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1. INTRODUCTION 
 
Public transport users are increasingly expecting better service and up to date            
information, in pursuit of a seamless journey experience. In order to meet            
these expectations, many transport operators are already offering free mobile          
apps to help customers better plan their journeys and access real-time travel            
information. Leveraging the spatio-temporal data that such apps can produce          
at scale (i.e. timestamped GPS traces), opens an opportunity to bridge the            
gap between passenger expectations and capabilities of the operators by          
providing a real-time view of the transport network based on the ‘Apps as             
infrastructure’ paradigm. The first step towards this vision is to understand           
which​ ​routes​ ​and​ ​services​ ​the​ ​passengers​ ​are​ ​travelling​ ​on​ ​at​ ​any​ ​given​ ​time. 
 
Mapping a timestamped GPS trace onto a particular transport network is           
known as the ‘network matching’ problem (Zheng et al. (2008)). This is related             
to the ‘map matching’ problem (also known as ‘snap to road’), where the aim              
is to fit a sequence of GPS coordinates to a network of roads (Bernstein and               
Kornhauser (1996)). In this paper, we define the network matching problem as            
supervised sequence classification (Graves (2012)), where a machine        
learning model is trained with labelled sequences of elements. These          
elements represent geographic coordinates, date and time, while a         
combination​ ​of​ ​line​ ​and​ ​direction​ ​of​ ​travel​ ​forms​ ​the​ ​label. 
 
We present and compare two data-driven approaches to this problem: (i) a            
heuristic algorithm, which looks for nearby stops and makes an estimation           
based on their timetables, and is used as a baseline, and (ii) a deep learning               
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approach using a recurrent neural network (RNN), which to the best of our             
knowledge,​ ​is​ ​a​ ​novel​ ​approach​ ​to​ ​the​ ​network​ ​matching​ ​problem. 
 
RNNs require considerable amounts of data to train a good model for complex             
problems (Sutskever (2013)). Collecting and labelling this data from real users           
is a challenging task (e.g. asking too often can be overwhelming, there are             
privacy concerns related to collecting GPS location (Stopher (2008)), the          
labels can be unreliable due to mistakes or misuse). One of our contributions             
is a synthetic journey data generator. The datasets that we generated have            
been made as realistic as possible by querying real timetables and adding            
spatial and temporal noise to simulate variable GPS accuracy and vehicle           
delays, sampled from empirical distributions estimated using thousands of real          
location​ ​reports. 
 
To validate our approach we have used a separate dataset containing           
hundreds of real user journeys provided by a UK-based bus operator. Our            
experimental results are promising and our next step is to deploy a solution in              
the production environment. From the operator’s point of view, this will enable            
multiple smart applications like account based ticketing, identification of         
disruptions, real-time passenger counting, and network analysis. Passengers        
will, therefore, benefit from a better service and an increase in the quality of              
information​ ​due​ ​to​ ​leveraging​ ​such​ ​big​ ​data​ ​processing. 
 
The organisation of the paper is as follows: Problem description and related            
work are presented in Section 2; the heuristic algorithm used as baseline is             
presented in Section 3; Section 4 describes the deep learning approach we            
implemented; the data generator for training our RNN models is explained in            
Section 5; the experimental setup is described in Section 6 and results are in              
Section​ ​7;​ ​finally,​ ​the​ ​paper​ ​concludes​ ​in​ ​Section​ ​8. 
 
2.​ ​RELATED​ ​WORK 
 
The network matching problem has been addressed before in Zheng et al.            
(2008) and Bolbol and Cheng (2013) but they only consider distinguishing           
between different modes of transport (bus, car, cycle, train, tube). Moreover,           
those studies do not take actual time into account but only an ordered             
sequence of locations. In our study, we investigate the problem of matching a             
timestamped​​ ​GPS​ ​trace​ ​to​ ​a​ ​particular​ ​route​ ​of​ ​a​ ​transport​ ​network. 
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We have defined the problem as supervised sequence classification (Graves          
(2012)). Let S​train be a set of training examples made of pairs (​x​, ), where ​x ​=             c     
(x​1​, x​2​, …, x​T​) is a finite sequence of real-valued vectors and is the label of            c      
that sequence. The task is to train a sequence classification algorithm           

to label the sequences in a test set S​test disjoint from S​train​. In ourh : X → C                
context, ​x is a sequence made of timestamped GPS coordinates while is           c   
the​ ​combination​ ​of​ ​line​ ​name​ ​and​ ​direction​ ​of​ ​travel​ ​(e.g.​ ​‘2-inbound’). 
 
3.​ ​HEURISTIC​ ​ALGORITHM 
 
A single bus stop can be served by one or more lines at different times of the                 
day. Bus departure and arrival information are provided in form of timetables.            
Our heuristic approach creates a probability table by inspecting the timetables           
of the nearest bus stops of a given GPS trace. ​Algorithm 1 contains the              
pseudocode for estimating the line number and direction of a bus using a             
sequence of GPS coordinates. This algorithm does not require any training as            
it​ ​is​ ​able​ ​to​ ​infer​ ​the​ ​label​ ​by​ ​inspecting​ ​the​ ​timetables. 
 
A known drawback of this approach is the way the stops are selected. The              
first GPS observation is likely to be in the vicinity of a bus stop since the                
person is boarding the bus. However, the rest of the observations are taken at              
periodic​ ​intervals,​ ​so​ ​it​ ​is​ ​less​ ​likely​ ​that​ ​they​ ​are​ ​near​ ​a​ ​bus​ ​stop. 
 
This method tends to be slow as it has to query the timetables of each               
candidate line. Therefore, the execution time grows linearly with the number of            
candidate​ ​lines.​ ​We​ ​use​ ​this​ ​method​ ​as​ ​a​ ​baseline. 
 
Input: 
X​​ ​:=​ ​Sequence​ ​of​ ​coordinates​ ​{lat,​ ​long}​ ​(size​ ​of​ ​​X​​ ​is​ ​in​ ​range​ ​[1,​ ​60]) 
T​​ ​:=​ ​Sequence​ ​of​ ​datetimes​ ​for​ ​each​ ​pair​ ​of​ ​coordinates 
 
Constant​ ​input: 
K​​ ​:=​ ​Lines​ ​of​ ​the​ ​network 
D​​ ​:=​ ​Directions​ ​of​ ​travel​ ​(i.e.​ ​inbound​ ​and​ ​outbound) 
 

©​ ​AET​ ​2017​ ​and​ ​contributors 
3 



 

 
 

Algorithm​ ​1: 
1. N ​:= List of nearest bus stop for each pair of coordinates from ​X​. That               

is,​ ​​N​[​i​]​ ​contains​ ​the​ ​nearest​ ​bus​ ​stop​ ​to​ ​​X​[​i​]. 
2. P := Prior probabilities for each line of the network. That is, ​P​[​k​] =              

number​ ​of​ ​stops​ ​in​ ​​N​​ ​served​ ​by​ ​line​ ​​k​​ ​divided​ ​by​ ​the​ ​size​ ​of​ ​​N​. 
3. L​ ​​:=​ ​Candidate​ ​lines​ ​from​ ​​P​​ ​selected​ ​as​ ​follows: 

1. The​ ​line(s)​ ​in​ ​​P​​ ​with​ ​the​ ​highest​ ​probability 
2. Any line in ​P with probability over 20% (this threshold was           

selected​ ​experimentally​ ​to​ ​maximise​ ​the​ ​accuracy) 
4. M := Matrix of size |​L​|x|​D​| in which each cell contains the number of              

bus stops from ​N matching a possible journey in the timetable of each             
candidate​ ​line​ ​and​ ​direction​ ​of​ ​travel. 

5. U := Matrix of size |​L​|x|​D​| in which each cell contains the number of              
journeys within the timeframe ​T in the timetable of each candidate line            
and​ ​direction​ ​of​ ​travel. 

 

Output: 
Pair {line, direction} that maximise the formula (​ω + ​μ​)*​ρ where ​ω is the              
number of stops in ​M​, ​μ is number of candidate journeys in ​U​, and ​ρ is the                 
prior​ ​probability​ ​in​ ​​P​.​ ​More​ ​than​ ​one​ ​pair​ ​is​ ​output​ ​in​ ​case​ ​of​ ​ties. 
 
4.​ ​DEEP​ ​LEARNING​ ​APPROACH 
 
Traditional machine learning algorithms for classification like Logistic        
Regression or Support Vector Machines have been designed to handle          
fixed-sized vector inputs. Although such an approach is possible in the           
network matching problem by always using a fixed number ​q of most recent             
GPS coordinates (e.g. the last 10 locations), it has a number of drawbacks.             
On one hand, such models are unable to classify sequences shorter than ​q​,             
and on the other, they are ignoring potentially useful information beyond this            
fixed horizon. Selecting the value ​q is hence a trade-off between how flexible             
the​ ​model​ ​will​ ​be​ ​and​ ​how​ ​well​ ​it​ ​will​ ​perform.  
 
For these reasons, we have decided to look at approaches specifically           
designed for handling variable-sized sequential input data. Recurrent neural         
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networks (RNNs) are probably the best-known models of this type (Graves et            
al. (2006)), and although they have been around for quite some time            
(Hochreiter and Schmidhuber (1997)), they have only gained momentum in          
recent years due to a number of successes in applications like speech            
recognition (Graves et al. (2013)), natural language processing (Sak et al.           
(2014))​ ​or​ ​machine​ ​translation​ ​(Cho​ ​et​ ​al.​ ​(2014)). 
 

 
Figure​ ​1.​ ​RNN​ ​unfolding​ ​in​ ​time 

 
The basic idea behind RNNs is very simple - repeatedly apply the same             
transformation to each new datapoint x​t in a loop and output a corresponding             
hidden state h​t​, which is then passed on as an additional input to the next               
iteration. This can also be thought of as “unfolding” the transformation in time,             
depicted​ ​in​ ​Figure​ ​1.  
 
Depending on the inner workings of the       
RNN cell there exist a number of RNN        
models, with the two most popular      
being GRU (Gated Recurrent Unit)     
(Chung et al. (2014)) and LSTM (Long       
Short Term Memory) (Hochreiter and     
Schmidhuber (1997)). In order to     
improve accuracy, it is common to      
stack multiple cells together to form a       
so called multicell, and to interweave      
those with dropout layers (Srivastava     
et al. (2014)) for improved     
generalisation (i.e. accuracy on new     
unseen​ ​data),​ ​as​ ​shown​ ​in​ ​Figure​ ​2. 
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5.​ ​SYNTHETIC​ ​DATA​ ​GENERATOR 
 
A limitation of deep neural networks including RNNs is that they require a             
large amount of labelled data to train a good model. Unfortunately, collecting            
labelled real journeys is rather difficult since it requires users' permission to            
track​ ​their​ ​smartphones​ ​and​ ​also​ ​to​ ​manually​ ​enter​ ​what​ ​line​ ​they​ ​are​ ​on. 
 
In order to generate data, we first create a sampling space of all possible              
journeys within the network. Then, we randomly select a set of journeys from             
that space. For each journey, we generate a sequence of timestamped GPS            
coordinates​ ​within​ ​the​ ​path​ ​made​ ​between​ ​bus​ ​stops​ ​in​ ​that​ ​journey. 
 
To make the sequence more realistic, we add random normal noise to the             
locations -- based on an empirical distribution estimated from thousands of           
real​ ​location​ ​reports​ ​--​ ​and​ ​a​ ​random​ ​bus​ ​delay​ ​of​ ​up​ ​to​ ​15​ ​minutes. 
 
This generator allows us to create datasets of any size, and can also be used               
as​ ​an​ ​API​ ​to​ ​get​ ​an​ ​infinite​ ​stream​ ​of​ ​sequences​ ​on​ ​demand. 
 
6.​ ​EXPERIMENTAL​ ​SETUP 
 
The experiments have been carried out with data from a public transport            
operator in the UK. The network is made of about 140 buses serving 23 lines.               
The​ ​total​ ​number​ ​of​ ​classes​ ​is​ ​46​ ​(23​ ​lines​ ​x​ ​2​ ​directions). 
 
The heuristic approach doesn't require any learning phase. On the other           
hand, RNN is trained with over 15 million sequences of synthetic journeys,            
with the length varying between 5 and 60. Each point of the sequence is one               
minute apart. The RNN has been implemented using Google’s TensorFlow          
1.3 (Abadi et al. (2015)) and trained on NVIDIA GeForce 1080 and Titan X              
GPUs. We have tested a range of hyperparameter values, including: (1) the            
RNN cell type (GRU and LSTM), (2) the number of cells in a multicell (i.e. the                
number of layers, between 1 and 5), (3) the cell size (256, 512 and 768), and                
(4) various encodings of the time information (as minute of the week and as              
embeddings for day of the week, hour and minute). We have used softmax as              
the top layer of the network to obtain a probability distribution over all possible              
line/direction pairs, cross-entropy loss, and the Adam optimiser (Kingma and          
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Ba (2015)) with a range of learning rates and the remaining settings left to              
their​ ​default​ ​values. 
 
As this is a classification problem, the measure we are trying to minimise is              
the classification error on a test set. Overlapping of lines could mislead this             
measure as there are some situations in which it is equally probable that a              
sequence belongs to multiple lines. In fact, for this particular network, 37% of             
stop to stop segments are shared by at least two lines. Thus, we also consider               
the​ ​classification​ ​error​ ​on​ ​the​ ​second​ ​and​ ​third​ ​best​ ​prediction. 
 
Both approaches have been tested with the same dataset made of 164 real             
journeys with length varying between 6 and 56 observations (see histogram in            
Figure 3). Some of these observations represent walking or even standing           
periods since tracking lasts up to 1 hour from the beginning of the journey. We               
haven’t​ ​filtered​ ​those​ ​out​ ​to​ ​make​ ​the​ ​data​ ​more​ ​realistic.  

 
Figure​ ​3.​ ​Histogram​ ​of​ ​sequence​ ​lengths​ ​from​ ​164​ ​real​ ​journeys 

 
7.​ ​RESULTS 
 
Figure 4 shows the classification accuracy on successive test sets from the            
data generator over the training period of RNN models. The three plots            
represent the fraction of times the actual line was in top 1 (accuracy), top 2               
and top 3 most probable lines according to our model. Models trained with             
LSTM cells (blue lines) show a better behaviour over GRU cells (red lines).             
Some GRU-based models show a drop of performance at certain iterations,           
which makes GRU a less robust choice for this problem. We don’t yet             
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understand the reason for this behaviour but we plan to investigate it in a              
follow-up​ ​study. 
 

 

 
 

Figure​ ​4.​ ​Prequential​ ​test​ ​accuracy​ ​on​ ​synthetic​ ​data 
 
Results of both heuristic algorithm and best RNN models with LSTM and GRU             
cells are shown in Table 1. We vary the maximum sequence length (𝜏) to find               
approximately the minimum number of points needed to make acceptable          
predictions. The highest accuracy we achieved was 67.68% from the GRU           
model when 𝜏 = 30. Best top 2 and top 3 scores were 87.80% and 92.68%                
from LSTM model also when 𝜏 = 30. In all cases, RNN models significantly              
outperform​ ​the​ ​heuristic​ ​baseline. 
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Table 1. Classification results on the real test set. 𝜏 = max sequence length              
(can​ ​be​ ​seen​ ​as​ ​minutes).​ ​*​ ​The​ ​largest​ ​sequence​ ​has​ ​56​ ​observations. 

𝜏 

Classification​ ​accuracy​ ​(%) 

Heuristic 
RNN 

LSTM GRU 

Top​ ​1 Top​ ​2 Top​ ​3 Top​ ​1 Top​ ​2 Top​ ​3 Top​ ​1 Top​ ​2 Top​ ​3 

5 27.69 27.69 36.92 39.51 61.11 74.07 38.89 62.35 75.31 

10 33.55 33.55 54.84 56.44 79.14 88.34 53.99 76.07 85.89 

20 39.35 39.35 58.71 65.85 84.15 92.07 65.85 84.76 90.85 

30 44.81 44.81 62.99 66.46 87.80 92.68 67.68 85.98 92.07 

*56 38.56 38.56 56.21 62.20 84.76 90.24 65.85 84.76 90.24 

 
8.​ ​CONCLUSION 
 
This paper has presented two data-driven approaches to automate the          
transport network matching problem. Taking into account the peculiarities of          
the network and quality of the collected data, the classification results are            
promising​ ​(up​ ​to​ ​92.68%​ ​on​ ​top​ ​3​ ​predictions). 
 
The lack of timetables reliability (Martin-Salvador et al. (2017)) suggests that           
our models can be further improved by incorporating historical records of           
real-time information during the training process. That additional information         
coming directly from the vehicles would help to enhance our training data with             
(i) GPS points following the roads between two bus stops (instead of a straight              
line)​ ​and​ ​(ii)​ ​buses​ ​running​ ​earlier​ ​than​ ​scheduled. 
 
From the user data collection point of view, sampling every minute may not             
offer enough resolution for distinguishing between some buses running         
closely. We would like to experiment with different sampling rates to increase            
the​ ​journey​ ​resolution​ ​without​ ​compromising​ ​the​ ​phone​ ​battery​ ​life. 
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