
Integrating Live Skeleton data into a VR Environment

Tom Hoxey & Dr Ian Stephenson
NCCA, Bournemouth University, UK

Abstract

The aim of this project is to be able to visualse live skeleton tracking
data in a virtual analogue of a real world environment, to be viewed
in VR. Using a single RGBD camera motion tracking method is a
cost effective way to get real time 3D skeleton tracking data. Not
only this but people being tracked don’t need any special markers.
This makes it much more practical for use in a non studio or lab
environment. However the skeleton it provides is not as accurate as
a traditional multiple camera system. With a single fixed view point
the body can easily occlude itself, for example by standing side on
to the camera. Secondly without marked tracking points there can
be inconsistencies with where the joints are identified, leading to in-
consistent body proportions. In this paper we outline a method for
improving the quality of motion capture data in real time, provid-
ing an off the shelf framework for importing the data into a virtual
scene. Our method uses a two stage approach to smooth smaller
inconsistencies and try to estimate the position of improperly pro-
portioned or occluded joints.

Keywords: Motion Tracking, Motion Capture, Skeleton Tracking,
Kinect, Real Time, Virtual Reality, Telepresence

1 Introduction

This research forms a part of a larger project to create a virtual
double of the high power laser lab at the University of Southamp-
ton. Due the the nature of the research conducted in the lab every
person inside the lab increases the likelihood of the data being con-
taminated in some way. As such the data collected in the lab is
pushed in real time to a central server that can be accessed via a
virtual double of the lab. The aim is for the virtual double of the
lab to be an equivalent or even better experience than being in the
actual lab itself.

To fully recreate the lab a visualisation of the people in the real
lab is needed. To do this some sort of skeleton tracking system is
required. A full motion tracking system is not at all feasible for
the lab. They are expensive to purchase, especially considering the
cameras needed, the computer hardware to run it and the cost of
technical staff needed to set it up. Not only this but often these
require special markers being worn by the people being tracked. As
such the Xbox Kinect is far more suited to the job, it is (at the time
of writing) an order of magnitude cheaper than a multiple camera
alternative, and people are not required to wear any special tracking
markers. As well as this it is far more accessible than any other
RGBD cameras on the market, it broke the world record for fastest
selling consumer electronics device at its first release.[Zha12]

Our method focuses on smoothing the actual skeleton data itself and
not the captured image. It should be noted that a computer vision
approach to increase the accuracy of the skeleton acquisition is also
an important part of the process, however our method is designed to
be after this stage has occurred. Smoothing the skeleton is a lesser
researched area but we believe it still has value in both real time
and offline applications. In real time working with the skeleton is a
much smaller data set than the whole captured image, as such you
can perform more complex operations with a smaller overall cost.
This is especially worthwhile on applications, such as ours, that
transfer the data across the network. Even in offline applications

unlike ours there may be cases in which after the data has been
captured there is often a cleanup stage. If part of this cleanup can
be automated this has potential to increase artist productivity.1

Before we get into detail regarding the method it is worth talking
over the basic structure of our implementation as it will provide
necessary context for the rest of the paper. As illustrated in figure 1
the data is captured in an application on the device with the Kinect.
Next we send that data as ASCII to a central server, in our imple-
mentation it is an MQTT broker running on a Raspberry Pi. Finally
a Unity application pulls the capture data from the server and per-
forms our correction method on it and then renders the skeleton.

Figure 1: A diagram to show how the data flows through our im-
plementation

2 Existing Methods

The problems that our method aims to overcome are very specific
and as such there is very little research that covers our exact prob-
lem statement. Other optical tracking methods that estimate skeletal
parameters such as [KOF05] often use some sort of body tracking
markers. To keep our solution usable in a non studio environment
markers prove to be far too impractical.

Using inverse kinematics in motion capture is a standard technique
for cleaning motion capture data, it can help to stop joints penetrat-
ing the other geometry in the scene. [MM05] This is certainly a
worthwhile technique to implement in many motion capture cases.
However due to the nature of our implementation it is not necessary
to implement in our case. Since the data we are capturing is being
played in a virtual reconstruction of the environment in which it
was recorded it would be impossible for an actor to penetrate the
in scene geometry, since they would have to penetrate the real life
object. There may be penetrations due to tracking errors, however
this is unlikely due to the nature of the skeleton acquisition in the
Kinect application. A limb on some sort of hard surface is the best
case for the tracking as it has an unambiguous background.

There is promising research into using multiple Kinect cameras to
create a more accurate overall picture, such as in [BRS+11], how-

1While this research uses the Kinect any equivalent skeleton tracking
system could be used instead, the method itself is not reliant on any special
features of the product. However the Kinect tracking method is very robust
and is recognised to be a solid grounding to build from.[HSXS13] To render
the virtual scene we are using the Unity game engine, once again the tech-
niques descried in this paper don’t use any specific features of Unity, it was
chosen for convenience sake.



ever for every new sensor we add the cost of setting up the system
increases. This is in terms of both cost to buy the equipment, and
time required to set-up the system. As such we decided to only use
a single camera for a more plug and play approach. However if
the research were to be further developed this seems to be the most
promising first avenue.

3 Our Method

We developed a two stage method for smoothing the tracking data,
correction followed by filtering. In the correction stage we change
the distance between joints to avoid variation in limb length. We
can also perform an estimation of the position of untracked joints
using measurements from previous frames. In the filtering stage
we apply a Kalman filter to each joint, this helps to reduce smaller
jitters in the data as well as interpolating our data across frames so
we can have a higher frame rate than the rate of data transmission.

3.1 Developing the network back end

In this subsection I will briefly outline how we set up the network
transfer and the rationale behind it, this provides some necessary
context to the rest of the paper.

To transfer the data we chose the MQTT network protocol (We use
the Mosquitto implementation of MQTT), it is a publish/subscribe
based model and as such allows for multiple virtual scenes to be
running at once. As well as this there is a lot of existing support
that made implementing the network code much simpler.

Firstly we rewrote one of the default Kinect demos to send the po-
sition and name of the joint to the server in a custom ASCII format.
This is updated at 20Hz as this was found to be a good balance be-
tween keeping the data live while leaving a smaller footprint on the
network. Secondly we subscribe to the data server on a machine
running the Unity application, there is no restriction to what this
machine needs to be, it can run on a different platform, a different
network or it can be on the same machine as is running the Kinect
app.

This is useful as it means that the platform dependent aspect (the
Kinect app) is an independent system that once running doesn’t
need to be touched, it can be left to run in the background forever.
While it is always looking for tracking data if there is no one in
view it doesn’t send anything, as such there is no unnecessary net-
work overhead. Since it is a publish and subscribe network model it
is possible to run the Unity application at any time with no extra set
up needed. This kind of plug and play system is far more convenient
for users, since they don’t have to undergo a tedious configuration
process every time they launch.

3.2 Average Fit

Algorithm 1 Pseudocode for updating the average distance value

procedure UPDATE AVERAGE(newV alue)
. Get New Average

oldNum = size of averagesList * currentAverage
difference = newV alue - averagesList[0]
newAverage = (oldNum - difference) / size of averagesList

. Update the List
Remove averagesList[0]
Append newV alue to averagesList

In this stage we apply a relatively simple correction to tracked
points. Over a series of frames an average distance to the parent

joint is recorded. At each frame we check if the new position is
going to be five percent beyond the current average, if so we set
the joint to be at the current average distance away. This helps to
correct the error of proportions shifting during runtime.

Our implementation currently stores five averages in a list inside
each joint. This is updated every time we get a new tracked point
that is within the average bounds. To update, delete the head of the
list and insert a new entry at the tail. This is only O(1) complexity
and therefore is a cheap operation and using a list is faster than a
static memory structure in this case due to constant reassignment.
This updating average method is outlined in algorithm 1.

3.3 Untracked Joint Position Estimation

Algorithm 2 Pseudocode for Estimating the position of Untracked
Joints

procedure IS LIMB(CurrentJoint)
if CurrentJointParent → ChildCount > 0 then

CurrentJoint ⇒ Limb
else

CurrentJoint ⇒ Fixed
procedure ESTIMATE POSITION(Skeleton)

for all Joints in Skeleton do
if IS LIMB(CurrentJoint) then

~CurrentJointDirection → ~ParentDirection
else

~CurrentJointDirection → ~LastDirection

CurrentJointPosition ⇒
AverageDistancealong ~CurrentJointDirection

If we have no tracked data for the joint we have to try and approx-
imate its position, to do this we use the averages that we have been
collecting and the last recorded direction of either the parent or the
joint itself, depending on the joint. To do this we have developed a
simple algorithm as outlined in algorithm 2. It should be noted that
shoulders are an exception to this in the Kinect joint system as they
connect directly to the spine.

3.4 Kalman Filter

First outlined in [Kal60] the Kalman filter is a linear filtering
method based on predictions formed from previous measurements.
Although the Kinect’s internal workings are propitiatory it is likely
that it employs a Kalman based system to track the objects in 3D
such as in [LKK95].

In our method we use a Kalman filter on three dimensional coor-
dinates over time.This has two advantages to smoothing at the im-
age processing stage. Firstly it reduces the amount of data that is
required to be sent over the network, to stream 1080p RGBD cap-
ture data across the network requires a much higher rate of transfer
than the just the points (24kb/s). Especially since the points values
can remain absolute whereas to send the video would most likely
require some sort of compression, losing accuracy. Secondly the
Kalman filtered points give smoother animation arcs than the raw
data, which is much more visually appealing. While it may appear
that this is less accurate I would add that if the tracked data was
provably absolutely accurate then this would be the case, but since
we know the data is flawed this trade-off seems worth it.



4 Results and Discussion

4.1 Critical Analysis

Overall the implementation of our method shows that it makes
a measured improvement when compared to the raw input data.
While most frames only benefit from the smoother motion due to
the second filtering, on a per frame basis there can be much more
important improvements made by the first stage.

Figure 2: Tracking data of a Shoulder Posterior Stretch (Appendix
A). Showing how average fit is used to constrain proportions (Left
Skeleton is raw data, Right is the corrected skeleton, joints in blue
have been Average Fitted)

The average fit on tracked joints is the most subtle of the correc-
tion methods that we have implemented, however it helps to con-
strain the skeletons proportions. This will be especially useful if
this method was to be applied to control a full 3D mesh. Figure 2
shows how when performing an extreme case such as a stretch the
average fit ensures our body stays in proportion. The right shoul-
der has been pulled towards the body compared to the raw skeleton
where the arm has appeared to increase in length.

While it does not make as dramatic a difference as the other stages
it is very cost effective considering the data is collected for the esti-
mation stage in any case. As such I think it is a worthwhile addition
considering the tracked skeleton often has mistakes in where is po-
sitions the joints at the capture stage.

Figure 3: Images showing capture data of a person grabbing per-
forming a quadricep stretch (See appendix B). (In each pair: Left
Skeleton is raw data white joints are tracked, black are untracked,
Right is the corrected skeleton, joints in blue have been Average
Fitted and red have been estimated)

The estimation stage provides the most dramatic changes from the
raw capture data. As seen in the left pair of images in figure 3 the
estimated data manages to correctly determine the location of the
foot. Even in the left pair of images where the estimation cannot
determine the foots location it puts the skeleton back into a rest

position, this is far more preferable to the bunched up joints shown
in the raw data.

Figure 4: 3 frames of overlapped footage, showing that the
smoothed implementation updates 3 times while the raw data only
updates once

The second filter stage is illustrated in figure 4. As this image
clearly demonstrates our filtered method is updated 3 times more
often than the raw tracking data. This provides a far superior qual-
ity of playback than the raw data alone. The filtered skeleton up-
dates at sixty frames per second compared to only twenty for the
raw data. 2

4.2 Future Work

While our system provides a measured improvement over the raw
tracking data, it does have limitations. This is especially notable
regarding the estimation of joint position. The estimations that it
provides mostly return the joint to a rest position as seen in the far
right image of figure 3. A continuing goal of the system is to im-
prove the rate at which we can correctly estimate the location of the
joint. However since the Kinect does not provide rotation data for
the joints it would most likely require the implementation of a full
forward kinematics system.This did not seem necessary for the first
prototype of the project as we were aiming for verisimilitude as op-
posed to accuracy. Meaning that for a telepresence application we
want the data to be plausible and appropriate as opposed to entirely
accurate.

In future if we wanted to increase the accuracy of our system using
multiple Kinects in conjunction with each other would be the most
effective way to do this. A software approach may be possible,
however the development cost of this system would far outweigh
the cost of a second camera. The second camera would remove
many of the possible self occlusion cases as well as providing a
fuller view of the room.

2Twenty was decided due to network limitations, the Kinect is capable
of capturing up to thirty frames per second, but the required transfer rate
was shown to put too much stress on the network we tested on.



References

Kai Berger, Kai Ruhl, Yannic Schroeder, Christian Bruemmer,
Alexander Scholz, and Marcus A Magnor. Markerless motion
capture using multiple color-depth sensors. In VMV, pages 317–
324, 2011.

Nathan Cowley. Photography of woman in pink tank top stretching
arm, oct 2017.

J. Han, L. Shao, D. Xu, and J. Shotton. Enhanced computer vision
with microsoft kinect sensor: A review. IEEE Transactions on
Cybernetics, 43(5):1318–1334, Oct 2013.

Rudolph Emil Kalman. A new approach to linear filtering and pre-
diction problems. Transactions of the ASME–Journal of Basic
Engineering, 82(Series D):35–45, 1960.

Adam G. Kirk, James F. O’Brien, and David A. Forsyth. Skeletal
parameter estimation from optical motion capture data. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)
2005, pages 782–788, June 2005.

Joon Woong Lee, Mun Sang Kim, and In So Kweon. A kalman
filter based visual tracking algorithm for an object moving in
3d. In Proceedings 1995 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Human Robot Interaction and
Cooperative Robots, volume 1, pages 342–347 vol.1, Aug 1995.

Amanda Mills. female, quadriceps, stretching, position, 2015.

Michael Meredith and Steve Maddock. Adapting motion capture
data using weighted real-time inverse kinematics. Comput. En-
tertain., 3(1):5–5, January 2005.

Zhengyou Zhang. Microsoft kinect sensor and its effect. Technical
report, April 2012.

A Shoulder Posterior Stretch

Image from: [Cow17]

B Quadricep Stretch

Image from: [Mil15]


