EG 2018 — Education Papers, pp. 39-42. The definitive version is
available at http://diglib.eg.org/ (DOI: 10.2312/eged.20181005)

Turtle Fractals and Spirolaterals: Effective Assignments for Novice
Graphics Programmers

Eike Falk Anderson!

I'The National Centre for Computer Animation, Bournemouth University, UK

Figure 1: Example fractals and spirolaterals from student submissions.

Abstract

This paper presents an effective assignment in the shape of a computer graphics application from an introductory computing
course with a graphics programming flavour. The assignment involves basic 2D computer graphics used in combination with
Jfundamental algorithmic elements to create a simple drawing application. Students are first asked to create a data structure
and appropriate functions replicating the operations of a Turtle graphics system and then to use this turtle for drawing either

[fractals or spirolateral curves.

1. Assignment Context

For several decades now, Turtle graphics [GSJ04] has been
successfully used to teach programming concepts to all age
groups, from small children [SP76] to university students
[CCO0] (see also http://nifty.stanford.edu/2013/
roberts-turtlegraphics [PZC*13]). Turtle graphics have
also been employed in combination with spirolaterals [Ad81] as
well as fractals [PIS92], such as the space-filling Hilbert curve.

The Turtle graphics assignment presented here (see Table 1) has
undergone a number of revisions over the past seventeen years and
been successfully used for the assessment of several introductory
computing and programming courses in the programmes of our un-
dergraduate framework for computer animation, visual effects and
computer games [CMA10] at the National Centre for Computer
Animation (NCCA).

In its most recent incarnation, the assignment counts for 50% of
the grade of the course “Programming Principles” (worth 20 cred-
its, which translate into 10 ECTS credits in the European Credit
Transfer and Accumulation System). This course, which covers the

(©) 2018 The Author(s)
Eurographics Proceedings (€) 2018 The Eurographics Association.

introductory programming sequence (as well as basic raster graph-
ics algorithms) and which runs in the first semester of the first year
of the “Computer Animation Technical Arts” BA programme, is as-
sessed through a practical coursework assignment in the shape of a
short project at the end of the semester (set 4 teaching-weeks before
the end of the semester), as well as a written examination (count-
ing for the other 50% of the grade). Graduates of this programme
typically aim aim for a career as a Technical Director (TD) in the
feature animation or visual effects industries or — if they intend to
work in the games industry — as a technical artist.

2. Objectives and Assessment of the Course

The emphasis of the course lies on procedural programming, which
is taught in the C programming language, focussing on first princi-
ples and fundamental concepts that are applicable to software de-
velopment for computer graphics, especially for games and anima-
tion.

At the conclusion of the course, i.e. at the assessment stage, it
is expected of students to be able implement simple algorithms,

EUROGRAPHICS 2018/ F. Post and J. Z4ra
Education Paper


http://diglib.eg.org/
http://dx.doi.org/10.2312/eged.20181005

E.F. Anderson/ Turtle Fractals and Spirolaterals

Summary Students implement a Turtle graphics system
& use this to create fractal/spirolateral draw-

ings.

Learning
Outcomes

Understanding of programming principles
demonstrating their practical application. De-
signing a simple application by combining
simple programming concepts with basic 2D
graphics and implementing this.

Classification(s) | Fundamentals; Graphics & Interfaces.

Audience Undergraduate students at the end of the intro-
ductory programming sequence (CS1).

Dependencies Requires knowledge of programming basics;
familiarity with computer graphics is not
needed; knowledge of what Turtle graphics is

can be beneficial but is not required.

Prerequisites None.

Strengths The simplicity with which complex graphical
patterns can be created.

Weaknesses A tendency by some to overestimate the com-
plexity of creating a turtle (possibly due to
lacking experience with functions and data
structures); some students first hard-code the
drawing of the fractals/spirolaterals (some-
times within the program’s main function),
and then try to refactor their code to use Turtle
graphics instead, which does not always work

smoothly.

Variants Two assessment versions with option to ex-
plore different user interface types & anima-
tion; could use existing Turtle graphics sys-

tem.

Assessment Source code quality (incl. source documen-
tation), program usability, documentation (re-

port) & visual results (meeting the brief).

Table 1: Effective Assignment metadata.

including fundamental CG algorithms. For this they should both
apply suitable software engineering principles for the design and
successfully employ functions from an appropriate graphics API in
the implementation of a computer graphics application, which they
are asked to produce as their coursework assignment.

In addition to this software artefact, students are required to sup-
port their assignment submission with a report that both discusses
and critically evaluates the design and implementation of their pro-
gram, providing additional insight into the students” understanding
of the subject matter, and ultimately their attainment of the learn-
ing outcomes, at the conclusion of the introductory programming
sequence.

3. Coursework Assignment

The assignment is used to assess a range of different aspects of the
introductory programming sequence, including knowledge of fun-
damental data structures and algorithm design concepts, procedural
programming concepts such as functional decomposition and soft-
ware development practice. As the course has a focus to applied

computing for computer graphics, the assignment also assesses the
students’ grasp of basic 2D computer graphics algorithms and tech-
niques.

When the assignment is set, students are presented with a a num-
ber of project options, e.g. the generation of ASCII art from pho-
tographs [And17], from which they have to select one. The se-
lection includes one option that asks the students to replicate the
operations of a Turtle graphics system, first creating a turtle data
structure and appropriate functions, and then to use this system for
drawing. The resulting graphics depend on the version of the as-
signment: one version asks students to draw fractals [IS13], such as
the space-filling Hilbert curve or a Dragon curve, e.g. a Heighway
Dragon; the second version instead asks students to draw spirolat-
eral curves [Kra99, KraOO]. The two versions of this assignment
option are set alternatingly in different iterations of the course: in
one year the turtle fractals version may be used in the main assess-
ment (with the other version used for reassessment), whereas in the
next year the turtle spirolaterals version would be set.

Our students use Linux workstations that are provided with the
SDL2 library (https://www.libsdl.org) for the creation
of the windowed graphics/rendering context, as well as image
handling. The build environment includes the code editor Geany
(https://www.geany.org) in combination with the C com-
piler Clang (http://clang.llvm. org).

3.1. Assignment Brief: Turtle Graphics & Drawing
Spirolaterals/Fractals

Turtle graphics [GSJO4]is a simple and well know method for

drawing complex shapes from simple lines. Turtle graphics employs

the concept of a “turtle”, which is a simple robot or agent in the
shape of a turtle that has the following attributes (usually imple-
mented using a record data structure):

e aposition (x, v) in 2D space,

o a heading or angle measured in degrees or radians, and

e a flag/variable pen that could be set either as Down
(True/drawing) or as Up (False/not drawing)

Ifthe turtle’s pen is set to have the value Down and the turtle moves

then the turtle leaves a trace while it moves. It accepts the following

simple instructions (usually implemented as functions):

e pen_up sets the state of the turtle’s pen to Up,

o pen_down sets the state of the turtle’s pen to Down,

e move n makes the turtle move n units along its heading (usually
implemented by drawing a line segment between the start point
and the end point), and

e furn o turns the heading of the turtle by o degrees.

3.1.1. Spirolateral version

The text below is used if the turtle spirolaterals assignment is set:
A spirolateral is a geometric shape/pattern that is constructed from
a series of straight lines of growing length that are attached at an
angle, which, if repeated after one another, will (eventually) result
in a closed curve [Weil 8]. Your task is to implement a simple turtle
library (data structure & a set of related functions — not imple-
mented as an L-system) in C, employing the SDL library, and use
this to create a spirolateral drawing program with a simple user
interface (that may be graphical or text-based) that is capable of
the following:

(©) 2018 The Author(s)
Eurographics Proceedings (€) 2018 The Eurographics Association.



E.F. Anderson / Turtle Fractals and Spirolaterals

. allow the user to select/change the drawing parameters such as

drawing and background colours, the initial length and number
of line segments. The number of repetitions, the drawing angle
efc.

. provide a set of (at least) three pre-set spirolaterals that are se-

lectable by the user for drawing

. save the resulting spirolaterals as image files, and optionally

save the spirolateral drawing as an image sequence that shows
the addition of each line segment as a separate (animation)
frame that would show the curve being drawn step by step (seg-
ment by segment)

3.1.2. Fractal version

The text below is used if the turtle fractals assignment is set:
Fractals, i.e. self-similar/self-replicating (recursive) shapes, are of-
ten used in modelling and animation to represent organic structures
likes trees and plants [man89]. Fractal shapes based on straight
lines, such as fractal curves [CGS87] are relatively simple to con-
struct. Your task is to implement a simple turtle library (data struc-
ture & a set of related functions — not implemented as an L-system)
in C, employing the SDL library, and use this to create a fractal
drawing program with a simple user interface (that may be graph-
ical or text-based) that is capable of the following:

1.

draw (at least) three different turtle fractals that are interac-
tively selectable by the user (e.g. Koch snowflake, Sierpiviski ar-
rowhead curve and Hilbert curve)

. allow the user to interactively select/change the drawing param-

eters such as drawing and background colours, the recursion
depth of the fractal etc.

. save the resulting fractals as image files, and optionally save the

fractal drawing as an image sequence that either shows each
level of the recursion as a separate (animation) frame or that
shows each line segment at the target depth as a separate frame
that would show the curve being drawn step by step (segment by
segment)

3.1.3. Submission requirements

The submission requirements are identical for both assignments.
Your submission needs to include the following:

L.

One or more well commented source code files and a Makefile
that will build the program without errors on any machine in the
labs.

2. A PDF user Manual for your application. The User Manual

should explain how to initialise and run your program.

3. A PDF report documenting and explaining your application.

The report should be approximately 6-8 A4 pages of text and
should not exceed 10 A4 pages. The report should contain a
section called “Background” or “Introduction” explaining the
algorithms, techniques, and ideas used in your project. It should
also have a section called “Implementation” explaining the
structure of your program in terms of the implementation of
the algorithms and techniques used, describing flow of control,
and explain the implementation of the most important functions
or procedures. This section should serve to illuminate but not
replicate your code. Finally the report should contain a section
called “Results” which includes images, or references to images

(©) 2018 The Author(s)
Furographics Proceedings (©) 2018 The Eurographics Association.

(and video) demonstrating and explaining the results produced
by your program.

4. Appropriate sample results (and source data, such as original

3.

images where this applies), such as animations or images gen-
erated by your program.

2. Further Guidance given to Students

Various practical exercises from laboratory workshops that have
been run in support of the course lectures provide students with
starter code to use as the basis for their assignment. This includes
code for creating a 2D graphics window using the SDL2 library,
line-drawing using Bresenham’s line algorithm [Bre65] and library
creation. These are highlighted in the assignment’s introductory
lecture, in which a basic strategy that could be employed to com-
plete the assignment is also outlined:

1.

define a turtle (position, angle, drawing-status) — essentially the
data that must be stored for a turtle (ideally as a record data
structure)

. define turtle functions (e.g. set-position, set-status, go-forward,

turn-by-angle) — the initialisation and relevant algorithms that
do the drawing (assuming that each forward step is given a draw-
ing distance) — possibly make this its own turtle library (function
parameters should accept the turtle record by reference rather
than by value)

. depending on the assignment type (spirolaterals or fractals)

e (for spirolaterals) design a set of (3) spirtolaterals that can
be drawn with a turtle

e (for fractals) design a set of (3) fractals that can be drawn
with a turtle

. then express (implement drawing of) the graphics with the turtle
. finally, provide some form of user control (interface — this can

be text-based or graphical, the latter being considerably more
complex than the former)

Students are also made aware of related literature, including most
of the references used in this paper and provided with guidance
regarding academic (report) writing.

3.3. Assessment Criteria

The assessment criteria for these assignments mainly relate to the
quality of the source code and the project report. Only 20% of the
grade are derived from the submission’s meeting of the functional-
ity criteria stated in the assignment brief (as described in sections
3.1.1 and 3.1.2), which also include the overall usability of the pro-
gram. Criteria directly relating to source code quality — including
the appropriate use of relevant control structures and data struc-
tures as well as effective functional decomposition — count for 30%
of the assignment grade.

The remaining 50% of the grade are determined by the project

report (20%), the visual output, i.e. judging how well the intended
results (generated images) are achieved in terms of the brief (15%)
—based on the ‘Results’ section of the report and/or submitted arte-
facts generated by the submitted program — and the source code
documentation (provision of relevant and appropriate comments in
the source code).



E.F. Anderson/ Turtle Fractals and Spirolaterals

3.4. Assignment Variations in Previous Course Incarnations

Until about 2010 the Turtle fractals assignment was used in the
assessment of the “Computer Programming 1” course [CMAQ9]
— in this course the weighting of the assignment was 40% of the
course grade — with almost identical learning outcomes to the cur-
rent course. The main difference to the current assignment was that
students were given an existing Turtle graphics library as starter
code. After a course redesign and the integration of the course into
an arts degree, the course “Computing for Graphics” [CMA 10] (in
its first incarnation) used Python with the ‘turtle’ module (https:
//docs.python.org/2/1library/turtle.html) for the
assignment. With the reintroduction of C as the main course lan-
guage after a further programme redesign, in the 2014/2015 aca-
demic year the assignment as presented here was introduced.

4. Discussion

e .

Figure 2: Student work example — spirolateral curves with GUI.

Unlike other Turtle graphics assignments (e.g. [PZC"13]), the
assignment presented here first expects students to create a simple
turtle graphics system, before using it to create a graphics appli-
cation, although — as previous incarnations have shown — the as-
signment can just as well be used with an existing Turtle graphics
system. The assignment is also platform, language and paradigm
agnostic — e.g. if Object Orientation were used, both turtle and
graphics (fractal shapes/spirolateral curves) could be implemented
as classes.

Over the past three years the pass rate for the assignment has
been 95% (average grade 60%). The spirolaterals version seems to
be more popular with students than the fractals version, i.e. in years
when the spirolaterals version was provided as a project option a
three times larger percentage of student cohort took this up than
the fractals version in years when this was set instead — reasons
for this are unclear, but it is possible that the fractal concept may
appear more intimidating to students than spirolaterals. In any case,
both versions of the Turtle graphics assignment provide an effective
means for assessing all of the course aims and objectives.

5. Acknowledgements

The images showing student work were generated from submis-
sions by (left to right) Quentin Corker-Marin, Karo Nguyen, Jess
Cheung, Ruiqui Wang, Carola Gille, Georgia Fearnley (Figure 1),
Jake Cross (Figure 2), Ruiqui Wang (Figure 3).

Figure 3: Student work example — fractal image sequence of in-
creasing fractal depth.

References

[Ad81] ABELSON H., DISESSA A.: Turtle Geometry: The Computer as
a Medium for Exploring Mathematics. The MIT Press, 1981. 1

[And17] ANDERSON E. E.: Generating ASCII-Art: A Nifty Assignment
from a Computer Graphics Programming Course. In EG 2017 - Educa-
tion Papers (2017), Bourdin J.-J., Shesh A., (Eds.). 2

[Bre65] BRESENHAM I. E.: Algorithm for computer control of a digital
plotter. IBM Systems Journal 4, 1 (1965), 25-30. 3

[CCD0] CASPERSEN M. E., CHRISTENSEN H. B.: Here, there and ev-
erywhere - on the recurring use of turtle graphics in cs1. In Proceedings
of the Australasian Conference on Computing Education (2000), ACSE
"00, pp. 34-40. 1

[CG87] CUTTING J. E., GARVIN J. J.: Fractal curves and complexity.
Perception & Psychophysics 42, 4 (1987), 365-370. 3

[CMA09] COMNINOS P., MCLOUGHLIN L., ANDERSON E. F.: Educat-
ing technophile artists: Experiences from a highly successful computer
animation undergraduate programme. In ACM SIGGRAPH ASIA 2009
Educators Program (2009), pp. 1:1-1:8. 4

[CMA10] COMNINOS P., MCLOUGHLIN L., ANDERSON E. F.: Educat-
ing technophile artists and artophile technologists: A successful experi-
ment in higher education. Computers & Graphics 34, 6 (2010), 780-790.
1,4

[GSJO4] GOLDMAN R., SCHAEFER 8., JU T.: Turtle geometry in com-
puter graphics and computer-aided design. Compurer-Aided Design 36,
14 (2004), 1471-1482. 1, 2

[IS13] IRVING G., SEGERMAN H.: Developing fractal curves. Journal
of Mathematics and the Arts 7 (2013), 103-121. 2

[Kra99] KRAWCZYK R. I.: Spirolaterals, complexity from simplicity. In
Proceedings of the 1999 Conference of The International Sociery of the
Arts, Mathematics and Architecture (1999). 2

[Kra00] KRAWCZYK R. J.: The art of spirolaterals. In MOSAIC 2000:
Millennial Open Symposium on the Arts and Interdisciplinary Comput-
ing (2000). 2

[man89] Fractal geometry: what is it, and what does it do? Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 423, 1864 (1989), 3-16. 3

[PIS92] PEITGEN H.-O., JURGENS H., SAUPE D.: Fractals for the
Classroom — Part Two: Complex Systems and Mandelbrot Set. Springer-
Verlag, 1992. 1

[PZC*13] PARLANTE N., ZELENSKI J., CRAIG M., DENERO J., GUZ-
DIAL M., MALAN D. J., MURALIDHARAN A., ROBERTS E., WAYNE
K.: Nifty assignments. In Proceeding of the 44th ACM Technical Sympo-
sium on Computer Science Education (2013), SIGCSE 13, pp. 539-540.
1,4

[SP76] SoLOMON C. I., PAPERT S.: A case study of a young child doing
turtle graphics in logo. In Proceedings of the June 7-10, 1976, National
Computer Conference and Exposition (1976), AFIPS 76, pp. 1049—
1056. 1

[Weil8] WEISSTEIN E. W.: Spirolateral. From MathWorld — A Wol-
fram Web Resource, 2018. [accessed 9-January-2018]. URL: http:
J/mathworld.wolfram.com/Spirclateral . html. 2

(©) 2018 The Author(s)
Eurographics Proceedings (€) 2018 The Eurographics Association.



