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ABSTRACT 

The current practical restraints for facial expression recognition in Virtual Reality (VR) led to the 

development of a novel wearable interface called Faceteq. Our team designed a pilot feasibility 

study to explore the effect of spontaneous facial expressions on eight EMG sensors, incorporated on 

the Faceteq interface. Thirty-four participants took part in the study where they watched a sequence 

of video stimuli while self-rating their emotional state. After a specifically designed signal pre-

processing, we aimed to classify the responses into three classes (negative, neutral, positive). A C-

SVM classifier was cross-validated for each participant, reaching an out-of-sample average accuracy 

of 82.5%. These preliminary results have encouraged us to enlarge our dataset and incorporate data 

from different physiological signals to achieve automatic detection of combined arousal and valence 

states for VR applications. 

1.  INTRODUCTION 

Multiple computational systems and interfaces are available to enhance Human Computer Interaction (HCI). For 

emotion recognition, various methods are currently under investigation to assess human affective states and 

expressions (see review by Calvo & D'Mello, 2010). Typically, emotions are measured in a two-dimensional space 

consisting of their arousal (activation or excitement levels) and valence (positive/ negative polarity levels) which 

are considered as the basic quantitative dimensions of emotions (dimensional model by Russel, 1980). Multiple 

studies have explored the link between self-rated levels of arousal and valence, and physiological and/or 

behavioural changes, and their classification for HCI applications (e.g. Healey & Picard, 2005). Although, 

researchers in interactive technologies tend to focus on the identification of arousal through physiological measures 

(e.g. Wu et al, 2010; Yannakakis & Paiva, 2014), we believe that the coalescence of both dimensions is required 

to evaluate the nature of the emotion elicited during an immersive experience. The majority of research in valence 

detection emphasises the interpretation and analysis of facial expressions; either via computer vision (see Zeng et 

al. 2009 review) or facial EMG signals (e.g. Fridlund & Cacioppo, 1986; Cheng & Liu, 2008). The majority of 

these measures are today often combined for multimodal affective and physiological computing. 

Commercial low-cost first and second generation Virtual Reality (VR)technologies became largely available 

after 2014 (with the introduction of Oculus Rift DK2), enabling a larger number of researchers to investigate user-

experience effects in VR. VR provides a platform for the design of controlled experimental conditions while 

granting ecological validity and an abundance of content resources. Research from diverse disciplines gradually 

adapt VR for their experimental designs and executions (e.g. Bekele et al, 2007; Yang et al,2017; Burke, 2018). 

As the number of VR-related projects is increasing, emotion detection in VR is anticipated to become a vital piece 

for future research.  The study of emotion elicitation and detection in VR however is still in its infancy (Diemer et 

al, 2015). Research in VR often combines different measures such as behavioural observations and physiological 

measures as e.g. heart-rate and galvanic skin response (Slater et al, 2006; Giakoumis et al, 2009) to report arousal 

levels; although emotion-related studies in VR such as Riva et al (2007) often utilise questionnaires to identify 

psychological states and valence levels. The area of the face which is rich with valence information is  usually left 

unexplored since the Head-Mounted Display (HMD; commonly used for immersive VR) is covering almost 2/3 
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of the face, including the most informative facial muscles. As VR technologies are improving and their uses are 

increasing, it is fundamental to propose alternative, novel approaches to measure emotions. This will enable a 

better understanding of the emotional states induced in VR and the latter’s effect on human feelings and elicited 

responses. 

In 2016, we proposed a novel hardware solution, ‘Faceteq’, for facial muscle activation monitoring (Mavridou 

et al, 2016) in VR. Faceteq was designed to work as an extra intermediate layer between the HMD and the face of 

the wearer, consisting of eight electromyography (EMG) sensors, two Photoplethysmogram sensors (PPG) and 

one inertial measurement unit (IMU) including gyroscope and accelerometer. We hypothesise that such an 

interface can track the valence information needed for continuous emotion assessment in VR. To our current best 

knowledge, this is the first study where integrated surface EMG sensors have been used for valence detection in 

VR. Therefore, we investigated the feasibility of this approach in controlled conditions, using audio-visual stimuli 

on a monitor. This feasibility study has been specifically designed to induce three valence levels to test the 

sensitivity of the metrics derived from the wearable sensors (EMG, PPG, IMU) employed on the Faceteq interface. 

For the purpose of this paper, we included only the surface EMG data and valence ratings in our analysis. 

2.  EXPERIMENT SET-UP 

2.1  Stimuli 

A selection of the videos with affective content from the affective film library by Samson et al. (2016) was used 

for this study. The selection of videos was intended to elicit two levels of valence and two levels of arousal, in 

order to obtain physiological responses for each of the 4 quadrants of the dimensional model. For this reason, 5 

videos per category (four categories) with the highest and lowest rating of valence and arousal were selected, as 

well as 20 neutral videos. The order of videos categories was counterbalanced across participants and presented 

as follows: five affective videos from one category, followed by five neutral videos, followed by five affective 

videos from another category etc. Each video had a fixed duration of 25 seconds. Grey images were added after 

every video for 8 seconds each. The video order within a category was newly randomised for each participant.  

2.2  Participants 

For this preliminary study, 35 participants were recruited (20 female), from 18 to 40 years old (M: 22.8, SD: 5.2). 

Participants were told that we were monitoring the electrical conductivity of their skin and were instructed how to 

rate their felt emotions in terms of arousal and valence prior the video presentation. Questionnaires verified that 

the participants were not suffering from anxiety, depression or any disorder that can affect their facial movements 

at the time that the study took place. 

2.3  Apparatus 

The stimuli presentation. We designed and developed an application with three environments/scenes: (1) a training 

environment where we asked participants to get familiar with the Continuous Affect Self-rating (CASR) interface 

(based on the ‘FeelTrace’ tool for affect rating; Cowie et al, 2000) (Figure 1 & 2), (2) a grey scene where the 

participant were asked to relax while we recorded neutral (baseline) data, and (3) a semi-dark cinema environment 

where the videos were presented  next to the CASR interface which was placed on the bottom right corner of the 

screen (Figure 1). The participants were requested to face the monitor and perform minimum head movements 

during the recording.  

Figure 1. Video presentation environment Figure 2. CASR interface Figure 3. Faceteq interface 
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Monitoring Equipment and sensors. The interface prototype was equipped with eight surface dry 

electromyography (f-EMG) sensors on the right and the left side of the face (Channels; 1 & 2 on Zygomaticus 

major, 3 & 4 on Frontalis, 5 & 6 on Orbitocularis oculi and 7 & 8 Corrugator muscles) using an adapted protocol 

described by van Boxtel (2010).  

2.4  Experiment procedure 

The study took approximately 50-60 minutes and was conducted at our laboratory at Innovation Centre at Sussex 

University. During the study, each participant watched a randomised sequence of movie clips for approx. 22 mins. 

During this time, they were asked to rate their felt emotions using the CASR interface. During the video 

presentation, video capture of the participant’s face and physiological responses were recorded. All sensor data 

streams were synchronised with the video presentation via the Faceteq API to ensure ease in analysis and efficient 

event detection. Each participant was compensated by a £5 voucher for their time. The study was reviewed and 

approved by the Science, Technology & Health Research Ethics Panel, Bournemouth University (Ref. 13994 on 

26/01/2017). 

3.  DATA ANALYSIS 

EMG recordings from 8 channels were recorded using Faceteq API (sampling rate: 1000Hz) and afterwards 

analysed offline in Matlab. Firstly, a baseline correction was applied, by subtracting the mean EMG values. We 

then removed 50Hz and their harmonics up to 350Hz using Notch filters. The signals were band-pass filtered from 

30 to 450 Hz. Extreme outliers caused by motion artefacts were removed using a Hampel filter. Next, the EMG 

recordings from the 8 channels were divided in epochs of 22 seconds which is corresponding to the video duration 

minus the first 3 seconds of each video. Next, the Root-Mean Square value per 512 samples window was 

calculated. As EMG are highly variable between wearers, and since we are interested in detecting valence states 

(negative, neutral, positive) we applied a Maximum-Minimum normalization function. The data were used as input  

to train a C-Support Vector Machine (SVM), using the libSVM (Chang & Lin, 2011). For each video and for each 

participant from the data set, the ground truth was defined by the corresponding participant’s CASR valence-only 

scores. The data and labels were sent into an SVM (RBF kernel) for classification, using 10-fold cross validation 

for each participant separately. The low computational cost of the implementation enabled the approach to provide 

a cross-validated readout in less than 0.5 seconds per participant. 

4.  RESULTS AND DISCUSSION 

Overall, we tested the feasibility of our prototype for valence detection in VR. The C-SVM enables us to map 

the levels of activation of EMG channels with the spontaneous expressions during the stimuli categories. Each 

model, trained with data from each of 34 female and male participants achieved an accuracy ranging from 62.4% 

to 96.4%, with an average accuracy across the group of 82.5% (Std: 8.2) (Figure 4).The results of this initial 

study confirmed the feasibility of our approach. We are currently analysing the remaining recorded physiological 

responses related to heart rate, head movement and electrical conductivity of the skin, which are expected to 

provide further insights, as well as assist on the refinement of our valence and arousal detection for VR 

applications. We envisage that a larger sample size will enable the system to achieve higher accuracy on valence 

Figure 4. Classification accuracies for all 34 participants 
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and arousal detection and a more robust model. This model may be able to discover common facial patterns in 

clusters of participants, and more fine-grained levels of valence and arousal i.e. additional levels of classes.  
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