

Evaluating the use of the Unity engine for developing 2D

mobile games in consideration of start-up/student

developers

Jack Brett, Alain Simons,

Bournemouth University, Fern Barrow, BH12 5BB, Bournemouth, United Kingdom

{i7668967, asimons}@bournemouth.ac.uk

Abstract. The Unity 3D engine is used by a large majority of developers to create games. It owns

a forty five percent market share and is considered one of the biggest development tools today;

this is due to its simple and fast development process which allows for rapid production of game

prototypes. However, with over a hundred different options available to develop games, one must

ask whether using an engine such as Unity to generate simple 2D mobile games is necessary.

This paper aims to discover whether the use of the Unity engine is appropriate for beginner

developers who are looking to create 2D mobile games whilst also providing insight into how

influential Unity is within education and whether learning more programming orientated

applications is beneficial in regards to universal application and longevity. We will define the

criteria for selecting a development methodology and create a 2D mobile game within the Unity

engine and replicate this game using Corona SDK. The development process for both

implementations will be reviewed and compared then the game will be tested using a benchmark

application on various devices to help demonstrate which method was the most optimised and

therefore appropriate for mobile development.

Keywords: 2D game, Unity, SDK, Generic Software, Mobile game, Education.

1 Introduction

Today, mobile games consume a vast market share within the games industry, it is

expected that in 2018 mobile gaming will account for 43 percent of the gaming market

revenue and currently there are over a third of Americans playing mobile games daily

[1]. In regards to genre; the most popular games are brain puzzle games (with over 37

million users per month playing one), closely followed by matching puzzle games e.g.

Candy Crush [2]. According to the UKIE’s games industry map, there are nearly a

thousand games companies in London. Out of these, roughly seven hundred are

working on the mobile platform and over two hundred were formed in the last five

years. Not all of these companies will be run by younger developers but it is safe to

assume that at least a small portion of them are. Considering that nearly two billion

mailto:%7d@bournemouth.ac.uk

mobile devices are running a Unity-made

game, it is probable that quite a large majority

of these new companies will be using Unity

to develop mobile games.

It has been established that mobile games are

becoming increasingly popular and that most

users will play a puzzle or match game – a

basic, more than likely, 2D game. The

problem which arises is that new developers

who want to create popular mobile games

will assume that Unity is the correct tool for

implementation. However, alternatives may

offer simpler solutions but younger

developers will be discouraged due to the

ideology that using an SDK or graphical API

is too complicated which may have been

reinforced by using Unity through education.

The core objective of this paper is to

determine whether Unity is the correct choice

for younger developers creating mobile games. In order to achieve this objective a

mobile game will be created using both Unity and Corona SDK. The development

process will be documented and compared against specific criteria then both games will

be tested to compare performance and set a benchmark across a multitude of devices.

2 Previous Research

2.1 Software Comparison

It is important to note that game development software is mostly specific to certain

platforms so when comparing engines with one another the components which focus

on creating mobile games are compared and nothing else as this is a false

representation. For example, real time particle effects, a 3D graphics algorithm, cannot

be used in mobile games but the engine may use it for a higher level platform.

Game engine selection methodology has been defined by [3]. In order to make a

comparison, criteria must be defined; they defined this criteria as audio-visual fidelity,

functional fidelity, composability, accessibility, networking and heterogeneity. Then

they break these criteria down into smaller sections – not all criteria will be used in this

research as their criteria applies to all game development rather than just mobile. A key

criteria which falls under the ‘accessibility’ heading is the ‘learning curve’, this is an

important factor in consideration for amateur developers as some methods will appear

to be much easier but occasionally a steeper learning curve can be more beneficial.

A similar paper compared game engines which derived some of the criteria from

Petridis’ work [4]. Although the research focuses on building to multiple platforms, the

conclusions drawn upon take into account how suitable each engine is depending on

what platform is used. There is a focus on ease of learning too, this an important factor

Fig 1. Dominant marketplace position of

Unity.

to consider with amateur developers who require guidance with complex issues. Also

taken into account is what programming language is used for each software which has

universal application within the gaming industry. The conclusion describes which

engine was best in regards to specific criteria and genre; there was no one main winner

but it appears choosing software for development relied on two main things: experience

of the developer and the type of game one wishes to create.

2.2 Software Testing

Creating a fair testing environment for mobile games is quite different to other games,

in this example testing refers to the performance of the mobile application rather than

the user experience. Mobile application testing guidelines have been created by [5] who

states that not only do mobile applications have to work anywhere and at any time, they

also should work across platforms, different operating systems, display sizes and not

drain battery life. They later split testing into separate goals; quality of service testing,

reliability and scalability, interoperability testing – these are the relatable testing

methods which will help achieve a fair conclusion. Finally, they outline different

approaches for testing a mobile application. Device-based testing requires multiple

devices and time but for this scale seems the most appropriate for it can “…verify

device-based functions, behaviours, and QoS parameters that other approaches cannot.”

[6]

Another decision must be made regarding mobile game testing and that is the choice to

manually test or to automatically test. In [7] research on mobile application testing he

found that manual testing may be more time consuming but doesn’t require the

programming skill to initially set up the automation for automatic testing, moreover,

for testing performance and playability using real people gives more accurate results.

Finally, [8] mentions that “that all code can be subject to change…” in order to test for

performance or errors one must expect extreme values.

3 Our Research

3.1 Previous Comparison

Interviews with independent game developers were conducted by the author to help

understand the reasoning behind why they chose certain software to develop their

games. The overall consensus left Unity in a positive light, most developers claimed

that they had used it in the past and the experience was quick and relatively easy.

However, those who had more experience in this field and had developed more games

had slightly differing opinions, stating that it is a useful and powerful tool but lacks

freedom of control, universal application and the fact that one can build to a large array

of platforms meant that the overall quality of the build was poor i.e. quantity over

quality wasn’t a balanced exchange. An extra anecdote; those who could not find many

issues with using Unity (or similar engine) were also those who had little experience in

other methodologies of development and those of whom did have experience in other

software claimed that the learning curve may be steeper for programming orientated

implementations but also has a larger scope of application.

This solution aims to eliminate the issue that beginner developers face when deciding

on which software to use when developing mobile games. In this paper, we compare

and analyse the two different implementations of a 2D mobile game, using Unity as the

engine and Corona SDK.

Criteria to compare the two development:

 Audio visual fidelity which consists of mainly 2D sprite animation

 Functional fidelity which is scripting and language efficiency,

 Composability – import/export limitations and available content

 Accessibility: learning curve, documentation and support, licensing and cost

 Heterogeneity (multiplatform support)

The game which will be created must feature the basics of a 2D mobile puzzle type

game so it is applicable to the general consensus. Therefore, the game must contain

specific elements:

 UI system; a menu in which users can navigate through the game

 Layered background

elements which feature

parallax scrolling (basic

animation)

 Basic enemy AI and a

scoring system

 Collision with enemies and a

life system

 Touch controls and basic

player movement linked to

touch controls

3.2 Unity Implementation

Creating the basics of a game within the Unity engine is an easy task; dragging the

required assets from a folder and dropping them into the editor was simple and fast.

Once assets had been imported, initial backgrounds were placed – here we used

multiple images and layered them in front of one another. Parallax scrolling was

implemented by transforming the sprite images into textures, placing them onto a 3D

quad then attaching a script which offset the textures by a rate which is changeable. It

is important to note that this process requires mathematics but due to the rich

documentation, understanding said mathematics was not necessary as someone has

already calculated these variables. Additionally, the default shader applied to this object

was not changed – it was default and changing it meant learning a new library regarding

shaders.

Creating the animating ships was carried out using sprite animation. The animator

window within the Unity editor is simple and easy to follow; the main issue was once

again, ignorance of what was happening. Dragging a sprite sheet with multiple images

into the editor meant that Unity could create the animation and when the game played

the animation begun – this may appear as a good thing but with over two years of using

Fig. 2. Example of the game.

Unity in education one should understand how sprite animation works in detail.

Creating ‘enemies’ for the player to avoid involved creating a script which moved an

enemy left to right with a sine wave for some random movement. Spawning these

enemies was carried out by instantiating them within one function and using a Unity

function which allows a specific function to be looped with a given time and rate.

Collision was a matter of attaching a collider (something which can detect a hit) to the

player and the enemies, then a script would tell the game what to do if an enemy

collided with the player.

Scripting within the Unity editor can be a tedious task if only small changes need to be

made. Using mostly Monodevelop (which is included with Unity) to edit code, making

a small change then switching back to the editor to test the change took much longer

than needed. Due to the sheer size of the engine and the speed of compilation within

Monodevelop, there was a lot left to be desired when making a small mobile game

which requires a lot of small details to be changed.

3.3 Corona SDK Implementation

Learning Corona SDK and Lua (a scripting language) from scratch may appear to be a

somewhat daunting task but once the basics have been laid out the rest seems to flow.

Using Microsoft Visual Code to edit the code meant that the project loaded instantly

and changes could be made at rapid speeds. The initial set up of loading images and

creating a layered background was the same as the Unity implementation only carried

out using code rather than re sizing an image with a visual editor. Unlike Unity, Corona

SDK only uses 2D libraries so parallax scrolling could not be carried out using texture

offset of a 3D quad. In any case, a simpler solution was used. By placing an image on

the screen and a copy just behind, a function could be set up which moved the first

image then the second when it had reached the end of the screen – a process which

relied on logic over demonstration.

Creating sprite animation was rather straight forward due to the documentation on the

Corona website. The idea behind sprite animation is to tell the engine the size of each

individual image, for example, a square image of 128 pixels with four images would

mean that each image is 32 pixels in size. Implementing touch mechanics in order to

move the ship was carried out by using code found online but the basics of it are that

the engine will recognize where a touch was started and a runtime event will ‘listen’

for where it was let go.

In terms of difficulty; there is certainly a steeper learning curve in comparison to using

Unity but the experience and knowledge gained surpasses Unity. There is no room for

ignorance and therefore true logic and programming knowledge must be used. For

example, spawning enemies could not be carried out by using a function which can

repeat certain actions as there is no such function. This action must be carried out using

a slightly more complex programming convention. Creating a table (or array) then

adding the enemy to this table meant that multiple instances of the same object could

be generated. Using a public variable, one can state how many enemies can spawn and

a runtime event will call the function depending on how many values were in the table.

This is a core concept of programming and game development yet the first time it has

been used correctly, as educational institutions only use Unity there has never been a

reason to understand this logic. Finally, making small changes such as spawn numbers

etc. were compiled almost instantly and as a result made the development process much

more streamline.

4 Results

To test performance of a mobile game it must be tested across different devices with

varying scenarios. Due to the nature of video games being unpredictable two levels

were created; one which plays as a normal game where the player must avoid hazards

and another which tests extreme variables – this level features 70 enemies spawning at

once and serves the purpose of performance testing not playability. Five devices were

used for testing; from low end mobile phones to high end tablets, for this scenario the

lowest end mobile, the mid-range mobile and the high end tablet will be used to

demonstrate performance.

Fig 3&4. Corona SDK version performance results. Corona SDK version tested on Samsung

Galaxy SIII (Low end device). Left shows normal level and right shows extreme values.

Fig 5&6. Unity version tested on Samsung Galaxy SIII. Left shows normal level and right shows

extreme level.

Fig 6&7. Sony Experia L Test. Both are on extreme value level, left shows Corona version and

right shows Unity version.

Fig 7&8. Performance graphs for both versions. Right shows Corona and left shows

Unity. Testing on Samsung Galaxy Tab A. Both tests are performed on the extreme

values level.

5 Conclusions

Results show that Unity may not be the most practical solution for inexperienced

developers to create 2D mobile games. Although one may presume it is used by a lot

of developers and games can be made with in short time frames with relative ease, this

does not mean it is the ideal game engine. Testing shows that for small mobile games

Unity does not perform as well as other software; it consumes much more RAM and

CPU usage which in turn will drain battery life faster than other applications and will

drop in performance quicker than other games.

In addition, if one were to learn Unity throughout education and only Unity they would

be limited in regards to actual knowledge of game development. For example, learning

C++ with a graphical API will give a student understanding about the key fundamentals

of how to draw an image to a screen, basic mathematics such as dot product etc. This

knowledge is invaluable as it can be applied to any game development system whereas

using Unity and allowing someone with more expertise to carry out complex tasks will

only build ignorance towards more complex systems and as a result will restrict what

they can do quickly.

To summarise, Unity or similar engines are great for producing prototypes at a rapid

rate, however they can also limit understanding and as a result will produce very similar

games. The choice of which software to use is somewhat subjective; it depends on

which game one wishes to create and how much expertise is possessed. Using Unity is

suitable for generating mobile games but amateur developers should not take it as the

best option – one must consider more lightweight alternatives and reflect on the game

they are making – in a lot of scenarios Unity is not necessary for creation of mobile

games.

6 References

[1] STATISTA, A.R., 2017. Statistics and facts on Mobile Gaming [online]. Available

from: https://www.statista.com/topics/1906/mobile-gaming/ [Accessed 10 April 2017].

https://www.statista.com/topics/1906/mobile-gaming/

[2] VERTO ANALYTICS, C.H., 2016. The most popular mobile game genres: Who

plays what, when? [online]. Available from: http://www.vertoanalytics.com/the-most-

popular-mobile-game-genres-who-plays-what-when/ [Accessed 10 April 2017].

[3] Petridis, P.; Dunwell, I.; de Freitas, S.; Panzoli, D. (2010). An engine selection

methodology for high fidelity serious games [online]. In Games and Virtual Worlds for

Serious Applications (VS-GAMES), 2010 Second International Conference on (pp. 27-

34). IEEE. Available from: http://ieeexplore.ieee.org/document/5460160/ [Accessed

12 April].

[4] Akekarat, P., 2014. Comparison and evaluation of 3D mobile game engines

[online]. Master of Science Thesis (Masters). Chalmers University of Technology.

Available from: http://publications.lib.chalmers.se/records/fulltext/193979/193979.pdf

[Accessed 12 April].

[5] J. Gao, X. Bai, W. T. Tsai and T. Uehara, "Mobile Application Testing: A Tutorial,"

in Computer, vol. 47, no. 2, pp. 46-55, Feb. 2014. [Accessed 13 April].

[6] J. Gao, X. Bai, W. T. Tsai and T. Uehara, "Mobile Application Testing: A Tutorial,"

in Computer, vol. 47, no. 2, pp. 46-55, page 50, Feb. 2014. [Accessed 13 April].

[7] Amen, B.M; Mahmood, S.M and Lu, J. Mobile Application Testing Matrix and

Challenges [online]. Available from: http://airccj.org/CSCP/vol5/csit53503.pdf

[Accessed 13 April].

[8] Manouchehri, P., 2012. In-depth: Unit testing in Unity [online]. GamaSutra.

Available from: http://www.gamasutra.com/view/news/164363/Indepth_Unit_testing_

in_Unity.php [Accessed 12 April].

[9] Gamebench. 2015. Available from: https://www.gamebench.net/ [Accessed 14

April].

http://www.vertoanalytics.com/the-most-popular-mobile-game-genres-who-plays-what-when/
http://www.vertoanalytics.com/the-most-popular-mobile-game-genres-who-plays-what-when/
http://ieeexplore.ieee.org/document/5460160/
http://publications.lib.chalmers.se/records/fulltext/193979/193979.pdf
http://airccj.org/CSCP/vol5/csit53503.pdf
http://www.gamasutra.com/view/news/164363/Indepth_Unit_testing_%20in_Unity.php
http://www.gamasutra.com/view/news/164363/Indepth_Unit_testing_%20in_Unity.php
https://www.gamebench.net/

