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Abstract: The collection and dissemination of vertebrate

ichnological data is struggling to keep up with techniques

that are becoming commonplace in the wider

palaeontological field. A standard protocol is required to

ensure that data is recorded, presented and archived in a

manner that will be useful both to contemporary
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researchers, and to future generations. Primarily, our aim is

to make the 3D capture of ichnological data standard prac-

tice, and to provide guidance on how such 3D data can be

communicated effectively (both via the literature and other

means) and archived openly and in perpetuity. We recom-

mend capture of 3D data, and the presentation of said data

in the form of photographs, false-colour images, and inter-

pretive drawings. Raw data (3D models of traces) should

always be provided in a form usable by other researchers

(i.e. in an open format). If adopted by the field as a whole,

the result will be a more robust and uniform literature,

supplemented by unparalleled availability of datasets for

future workers.

Key words: track, trace, digitization, ichnology, pho-

togrammetry, standard protocol, 3D data.

THE study of trace fossils is of major significance to the

wider field of palaeontology. Tracks, traces and footprints

can offer us insights that are unlikely, or even impossible, to

preserve in the osteological fossil record. Information about

trackmaker anatomy, behaviour, motions and ecology is tied

up in the three-dimensional morphology that we ultimately

call a track (Padian & Olsen 1984a; Minter et al. 2007; Falk-

ingham 2014). Fully extracting that information requires

knowledge of both track size and shape, and of the processes

and mechanisms involved in the foot–sediment interaction.

Great progress has been made in understanding the mechan-

ics of track formation and taphonomy (Padian & Olsen

1984b; Allen 1989; Thulborn & Wade 1989; Lockley et al.

1994; Avanzini 1998; Gatesy et al. 1999; Manning 2004;

Mil�an 2006; Mil�an & Bromley 2006, 2008; Mil�an et al. 2006;

Graversen et al. 2007; Marty et al. 2009; Avanzini et al.

2012; Bates et al. 2013; Castanera et al. 2013; Ellis & Gatesy

2013; Falkingham & Gatesy 2014) but communication of

track form has long been hampered by traditional means of

recording and disseminating information.

For the vast majority of time since Edward Hitchcock for-

malized ichnology as a science (Hitchcock 1836), communi-

cation has been almost exclusively limited to printed papers

and books. This 2D medium restricted the recording of

tracks to sketches and lithographs, and later with the rise of

the camera, photographs. Most ichnological literature, per-

haps until only a few years ago, continued to rely solely on

photos and drawings. Workers have thus spent the majority

of their time reporting linear measurements in the horizon-

tal plane (e.g. length, width and interdigital angle (IDA, or

digit divarication); Leonardi 1987) occasionally supplement-

ing such metrics with a single measure of depth.

But all tracks consist of a three-dimensional topo-

graphic surface. Whether preserved as a ‘negative’ depres-

sion or as a ‘positive’ relief feature, this 3D characteristic

is fundamental to the existence of a track. In more com-

plex scenarios, where laminations in the sediment are pre-

served, this 3D morphology is volumetric, extending

above and below the foot–sediment interface as overprints

and undertracks, respectively (Avanzini 1998; Manning

2004; Mil�an & Bromley 2006; Marty et al. 2016).

The importance of that third dimension in the scien-

tific study of tracks cannot be understated. In the simplest

scenario, we might consider a track to be a perfect mould

of the foot that made it. In such a scenario, the topogra-

phy within the track is a direct record of the soft-tissue

anatomy of the trackmaker and can provide information

regarding the size and distribution of under-foot pads,

claws, or other features of the autopodium. However, this

mould-based perspective is not always applicable, and

such a mindset may ultimately be detrimental to our

understanding of ichnological data (Gatesy & Falkingham

2017).

Generally, the foot–sediment interaction is more com-

plex than a simple vertical ‘stamp’, involving forces vary-

ing in magnitude and direction throughout the stance

phase. This dynamic force will differentially deform the

substrate, leaving deeper or shallower areas within a track

(Thulborn 1990). Any horizontal (anterior/posterior or

lateral/medial) motions of the foot may act upon the sed-

iment in such a way as to produce uneven raised rims

around the track itself, or extensive zones of disturbed

sediment around and below the actual track, which, when

encountered in different states of erosion, can make it

very hard to identify the boundaries of the true track

(Graversen et al. 2007; Mil�an & Loope 2007).

Even if we were to have no interest in trackmaker kin-

ematics, and were instead focused on trackmaker identity,

diversity or distribution, even basic measurements such as

length and width are fundamentally altered depending on

how they are measured and defined on that 3D surface

(Falkingham 2016). Such measurements, of course, have a

direct impact on interpretation, classification and ichno-

taxonomy, particularly when used in geometric morpho-

metrics or other numerical analyses. Some modern

techniques attempt to avoid making specific measure-

ments and apply a ‘whole track’ approach (Belvedere

et al. 2018), though even here extents of the track must

be defined to avoid incorporating too much undisturbed

tracking surface into the analysis.

Unfortunately, given this importance, adequately con-

veying 3D form in a two-dimensional medium is (or at

least, has been) a non-trivial task. However, in recent

years we have seen a considerable rise in the availability,

affordability, and ease of use of digitization techniques

including laser scanning and photogrammetry. This has
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been coupled with advances in web-based technology

facilitating the acquisition, processing, archiving and shar-

ing of large volumes of complex digital data. As these

technologies mature, it is important that we as a field set

down guidelines to ensure standardization of techniques

and data.

In this paper, we propose a standard protocol for the col-

lection and dissemination of 3D track data with the hope of

achieving two specific aims. First, that such data is accurately

recorded; we shall briefly discuss means of doing so later.

Second, that the data is put into a communicable form that

allows others to: (1) reproduce the work (a fundamental

tenet of science); and (2) build upon it (thus advancing sci-

entific knowledge). While our focus is primarily on tracks

and trackways, the principles we shall discuss will be equally

applicable to most other forms of trace fossil.

CURRENT PRACTICE

Before discussing the methods that we recommend for cap-

turing, recording, storing and disseminating 3D data, it is

worth reviewing current and historical practice in the field.

As previously noted, since the early 1800s the standard in

documenting tracks was to produce a drawing or pho-

tograph, usually in top-down view (that is, normal to the

tracking surface). The unstated priority in doing so was to

record the outline, such that metrics like length, width and

interdigital angle can be measured, as well as pace angula-

tion and stride length in the case of multiple tracks consti-

tuting a trackway. Hitchcock himself reported tracks in a

variety of ways, including photographs, shaded sketches

and simple outlines, even within a single publication (e.g.

Hitchcock 1858). Looking at Figure 1, readers will quickly

come to the obvious conclusion that a simple outline alone

lacks a significant amount of information.

The largest problem with such outlines is not just the

lack of data, but the reproducibility of what data are

recorded. There are many examples of tracks for which it

can be hard to determine where the track ends and the sur-

rounding undeformed tracking surface begins. While any

given worker may be able to reproduce outlines consis-

tently, between-worker variation is an unknown which

makes comparison of data between studies difficult and

prone to error (though this between-worker error may be

relatively low; M. Belvedere unpub. data). This is particu-

larly true for ichnotaxonomy, where new ichnotaxa are

erected but often presented in the literature only as out-

lines. Ultimately, an outline should be considered an inter-

pretation, not data. When working with osteological

material, this issue is partially negated because all new taxa

are (or should be) deposited with museums and other such

F IG . 1 . Three dinosaur tracks as presented by Edward Hitchcock in 1858. A, outline drawing of Polemarchus gigas (Hitchcock 1858,

pl. 18 fig. 1). B, shaded sketch of Otozoum moodii (Hitchcock 1858, pl. 22). C, ‘ambrotype sketch’ of a slab with Brontozoum exsertum

(Hitchcock 1858, pl. 40 fig. 3).
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institutions, and another worker can visit the specimen

directly (funds and time permitting). With tracks, this is

not always the case; new ichnotaxa can be erected on speci-

mens that remain in the field and are ultimately subject to

weathering, erosion or poaching. While plaster, fibreglass,

silicone or latex casts might be made in such scenarios, they

may be more prone to breakage, distortion, degradation or

even disposal over time.

Acknowledging this subjectivity in track outlines is

nothing new, and workers have always been attempting to

mitigate or remove it where possible. Placing transparent

plastic over a track and tracing outlines directly onto it

offers some level of reproducibility, though even here

there is an element of subjectivity between workers. Pho-

tographs also provide a level of objectivity, and many

workers have adopted a process of publishing a pho-

tograph beside their drawing, essentially presenting data

and interpretation beside each other. Best practice in such

cases involves the photograph being taken in low-angle

light, usually from the upper left (the direction of which

is noted on the photograph or in the figure caption),

which casts strong shadows and portrays topography

more clearly, though this is not always possible, particu-

larly with specimens in the field. Still, the fundamental

fact remains that even in this case, 3D morphology is not

being adequately recorded or communicated.

The goal of data collection is to record the morphology in

full; objectively, repeatably, and to as high a degree of accu-

racy and precision as is feasible. Until relatively recently,

capturing 3D morphology in such a way was prohibitively

expensive or difficult, requiring laser scanners (Bates et al.

2008a, b, 2009; Petti et al. 2008; Falkingham et al. 2009;

Adams et al. 2010; Belvedere & Mietto 2010; Bennett et al.

2013; Castanera et al. 2013; Marsicano et al. 2014; Razzolini

et al. 2014; Klein et al. 2016) or expensive proprietary

software (Breithaupt et al. 2004; Matthews et al. 2016).

However, recent advances in both consumer hardware

(Falkingham 2013) and software (Falkingham 2012; Mal-

lison & Wings 2014; Matthews et al. 2016; Belvedere et al.

2018) have made such methods available to all.

Our aim here is to propose a standardized method of

data collection within our field, such that full 3D data is

captured, communicated and archived in an objective,

repeatable and precise manner. To this end, we have

together developed guidelines to help researchers ensure

they capture the maximum amount of data, and that it

can be communicated and archived effectively.

A STANDARD PROTOCOL

Here we present a new standard protocol for data collec-

tion, data presentation, and data dissemination of tracks

and traces.

Data collection

Our stated aim is to record the 3D morphology of a

trace. Ultimately it does not matter what method is used

to capture the data, providing it does so reliably, to a

necessary degree of accuracy, and captures the 3D form

to the fullest extent possible. Until recently the pro-

hibitive cost or complexity of 3D digitization techniques

would make any request for researchers to incorporate

such data collection as standard unreasonable. However,

such techniques (particularly photogrammetry) are now

so cheap and easy to use that we consider it realistic to

suggest that all reports of traces include 3D data collec-

tion, especially when new ichnotaxa are being erected. A

growing number of ichnologists are now collecting such

data regularly, and we wish to codify the practice here.

The capture of 3D morphology essentially comes down

to photogrammetry and laser scanning. We will assume

that if one has access to a laser scanner, one is familiar

with its use and software. Photogrammetry is the more

accessible method, available to anyone with access to a

camera (even if only a camera phone) and computer. The

method has come a long way in terms of ease of use and

required hardware over the last ten years (Breithaupt

et al. 2004; Matthews et al. 2006; Bates et al. 2009; Petti

et al. 2008). There are several publications already avail-

able explaining best practice in producing 3D models

from photographs, and the available software packages

that can be used (Falkingham 2012; Mallison & Wings

2014; Matthews et al. 2016). We will not detail such

methods here, but instead refer readers to the above pub-

lications, and to the wider literature (both academic and

web) to seek out the most up-to-date programs and tech-

niques as they need them.

We note here that where possible, digitization should

be carried out prior to any physical replication (e.g.

moulding or casting; see Maceo & Riskind 1991) as the

physical replication process may alter the fossil either

physically or chemically. Indeed, for these reasons (as well

as reasons of archiving and sharing that we discuss below)

digital replicas are favourable to physical ones.

Several key works have detailed the measurements that

should (or can) be taken from a track (Haubold 1971;

Leonardi 1987; Thulborn 1990; Lockley 1991; Farlow

et al. 2012) and researchers can adhere to these guidelines

by taking measurements either directly from the track (or

cast/peel) or from the digital model. Best practice dictates

that researchers should detail either in figures or text how

and where measurements were taken. Armed with a digi-

tal model of the specimen, a researcher can be confident

that their measurements are verifiable, and that should

another worker use different definitions (see Falkingham

2016) they can make their own measurements directly.

Alternatively, 3D data can be incorporated into analyses
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that rely on automatic analysis and measurement of

tracks, such as in the mediotype analysis recently pro-

posed by Belvedere et al. (2018)

Summary.

1. Collect 3D data of any traces that will be core to the

conclusions of the study.

2. These data should be of a high resolution, such that

other researchers can replicate and build upon the

original findings.

3. Data is method agnostic; i.e. it does not matter if

data is captured through photogrammetry, laser scan-

ning, or other means, providing the resolution/accu-

racy is high enough that conclusions are replicable

and other workers can find value in the data. File for-

mat issues will be discussed in Data archiving below.

4. As much data should be collected as possible, but at

the very least:

a. Digital models of potential new ichnotaxa or other

figured specimens

b. Representative tracks from within a long trackway

or larger tracksite (we recognize that large-scale

data collection is not always feasible, though

should be attempted if possible).

Data presentation

Having collected three-dimensional data, said data must

be communicated effectively. In line with the growing

number of authors now collecting 3D data, many recent

papers describing traces have presented 3D height maps

of specimens recorded in 3D (e.g. Castanera et al. 2013;

Bennett et al. 2014; Fiorillo et al. 2014; McCrea et al.

2014; Razzolini et al. 2014, 2017; Xing et al. 2014, 2016a,

b; Citton et al. 2015; D�ıaz-Mart�ınez et al. 2016; Klein

et al. 2016; Salisbury et al. 2016; Marty et al. 2017) and

we propose that such practice becomes standard for the

field, whether digital models are produced via pho-

togrammetry, laser scanning or other means.

We recommend that best practice is to present a ‘true

colour’ image (e.g. a photograph, orthophoto or tex-

tured render) side-by-side with a ‘false colour’ image

(e.g. a height/depth map, contour map or simply a solid

colour lit to accentuate topography) of the 3D model in

the same orientation, scale and position (Fig. 2A). These

may be further enhanced by a third panel presenting the

author’s interpretation in the form of a line drawing. In

this way, the original, processed and interpreted data are

presented together for easy comparison by readers (e.g.

Marty et al. 2017; Razzolini et al. 2017; Xing et al.

2016b). The same process can be used for individual

tracks, trackways or entire tracksites. In cases where the

morphology of the track includes significant overhanging

or occluding features, it is advisable to present also an

oblique view of the track, enabling readers to see the

pertinent features. Workers may wish to provide such a

view in any case, to convey 3D topography. We provide

an example following this protocol in Fig. 2A. More

advanced visualizations such as cross-section profiles

may be employed as necessary (Fig. 2B–N). It would be

difficult to standardize techniques for making line

drawings as the reason for including such will vary

from study to study. Authors may wish to include outli-

nes in order to remove background noise they con-

sider ‘extramorphological’, and as such clean line

drawings that highlight the edges of the trace are

recommended.

In our example (Fig. 2), we have presented a range of

possible height-map colour scales, including greyscale. We

leave specific colour choice at the discretion of individual

authors, who may wish to use different colours for vari-

ous reasons (e.g. the common red–green–blue colour

scale is difficult to read by sufferers of colour-blindness;

some journals charge for colour figures).

Linear or logarithmic scales? It may not always be ideal

to apply the height map as a linear scale. In cases where

tracks have large, broad features at depth, but detail at

the top (e.g. shallow displacement rims around a deep

track), or vice versa (subtle changes in depth at the base

of a track), it may be more appropriate to apply a loga-

rithmic (or exponential) scale to highlight the features of

interest to readers. Doing so requires explicitly stating

that this is the case in the figure caption, and ensuring

that a labelled colour scale is present as part of the figure.

Video and embedded 3D. Some publishing venues are

moving towards using ‘rich media’ in online versions of

papers; videos, 3D PDF and embedded 3D objects to name

a few. While this practice should of course be encouraged,

we caution that such methods should be used as a supple-

ment to presenting 3D data in the manuscript as figures,

and not a replacement. We also argue that such means of

presentation are not a substitute for providing the actual

data as Supporting Information, as we discuss below.

Summary.

1. Tracks and traces should be presented as photo (or

‘true colour’ image) and heightmap (or other ‘false

colour’ image), side-by-side, in the same orientation.

2. These may be supplemented with interpretive line

drawings.

3. Oblique views should be used to reveal otherwise

occluded features, or to better convey 3D morphology.

4. In addition to scale bars and labels, a colour scale

should ideally be included in the figure, or at least

described in the figure caption.
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5. We do not recommend any specific colour scale.

6. Videos, 3D PDFs, and embedded objects should be

considered supplementary to the above, but not as a

replacement for providing usable 3D data.

Data archiving

Possibly the most crucial part of our protocol is in

archiving the collected data in a way that enables other

A

B C D E

F G H I J

K L M N

20 cm

0 cm

15 cm

F IG . 2 . A range of ways to present 3D data. We consider a combination of true-colour and ‘false colour’ image (A) to be a mini-

mum for communicating 3D morphology in published work. True-colour images may come from photos taken in the field, or renders

of textured models in flat light (B), a single directed light (C, light from upper right), or multiple lights of different hue (D). Morphol-

ogy may also be communicated through images of untextured models (E). False-colour images are used to convey 3D morphology,

and might include normal maps (F), or height maps in a range of colours, e.g. black-white (G), blue–green–red (H) or blue–white–
red (I). Height contours may also be added (J). Additionally, authors may wish to include oblique views, e.g.: K, textured mesh; L,

false-colour mesh; M, height mapped mesh. Finally, interpretive images including outline or shaded drawings (N) may be included as

well. Scale bar in A represents 20 cm. Height maps range over 15 cm. Contours in J are at 1 cm increments. Scale bars are not present

on smaller images B–N for clarity, but should normally be included. Photos and model of this track (a theropod track from Glen Rose,

Texas) are available in Falkingham (2018).
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researchers to work with it. It is a core part of the scien-

tific method that experiments should be repeatable and

testable. It is imperative, therefore, that 3D data collected

in the study of tracks and traces adheres to the guiding

principles currently being more broadly applied in

palaeontology (Davies et al. 2017). Here, we outline

archival principles that we hope will become standard

practice in ichnology.

Any publication using 3D data should ideally make

that data available at the time of publication. Indeed,

this is now widely a fundamental criterion for publica-

tion in many peer-reviewed scientific journals anyway

(Davies et al. 2017) and can similarly be a requirement

for many funding agencies or government bodies. If data

upon which descriptions or measurements are based are

not made available, conclusions cannot be verified by

other researchers. One may argue that repeatability exists

on some level in so much as another worker may visit

the field site or museum where the original fossil exists.

But this line of thinking is flawed in two ways. First is

that, in the case of tracks and traces left in the field, the

fossils are subject to change through weathering and

erosion, etc., and therefore no longer exist in the form

in which they were described. It may also be the case

that fossil traces are found on private land, or are

potentially vulnerable to being stolen, vandalized or

destroyed; in these and other cases, publishing specific

locality information may not be feasible. The second is

that in an age where we can transfer gigabytes (even ter-

abytes) of data with relative ease, and view 3D data at

our desks, we should do so in favour of requiring other

researchers to travel the globe. Of course, visiting speci-

mens first hand is always preferable, but in many cases

time or financial constraints make this difficult or

impossible.

It is important that when the digital data is made avail-

able, it is archived in such a way as to ensure that it will

continue to be available, and discoverable, for the foresee-

able future. The most obvious way of doing so is to

include the data as Supporting Information. In this case,

the data will be available and discoverable for as long as

the paper itself is. However, we recognize that many jour-

nals have limits (or costs) related to the possible size of

supplemental data, which may make hosting gigabytes of

data with the publisher difficult. Books pose a different

problem; including disks increases publishing costs and

limits data availability, not to mention that disks are fre-

quently lost and that the time of compatibility for CDs,

DVDs and other physical media is probably limited. We

therefore suggest that when archiving is not possible with

the publisher, that an open repository such as Figshare

(https://figshare.com), Zenodo (https://zenodo.org/) or

similar is used, and that the data should be linked directly

from the published work (journal article, book or online

resource). Both of the repositories mentioned above are

backed by major institutions and journals, and ensure the

data is available for the lifetime of the repository (cur-

rently 10 and 20 years respectively). These services pro-

vide free hosting for large files, and can allocate a DOI

which, if data is uploaded prior to publication, can be

linked to in the paper, book or other work (note that

these services can allow workers to upload data and

reserve a DOI, but not make the data publicly available

until the associated work is published). Several authors

have already used such a system, archiving data with

these repositories and providing a link in the paper (e.g.

Lallensack et al. 2016; Marty et al. 2017; Lomax et al.

2017). Using these services, rather than institutional or

personal servers, ensures long-term access and discover-

ability, which in turn will help to drive citations of associ-

ated works.

Having made the case that data should be archived, let

us address exactly what that data should be, both in terms

of content, and format.

Content and raw data

The most important data to archive is that upon which

any descriptions or conclusions are based. Generally, this

will consist of cleaned and aligned 3D models that enable

other researchers to replicate the original findings.

However, we acknowledge that processed data may

introduce inaccuracies or discrepancies. For instance,

when meshing point cloud data, the process will generally

involve a level of interpolation and retopologizing. Also,

the scaling process inherent in most photogrammetry

workflows may be a source of error if not carried out

correctly.

Because of this, it is essential that where possible raw

data (e.g. captured laser scans or photographs used in

photogrammetry) and any metadata (e.g. auto-generated

3D reconstruction reports) are included with data. Espe-

cially for photogrammetry, this has the added benefit of

making raw data available in the future when software

and workflows are inevitably improved, potentially mak-

ing more accurate or higher resolution models available

down the line.

Format. With regards to the format, important factors are

that the data are open, and not reliant on proprietary soft-

ware (which may become deprecated, or simply remain

unaffordable to many). For processed 3D data, the most

common open formats are *.PLY and *.OBJ. Both formats

are open and can generally be accessed using any 3D soft-

ware. Colour information can be stored either directly,

associated with each vertex (as in PLY or XYZ), or as a sep-

arate texture file. Given that digital storage capacity is
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continuously increasing (Kryder’s law), we recommend

against downsampling data unless absolutely necessary.

Whilst large files of several gigabytes may be unwieldy now,

in only a few years we will see them as inconsequential;

consider how large a file of several tens of megabytes

seemed in the mid 1990s. Formats that do not allow easy

manipulation or extraction of the data, such as 3D PDFs

should not be used as a means of making data available.

Photographs are best stored in the original format in

which they were taken; usually JPG. RAW or TIFF files

may also be stored, as unlike JPGs they are lossless for-

mats. However, because of this, RAW and TIFF files are

considerably larger, and consequently many people do

not take or use photographs in these formats. When

archiving, we recommend storing the original JPG (or

other) files within a zipped folder. The original files will

contain EXIF data regarding the camera make, lens and

settings that may be useful in future analyses, particularly

in photogrammetric techniques where such EXIF data can

make the difference between a great reconstruction and a

failed one.

When raw data is collected in a proprietary format, for

instance when using LiDAR or other laser scanning tech-

niques, it may be prudent to convert that data into a more

open format. For instance, exporting raw laser scan data as

ASCII text files containing XYZ vertices, luminance and

colour values makes the data available to all workers, and

future proofs against the proprietary format becoming

obsolete. This recommendation comes from personal expe-

rience, as some of us (PLF, KTB, M. Belvedere) have laser

scan data which was collected a decade ago, but no longer

possess the software required to open it.

Summary.

1. 3D data should be made freely available at the time

of publication.

2. The data should be archived with a digital object

identifier (DOI), and permanently associated with the

publication as supplemental data, hosted either by the

publisher, or by an external, public, repository.

3. Data should be in a non-proprietary format to facili-

tate accessibility to those without specialist (expen-

sive) software licenses.

4. Raw data should be included if possible:

a. In the case of photogrammetry, all photos used to

reconstruct the model should be included

b. Photogrammetric models should be cleaned and

aligned, and the process documented

c. For laser scans, cleaned and aligned point clouds

are preferable (noise can be much harder to differ-

entiate post-hoc/if not familiar with it); again, the

cleaning and aligning process should be stated

d. Downsampling should be avoided if possible (a

large file now will seem tiny in 10 years)

e. Other methods (e.g. CT) should follow the policies

outlined in Davies et al. (2017).

DISCUSSION AND CONCLUDING
REMARKS

Going forward, we hope that the field as a whole will be

receptive to the primary aspects of our proposal: that

tracks should be digitally recorded; that the 3D data

should be used in communication and analyses; and that

said data be made available with the associated work at

the time of publication. While 3D data collection and

availability are important to all aspects of ichnology, we

note that it is essential when new ichnotaxa are being

erected (Belvedere et al. 2018). Undoubtedly there shall

be nuanced or outlier cases in which some aspect of the

above is not feasible and, when such cases occur, we

implore authors to explicitly state why 3D data was not

collected, presented or made available. The result will,

hopefully, be that our science becomes simultaneously

more robust and more accessible over time.

We consider a bare minimum of our protocol to be

the collection of 3D data of individual tracks of inter-

est, especially in the case of type specimens. Larger

scale 3D data, such as that pertaining to whole track-

sites, is currently more difficult to obtain, process and

archive, and it is understandable that including such

data is not always feasible. Still, we hope that col-

leagues will make every effort to include such data

when they can, particularly when conclusions and inter-

pretations are drawn from larger scale features such as

trackway parameters.

What we have not covered is how all of this data we

encourage generating and archiving will be discoverable. A

number of us have in the past considered an online reposi-

tory specifically for digitized tracks (M. Belvedere et al.

unpub. data) but so far this has failed to gain traction for a

number of logistical reasons. If we look at what is happen-

ing in the wider field, we can see several repositories for

morphological data (e.g. MorphoSource, MorphoBank,

Aves3D). Whilst these resources are of immense use to

science, there is an element of fragmentation in where and

how 3D data are stored, which can make meta-analyses dif-

ficult. There is also confusion arising over the different

policies regarding access to data on these repositories

(which is one of the reasons we strongly recommend mak-

ing data fully available at time of publication). It may be

best in future to rely on data repositories such as those

listed above (e.g. Figshare, Zenodo), and instead focus on

creating front-facing searchable databases that link directly

to these repositories. This would ideally create multiple

means of finding the data while maintaining universal

access and longevity of the data itself.
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We close with the message that ‘it’s never too late’.

Because photogrammetry requires only digital pho-

tographs as input in order to generate a 3D model, it is

possible to generate models using photographs that were

taken long before the method was feasible. In an extreme

sense, there is no real age limit on photos that can retro-

spectively generate useful 3D data (Falkingham et al.

2014; Lallensack et al. 2015). While collections of old

digitized photos might prove usable, more practical sce-

narios may involve more recent collections of digital

photos taken for documentation purposes, but perhaps

without photogrammetry in mind at the time. Those

photographs may now be used to generate new 3D data

via post-hoc photogrammetry, preserving and making

accessible specimens first described some years ago. In

doing so, authors will rejuvenate past publications, bene-

fitting from additional citations while the wider commu-

nity benefits from increased access to data. By way of

example, we present in Table 1 a list of publications for

which 3D data has since been made available, and the

DOI/links to said data. In this way we hope to formally

associate the data and publications, and aid in future dis-

coverability. We caution, however, that going forward this

should not be interpreted as a precedent for refusing to

make data available at the time of publication. Individu-

als, palaeoichnology and the wider palaeontological com-

munity as a whole, can only benefit from an attitude that

encourages data generation and sharing in this way, and

we look forward to continuing to work in such a collegial

field.
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