A ‘smarter’ way of diagnosing the at risk foot: Development of a novel tool based on vibratory measurements in subjects with diabetes.

Dave JM1, Dubey VN1, Lowes V2, Beavis J3, Coppini DV2.

1Faculty of Science and Technology, Bournemouth University, Bournemouth, UK, 2Department of Diabetes, Poole Hospital NHS Foundation Trust, Poole, UK, 3Graduate College, Bournemouth University, Poole, UK

\textbf{Aim:} To identify optimal vibration perception thresholds (VPT) to help design a ‘smart’ risk assessment tool in subjects with diabetes.

\textbf{Methods:} We used our clinical database (Diabeta3) to identify baseline VPT in subjects in whom there is at least a 10 Volt (V) rise in VPT (hallux pulp) using a Neurothesiometer over time. The gradient chosen is based on previous work. The data helped us model the vibratory frequencies of a plate device (Vibrascan), which produces a more objective risk assessment than VPT. We used a longitudinal multilevel model to analyse the data.

\textbf{Results:} In 929 subjects with diabetes showing a 10 V deterioration and who had a total of 8874 measurements, VPT increased from 13.8±8.4 V at first visit to 22.8±13.2 V (p<0.001) at final visit. In subjects (N=3920, 29995 measurements) who showed a smaller deterioration (<10 V), VPT increased from 13.7±10.7V to 14.6±11.3 V (p<0.01). Duration of diabetes, microalbuminuria and LDL cholesterol are positive significant correlates with increasing VPT.

\textbf{Conclusion:} Based on these data we used the Neurothesiometer equivalent of 10V increments to help us develop Vibrascan as a modern and easy to use foot screening tool. The positive cardiovascular correlates strengthen the role of developing a vibratory screening tool utilising these data. The details of the device itself and its novelty in screening of subjects will be discussed in detail.