection.

Animation
video

(a)Dancing (b)Running (c)Soccer
Kicking

(d)Basketball
Shooting

(e)Two-person
Arguing

(f)Two-person
Boxing

Figure 8 52 35 64 47 54 55
Figure 9 8 33 27 0 39 23
Figure 10 40 32 9 53 7 22

Table 2: User study results of viewpoint selection.

and select the most meaningful pose frame respectively.
The experimental results is shown in Figure 13.

(b) Viewpoint selection
Participants were asked to compare Figure 8-10 to

select a most meaningful viewpoint according to the
selected poses as indicated in Figure 5.

4.4.2 Discussions

(a) Pose selection
It can be seen from Figure 13 that the selected pos-

es comply with the participant’s selection in the most
video sequences as shown in Figure 5.

For (a)Dancing, some samples are distributed n-
ear 430 frames because the ballet dancer has a slight
leap in this period. While the ballet dancer spinning
starts from 580 frames and ends at about 620 frames,
so that most samples fall into this interval. However,
The dancers showed the most stretch gesture at about
604 frames that is complying with our selection. For
(b)Running, this group imitating running motion with
high repeatability, samples are evenly dispersed in the
movement interval of the runner. For (c)Soccer Kicking,
it imitates someone before and after playing soccer. A
few samples fall into 350 frames to 370 frame, because
this person during this period of time to make a soc-

cer sprinting before the gesture. While most samples
fall into the interval before and after playing soccer by
the body, that is between 400 to 420 frames. Howev-
er, the body started in touch with soccer around 406
frames, thus the sample also gathers near 406 frames.
For (d)Basketball Shooting, this group of actions im-
itates someone before and after pitching. An action
showing knee bend and jumping happens before and af-
ter pitching. In instances of the animation, these main
actions occur between 300 and 350 frames, so most sam-
ples also center on this interval. For (e)Two-person Ar-
guing, the group of actions imitates two figures in quar-
rel. As two figures begin to approach and the distance
shortens for the first time at about 850 frames, a few
of people choose this frame. When two figures have rel-
atively large amplitude of motions between 1150 and
1380 frames, most samples fall into this interval. Phys-
ical touch by two figures starts at 1240 frames. Due to
large hidden part, most people don’t choose motions
after 1240 frames, while two figures are some distance
apart around 1470 fames with good posture extending,
so the survey finds there are still a few people choos-
ing this period. For (f)Two-person Boxing, this group
of actions imitates two figures in fighting. The whole
process demonstrates obvious motions and rich body
language, so samples distribute evenly. Owing to fierce
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interaction between two figures near 2231 frames show-
ing obvious knee bend and shake fist performance, etc,
many samples select 2231 frames as our selection.

(b) Viewpoint selection
It can be seen from Table 2 that our proposed method

is outperformed than [21,26] except for (b)Running and
(d)Basketball Shooting. Three methods all work fine for
(b)Running. For (d)Basketball Shooting, Figure 9(b)
only shows the back side, while Figure 9(a) and Fig-
ure 9(c) are both fine to show the optimal pose, for
the perspective viewpoint selection, it is largely de-
pended on the environment whether the character is
shooting the ball or passing the ball. For (a)Dancing,
Figure 8(a) presents the side of the head, which can pro-
vide more information than the front view as shown in
Figure 10(a). For (c)Soccer Kicking, Figure 9(c) does
not show the optimal pose, while Figure 10(c) shows
the back side. For (e)Two-person Arguing and (f)Two-
person Boxing, Figure 8(a) are able to distinguish the
poses, while the other two part of the body are occlud-
ed.

5 Conclusion and Future work

This paper proposed a method to select an informa-
tive pose and projection direction from an animation
sequence. A concept- Action Snapshot was put forward
to obtain the optimal poses of characters and view-
point direction which are maximally meaningful during
the information transmission of an animation sequence.
Several animation sequences were tested shown that our
method was applicable to scenarios involving one or two
characters and performing different types of activities.

A user study validated the accuracy and effective-
ness was conducted to experimentally compare the out-
come of computer-selected poses and viewpoints with
participants’ selection. The results showed that the per-
formance of the proposed method is outperformed than
others.

To demonstrate the usage of our proposed method,
we apply our meaningful Action Snapshot results for
bas-relief modeling. Because relief creation is, at its
heart, an artistic process, it is difficult to provide a
uniform criterion for its aesthetics. The goal of this
work is not to replace the creative process of profes-
sional artists, but rather an approach to allow nonpro-
fessionals and industry practitioners to fast-prototype
their design. As 3D printing becomes more popular and
widely available, personalized artworks and souvenirs
can be quickly prototyped for industry products.

Our methods can be further developed to handle
a number of characters playing complicated activities.

One of the most challenge works is to XXX. It will be
the focus of our future research.
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