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Abstract

This work presents a framework for the inclusion of multiple criteria in the design pro-

cess of supervised learning algorithms; as well as studies the sophisticated interactions

among them. The criteria included and tested experimentally in this thesis are: accuracy,

model complexity, algorithmic complexity, diversity and robustness.

The present thesis addresses important challenges related to considering multiple criteria

such as: 1) defining suitable measures for the included criteria, 2) determining effective

approaches to optimise the system performance using multiple objectives, 3) finding ef-

fective alternative approaches to include such criteria indirectly in the design stages when

defining accurate measures is infeasible, and finally 4) analysing the possible interactions

among the criteria as well as identifying the main factors/decision points that modulate

them.

This work introduces a novel Multi-Components, Multi-Layer Predictive System

(MCMLPS). This system incorporates mechanisms designed to control the diversity,

model complexity and robustness.

In the first stage of this thesis, the accuracy, model and algorithmic complexities of

the base components for the proposed system have been optimised empirically using

two multi-objective optimisation approaches. The first approach consists of a scalarized

multi-objective optimisation, where the models are generated from optimising a single

cost function that combines the three criteria. The second approach uses a Pareto-based

multi objective optimisation which establishes a trade-off among the three criteria to gen-

erate a set of selectively balanced models.

These first results showed that models generated from Pareto-based multi objective op-

timisation approach are both more accurate and more diverse than the models generated

from scalarized multi-objective optimisation approach. However, the Pareto-based ap-

proach is hindered by the high algorithmic complexity required to find the best model

and the infeasibility of defining universal measures for some of the above-mentioned cri-

teria. Thus, in later stages of this work these criteria are either presented as constraints

or included indirectly in generating the base components for the MCMLPS.

In a subsequent stage of this study, the diversity among the base components of the pro-

posed MCMLPS system is encouraged by training them on local regions in the data,

were the locality is determined using the similarity of the data features. Each local re-

gion contains either disjoint subsets of the data and/or subsets of the features. A range of

similarity metrics such as pairwise squared correlation and conditional mutual informa-



iv

tion of the features are used. Interestingly, the squared correlation method can be applied

in supervised as well as unsupervised learning as it does not consider the output class

when splitting the data. Meanwhile, the conditional mutual information method can be

applied only in supervised learning as it uses the output class in splitting the data. The

full MCMLPS architecture is then analysed and its performance is compared to three

well-known ensemble methods.

Next, the effect of weighing the components of the MCMLPS and combining them is

examined using six fusion methods. The results showed that, including the similarity

metric used to divide the data into local regions in weighing the system components, of-

ten results in the best accuracy compared to the other fusion methods.

In the final phase of this study, the robustness of the proposed system in noisy environ-

ments is tested and compared to other ensemble methods. The system showed a compara-

ble accuracy to the best performing ensemble and it often has a more robust performance

than other ensembles in highly noisy environments.

To conclude, the present thesis proposes a multi-component, multi-layer system which

simultaneously incorporates multiple criteria in its design cycle. The results of this the-

sis suggest that the locality in learning and high diversity among the components of the

proposed system can be particularly beneficial in designing ensemble learning methods

for highly noisy data sets.
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Chapter 1

Introduction

Machine learning is considered as a relatively new field of research, however, collect-

ing data and recognizing distinctive patterns from it can be traced back at least to the

16th century, when Tycho Brahe recorded his astronomical observations (Dreyer (1890)

and Swerdlow (1996)); which enabled Johannes Kepler to discover empirical laws of

planetary motion (Small (1804) and Bishop (1995)). While pattern recognition has a

long standing history, however, by the end of the first half of the 20th century all the

main results in this field stem from statistics (Theodoridis and Koutroumbas (2006)).

In the second half of the 20th century, machine learning had witnessed important de-

velopments, starting from the work of Alan Turning in the 1950s (Turing (1950)) and

continuing with the introduction of the first Neural Network (NN) machine by Marvin

Minsky and Dean Edmonds (Russell and Norvig (2010)), and later with the development

of the perceptron (Rosenblatt (1958)). During the AI winter in 1970s, the intensity of the

research in this field slowed down (Cervier (1993)); but shortly thereafter, the exponential

increase in computer power fostered again machine learning research (Theodoridis and

Koutroumbas (2006)). Highly sophisticated algorithms such as deep learning or ensem-

bles of learners that were infeasible in terms of their computational cost few decades ago

are now commonly used in complex real-life settings (Deng and Yu (2014) and Zhang

and Ma (2012)). Historically, machine learning systems have been designed to optimize

the generalization ability of the system as the main criterion. The traditional aim of ma-

chine learning is to design a system that can effectively learn regularities in the training

data and then uses these identified regularities to perform tasks in the future, such as

classifying the data into different classes with optimal accuracy (Bishop (1995)).

1
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Nevertheless, as new learning systems which tackle different types of problems were in-

troduced over the years, the need to include other criteria in the optimisation process of

machine learning systems emerged (Jin (2006)). The concept of including more than one

criterion in optimising the performance of machine learning systems has been the focus

on a lively debate in the literature over the last two decades, for example:

• The inclusion of accuracy and model complexity has been revisited from the sta-

tistical learning (Vapnik (2013)) and Bayesian angles (Močkus (1975)): the devel-

oped systems should be accurate, yet their complexities should be bounded so that

a complex system is not chosen for a problem that can be solved using a simpler

system (Blumer et al. (1987)).

• The inclusion of accuracy and diversity: when multiple models are combined to

produce the system, the diversity among them should be encouraged and monitored

during the design stages (Cunningham and Carney (2000)). An ensemble with

diverse models can have better performance due to the complementary behaviour

of its components (Xue et al. (2006)).

• The inclusion of accuracy and robustness: the developed system should be able to

tolerate certain variation in the data, yet it should be robust to outliers and noise

(Xu et al. (2009)).

The above points shows that, previous approaches typically focus on pairs of criteria to

optimise, in which one of them is the accuracy of the prediction (Jin (2006)). How-

ever, the interaction among these criteria and the effect they have on each other is rarely

discussed. The aim of this work is to design a novel framework which accounts for

the multiple criteria in the optimization process for complex machine learning systems;

and to study the effect of considering these criteria in the system performance in noisy

datasets. Specifically, the criteria which are investigated in this work are the accuracy,

model complexity, algorithmic complexity, diversity and robustness; which provide a

rich description for the ensemble learning process from multiple angles. Furthermore,

this work studies the feasibility of measuring these criteria, the advantages and draw-

backs of including them in the optimization process, and most importantly the possible

interactions among them.
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1.1 Background

Predictive models that are built and trained with an overreliance on the prediction ac-

curacy as the main optimisation criterion can result, as it is well-known, in some form

of overfitting. Thus, heavily penalizing the complexity of the model whilst maintaining

its accuracy has been a common strategy, for instance by the renowned Support Vector

Machines (SVM) which optimise both accuracy and complexity through the use of struc-

tural risk minimisation framework as a part of its training process (Cortes and Vapnik

(1995),Vapnik (2013)).

However, model complexity is just one criterion among many other criteria that can affect

the choice of predictive systems. In order to improve the performance of the prediction,

ensemble learners are often used (Polikar (2006)). While these systems are substan-

tially more sophisticated and have higher computational costs than a single predictor,

combining different predictors can increase the accuracy of the overall system, provided

enough diversity among the components of such systems i.e. their capacity to comple-

ment each other is sufficiently observed. (e.g., Jacobs (1995), Meir (1995), Opitz and

Shavlik (1996a) and Tumer and Ghosh (1996)). Though encouraging diversity among

the base predictors of ensembles is widely acknowledged as an important issue in im-

proving the ensemble performance (Bi (2012)), there has not been found a fundamental

connection between the current diversity measures and the improvement of the prediction

accuracy in general (Brown and Kuncheva (2010), Bi (2012) and Kuncheva and Whitaker

(2003)).

In addition to improving the accuracy of the prediction, combining multiple classifiers

has been linked to the ability of the system to perform well with noisy data (Ho et al.

(1994)). Associating robustness to noise with Multi-Components, Multi-Layers Predic-

tive System (MCMLPS) has been also traditionally linked to the diversity among the

system base models: combining diverse models can improve the generalization ability of

the system due to their complementary behaviour and allow the system to be less sub-

jected to overfitting noisy data (Teng (1999) and Sáez et al. (2013)).

Unfortunately, defining effective measurements for the above- mentioned criteria is not

always feasible in all machine learning methods. Thus, when measuring these criteria is

infeasible, alternative mechanisms must be put in place to ensure that they are considered

during the different stages of the predictive system design cycle, such as: a) using regu-

larisation terms to penalize models with high complexity (Barron (1991)) and b) training



4 CHAPTER 1. INTRODUCTION

the ensemble base models on slightly different subsets of the data to encourage the diver-

sity among them (Breiman (1996) and Rodriguez et al. (2006)).

Nevertheless, in cases when suitable measures for the multiple optimization criteria can

be defined, Multi Objective Optimisation (MOO) approaches can be effectively used to

maintain the desired trade-off among these criteria (Marler and Arora (2004) and Jin

(2006)). There are a number of optimisation approaches for combining these criteria.

One common approach is to use scalarization function which combines them into a single

weighted sum and find the best possible model, such as: in neural networks regularisa-

tion (Braga et al. (2006)) and in creating interpretable fuzzy rules (Jin (2000)). Another

approach is to use Pareto-based MOO techniques to find a set of non-dominated solu-

tions (models) that trade-off a set of conflicting criteria; such as: trading-off the accuracy

versus the complexity of a radial basis function (Hatanaka et al. (2003)), trading-off false

negative/false positive rates versus the number of support vectors to reduce the compu-

tational complexity of an SVM (Suttorp and Igel (2006)) or developing a cost sensitive

decision tree (Zhao (2007)) to cite a few.

In summary, considering multiple criteria in optimising complex predictive system entails

unresolved challenges connected with how to find suitable measures of such criteria and

how to include them in the design cycle of the predictive system. Also as was mentioned

above, previous approaches typically focus on pairs of criteria to optimise in which one of

them is the accuracy of the prediction (such as balancing accuracy and model complexity

in (Yu et al. (2006)), or studying the effect of diversity with respect to the accuracy of

the system (Cunningham and Carney (2000)). However, to the best of our knowledge

studying the interaction among multiple criteria and the effect they have on each other

have not previously been fully investigated; and will be the main focus of this thesis.

1.2 Project Description and Goals

This thesis emphasises the importance of including multiple criteria in the design process

of predictive systems and studies the interaction among them. Furthermore, it compares

the different optimisation approaches used to trade-off these criteria. The main goals of

this work are:

• To identify the criteria used for evaluating the performance of a predictive system

from multiple angles and to define effective measures for them when feasible.
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• To develop strategies to include the selected criteria either directly in the optimisa-

tion process or indirectly in the design process of the predictive system.

• To study the interactions among the included criteria and identify the main fac-

tors/decision points in the MCMLPS that affect them.

This work examines the relations among the accuracy of the prediction, model complex-

ity, algorithmic complexity, diversity and robustness. Furthermore, this project compares

the efficiency of different optimisation techniques which can be used when multiple cri-

teria are considered (Chapter 2 and 3). It examines the advantages and drawbacks in the

cases when the criteria are combined in a single scalarized equation or when a trade-off

among them is maintained (Chapter 3).

The initial experimental work considers the inclusion of the first three criteria (namely,

the accuracy, model complexity and algorithmic complexity) in the optimisation process

of the MCMLPS base components (Chapter 3). These experiments focus on different

optimisation techniques used to include multiple criteria. Both Pareto-based MOO and

scalarized MOO are used to generate the predictive models, and the performance of the

resultant models is assessed and compared. The aims of these experiments are to examine

the advantages and drawback of including multiple criteria and to compare the efficiency

of the generated models using the two optimisation approaches.

Taking the above into consideration, a novel locally trained MCMLPS is introduced in

Chapter 4. In this system, the diversity among the base models is maximized by training

them on local disjoint sets of data and/or subsets of features. The data is divided into local

regions using two approaches: an unsupervised approach which uses the feature similar-

ity depending on their pairwise squared correlation and a supervised approach which is

based on mutual information theory. This work is further developed to investigate the

relation between the models diversity and their robustness to noise by introducing six

fusion methods used to deliver the final prediction for the proposed MCMLPS (Chapter

5).

Finally, the interactions among the accuracy, diversity and robustness of this system is

examined and the overall performance of the system is compared to a number of ensem-

ble methods (Chapter 5). Our results indicated that the locality and high diversity among

the components of the proposed system can provide a robust framework for designing

complex systems in noisy environments.
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1.3 Contributions

The following points summarise the main contributions in this work:

• A comprehensive theoretical study of predictive systems in terms of their archi-

tectures, evaluation criteria and optimisation approaches. This study focuses on

identifying measures for the principle criteria that affect the performance of ma-

chine learning systems and whether universal measures can be defined for these

criteria (Chapter 2).

• Conducting a new experiment in a representative, specifically designed case study

which compares two MOO approaches and highlights the cost and benefits ob-

tained from including multiple criteria in the optimisation of machine learning

models in different classification settings (Chapter 3).

• A novel locally trained MCMLPS is next proposed (Chapter 4), where the locality

of the system is introduced using two approaches:

– An unsupervised approach is used to split the data into disjoint subsets that

are assigned to a set of local regions. The locality is determined using the

pairwise squared correlation of the features. Then the base predictors of

the MCMLPS are trained on these local regions. A particular benefit of

MCMLPS is that, since it trained the local regions on disjoint subsets of the

data, the diversity among its components is maximised.

– A supervised approach is used to split the data into local regions using the

conditional mutual information of their features. In this approach the base

models are trained on subsets of the features for all available data.

• An analysis of the robustness of the new MCMLPS in comparison with well-known

ensemble methods; and its relation to the diversity of the proposed system in noisy

environments (Chapter 5).

• The identification of the main decision points (in the design and weighing of the

MCMLPS) which influence the robustness, diversity and accuracy of the prediction

(Chapter 5). These decision points are found to be:

– Data partitioning and model training.

– Weighing the prediction of the base models/ensembles.

– Selection/fusion of the base models/ensembles.
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1.4 Thesis Organization

Chapter 2 provides an overview of the learning process in predictive system. In Section

2.2 different architectures of predictive systems are explained, from simple single pre-

dictor to complex multi-layer systems. Furthermore a survey of the predictive system

evaluation criteria and their possible measurements is given in Section 2.3. Section 2.4

provides an overview of the optimisation approaches used to optimise single as well as

multiple criteria of the predictive system.

In Chapter 3 the general methodology is discussed, starting with the design cycle of

MCMLPS in Section 3.2. Next, Section 3.3 introduces a comparative case study specifi-

cally designed to take into account the optimisation of predictive models using prediction

accuracy, model complexity and algorithmic complexity. This new study compares the

base models of MCMLPS that are generated from optimising the above mentioned cri-

teria using scalarized multi-objective optimisation and Pareto-front multi-objective opti-

misation. Furthermore, this section highlights the limitations associated with each of the

two optimisation approaches.

Chapter 4 introduces a novel locally trained MCMLPS, where its base models are trained

on disjoint subsets of the data and/or subsets of the features. The general architecture of

the proposed system is given in Section 4.2. Section 4.3 compares the design cycle of

MCMLPS with that of the rotation forest algorithm. Next, the methodology followed in

designing the proposed system is given in Section 4.4 along with a detailed description

of the metrics used to define the locality of the data, the experimental settings and the

results.

Chapter 5 expands the work presented in Chapter 4 by testing the MCMLPS in noisy

environments. The different types of noise and their effect on the performance of the

system are explained in Section 5.2, while balancing the robustness and flexibility of

machine learning models are the focus of Section 5.3. The first part of the experimental

work in this Chapter is introduced in Section 5.4 where the proposed MCMLPS is tested

in noisy environments and its performance is compared to other well-known ensemble

methods. The second part of the experimental work, presented in Section 5.5, introduces

six fusion methods to combine the base predictors of the MCMLPS and studies the effect

of changing the fusion methods on the performance of the proposed system.

Finally, Chapter 6 concludes the thesis, summarising the main findings and contributions

of this work and indicating directions for future research.
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Chapter 2

Predictive Systems: Representation,
Evaluation and Optimisation

2.1 Introduction

The ability of machines to think was first questioned by Alan Turing in (Turing (1950)).

In this paper the Turing test was introduced, where in a simple test, a judge (human) is

asked to distinguish between a machine and a real person depending on their answers to

particular questions. By 1959 machine learning was defined as the ability of a computer

to perform a task that it has not been explicitly programmed to do, in a similar way to

the learning behaviour in humans or animals (Samuel (1959)). In recent years, formal

descriptions of machine learning can be found in (Duda et al. (2012), Theodoridis et al.

(2010), Michalski et al. (2013) and Anzai (2012)). For example in (Duda et al. (2012)

machine learning is defined as the estimation of the parameter values for a model using

sample data in order to optimise a criterion function.

According to (Budka (2010)) a predictive system S can be trained to approximate an

existing unknown function M : Rd → Rc which maps a d-dimensional input space X
into a c-dimensional output space Y:

M:X → Y (2.1)

In order for a predictive system S to provide an approximation of the mapping M a

learning algorithm is used to tune the system parameters. This algorithm learns from

9
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examples, where the training data D that consist of N instances is used to provide the

sufficient information for the learning algorithm:

D = {(X, Ŷ )} = {(x1, ŷ1), (x2, ŷ2), ..., (xN , ŷN)} (2.2)

Where xi ∈ Rd. Due to the limitation in the precision of the data collection process, the

predictive system learns to map the input to a predicted output Ŷ (where Ŷ ∈ Rc) rather

than the actual output Y , where ŷi 6= yi instead:

ŷi = yi + ε (2.3)

Where ε is a zero mean random noise with expectation of E[εi] = 0 (Duda et al. (2012)

and Budka (2010)). The type of the output Ŷ can be continuous (regression problem)

or discrete (classification problem). The new mapping of the predictive system is given

below:

S:X → Ŷ (2.4)

In order to measure the accuracy of this system, an error function is used. A general

formula error function can be given in:

error =
1

N

N∑
i=1

f(yi, ŷi) (2.5)

Generally f(y, ŷ) = f(y − ŷ) in regression problems, while in classification problems

f(y, ŷ) = f(1− δ(y−ŷ)) where δ(y−ŷ) is the Kronecker delta function given as:

δ(y−ŷ) =

{
1, ify 6= ŷ

0, ify = ŷ
(2.6)

Depending on the availability of the data and the output, mainly there are four forms

of learning that can be identified Duda et al. (2012):

• Supervised learning: this type of learning is used to infer a function learned from

labelled training data. The training data consists of pairs of input-output data. The

inferred function can be used to map new input data to its correct output value.

This type of learning is also known as learning with a teacher. The same behaviour

observed in humans and animals is called concept learning. The mathematical
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representation of the predictive systems discussed above is mainly provided for

supervised learning.

• Unsupervised learning: in this type of learning only the input data is provided to

the learning algorithm without its output (unlabelled data). The learning process is

associated with data density estimation or clustering, where the predictive system

forms clusters or natural grouping from the input data. Similar data are assigned to

the same cluster or group and it is assumed that they share the same label. Different

clustering methods lead to different sets of clusters and it is often that the number of

clusters is predefined by the user. The accuracy of this learning approach depends

to a large extent on the choice of the metric used to measure the similarity. This

type of learning is also known as learning without a teacher.

• Semi-supervised learning: this type of learning falls between supervised and un-

supervised learning, where the labels are provided for only part of the input data.

The acquisition of unlabelled data is often inexpensive. Though it can be ignored

in the learning process (making the problem a supervised learning problem), yet

using this data can improve the prediction of the system. Examples on how the un-

labelled data can be included in the learning process are: assuming that the points

that are close to each other share the same label (smoothness assumption), or that

the data tends to form discrete clusters and that the points in the same clusters share

the same label (cluster assumption).

• Reinforcement learning: in this type of learning the predictive system performs a

series of actions in order to maximize some notion of accumulative reward. Rather

than having an input-output pairs of data, the only information available to the

system is whether the final prediction is right or wrong (a binary feedback). Thus

in binary classification problems with equal cost of error reinforcement learning is

equivalent to supervised binary classification. The feedback can be provided after

a few steps or in extreme cases after a long series of actions. This type of learning

is also known as learning with a critic, where the critic says only if the prediction

is correct or not without specifying how it is incorrect.

Regardless of the learning type, in general, the learning process in predictive systems

can be decompose into three components (Domingos (2012)):

Learning = Representation+ Evaluation+Optimisation (2.7)
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The first component considers model representation which involves choosing the type

and architecture of the predictive system (model selection) as well as the representation

of the data (data collection, preparation and partitioning). The second component defines

the criteria used to evaluate the predictive system performance, which can be a single

or multiple criteria. Once these criteria are identified and measured, they are used to

optimise the performance of the predictive system. The three components of the learning

process along with their main operations are shown in Figure 2.1.

Representation 

• Data collection, preparation and partitioning 

• Model selection 

Evaluation 

• Model evaluation using a single or multiple 
criteria 

Optimisation 

• Optimising the performance using the 
chosen criteria 

Figure 2.1: The decomposition of the learning process (based on Domingos (2012))

This chapter discusses the predictive systems, their evaluation criteria and optimiza-

tion approaches. It starts, in Section 2.2, by describing the architectures of predictive

systems from simple single model to sophisticated pool of competing predictors. Section

2.3 looks at the evaluation criteria and their possible measures. Finally, the optimisation

methods used for balancing and trading-off these criteria are discussed in Section 2.4.

2.2 Predictive Systems Architectures

Predictive systems can have various types of architectures. These architectures can vary

from single model to complex multiple competing structures. The following sections
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provide explanations and illustrations of the different architectures of predictive systems.

• Single Predictor:

This architecture consists of a single predictor with a possible one or more

pre-processing and post-processing unit(s). The complexity of this model can

vary from a simple linear regression method to complex methods like Support

Vector Machines (SVM) (Cortes and Vapnik (1995)). Figure 2.2 shows a simple

illustration for this architecture, where f̂(x) is a function that the predictive model

is learning to approximate the actual function f(x) which generates the data D,

PPM is the pre-processing method.

- - ŶX
Post-

Processing
f̂(x)PPM

Figure 2.2: A Simple illustration for a single predictor consisting of a pre-processing
unit, a prediction function and a post-processing unit

A predictive model can be trained to have different levels of complexities, for ex-

ample, having different number of hidden layers and/or hidden units in an artificial

neural network. A main challenge is to choose the appropriate model architec-

ture, such that, the model is not too simple or too complicated to represent the

data. One approach for identifying the required level of complexity to match the

prediction problem is to decompose the generalisation error into bias and variance

components. Trading off these two components properly can reduce the overall

generalisation error and prevent overfitting the data. Basically, the error due to the

bias term represents the difference between the prediction of the model and the

actual output. On the other hand, the error due to the variance represents the vari-

ability in the model prediction for a given data point. In order to obtain a good low

generalisation error both bias and variance should be minimised. However, as the

two components are conflicting a trade-off between them should be maintained.

The bias-variance dilemma is illustrated in Figure 2.3.
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Initially the bias-variance decomposition was developed for least squares regres-

Figure 2.3: The bias-variance dilemma. Adopted from (Fortmann-Roe (2012))

sion, however, in recent years other forms of decomposition for binary classifica-

tion and probabilistic classification has been introduced (Domingos (2000)). The

original mathematical form of the bias-variance decomposition for the mean square

error is given below.

In the following equations let us assume that (Ŷ ) = f̂(x). The expected Mean

Square Error (MSE) between the model prediction Ŷ and the actual output Y over

an infinite number of data sets of size N is given as Bishop (1995):

ED[MSE(Ŷ , Y )] =
1

N

N∑
i=1

ED[(ŷi, yi)
2] (2.8)

This MSE formula can be decomposed into the bias and variance components and

noise (Bishop (1995)).

ED[MSE(ŷi, yi)] = [(yi − ED[ŷi])
2]︸ ︷︷ ︸

bias

+ED[(ŷi − ED[ŷi])]
2︸ ︷︷ ︸

varinace

+ED[ε2]︸ ︷︷ ︸
noise

(2.9)

The aim of introducing bias-variance decomposition in this section is to show

that even for a single model type different architectures can result in different

levels of performances. This decomposition is viewed from the selection of model

architecture point of view rather than from the evaluation of the performance point

of view. There are more practical approaches that can be used to measure and con-

trol the model complexity. These approaches will be explained in Subsection 3.2.2.
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• Ensemble of predictors:
An ensemble is a predictive system consisting of a number of base predictors

combined together using a combination method to provide the final prediction.

The combination method is sometimes known as a fusion method. In the past

decades ensemble learning has been an active area of research in machine learn-

ing. Many well-performing ensemble learning algorithms have been introduced

such as: Boosting (Freund and Schapire (1996)), Bagging (Breiman (1996)), and

stacked generalization (Wolpert (1992)). In literature, it has been shown that using

an ensemble of predictors can often improve the generalization performance com-

pared to that of a single predictor. The conditions for this improvement are for the

base predictors to be diverse (their error correlation is reduced) and that they have

a reasonable performance level (Jacobs (1995), Meir (1995), Opitz and Shavlik

(1996a) and Tumer and Ghosh (1996))

An ensemble with diverse models can have better performance due to the comple-

mentary behaviour of its components (Xue et al. (2006)). The performance of an

ensemble that consists of identical predictor will not be better than any of its base

components. Ensemble learning can be viewed as combining multiple predictive

models in order to explore the space and benefit from the models complementary

predictive characteristic, thus the models must be diverse so that their fusion can

have better performance than their individual performance.

The mathematical justification for encouraging diversity was first explored in the

ambiguity decomposition (Krogh and Vedelsby (1995)), where the ensemble diver-

sity is linked to the mean square error. In this study, Krogh and Vedelsby proved

that:

“at a single data point the quadratic error of the ensemble estimator is generated to

be less than or equal to the quadratic error of the component estimator”

Equation 2.10 shows the ambiguity decomposition for the squared error:

(f̂ens(x)− f(x))2 =
∑
i

wi(f̂i(x)− f(x))2 −
∑
i

wi(f̂i(x)− f̂ens(x))2 (2.10)

where f̂ens(x) is the fusion function, f(x) is the target, f̂i(x) is the function

for the base predictors and wi’s are the weights and they sum up to one. This

equation shows that the squared error of an ensemble f̂ens(x) is equal to the
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weighted averaged squared error of the individual base predictors minus a term

which quantifies the diversity of the ensemble. This term measures the correlation

between the base predictors output and the overall ensemble output.

The main limitation of the ambiguity decomposition is that it can be applied only

to linearly weighted regression problems and it needs to define in advance a set of

optimal weights as well as a set of models that are both accurate and diverse.

Depending on the type of the base predictors, whether they are similar or

different, ensemble learning can be classified into: homogenous ensembles and

heterogeneous ensembles (hybrid ensembles) (Whalen and Pandey (2013) and

Woźniak et al. (2014)). In homogenous ensembles the base predictors are all of

the same type, for example all the base predictors are Decision Trees (DTs) or

Neural Networks (NN). An illustration of this type of ensemble architecture is

shown in Figure 2.4. On the other hand, in heterogeneous ensembles, models of

>

PPM (2)PPM (1)

>

PPM (2)PPM (1)

>

PPM (2)PPM (1)

- - yx

f(x)

f(x)

f(x)

PPM (M)

PPM (M)

PPM (M)

Figure 2.4: An illustration for a homogeneous ensemble consisting of multiple predictors
of the same type

various types are combined to provide the final prediction of the system. There

are a number of challenges associated with this type of predictive systems. These

challenges include (Woźniak et al. (2014)): a) choosing the appropriate models to

be combined, b) tuning the models parameters and understanding the effect these

parameters have on the individual models performance as well as on the overall

performance of the system, and c) choosing the appropriate combining method for

the base predictors. The final prediction can be obtained using either selection or

fusion methods (Woods et al. (1997) and Kuncheva (2004)). In classifier selection,

the base predictors are trained on local regions of the feature space. The locality
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of the data can be determined using a number of metrics such as distance metric,

correlation or mutual information among others. Depending on the metric used,

the final prediction of such ensemble can be obtained from one or more predictors

(Bloch (1996) and Roli et al. (2001)). On the other hand, in classifier fusion, the

outputs of all the base predictor ares considered in the final prediction, examples

of this approach are bagging and boosting methods. Figure 2.5 shows a simple

example of heterogeneous ensemble.

-

-

*
PPM (2)PPM (1)

3
PPM

x
y*

PPM (2)PPM (1) PPM (M)

*
PPM (2)PPM (1) PPM (M)

*
PPM (2)PPM (1) PPM (M) f(x)

f(x)

f(x)

f(x)

f(x)

Figure 2.5: An illustration for a heterogeneous ensemble consisting of multiple predic-
tors of different types

A more complex architecture of heterogeneous ensembles is to have a pool of com-

peting, possibly complex predictors. In this case, multiple predictive systems of

different complexities and types are organised in a pool of competing solutions.

The predictors can have varying complexities from single predictors to MLMCPS

systems. An illustration of this architecture is shown in Figure 2.6.
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*

3

*

*

*
PPMj

PPMj

PPMj

>

>

>

PPMj

PPMj

PPMj

>

ŶX

Predictor (1)

Predictor (2)

Predictor (M)

f̂i(x)

f̂i(x)

PPM1

PPM1

PPM1

PPM1

PPM2

PPM2

PPM2

PPM2

f̂1(x)

f̂2(x)

f̂(x)

f̂(x)

f̂(x)PPM

PPM

f̂1(x)

f̂2(x)

PPM1 PPM2

PPM2

PPM2

PPM1

PPM1

Selector

Combiner/

Figure 2.6: An illustration for a pool of competing predictors/ensembles
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2.3 Predictive Systems Evaluation

The performance of both single model and ensemble architecture can be evaluated

based on a number of criteria. These criteria include: accuracy, complexity, robustness,

adaptation and transparency. This section considers these criteria and their most common

well-known measures.

2.3.1 Accuracy

The accuracy of prediction can be calculated, depending on the prediction problem using

one of the following measures.

• Numerical measures:
The following points summarise the main measures for calculating the error E

(Hyndman and Koehler (2006)):

1. Mean Square Error (MSE):

MSE =
1

N

N∑
i=1

(ŷi − yi)2 (2.11)

2. Root Mean Square Error (RMSE):

RMSE =
2
√
MSE (2.12)

3. Sum of Square Regression (SSR):

SSR =
N∑
i=1

(ŷi − yi)2 (2.13)

4. Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

| (ŷi − yi) | (2.14)
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5. Mean Absolute Percentage Error (MAPE):

MAPE =
100%

N

N∑
i=1

| (ŷi − yi)
yi

| (2.15)

6. Root Mean Square Percentage Error (RMSPA):

RMSPE = 2

√√√√[
100%

N

N∑
i=1

(ŷi − yi)
yi

]2 (2.16)

Measures 1-4 are scale-dependent measures, since they depend on the scale of the

data. They are mainly used to compare different algorithms applied to the same

data set or to data sets of similar scales. Nevertheless, these measures should not

be used when the predictive systems are compared across data-sets of different

scales. On the other hand, measures 5 and 6 are scale-independent and often used

to compare algorithms across different data-sets. However, both measures 5 and

6 are undefined or infinite when the actual output is zero, since the error will be

divided by zero in this case.

• Confusion matrix:
Confusion matrix (or contingency table) is a table that illustrates the classification

performance of the predictive system. Table 2.1 shows the confusion matrix of a

binary classification problem (Alpaydin (2014)).

Table 2.1: Confusion matrix for binary classification problems

actual positive actual negative
predicted positive True Positive (TP) False Negative (FN)
predicted negative False positive (FP) True Negative (TN)

Assuming that there are two classes: positive class and negative class, the

elements shown in the above matrix are (Alpaydin (2014) and Fawcett (2006)):

TP (True Positives) is the number of examples correctly classified as positives.
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TN (True Negatives) is the number of examples correctly classified as negatives.

FP (False positives) is the number of negative examples incorrectly classified as

positives.

FN (False negatives) is the number of positive examples incorrectly classified as

negatives.

For this problem the classification error can be calculated using the following equa-

tion:

E =
FP + FN

FP + FN + TP + TN
(2.17)

Several metrics can be derived from the confusion matrix, such as:

Precision Also known as the positive predictive value (PPV). It measures the num-

ber of the correctly classified positives divided by the total number of positive

examples.

Precision =
TP

TP + FP
(2.18)

Recall Also known as the sensitivity, it measures the proportion of the positive

examples that are correctly identified.

Recall =
TP

TP + FN
(2.19)

Specificity It measures how well the classifier detects the negative examples.

Specificity =
TN

TN + FP
(2.20)

F-measure (F-score) is an accuracy test that can be calculated using a weighted

average of the precision and recall as shown in the following equation:

F −measure = 2× precision× recall
precision+ recall

(2.21)

The best value a classifier can achieve in this measure is 1 and the worst value

is 0.

When the number of classes (k) exceeds 2; the confusion matrix becomes a (k×k)

matrix (Alpaydin (2014)). The main diagonal of the matrix contains the correctly

classified examples and the off diagonal elements contain the examples that are
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misclassified. Ideally all off-diagonal elements should be 0.

• ROC and AUC:
Receiver Operating Characteristic (ROC) is a 2-dimensional graph used to vi-

sualise the classifier performance in binary classification problems (Kubat et al.

(1998)). Figure 2.7 shows an example of the ROC curve, where the y-axis of this

graph represent the TPrate (recall) and the x-axis of the graph represent the FPrate

(1− specificity). This curve maintains a trade-off between the benefits (true pos-

itives) and the cost (false positives). An Ideal classifier will have a TPrate = 1

and FPrate = 0. The closer the classifier is to the upper-left corner the better is its

accuracy.

Figure 2.7: The ROC curve for classifying the Virginica class in the Fisher iris data set
using logistic regression

The worst case in binary classification is when the classifier performance lies on

the main diagonal. In such a case it will have an accuracy value of 50%. However,

the performance of classifiers that go below the main diagonal can be improved

by flipping their decision (Alpaydin (2014)). In order to obtain a single value

that represents the accuracy of the classifier, the Area Under the Curve (AUC) is

calculated. An ideal classifier will have an AUC=1.
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• Weighted accuracy (cost sensitive) measures:
As explained before, the confusion matrix distinguishes different types of error. In

some applications different costs are associated with misclassification errors. For

instance, the cost of misclassifying a simple injury as deadly is much lower than

the cost of misclassifying a deadly injury as a simple one (King et al. (1995)).

For such applications a cost matrix is constructed. This matrix provides the cost of

each type of error. For example, the cost matrix of a binary classification problem

is given as:

actual positive actual negative

predicted positive Cost(0, 0) Cost(0, 1)

predicted negative Cost(1, 0) Cost(1, 1)

The optimal prediction in this case can be calculated using the following

equation (Elkan (2001)):

L(c, i) =
∑
j

P (j | c)Cost(i, j) (2.22)

Where L is a function which calculates the loss, i is the index for the predicted

class, j is the index of the true class, P (j|c) is the probability of the class j being

the true class c, and Cost(i, j) is the cost of the prediction.

2.3.2 Complexity

Complexity can be divided into two categories: model complexity and algorithmic com-

plexity (Russell and Norvig (2010)). Model complexity is the complexity of the final

trained model, which can be obtained using different training algorithms. On the other

hand, the algorithmic complexity is the complexity of the algorithm used to train the

model. The following discussion highlights the differences between these two concepts.

Consider Table 2.2, the second column shows various types of predictive models that can

be trained to fit a linearly separable classification problem. Though the generated models

are all linear models, however, their complexities and the complexities of their training

algorithms are widely varied. Increasing the complexity of the classification problem (as

shown in the third column) will require changes in the complexities of the models as well

as their training algorithms. The algorithmic complexity of the training model plays an
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Table 2.2: Learning methods used to generate linear and quadratic predictive Models

Model type Linear Model More Complex Model

Tr
ai

ni
ng

al
go

ri
th

m Linear regression Second or higher order poly-
nomial

SVM with linear SVM with nonlinear
kernel kernel
Linear perceptron MLP
DT with one node DT with more than one

node/level
Rule base system with single
rule

Rule base system with multi-
ple rules

important role in dynamic environments, as the model may need to be retrained repeat-

edly.

Meanwhile, the complexity of the developed model should be chosen such that a com-

plex model is not chosen for a problem that can be solved using a simpler model (Blumer

et al. (1987)).

Figure 2.8 shows an example where three functions of different complexities are used to

model a given data set. The first function is a simple linear fit, and it represents the case

where the model has lower complexity than what the application requires. The middle

function shows a model with moderate complexity and it shows a good representation of

the data. Finally the third function shows a model that has higher complexity level than

what the application requires.

Figure 2.8: A data set fitted with three functions of increasing complexity. Adopted from
Gunn (2012).

2.3.2.1 Algorithmic Complexity Measures

Algorithmic complexity can be measured using the following methods:
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• Kolmogorov complexity
Though Kolmogorov complexity is a theoretically well-defined method for mea-

suring the algorithmic complexity, it is not applicable in practise. This method

defines the complexity of an algorithm as the length of the shortest Turing machine

program that can represent this algorithm. The Kolmogorov complexity is given

below (Jankowski and Grabczewski (2011)):

Ωk(Pr) = minpr(l(Pr) : program pr prints Pr) (2.23)

Where Ωk(Pr) represents the Kolmogorov complexity and l(Pr) represent the

length of the program. Nevertheless, the search space for this problem is unlimited

and the program execution time is also unlimited, which makes finding the pro-

gram with the shortest length an unsolvable problem. This is known as the halting

problem and can be stated as (Reed (2005)):

”Given a description of an arbitrary computer program, decide whether

the program finishes running or continues to run forever”

• Levin Universal Search (LUS)
LUS introduces a time-bound on the Kolmogorov complexity and by that it intro-

duces a computable version of the Kolmogorov complexity, the LUS equation is

(Jankowski and Grabczewski (2011)):

Ωl(Pr) = minpr(l(Pr) : program pr prints pr in tpr) (2.24)

Ωl(Pr) = l(Pr) + log(tpr) (2.25)

Where tpr is the time required to finish the program.

Nevertheless, solving the LUS is an NP-hard (Non-deterministic Polynomial-time

hard) problem, where, an NP problem is a problem for which a solution can be

verified in polynomial time using a deterministic Turing machine. Meanwhile, an

NP-hard problem is a class of problems which are at least as hard as the hardest

problem in NP. Due to this, in practise it is impossible to find the exact solution

for this optimisation problem (Jankowski and Grabczewski (2011)).

• Asymptotic analysis and big O notation
Asymptotic analysis can be used to measure the algorithmic complexity of a
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learning method. It measures the number of operations performed by an algorithm

and the size of its input (Russell and Norvig (2010)). However, finding the exact

number of operations carried out by an algorithm is often non-trivial. In such

situation the number of operations required to solve the worst case or the average

case in the problem is considered. This approximation is noted as the big O

function. The most common types of O functions are:

– Constant

– Logarithmic (log n)

– Linear(n)

– N-log-N (n log n)

– Quadratic (n2)

– Cubic (n3)

– Exponential (2n)

The main limitation of asymptotic analysis is that, though it provide a mechanism

for measuring the time and memory usage of algorithms, it does not consider the

type of the problem, the programming language or the machine limitation (Russell

and Norvig (2010)). In practise, the algorithmic complexity is often evaluated by

measuring the execution time and memory usage and it can be presented either as

a constraint or an additional criterion in the optimisation process.

The execution time represents the training time, testing time, and the time required

to deliver a single prediction. It can be measured in (msec., sec., min.,etc.) depend-

ing on the problem. Meanwhile, the memory usage represents the total amount of

memory required to store the structure of the algorithm and the memory required

to train the model. It can be measured in (bytes, Mbytes,etc.).

2.3.2.2 Model Complexity Measures

In order to compare models complexity across models from different fields a general

definition for the model complexity is required (like the big O notation used for the

algorithmic complexity).
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• Number of free parameters
One way for measuring the model complexity is to determine the number of free

parameters required by the model. This value can be found for all machine learning

algorithms and can be compared across models of different types. However, the

difficulty of finding these parameters varies for different machine learning models.

For example, the difficulty of finding the support vectors in SVM is not the same

as that of finding the weights of an ensemble.

Furthermore, this approach does not consider the internal complexity of the

model. For example, if two Neural Networks (NN) of the same structure (the same

number of hidden layers and hidden units) were considered, according to this

approach they will be treated as if they have the same number of free parameters

(same number of weights). However, they can have activation functions of varying

complexities. For instance, one could have a simple step function, while the other

could have a sigmoid function. Such internal complexities are not considered in

this approach.

• Bounding the generalisation error
Another approach to consider the model complexity is to introduce bounds on the

generalisation error. Models of different types can be compared based on their

generalisation error, and the model complexity is involved in the comparison in

an indirect way. One example of controlling the model complexity through the

generalisation performance, is to stop training the model when the error generated

on the validation set starts to increase, i.e. when the model starts to overfit the

training data and the complexity is higher than what is required.

The above methods can be used to compare complexities (directly or indi-

rectly) across different types of predictors. However, there are other methods for

controlling the model complexity with respect to the accuracy of models of the

same type. Examples of these methods are:

– Structural Risk Minimization (SRM)
Structural Risk Minimization (SRM) principle was developed in 1974 by

Vapnik and Chervonenkis. The SRM principle defines a function that restricts

the model complexity with respect to its empirical error. The complexity is
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measured using Vapnik Chervonenkis dimension (VC-dimension); it can also

be measured using a generalised version of the VC-dimension known as the

fat shattering dimension (Kearns and Schapire (1994)).

The SRM principle shows that the upper bound of the machine expected risk

is restricted by two factors. These factors are the empirical risk (the error)

and the VC-dimension (the complexity). The SRM follows the worst case

scenario by optimizing the upper bound of the expected error rather than the

expected error itself.

– Bias-Variance-Complexity decomposition
Another approach for comparing the models based on their accuracy and

complexity is the bias-variance-complexity decomposition (introduced in Yu

et al. (2006)). This method attempts to define a selection criterion which

takes into account the bias, the variance and the model complexity and aims

to minimize this criterion. The minimization process is considered as a Multi-

Objective Optimisation (MOO) problem, it trades off the bias and variance of

the models for a given (or an appropriate) model complexity. The model com-

plexity is measured using the number of parameters or degrees of freedom.

The selection criterion is (Yu et al. (2006)):

selection criteria = [(n+Ω)/(n−Ω)].[(h̄(x)−f(x))2+E[(f̂(x)− h̄(x))2]]

(2.26)

Where n is the size of the training data, Ω is the number of free parameters,

h̄(x) is the closest value in the hypothesis space to the target, f(x) is the target

function and f̂(x) is the solution found by the current hypothesis. However,

the bias-variance concept assumes that the models exist in the same hypoth-

esis space, due to this, this formula cannot be used to compare models of

different types.

2.3.3 Robustness

Predictive models are developed and trained to recognize data that comes from the same

distribution as the data they had been trained on, such that they can provide a perfor-

mance similar to that obtained during training. A robust predictive model can maintain

the same level of performance even when small perturbation is applied to the data (noise
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perturbation) or to the model internal parameters (parameter perturbation). Noise pertur-

bation and parameters perturbation can be explained through the following equations (Jin

and Branke (2005)), respectively:

f̂(x) =
1

N
ΣN

i=1[f(x) + noisei] (2.27)

f̂(x) =
1

N
ΣN

i=1f(x+ δi) (2.28)

Equation 2.27 calculate the expected fitness function with noise perturbation, where f̂(x)

is an approximation of the function f(x) and noisei is the added noise. On the other

hand, equation 2.28 calculates the expected fitness function (using Monte Carlo inte-

gration) with parameter perturbation where δi represents the perturbation in the system

parameters. It can be noted that the noise in equation 2.27 is an independent variable that

is added to the fitness function, while in equation 2.28 the uncertainty is part of the design

variables. Due to this, in the parameter disturbance case, even if the noise was normally

distributed, the expected fitness function depends on the shape of the function f(x) at

point x. The internal parameters of the predictive models may be subjected to noise due

to: noisy observations, estimating the parameters from a finite number of samples, and

over-simplification of the problem parameters.

Finding robust predictive models have been investigated in the field of decision (Bert-

simas and Thiele (2006)) as well as machine learning (Caramanis et al. (2011)). Early

works which address parameter perturbation in decision making use stochastic program-

ming. In this approach, the uncertainty was treated as a random variable with known

distribution probability (Kali and Wallace (1994) and Birge and Louveaux (2011)). Nev-

ertheless, knowing the actual distribution of disturbances is rarely possible in real world

problems. More recent approach which addresses parameter perturbation is the robust

optimisation(Bertsimas and Sim (2003) and Bertsimas and Sim (2004)). It assumes that

the distribution of the disturbances is known within certain bounds. In machine learning,

the task of finding a classification or regression model can be considered as finding the

optimal boundary with respect to unknown probability distribution which can be approx-

imated using a finite set of samples (Xu et al. (2009)).

In the following subsection stability, a more restrictive concept than robustness, is dis-

cussed.
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2.3.3.1 Stability

Generally, there are two main differences between stability and robustness (Jen (2003)).

Robustness can be applied to wider classes of systems, perturbation and features of inter-

est in the system. In addition, robustness provide a more general framework to investigate

the system behaviour in: dynamically changing environment, the evolvability of the sys-

tem over time, the cost and benefits of robustness and the effect of different perturbation

on different features of the system.

On the other hand, a system is said to be stable if its performance is not affected by slight

modification in the input data. Several approaches were proposed to create predictive

models that are less sensitive to perturbation. An example is the uniform convergence

of empirical quantities to their means (Vapnik and Kotz (1982)), where a bound on the

generalisation error can be obtained for a large number of empirical risk minimization

algorithms, such as, VC-dimension and fat-shattering dimension. Nevertheless, this ap-

proach cannot be applied with machine learning algorithms that have unbounded search

space (like K-nearest neighbour). In (Bousquet and Elisseeff (2002)) a new definition for

stability was proposed, where the notion of uniform hypothesis stability is introduced.

In this approach the focus is on how the algorithm searches the space rather than the ac-

tual size of the space. An example of this approach is the use of regularization methods

(Bousquet and Elisseeff (2002)).

2.3.4 Adaptation

The performances of predictive systems that are developed in a static environment often

deteriorate over time when applied online. To solve this problem and to improve the

performance of predictive systems in dynamically changing environments, adaptation is

introduced in the design of predictive systems. Adaptation can have a crucial effect on

the predictive system accuracy as well as the amount of resources used.

In order to build an adaptive predictive system, the first task is to identify when the adap-

tation will take place. However, rather than having a mechanism that identifies the need

for adaptation, many adaptive systems use a periodical adaptation mechanism regardless

of the actual need (Kadlec et al. (2011)). Continuous adaptation can result in a waste of

resources.

System adaptability can be evaluated with respect to changes in the predictive system
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accuracy. Furthermore, the need for adaptation can be assessed by measuring the cost of

adaptation. If the benefits acquired from the adaptation are greater than the drawbacks

then the adaptation is performed. According to (Žliobaitė et al. (2015)) the cost of the

adaptation can be decomposed into four components:

• Computational cost: is a function of the processing power and memory consump-

tion.

• Opportunity cost: is the lost cost, it has a non-zero value if the system is unable to

deliver prediction during an adaptation.

• Label cost: is the cost of obtaining labels.

• Communication cost: is the cost of transmitting the data.

Once the need for adaptation is triggered the actual adaptation procedure is performed.

Generally, adaptation can be carried out at two levels: low level where the system pa-

rameters are updated or higher level where the structure of the system is updated. In both

cases the main goal of the resultant system is to be able to adapt to slow changes and

drifting in the measurements as well as to sudden changes. In general, the adaptation

of the predictive model can follow one of the following four strategies (Žliobaitė et al.

(2015)):

• Fully incremental: the update is performed using the previous model and the latest

instance.

• Summary incremental: the update is performed using the previous model, data

summary and the latest instance.

• Batch incremental: the update is performed using a fixed number of instances

stored in a buffer.

• Non-incremental: the model is re-built at every adaptation.

2.3.5 Transparency

Transparency means that a model, its parameters value, equations and assumptions

can be easily interpreted by experts as well as non-experts. Such model provides the

non-expert with a general idea about the workflow of the model. Also it enables the

expert to evaluate the model performance. Transparency is a subjective and vague

term as only the user can judge the transparency of a model. Nevertheless, certain

methods were proposed to measure the interpretability of models, such as, the minimum
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description length principle for rule-based classification systems (Nauck (2003)).

Most predictive systems are viewed as black boxes for non-expert users, where input

goes in and prediction comes out without any explanation of the procedure used to

obtain the results. It was stated in (Nauck (2005)) that model transparency can be useful

in the following scenarios: to support human decisions in applications that depend on

such type of decisions, to check for modification in knowledge when it is used as a prior

knowledge in data analysis and to explain the obtained solution for non-experts.

An important thing to note is the difference between an explanatory model and a trans-

parent predictive model (Nauck (2005)). Explanatory models are designed to describe

the data to the user (they use all the available data and do not care for the generalisation)

and they are not used to provide prediction. Also they require an immediate result to be

provided to the user. Meanwhile, transparent predictive models are models that can be

easily interpreted by the user and they are developed to provide prediction for a certain

process, where their generalisation ability is a key factor. In addition, the model must be

available when the first prediction is due. Increasing model transparency often results

in reducing model accuracy (Nauck (2003)). In certain application where a transparent

model is required and a certain level of accuracy is needed, a trade-off between the two

criteria has to be maintained.

2.4 Predictive System Optimisation

Depending on the number of criteria used to evaluate the performance of the predic-

tive system and the importance associated with each criterion, one of the following ap-

proaches can be used to optimise the performance of the predictive system. In the fol-

lowing subsections four of the most common optimisation approaches are described for

optimising single as well as multiple criteria:

2.4.1 Single Objective Optimisation

In this approach the predictive system performance is optimised using a single criterion.

Traditionally, the accuracy of the prediction is used as the main optimisation criterion. In

the case where other criteria are also considered in the optimisation, these criteria can be

presented as constraints in the optimisation process. For example, the model complexity
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can be presented as a constraint to ensure that the developed model does not overfit or

underfit the training data and that it generalises well on unseen data. An example of this

approach is the use of cross-validation techniques (Anguera et al. (2007)). Figure 2.9

shows a simple illustration of this approach, where Cr represent a single criterion.

�

Cr(x)X Ŷ

Figure 2.9: Optimising a single criterion

2.4.2 Scalarized Multi-Objective Optimisation

In order to optimise the performance of a predictive system using multiple criteria, one

approach is to combine these criteria using a scalarization function. Figure 2.10 provides

a simple illustration of this approach, where w1, , wk are the weights associated with the

k criteria Cr1(x), , Crk(x).

An example of this approach is optimising the accuracy with respect to the model com-

3

w1Cr1(x) + w2Cr2(x) + ...+ wkCrk(x)X Ŷ

Figure 2.10: Optimising multiple criteria using scalarized MOO

plexity, which can be achieved using a number of methods, such as, using regularisation

terms to penalize models with high complexity (Barron (1991)), the function for this ap-

proach is given below Jin and Sendhoff (2008):

f̂(x) = ε+ λΩ (2.29)
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where ε is the prediction error, λ is a hyperparameter and is chosen in the range

(0 < λ < 1) and Ω is the model complexity.

Furthermore, there are algorithms that optimise more than one objective as part of their

training procedure such as the SVM which optimises both accuracy and complexity

through the use of SRM framework (Cortes and Vapnik (1995)).

Another example for scalarized optimisation is the weighted formula (Andersson (2000)),

where a certain weight value is associated with each criterion; the weights represent the

degree of importance each criterion have. Depending on the value of the criteria and the

provided weights a certain model is preferred over the rest. The mathematical represen-

tation of the weighted formula is shown below:

f̂(x) =
N∑
i=1

wiCri(x) (2.30)

2.4.3 Multi-Objective Optimisation

Multi-objective optimisation finds a set of non-dominated models (solutions) that

trade-off a set of conflicting criteria. The general mathematical formula of MOO can be

expressed using the following constraint optimisation problem (Deb (2001)):

min(max) Crk(x) k = 1, 2, .., K

Subject to gj ≥ 0 j = 1, 2, ..., J

hm = 0 m = 1, 2, ...,M

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, ..., N

(2.31)

A solution that satisfies the equality constraints hm as well as the inequality constraints

gj is called a feasible solution, while the solution that does not satisfy these constraints is

called an infeasible solution. The input xi is limited by a lower bound x(L)i and an upper

bound ≤ xU(i).

Since there is typically no single solution that can optimise all of the conflicting crite-

ria, most MOO algorithms aim to find a set of non-dominated Pareto-optimal solutions.

These solutions (models) are non-dominated with respect to each other and they repre-

sent a trade-off between the different criteria.

According to Deb (2001) two conditions must be satisfied for solution (A) to dominate

solution (B): solution (A) must not be worse than solution (B) in any criterion, and solu-
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tion (A) must be better than solution (B) in at least one criterion.

The most common types of Pareto-based Multi-Objective Optimisation are evolution-

ary based MOO such as Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb

et al. (2002)), Multi Objective Particle Swarm Optimisation (MOPSO) (Parsopoulos and

Vrahatis (2002)) and Strength Pareto Evolutionary Algorithm 2 (SPEA-2) (Zitzler et al.

(2001)) among others.

2.4.4 Hierarchical Optimisation

In this approach a priority vector (ranking) is associated with the criteria used in the op-

timisation process. The optimisation process starts with the criterion that has the highest

level of importance (highest rank) and gradually optimises the rest of the criteria in a de-

scending order according to their rank. Figure 2.11 illustrate the hierarchical optimisation

approach.

�

�

�

?

?

Cr1(x)

Cr2(x)

Crk(x)

Figure 2.11: Optimising multiple criteria using hierarchical optimisation

An example of this approach is the lexicographic method, where a decision maker pro-

vides a ranking vector and according to this vector the criteria are optimised sequentially

from the highest rank to the lowest rank. After each round of optimisation the resultant

models are compared according to the current major criterion. If a set of models have

comparable values with respect to that criterion, further comparison is held according to

the next lower rank criterion. However, defining the rank in which the criteria are opti-
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mised needs predefined information about their level of importance. Furthermore, once a

dominated model with respect to a certain criterion is found, the comparison ends and the

remaining lower rank criteria are not considered in the comparison (Rentmeesters et al.

(1996)).

The mathematical representation of the lexicographic method can be given as (Jee et al.

(2007)):

minCri(x)

Subject to Crj(x) ≤ Crj(x
∗
j)

i = 1, 2, , K, j = 1, 2, , i− 1 if i > 1

(2.32)

Where Cri(x) is the current criterion to be optimised, i = 1 for the highest important

criterion and as the optimisation proceed (i > 1) the previous optimisation criteria are

converted into inequality constraints. The Crj(x∗j) represent the optimal value given by

a prior attained solution x∗j = arg minCrj(x) subjected to constraints from the previous

levels. Thus as the final level of the optimisation process is reached, the number of

constraints increase to K − 1 .

2.4.5 Comparing Optimization Approaches

In the literature many studies compare the effectiveness of the different approaches

of MOO, focusing on the advantages and drawbacks for each approach. An example

is the work presented in (Jin and Sendhoff (2008) and Freitas (2004a)), where Single

Objective Optimisation (SOO), weighted formula (scalarized MOO) approach and

Pareto based MOO approach are compared based on the quality of the models these

approaches generate. The following section provides a brief comparison between these

three approaches.

Starting with the weighted formula, the main advantage for this method is its simplicity

and ease of use where all the criteria can be combined in a single weighted function.

However, it suffers from a number of drawbacks (Freitas (2004b)). One of the main

drawbacks of the scalarized MOO is the need to define additional information, like

providing the weights vector for the weighted sum method. Another drawback is that

each criterion is measured using different units and they often have different scales,

combining them in a single equation results in mixing different types of measurements.

Furthermore, normalising the criteria defines a single scale, but it can result in losing the
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sense of how good or bad the criterion value is.

On the other hand, Pareto-based approach requires all of the criteria to be measured

independently, while this might not always be the case in the scalarized MOO approach.

Measuring the different criteria independently is not always feasible. For example, the

model complexity of an SVM model cannot be measured independently of its accuracy,

as both criteria are optimised together during the training phase. However, these criteria

can be measured for many predictive model types, such as, decision trees. Though

this approach is more complex, it does not suffer from the randomness found in the

scalarized MOO approach which comes from defining the parameters in an ad-hoc

manner (Freitas (2004b)). It can be argued that running a scalarized MOO multiple times

can provide a set of solutions that lies on the Pareto front and by that the unnecessary

complexity of the Pareto-based approach can be avoided. However, this claim ignores

the following arguments: running a scalarized MOO method multiple times is an ad-hoc

approach, hence each time different set of weights are used and the results obtained

from the previous run are not considered. Also, there is no clear method for determining

the number of iterations for the algorithm to find all the non-dominated solutions.

Furthermore, the solutions found might not capture the actual distribution of solutions on

the Pareto front which can result in losing the diversity of the generated models. Finally

scalarized MOO cannot find solutions in non-convex Pareto-front.

Although the scalarized MOO returns a single solution while the Pareto-based MOO

returns a set of solutions, the latter approach can be especially useful when the output

of the predictive system needs to offer a range of solutions (models) to an experts (a

decision maker) to choose from according to their preference. In practice, identifying

the Pareto front for a real world problem cannot be achieved accurately, but it is loosely

assumed that the solutions obtained by Pareto based algorithms are Pareto optimal

solutions.

2.5 Summary

The learning process in predictive systems can be decomposed into three components:

representation, evaluation and optimisation of the predictive system. This chapter ex-

plores these components to establish the theoretical background for the work presented
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in this thesis. Since this thesis employs multiple-criteria in the optimisation process for

complex learning prediction systems, this chapter defines predictive systems architec-

tures, the criteria used in their evaluation and the optimisation approaches used to gener-

ate the predictive system/model.

This chapter started with defining the architectures of the predictive systems in Section

2.2, from single predictor to complex pool of competing predictors. Then Section 2.3 ex-

amines the multiple criteria used in evaluating predictive systems performance. The cri-

teria considered in this Section include: the accuracy, model and algorithmic complexity,

robustness, adaptation and transparency. In section 2.4 many optimisation approaches

used to optimise the predictive system performance with respect to the evaluation criteria

are explained. This Section considers the main approaches used to optimise a single as

well as multiple criteria.

The next Chapter presents a general design cycle of the predictive system which fo-

cuses on the generation and optimisation of the base predictors using multiple criteria.

Furthermore, it conducts a new experiment which compares two MOO approaches and

highlights the cost and benefits obtained from including multiple criteria in the optimi-

sation of machine learning models in different classification settings. The optimisation

approaches used are: scalarized MOO and the Pareto-front MOO.



Chapter 3

Design Cycle of Multi-Component,
Multi-Layer Predictive System and
Base Models Generation

3.1 Introduction

This chapter introduces the design cycle of the MCMLPS considered in this thesis and

focuses on the generation and optimisation of the base predictors using multiple crite-

ria. This design cycle (discussed in Section 3.2) focuses on certain aspects of MCMLPS,

such as, local versus global models, evaluation of base predictors using single or mul-

tiple criteria and the optimisation approaches used for this system. Furthermore, a case

study for evaluating and optimising the performance of the base models for MCMLPS

is introduced in Section 3.3. This case study follows two optimisation approaches to

optimise the performance of the base models using multiple criteria. It provides a criti-

cal evaluation of the literature reviewed in the previous chapter. In addition, it helps in

setting the experimental framework of this thesis by highlighting the benefits and draw-

backs of using certain criteria and optimisation approaches in evaluating and optimising

the performance of the predictive system.

39
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3.2 General Design Cycle of MCMLPS

The design cycle of MCMLP is shown in Figure 3.1. This work does not investigate

the process of data acquisition as it assumes the data has been already collected. The

proposed design cycle encompasses the following stages:

 

Data 
Pre-Processing 

Model Generation 

Model Evaluation 

Model Optimisation 

Post-Processing 

Output Prediction 

Local Models 

Global Models 

Single Criterion 

Multiple Criteria 

SOO 

MOO 

Figure 3.1: Generalized design Cycle of MCMLPS
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3.2.1 Pre-Processing

In real world problems, the collected data can be affected by one or more of the following

complications: noise, missing values, inconsistent data and high dimensionality. Thus,

pre-processing the data before training the predictive models can improve the quality of

the prediction and/or reduce the time required to deliver the prediction (Han et al. (2011),

Bruha and Famili (2000), Salvador et al. (2016) and Zliobaite and Gabrys (2014)). A

single or multiple stages of pre-processing methods can be applied to the data. In general,

pre-processing techniques can be used to perform different tasks. These tasks include (but

not limited to) the following:

• Outlier removal: An outlier is defined as a point that lies outside the mean dis-

tribution of the input data (Theodoridis and Koutroumbas (2006)). The existence

of outliers can be a result of noisy measurements. In most cases outliers are con-

sidered as noise or exceptions and are discarded during the pre-processing stages.

However, when the number of outliers is large or when they represent an event of

interest to the designer (for examples, the outliers in fraud detection, where rare

cases of frauds are more important than regular events), outliers can be analysed

through outliers mining techniques (Han et al. (2011)).

• Data normalization: The ranges of the data features can vary widely as they rep-

resent different aspects of the prediction problem. For example, in customers data

age and salary can have completely different ranges which do not necessarily rep-

resent their influence in the prediction problem. In machine learning methods,

especially if these methods provide their prediction using a distance based metric,

such as, nearest neighbour or clustering methods having large differences in the

scales of the features can affect the accuracy of the prediction. Thus often nor-

malising the data can lead to improving the performance of the prediction method

(Han et al. (2011)).

• Missing values: In practise, some of the data features can have missing values for

certain instances. This can be due to one or more for the following: malfunction in

the equipment used to collect the data, missing information for certain users, error

in entering the data, etc (Mitchell (1998) and Alpaydin (2014)). Pre-processing

techniques can be used to handle missing values problem. If the data set is large

enough, the data instances with missing values can be discarded, however, in real

world problems this is seldom the case. The missing values can be predicted using
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one of the following techniques (Han et al. (2011)): filling the values manually,

replacing missing value with a global constant, using the mean of the respective

feature to fill in missing values or predicting missing values.

A number of machine learning approaches have been proposed to handle missing

values without explicitly provide alternative values for them. Examples on these

methods can be found in neural network ensembles such as the network reduction

method proposed by Sharpe and Solly (1995) which trains a set of Multilayer Per-

ceptrons (MLPs) on a different possible combination of the features. Furthermore,

Krause and Polikar (2003) developed a NN ensemble which deals with missing

values by training its base predictors on random subsets of the features. Another

approach is proposed by Juszczak and Duin (2004), where an ensemble consists of

one class classifiers, each trained on a single feature. Therefore, if a feature has a

missing value for certain sample, the classifier can still provide prediction for this

sample using the other features.

On the other hand, some of the well-known methods used to generate decision trees

have additional mechanisms that allow them to deal with missing values, such as,

ID3 (Quinlan (1986)) where an additional edge in the tree is provided for each

missing feature. This edge contains the possible values for the missing feature. An

extension of ID3 is the C4.5 (Quinlan (2014)) which uses probabilistic approaches

to deal with missing values.

• Dimensionality reduction: One of the main factors that control the complexity of

the predictive model is the size and dimensionality of the data. Thus reducing the

dimensionality of the data can reduce the complexity of the model. Furthermore,

using smaller number of features (without loss of information) can better explain

the underlying process which generates the data as well as help to visualize and

analyse the data (Alpaydin (2014)).

Dimensionality reduction can be achieved using one of the following two ap-

proaches:

– Feature selection: In this approach a subset of the features that contains the

most information about the prediction problem is selected. The subset is se-

lected based on a predefined metric, such as, features correlation (Tumer and

Ghosh (1996)) or mutual information (Cover and Thomas (2012)).

– Feature extraction: In this approach the original features are combined into a
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new set that has a fewer number of features. Feature extraction methods can

be classified according to the type of learning method into: supervised and

unsupervised methods.

The most widely used feature extraction methods are Principle Component

Analysis (PCA) and Linear Discriminate Analysis (LDA) which are linear

projection methods that can be applied to supervised as well as unsupervised

methods. Examples on non-linear dimensionality reduction methods are iso-

metric feature mapping (Tenenbaum et al. (2000)) and locally linear embed-

ding (Saul and Roweis (2000)).

3.2.2 Model generation

In this stage, the processed data is used to train the base models of MCMLPS. The train-

ing data is usually limited and expensive to obtain (Budka (2010)). Furthermore, to avoid

overfitting, not all of the available data is used in training the base models. Some of the

available data should be reserved for testing the performance of the generated models.

Normally, the more data is used in training the model, the more the model represents the

problem and the better is its performance (Ruta (2003)).

In ensemble learning, the diversity of the base models plays an important role in deter-

mining the overall performance of the system. Thus the base models of such systems are

often trained on different versions of the available data. The models can be trained either

on a slightly different replicas of the original data, like in Bagging (Breiman (1996)),

where each base predictor is trained on a bootstrapped sample of the original data, or

they can be trained on modified versions of the original data, like in Boosting (Freund

and Schapire (1996)), where each new base model is trained on a new weighted version

of the data set. Such models are known as global models as they are trained on all of the

available data. On the other hand, a model that is trained on a local subset of the features

and/or the data, is known as a local model. Local models can be trained on disjoint or

intersected subsets of the data (Rodriguez et al. (2006) and Kadlec and Gabrys (2011)).

3.2.3 Model evaluation

Historically, the generalisation ability of the predictive system is used as the main cri-

terion in evaluating the performance of the predictive models. However, as it has been
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discussed in Chapter 2, depending on the prediction problem and the user preference, the

performance of the predictive systems can be evaluated using single as well as multiple

criteria. The criteria can be measured using different methods; some of these measures

are specified to only one type/class of predictive models, while other measures can be

used across different models. A universal measure is a measure that can be used to eval-

uate a certain criterion across all types of predictive models. However, these measures

can be defined for some but not all of the criteria discussed in the previous Chapter. The

feasibility of defining universal measures for these criteria is explored below.

A universal measure can be defined for the accuracy of the predictive model, where the

test error of the prediction, can be estimated and compared across different types of pre-

dictive models. On the other hand, a more difficult task is to define a universal measure

for the model complexity. Different predictive models have different structures. Depend-

ing on these structures, the complexity of the models can be evaluated. A number of

methods for measuring the model complexity were discussed in Chapter 2. Furthermore,

the algorithmic complexity can be measured using the asymptotic analysis and the big O

notation. Nevertheless, these measures do not take into consideration the programming

language used or the machine limitation. Due to this, the algorithmic complexity is often

captured through monitoring the execution time and the memory usage.

Meanwhile, many methods were proposed to measure the diversity among the base mod-

els of MCMLPS. However, there is no universal measure or notion of diversity (Kuncheva

and Whitaker (2003), Brown and Kuncheva (2010) and Bi (2012)).

Furthermore, the adaptation ability of predictive models depend on the type of the model

and the operating environment. The need for adaptation can be assessed by measuring the

cost of adapting. If the benefits acquired from the adaptation are greater than the losses,

then the adaptation is performed (Žliobaitė et al. (2015)). The cost of adaptation can be

used as an additional criterion or a constraint in the designing process of MCMLPS.

In addition, considering the robustness and stability of the developed models can help

in reducing the model sensitivity to small perturbations in the environment and/or in the

models parameters (Xu et al. (2009)). However, the approaches used to ensure the ro-

bustness and stability of the developed model depend on the type of the model used and

the optimisation process.
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3.2.4 Model optimisation

In this stage, the evaluation criteria are used to optimise the performance of the predictive

system. As has been discussed in Chapter 2 (Section 2.4), depending on the number of the

criteria included in the optimisation process, a single or multiple objective optimisation

approaches can be followed.

The optimisation process can be performed either in one iteration (such as optimising

accuracy and complexity using regularization term Barron (1991)) or repeated multiple

times (such as optimising multiple criteria using NSGA-II Deb et al. (2002)) until the

required performance is achieved. In methods like Boosting, the optimisation process is

repeated each time a new classifier is added to the ensemble. The number of iterations for

the optimisation process also depends on the availability of the computational resources.

3.2.5 Post-processing

Post-processing can be applied to the predictive models as well as their output prediction

(Bruha and Famili (2000)). A subset of or all the trained models can be used as the base

predictors for the MCMLPS. The selection of the models included in the system can

be made using a single or multiple criteria. These criteria are not necessarily the same

as the criteria used in evaluating the performance of the base models. For example, the

selection can be made purely based on the accuracy, while the models are evaluated

using both accuracy and model complexity. Furthermore, a given characteristic of the

models can be used as a selection criterion, such as, using a measure of locality or

diversity among the models. Common examples of selecting the models based on their

accuracy are (Ruta (2003)): selecting the top N scoring models, removing the worst N%

models or choosing models that perform better than random guessing.

Once the models are selected, a combiner is used to provide the final prediction of the

system. Examples of combiner methods are (reviewed in Ruta and Gabrys (2000)):

Majority vote, plurality vote, averaging combiners and their weighted versions.

Post-processing can also be applied to the extracted knowledge, such as performing a

post-pruning to a decision tree or rule truncation (Toivonen et al. (1995)) for decision

rules. In addition, the extracted knowledge can be interpreted and explained through

visualization or documentation (Bruha and Famili (2000)).
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The next Section investigates the generation of predictive models using multiple

criteria. The main results of this study has been published in (Al-Jubouri and Gabrys

(2014)). The aim of the study proposed in the next Section is to explore the feasibility of

including multiple criteria in the design process of the base components of MCMLPS.

Furthermore, it compares different multi-objective optimisation approaches and exam-

ines the main advantages and drawbacks of evaluating and optimising the performance

of the base predictors using multiple criteria.

3.3 Comparing Multi-criteria Predictive Models gener-

ated from Scalarized MOO and Pareto-based MOO

This Section investigates the evaluation of MCMLPS base models using multiple criteria.

The criteria included are: predictive model accuracy, model complexity, and algorithmic

complexity (related to the learning algorithm and prediction delivery) captured by moni-

toring the execution time. Furthermore, this study compares and analyses the predictive

models resulted from two optimisation approaches. The first approach is a scalarized

MOO, where the models are generated from optimising a single cost function that com-

bines the criteria. On the other hand, the second approach uses a Pareto-based MOO

to trade-off the three criteria and to generate a set of non-dominated models. The first

?

Algorithms

Dataset
Repository

All Criteria

Generalisation

Measured

Estimate

Error

Multi-Objective
Optimisation

Present Time

as a Constraint

Obtain
Model(s)

Obtain
Model(s)

The Two
Compare

Approaches

and Memory

Pareto based MOO

Scalarized MOO

Figure 3.2: The two approaches for evaluating and optimising predictive models.

approach estimates the generalisation error of the predictive models by optimising the
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accuracy with respect to the complexity and then the execution time and memory usage

is used as a hard constraint to choose the most appropriate model.

On the other hand, the second approach requires all three criteria (accuracy, model com-

plexity and algorithmic complexity) of the predictive models to be measured separately.

Then the performance of the predictive models is optimised using a Pareto-based MOO

technique and the resultant non-dominated models are presented to a decision maker to

choose from. This study shows that the models generated from Pareto-based MOO ap-

proach can be more accurate and more diverse than the models generated from scalarized

MOO approach. Figure 3.2 illustrates the two approaches for evaluating and optimising

predictive models.

The data sets used in this experiment are shown in Table 3.1. The aim of this experiment

is mainly to investigate the optimisation of predictive models using multiple criteria.

Furthermore, it aims to compare between different optimization approaches, with no in-

tention to prove that one approach is superior to another. Thus the data sets have been

chosen such that they have a varying number of samples and generally a small number

of features. The varying sizes of the data sets helped in studying the effect of the data

size on optimizing the three considered criteria using the two optimization approaches.

On the other hand, having a small number of features helped in interpreting the results.

Furthermore, the effect of increasing the number of features in the data on the accuracy

of the prediction is studied using the Gaussian data sets, where the same data set is de-

scribed using 2, 4 and 8 features. Descriptions of the data sets used in this work are

presented in Appendix A.

Table 3.1: Data set details

Number Data sets No. of examples No.of features No. of classes
1 Cloud 5000 2 2
2 Concentric 2500 2 2
3 Cone-Torus 400 2 3
4 Gaussian 2D 5000 2 2
5 Gaussian 4D 5000 4 2
6 Gaussian 8D 5000 8 2
7 Shuttle 58000 9 7
8 Synthetic 1250 2 2
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3.3.1 Methodology

In order to compare the predictive models generated using the two optimisation ap-

proaches discussed above; measures for the criteria included in the optimisation should be

defined. The criteria included are accuracy, model complexity and algorithmic complex-

ity. Here, a universal measure can be defined for the predictive models accuracy (such as,

the mean square error). Meanwhile, the algorithmic complexity can be captured through

measuring the execution time and the memory usage required by the training algorithm.

If only one type of models is used (that has the same structure) then only the execution

time is considered since the memory usage will be the same for all models.

Both accuracy and execution time can be measured and compared across predictive mod-

els from different families. However, as mentioned before, this is not the case for the

model complexity. Different models require different complexity measures. Due to this,

predictive models from different families cannot be compared based on their complexi-

ties. In order to allow the evaluation and optimisation of the predictive models using all

three criteria, this study uses only one type of predictive models. A feed forward NN

with one hidden layer and ten hidden units has been used. The output of this network is

defined as:

f̂(xt, w
U , wH) =

m∑
j=1

wU
j φ(

n∑
i=0

wH
i,jxit) (3.1)

U and H are the weights of the output and hidden layers respectively. In the Pareto-

based MOO approach the neural network is trained using Levenberg-Marquardt algo-

rithm (Marquardt (1963) and Hagan and Menhaj (1994)), while in the scalarized MOO

approach the neural network is trained using Bayesian regulation backpropagation algo-

rithm (MacKay (1992) and Dan Foresee and Hagan (1997)). The transfer functions for

the hidden layers and the output layer are hyperbolic tangent and linear functions respec-

tively.

In both approaches the accuracy is measured using the mean square error. Meanwhile,

the complexity of the developed models is bounded using the sum of the square weights,

as shown in equation 4.1 (Jin and Sendhoff (2008)).

Ω =
M∑
i=1

w2
i (3.2)
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The weights used in this experiment include: the input layer weights and hidden layer

weights.

Due to the use of only one type of NNs, the memory usage is fixed for all the networks and

the execution time T (measured in seconds) is used to capture the algorithmic complexity

of the predictive models.

The Pareto-based MOO technique used in this study is NSGA-II (Deb et al. (2002)).

The NSGA-II unconstrained optimisation equation for the NN is given below:

Min (Cr1, Cr2, Cr3)

where

Cr1 = Error

Cr2 = Ω

Cr3 = T

(3.3)

The parameter setting for the NSGA-II are:

• Population size: 10

• Selection function: Tournament selection

• Crossover fraction: 0.8

• Crossover function: Single point crossover

• Mutation rate: 0.05

• Mutation function: Uniform

• Termination condition: exceed 10 iterations.

On the other hand, in the scalarized MOO approach, the NN is trained using a

Bayesian regulation, where the square error and the sum of the network weights are

combined in a single cost function and the training algorithm aim to minimize this func-

tion. In this approach time can be presented as a hard constraint to choose the final model.
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3.3.2 Results

The scalarized MOO and the Pareto-based MOO approaches were applied to the eight

data sets shown in Table 3.1. Figure 3.3 compares the non-dominated predictive models

generated from the Pareto-based MOO approach and the models generated from multi-

ple runs of the scalarized based MOO approach. Due to the different scales of the three

criteria, a 3D illustration is not suitable to compare the results. Furthermore, using 2D

representation to compare two criteria at a time does not allow an accurate comparison,

as the Pareto-based MOO approach optimises all the three criteria simultaneously while

the second approach optimises only two criteria and presents the third one as a constraint.

Due to this, each criterion is compared individually for the two approaches. Moreover, a

kernel smoothing function (presented in Bowman and Azzalini (1997)) is used to repre-

sent the results for the three criteria.

The first column of Figure 3.3 shows that the error of the Pareto-based MOO approach

has a lower starting point than the error of the scalarized MOO approach, this means that,

in this experimental work, the model generated from the Pareto-based MOO approach

can often have a lower error value than that generated from scalarized MOO approach.

Furthermore, the highest peak of the Pareto-based MOO approach is centred on a lower

error value than the scalarized MOO approach. This indicates that most of the models

generated from the Pareto-based MOO approach have a lower error value than those gen-

erated from the scalarized MOO approach. On the other hand, the model complexity of

the two approaches had varied widely across the eight data sets. However, the model with

the highest complexity is often found by the Pareto-based MOO approach. Furthermore,

both approaches have produce models with high accuracy when applied to a large multi

class data set like the shuttle data set (Figure 3.3(s)). Also, increasing the dimension of

the Gaussian data sets (2D, 4D and 8D) did improve the accuracy of the models gener-

ated from both approaches (as can be seen in Figure 3.3 (j),(k) and (i) respectively).

In addition, it can be noticed from Figures 3.3 (o) and 3.3 (u) that the complexities of the

models generated from scalarized MOO approach for the two data sets (Gaussian 8D and

Shuttle) have a single peak on a low value, while the complexities of the Pareto-based

MOO models continue to large values (up to 5 × 107). This is due to a large complex-

ity value for one or more of the non-dominated models found on the Pareto front of the

MOO approach.

Finally, the execution time of the scalarized MOO models is almost fixed while the
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Pareto-based MOO models have a varying execution time for the eight data sets, as shown

in the third column of Figure 3.3. Generally, the time required by the NSGA-II to find

the non-dominated models is large. This is due to the high algorithmic complexity of the

NSGA-II algorithm, which is O(MN2) (Deb et al. (2002)), where N is the population

size and M is the number of objectives, with an algorithmic complexity of the individ-

ual chromosomes (NN trained with Levenberg-Marquardt algorithm) equals to O(C2),

where C is the number of examples (Zhou and Si (1998)). On the other hand, the algo-

rithmic complexity of the second approach is O(C2).

Pareto-based MOO techniques produce a set of non-dominated models, and the final

model is selected from them. Often this model is selected based on the knowledge of

an expert (a decision maker). In order to automate the choice of the mode, different

techniques can be used (Deb (2003)). These techniques are applied either after the non-

dominated models are found (post-optimal techniques) or during the optimisation pro-

cess. One of the post-optimal techniques is to measure the distance between the models

and a reference point, which is an imaginary point that has the minimum values (founded

by any of the non-dominated models) of all the criteria. On the other hand, the execution

time can be used as selection criteria in the scalarized MOO approach.

3.3.3 Increasing the Population Size and the Maximum Number of
Generation in the Pareto based MOO

This section studies the increase in population size and the maximum number of

generation for the Pareto based MOO. The results showed that, this can improve the

accuracy of the predictive models, as can be seen in the first column of Figures 3.4.

However, running the Pareto-based approach for a very long time and increasing the

population size, results in increasing the upper bound of the model complexity. It can

be noticed from Figures 3.4 (m), 3.4 (o), 3.4 (v) and 3.4 (u) that the complexities of the

models generated from scalarized MOO have a single peak on a low value. Meanwhile,

the complexities of the Pareto-based MOO models have a varied distribution over the

x-axis scale and can reach large values. As has been indicted in the previous Section, this

is due to having large complexity value for one or more of the non-dominated models

found on the Pareto front. Nevertheless, for the same data sets there are non-dominated

models that have a lower complexity value than the scalarized approach with different

trade-off between complexity and execution time.
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On the other hand, the execution time of the Pareto-based MOO approach is shorter than

that of the scalarized MOO approach on four of the data sets (shown in Figures 3.4 (g),

3.4 (h), 3.4 (i) and 3.4 (x)). However, some of the non-dominated predictive models

have longer execution time when applied to the Gaussians data sets as well as the shuttle

data set. This is because Gaussians data sets have heavily overlapped distributions and

are not linearly separable, while the shuttle data set is a large multi-class data set and the

majority of its examples (80%) belong to one class. The trade-off between the accuracy,

model complexity and the execution time which the Pareto-based MOO achieves; results

in some of the non-dominated models having longer execution time but with a low

error and/or complexity values. However, the time required by the NSGA-II to find the

non-dominated models is long.

For a small population and a limited number of generations, a smaller number of non-

dominated models can be found. For instance, in the previous experiment (discussed

in Section 3.2) when the population size and the maximum number of generation were

set to 10, only four to five models were found. The accuracy, model complexity and

algorithmic complexity of these models were not as good as that of the models found in

this new setting. As the population size and the maximum number of generations are

increased from 10 to 100, the number of the non-dominated models was increased to

17 for the shuttle data set and 35 for all the remaining data sets. However, this comes

at the cost of high algorithmic complexity. From this discussion it can be concluded

that, choosing the population size and the number of generations defines the algorithmic

complexity and the quality of the models found.

3.3.4 Limitations of the optimisation approaches

In general, the Pareto-based MOO approach requires all of the criteria to be measured

independently, while this might not always be the case in the scalarized MOO approach.

Measuring different criteria independently is not always feasible. For example, the model

complexity of an SVM cannot be measured independently of its accuracy, as both criteria

are optimised together during the training phase. However, these criteria can be measured

for many prediction model families, for instance, decision trees can be used in the same

framework where its model complexity can be measured as the depth of the tree, the ac-

curacy and algorithmic complexity can be measured similarly.
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One of the main drawbacks of the scalarized MOO is the need to define additional in-

formation, like providing the weights vector for the weighted sum method or ranking

the criteria before applying ranking methods (Freitas (2004b)). Another drawback is

that each criterion is measured using different units and they often have different scales,

combining them in a single equation result in mixing different types of measurements.

Furthermore, normalising the criteria defines a single scale, but it can result in losing the

sense of how good or bad the criterion value is.
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3.4 Summary

This Chapter introduces the design cycle of MCMLPS and investigates the generation of

the base models for such systems using multiple criteria. The MCMLPS design cycle

is presented in Section 3.2, it considers the evaluation of the base models using single

as well as multiple criteria. Furthermore, this Chapter discusses the ability of defining

universal measures for these criteria and the possible approaches for optimising them.

To explore the advantages and drawbacks of optimising the performance of the

MCMLPS base predictors using multiple criteria, a comparative case study is presented

in Section 3.3. In this case study both scalarized and Pareto-based MOO approaches are

used to optimise the models using the accuracy, model and algorithmic complexities.

Though in most cases the best models generated from the Pareto-based approach can

have lower error than the models generated from the scalarized approach, nevertheless,

the Pareto-based approach is hindered by its high algorithmic complexity. In general,

using complex optimisation approaches and including more than one criterion in the

generation of predictive models is a time consuming process. Thus in MCMLPS

the performance of the base predictors is often evaluated using only the accuracy of

the models prediction. While other characteristics of the system are either included

indirectly in the design cycle or presented as constraints.

Moreover, the design cycle in this Chapter had examined the generation of local and

global models. Chapter 4 will investigate the use of local models in building MCMLPS

as well as the effect of encouraging diversity among the system base components.



Chapter 4

Diversity in Multi-component,
Multi-layer Predictive System

4.1 Introduction

Population diversity had played an active role in the success of many methods. In natural

selection, variation or diversity is one of the four main principles of the process. Natural

selection aims to define the mechanism of evolution and it has inspired the development

of many evolutionary algorithms which have been applied successfully to machine learn-

ing problems (Mitchell (1998)). Moreover, in ensemble learning diversity had been ac-

knowledged as an important characteristic (Cunningham and Carney (2000), Lam (2000)

and Krogh and Vedelsby (1995)). In literature, it has been shown that using an ensemble

of predictors can often improve the generalization performance compared to that of a sin-

gle predictor. The conditions for this improvement is for the base predictors to be diverse

(their error correlation is reduced) and that they have a reasonable performance level (Ja-

cobs (1995), Meir (1995), Opitz and Shavlik (1996a) and Tumer and Ghosh (1996)).

An ensemble with diverse models can have better performance due to the complemen-

tary behaviour of its components (Xue et al. (2006)). Furthermore, using ensembles can

prevent the loss of information that results from choosing a single best model.

This chapter discusses diversity as a characteristic of MCMLPS, and investigates its

effect on the accuracy of prediction. It starts by introducing the general structure of

MCMLPS in Section 4.2. Then, different categorizations of diversity creation methods

are explored in Section 4.3. Furthermore, Section 4.4 examines the methods used to gen-

61
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erate diverse models. Next, locally weighted predictive systems are compared in Section

4.5. The design process of the MCMLPS presented in this Chapter is given in Section

4.6. This Section also discusses the use of two similarity metrics to generate the base

components for the MCMLPS and examines the relation between the overall accuracy of

the proposed system and the amount of disagreements among its base predictors. Finally,

Section 4.7 summarises this Chapter.

4.2 Multi-Component, Multi-Layer Predictive Systems

The use of MCMLPSs have shown many theoretical and practical benefits compared to

the use of a single best model. These include (Polikar (2006)): statistical benefits, as

combining the output of several classifiers can often compensate for the possible unfor-

tunate poor prediction of a single predictor, also, it is beneficial to use MCMLPS when

the data is too large or too small. Furthermore, when the problem is too difficult to solve

by a single predictor, MCMLPS can provide a divide and conquer strategy that a single

predictor is incapable of achieving. Finally, when the data is generated from different

sources (data fusion) a single predictor cannot represent the whole data accurately.

Once the base predictors of the MCMLPS are generated either a chosen set or all predic-

tors are combined together. In general, combining methods can be classified according

to their ability to train (trainable vs. untrainable combiners) and to the type of their out-

put (class label vs. continuous output combiners) (Polikar (2006) and Ruta and Gabrys

(2000)). One of the most widely used combining methods is the majority vote. It has

been shown in (Ruta and Gabrys (2002)) that by suitable organising of the predictive

system into multi-component, multi-layer structure the limits of the majority vote error

for such a system can be significantly expanded in comparison to a traditional single

layer ensemble. The theoretical findings from (Ruta and Gabrys (2002)) prompted the

design of multistage selection fusion model discussed in (Ruta and Gabrys (2005)) and

subsequent very successful extensions and applications of multi-component, multi-layer

systems in time series forecasting (Ruta et al. (2011)) and generic predictive modelling

(Kadlec and Gabrys (2009)) with examples of applications to airlines ticket demand pre-

diction (Riedel and Gabrys (2009)), water pollution monitoring end prediction (Budka

et al. (2010)) and adaptable soft sensors development in process industry (Kadlec and

Gabrys (2009)).
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The multi-layer, multi-component predictive system used in this study is shown in Figure

4.1, where w11,..., wnk, are the weights of the first layer, n represent the number of the

base ensembles and k represent the number of the models inside the base ensembles. On

the other hand, w1,..., wn are the weights of the second layer for the n base ensembles.

M1, ...,Mk are the base predictors of the first layer ensembles, g1, ..., gn are the ensembles

created from combining the base predictors and Ŷ is the final prediction of the system.
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Figure 4.1: General structure for the multi-component, multi-layer predictive system.

Let X be the data set containing the training objects, C represent the number of

classes, θc represent the actual class andMn
k represent the output prediction of the model,

where Mn
k = 1 for class θc and 0 otherwise and c = 1, .., C. The outputs of the base

predictors Mn
k and the ensemble gn are given as c-dimensional binary vectors where

[M j
1 , ..,M

j
k ]T ∈ {0, 1}c and [g1, .., gj]

T ∈ [0, 1]c, j=1,...,n respectively. Equations 4.1 and

4.2 shows the mathematical representation for the ensembles generated from the first
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layer:

gj(x) = Σk
i=1w1jM

(j)
i (x) (4.1)

and let

dj,c(x) =

1 if gj(x) = θc,

0 otherwise.
(4.2)

Then the second layer ensemble is as:

h(x) = Σm
j=1w2jdj,c (4.3)

and the final prediction of the system is:

Ŷ = arg max
c
h(x). (4.4)

4.3 Diversity Methods Categorization

Several studies introduced different categorization approaches for diversity creation

methods. In Brown et al. (2005) diversity creation methods for classification problems

are classified as: explicit methods, like boosting where in each iteration a new classifier is

built using different version of the training data, or implicit methods, like bagging, where

each classifier is trained on a different randomly sampled set of the training data.

Another approach for categorizing diversity methods is to divide the search space of

the predictors combination into coverage optimization and decision optimization (Ho

(2001)). Where in coverage optimization the fusion method is fixed and the focus is on

generating a set of mutually complementary predictors, while in the decision optimiza-

tion the base predictors are fixed and the focus is on the fusion method.

In Kuncheva and Whitaker (2003), the diversity measures have been classified into pair-

wise and non-pairwise measures. In pairwise measures, the average distance between all

classifiers in an ensemble is measured using a particular metric. On the other hand, non-

pairwise measures use either entropy concept or the correlation between the classifiers

and the average output.

Though the diversity among the ensemble classifiers is an important condition for the

improvement of the ensemble generalisation ability, it has been shown in literature

(Kuncheva and Whitaker (2003)) that using current diversity measures on their own does
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not give an accurate prediction of the ensemble accuracy.

In the following subsection the main approaches used to generate diverse models are

discussed.

4.4 Generating Diverse Models

There are a number of approaches that can be used to introduce diversity into ensem-

ble base predictors. The following points summarise the main approaches used for this

purpose:

1. Varying the initial condition: start each predictor with different randomly generated

position in the search space. Though this method is widely used in the literature,

it is seen as the least significant method for generating diverse predictors (Brown

et al. (2005)). It shows no or only slight improvement in the generalisation error

when applied.

2. Varying model architecture or model type: in this approach compatible learners are

chosen to be combined in the ensemble. Examples of this approach are presented

in (Islam et al. (2003) and Opitz and Shavlik (1996b)). In the case of incompatible

learners (hybrid ensembles) where the ensemble consist of more than one type of

predictive models, it is often the case that a single best model is chosen to provide

prediction for each new instance. Examples of this approach are found in (Wang

et al. (2000) and Langdon et al. (2002)).

3. Varying the training data: in this approach each predictor is trained on a subset

of the training data or/and a subset of the features. This approach is more likely

to generate diverse models than the previous two approaches (Xue et al. (2006)).

The sets generated from this approach are either intersected sets (with overlapping

instances) or disjoint sets (with non-overlapping instances). Learners trained on

disjoint sets are more diverse; however, generating disjoint sets are often impracti-

cal in real world problems due to limited data.

Once the models have been created, a fusion method is used to combine them into a

single ensemble. There are many fusion strategies such as: Majority vote, Borda count,

threshold vote, heuristic decision rule, weighted average, fuzzy integral and fuzzy mode

among others (Xue et al. (2006)).

This chapter investigate varying the training data to generate diverse ensembles, where
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predictive models are trained on subsets of the data and/or subsets of the features. The

following section discusses feature extraction and feature selection methods used to gen-

erate a representative subset of the data’s features.

4.4.1 Feature extraction and feature selection

One way of generating diverse ensembles is to train the base predictors on subsets of

the data or subsets of the features. In the case of training using subset of the data, the

predictors do not see all of the available data which might be impractical in real case

scenarios where limited data is available. On the other hand, in the second case each pre-

dictor is trained using a subset of the features. Reducing the number of features can be

particularly helpful when the task at hand has a large number of features, many of which

might be irrelevant to the task or redundant with respect to the other features (Brown et al.

(2012)). In such cases using all of the available features to train a model can result in

overfitting and can have a high computational cost. Reducing the number of features can

be achieved by using feature extraction or feature selection methods (Xue et al. (2006)).

Using feature extraction methods, such as Principle Component Analysis (PCA) or Inde-

pendent Component Analysis (ICA), the dimensionality of the data is reduced by creating

new features that represent the projections of multiple existing features. PCA mainly aim

to find the features that contribute most to the variance (energy), and does not optimise

for the class separability (Guo and Nixon (2009) and Bishop (1995)). Furthermore, as

the information contained in the original feature set are projected into fewer principle

components, there is a high risk of training the base predictors on the same or similar

set of principle components, which eventually reduces the diversity among the predictors

(Tumer and Oza (2003)).

On the other hand, using feature selection methods a different subset of features is cho-

sen for the training of each base predictor. Features subset selection can be achieved

through many approaches. Some popular choices of feature selection in classification

problems are correlation (Tumer and Ghosh (1996)) and Mutual Information (MI) (Cover

and Thomas (2012)). In (Tumer and Oza (2003)), an example that uses correlation based

feature selection in classification problems is presented, this work focuses on the corre-

lation between feature subset and the output classes (or a particular class) and aims to

choose the set of features with the highest correlation. On the other hand, MI can be used

to evaluate the dependencies between two features with respect to a certain class. This
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approach has been applied in many pattern recognition problems, examples are the use

of MI in selecting features for gait recognition problem (Guo and Nixon (2009)) as well

as for medical signal selection (Deriche and Al-Ani (2001)).

The work presented in this chapter aims to divide the search space of the prediction prob-

lem (by selecting subsets of the features) into Local Regions (LRs) and train a set of

local expert models on each LR. In order to generate the LRs two approaches are consid-

ered, the pairwise squared correlation and the conditional mutual information. In the first

approach, similar features are grouped into one region, such that the predictive models

trained on the resultant subsets specialize in a particular aspect of the prediction problem.

The chosen features are the ones with the highest correlation (but they are not identical).

The high correlation between the features is viewed as an indication for their similarity

in defining a certain region of the search space. On the other hand, weakly correlated or

independent features are assigned to different regions.

In the first approach a variation of Pearsons product-moment coefficient is used. Pear-

son’s correlation method can only show linear-dependencies between the features. In this

study a measure for higher order dependencies between the features is used, this measure

is the correlation between the energy responses of the features. This measure was intro-

duced in (Coates and Ng (2011)) and proved its efficiency in deep learning algorithms.

Meanwhile, in the second approach a number of LRs seeds are chosen using the con-

ditional MI criterion. Then a modified version of this criterion is used to measure the

similarity among the features and the LRs seeds, based on this criterion a subset of the

features are assigned to each LR. The proposed criterion encourages the inner correlation

between the features and the LRs seeds. The following sections consider and compare

the methods used to generate local models. In addition, they provide a detailed descrip-

tion of the squared correlation approach and the conditional MI approach, how they are

used to build MCMLPS and the results obtained when they are applied to a number of

supervised classification problems.

4.5 Locally weighted predictive systems

In locally weighted predictive systems; the main motivation is to generate a set of base

models that are both diverse and locally accurate. Such models will not have a uniformly

consistent performance over the entire search space, but rather specialize in certain
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regions of the prediction problem.

The MCMLPS proposed in this chapter is trained locally, where the locality is deter-

mined, as explained previously, using either the pairwise squared correlation between the

features or the conditional MI among them. The base models of the proposed system are

trained locally on disjoint sets of data and/or features. In the case when the correlation

between the features is used as a metric to determine the locality, here, the local learners

descriptor depend purely on information from the features of the training data which

makes this method applicable in supervised as well as unsupervised learning. On the

other hand, the conditional MI approach uses the output (class) of the data during the

development of the system which makes this approach applicable only to supervised

learning.

Once the LRs are generated, the proposed architecture is constructed as follow: first

a sampling technique is applied to the data of each LR to generate a number of folds

which represent the data within the region. Then a single model is trained on each fold

of the LRs data. The LRs models are combined (using a weighted majority vote) into an

ensemble. Finally the LRs ensembles are combined (using weighted majority vote) to

provide the final prediction of the system. The weights of the ensemble’s base predictors

are calculated with respect to the method used for generating the data of the local regions

(i.e. the squared correlation or the conditional mutual information of the features).

The proposed MCMLPS can be compared to the rotation forest (Rodriguez et al. (2006))

a well known algorithm which trains an ensemble of predictors on a subset of the features

using a feature extraction method. The comparison is based on the method used to

partition the data, the construction of the base predictors, how the descriptors (weights)

of these base predictors are defined and how they are combined, as well as the results

(training and testing accuracies and the disagreement between the base predictors). In

the rotation forest the features of the data are split randomly into K disjoint subsets.

Bootstrap algorithm is applied to 75% of the data in each subset, then PCA is applied to

the bootstrapped data and the principle component coefficients are stored in the rotation

array. Classifiers are built using (XRa
l , Y ) as the training sets, where X is the selected

set of the data features, Ra
l is the rotation array and Y is the prediction outcomes.

Prediction for any new data is delivered using the average combination of the classifiers.

The following table compares the rotation forest to the MCMLPS constructed using

squared correlation and conditional MI:
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Table 4.1: Comparing rotation forest, squared correlation and conditional MI ensemble
methods .

Operation Rotation Forest Squared correlation
LRs

Conditional MI LRs

Data partition-
ing

Split features into K
subsets

Split the data using the
similarity of the fea-
tures pairwise correla-
tion into a pre-defined
number of LRs

Split the data using
features conditional MI
into a pre-defined num-
ber of LRs

Learner de-
scriptors

For each subset select
a bootstrap sample of
size 75% of the subset
data and apply PCA to
it. Store the principle
components in a rota-
tion matrix Ra

i

Use the squared corre-
lation of the features

Use the conditional MI
of the features

Base Predic-
tors

Use (XRa
l , Y ) as the

training sets for the
base predictors

Train K base predictors
on the LRs data

Train K base predictors
on the LRs data

Combination
Method

Sum of the classifiers
predictions weighted
by the rotation matrix
yfinal = XRa

l

Majority vote weighted
by the learner descrip-
tor

Majority vote weighted
by the learner descrip-
tor

In the following sections the methodology of the squared correlation approach and the

conditional MI are discussed.

4.6 Designing MCMLPS: Methodology

The procedure used to construct the MCMLPS presented in this chapter encompasses the

following phases: a) data preparation and partitioning, b) model generation and combi-

nation. In this Section a detailed description of these phases is given.

In order to validate and examine the generalization ability of the proposed architecture,

the Density Preserving Sampling (DPS) (Budka and Gabrys (2013)) is used to partition

the data. DPS divide the data into subsets that are representative of the whole data set

(Budka and Gabrys (2013)). In this work DPS is used to split the data into training and

testing sets. The training data is assigned according to its features similarity to a set

of LRs. The similarity is determined using one of two approaches: correlation based



70 CHAPTER 4. DIVERSITY IN MCMLPS

Data set

DPS

F1 F2 F3 F4

LR1

LR2

LRN ��
��

��
��

��
��

��
��

M1 M2 M3 Mk

DPS

Figure 4.2: Data preparation and model generation.

approach and mutual information based approach (discussed in Subsection 4.1 and Sub-

section 4.2 respectively). Then DPS is used again to split the LRs data into K folds,

where K models are trained on the data of the generated folds. The general design phases

for the MCMLPS are discussed below:

• Data preparation and partitioning:

After loading the data the following procedure is used to pre-process and partition

the data. The data goes through three partitioning stages, first the whole data is

split into training and testing sets, then the training set is allocated to the LRs and

finally within the LRs the data is split into K subsets which are used to train the

local models. Figure 4.2 shows the preparation and partitioning of the data, where,

F1, ...F4 are the folds generated from the first DPS split, LR1, ...LRN are the LRs

and M1, ...Mk are the local models within the regions trained using data from the

second DPS split.

The points given below summarise the procedure used in this phase:

– Apply DPS to split the data into 4 representative folds.

– Use 3 out of 4 folds as the training data and the last fold as the testing data.

Repeat for all four folds, so that each time a different fold is used for testing.

– Find the similarity matrix for the training data using either the correlation
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based approach or the mutual information based approach.

– Choose N rows from the similarity matrix to be the seeds for the LRs.

– Add the training data to the LRs according to the similarity of data features

to the LRs seeds.

– Apply k fold DPS to the LRs data.

• Model generation, testing and combining:

Once the data is assigned to the relevant LRs, the second DPS is applied to generate

theK folds within the LRs andK models are trained on the LR folds. Furthermore,

for all new instances N weights values are computed with respect to the N LRs.

This phase can be summarized as follow:

– Train a predictive model on each of the K LRs folds.

– Compute the weights of the LRs votes using the similarity between the LRs

seeds and the testing data. Given below is an illustrative example on how the

weights of the LRs are calculated for a single instance. Where f1...f7 are the

Table 4.2: Weights calculation for the illustrative example.

f1 f2 f3 f4 f5 f6 f7 LRs weights
C1 C3 C5 C6 C1 + C3 + C5 + C6

C2 C3 C6 C7 C2 + C3 + C6 + C7
C1 C2 C4 C7 C1 + C2 + C4 + C7

features of the samples and C1...C7 are the similarity metric of the features.

When a new sample arrive the values C1...C7 are computed and the summa-

tion of the selected features (with respect to the LRs) is used as weights for

the corresponding LR’s prediction.

In the first layer, N ensembles are generated from combining the models of the N

LRs. While, in the second layer a single ensemble that combines the first layer N

ensembles is generated. The combining method used is a weighted majority vote

with the similarity of the LRs features used as the weights in both layers.

4.6.1 Correlation based LRs

This approach aims to group similar features into the same LR. The similarity metric

used is the pairwise square correlation between the features. This metric was introduced
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in (Coates and Ng (2011)). The reason for using squared correlation is that if the data set

consists of linearly uncorrelated features, then a higher measure of correlation between

the features can be found by computing the energy correlation between two features at a

time (the squared response).

Given a data set X(i, z) where X(i, :) represent the set of features that belong to a single

sample, i ∈ 1, ..., I and z ∈ 1, ..., Z. If E[x(:, z)] = 0 and E[x(:, z)x(:, z)T ] = I , also

xj represent the x(:, j) feature and xk represent the x(:, k) feature then the following

similarity measure between the squared responses of features can be defined:

S[xj, xk] = corr(x2j , x
2
k) = E[x2j , x

2
k − 1]/

√
E[x4j − 1][x4k − 1] (4.5)

The following points summarise the steps to generate the LRs using this metric:

• Whiten the input data set using Zero-phase Component Analysis (ZCA) whitening

(Bell and Sejnowski (1997)).

• Compute the pairwise similarity between all the features using the following equa-

tion and store the results in the similarity matrix:

Sj,k ≡ SX [xj, xk] ≡
∑
i

x(i, j)2x(i, k)2−1/

√∑
i

(x(i, j)2 − 1)
∑
i

(x(i, k)2 − 1)

(4.6)

• Select N rows, j1, ..., jN of the similarity matrix S.

• Construct LRs containing the top M values of Sj,k

• Compute the pairwise squared correlation for the features of each training instance

and compare the results with the seeds of the N LRs. Add the instance to the LR

that has the highest similarity with respect to its feature values.

• Repeat for all N

Each one of the N rows serves as a seed for a single region. Once the seeds for the

LRs are chosen, the pairwise squared correlation for the features of each new instance is

computed and compared with the seeds. The instances are assigned to the LRs with the

highest similarity. At the end of this stage an N disjoint sets (LRs) are constructed and

using them a MCMLPS is built.

Note that applying the whitening procedure to the data removes the linear dependencies

within the data. In such a case a measure of high order dependencies between two fea-

tures can be obtained by looking at the correlation of their energy (squared responses). In
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order to obtain the weights of the LRs ensemble prediction for the testing data, the pair-

wise squared correlation for each data instance is computed and similarity to the seeds of

the LRs is measured. The summation of the energy for the corresponding features (to the

LR) is used to weight the predictions of the LRs models (as was discussed in Table 4.2).

In this approach initially both DPS and Cross Validation (CV) were used to split the LRs

data. However, when comparing the accuracies obtained from the two methods it was

found that the models trained on CV folds had large variation in their accuracies. On the

other hand, the models that were trained on the folds generated from the DPS were more

stable (i.e. they had lower variance in their error estimation). Due to this, DPS will be

used in this work to partition the data.

4.6.1.1 Results

The proposed architecture described in the previous section is applied to the data sets

shown in Table 4.3. The data sets used are taken from the UCI machine learning archive

(Lichman (2013)). The base predictors used in the first set of experiments are CART

Decision Trees (DTs) and in the second set of experiments are feedforward Neural Net-

works (NNs). The testing accuracies of the proposed architecture are compared to the

accuracies of three benchmark algorithms, these are: Rotation Forest (RF), AdaBoost

and Bagging.

The setting of the algorithms used in these experiments are given below. A predefined

number of LRs and number of models within each LR is selected. The parameters are

chosen for illustration purpose and so that the results obtained can be compared across

all the data sets. Also, it highlights the advantages and drawbacks of predefining these

parameters with respect to the data set size and dimensionality:

• Correlation based MCMLPS: 6 LR’s are used each have 8 models (48 DT’s in total)

trained on disjoint subsets of the data. The number of features used in the LRs is

determined through a separate optimization routine, where four different numbers

of features are considered (with step size equal to the number of features/4) and

the number of features that generate the maximum testing accuracy is chosen.

• RF: the number of classifiers are 6 and the number of disjoint features subspaces

are 6.

• AdaBoost and Bagging: 48 DT were used as the weak learners for both algorithms.
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Table 4.3: Data sets details .

Data sets Features Examples Classes
Ionosphere 34 351 2
Pima 8 768 2
WBC 30 569 2
Heart 13 270 2
Sonar 60 208 2
Chess 36 3196 2
German credit card 24 1000 2
Spam base 57 4601 2
Gaussian 8D 8 5000 2
Vehicle 18 846 4
Waveform 40 5000 3

The following subsection discusses the internal accuracies of the proposed architecture

and compare its performance with the benchmark algorithms. This is followed by two

subsections that investigate the effect of changing the base predictors model type on the

performance of both the RF and the MCMLPS architecture and the disagreement among

their base predictors.

4.6.1.2 Internal Accuracies and Benchmark Comparison

The data sets used in these experiments are split using DPS into four folds, and each time

a different fold is used for testing and the remaining three folds are used for training.

The performance of the LRs models can vary over the four iterations and in most cases

there is no single LR that dominates the others over the four iterations. Changing one

fold of the training data can affect the performance of the LRs, where it can become

better or worse and/or have a smaller or larger variation in its models accuracies. This

is due to the new data instances being assigned differently to the LRs based on their

pairwise similarity with the regions seeds. The term internal accuracy in this work refer

to the variation in the accuracies of the LRs base predictors. An example of the internal

accuracies of the LRs for the Gaussian 8 dimensional data set is shown in Figure 4.3.

It can be seen in Figure 4.3 that there is no single LR that has the best accuracy over

the four iterations. Also the amount of variation in the accuracies of the individual

LRs changes over the four folds, for example in iteration 2 the 6th LR has the smallest

variation among its 8 models accuracies, however, for the same LR the amount of
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Gaussian 8D: The training accuracies of the LR’s models over the four folds of the DPS

Figure 4.3: Training accuracies of the local regions models for the correlation based
MCMLPS when applied to Gaussian 8D data set.

variation is higher in the other iterations. The same behaviour can be seen in the internal

accuracies of the other data sets.

In general, large data sets lead to a more stable performance of the LRs and reduce the

accuracy variation within and across the LRs. However, how big a data set should be,

depends on the dimensionality of the data and its distribution in the search space. A

small data set with high dimensionality like the ionosphere data set can have a wide

range of variation in the LRs accuracies. This is due to the small number of instances

that are assigned to the LRs, which can lead to a model being validated on few or a

single data instance(s). Classifying this instance(s) correctly or incorrectly results in 0%

or 100% accuracy. The solution to this problem is to lower the number of LRs and/or the
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number of their internal models. In order to be able to compare the accuracies over all

of the data sets used in these experiments, the same number of LRs and models are used.

Benchmark Comparison
The overall testing accuracies of the MCMLPS architecture are evaluated and compared

with the three benchmark algorithms described above. Table 4.4 shows the average

testing accuracy for the learning algorithms over the four DPS folds. Different types of

pre-processing can be applied to the data sets before the benchmark ensemble methods

are used. As has been discussed previously, in the correlation based MCMLPS the data

sets are pre-processed using ZCA whitening procedure. This pre-processing method

removes the linear dependencies among the data’s features. On the other hand, in the

RF, PCA is applied to obtain the values of the rotation matrix. In this set of experiments

both bagging and AdaBoost are applied directly to the training data (no method for

pre-processing the data is used). Applying ZCA to the data while using Bagging and

AdaBoost methods resulted in a general decrease in their accuracies. This case was

investigated in (Al-Jubouri and Gabrys (2016)) where we had applied the same type

of pre-processing method to the proposed architecture as well as to five benchmark

algorithms that were used (including both bagging and AdaBoost). Moreover, removing

the whitening procedure (keeping the linear dependencies) in the MCMLPS proposed

in this chapter can lead to unbalanced split of the data. In this case a number of the

LRs can end up having very few samples to train the base predictors, which can result

in overfitting and consequently decreases the overall accuracy of the system. In this

experiment an additional parameter that represents the density of the data inside each

LR is added to the weighing of the LRs prediction.

Some of the results shown in this Section for the RF method differ from the results

obtained in (Rodriguez et al. (2006)) where the RF was first introduced and compared

to both Bagging and Boosting methods. This is due to the use of different type and

different number of base predictors. The aim of using different setting from the original

paper is to have similar setting for all the benchmark ensemble methods which enable

the comparison of their results.

As can be seen from Table 4.4, the proposed system does not have the best accuracies

compared to the benchmark algorithms. Nevertheless, for certain data sets the obtained

performance of the system is comparable to that of the other benchmark algorithms,

while that is not the case for other data sets. Generally, with the current setting of
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Table 4.4: Comparing the test accuracies of the four ensemble methods when CART DTs
are used as their base predictors.

Data sets correlation based RF Bagging AdaBoost
MCMLPS

Gaussian 8D 88.16 80.70 88.78 87.08
German credit cards 70.00 65.30 77.30 75.90
Ionosphere 77.19 92.61 93.44 93.16
Spambase 85.20 85.50 95.37 93.20
Pima Indians Diabetes 76.62 73.30 77.60 77.08
WBC 86.29 91.56 95.61 95.25
Heart 76.65 77.06 85.18 83.34
Sonar 63.46 74.04 87.02 83.17
Chess 93.74 70.46 98.99 94.84
Vehicle 67.61 61.37 77.07 51.07
Waveform 65.68 91.46 85.74 80.78

the proposed architecture and the current type of base predictors, the performance of

the systems is highly influenced by the size of the data sets. The data in the proposed

MCMLPS is split multiple times to generate the LRs and to train the base predictors

within the LRs. Thus having a small number of samples can lead to base predictors

overfitting the training data and result in decreasing the overall accuracy of the system

compared to other benchmark methods. The correlation based MCMLPS also have the

lowest accuracy on the waveform data set. Though the size of this data set is large, it is a

multi-class problem with high dimensionality and when the type of the base predictor is

changed from decision trees to NN the accuracy of this data set increased.

4.6.1.3 Changing the type of the base predictors

In this subsection the type of the base predictors is changed from CART DTs to feed

forward NNs for both the MCMLPS architecture and the RF method. The accuracies of

both methods using the new base predictor is shown in Table 4.5.

In general, changing the base predictors to NNs improved the overall testing accuracies

for both methods. However, the improvement in the testing accuracy of the RF method is

higher than that of the correlation based MCMLPS architecture. Moreover, the accuracy

of the multi-class problem has improved much more than that of the binary classification

problem (as can be seen in the accuracies of the waveform and the vehicle data sets).
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Table 4.5: Comparing the test accuracies of correlation based MCMLPS and RF when
feedforward NNs are used as their base predictors.

Data sets Correlation based RF
MCMLPS

Gaussian 8D 88.45 88.40
German credit cards 70.00 70.00
Ionosphere 74.25 93.15
Spambase 90.55 85.75
Pima Indians diabetes 76.30 76.80
WBC 91.55 95.61
Heart 77.02 81.11
Sonar 62.50 79.81
Chess 96.75 73.06
Vehicle 78.50 81.75
Waveform 85.05 92.65

The test accuracies of the proposed architecture have improved on all but the ionosphere,

pima Indian diabetes and sonar dataset, where they slightly deteriorated by 2.94%, 0.32%

and 0.96% respectively. The performance remains the same on the German credit card

data set.

4.6.1.4 Disagreements among the base predictors

In the proposed architecture, when CART DTs are used as the base predictors, there

are varied levels of disagreements within the LRs models and even a higher level of

disagreement across the LRs. Meanwhile, when feed-forward NNs are used as the

base predictors, similar models are generated in the individual LRs, yet there is still a

high level of disagreement across the LRs. The total disagreement values are found by

measuring the disagreement between the final prediction of the system and the prediction

of the individual LRs ensembles.

On the other hand, the total disagreement among the classifiers of the RF method is

much lower than the proposed architecture. Figure 4.4 shows the total disagreement

among the LRs of the MCMLPS and the classifiers of the RF when both NNs and DTs

are used as the base predictors. In general, using NNs as the base predictors for the RF

method results in higher disagreements among the classifiers than when CART DTs are

used. One exception is the German credit card data set, where the disagreements within

the RF classifiers are zero. That is because; all the classifiers tend to vote for the majority
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class for this data set. On the other hand, in the MCMLPS the overall disagreement

generated from using the DTs as the base predictors is generally higher than when NNs

are used.

Though both algorithms have different levels of disagreements, yet their performance

is comparable across most of the data sets used in these experiments. The high level of

disagreement of the proposed architecture can be beneficial when applied on noisy data

set (this will be explored in the next chapter where the robustness of the MCMLPS is

discussed).

In the ionosphere data set changing one fold (a third) of the training data greatly affects

the level of disagreement among the LRs when NNs are used. The difference between

the iteration with the highest disagreement and the iteration with the lowest disagreement

is equal to 50%. This again shows that, the size of the data set has high impact on the

accuracies of the LRs. In the current setting of the MCMLPS, when small data sets are

used, the LRs models do not have enough data to train on and that result in the high

variations among the LRs models. In these experiments the parameters of the proposed

MCMLPS were predefined in order to be able to compare the results with a number

of benchmark algorithms, however, these parameters (such as the number of the LRs

and the number of models within the LRs) can and should be optimized to suit the

classification problem.

4.6.2 Conditional mutual information based LRs

The conditional mutual information based LRs aims to split the feature space into a num-

ber of subsets based on the Conditional Mutual Information (CMI) of the features. This

approach and its main findings has been published in Al-Jubouri and Gabrys (2017). The

features with the highest CMI values are chosen to be the seeds for the LRs. The CMI is

measured using the following equation (Brown et al. (2012)):

Jcmi(Xk) = I(Xk;Y )− I(Xk;S) + I(Xk, S|Y ) (4.7)

where Xk is a single feature, Y is the output and S are the remaining features (all the

features apart from Xk). I(Xk;Y ) is the mutual information between the feature Xk

and the class Y , I(Xk;S) is the redundancy of feature Xk with respect to the remaining
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features and I(Xk, S|Y ) is the conditional redundancy (the class dependency of Xk with

the existing feature set S). According to Brown et al. (2012) the equation given above

shows that including correlated features can be useful, if the correlation of the features

with the class is higher than their inner correlation. The benefits of including correlated

features have been explored before by (Guyon et al. (2008)), where it has been observed

that correlation does not imply redundancy.

Once the CMI values of the features are computed using equation 4.7, the highest N

features are selected to be the seeds for the LRs. In order to add new features to the LRs,

the similarity of the features to the LRs seeds need to be calculated. Equation 4.8 is used

to determine the similarity between the features and the LRs seeds.

Jcmi+(Xk) = I(Xk;Y ) + I(Xk; Jcmi(Xk)) + I(Xk, Jcmi(Xk)|Y ) (4.8)

In this equation the pairwise mutual information of the features with the LR seeds is

calculated and the features that have the highest CMI with respect to the seeds are added

to the LRs. By adding rather than subtracting the redundancy term I(Xk; Jcmi(Xk))

this approach aim to group together similar features in the LRs. Each LR is assigned

with a subset of the features, where all the features are ranked according to their mutual

information with the seed of the LR and only the highest ranking features are assigned to

the LR. The ratio of the features assigned to the LRs is α, where 0 > α > 1.

At the end of this stage N subsets of features are assigned to the LRs. The following

subsection describes the methodology of using this approach to build an MCMLPS. In

order to build the MCMLPS the same methodology used in the previous approach is

followed. Initially the data is split using the method presented in Figure 4.2. DPS is also

used to split the data into training and testing. However, when CV is used instead of

DPS, it showed less variation in the accuracy of the LRs models than it has shown in the

previous approach. This case is investigated in Section 5.4.2 and its results are compared

to the DPS results.

The following points summarise the steps used to split the training data into N LRs:

• Calculate the conditional mutual information among the training data features us-

ing equation 4.7.

• Choose the highest scoring N features to be the seeds of the LRs.

• For the remaining features, use equation 4.8 to rank the features according to their

similarity to the LRs seeds.
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• Based on the features mutual information with the seeds, assign α of the total

number of features to the LRs.

The prediction of the LRs models are combined using a weighted majority vote in the

first layer, then the prediction of first layer ensembles are combined also using weighted

majority vote to provide the final prediction of the system. In both layers the mutual

information of the LRs features is used as a weighting vector. The weight for the LRs

models is calculated using the summation of the mutual information values of the LR

features. The weights are computed similarly to the weights in the previous approach

(see Table 4.2) except that instead of the squared correlation the mutual information

values computed using equation 4.8 is used. This value is computed for the features of

the LRs with respect to the seed.

4.6.2.1 Results

The MI based MCMLPS described in the previous section is applied to the data sets

shown in Table 4.3. The performance of this system is compared to the correlation based

MCMLPS, RF, bagging and AdaBoost. The setting for these benchmark algorithms is

the same as in the previous study. In order to be able to compare the results obtained

from this system with the correlation based MCMLPS, both the number of the LRs and

the number of models inside the LRs are set to the same values used in the previous

study (6 LRs with 8 models inside each one of the LRs). Furthermore the α value (the

ratio of the features assigned to the LRs) is set to 30%. The base predictors used are

CART DTs and feedforward NNs.

The following subsections discuss the internal accuracies of the LRs base predictors

and compare the overall system performance with the benchmark algorithms. This is

followed by a subsection that investigates the level of disagreement among the LRs

prediction of the MCMLPS.

4.6.2.2 Internal accuracy and benchmark comparison

Similar to the correlation based MCMLPS, in this section the internal accuracies of the

LRs base predictors are measured and compared across the four DPS folds. In general the

variation in the LRs base predictors accuracy is less than previous approach. An example

of the LRs base predictors internal accuracies for the Gaussian 8 dimensional data set is
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shown in Figure 4.5.
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Gaussian 8D: The training accuracies of the LR’s models over the four folds of the DPS

Figure 4.5: Training accuracies of the local regions models for the MI based MCMLPS
when applied to Gaussian 8D data set.

Comparing Figure 4.5 and Figure 4.3 shows that the variance in the internal accu-

racies of the second architecture is much lower than that of the first architecture and

once again there are no LR that outperform the rest on all of the four folds. In the

MI approach even small data sets like the Ionosphere data set, has a lower variation

in its internal accuracies than the previous approach. A possible explanation for this

is that the LRs in this case are trained on subset of the features for all the data set

rather than being trained on disjoint subsets of the data. Though the base predictors

are trained on 30% of the total number of features, yet they can see all of the training data.
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Table 4.6: Comparing the test accuracies of the five ensemble methods when CART DTs
are used as their base predictors.

Data sets MI based correlation based RF Bagging AdaBoost
MCMLPS MCMLPS

Gaussian 8D 86.94 88.16 80.70 88.78 87.08
German 74.60 70.00 65.30 77.30 75.90

Ionosphere 92.30 77.19 92.61 93.44 93.16
Spam base 93.81 85.20 85.50 95.37 93.20

Pima 75.78 76.62 73.30 77.60 77.08
WBC 95.61 86.29 91.56 95.61 95.25
Heart 78.89 76.65 77.06 85.18 83.34
Sonar 84.62 63.46 74.04 87.02 83.17
Chess 98.78 93.74 70.46 98.99 94.84

Vehicle 74.35 67.61 61.37 77.07 51.07
Waveform 81.80 65.68 91.46 85.74 80.78

Benchmark comparison
The overall testing accuracy of the MI based MCMLPS averaged over the four DPS

iterations are shown in Table 4.6. The results are compared to the correlation based

MCMLPS as well as RF, Bagging and AdaBoost algorithms. It can be seen that, this

approach for generating the LRs has generally improved the testing accuracy obtained

from the correlation based MCMLPS. Compared to Bagging which has the highest

accuracy for all the data sets (except for the Waveform data set) the difference between

the test accuracy of this approach and the Bagging ranged between (0) for WBC data set

and (6.29) for the heart data set.

Table 4.7 shows the test accuracy of the MI based MCMLPS compared to the correlation

base MCMLPS and the RF, when the type of the base predictors are changed from CART

DTs to feedforward NNs. With the RF the testing accuracy of this algorithm increases on

every single data set when the feedforward NNs are used as the base predictors. Unlike

the RF, the MI based MCMLPS showed mixed responses, where the accuracy increased

for only (5 out of 11) data sets.

4.6.2.3 Disagreements among the base predictors

The disagreement among the LRs votes and the final prediction when CART DTs as

well as feedforward NNs are used as the base predictors for the MI based MCMLPs are

shown in Figures 4.6 and 4.7 respectively. It can be seen that the amount of disagreement
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Table 4.7: Comparing the test accuracies of MI based MCMLPS, correlation based
MCMLPS and RF when feedforward NNs are used as their base predictors.

Data sets MI based correlation based RF
MCMLPS MCMLPS

Gaussian 8D 84.22 88.45 88.4
German credit cards 77.50 70.00 70.00
Ionosphere 90.03 74.25 93.15
Spambase 90.44 90.55 85.75
Pima Indians Diabetes 76.04 76.30 76.80
WBC 94.90 91.55 95.61
Heart 82.61 77.02 81.12
Sonar 82.21 62.50 79.81
Chess 94.65 96.75 73.06
Vehicle 79.67 78.50 81.75
Waveform 85.36 85.05 92.65

when DTs are used is higher than when NNs are used as the base predictors for the

LRs. However, in both cases, it is higher than the disagreement among the RF classifiers.

As has been mentioned before, the robustness of such highly diverse system in noisy

environment will be investigated in the following Chapter.
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Figure 4.6: Comparing the disagreements among the LRs of MI based MCMLPS when
CART DTs are used as the base predictors.
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Figure 4.7: Comparing the disagreements among the LRs of MI based MCMLPS when
feedforward NNs are used as the base predictors.

4.6.2.4 Variation of the conditional mutual information

This section investigates the effect of changing three aspect of the proposed MI based

architecture. These are: modifying the equation used to find the LR seeds, partitioning

the data using CV instead of DPS and changing the ratio of features located to the LRs.

4.6.2.5 Ignoring the inner correlation with respect to the class

In this case the conditional mutual information term I(Xk, S|Y ) is removed from equa-

tion 4.7. This transforms the feature selection process to mutual information feature

selection proposed by Battiti (1994) given in the following equation:

Jcmi(Xk) = I(Xk;Y )− βI(Xk;Xj) (4.9)

where β is a configurable parameter which Battiti suggest that the optimal value for it is

often 1. Figure 4.8 shows the results of this case compared to the results of our proposed

architecture. The aim of this section is to compare the case where correlated features are

considered as redundant and are removed from the feature selection process with the case
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where the inner correlation between the feature is assessed with respect to the class. It

can be seen from the results that, apart from the ionosphere data set, the case where the

inner correlation is considered in selecting the features, performs better than or as good

as the case where the inner correlation is not considered in the selection.
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Figure 4.8: Comparing the accuracy of the system when the data is split using CMI and
traditional feature selection , part I.
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Figure 4.8: Comparing the accuracy of the system when the data is split using CMI and
traditional feature selection , part II

4.6.2.6 Using Cross Validation instead of DPS

In this section the data of the MI based MCMLPS is partitioned using stratified CV

instead of DPS. The CV is used to split the data into training and testing sets and to split

the LRs data intoK folds. Figure 4.9 compares the results of the two cases. It can be seen,

that the two partitioning processes have comparable results, except for the ionosphere

data set where CV performs better and the vehicle data set where the DPS performs

better. The variation in the accuracies when CV is used with MI based MCMLPS is
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much lower than the variation with the correlation based MCMLPS. This is due to the

use of disjoint subset of the data to generate the LRs of the correlation based MCMLPS.
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Figure 4.9: Comparing the accuracy of the system when the data is split using CV and
DPS, part I.
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Figure 4.9: Comparing the accuracy of the system when the data is split using CV and
DPS, part II

4.6.2.7 Changing the ratio of the features used in the LRs

In the previous experiments the ratio of features used in the LRs of the MI based

MCMLPS was set to 30%. Using a higher or lower feature ratio have been tested on

the data sets used in these experiments. It has been found that lowering this ratio from

30% to 10% decreases the accuracy of the LRs prediction as well as the overall accuracy

of the system. On the other hand, increasing it to 80% result in a slight improving in

the prediction accuracy for some of the data sets used in this experiment and it remained
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unchanged for the rest. The only exception is for the ionosphere data set where the ac-

curacy was increased to 92.30%. However, for some data sets the accuracy starts to drop

after exceeding a certain threshold.

4.7 Summary

This chapter introduces a local learning based algorithm for multi-component, multi-

layer architecture. This system divides the data into multiple LRs using the similarity

of the features. Inside each LR a pre-defined number of base models are trained on

subsets of data and/or subsets of features. The way in which the features are selected

and assigned to the individual LRs depends on either the similarities of their pairwise

squared correlation or their conditional mutual information. The squared correlation

method can be applied in supervised as well as unsupervised learning as it does not

consider the output class when splitting the data. On the other hand, the conditional

mutual information method can be applied only in supervised learning as it uses the

output class while splitting the data.

Investigating the internal performance of the proposed architecture (using either of the

similarity metrics) showed that the overall testing accuracies of the architecture exceeded

the average internal accuracies of its LRs models. This is due to the LRs being trained

on either disjoint sets of data or subsets of features. However, since the prediction of

the LRs is weighted by the similarity of the features to the seeds of the LRs, a higher

degree of importance is given to the prediction of LRs that are most similar to the new

data instance.

In the proposed architecture, the amount of variation in the internal accuracy depends

mainly on the size and dimensionality of the data. Given an adequate amount of data

used to train and validate the LRs models, the variation becomes small. Otherwise, the

variation will be high. The results showed that both the number of LRs and number of

models developed within the LRs need to be optimised with respect to the data set size

and dimensionality.

The high level of complexity in the proposed MCMLPS is due to the use of multiple

base models and to the procedure followed to generate the LRs. Nevertheless, it has a

comparable performance to the benchmark algorithms. Despite that, the locality and the

high level of diversity among the base predictors of the proposed architecture can be
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beneficial in noisy environments. For example, when the noise is applied to only a part

of the data, it will not have the same effect on all of the MCMLPS base predictors. The

robustness of the proposed architecture to external noise will be investigated in the next

Chapter.



Chapter 5

Multi-Component, Multi-Layer
Predictive System in Noisy
Environments

5.1 Introduction

This Chapter studies the relation between accuracy, diversity and robustness of the pro-

posed MCMLPS in noisy environments. In ensemble learning, in order to improve the

accuracy of the prediction, a number of factors have been studied in literature. These fac-

tors include: classifier selection (Zhang and Zhang (2009), Ko et al. (2008) and Parvin

et al. (2011)), feature selection (Zhang and Zhang (2009), Zhang and Yang (2008) and

Freund and Schapire (1996)), diversity creation in ensembles (Kuncheva et al. (2002),

Hatami and Ebrahimpour (2007) and Kuncheva and Whitaker (2003)), fusion methods

(Zhang and Zhang (2009), Hatami and Ebrahimpour (2007) and Al-Ani and Deriche

(2002)) and combining more than one ensemble (Kotsiantis (2011), Panov and Dzeroski

(2007) and Kotsiantis and Pintelas (2004)).

Some of these factors have been addressed in Chapter 4, where the proposed MCMLPS

considered feature selection through the use of correlation based and mutual information

based local features selection. The diversity among the base predictors was encouraged

by training the models on subsets of the data and/or the features. Also, in the proposed

system multiple ensembles were combined to obtain the final prediction.

In this Chapter, in addition to the previously considered factors, the effect of model se-
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lection and of using different combiners on the performance of the proposed system is

studied through the introduction of six fusion methods. Chapter 5 examines the robust-

ness of the proposed system in practice. Both correlation based and MI based MCMLPS

are tested on data sets with different ratios of noise added to either the training or the test-

ing data. The performances of both systems are compared to three well known ensemble

methods (namely, Bagging, Boosting and rotation forest).

The organization of Chapter 5 is as follows: in Section 5.2, different types of noise are

explained and their effect on the prediction of machine learning methods is examined.

Section 5.3 discusses balancing the robustness and the flexibility of machine learning

methods. Section 5.4 examines the performances of both correlation based MCMLPS

and MI based MCMLPS in noisy environments and compares their results to benchmark

algorithms. In Section 5.5, six fusion methods are employed to combine the prediction of

the base predictors/ensembles. Furthermore, the effect of using these combiners on the

overall performance of the system is examined. Finally, Section 5.6 provides a summary

for the Chapter.

5.2 The effect of noise on system prediction

To build a prediction model that can generalize well on new data, the following two

factors should be considered (Hickey (1996)): a) the quality of the training data; and

b) the inductive bias of the learning method. The quality of real world data is often

affected by noise which can influence the performance of the learned model. According

to (Hickey (1996)), noise can be defined as any variable that distorts the relation between

the feature of an instance and its class. Adding noise to the data can result in a number

of drawbacks (Hickey (1996) and Frénay and Verleysen (2014)) such as: reducing the

prediction accuracy, increasing the amount of data and the time required to build the

predictive model, and increasing the model complexity.

The quality of the data can be influenced by two factors (Zhu and Wu (2004)): a) an

internal factor; and b) an external factor. The internal factor is related to the choice of the

classes and the features and how they are defined to represent the underlying problem,

while, the external factor is concerned with the error introduced in the classes and the

features. Taking both factors into consideration there are three sources of physical noise:

• Insufficient description of the features and the classes.
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• Corruption of features in the training examples.

• Erroneous classification of the training examples.

In real world data sets, the first source is hard to evaluate, as it is related to selecting

the proper features which define the problem and assigning the classes. Meanwhile, the

remaining two sources can be investigated (Zhu and Wu (2004)).

Noise in the data can be classified into two types: feature (attribute) noise and class (la-

bel) noise. Feature noise is related to the error introduced to the feature values. Examples

of this type of noise include: erroneous feature values, missing feature values or incom-

plete features. An example of missing or incomplete features can be found in medical

data, where the values for some medical tests might be unavailable for certain patients.

On the other hand, class noise is related to the noise that affects the class of an instance.

According to Zhu and Wu (2004), there are two possible sources of class noise: contra-

dictory examples, where the same instance is classified into different classes, and mis-

classifications where the instances are assigned to the wrong class. In literature, it has

been shown that class noise is more harmful than feature noise (Zhu and Wu (2004)).

This is due to the high impact of the class compared to the features.

This Chapter studies the effect of adding both class noise and feature noise to the data on

the performance of the proposed MCMLPS. The main aspects of the proposed MCMLPS

which will be investigated include:

• The robustness of the MCMLPS to noise compared to benchmark ensemble meth-

ods.

• The effect of assigning the LRs data using correlation based and MI based ap-

proaches on the accuracy and the stability of the system in the presence of noise.

• The effect of changing the weights and the fusion methods of the MCMLPS on the

accuracy and the stability of the system in the presence of noise.

• The effect of training noise compared to testing noise on the performance of the

proposed system.

The next section discusses two important concepts in designing predictive systems, these

are: the robustness to noise and the flexibility of the system.



96 CHAPTER 5. MCMLPS IN NOISE ENVIRONMENT

5.3 Balancing Robustness and Flexibility

The robustness of machine learning models refer to the model ability to maintain similar

performance when it is tested on data similar to the training sample (Xu et al. (2009)).

The robustness of a learning algorithm is often conflicted with its flexibility (Hernández-

Lobato (2010)). Since learning algorithms need to be flexible enough to capture the

actual pattern in the data, yet they should be robust to outliers and noise. In machine

learning literature, this concept is often discussed in terms of the bias-variance decompo-

sition (Geman et al. (1992)). Flexible methods tend to have high variance and low bias,

while robust methods tend to have high bias and low variance.

Bias-variance decomposition is often used to control the model complexity such that the

complexity of a chosen model matches the complexity of the predicted problem. The

complexity of the developed model can have direct effect on its generalization ability

(Hastie et al. (2002)). Simple models tend to under-fit the data and thus can have poor

generalization ability. Meanwhile, complex models tend to over-fit the data (by including

noise and outliers) which can also lead to poor generalization ability. Generally, machine

learning methods can be classified according to the complexity of the developed mod-

els into parametric methods (less complex) and non-parametric methods (more complex)

(Alpaydin (2014)).

The parametric methods develop models that describe the data using fixed number of

parameters (Wasserman (2013)). Due to the use of a predefined number of parameters,

these methods make strong assumptions about the underlying function that generates the

data. If the assumed function does not represent the actual function, in this scenario no

matter how big is the available data, the parametric method will perform poorly. The use

of parametric methods can be linked to Occam’s razor principle which stated that simple

models should be preferred, if using more complex models does not improve the quality

of the prediction (Duda et al. (2012) and Domingos (2000)).

In general, parametric methods are robust, less expressive and less flexible than non-

parametric methods (Wasserman (2013)). Due to their strong assumptions on the under-

lying function and the fixed number of parameters, they are less reliable in learning com-

plex data patterns. Examples of parametric methods include: linear regression, Kalman

filter (Kalman (1960)) and Markov random field model (Kindermann and Snell (1980))

among others.

On the other hand, in non-parametric methods the number of parameters is not prede-
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fined. In addition, these methods make as few assumptions about the underlying function

that generated the data as possible (Wasserman (2006)). As nonparametric methods do

not make strong assumptions about the data, they can learn complex pattern with as much

precision as desired. This property makes them more subjected to overfitting. Depending

on the complexity of the learned pattern and the size of the data, the number of the model

parameters increases. Examples of non-parametric methods include: neural networks

(Bishop (1995)), decision trees (Breiman (1996)) and support vector machine (Vapnik

(2013)) among others.

Parametric methods are often used with moderate or small size data that has a moderate

level of noise. Furthermore, they can be used when a prior knowledge of the data pattern

is known or the pattern has a simple form (Hernández-Lobato (2010)). In these cases the

robustness of the model is more important than its flexibility, and parametric methods can

have good performance. On the other hand, non-parametric methods are more suitable

to large data sets with little or no knowledge about their distribution (Hernández-Lobato

(2010)). In these cases more flexible models (non-parametric methods) are preferred over

robust methods (parametric methods).

The proposed MCMLPS predictive system can use either parametric or non-parametric

base predictors, however in its current setting it uses non-parametric base predictors (de-

cision trees and neural network). Nevertheless, controlling the size and dimensionality

of the training data as well as applying the pruning process to the decision trees allow

certain control over the base model complexity.

5.4 Testing the MCMLPS in noisy environments

Traditionally, combining multiple classifiers has been linked to the ability of the system

to perform accurately with noisy data (Ho et al. (1994) and Sáez et al. (2013)). One of

the main motivations for associating robustness to noise with multiple classifiers systems

is linked to the diversity among the system base models. Combining diverse models can

improve the generalization ability of the system due to their complementary behaviour

and allows the system to be less subjected to overfitting noisy data (Teng (1999) and Sáez

et al. (2013)).

In this section the robustness of the MCMLPS proposed in Chapter 4 is tested in noisy

environment. Furthermore, this section studies the effect of having highly diverse base
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predictors (in correlation based MCMLPS) as well as having less diverse but more stable

base predictors (in MI based MCMLPS) on the performance of the system in terms of its

accuracy and robustness. The results of both systems are compared to the three bench-

mark ensemble methods, namely: bagging, AdaBoost and rotational forest.

As has been discussed in Section 5.2, the noise is often added to either the class or the

features of classification problems. In the experiment presented in this Section, the noise

is added to both the features and the classes in either training or testing sets. The aim

of adding the noise to the testing data is to investigate the capability of the system to

deal with noisy testing set when it has been trained on clean data. On the other hand, in

the case of adding noise to the training data, the robustness of the system is investigated

when the system is trained on noisy data and is required to provide prediction on clean

data.

In this experiment, the noise is generated by taking the minimum and maximum values

of each feature and producing random values within these limits. A random class (chosen

from the set of problem classes) is generated and assigned to the new instances.

The following Subsection examines the performance of the proposed MCMLPS and the

benchmark ensemble methods when applied to data with noise added to both the training

and the testing data.

5.4.1 Results

This subsection compares the testing accuracies and the robustness of the correlation

based MCMLPS and the MI based MCMLPS with the testing accuracies and the ro-

bustness of the three ensemble methods when applied to noisy data sets. The combiner

method used in the MCMLPS is weighted majority vote, where the weights are the sim-

ilarity values between the LRs data and the testing data. The calculation of the weights

had been explained in Section 4.6.

Five ratios of noise are added to each data set, these ratios are: 0% where no noise is

added, 10% noise added to the training data, 20% added to the training data, 10% added

to the testing data, and 20% added to the testing data. The data sets used in this experi-

ment are the same data sets that have been used in Chapter 4 (given in Table 4.3).

The results of the accuracy for the five benchmark algorithms are illustrated in Figures

5.1-5.11. Given below is a summary for the performance of each method:
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Figure 5.1: Comparing the accuracy of the five benchmark algorithms in noisy environ-
ments for the Gaussian 8D data set.
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Figure 5.2: Comparing the accuracy of the five benchmark algorithms in noisy environ-
ments for the German credit card data set.
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Figure 5.3: Comparing the accuracy of the five benchmark algorithms in noisy environ-
ments for the ionosphere data set.
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Figure 5.4: Comparing the accuracy of the five benchmark algorithms in noisy environ-
ments for the spam base data set.
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Figure 5.5: Comparing the accuracy of the five benchmark algorithms in noisy environ-
ments for the Pima Indian diabetes data set.
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Figure 5.6: Comparing the accuracy of the five benchmark algorithms in noisy environ-
ments for the WBC data set.
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Figure 5.7: Comparing the accuracy of the five benchmark algorithms in noisy environ-
ments for the heart data set.
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Figure 5.8: Comparing the accuracy of the five benchmark algorithms in noisy environ-
ments for the sonar data set.
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Figure 5.9: Comparing the accuracy of the five benchmark algorithms in noisy environ-
ments for the chess data set.
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Figure 5.10: Comparing the accuracy of the five benchmark algorithms in noisy envi-
ronments for the vehicle data set.
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Figure 5.11: Comparing the accuracy of the five benchmark algorithms in noisy envi-
ronments for the waveform data set.

• Bagging: this method has the highest accuracy for most of the data sets, the only

exception is the waveform data set (shown in Figure 5.11) where it has a lower

accuracy than RF.

• MI based MCMLPS: this method often has the second highest accuracy. In only

two data sets: the heart data set (shown in Figure 5.7), and Pima data set (shown in

Figure 5.5), it has a slightly lower accuracy than correlation based MCMLPS.

• AdaBoost: in general this method’s accuracy is slightly lower than the previous

two methods, except for the vehicle data set (shown in Figure 5.10) where it has
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the lowest accuracy among the five ensemble methods. However, when the noise is

added to the testing data, its accuracy is higher than correlation based MCMLPS.

• Correlation based MCMLPS: using this method, the accuracy is often lower than

MI based MCMLPS. Generally, the size of the data has a high impact on the accu-

racy of this method. This can be seen in small data sets such as WBC (in Figure

5.6), sonar (in Figure 5.8) and ionosphere (in Figure 5.3) where this method has

the lowest accuracy among the five ensemble methods.

• RF: this method often has one of the lowest accuracies among the five ensemble

methods. The only exception is for the waveform data set, where this method has

the highest accuracy. Also with small data sets (WBC, sonar and ionosphere) its

accuracy is better than the accuracy of correlation based MCMLPS.

The above points summarise the performance of the five ensemble methods in terms of

their accuracies. In order to compare their robustness, two factors are taken into consid-

eration, these factors are: a) the standard deviation of their accuracies over the five noise

ratios added to the data and b) the relative loss of accuracy which calculates the loss in

accuracy when certain level of noise is added to the data compared to the case when no

noise is added to the data.

The standard deviations of the accuracies for the five algorithms are presented in Table

5.1. These values are used to quantify the amount of variations in the accuracies of the

five ensembles when the noise is added to the data, i.e. how the algorithm performance

is affected by the noise. To analyse the variance of the accuracy for the five ensemble

methods when different noise ratios are added to the data, a one-way ANOVA test is used.

All values of the standard deviations analysed in this section and subsequent sections are

generally normal at p > 0.01 (according to a non-parametric Lilliefors text). The test

showed that, in terms of the variation in the accuracies, the performance of the proposed

architecture is comparable to the benchmark algorithms, where there is no significant

difference between the methods means (F = (4, 50) = 1.52, 4P = 0.21). However,

comparing the results in Table 5.1 showed the following:

Though RF has low standard deviations over the five noise ratios (Mean (M) = 2.67),

it does not perform as well as the remaining benchmark algorithms. The standard de-

viations of Bagging (M = 3.80), MI based MCMLPS (M = 3.09) and AdaBoost

(M = 3.73) accuracies are comparable to each other over the 11 data sets, with the

highest standard deviation being 7.09 for Bagging (for the spam data set), 4.08 for MI
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based MCMLPS (for the vehicle data sets) and 6.64 for AdaBoost (for spam data set).

The correlation based MCMLPS (M = 5.17) has varied levels of standard deviations that

reach a maximum of 17.33 for the vehicle data sets and a minimum of 0 for the German

credit card.

In addition, comparing the stability of the MI based MCMLPS performance with the best

performing method (Bagging) showed that, MI based MCMLPS had a smaller overall

variation in its accuracies (Standard Deviation (SD) = 0.88) than Bagging (SD = 1.47).

The use of the standard deviation in this study aimed to show if there are large variations

Table 5.1: The standard deviations of the accuracy for the five ensemble methods when
applied to data sets with five different noise ratios.

Data sets Correlation based MI based Bagging AdaBoost RF
MCMLPS MCMLPS

Gaussian 8D 10.33 3.31 2.71 4.31 1.78
German credit card 0.00 1.95 2.03 1.70 2.74

Ionosphere 2.59 3.95 5.30 4.94 3.81
Spam base 9.12 3.35 7.09 6.64 3.61

Pima 1.94 1.84 2.14 1.66 3.62
WBC 4.66 3.42 3.41 3.77 3.41
Heart 3.29 2.08 4.81 5.31 1.82
Sonar 3.01 2.22 3.37 2.64 1.10
Chess 3.51 3.79 3.42 3.09 1.62

Vehicle 17.33 4.08 3.79 3.65 3.99
Waveform 1.06 3.95 3.74 3.28 1.85

in the accuracies of the ensemble methods when different levels of noise are added to the

data. However, it does not show the actual amount of loss in the accuracy or whether

adding noise to the testing data or to the training data has a higher impact on the accu-

racy of the system. In order to examine these two aspects of the ensemble methods, the

Relative Loss of Accuracy (RLA) is calculated. This metric has been used in a previous

study (Sáez et al. (2013)) to measure the robustness of classification methods. The RLA

is measured using equation 5.1 given below.

RLAx%noise =
Acc0%noise − Accx%noise

Acc0%noise

(5.1)

Where RLAx%noise is the relative loss of accuracy when x% noise is added to the data,

Acc0%noise is the accuracy when no noise is added to the data and Accx%noise is the

accuracy when x% noise is added to the data. Table 5.2 shows the RLA when 10% and
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20% noise are added to either the testing or the training data. The smaller the value of

this metric, the lower the loss in the accuracy of the ensemble method and the more

robust the method is to noise.

Table 5.2: The relative loss in accuracy for the five ensemble methods when noise is
added to the training (TR) and testing (TS) data

Noise ratio Correlation based MI based Bagging AdaBoost RF

MCMLPS MCMLPS

Gaussian 8 dimensional

10%TR 0.015 −0.012 0.002 0.088 0.013

20%TR 0.017 −0.018 0.009 0.116 0.029

10%TS 0.142 0.038 0.013 0.013 0.024

20%TS 0.272 0.072 0.073 0.071 0.059

German credit card

10%TR 0 -0.017 0.012 0.012 0.064

20%TR 0 0.009 -0.010 -0.012 -0.014

10%TS 0 0.025 0.051 0.042 -0.017

20%TS 0 0.053 0.041 0.035 -0.049

Ionosphere

10%TR 0.018 -0.0153 -0.003 -0.006 0.039

20%TR 0.062 -0.015 0 -0.006 0.098

10%TS -0.008 0.029 0.068 0.063 0.049

20%TS 0.062 0.086 0.125 0.112 0.095

Spam

10%TR 0.034 0.001 -0.0001 0.001 0.010

20%TR 0.024 -0.004 0.002 0.001 0.017

10%TS 0.210 0.041 0.081 0.087 0.047

20%TS 0.212 0.078 0.168 0.157 0.104

Pima

10%TR 0.011 0.007 0.007 0.019 0.026

20%TR 0.015 -0.005 -0.012 0.024 0.032

10%TS -0.012 0.038 0.040 0.052 0.067

20%TS 0.056 0.049 0.053 0.048 0.127
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WBC

10%TR 0.014 0 0 0 0.017

20%TR 0.022 -0.002 0.002 -0.002 0.013

10%TS 0.054 0.043 0.038 0.051 0.049

20%TS 0.135 0.078 0.081 0.085 0.093

Heart

10%TR -0.014 -0.019 0.004 -0.004 0.005

20%TR -0.009 -0.024 0.009 -0.013 0.019

10%TS 0.023 0.013 0.098 0.090 0.033

20%TS 0.086 0.041 0.116 0.126 0.058

Sonar

10%TR -0.077 0.006 0.033 -0.006 0

20%TR -0.111 0.017 0 0.029 0.013

10%TS -0.138 0.052 0.069 0.046 0.013

20%TS -0.111 0.056 0.084 0.070 0.0362

Chess

10%TR -0.005 -0.0003 0.0002 0.003 -0.008

20%TR -0.009 -0.003 0.0002 -0.003 -0.005

10%TS 0.045 0.044 0.048 0.045 0.034

20%TS 0.076 0.084 0.074 0.070 0.041

Vehicle

10%TR 0.009 -0.012 -0.002 -0.062 0.079

20%TR 0.012 -0.006 -0.009 -0.109 -0.046

10%TS 0.465 0.053 0.057 0.040 0.075

20%TS 0.484 0.117 0.104 0.063 0.112

Waveform

10%TR 0.018 -0.004 0.006 0.009 0.002

20%TR 0.036 -0.009 0.006 0.014 0.004

10%TS 0 0.052 0.051 0.053 0.021

20%TS 0 0.103 0.102 0.098 0.048

The results in Table 5.2 showed that, though Bagging had the highest accuracy for most

of the data sets, it often has a higher loss in accuracy compared to the best performing
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method. On the other hand, Table 5.2 investigated 44 cases of added noise for the 11

data sets (4 noise ratios added to each data set), the results showed that the MI based

MCMLPS had a lower loss of accuracy for 32 cases compared to Bagging.

In addition, the table shows that generally adding noise to the testing data has a higher

effect on the accuracy of Bagging, MI based MCMLPS and AdaBoost than when the

noise is added to the training data. Meanwhile, whether the performance of the corre-

lation based MCMLPS and the RF is more effected by the training noise or the testing

noise, this depends mainly on the data sets used.

5.4.2 Discussion

This experiment has compared the robustness and accuracy of the correlation based and

MI based MCMLPS proposed in Chapter 4 to other ensemble methods in noisy environ-

ments.

The results showed that in terms of the accuracy of the prediction, in most cases Bagging

has the highest accuracy. Nevertheless, it has a small difference in accuracy to that of the

MI based MCMLPS. On the other hand, correlation based MCMLPS has a lower accu-

racy than Bagging, MI based MCMLPS and AdaBoost for most data sets and especially

for small data sets. This is due to the multiple splits of the data in the correlation based

MCMLPS, which had led to the LRs models being trained on a limited amount of data.

The only exceptions where correlation based MCMLPS had a relatively higher accuracy

than MI based MCMLPS are in Pima and heart data sets. These data sets had not only

small number of samples but also small number of features. Though MI based MCMLPS

allows its LRs models to train on all the available data, it uses only 30% of the features

to train the base predictors. Due to this, having low number of features and samples can

affect the performance of this method.

Meanwhile, the robustness of the five ensemble methods was tested using both the stan-

dard deviation of their accuracies and the RLA. Comparing the standard deviations for

the considered methods showed that Bagging, MI based MCMLPS and AdaBoost have

a comparable amount of variations, though the highest amount of variation in MI based

MCMLPS is lower than that in the other two ensemble methods. Moreover, the corre-

lation based MCMLPS have a varied level of variations in its accuracy and it can reach

very large values for some of the data sets compared to the other ensemble methods.

The results of the RLA showed that MI based MCMLPS have a lower loss of accuracy
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than Bagging in most cases. Moreover, it showed that Bagging, MI based MCMLPS

and AdaBoost are more affected by testing noise than by training noise. Also, as was

explained earlier, whether the performance of the correlation based MCMLPS and the

RF is more affected by the training noise or the testing noise, this depends mainly on the

data sets used.

In general, though Bagging often has a slightly higher accuracy than MI based MCMLPS,

MI based MCMLPS can often provide more robust performance in terms of the variation

in accuracy and the RLA.

5.5 The Effect of Changing the Fusion Methods on

MCMLPS Performance

In the previous Section Weighted Majority Vote (WMV) had been used to combine the

MCMLPS base predictors. The weights were calculated using either the pairwise square

correlation or the conditional mutual information of the features.

In this Section, the effect of changing the fusion method of the base predictors/ensembles

on the overall performance of the MCMLPS is examined. Six fusion methods are intro-

duced and tested in noisy as well as non-noisy environments. A description for these

methods is given below:

1. Single LR: this fusion method allows only one LR to provide the final prediction

of the system. The LR is selected using the similarity metric measured between

the LR seed and the new data features, such that, the LR with the highest similarity

value is chosen. The base predictors of this LR are combined using WMV, where

the weights are the similarity values.

2. Best Model: only the model with the highest accuracy from each LR is selected

and combined together using WMV. The models performance is evaluated using

their training accuracies.

3. MV: this fusion method is the unweighted majority vote (Mazurov et al. (1987))

and it represents the case where the similarity is not taken into consideration in

prediction. Equal weights are assigned to all base predictors and the final vote is

obtained by choosing the class of the majority.

4. WMV with the similarity metric: this fusion method is a weighted majority vote
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(Shapley and Grofman (1984)), where the weights are the summation of the simi-

larities between the data instances and the LRs data.

5. WMV with the similarity metric and the training accuracy in the first layer: this

fusion method weights the prediction of the base predictors using the similarity

metric and their training accuracies. The training accuracy is included in weighting

the prediction of the first layer predictors. It assigns a higher weight to the base

predictors which are more accurate in their predictions during the training phase.

The remaining layers are weighted using the similarity metric.

6. WMV with the similarity metric and the accuracy in all layers: in this fusion

method, the training accuracies of the base predictors are included in calculating

the weights used across all the ensemble layers. In the first layer, the prediction

of each model is weighted by the similarity metric as well as the training accuracy

of that model. Meanwhile, in the subsequent layers the average accuracy of the

ensemble base models are used with the similarity metric to weight the prediction

of the ensembles.

These six fusion methods are used with both the correlation based MCMLPS and the MI

based MCMLPS. The resulted system is applied to the data sets given in Table 4.3 with

different noise ratios added to either the training or the testing data. In the following

Subsections, detailed descriptions for these six fusion methods are provided. Further-

more, the performances of the MI based and the correlation based MCMLPS using these

fusion methods are evaluated and compared. Both the testing accuracy and the standard

deviation of the accuracy over the five added noise ratios are discussed in Subsections

5.5.1-5.5.4. Finally Subsection 5.5.5 examines and compares the RLA for the fusion

methods in both correlation based and MI based MCMLPS.

The complete results for the RLA and the accuracy of the six fusion methods are pre-

sented in Appendix B.

5.5.1 Single local region

In this method, a single LR ensemble is chosen to provide the final prediction of the

MCMLPS system. This ensemble is chosen based on the similarity between the fea-

tures of its training data and the features of the new data sample. The base predictors

of the chosen LR are combined using WMV, where the weights are calculated using

the similarity between the features of the LRs seeds and the features of the testing data.
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The ensemble can be trained on disjoint subsets of the data (as in the correlation based

MCMLPS) or it can be trained on a subset of the features (as in the MI based MCMLPS).

Figure 5.12 illustrate the single LR fusion method (this architecture and its parameters

were explained in Section 4.2).

In the correlation based MCMLPS, using this fusion method often produces the lowest
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Figure 5.12: An illustration for the MCMLPS with single LR fusion method

accuracy among all six fusion methods. Except for the Gaussian 8 dimension data set and

the German credit data set, where the performance of this method exceeds that of the MV.

Table 5.7 (shown after Subsection 5.5.4) shows the accuracies of the single LR compared

to the remaining fusion methods when the correlation based MCMLPS is applied to the

Gaussian 8 dimension data set. This data set represents a binary classification problem

with a reasonable number of samples. Thus single LR, having enough data to train on, is

able to provide better accuracy than MV.

The reason for the single LR method to often have the lowest accuracy in correlation

based MCMLPS is that, in this method the LRs ensembles are trained on disjoint subsets



5.5. CHANGING FUSION METHODS 111

of the data. This results in N independent ensembles. Though the similarity is taken

into consideration when selecting the single LR, this ensemble is often trained on a small

amount of data. Furthermore, a new sample can have two or more LRs which have a very

close correlation values with the same sample. Due to this, the prediction using a single

LR might not be as good as when multiple LRs ensembles are combined.

Meanwhile, in the MI based MCMLPS, this fusion method had a better performance

compared to the correlation based MCMLPS. Choosing a single LR to provide the final

prediction of the system often had better accuracy than MV and either better than or very

comparable accuracy to the best model fusion method. Generally, the accuracy of the

single LR is lower than WMV fusion methods. However, there are two exceptions to

this case: the ionosphere data set (shown in Table 5.8) and the German credit card data

set (shown in Table 5.14). In the ionosphere data set, single LR method has the highest

accuracy alongside the best model method. Meanwhile in the German credit data set, it

has a higher accuracy than WMV methods when there is no noise added to the data or

when the noise is added to the testing data.

The standard deviation of the accuracies for the single LR fusion method using both

correlation based and MI based MCMLPS is shown in Table 5.3. Applying a one way

ANOVA test showed that there is no significant differences between the means of the

standard deviation for the two systems (F (1, 20) = 0.53, p = 0.47). However, it can be

noted that, using correlation based system can result in a high standard deviation value

for certain data sets, such as, Gaussian 8 dimension, spam and vehicle data sets. Due to

this the overall mean for the correlation based MCMLPS (M = 4.09) is higher than that

for the MI based MCMLPS (M = 3.11).

Generally, though the accuracy has improved in MI based MCMLPS compared to cor-

relation based system; the standard deviation of the accuracy for this system is slightly

higher than that for the correlation based system for 7 out of the 11 data sets.

5.5.2 Best Model

The previous fusion method explores whether choosing a single LR ensemble can pro-

vide the best accuracy for the data sets using pairwise squared correlation and conditional

MI similarity metrics. Though the performance is improved in the MI based MCMLPS,

choosing a single LR often has lower accuracy than combining multiple components of

the MCMLPS. This section explores if choosing the best base predictor from each LR
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Table 5.3: The standard deviations of the accuracy for single LR fusion method when
applied with correlation based and MI based MCMLPS.

Data sets Correlation based MCMLPS MI based MCMLPS
Gaussian 8D 9.19 2.63

German credit 0 1.73
Ionosphere 1.77 3.87

Spam 8.56 3.33
Pima 1.19 1.96
WBC 3.51 3.46
Heart 2.06 2.10
Sonar 1.40 3.05
Chess 3.21 3.76

Vehicle 13.54 4.38
Waveform 0.53 3.90

can provide better or as good performance as combining all of the base predictors. The

aim is to show that if generating an ensemble using all the base predictors may result

in combining redundant predictors or if they can convey different information about the

problem.

This fusion method chooses the best model from each LR (based on the model training

accuracy) and combines them in a single ensemble. The best models are combined us-

ing WMV method weighted by the similarity metric. Figure 5.13 illustrates this fusion

method.

In the correlation based MCMLPS, generally this fusion method performs better than

single LR fusion method and in most cases it is better than MV method, however, its

performance is worse than WMV methods (as will be shown later). There are certain ex-

ceptions, for example, in the ionosphere data set shown in Table 5.9, it performs slightly

better than WMV and has the second highest accuracy after MV. Furthermore, when a

high ratio of noise (20%) is added to either the training or the testing data, this fusion

method has the highest accuracy. Moreover, for the Pima data set it has the second high-

est accuracy after the MV fusion method.

On the other hand, the accuracy of this fusion method in the MI based MCMLPS is

higher than in the correlation based MCMLPS. Compared to other fusion methods, the

accuracy of the best model fusion method in the MI based MCMLPS is lower than WMV

methods. It has a comparable accuracy to the single LR method and often is better than

MV method. Some exceptions to this case include: the vehicle data set and the Pima data
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Figure 5.13: An illustration for the MCMLPS with best model fusion method

set. In the vehicle data set, this fusion method has a lower accuracy than MV method.

Meanwhile, in the Pima data set choosing the best model has the lowest accuracy except

when the noise is added to the training data, where it becomes better than MV and single

LR. Table 5.10 shows the accuracies for the best model fusion method compared to the

other fusion methods when MI based MCMLPS is applied to Pima data set.

The robustness of the best model fusion method is affected by the method used to train

the base predictors. The standard deviations of the accuracies using this fusion method

for the correlation based MCMLPS (M = 4.59) and the MI based MCMLP (M = 3.41)

is shown in Table 5.4. Applying a one way ANOVA test showed that there is no sig-

nificant differences between the means of the standard deviation of the two systems

(F (1, 20) = 0.64, p = 0.43). The correlation based MCMLPS had a lower variation

in the accuracy than MI based MCMLPS for 7 out of the 11 used in the experiments.

The standard deviation for the accuracy of the best model fusion method is comparable

to that of the single LR fusion method. Furthermore, in the case of correlation based
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MCMLPS, both fusion methods does have similar high values of standard deviations of

the accuracy when applied to the Gaussian 8 dimension, spam and vehicle data sets.

Table 5.4: The standard deviations of the accuracy for the best model fusion method
when applied with correlation based and MI based MCMLPS.

Data sets Correlation based MCMLPS MI based MCMLPS
Gaussian 8D 9.96 2.97

German credit 0 1.95
Ionosphere 1.29 3.65

Spam 10.77 3.28
Pima 1.23 4.07
WBC 3.85 3.81
Heart 2.06 4.33
Sonar 1.40 1.91
Chess 3.77 3.82

Vehicle 14.42 3.83
Waveform 1.76 3.90

5.5.3 Majority vote

The previous two fusion methods had tested for selecting parts of the MCMLPS to pro-

vide the prediction of the system and whether this procedure can result in a good perfor-

mance for the system in terms of its accuracy and robustness. The MV fusion method

combines all the base predictors to provide the final prediction for the system. It assigns

equal weights for the base predictors without taking into consideration the similarities of

the new sample to the LRs data. Figure 5.14 illustrates this fusion method. The aim of

designing MV fusion method is to test for the significance of using the similarity and the

training accuracy to weight the prediction of the system.

In the correlation based MCMLPS, in most cases, the accuracy of MV is lower than

WMV. The exception for this is when data sets with small number of samples and/or

features are used, such as: ionosphere, Pima and sonar data sets. Furthermore, since in

correlation based MCMLPS the data is usually split into disjoint subsets with limited

number of features, the LRs models are trained on small amount of data. Due to this,

in small data sets using both the similarity and the training accuracy of the base model

might not help in improving the accuracy of the correlation based MCMLPS. However,



5.5. CHANGING FUSION METHODS 115

h(X)

𝑔1(𝑥)

𝑀1
1

𝑀2
1

𝑀𝑘
1

 𝑌𝑔2(𝑥)

𝑀1
2

𝑀2
2

𝑀𝑘
2

𝑔𝑛(𝑥)

𝑀1
𝑛

𝑀2
𝑛

𝑀𝑘
𝑛

Majority Vote

Figure 5.14: An illustration for the MCMLPS with MV fusion method

as the ratio of noise increases the differences in the accuracy between MV and WMV

fusion methods decreases. Table 5.11 shows the accuracies of the MV fusion method

compared to the remaining fusion methods when applied to the sonar data set. Generally,

in correlation based MCMLPS, MV fusion method has better accuracy than choosing

single LR to provide the final prediction of the system. In some data sets, especially in

multi-class classification problems, it is better than the single LR and best model fusion

methods.

On the other hand, in MI based MCMLPS, the accuracy of the MV fusion method is

lower than WMV methods on all data sets, and the only exception is that for the vehicle

data set (Shown in Table 5.12) where its accuracy is slightly better than WMV methods

when the noise is added to the testing data. Generally, in MI based MCMLPS, MV fusion

method has a lower accuracy compared to single LR and best model fusion methods.

The standard deviations of the accuracies of the MV fusion method, when applied to the

11 data sets, are shown in Table 5.5. Comparing the standard deviations of the accuracies
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in the MI based MCMLPS (M = 2.97) and correlation based MCMLPS (M = 5.35)

shows that, unlike the previous two fusion methods, in most data sets using the MV with

MI based MCMLPS results in lower deviations in the accuracies than when it is used

with correlation based MCMLPS. However, analysing the variance of the accuracies for

both systems, using one-way ANOVA test, showed that there is no significant difference

between their means (F = (1, 20) = 2.18, p = 0.16).

Table 5.5: The standard deviations of the accuracy for the best model fusion method
when applied with correlation based and MI based MCMLPS.

Data sets Correlation based MCMLPS MI based MCMLPS
Gaussian 8D 8.24 2.95

German credit 1.36 1.24
Ionosphere 4.21 4.13

Spam 11.29 3.08
Pima 3.12 1.75
WBC 3.62 3.75
Heart 3.47 1.61
Sonar 0.62 2.98
Chess 3.52 3.71

Vehicle 18.02 3.66
Waveform 1.32 3.78

5.5.4 Weighted majority vote

This subsection discusses three WMV fusion methods. Similarly to MV, in these meth-

ods all of the base predictors are combined to provide the final prediction of the system.

However, unlike the MV where equal weights are assigned to the predictors/ensembles,

in these fusion methods three weighting vectors are considered. The first fusion method,

illustrated in Figure 5.15, weights the prediction of the base predictors using the similarity

metric used to split the data into LRs. As mentioned previously, two similarity metrics are

used in the experiments, these are: the pairwise squared correlation metric and the con-

ditional mutual information metric. The aim of weighting the base predictors/ensembles

using one of the similarity metrics is to allow a higher degree of importance to the LRs

that are most similar to the new data sets. Therefore, this fusion method tests for the

accuracy and the robustness of the prediction when the locality of the new data is taken
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into consideration.

The second fusion method, shown in Figure 5.16, uses both the normalised accuracy of

the base predictors and the similarity metric to weight the prediction of the first layer

of the system while only the similarity metric is used to weight subsequent layers. In-

cluding the accuracy in the weighting vector aims to associate how accurate the base

predictors/ensembles are with the weights assigned to the LR. This can help the system

not only to base its weights according to the locality of the data, but also it allows more

accurate predictors/ensembles to have a higher impact on the prediction of the system.

The third fusion method, shown in Figure 5.17, uses the normalised accuracy and the

similarity metric to weight the first layer. In the subsequent layers, it uses the similarity

metric and the average accuracy of the base models/ensembles to weight the prediction.

This section will highlight how these fusion methods perform compared to each other

as well as to the other previously discussed methods. Table 5.6 will refer to these three

fusion methods as WMV 1, WMV 2 and WMV 3 respectively.

In Figures 5.15 to 5.17, sim1, ..., simn represent the similarities between the LRs data

and the test data, TRAcc1, ..., TRAcck are the accuracies of the base predictors, and

Avacc1, ..., Avaccn are the average accuracies of the LRs.

In general the differences in accuracies among these three fusion methods are not

significant. Adding the normalised accuracy to one or two layers can have a positive or a

negative impact on the accuracy of the WMV depending on the data sets. In correlation

based MCMLPS, the three WMV methods showed comparable accuracies, in few cases

the differences in their accuracy exceed 2%. An example is the heart data set, shown

in Table 5.13, where similarity based WMV had the highest accuracy for all the cases

except when 20% noise is added to the testing data.

In small data sets such as the ionosphere, heart and WBC, using the accuracy in

the weighting of the predictive system can lead to a slight decrease in the overall

performance of the system. This is due to the possible overfitting of the base predictors

when they are trained using small data sets, which can make the training accuracy a poor

representation of the base predictors performance. In these cases, using the similarity

metric alone can result in a better performance than adding the normalized accuracy to

the weighting vector.

On the other hand, compared to other fusion methods, in correlation based MCMLPS

the WMV methods have the highest accuracies for most of the data sets. The exceptions
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Figure 5.15: An illustration for the MCMLPS with MV weighted by similarity in all
layers

for this (as was mentioned previously) are: the ionosphere, Pima and sonar data sets. In

the ionosphere data set, WMV methods come after the MV fusion method and in the

other two data sets it comes after the best model and the MV. Nevertheless, for these

data sets the significance of the difference in accuracy between the WMV methods and

the best fusion method is reduced when the noise is added to either the testing or the

training data.

In MI based MCMLPS, adding the accuracy in the weighing of one or two layers often

result in a small improvement in the accuracy of the WMV fusion methods. In this type

of MCMLPS, training the base predictors on subsets of the features for all the available

data makes them less subjected to overfitting than in the correlation based approach.

Due to this, including the accuracy in the weighting of the base predictors/ensembles

can adds useful information about the predictors and results in improving the accuracy

of the overall system.

Similar to correlation based MCMLPS, in MI based system WMV fusion methods
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Figure 5.16: An illustration for the MCMLPS with MV weighted by similarity and nor-
malized training accuracy in the first layer and the similarity in subsequent layers

outperform other fusion methods in most cases, except when it is outperformed by MV

(in the Vehicle data set shown in Table 5.12) or by the single LR (in the ionosphere

and German data set shown in Table 5.8 and Table 5.14 respectively). However, the

differences in accuracy among these methods are very small.

The standard deviations of the accuracies for all WMV fusion methods using both

correlation based and MI based MCMLPS are shown in Table 5.6. It can be noted

that within the same MCMLPS, the differences among the three WMV methods are

small and that the smallest deviation in accuracy (for correlation based and MI based

MCMLPS) depends on the data set used. However, in correlation based MCMLPS, for

certain data sets the deviation in accuracy is considerably high. This is due to the high

drop in accuracy when the noise is added to the testing data. Nevertheless, this large

variation is reduced when MI based MCMLPS is used.

A one way ANOVA test is applied to the three fusion methods of the correlation based

MCMLPS: WMV1 (M = 4.92), WMV2(M = 4.71), WMV3(M = 4.72) and of the MI
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Figure 5.17: An illustration for the MCMLPS with MV weighted by similarity and nor-
malized training accuracy in the first layer and the similarity and average training accu-
racy in subsequent layers

based MCMLPS: WMV1(M = 3.09), WMV2(M = 3.07), WMV3(M = 3.08). The

test showed that, though the mean of the MI based MCMLPS is generally lower than

that of the correlation based MCMLPS, there is no significant difference between the

means of the WMV fusion methods for both systems (F (5, 60) = 0.65, p = 0.66).
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Table 5.6: The standard deviations of the accuracy for the WMV fusion methods when
applied with correlation based and MI based MCMLPS.

Data sets Correlation based MCMLPS MI based MCMLPS
WMV 1 WMV 2 WMV 3 WMV 1 WMV 2 WMV 3

Gaussian 8D 10.33 10.38 10.37 3.31 3.24 3.23
German credit 0 0 0 1.95 1.92 1.98

Ionosphere 2.59 1.81 1.94 3.94 3.92 3.92
Spam 9.12 9.30 9.32 3.35 3.31 3.31
Pima 1.94 1.96 1.79 1.84 1.80 1.80
WBC 4.66 4.43 4.02 3.43 3.42 3.45
Heart 3.29 2.00 2.40 2.08 1.99 1.99
Sonar 0.78 0.45 0.44 2.22 2.33 2.33
Chess 3.51 3.54 3.56 3.79 3.79 3.79

Vehicle 17.33 17.33 17.41 4.08 4.10 4.10
waveform 0.54 0.63 0.61 3.95 3.94 3.94

Table 5.7: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the Gaussian 8 dimensions data set.

Correlation based MCMLPS applied to Gaussian 8 dimensions data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 87.08 87.42 77.86 88.16 88.16 88.16

10%TR 86.50 86.34 74.44 86.82 86.88 86.78
20%TR 86.34 86.32 74.12 86.66 86.60 86.60
10%TS 76.26 75.26 66.04 75.66 75.64 75.66
20%TS 66.14 64.54 57.44 64.16 64.04 64.02

Table 5.8: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the ionosphere data set.

MI based MCMLPS applied to Ionosphere data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 92.87 92.87 91.44 92.30 92.58 92.58

10%TR 94.30 94.01 93.44 93.72 94.01 94.01
20%TR 92.87 93.16 93.44 93.72 93.72 93.72
10%TS 90.17 90.17 88.61 89.65 89.91 89.91
20%TS 84.58 85.06 83.63 84.35 84.58 84.58
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Table 5.9: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the ionosphere data set.

Correlation based MCMLPS applied to ionosphere data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 72.93 78.35 82.92 77.19 76.06 76.92

10%TR 71.23 76.35 81.19 75.77 74.92 74.63
20%TR 68.96 76.92 74.06 72.37 72.93 73.22
10%TS 71.80 79.49 80.63 77.78 76.92 77.20
20%TS 68.96 76.92 74.06 72.37 72.93 73.22

Table 5.10: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the Pima data set.

MI based MCMLPS applied to Pima data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 75.13 67.97 71.88 75.78 75.91 75.91

10%TR 71.88 72.14 71.35 75.26 75.39 75.39
20%TR 75.78 73.70 70.83 76.17 76.17 76.17
10%TS 72.27 65.52 69.19 72.87 73.10 73.10
20%TS 71.63 64.35 67.61 72.07 72.17 72.17

Table 5.11: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the sonar data set.

Correlation based MCMLPS applied to sonar data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 72.60 78.85 78.85 77.88 77.88 77.88

10%TR 73.56 77.40 78.85 78.37 78.37 78.37
20%TR 75.48 77.40 78.85 78.85 78.85 78.37
10%TS 72.81 77.63 80.26 79.39 78.51 78.07
20%TS 71.77 77.42 79.44 79.84 79.03 79.03
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Table 5.12: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the vehicle data set.

MI based MCMLPS applied to vehicle data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 72.58 72.46 75.89 74.35 74.59 74.59

10%TR 73.76 74.47 75.06 75.30 75.42 75.42
20%TR 72.69 73.87 76.24 74.82 74.94 74.94
10%TS 68.92 68.60 72.26 70.43 70.65 70.65
20%TS 64.59 64.00 67.46 65.68 65.78 65.78

Table 5.13: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the heart data set.

Correlation based MCMLPS applied to heart data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 72.96 75.94 74.84 80.38 78.16 77.03

10%TR 72.55 78.15 77.02 81.49 80.76 80.03
20%TR 73.33 77.79 78.87 81.12 79.27 79.26
10%TS 71.50 74.84 73.50 78.54 77.86 76.17
20%TS 68.25 73.22 69.81 73.47 75.33 74.09

Table 5.14: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the German data set.

MI based MCMLPS applied to German data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 75 72 69 74.60 74.60 74.60

10%TR 75.10 72.50 69.10 75.80 75.80 76
20%TR 71.70 73.00 67.20 73.90 73.80 73.80
10%TS 73.09 70.27 67.90 72.72 72.72 72.73
20%TS 71.50 68.25 66.17 70.67 70.75 70.75

5.5.5 The relative loss of accuracy for the six fusion methods

The complete results for the RLA for both correlation based MCMLPS and MI based

MCMLPS are given in Appendix B (Tables B.1 to B.11 and Tables B.12 to B.22

respectively). In general, the differences between the fusion method that has the highest
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RLA and the fusion method that has the lowest RLA are small.

As has been shown in Table 5.2, in MI based MCMLPS, WMV fusion methods often

had a lower RLA compared to Bagging, AdaBoost and RF. Nevertheless, compared to

the other MCMLPS fusion methods discussed in this Section, WMV methods seldom

have the lowest RLA value. Mainly, best model and MV fusion methods have the lowest

RLA value in MI based MCMLPS. On the other hand, in correlation based MCMLPS,

the fusion methods that have the lowest RLA for most of the data sets are single LR and

best model fusion methods.

Table 5.15 shows the number of times each fusion method had the lowest RLA value.

This count is measured for the four noise ratios added to the 11 data sets used in this

experiment. In correlation based MCMLPS, the results for the German data set, has been

excluded, as all the fusion method (apart from MV) had the same RLA value.

Table 5.15: The count of the lowest RLA values for the six fusion methods

Fusion method Correlation based MCMLPS MI based MCMLPS

Single LR 11/40 6/44

Best model 12/40 18/44

MV 3/40 18/44

WMV with similarity 4/40 3/44

WMV with similarity 7/40 0/44

and accuracy in 1st layer

WMV with similarity 3/40 1/44

and accuracy in all layers

Though including the weighting vectors in WMV methods resulted in improving the

accuracy of the system, they had slightly increased the RLA in the overall system. A

possible reason for this increase is the increase of the number of free parameters in the

system.

5.5.6 Discussion

The previous subsections examined the accuracy and robustness of six fusion methods

used to combine the base predictors of the proposed MCMLPS. The robustness is mea-
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sured in terms of the standard deviation of the accuracy and the RLA when different noise

ratios are added to the training and testing data.

In the correlation based MCMLPS, the LRs ensembles are trained on disjoint sets of the

data and for which a subset of features are chosen. Due to this, these ensembles are in-

dependent from each other. Choosing a single LR to provide the prediction of the system

often resulted in the worse accuracy among the six fusion methods. Though the similar-

ity metric is taken into consideration when choosing the single LR, nevertheless, the base

predictors are trained on a limited amount of data and features. This had resulted in hav-

ing the lowest accuracy among other fusion methods. Furthermore, this fusion method

did not benefit from the high diversity among the LRs ensembles (as was discussed in the

Chapter 4), since only one of the LRs is chosen to provide the prediction for the system.

On the other hand, selecting the best model from each LR and combining them into a sin-

gle ensemble did improve the accuracy compared to choosing a single LR. In most cases

this method had a higher accuracy than MV method; this showed the positive effect of the

weighting on the accuracy of the system. Meanwhile, best model fusion method had a

lower accuracy than WMV methods, which indicates that combining the base predictors

of the LRs should not be considered as an unnecessary step of combining redundant pre-

dictors. As has been explained in Chapter 4, the LRs data is split into k-fold using DPS.

Though the folds generated using DPS are representative of the LRs data, they are not

identical. Thus training the base predictors using these folds does not result in identical

predictors.

In general, the WMV had the highest accuracy among the fusion methods for most of the

data sets. The differences in the accuracies among the three WMV methods is small. In

small data sets including the training accuracy in weighting of the base predictors might

lead to a slight decrease in the overall accuracy of the correlation based MCMLPS pre-

diction. This is due to training the base predictors on small disjoint subsets of the data

which can result in overfitting.

In MI based MCMLPS, the accuracy of the six fusion methods is improved compared

to the correlation based system, since the base predictors are trained on subset of the

features for all the available data. In this case, the MV often has the lowest accuracy

compared to the other fusion methods, while the WMV methods often have the highest

accuracy.

The robustness of the system is investigated by exploring the changes in accuracy when

different ratios of noise are added to either the training or the testing data. In MV and
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WMV methods, using conditional mutual information to generate the LRs data did not

only improve the accuracy of the system but also improved the standard deviation of its

accuracy. Moreover, in correlation based MCMLPS, both single LR and best model fu-

sion methods had high values for the standard deviation of the accuracies when applied

the Gaussian 8 dimension, spam and vehicle data sets. Using the MI similarity metric

had resulted in reducing the standard deviation of the accuracies for those data sets.

On the other hand, measuring the RLA for the six fusion methods showed that, though

WMV methods have the highest accuracy values, they often do not have the lowest RLA

among the fusion methods. Adding the weights can improve the accuracy of the fusion

method, however, it may cause an increase the RLA.

5.6 Summary

This Chapter investigated the performance of the MCMLPS proposed in Chapter 4 in

noisy environments. Mainly this Chapter examined the accuracy and the robustness

of the MCMLPS generated using correlation based and MI based approaches. The

accuracy is evaluated on the test set, while the robustness is evaluated using the RLA

and the standard deviation of the accuracies of the system over five noise ratios added to

the training and testing data (as was explained in Section 5.4).

The results showed that, there are three main decision points in the proposed MCMLPS

that control the accuracy, diversity and robustness of the system. These points are: a)

the generation of the LRs (using disjoint sets of the data or subsets of the features), b)

the fusion methods (selecting parts of the system components or combining all of them),

and c) the weighting of the system components.

In the first part of the experimental work presented in Section 5.4, the accuracy and

robustness of the proposed system are compared to the accuracy and robustness of the

three ensemble methods, these methods are: Bagging, AdaBoost and RF. MI based

MCMLPS often had a comparable accuracy to the best performing method (Bagging).

Furthermore, the standard deviation of its accuracy is comparable to Bagging and

AdaBoost. Nevertheless, in terms of the RLA when different noise ratios are added to

the training and testing data, generally, MI based MCMLPS had a lower loss of accuracy

than Bagging.

On the other hand, the correlation based MCMLPS often had a lower accuracy than MI
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based MCMLPS, especially for small data sets. Furthermore, the standard deviations

of its accuracies vary across the data sets used in this experiment and had reached high

values compared to the other ensemble methods.

The second part of the experimental work presented in Section 5.5 introduced six fusion

methods to combine the base predictors/ensembles of the MCMLPS. In order to generate

the final prediction of the MCMLPS, these fusion methods either combine parts of the

system components, such as: single LR and best model fusion methods, or combine all

the system components using either a weighted or unweighted MV method.

In terms of the accuracy, usually WMV methods provide the highest accuracy among all

six fusion methods. However, in terms of the RLA, WMV methods often have higher

loss in accuracy compared to other fusion methods.
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Chapter 6

Conclusions and Future Work

6.1 Thesis summary

The goal of this thesis is to investigate the inclusion of multiple criteria in the design

process of complex predictive systems and to critically evaluate the interactions among

them. The criteria that have been included in this work are: accuracy, model complexity,

algorithmic complexity, diversity and robustness.

This thesis started with decomposing the learning process in predictive systems into three

components: representation, evaluation and optimisation. The literature reviewed in

Chapter 2 explored these components in order to establish the theoretical background

for the work presented in this thesis. It started by defining the architectures of the predic-

tive systems, from single predictor to complex pool of competing predictors. Then, this

Chapter had examined the criteria used to evaluate the predictive system performance

and examined the main approaches used to optimise a single as well as multiple criteria.

Taking the three components of the learning process into consideration, a general design

cycle for building MCMLPS has been proposed in Chapter 3. This design cycle had con-

sidered important aspects of MCMLPS, such as: local versus global models, the ability

of defining universal measures for the evaluation criteria and the optimisation approaches

used for such systems.

Chapter 3 introduced an experimental case study to compare the models generated from

trading-off accuracy, model complexity and algorithmic complexity using two MOO ap-

proaches. This case study evaluated the significance of including multiple criteria at the

base predictor's level of the MCMLPS design process. Furthermore, it highlighted the

129
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high algorithmic complexity associated with including multiple criteria in the optimisa-

tion of the base models.

In addition, Chapter 3 had illustrated the advantages and drawbacks of using scalarized

and Pareto-based MOO approaches in optimising multiple criteria experimentally using

the above mentioned case study. The results showed that, the best models generated from

the Pareto-based approach usually had lower error than the models generated from the

scalarized approach. However, the Pareto-based approach is hindered by its high algo-

rithmic complexity. Thus, in ensemble methods, the performance of the base predictors

is often evaluated using only the accuracies of the models prediction. While other char-

acteristics of the system are either included indirectly in the design cycle or presented as

constraints.

In Chapter 4, a novel locally trained MCMLPS has been proposed. This system di-

vided the data into multiple LRs using the similarity of the features. Inside each LR

a pre-defined number of base models were trained on subsets of data and/or subsets of

features. Two similarity metrics were used: pairwise squared correlation and conditional

mutual information. The squared correlation metric can be applied in supervised as well

as unsupervised learning since it does not require the output class when splitting the data.

Meanwhile, the conditional mutual information metric can be applied only in supervised

learning as it uses the output class while splitting the data.

The diversity among the MCMLPS base predictors was relatively high compared to the

other ensemble methods described in Chapter 4, especially when the base predictors were

trained on disjoint subsets of the data. The locality and the high level of diversity among

the base predictors of the MCMLPS suggested that this system can have more robust

performance than the benchmark ensembles when applied in noisy environments. Thus,

the robustness of the proposed system to external noise had been investigated in the next

Chapter.

Chapter 5 examined the robustness of the proposed MCMLPS and its relation to the lo-

cality of the data, the diversity of the base predictors and the accuracy of the prediction.

The robustness was evaluated using both the RLA and the standard deviation of the ac-

curacies over five noise ratios added to either the training or the testing data. Though

the accuracy of the MI based MCMCPS was comparable to the best performing method

(when no noise is added to the data), its RLA (when different noise ratios are added to

the data) is often lower than the best performing method.

The effect of changing both the weighting and the fusion methods on the accuracy and
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robustness of the MCMLPS was examined in this Chapter. Six fusion methods were

introduced to combine the base models/ensembles of the proposed system. In order to

generate the final prediction of the MCMLPS, these fusion methods had either combined

parts of the system components, such as: single LR and best model fusion methods, or

combined all of the system components using either weighted or unweighted MV meth-

ods.

In terms of the accuracy, usually WMV methods had the highest accuracy among all six

fusion methods. However, in terms of the RLA, WMV methods often had a higher loss

in accuracy compared to other fusion methods.

Chapter 5 concluded by identifying the main decision points in the system that control

its accuracy, diversity and robustness to noise. The identified points were: a) the gener-

ation of the LRs (using disjoint sets of the data or subsets of the features), b) the fusion

methods (selecting parts of the system components or combining all of them), and c) the

weighting of the system components.

6.2 Main contributions

The main contributions of this work can be summarised in the following points:

• Comprehensive study of the learning process in predictive systems:

The study followed the decomposition of the learning process presented in (Domin-

gos (2012)). It carried out a survey of the prediction systems architectures, evalua-

tion criteria and optimisation techniques. The scope of this theoretical study was to

identify the major criteria used in evaluating the system performance and to deter-

mine the feasibility of defining universal measurements for the considered criteria.

Moreover, it explained and compared the optimisation approaches used to optimise

single as well as multiple criteria.

• An experimental case study for multi-criteria optimisation:

This study compared the scalarized and Pareto-based MOO approaches employed

to generate predictive models using multiple criteria. The performance of the

models was optimised using their accuracy, model complexity and algorithmic

complexity (captured through the execution time and the memory usage). The

results showed that Pareto-based optimisation approaches can produce more

accurate and more diverse models.
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• Novel local learning MCMLPS:

Two versions of novel local learning MCMLPS were developed. In both versions,

the diversity among the system base predictors was maximised by training their

base predictors on subsets of the data or the features.

– Correlation based MCMLPS:

In this system the data was split into disjoint subsets that were assigned to

a set of LRs. The locality was determined using an unsupervised similarity

metric, that is the pairwise squared correlation of the features. A pre-defined

number of models were trained on the LRs data and their output were com-

bined using WMV. The similarity between the LRs seeds and the features of

the data were used to weight the prediction of the system components. A par-

ticular benefit of this MCMLPS is that, since it had trained the LRs on disjoint

subsets of the data, the diversity among its components were maximised.

– MI based MCMLPS:

This system had trained its base models on intersected subsets of the features

for all the training data. The locality of the features was determined using a

supervised similarity metric, namely, the conditional mutual information of

the features. The weighting and the fusion method used in this approach were

similar to the previous system.

The diversity among the components of MI based MCMLPS was lower than

that of the correlation based MCMLPS. Nevertheless, it was higher than the

diversity among the components of the other ensemble methods used in the

experiments. Furthermore, the accuracy of the prediction for this system had

improved compare to that of the correlation based MCMLPS.

• Robustness of MCMLPS in noisy environments:

Encouraged by the high diversity among the MCMLPS base models, the robustness

of this system in noisy environments was tested and compared to other ensemble

methods. The results showed that, the MI based MCMLPS had: a) an accuracy

comparable to the best performing method, b) a lower diversity than correlation

based MCMLPS and c) often lower RLA than the best performing method. Thus,

compared to the ensemble with the highest accuracy, the performance of this ap-

proach was often less effected by the noise added to the data.
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• Examining the effect of changing the fusion methods on the performance of the

MCMLPS:

The effect of changing the fusion/selection methods and the weighting of the pre-

diction on the robustness and accuracy of the prediction had been examined. Six

fusion methods that use different weighting vectors were applied to both correla-

tion based and MI based MCMLPS. Comparing the fusion methods showed that,

combining the base predictors using WMV often had the best accuracy, though its

RLA can be slightly higher than other combining methods. Furthermore, the ben-

efits of using the similarity metric in weighting the prediction of the system was

highlighted when the results were compared to unweighted MV fusion method

which often had a lower accuracy.

Generally, there are three main decision points in the proposed MCMLPS that con-

trol the accuracy, diversity and robustness of the system, these points are:

– Data partitioning: which defines how the data is split and used to train the

base predictors.

– Prediction weighting: which determines how the predictions of the base pre-

dictors/ensembles are weighted.

– Fusion methods: which defines how to combine the base predic-

tors/ensembles.

6.3 Future work

There are at least two possible directions for the future research related to the work

presented in this thesis. The first direction is related to the development and expansion

of the current architecture of the system, while, the second direction is related to the type

of applications this system can be particularly useful in.

In terms of the first direction, there are certain aspects in the current setting of the system

that can be further improved, such as, adding a subroutine to optimise the number of

LRs and number of models inside the LRs to match the data set size, dimensionality

and number of classes. The current setting of the experimental work in this thesis had

pre-defined these parameters to match the overall number of models in the benchmark

ensemble methods used in the comparison.

In addition, the functionality of the proposed MCMLPS can be extended to include
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adaptation mechanisms, such that, when a change is detected in the data, only the models

of the affected region are updated. This can reduce the algorithmic complexity required

to update the system. Another extension is to develop a meta-learning layer that can

select the type of the base models according to the nature of the prediction problem

rather than having a predefined type of base models. This extension can potentially

improve the accuracy of the system. This was shown in the results of the accuracy

for correlation based MCMLPS (in Chapter 4), where changing the type of the base

predictors from CART decision trees to feedforward NNs had improved the accuracy

of the prediction for certain data sets. In this case, it would be beneficial to find other

approaches to introduce multiple criteria (such as model and algorithmic complexities)

at the generation level of the base components without increasing much the algorithmic

complexity of the system.

In terms of the area of applications, due to the locality and high diversity of the proposed

MCMLPS, it can be particularly useful when applied to data from different sources

(fused data) (Parikh and Polikar (2007)). On the other hand, the correlation based

similarity metric used in this work has been applied successfully with deep learning

networks in challenging image recognition problems (Coates and Ng (2011)). Since the

proposed system is trained to recognize local regions in the data, it could be potentially

successful when applied to image recognition problems. Furthermore, the high diversity

among the system components combined with low RLA (in the MI based MCMLPS)

could have a beneficial effect in recognizing images with distortion or added noise.

In addition, in this thesis, the proposed MCMLPS has been applied to classification

problems, however, the current structure of the system can be extended to provide

prediction for regression problems as well.
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Data Sets Descriptions

This appendix provides a summary for the data sets that have been used throughout the

thesis. The data sets are publicly available and come from the UCI machine learning

repository Lichman (2013) and the UCL ELENA project. The data sets have been chosen

according to their size, dimensionality and number of classes. Descriptions of these data

sets are given below:

• Cloud data set

The cloud data set is an artificial data set available at the ELENA project database.

It has 2−dimension and consist of 5000 instances. This data set represent a heavily

intersected binary classification problem, where class 0 is obtained from summing

three Gaussian distributions, while class 1 is a single normal distribution.

• Concentric data set

The concentric data set is also an artificial data set available at the ELENA project

database. It has 2−dimensions and consist of 2500 instances. This data set rep-

resent a uniform concentric circular distributions with two classes. The dataset is

contained in the square (0,0), (1,1), where class 0 is uniformly distributed into a cir-

cle of radius 0.3 centred on (0.5,0.5). On the hand, class 1 is uniformly distributed

into a ring centred on (0.5,0.5) with internal and external radius respectively equal

to 0.3 and 0.5.

• Cone-Torus data set

Conetorus is a synthetic data set dataset first used in Kuncheva (2000). It has 2

dimensions and consisting of 3 classes. The classes are generated from 3 differently

shaped distributions: a cone, half a torus, and a normal distribution with prior
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probabilities of 0.25, 0.25 and 0.5 respectively.

The dataset comes divided into nonoverlapping training and test sets, each has 400

instances.

• Gaussian 2,4 and 8 dimensional data sets

The Gaussian database is a group of artificial datasets available at the ELENA

project database. They represent binary classification problems and has 5000 in-

stances. The number of features for this data sets ranges from 2 to 8 dimensions.

This problem explore the classifier behaviour for different dimensionalities of the

same data, under heavily overlapped distributions with no linear separability.

The first class of this data represents multivariate normal distribution with zero

mean and unit standard deviation. On the other hand the second class represents

normal distribution with zero mean and standard deviation equal to 2 in all dimen-

sions.

• Shuttle data set

The shuttle dataset (available at the UCI repository) is concerns automatic shuttle

control. It has 9 numerical features and 7 classes. These classes correspond to

control actions, with 80% of instances belonging to one majority class. This dataset

consists of 58000 instances.

• Synthetic data set

Synthetic dataset is an artificial first used in Ripley (2007). It has 2 dimension and

consist of 2 classes with equal class priors. The two classes are partially overlap-

ping and they are composed of 2 Gaussians distributions with shifted centres.

The dataset comes divided into nonoverlapping training and test sets, which have

250 and 1000 instances respectively.

• German credit card data set

The German credit card data set (available at the UCI repository) is concerned

with identifying good and bad credit risk for loan applicants. It has 24 features and

consist of 1000 instances. It represent a cost sensitive prediction problem, where

the cost associated with identifying bad loan application as good is higher than

identifying good loan application as bad.

• Ionosphere data set

The ionosphere radar data (available at the UCI repository) was collected by a

system in Goose Bay. It has 34 features and 351 instances. This is a binary clas-
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sification problem, where the first class represent Good radar returns for electrons

that shows evidence of some type of structure in the ionosphere. On the other hand

the second class represent Bad returns for electrons that do not show such structure.

• Spam base data set

The spam base data set (available at the UCI repository) is concerned with identi-

fying emails as spam or non-spam, thus it is a binary classification problem. It has

57 features and consist of 4601 instances.

• Pima Indian diabetes

Pima Indians diabetes database (available at the UCI repository) providing diabetic

diagnosis based on a number of various physiological attributes of the examined

patients. All patients are females who are at least 21 years old of Pima Indian

heritage. This data set has 8-features and consist of 768 instances. It is a binary

classification problem, where 500 instances belong to class 1 while 268 belong to

class 2.

• Wisconsin Breast Cancer data set

The breast cancer database (available at the UCI repository) is a data set that

has been obtained from the University of Wisconsin Hospitals, Madison from Dr.

William H. Wolberg. It is a binary classification problem that has 30 features and

consist of 596 instances. The two classes of this data are benign and malignant

breast cancers and they are split into 212 malignant instances and 357 benign in-

stances. The features of the data were computed from a digitised image of a fine

needle aspirate of a breast mass.

• Heart data set

The breast cancer database (available at the UCI repository) is a binary classifica-

tion problem that has 13 features and consist of 270 instances. The two classes of

this data are absence and presence of heart disease.

• Sonar data set

The sonar dataset (available at the UCI repository) has 60 features and consist of

208 instances. It is a binary classification problem which distinguish between sonar

signals bounced off a metal cylinder and those bounced off a roughly cylindrical

rock.

• Chess

Chess (King-Rook vs. King-Pawn) dataset is available at the UCI repository. It
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has been originally generated and described by Alen Shapiro. This data set has 36

features and consist of 3196 instances. It is a binary classification problem for a

win or no win scenario in chess board. The class distribution consist of 1669 of the

positions (52%) where white can win and 1527 of the positions (48%) where white

cannot win.

• Vehicle

Vehicle silhouettes dataset (available at the UCI repository) has 18 features and

consist of 846 instances. This data set distinguish four types of vehicles using their

silhouettes. These vehicles are Opel, Saab, Bus and Van. The vehicle may be

viewed different angles.

• Waveform

Waveform dataset (available at the UCI repository) has 40 features all of which

include noise and consist of 5000 instances. This data set distinguish three equally

distributed classes. Each class is generated from a combination of 2 of 3 ”base”

waves.



Appendix B

The accuracy and RLA for the
MCMLPS fusion methods

This appendix provide the detailed results for the accuracy and the RLA for the MCMLPS

fusion methods. Chapter 5 provide a selective set of results that shows certain aspect of

the fusion methods. In this section the results for the accuracy and the RLA for the six

fusion methods when applied to the data sets shown in Table 4.3 are given below:

B.1 The accuracy of the six fusion methods

In this section the accuracy of the six fusion methods when applied to the correlation

based and MI based MCMLPS are given in Tables B.1 to B.11 and Tables B.12 to B.22

respectively.

B.1.1 Accuracy for the six fusion methods in the correlation based
MCMLPS

• Gaussian 8 dimensional data set

139
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Table B.1: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the Gaussian 8 dimensions data set.

Correlation based MCMLPS applied to Gaussian 8 dimensions data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 87.08 87.42 77.86 88.16 88.16 88.16

10%TR 86.50 86.34 74.44 86.82 86.88 86.78
20%TR 86.34 86.32 74.12 86.66 86.60 86.60
10%TS 76.26 75.26 66.04 75.66 75.64 75.66
20%TS 66.14 64.54 57.44 64.16 64.04 64.02

• German credit card data set

Table B.2: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the German credit card data set.

Correlation based MCMLPS applied to German credit data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 70 70 69.80 70 70 70

10%TR 70 70 69.70 70 70 70
20%TR 70 70 69.50 70 70 70
10%TS 70 70 66.60 70 70 70
20%TS 70 70 68.30 70 70 70

• Ionosphere data set

Table B.3: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the ionosphere data set.

Correlation based MCMLPS applied to ionosphere data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 72.93 78.35 82.92 77.19 76.06 76.92

10%TR 71.23 76.35 81.19 75.77 74.92 74.63
20%TR 68.96 76.92 74.06 72.37 72.93 73.22
10%TS 71.80 79.49 80.63 77.78 76.92 77.20
20%TS 68.96 76.92 74.06 72.37 72.93 73.22

• Spam base data set
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Table B.4: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the spam base data set.

Correlation based MCMLPS applied to spam base data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 82.61 82.24 85.98 86.26 86.29 86.29

10%TR 80.48 84.44 84.92 83.37 83.53 83.53
20%TR 81.09 84.07 84.33 84.18 84.74 84.74
10%TS 65.60 64.06 66.29 68.15 68.03 67.95
20%TS 66.06 63.90 62.94 67.98 67.89 67.91

• Pima Indian diabetes

Table B.5: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the Pima data set.

Correlation based MCMLPS applied to Pima data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 72.08 78.06 81.50 76.62 75.20 76.35

10%TR 70.95 78.34 81.47 75.77 75.78 75.21
20%TR 71.23 75.77 77.50 75.50 75.21 75.22
10%TS 71.52 76.63 80.63 77.50 77.50 77.50
20%TS 68.96 75.78 74.35 72.37 72.08 72.66

• Wisconsin Breast Cancer data set

Table B.6: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the WBC data set.

Correlation based MCMLPS applied to WBC data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 78.38 82.60 81.20 86.29 85.77 85.06

10%TR 76.97 83.31 80.85 85.06 84.36 83.66
20%TR 80.14 81.54 77.33 84.36 84.53 83.66
10%TS 74.24 78.56 75.68 81.60 81.45 81.45
20%TS 71.25 73.90 72.59 74.64 74.79 74.94

• Heart data set



142APPENDIX B. THE ACCURACY AND RLA FOR THE MCMLPS FUSION METHODS

Table B.7: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the heart data set.

Correlation based MCMLPS applied to heart data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 72.96 75.94 74.84 80.38 78.16 77.03

10%TR 72.55 78.15 77.02 81.49 80.76 80.03
20%TR 73.33 77.79 78.87 81.12 79.27 79.26
10%TS 71.50 74.84 73.50 78.54 77.86 76.17
20%TS 68.25 73.22 69.81 73.47 75.33 74.09

• Sonar data set

Table B.8: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the sonar data set.

Correlation based MCMLPS applied to sonar data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 72.60 78.85 78.85 77.88 77.88 77.88

10%TR 73.56 77.40 78.85 78.37 78.37 78.37
20%TR 75.48 77.40 78.85 78.85 78.85 78.37
10%TS 72.81 77.63 80.26 79.39 78.51 78.07
20%TS 71.77 77.42 79.44 79.84 79.03 79.03

• Chess

Table B.9: The accuracy of the fusion methods for the correlation based MCMLPS when
applied to the chess data set.

Correlation based MCMLPS applied to chess data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 93.52 94.09 93.18 94.15 94.02 94.06

10%TR 93.02 94.99 93.87 94.62 94.56 94.56
20%TR 93.74 94.96 94.43 94.96 94.96 95.02
10%TS 89.19 89.82 89.65 89.90 89.68 89.73
20%TS 86.50 86.52 86.08 87.02 86.97 86.94

• Vehicle
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Table B.10: The accuracy of the fusion methods for the correlation based MCMLPS
when applied to the Vehicle data set.

Correlation based MCMLPS applied to Vehicle data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 58.98 62.41 67.73 67.61 68.44 68.09

10%TR 55.32 62.53 65.13 67.03 67.02 67.50
20%TR 55.44 58.51 64.19 66.79 65.72 65.61
10%TS 31.08 37.94 34.28 36.17 35.46 34.63
20%TS 32.98 32.50 31.56 34.88 35.47 36.06

• Waveform

Table B.11: The accuracy of the fusion methods for the correlation based MCMLPS
when applied to the Waveform data set.

Correlation based MCMLPS applied to Wavefrorm data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 26.32 56.62 58.96 65.50 65.60 65.68

10%TR 25.94 55.40 58.38 65.90 65.90 64.88
20%TR 25.18 54.26 56.04 64.64 64.44 66.40
10%TS 25.25 58.02 59.05 65.98 65.91 66.32
20%TS 25.15 58.47 59.23 65.27 65.07 65.68

B.1.2 The accuracy for the six fusion methods in the MI based
MCMLPS

• Gaussian 8 dimensional data set

Table B.12: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the Gaussian 8 dimensional data set.

MI based MCMLPS applied to Gaussian 8 dimensions data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 86.88 85.74 86 86.94 87.18 87.14

10%TR 86.42 86.28 86.66 87.98 87.94 87.90
20%TR 86.46 86.44 86.68 88.48 88.50 88.44
10%TS 83.56 82.44 82.84 83.60 83.76 83.75
20%TS 80.75 79.68 79.97 80.70 80.88 80.85
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• German credit card data set

Table B.13: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the German data set.

MI based MCMLPS applied to German data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 75 72 69 74.60 74.60 74.60

10%TR 75.10 72.50 69.10 75.80 75.80 76
20%TR 71.70 73.00 67.20 73.90 73.80 73.80
10%TS 73.09 70.27 67.90 72.72 72.72 72.73
20%TS 71.50 68.25 66.17 70.67 70.75 70.75

• Ionosphere data set

Table B.14: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the ionosphere data set.

MI based MCMLPS applied to Ionosphere data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 92.87 92.87 91.44 92.30 92.58 92.58

10%TR 94.30 94.01 93.44 93.72 94.01 94.01
20%TR 92.87 93.16 93.44 93.72 93.72 93.72
10%TS 90.17 90.17 88.61 89.65 89.91 89.91
20%TS 84.58 85.06 83.63 84.35 84.58 84.58

• Spam base data set

Table B.15: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the spam base data set.

MI based MCMLPS applied to spam base data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 93.57 93.50 91.46 93.81 93.89 93.89

10%TR 93.46 93.48 91.26 93.68 93.76 93.76
20%TR 93.98 93.46 91.55 94.15 94.00 94.00
10%TS 89.78 89.69 87.85 89.96 90.04 90.04
20%TS 86.29 86.18 84.57 86.45 86.54 86.54

• Pima Indian diabetes
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Table B.16: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the Pima data set.

MI based MCMLPS applied to Pima data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 75.13 67.97 71.88 75.78 75.91 75.91

10%TR 71.88 72.14 71.35 75.26 75.39 75.39
20%TR 75.78 73.70 70.83 76.17 76.17 76.17
10%TS 72.27 65.52 69.19 72.87 73.10 73.10
20%TS 71.63 64.35 67.61 72.07 72.17 72.17

• Wisconsin Breast Cancer data set

Table B.17: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the WBC data set.

MI based MCMLPS applied to WBC data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 94.55 93.85 91.21 95.61 95.61 95.61

10%TR 94.90 94.55 92.62 95.61 95.61 95.78
20%TR 94.37 95.60 92.97 95.78 95.78 95.78
10%TS 90.56 89.76 87.36 91.52 91.52 91.52
20%TS 86.95 86.51 84.30 88.11 88.12 88.12

• Heart data set

Table B.18: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the heart data set.

MI based MCMLPS applied to heart data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 77.79 69.63 70.76 78.89 78.89 78.89

10%TR 78.54 76.31 72.24 80.40 80.40 80.40
20%TR 80.40 76.28 71.12 80.76 80.39 80.39
10%TS 76.86 69.14 69.82 77.86 77.86 77.86
20%TS 74.71 67.00 67.95 75.63 75.63 75.63

• Sonar data set
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Table B.19: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the sonar data set.

MI based MCMLPS applied to sonar data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 80.77 80.29 80.29 84.62 84.13 84.13

10%TR 82.69 78.37 81.25 84.13 84.13 84.13
20%TR 76.92 81.25 83.17 83.17 83.17 83.17
10%TS 76.32 77.63 76.32 80.26 79.82 79.82
20%TS 75.81 76.61 76.61 79.84 79.44 79.44

• Chess data set

Table B.20: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the chess data set.

MI based MCMLPS applied to chess data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 97.93 98.44 97.87 98.78 98.78 98.78

10%TR 98.09 98.75 97.97 98.81 98.81 98.81
20%TR 98.22 98.81 98.15 99.03 99.03 99.03
10%TS 93.60 94.06 93.57 94.40 94.40 94.40
20%TS 89.75 90.25 89.78 90.48 90.48 90.48

• Vehicle

Table B.21: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the vehicle data set.

MI based MCMLPS applied to vehicle data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 72.58 72.46 75.89 74.35 74.59 74.59

10%TR 73.76 74.47 75.06 75.30 75.42 75.42
20%TR 72.69 73.87 76.24 74.82 74.94 74.94
10%TS 68.92 68.60 72.26 70.43 70.65 70.65
20%TS 64.59 64.00 67.46 65.68 65.78 65.78

• Waveform
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Table B.22: The accuracy of the fusion methods for the MI based MCMLPS when applied
to the waveform data set.

MI based MCMLPS applied to waveform data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers
0% 80.60 79.60 79.60 81.80 82.02 82.04

10%TR 79.58 80.22 79.22 82.10 82.36 82.40
20%TR 80.30 80.40 80.58 82.56 82.60 82.50
10%TS 76.45 75.42 75.62 77.53 77.67 77.67
20%TS 72.20 71.48 71.43 73.40 73.62 73.60

B.2 The relative loss of accuracy in the six fusion meth-

ods

In this section the RLA for the six fusion methods when applied to the correlation based

and MI based MCMLPS are given in Tables B.23 to B.33 and Tables B.34 to B.44 re-

spectively

B.2.1 The RLA for the six fusion methods in the correlation based
MCMLPS

• Gaussian 8 dimensional data set

Table B.23: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the Gaussian 8 dimensions data set.

Correlation based MCMLPS applied to Gaussian 8 dimensions data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.007 0.0123 0.0439 0.0151 0.0145 0.0157
20%TR 0.008 0.0126 0.0480 0.0170 0.0177 0.0177
10%TS 0.124 0.1390 0.1518 0.1418 0.1420 0.1418
20%TS 0.240 0.2617 0.2623 0.2722 0.2736 0.2738

• German credit card data set



148APPENDIX B. THE ACCURACY AND RLA FOR THE MCMLPS FUSION METHODS

Table B.24: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the German credit card data set.

Correlation based MCMLPS applied to German credit card data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0 0 0.0014 0 0 0
20%TR 0 0 0.0043 0 0 0
10%TS 0 0 0.0458 0 0 0
20%TS 0 0 0.0215 0 0 0

• Ionosphere data set

Table B.25: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the ionosphere data set.

Correlation based MCMLPS applied to ionosphere data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0233 0.02553 0.0209 0.0184 0.0150 0.0298
20%TR 0.0544 0.01825 0.1068 0.0624 0.0412 0.0481
10%TS 0.0155 -0.0146 0.0276 -0.0076 -0.0113 -0.0036
20%TS 0.0544 0.0183 0.1068 0.06244 0.0411 0.04810

• Spam base data set

Table B.26: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the spam base data set.

Correlation based MCMLPS applied to spam base data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0258 -0.0268 0.0123 0.0335 0.0320 0.0320
20%TR 0.0184 -0.0223 0.0192 0.0241 0.0180 0.0180
10%TS 0.2059 0.2211 0.2290 0.2099 0.2116 0.2125
20%TS 0.2003 0.2230 0.2680 0.2119 0.2132 0.2130

• Pima Indian diabetes
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Table B.27: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the Pima data set.

Correlation based MCMLPS applied to Pima data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0157 -0.0036 0.0004 0.0111 -0.0077 0.0149
20%TR 0.0118 0.0293 0.0491 0.0146 -0.0001 0.0148
10%TS 0.0078 0.0183 0.0107 -0.0115 -0.0306 -0.0151
20%TS 0.0433 0.0292 0.0877 0.0555 0.041499 0.04833

• Wisconsin Breast Cancer data set

Table B.28: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the WBC data set.

Correlation based MCMLPS applied to WBC data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0180 -0.0086 0.0043 0.0143 0.0164 0.0165
20%TR -0.0225 0.0128 0.0477 0.0224 0.0145 0.0165
10%TS 0.0528 0.0489 0.0680 0.0544 0.0504 0.0424
20%TS 0.0910 0.1053 0.1060 0.1350 0.1280 0.1190

• Heart data set

Table B.29: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the heart data set.

Correlation based MCMLPS applied to heart data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0056 -0.0291 -0.0291 -0.0138 -0.0333 -0.0389
20%TR -0.0051 -0.0244 -0.0538 -0.0092 -0.0142 -0.0289
10%TS 0.0200 0.0145 0.0179 0.0229 0.0038 0.0112
20%TS 0.0646 0.0358 0.0672 0.0860 0.0362 0.0382

• Sonar data set
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Table B.30: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the sonar data set.

Correlation based MCMLPS applied to sonar data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR -0.0132 0.0184 0 -0.0063 -0.0063 -0.0063
20%TR -0.0397 0.0184 0 -0.0125 -0.0125 -0.0063
10%TS -0.0029 0.0155 -0.0179 -0.0193 -0.0081 -0.0024
20%TS 0.0114 0.0181 -0.0075 -0.0252 -0.0148 -0.0148

• Chess

Table B.31: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the chess data set.

Correlation based MCMLPS applied to chess data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0053 -0.0096 -0.0074 -0.0050 -0.0057 -0.0053
20%TR -0.0024 -0.0092 -0.0134 -0.0086 -0.0100 -0.0102
10%TS 0.0463 0.0454 0.0379 0.0451 0.0462 0.0460
20%TS 0.0751 0.0805 0.0762 0.0757 0.0750 0.0757

• Vehicle

Table B.32: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the vehicle data set.

Correlation based MCMLPS applied to vehicle data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0621 -0.0019 0.0384 0.0086 0.0207 0.0087
20%TR 0.0600 0.0625 0.0522 0.0121 0.0397 0.0364
10%TS 0.4730 0.3921 0.4939 0.4650 0.4819 0.4914
20%TS 0.4408 0.4793 0.5340 0.4841 0.4817 0.4704

• Waveform
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Table B.33: The RLA of the fusion methods for the correlation based MCMLPS when
applied to the waveform data set.

Correlation based MCMLPS applied to waveform data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0144 0.0215 0.0098 -0.0061 0.0122 0.0124
20%TR 0.0433 0.04168 0.0495 0.0131 -0.0110 0.0238
10%TS 0.0407 -0.0247 -0.0015 -0.0073 -0.0097 -0.0108
20%TS 0.0445 -0.03267 -0.0046 0.0035 0 -0.0049

B.2.2 The RLA for the six fusion methods in the MI based MCMLPS

• Gaussian 8 dimensional data set

Table B.34: The RLA of the fusion methods for the MI based MCMLPS when applied to
the Gaussian 8 dimensional data set.

MI based MCMLPS applied to Gaussian 8 dimensions data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0053 -0.0063 -0.0077 -0.0120 -0.0087 -0.0087
20%TR 0.0048 -0.0082 -0.0079 -0.0177 -0.0151 -0.0149
10%TS 0.0382 0.0385 0.0367 0.0384 0.0392 0.0389
20%TS 0.0706 0.0707 0.0701 0.0718 0.0723 0.0722

• German credit card data set

Table B.35: The RLA of the fusion methods for the MI based MCMLPS when applied to
the German data set.

MI based MCMLPS applied to German data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR -0.0013 -0.0069 -0.0014 -0.0161 -0.0161 -0.0188
20%TR 0.0440 -0.0139 0.0261 0.0094 0.0107 0.0107
10%TS 0.0255 0.0240 0.0159 0.0252 0.0252 0.0251
20%TS 0.0467 0.0521 0.0410 0.0527 0.0516 0.0516

• Ionosphere data set
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Table B.36: The RLA of the fusion methods for the MI based MCMLPS when applied to
the ionosphere data set.

MI based MCMLPS applied to ionosphere data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR -0.0154 -0.0123 -0.0219 -0.0154 -0.0154 -0.0154
20%TR 0 -0.0031 -0.0219 -0.0154 -0.0123 -0.0123
10%TS 0.0291 0.0291 0.0309 0.0287 0.0288 0.0288
20%TS 0.0893 0.0841 0.0854 0.0861 0.0864 0.0864

• Spam base data set

Table B.37: The RLA of the fusion methods for the MI based MCMLPS when applied to
the spam base data set.

MI based MCMLPS applied to spam base data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0012 0.0002 0.0022 0.0014 0.0014 0.0014
20%TR -0.0044 0.0004 -0.0010 -0.0036 -0.0012 -0.0012
10%TS 0.0405 0.0407 0.0395 0.0410 0.0410 0.0410
20%TS 0.0778 0.0783 0.0753 0.0785 0.0783 0.0783

• Pima Indian diabetes

Table B.38: The RLA of the fusion methods for the MI based MCMLPS when applied to
the Pima data set.

MI based MCMLPS applied to Pima data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0433 -0.0614 0.0074 0.0069 0.0069 0.0069
20%TR -0.0087 -0.0843 0.0146 -0.0051 -0.0034 -0.0034
10%TS 0.0381 0.0360 0.0374 0.0384 0.0370 0.0370
20%TS 0.0466 0.0533 0.0594 0.0490 0.0493 0.0493

• Wisconsin Breast Cancer data set
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Table B.39: The RLA of the fusion methods for the MI based MCMLPS when applied to
the WBC data set.

MI based MCMLPS applied to WBC data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR -0.0037 -0.0075 -0.0155 0 0 -0.0018
20%TR 0.0019 -0.0186 -0.0193 -0.0018 -0.0018 -0.0018
10%TS 0.0422 0.0436 0.0422 0.0428 0.04278 0.0428
20%TS 0.0804 0.0782 0.0758 0.0784 0.07834 0.0783

• Heart data set

Table B.40: The RLA of the fusion methods for the MI based MCMLPS when applied to
the heart data set.

MI based MCMLPS applied to heart data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR -0.0096 -0.0959 -0.0209 -0.0191 -0.0191 -0.0191
20%TR -0.0336 -0.0955 -0.0051 -0.0237 -0.0190 -0.0190
10%TS 0.0120 0.0070 0.0133 0.0131 0.0131 0.0131
20%TS 0.0396 0.0378 0.0397 0.0413 0.0413 0.0413

• Sonar data set

Table B.41: The RLA of the fusion methods for the MI based MCMLPS when applied to
the sonar data set.

MI based MCMLPS applied to sonar data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR -0.0238 0.0239 -0.0120 0.0058 0 0
20%TR 0.0477 -0.0120 -0.0359 0.0171 0.0114 0.0114
10%TS 0.0551 0.0331 0.04945 0.0515 0.0512 0.0512
20%TS 0.0614 0.0458 0.0458 0.0565 0.0557 0.0557

• Chess data set
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Table B.42: The RLA of the fusion methods for the MI based MCMLPS when applied to
the chess data set.

MI based MCMLPS applied to chess data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR -0.0016 -0.0031 -0.0010 -0.0003 -0.0003 -0.0003
20%TR -0.0030 -0.0038 -0.0029 -0.0025 -0.0025 -0.0025
10%TS 0.04421 0.0445 0.0439 0.0443 0.0443 0.0443
20%TS 0.0835 0.0832 0.0827 0.0840 0.0840 0.0840

• Vehicle

Table B.43: The RLA of the fusion methods for the MI based MCMLPS when applied to
the vehicle data set.

MI based MCMLPS applied to vehicle data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR -0.0163 -0.0277 0.0109 -0.0128 -0.0111 -0.0111
20%TR -0.0015 -0.0195 -0.0046 -0.0063 -0.0047 -0.0047
10%TS 0.0504 0.0533 0.0478 0.0527 0.0528 0.0528
20%TS 0.1101 0.1168 0.1111 0.1166 0.1181 0.1181

• Waveform

Table B.44: The RLA of the fusion methods for the MI based MCMLPS when applied to
the waveform data set.

MI based MCMLPS applied to waveform data set
Noise Single Best MV WMV WMV+accuracy WMV+accuracy
ratio LR Model in 1st layers in all layers

10%TR 0.0127 -0.0078 0.0048 -0.0037 -0.0041 -0.0044
20%TR 0.0037 -0.0101 -0.0123 -0.0093 -0.0071 -0.0056
10%TS 0.0515 0.0525 0.0500 0.0522 0.0530 0.0533
20%TS 0.1042 0.1020 0.1026 0.1027 0.1024 0.1029
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