

AUTOMATIC​ ​TRANSPORT​ ​NETWORK​ ​MATCHING
USING​ ​DEEP​ ​LEARNING

Manuel​ ​Martin​ ​Salvador

We​ ​Are​ ​Base​ ​/​ ​Bournemouth​ ​University
Marcin​ ​Budka

Bournemouth​ ​University
Tom​ ​Quay

We​ ​Are​ ​Base

1. INTRODUCTION

Public transport users are increasingly expecting better service and up to date
information, in pursuit of a seamless journey experience. In order to meet
these expectations, many transport operators are already offering free mobile
apps to help customers better plan their journeys and access real-time travel
information. Leveraging the spatio-temporal data that such apps can produce
at scale (i.e. timestamped GPS traces), opens an opportunity to bridge the
gap between passenger expectations and capabilities of the operators by
providing a real-time view of the transport network based on the ‘Apps as
infrastructure’ paradigm. The first step towards this vision is to understand
which​ ​routes​ ​and​ ​services​ ​the​ ​passengers​ ​are​ ​travelling​ ​on​ ​at​ ​any​ ​given​ ​time.

Mapping a timestamped GPS trace onto a particular transport network is
known as the ‘network matching’ problem (Zheng et al. (2008)). This is related
to the ‘map matching’ problem (also known as ‘snap to road’), where the aim
is to fit a sequence of GPS coordinates to a network of roads (Bernstein and
Kornhauser (1996)). In this paper, we define the network matching problem as
supervised sequence classification (Graves (2012)), where a machine
learning model is trained with labelled sequences of elements. These
elements represent geographic coordinates, date and time, while a
combination​ ​of​ ​line​ ​and​ ​direction​ ​of​ ​travel​ ​forms​ ​the​ ​label.

We present and compare two data-driven approaches to this problem: (i) a
heuristic algorithm, which looks for nearby stops and makes an estimation
based on their timetables, and is used as a baseline, and (ii) a deep learning

©​ ​AET​ ​2017​ ​and​ ​contributors
1

approach using a recurrent neural network (RNN), which to the best of our
knowledge,​ ​is​ ​a​ ​novel​ ​approach​ ​to​ ​the​ ​network​ ​matching​ ​problem.

RNNs require considerable amounts of data to train a good model for complex
problems (Sutskever (2013)). Collecting and labelling this data from real users
is a challenging task (e.g. asking too often can be overwhelming, there are
privacy concerns related to collecting GPS location (Stopher (2008)), the
labels can be unreliable due to mistakes or misuse). One of our contributions
is a synthetic journey data generator. The datasets that we generated have
been made as realistic as possible by querying real timetables and adding
spatial and temporal noise to simulate variable GPS accuracy and vehicle
delays, sampled from empirical distributions estimated using thousands of real
location​ ​reports.

To validate our approach we have used a separate dataset containing
hundreds of real user journeys provided by a UK-based bus operator. Our
experimental results are promising and our next step is to deploy a solution in
the production environment. From the operator’s point of view, this will enable
multiple smart applications like account based ticketing, identification of
disruptions, real-time passenger counting, and network analysis. Passengers
will, therefore, benefit from a better service and an increase in the quality of
information​ ​due​ ​to​ ​leveraging​ ​such​ ​big​ ​data​ ​processing.

The organisation of the paper is as follows: Problem description and related
work are presented in Section 2; the heuristic algorithm used as baseline is
presented in Section 3; Section 4 describes the deep learning approach we
implemented; the data generator for training our RNN models is explained in
Section 5; the experimental setup is described in Section 6 and results are in
Section​ ​7;​ ​finally,​ ​the​ ​paper​ ​concludes​ ​in​ ​Section​ ​8.

2.​ ​RELATED​ ​WORK

The network matching problem has been addressed before in Zheng et al.
(2008) and Bolbol and Cheng (2013) but they only consider distinguishing
between different modes of transport (bus, car, cycle, train, tube). Moreover,
those studies do not take actual time into account but only an ordered
sequence of locations. In our study, we investigate the problem of matching a
timestamped​​ ​GPS​ ​trace​ ​to​ ​a​ ​particular​ ​route​ ​of​ ​a​ ​transport​ ​network.

©​ ​AET​ ​2017​ ​and​ ​contributors
2

We have defined the problem as supervised sequence classification (Graves
(2012)). Let S​train be a set of training examples made of pairs (​x​,), where ​x ​= c
(x​1​, x​2​, …, x​T​) is a finite sequence of real-valued vectors and is the label of c
that sequence. The task is to train a sequence classification algorithm

to label the sequences in a test set S​test disjoint from S​train​. In ourh : X → C
context, ​x is a sequence made of timestamped GPS coordinates while is c
the​ ​combination​ ​of​ ​line​ ​name​ ​and​ ​direction​ ​of​ ​travel​ ​(e.g.​ ​‘2-inbound’).

3.​ ​HEURISTIC​ ​ALGORITHM

A single bus stop can be served by one or more lines at different times of the
day. Bus departure and arrival information are provided in form of timetables.
Our heuristic approach creates a probability table by inspecting the timetables
of the nearest bus stops of a given GPS trace. ​Algorithm 1 contains the
pseudocode for estimating the line number and direction of a bus using a
sequence of GPS coordinates. This algorithm does not require any training as
it​ ​is​ ​able​ ​to​ ​infer​ ​the​ ​label​ ​by​ ​inspecting​ ​the​ ​timetables.

A known drawback of this approach is the way the stops are selected. The
first GPS observation is likely to be in the vicinity of a bus stop since the
person is boarding the bus. However, the rest of the observations are taken at
periodic​ ​intervals,​ ​so​ ​it​ ​is​ ​less​ ​likely​ ​that​ ​they​ ​are​ ​near​ ​a​ ​bus​ ​stop.

This method tends to be slow as it has to query the timetables of each
candidate line. Therefore, the execution time grows linearly with the number of
candidate​ ​lines.​ ​We​ ​use​ ​this​ ​method​ ​as​ ​a​ ​baseline.

Input:
X​​ ​:=​ ​Sequence​ ​of​ ​coordinates​ ​{lat,​ ​long}​ ​(size​ ​of​ ​​X​​ ​is​ ​in​ ​range​ ​[1,​ ​60])
T​​ ​:=​ ​Sequence​ ​of​ ​datetimes​ ​for​ ​each​ ​pair​ ​of​ ​coordinates

Constant​ ​input:
K​​ ​:=​ ​Lines​ ​of​ ​the​ ​network
D​​ ​:=​ ​Directions​ ​of​ ​travel​ ​(i.e.​ ​inbound​ ​and​ ​outbound)

©​ ​AET​ ​2017​ ​and​ ​contributors
3

Algorithm​ ​1:
1. N ​:= List of nearest bus stop for each pair of coordinates from ​X​. That

is,​ ​​N​[​i​]​ ​contains​ ​the​ ​nearest​ ​bus​ ​stop​ ​to​ ​​X​[​i​].
2. P := Prior probabilities for each line of the network. That is, ​P​[​k​] =

number​ ​of​ ​stops​ ​in​ ​​N​​ ​served​ ​by​ ​line​ ​​k​​ ​divided​ ​by​ ​the​ ​size​ ​of​ ​​N​.
3. L​ ​​:=​ ​Candidate​ ​lines​ ​from​ ​​P​​ ​selected​ ​as​ ​follows:

1. The​ ​line(s)​ ​in​ ​​P​​ ​with​ ​the​ ​highest​ ​probability
2. Any line in ​P with probability over 20% (this threshold was

selected​ ​experimentally​ ​to​ ​maximise​ ​the​ ​accuracy)
4. M := Matrix of size |​L​|x|​D​| in which each cell contains the number of

bus stops from ​N matching a possible journey in the timetable of each
candidate​ ​line​ ​and​ ​direction​ ​of​ ​travel.

5. U := Matrix of size |​L​|x|​D​| in which each cell contains the number of
journeys within the timeframe ​T in the timetable of each candidate line
and​ ​direction​ ​of​ ​travel.

Output:
Pair {line, direction} that maximise the formula (​ω + ​μ​)*​ρ where ​ω is the
number of stops in ​M​, ​μ is number of candidate journeys in ​U​, and ​ρ is the
prior​ ​probability​ ​in​ ​​P​.​ ​More​ ​than​ ​one​ ​pair​ ​is​ ​output​ ​in​ ​case​ ​of​ ​ties.

4.​ ​DEEP​ ​LEARNING​ ​APPROACH

Traditional machine learning algorithms for classification like Logistic
Regression or Support Vector Machines have been designed to handle
fixed-sized vector inputs. Although such an approach is possible in the
network matching problem by always using a fixed number ​q of most recent
GPS coordinates (e.g. the last 10 locations), it has a number of drawbacks.
On one hand, such models are unable to classify sequences shorter than ​q​,
and on the other, they are ignoring potentially useful information beyond this
fixed horizon. Selecting the value ​q is hence a trade-off between how flexible
the​ ​model​ ​will​ ​be​ ​and​ ​how​ ​well​ ​it​ ​will​ ​perform.

For these reasons, we have decided to look at approaches specifically
designed for handling variable-sized sequential input data. Recurrent neural

©​ ​AET​ ​2017​ ​and​ ​contributors
4

networks (RNNs) are probably the best-known models of this type (Graves et
al. (2006)), and although they have been around for quite some time
(Hochreiter and Schmidhuber (1997)), they have only gained momentum in
recent years due to a number of successes in applications like speech
recognition (Graves et al. (2013)), natural language processing (Sak et al.
(2014))​ ​or​ ​machine​ ​translation​ ​(Cho​ ​et​ ​al.​ ​(2014)).

Figure​ ​1.​ ​RNN​ ​unfolding​ ​in​ ​time

The basic idea behind RNNs is very simple - repeatedly apply the same
transformation to each new datapoint x​t in a loop and output a corresponding
hidden state h​t​, which is then passed on as an additional input to the next
iteration. This can also be thought of as “unfolding” the transformation in time,
depicted​ ​in​ ​Figure​ ​1.

Depending on the inner workings of the
RNN cell there exist a number of RNN
models, with the two most popular
being GRU (Gated Recurrent Unit)
(Chung et al. (2014)) and LSTM (Long
Short Term Memory) (Hochreiter and
Schmidhuber (1997)). In order to
improve accuracy, it is common to
stack multiple cells together to form a
so called multicell, and to interweave
those with dropout layers (Srivastava
et al. (2014)) for improved
generalisation (i.e. accuracy on new
unseen​ ​data),​ ​as​ ​shown​ ​in​ ​Figure​ ​2.

©​ ​AET​ ​2017​ ​and​ ​contributors
5

5.​ ​SYNTHETIC​ ​DATA​ ​GENERATOR

A limitation of deep neural networks including RNNs is that they require a
large amount of labelled data to train a good model. Unfortunately, collecting
labelled real journeys is rather difficult since it requires users' permission to
track​ ​their​ ​smartphones​ ​and​ ​also​ ​to​ ​manually​ ​enter​ ​what​ ​line​ ​they​ ​are​ ​on.

In order to generate data, we first create a sampling space of all possible
journeys within the network. Then, we randomly select a set of journeys from
that space. For each journey, we generate a sequence of timestamped GPS
coordinates​ ​within​ ​the​ ​path​ ​made​ ​between​ ​bus​ ​stops​ ​in​ ​that​ ​journey.

To make the sequence more realistic, we add random normal noise to the
locations -- based on an empirical distribution estimated from thousands of
real​ ​location​ ​reports​ ​--​ ​and​ ​a​ ​random​ ​bus​ ​delay​ ​of​ ​up​ ​to​ ​15​ ​minutes.

This generator allows us to create datasets of any size, and can also be used
as​ ​an​ ​API​ ​to​ ​get​ ​an​ ​infinite​ ​stream​ ​of​ ​sequences​ ​on​ ​demand.

6.​ ​EXPERIMENTAL​ ​SETUP

The experiments have been carried out with data from a public transport
operator in the UK. The network is made of about 140 buses serving 23 lines.
The​ ​total​ ​number​ ​of​ ​classes​ ​is​ ​46​ ​(23​ ​lines​ ​x​ ​2​ ​directions).

The heuristic approach doesn't require any learning phase. On the other
hand, RNN is trained with over 15 million sequences of synthetic journeys,
with the length varying between 5 and 60. Each point of the sequence is one
minute apart. The RNN has been implemented using Google’s TensorFlow
1.3 (Abadi et al. (2015)) and trained on NVIDIA GeForce 1080 and Titan X
GPUs. We have tested a range of hyperparameter values, including: (1) the
RNN cell type (GRU and LSTM), (2) the number of cells in a multicell (i.e. the
number of layers, between 1 and 5), (3) the cell size (256, 512 and 768), and
(4) various encodings of the time information (as minute of the week and as
embeddings for day of the week, hour and minute). We have used softmax as
the top layer of the network to obtain a probability distribution over all possible
line/direction pairs, cross-entropy loss, and the Adam optimiser (Kingma and

©​ ​AET​ ​2017​ ​and​ ​contributors
6

Ba (2015)) with a range of learning rates and the remaining settings left to
their​ ​default​ ​values.

As this is a classification problem, the measure we are trying to minimise is
the classification error on a test set. Overlapping of lines could mislead this
measure as there are some situations in which it is equally probable that a
sequence belongs to multiple lines. In fact, for this particular network, 37% of
stop to stop segments are shared by at least two lines. Thus, we also consider
the​ ​classification​ ​error​ ​on​ ​the​ ​second​ ​and​ ​third​ ​best​ ​prediction.

Both approaches have been tested with the same dataset made of 164 real
journeys with length varying between 6 and 56 observations (see histogram in
Figure 3). Some of these observations represent walking or even standing
periods since tracking lasts up to 1 hour from the beginning of the journey. We
haven’t​ ​filtered​ ​those​ ​out​ ​to​ ​make​ ​the​ ​data​ ​more​ ​realistic.

Figure​ ​3.​ ​Histogram​ ​of​ ​sequence​ ​lengths​ ​from​ ​164​ ​real​ ​journeys

7.​ ​RESULTS

Figure 4 shows the classification accuracy on successive test sets from the
data generator over the training period of RNN models. The three plots
represent the fraction of times the actual line was in top 1 (accuracy), top 2
and top 3 most probable lines according to our model. Models trained with
LSTM cells (blue lines) show a better behaviour over GRU cells (red lines).
Some GRU-based models show a drop of performance at certain iterations,
which makes GRU a less robust choice for this problem. We don’t yet

©​ ​AET​ ​2017​ ​and​ ​contributors
7

understand the reason for this behaviour but we plan to investigate it in a
follow-up​ ​study.

Figure​ ​4.​ ​Prequential​ ​test​ ​accuracy​ ​on​ ​synthetic​ ​data

Results of both heuristic algorithm and best RNN models with LSTM and GRU
cells are shown in Table 1. We vary the maximum sequence length (𝜏) to find
approximately the minimum number of points needed to make acceptable
predictions. The highest accuracy we achieved was 67.68% from the GRU
model when 𝜏 = 30. Best top 2 and top 3 scores were 87.80% and 92.68%
from LSTM model also when 𝜏 = 30. In all cases, RNN models significantly
outperform​ ​the​ ​heuristic​ ​baseline.

©​ ​AET​ ​2017​ ​and​ ​contributors
8

Table 1. Classification results on the real test set. 𝜏 = max sequence length
(can​ ​be​ ​seen​ ​as​ ​minutes).​ ​*​ ​The​ ​largest​ ​sequence​ ​has​ ​56​ ​observations.

𝜏

Classification​ ​accuracy​ ​(%)

Heuristic
RNN

LSTM GRU

Top​ ​1 Top​ ​2 Top​ ​3 Top​ ​1 Top​ ​2 Top​ ​3 Top​ ​1 Top​ ​2 Top​ ​3

5 27.69 27.69 36.92 39.51 61.11 74.07 38.89 62.35 75.31

10 33.55 33.55 54.84 56.44 79.14 88.34 53.99 76.07 85.89

20 39.35 39.35 58.71 65.85 84.15 92.07 65.85 84.76 90.85

30 44.81 44.81 62.99 66.46 87.80 92.68 67.68 85.98 92.07

*56 38.56 38.56 56.21 62.20 84.76 90.24 65.85 84.76 90.24

8.​ ​CONCLUSION

This paper has presented two data-driven approaches to automate the
transport network matching problem. Taking into account the peculiarities of
the network and quality of the collected data, the classification results are
promising​ ​(up​ ​to​ ​92.68%​ ​on​ ​top​ ​3​ ​predictions).

The lack of timetables reliability (Martin-Salvador et al. (2017)) suggests that
our models can be further improved by incorporating historical records of
real-time information during the training process. That additional information
coming directly from the vehicles would help to enhance our training data with
(i) GPS points following the roads between two bus stops (instead of a straight
line)​ ​and​ ​(ii)​ ​buses​ ​running​ ​earlier​ ​than​ ​scheduled.

From the user data collection point of view, sampling every minute may not
offer enough resolution for distinguishing between some buses running
closely. We would like to experiment with different sampling rates to increase
the​ ​journey​ ​resolution​ ​without​ ​compromising​ ​the​ ​phone​ ​battery​ ​life.

©​ ​AET​ ​2017​ ​and​ ​contributors
9

ACKNOWLEDGEMENTS

This work has been developed as part of Innovate UK partnership project
KTP010097 between Bournemouth University and We Are Base. We would
also​ ​like​ ​to​ ​thank​ ​NVIDIA​ ​Academic​ ​Program​ ​for​ ​providing​ ​the​ ​Titan​ ​X​ ​GPU.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. (2015) “TensorFlow: Large-scale machine learning
on​ ​heterogeneous​ ​systems”.​ ​Software​ ​available​ ​from​ ​tensorflow.org

Bernstein​ ​D.​ ​and​ ​Kornhauser​ ​A.​ ​(1996)​ ​“An​ ​Introduction​ ​to​ ​Map​ ​Matching
for​ ​Personal​ ​Navigation​ ​Assistants”.​ ​Princeton​ ​University,​ ​pp.​ ​1-17

Bolbol, A. and Cheng, T. (2013) “Matching GPS Data to Transport Networks”.
21st​ ​GIS​ ​Research​ ​UK,​ ​44,​ ​pp.​ ​1-11

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014) “Learning phrase representations using
RNN​ ​encoder-decoder​ ​for​ ​statistical​ ​machine​ ​translation”.​ ​EMNLP​ ​2014

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014) “Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence Modeling”. NIPS 2014
Workshop​ ​on​ ​Deep​ ​Learning

Graves, A. (2012) “Supervised Sequence Labelling with Recurrent Neural
Networks”.​ ​Studies​ ​in​ ​Computational​ ​Intelligence​ ​385,​ ​pp.​ ​1-131

Graves, A., Fernandez, S., Faustino, G., and Schmidhuber, J. (2006)
“Connectionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks”. International Conference on Machine
Learning,​ ​pp.​ ​369-376

©​ ​AET​ ​2017​ ​and​ ​contributors
10

Graves, A., Mohamed, A., and Hinton, G. (2013) “Speech recognition with
deep​ ​recurrent​ ​neural​ ​networks”.​ ​ICASSP​ ​2013,​ ​pp.​ ​6645-6649

Hochreiter, S. and Schmidhuber, J. (1997) “Long Short-Term Memory”. Neural
Computation,​ ​9​ ​(8),​ ​pp.​ ​1735-1780

Kingma, D.P., and Ba, J. (2015) “Adam: A Method for Stochastic
Optimization”.​ ​ICLR​ ​2015

Martin-Salvador, M., Budka, M., Quay, T. (2017) “How accurate is real-time
passenger​ ​information?”.​ ​Passenger​ ​Technology​ ​Group,​ ​pp.​ ​1-10

Quddus, M.A., Ochieng, W.Y., Zhao, L., and Noland, R.B. (2003). “A general
map matching algorithm for transport telematics applications”. GPS Solutions,
7(3),​ ​pp.​ ​157-167.

Sak, H., Senior, A.W., and Beaufays, F. (2014) “Long short-term memory
recurrent neural network architectures for large scale acoustic modeling”.
INTERSPEECH​ ​2014,​ ​pp.​ ​338-342

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,
(2014) “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”.
Journal​ ​of​ ​Machine​ ​Learning​ ​Research,​ ​15,​ ​pp.​ ​1929-1958

Stopher, P.R. (2008). “Collecting and Processing Data from Mobile
Technologies”.​ ​ISCTSC.

Stopher, P.R. and Greaves, S.P., (2007). “Household travel surveys: Where
are we going?”. Transportation Research Part A: Policy and Practice, 41(5), p.
367–381.

Sutskever I. (2013) “Training Recurrent Neural Networks”. University of
Toronto,​ ​pp.​ ​1-101

Zheng, Y., Liu, L., Wang, L., and Xie, X. (2008) “Learning Transportation
Mode from Raw GPS Data for Geographic Applications on the Web”. 17th
international​ ​conference​ ​on​ ​World​ ​Wide​ ​Web,​ ​pp​ ​247-256

©​ ​AET​ ​2017​ ​and​ ​contributors
11

