
On the Integrity of Performance Comparison for
Evolutionary Multi-objective Optimisation

Algorithms

Kevin Wilson and Shahin Rostami

Computational Intelligence Research Initiative (CIRI),
Bournemouth University, BH12 5BB,

srostami@bournemouth.ac.uk,
WWW home page: http://research.bournemouth.ac.uk/project/ciri

Abstract. This paper proposes the notion that the experimental re-
sults and performance analyses of newly developed algorithms in the
field of multi-objective optimisation may not offer sufficient integrity for
hypothesis testing. This is demonstrated through the multiple compar-
ison of three implementations of the popular Non-dominated Sorting
Genetic Algorithm II (NSGA-II) from well-regarded frameworks using
the hypervolume indicator. The results show that of the thirty consid-
ered comparison cases, only four indicate that there was no significant
difference between the performance of either implementation.

Keywords: Evolutionary Algorithms, Genetic Algorithms, Optimisa-
tion, Hypervolume indicator

1 Introduction

Evolutionary Multi-objective Optimisation (EMO) algorithms are well suited to
solving complex real-world problems. One strength of EMO is the ability to pro-
duce a set of multiple trade-off solutions to a multi-objective problem within a
single algorithm execution. This set is referred to as an approximation-set, and
is considered to be an approximation of the theoretical true optimum (Pareto-
optimal front) of a problem. When proposing a new EMO algorithm, it is often
expected that the proposed algorithm is applied to a multi-objective test suite
according to some experimental design. The approximation-sets generated from
these experiments are then subjected to some performance metrics and compared
to popular or state-of-the-art algorithms as a benchmark. The typical charac-
teristics for assessing the quality of an approximation-set have been illustrated
in Fig. 1 and have been listed in the following [20]:

– Proximity: the distance between the approximation-set and the Pareto-
optimal front.

– Diversity: the uniformity and extent of the distribution of solutions within
the approximation-set.

2 Kevin Wilson, Shahin Rostami

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Objective 1

O
bj

ec
tiv

e
2

Dominated Objective Space
Pareto front

Proximity in the
approximation set

Objective Vector

Preference Vector

Pertinence of the solutions in
the approximation set (e.g. the
region of interest)

Diversity in
the region of
interest

Fig. 1. Characteristics of an
approximation-set in bi-objective space.

f
1

f
2

X1

X2

X3

 fref

Fig. 2. An example of the hypervolume
indicator in bi-objective space

– Pertinence: the relevance of the approximation-set in the presence of a
Decision Maker (DM) preferences.

Many performance metrics exist for assessing approximation-sets against
these desirable characteristics [32], and these have been employed in the com-
parison of EMO algorithms throughout the literature [17]. These pairwise or
multiple comparisons resolve whether the proposed algorithm outperforms the
benchmark algorithms in respect to desired the desired characteristics on specific
test-cases. This approach allows an algorithm’s comparative performance to be
demonstrated, and allows the verification of hypotheses and contribution.

One popular algorithm which is often used as a benchmark in the EMO lit-
erature [14] is the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [4]. The NSGA-II, described in section 2.2, is a powerful EMO algo-
rithm which employs elitism, non-dominated sorting, and diversity preservation
in order to produce approximation sets with good proximity and diversity.

An implementation of the NSGA-II algorithm is required to generate results
for comparison. The solution is to either implement NSGA-II based on details
available in the related publication, or to acquire an existing implementation.
Depending on the publication, it can be time-consuming or difficult to implement
an EMO algorithm, e.g. due to unusual mathematical notation or the lack of
low-level description of the operators. Where the authors have not released the
implementation of their algorithm (which is often the case) [13], it is possible
that implementations may be available as part of existing optimisation libraries.

It should be noted that the author of NSGA-II has made the source code
available on their website. However, as described below, many researchers still
make use of alternative implementations provided by commonly used libraries,
and in some cases, even their own implementation of the algorithm. [13]

Performance Comparison for EMOA 3

Given this situation, the implementation used may offer significantly different
performance when compared to the authors published results. This would impact
the integrity of performance comparisons when proposing a new algorithm.

To verify this, the following testable hypotheses can be defined:
Hypothesis 1 The approximation-sets produced by multiple different implemen-
tations of NSGA-II on the same test case will not always achieve significantly
similar performance.

Hypothesis 2 The final approximation-sets produced by multiple different im-
plementations of NSGA-II may achieve significantly similar performance, but the
performance of the populations maintained throughout the optimisation process
will vary, i.e. the rate of convergence.

The rest of the paper is organised as follows. Section 2.1 introduces the
concept of Evolutionary Multi-objective Optimisation. Section 2.2 describes the
NSGA-II algorithm and discusses its importance in the field. Section 3 details
the experimental design and how the algorithms were configured. Section 3.1
lists the three implementations of the NSGA-II algorithm that were used in this
experiment, and describes their distinguishing features, with details of how they
have been used other experimental studies. Section 4.1 describes the hypervol-
ume indicator, the key metric used to measure the performance of the various
implementations of the NSGA-II algorithm in this study. The results of the
experiment are summarised in section 4 and conclusions are drawn in section 5.

2 Background: Evolutionary Multi-objective
Optimisation and NSGA-II

2.1 Evolutionary Multi-Objective Optimisation

A typical evolutionary algorithm will start with population of randomly gener-
ated candidate solutions. The object is to allow them to reproduce and generate
another population of candidate solutions, which are closer to the theoretical
optimum set of solutions, and to do this repeatedly, until the solution set is close
enough to the optimum to be useful. As part of each iteration, the following
steps are undertaken:

1. Evaluation: Each solution is evaluated and assigned a fitness level. This
would involve calculating some function of its objective function value, with
regard to any constraints that may exist. The optimisation is normally trying
to minimise (or in some cases maximise) this value. In the simplest case,
the fitness can just be made equal to the objective function value. This is
often the case with single-objective optimisation, but with multi-objective
problems a number of approaches to both fitness evaluation and selection
have been developed to try and deal with the problem of multiple, possibly
conflicting objectives.

4 Kevin Wilson, Shahin Rostami

2. Selection: A selection operator is then applied to the population. This has
the job of making copies of good solutions and eliminating bad solutions
from the population, whilst keeping the population size the same. Note that
this step cannot create any new solutions - that is done by the remaining
two steps.
There are several approaches to selection when dealing with multi-objective
problems, including Selection by switching objectives, and Selection by Ag-
gregation. The one used by NSGA-II is called Pareto-based Selection.
In this approach, the solutions are sorted into a number of sets. All non-
dominated solutions are labelled as set one, and removed from consideration.
The remaining non-dominated solutions are then labelled as set two, and re-
moved from consideration, and so on. The fitness of a solution is determined
by which set it belongs to.

3. Crossover: The crossover operator has the job of taking two solutions, and
combining portions of them together to make two new solutions. As both
portions come from solutions that have a certain level of fitness (otherwise
they would not have survived the selection process) the chances are good
that it will result in a solutions that also has a good level of fitness. There
are a number of widely used crossover operators, including Linear [29], and
Simulated Binary [15].

4. Mutation: The mutation operator introduces an element of random varia-
tion by changing some portion of a solution to create a new one. This ensures
that the solution space is explored and as wide a range of optimum solutions
as possible are identified. There are a number of widely used mutation op-
erators, including Random [18] and Polynomial [5].

2.2 Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II was first proposed by Deb et
al in 2000 [4]. It generates an offspring population from the parent population,
and then sorts them into a set of Pareto fronts. Solutions with high dominance
are included in the next generation, whether they come from the parent or
offspring population, thus making it an elitist algorithm. The algorithm also
attempts to maximise diversity by employing a crowding distance operator which
sorts the solutions according to their distance from their neighbours, to ensure
as wide a spread as possible. NSGA-II has proved to be influential - Scopus
reports a citation count of 12945 for Deb’s paper, at the time of writing, and it
has been described by Ishibuchi [13] as “the most frequently used evolutionary
multiobjective algorithm in the literature since its proposal”. He goes on to say
that “New EMO algorithms were almost always compared with NSGA-II for
performance evaluation in 2000-2010.”. The execution life-cycle of NSGA-II is
shown in algorithm 1.

Performance Comparison for EMOA 5

Algorithm 1: NSGA-II
1 Generate random population P of size n
2 Apply selection and variation operators to produce offspring population Q of size n
3 repeat
4 Combine P and Q to produce combined population R of size 2n
5 Perform non-dominated sort of R to produce set of fronts F1 to Fm

6 x = 1
7 while (enough room in Pnew for all members of Fx) do
8 Calculate crowding distance for each solution in Fx

9 Copy all members of Fx to Pnew

10 x = x + 1

11 end
12 Sort Fx with crowded comparison operator in descending order
13 Copy the best solutions from Fx to fill the remaining spaces in Pnew

14 Apply binary tournament selection (based on crowded comparison) to Pnew

15 Apply crossover operators to Pnew

16 Apply mutation operators to Pnew

17 Operators will produce an offspring population Qnew of size n
18 P = Pnew, Q = Qnew

19 until (stopping criteria satisfied);
20 Output P

3 Experimental Design

In order to test our hypotheses, three different implementations have been com-
pared based on their hypervolume indicator performance on a set of synthetic
test functions from the ZDT [30] test suite. These test functions, their configu-
rations, and their salient features have been listed in Table 1.

Table 1. Salient features of the selected ZDT synthetic test problems and their re-
spective parameter configurations

Problem # Var # Obj Salient features Reference Vector
ZDT1 30 2 convex front 11,11
ZDT2 30 2 concave front 11,11
ZDT3 30 2 disconnected front 11,11
ZDT4 10 2 convex front, many local optima 300,300
ZDT6 10 2 concave front, non-uniform distribution 11,11

Three implementations of NSGA-II have been configured to output their pop-
ulations at each generation, allowing their performance to be measured through-
out each execution. The parameters used to configure each of the considered im-
plementations are taken from the author’s original work [6] and listed in Table
2. Each execution has been configured to allow a maximum of 500 generations,
with a sample size of 30 executions per test function.

The remainder of this section describes the NSGA-II implementations con-
sidered in this experiment, and introduces the hypervolume indicator.

3.1 Considered Implementations

Three widely used implementations of NSGA-II are compared, in this study.
Each one is provided as part of a larger library of programs. Each library also

6 Kevin Wilson, Shahin Rostami

Table 2. Parameter configurations for all considered NSGA-II implementations

Crossover Type Simulated Binary Crossover
Crossover Probability 0.9
Crossover Distribution Index 20
Mutation Type Polynomial
Mutation Probability 1 / No of Decision Variables
Mutation Distribution Index 20
Selection Type Binary Tournament
Population Size 100
Generation Count 500

contains implementations of other similar algorithms, and other features, such
as test problems. The three libraries are introduced in the following three sub-
sections.

jMetal jMetal is an object-oriented Java-based framework, developed by Durillo
and Nebro [8]. It contains implementations of many multi-objective optimisation
algorithms, as well as test problems, quality indicators and other tools useful to
a researcher in the field. Development was started in 2006, with a major redesign
and rewrite of the code in 2014. It is publicly available and licensed under the
GNU Lesser General Public License. The current version is jMetal 5.1 and it is
available on a public facing code repository [19].

The study in [25] uses the NSGA-II implementation offered by jMetal, as
well as their implementation of SPEA-2 and IBEA, to test the hypothesis that
their hyper-heuristic (HH) approach improves upon the results produced by the
traditional algorithms. They compare the performance of the three algorithms
unmodified and choosing the one that returns the best results, NSGA-II, they
measure its performance again, having modified it to incorporate the HH feature.

Similar experimental scenarios which use implementations from jMetal can
be found in [21], where they are used to test new types of Multi-objective Evo-
lutionary Algorithm, and in [23] where they are used to aid in the design of
software products.

Shark ML The Shark Machine Learning Library is an open-source C++ li-
brary which provides methods for optimisation and learning algorithms, neural
networks and other machine learning techniques.

It is maintained by Igel, Heidrich-Meisner and Glasmachers and is publicly
available and licensed under the GNU Lesser General Public License. The current
version is 3.1.0 and it is available on a public facing code repository [12].

The study in [24] uses hybridised versions of the NSGA-II and MO-CMA-ES
algorithms, as provided by the Shark Machine Learning Library, in conjunction
with a partially observable Markov decision process (POMDP).

Other experimental scenarios which use the Shark ML framework can be
found in [1] where they are used to develop a system for the topological opti-
misation of mechanical structures, and in [2] where they are used in parameter
tuning for various types of algorithms, such as those used by search engines.

Performance Comparison for EMOA 7

Other examples can be found in [9] where they were used to test a new type of
hypervolume indicator, and in [22] where they were used to implement a way of
updating covariance matrices.

MOEA Framework The MOEA Framework is a free and Open Source Java-
based framework, developed by Hadka and first released in 2011 [10]. Like jMetal,
it also contains implementations of a large group of multi-objective optimization
algorithms, standard test problems and performance indicators.

The framework is also licensed under the GNU Lesser General Public License.
The current version is 2.11 which was released Aug 16 2016 and it is available
on a public facing code repository [10].

MOEA incorporates some algorithm implementations from the jMetal li-
brary, although it provides its own implementation of NSGA-II.

The study described in [7] makes use of the MOEA framework in its ex-
perimental design. The authors wish to determine the effectiveness of using a
multi-objective evolutionary algorithm approach to solve the problem of how
best to manage a robot. Similar experimental scenarios which use implementa-
tions from the MOEA framework can be found in [26] and [3].

4 Numerical Results

4.1 Hypervolume Indicator

The HV indicator (or s-metric) is a performance metric for indicating the quality
of a non-dominated approximation set, introduced by [31] where it is described
as the “size of the space covered or size of dominated space”. It can be defined
as [27]:

HV
(
fref , X

)
= Λ

(⋃
Xn∈X

[
f1(Xn), fref1

]
× · · · ×

[
fm(Xn), frefm

])
(1)

where HV
(
fref , X

)
resolves the size of the space covered by an approximation

setX, fref ∈ R refers to a chosen reference point, and Λ (.) refers to the Lebesgue
measure [16]. This has been illustrated in Figure 2 in two-dimensional objective
space (to allow for easy visualisation) with a population of three solutions.

The hypervolume (HV) indicator is appealing because it is compatible with
any number of problem objectives and requires no prior knowledge of the true
Pareto-optimal front. It is currently used in the field of multi-objective optimi-
sation as both a proximity and diversity performance metric and also in the
decision making process [11].

Unlike dominance-based criteria which require only two solutions for perform-
ing a comparison (which can be used on an ordinal scale), a reference vector is
required to calculate the HV indicator value (i.e. it requires the objective to be
measured on an interval scale). When used for pairwise or multiple comparison

8 Kevin Wilson, Shahin Rostami

of optimisation algorithms, this reference vector must be the same, otherwise the
resulting HV indicator values are not comparable. The reference vectors used in
these experiments are listed in Table 1.

Average hypervolume values over 30 runs for each test problem are shown
in Fig. 3. The hypervolume indicator results for the worst, mean, and best ex-
ecution at generation 500 and generation 100 have been presented in Table 3.
The Wilcoxon signed-rank nonparametric test [28] has been employed to test
for statistical significance, and the results of this are shown in Table 4. For each
pair of implementations, the p value is shown, and a symbol is used to show rel-
ative performance. A ’+’ indicates that the first implementation outperformed
the second, a ’−’ indicates that the second outperformed the first, and a ’=’
indicates that there was no significant difference between the first and second.

0 100 200 300 400 500

Generation

90

100

110

120

H
yp

er
vo

lu
m

e

ZDT1

jMetal
MOEA
Shark

0 100 200 300 400 500

Generation

70

80

90

100

110

120

130

H
yp

er
vo

lu
m

e

ZDT2

jMetal
MOEA
Shark

0 100 200 300 400 500

Generation

100

110

120

130

H
yp

er
vo

lu
m

e

ZDT3

jMetal
MOEA
Shark

0 100 200 300 400 500

Generation

6

7

8

9

H
yp

er
vo

lu
m

e

104 ZDT4

jMetal
MOEA
Shark

0 100 200 300 400 500

Generation

40

60

80

100

120

H
yp

er
vo

lu
m

e

ZDT6

jMetal
MOEA
Shark

Fig. 3. Mean hypervolume indicator results for the ZDT test problems, 500 generations,
for NSGA-II implementations taken from jMetal, MOEA Framework, and Shark ML.

The MOEA Framework implementation outperforms the implementations
from jMetal and Shark ML on 26 of the 30 results listed in Table 3, with the
fastest overall rate of convergence. The greatest difference in performance can
be seen early in the optimisation process, e.g. before 200 generations (Figure
3). This suggests that the number of generations used in an experiment will
significantly impact the integrity of the results, i.e. if an experiment is using

Performance Comparison for EMOA 9

Shark ML’s implementation of NSGA-II as a benchmark, the comparison would
not be the same as if they were to use jMetal’s implementation of NSGA-II.

Hypothesis 1 is concerned with the final approximation sets produced by each
of the implementations. Although the magnitude of the variance is smaller in
the later generations, even in the final approximation set, 13 of the 15 pairwise
comparisons rejected the null hypothesis. This shows a significant difference in
the hypervolume quality of each implementation’s final approximation set.

The results suggest that MOEA Framework’s NSGA-II implementation offers
the best performance, despite being configured with the same parameters and
operators. It outperformed the other two implementations on all of the test
problems except ZDT4, where it performed the worst.

The Shark implementation was second best overall, given that it performed
best on ZDT4, and second best on three of the test problems (ZDT1, ZDT2 and
ZDT6), with only its performance on ZDT3 being the worst out of the three.

The jMetal implementation was the worst performer on three of the test
problems, and came second on ZDT3 (behind MOEA) and ZDT4 (behind Shark).

This provides experimental confirmation of hypothesis 1 - that the approxi-
mation sets produced by multiple different implementations of NSGA-II on the
same test case will not always achieve significantly similar performance.

Table 3. Mean hypervolume results from 30 executions of three versions of NSGA-II
on the ZDT test suite. The boldface values indicate superior performance

gen = 100 jMetal MOEA Shark

Problem Worst Mean Best Worst Mean Best Worst Mean Best

ZDT1 118.8605 120.2570 120.4908 120.3037 120.4232 120.5114 114.7115 117.0696 118.6003
ZDT2 109.9355 114.9227 119.7335 110.4201 119.1809 119.8377 99.3786 105.1081 113.5910
ZDT3 125.1561 128.1568 128.5589 128.1541 128.4240 128.5620 121.2054 124.1729 126.9816
ZDT4 89532.74 89712.37 89856.94 89538.86 89815.22 89999.52 88683.47 89403.65 89722.09
ZDT6 111.8097 113.7393 114.7459 111.3142 112.9072 114.3293 108.3006 110.8531 112.8922

gen = 500 jMetal MOEA Shark

Problem Worst Mean Best Worst Mean Best Worst Mean Best

ZDT1 120.5031 120.6304 120.6550 120.6595 120.6601 120.6608 120.6234 120.6510 120.6601
ZDT2 119.3920 120.1841 120.3202 120.3260 120.3268 120.3275 119.3120 120.2408 120.3249
ZDT3 128.2403 128.7063 128.7711 128.7745 128.7748 128.7751 125.5630 128.4439 128.7729
ZDT4 89983.72 89996.25 89999.61 89619.57 89818.45 89999.66 89992.71 89998.54 89999.53
ZDT6 116.7795 117.4678 117.4982 117.4874 117.4963 117.5044 117.4800 117.4900 117.5005

Hypothesis 2 is concerned with the rate of convergence of each implementa-
tion. Fig. 3 clearly illustrates that, at generation 100 of the optimisation process,
for all considered test functions, the Shark ML implementation of NSGA-II offers
the worst performance, with regards to the mean hypervolume indicator quality
achieved by each population. Table 3 lists results indicating that Shark ML also
achieved the lowest hypervolume indicator quality for the worst performing and
best performing populations for each problem.

The relative performance of the three implementations at generation 100 is
also different when compared with generation 500. The MOEA implementation

10 Kevin Wilson, Shahin Rostami

Table 4. Results showing pairwise comparison of the mean hypervolume values using
the Wilcoxon signed-ranks non-parametric test

Generation 100 Generation 500
jMetal/MOEA MOEA/Shark jMetal/Shark jMetal/MOEA MOEA/Shark jMetal/Shark

Problem p-value p-value p-value p-value p-value p-value

ZDT1 6.8714e-02 = 1.7344e-06 + 1.7344e-06 + 1.7344e-06 - 1.7344e-06 + 3.6094e-03 -
ZDT2 1.2506e-04 - 1.7344e-06 + 2.6033e-06 + 1.7344e-06 - 1.7344e-06 + 4.0483e-01 =
ZDT3 1.5886e-01 = 1.7344e-06 + 1.7344e-06 + 1.7344e-06 - 1.7344e-06 + 1.7138e-01 =
ZDT4 8.9443e-04 - 1.9209e-06 + 4.2857e-06 + 1.9209e-06 + 1.9209e-06 - 1.1748e-02 -
ZDT6 4.5336e-04 + 3.1817e-06 + 1.9209e-06 + 1.6566e-02 - 1.4773e-04 + 4.9498e-02 -

is still the best performer, outperforming the other implementations on all of
the test problems except ZDT6, where it comes second after jMetal. The jMetal
implementation is second best on all of the other test problems, which leaves
Shark as the worst performer on all 5 test problems.

Table 4 shows that there is a statistically significant difference in 13 of the
15 pairwise comparisons in the generation 100 results. The two comparisons
which do support the null hypothesis are between jMetal and MOEA, on the
test problems ZDT1 and ZDT3.

It is clear from the results listed in Table 4, and from the graphs shown in
Fig. 3 that the rate of convergence of the three implementations is different, in
some cases markedly so. Shark has a lower rate of convergence in all of the test
problems, the difference being most marked in ZDT2, but almost as large in
ZDT1 and ZDT3. jMetal and MOEA converge at a similar rate in ZDT1, ZDT3
and ZDT6, but in ZDT4 the convergence rate of jMetal and Shark seem to be
similar, but both are slower than MOEA.

However, although Shark has the slowest rate of convergence in all of the test
problems, it actually results in the the best final approximation set in the case
of ZDT1, and the second best in three of the other test problems.

Any discussion of which implementation is best will involve a tradeoff between
the following factors - the speed at which the algorithm can converge towards
an approximation set which is close enough to the Pareto front to be useful, and
the desired quality of the final approximation set.

5 Conclusions

In this study, three implementations of the NSGA-II algorithm were configured
with the same parameters and operators, and applied to the ZDT test suite in
a three-way comparison. The hypervolume indicator was used as a performance
metric to identify the worst, mean, and best performance of populations gener-
ated by each implementation for each test function. The implementations should
not have offered significantly different performance, however, the null hypothesis
was rejected in 26 of the 30 comparisons.

MOEA Framework’s implementation of NSGA-II outperformed those from
jMetal and Shark ML - this shows that, when comparing a newly proposed

Performance Comparison for EMOA 11

algorithm to two implementations of NSGA-II, it is possible for the algorithm to
both outperform NSGA-II, and be outperformed by NSGA-II, simultaneously.

It seems increasingly important that researchers should publish source code
for their algorithm, and specify which implementation (and version) of a bench-
mark algorithm is used in their comparisons. The difference in performance can
emerge for many reasons, including the interpretation of the pseudo-code or algo-
rithm listing, if the author does not publish their source code, and the features of
a particular programming language e.g. the accuracy of floating point numbers.

Further work in this research direction would benefit the field of Evolutionary
Computation, as there are many new algorithms proposed in the literature and
the majority of them are compared against existing algorithms as a benchmark.
It is also worth noting that differences in the implementation of test functions
and performance metrics may also exist, which would also impact the integrity
of performance comparison.

References

1. Aulig, N., Olhofer, M.: Neuro-evolutionary topology optimization of structures by
utilizing local state features. In: Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, GECCO ’14, pp. 967–974. ACM (2014)

2. Branke, J., Elomari, J.A.: Meta-optimization for parameter tuning with a flexible
computing budget. In: Proceedings of the 14th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’12, pp. 1245–1252. ACM (2012)

3. Cocaña-Fernández, A., Sánchez, L., Ranilla, J.: Improving the eco-efficiency of high
performance computing clusters using EECluster. Energies 9(3), 197 (2016)

4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: Parallel
Problem Solving from Nature - PPSN VI, 6th International Conference, Paris,
France, September 18-20, 2000, Proceedings, pp. 849–858 (2000)

5. Deb, K., Goyal, M.: A combined genetic adaptive search (geneas) for engineering
design. Computer Science and informatics 26, 30–45 (1996)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (2002)

7. Desjardins, B., Falcon, R., Abielmona, R., Petriu, E.: A multi-objective optimiza-
tion approach to reliable robot-assisted sensor relocation. In: 2015 IEEE Congress
on Evolutionary Computation (CEC), pp. 956–964 (2015)

8. Durillo, J.J., Nebro, A.J.: jMetal: A java framework for multi-objective optimiza-
tion. Advances in Engineering Software 42(10), 760–771 (2011)

9. Friedrich, T., Bringmann, K., Voß, T., Igel, C.: The logarithmic hypervolume in-
dicator. In: Proceedings of the 11th Workshop Proceedings on Foundations of
Genetic Algorithms, FOGA ’11, pp. 81–92. ACM (2011)

10. Hadka, D.: Moea - a free and open source java framework for multiobjective opti-
mization (2015). URL https://github.com/MOEAFramework/MOEAFramework

11. Helbig, M., Engelbrecht, A.P.: Performance measures for dynamic multi-objective
optimisation algorithms. Information Sciences 250, 61–81 (2013)

12 Kevin Wilson, Shahin Rostami

12. Igel, C., Heidrich-Meisner, V., Glasmachers, T.: The shark machine learning library
(2013). URL https://github.com/Shark-ML/Shark

13. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Performance comparison of
NSGA-II and NSGA-III on various many-objective test problems. In: 2016 IEEE
Congress on Evolutionary Computation (CEC), pp. 3045–3052 (2016)

14. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: A short review. In: 2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence), pp. 2419–2426 (2008)

15. Kumar, K.D.A.: Real-coded genetic algorithms with simulated binary crossover:
studies on multimodal and multiobjective problems. Complex Systems 9, 431–454
(1995)

16. Lebesgue, H.: Intégrale, longueur, aire. Annali di matematica pura ed applicata
7(1), 231–359 (1902)

17. Li, M., Yang, S., Liu, X.: A performance comparison indicator for pareto front ap-
proximations in many-objective optimization. In: Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, GECCO ’15, pp. 703–710.
ACM (2015)

18. Michalewicz, Z., Hartley, S.J.: Genetic algorithms+ data structures= evolution
programs. Mathematical Intelligencer 18(3), 71 (1996)

19. Nebro, A.: jmetal: a framework for multi-objective optimization with metaheuris-
tics (2014). URL https://github.com/jMetal/jMetal

20. Purshouse, R.C.: On the evolutionary optimisation of many objectives. University
of Sheffield Sheffield, UK (2003)

21. Rostami, S., Neri, F.: Covariance matrix adaptation pareto archived evolution
strategy with hypervolume-sorted adaptive grid algorithm. Integrated Computer-
Aided Engineering 23(4), 313 (2016)

22. Rostami, S., Shenfield, A.: A multi-tier adaptive grid algorithm for the evolutionary
multi-objective optimisation of complex problems. Soft Computing pp. 1–17 (2016)

23. dos Santos Neto, P.d.A., Britto, R., Rabêlo, R.d.A.L., Cruz, J.J.d.A., Lira, W.A.L.:
A hybrid approach to suggest software product line portfolios. Applied Soft Com-
puting 49, 1243–1255 (2016)

24. Soh, H., Demiris, Y.: Evolving policies for multi-reward partially observable markov
decision processes (MR-POMDPs). In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’11, pp. 713–720. ACM (2011)

25. Strickler, A., Prado Lima, J.A., Vergilio, S.R., Pozo, A.T.R.: Deriving products for
variability test of feature models with a hyper-heuristic approach. Applied Soft
Computing 49, 1232–1242 (2016)

26. Svensson, M.K.: Using evolutionary multiobjective optimization algorithms to
evolve lacing patterns for bicycle wheels. Master’s thesis, NTNU-Trondheim (2015)

27. Voß, T., Hansen, N., Igel, C.: Improved step size adaptation for the MO-CMA-
ES. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’10, pp. 487–494. ACM (2010)

28. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin
1(6), 80–83 (1945)

29. Wright, A.H., et al.: Genetic algorithms for real parameter optimization. Founda-
tions of genetic algorithms 1, 205–218 (1991)

30. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary computation 8(2), 173–195 (2000)

31. Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization:
The strength pareto approach. Citeseer, Swiss Federal Institute of Technology
(1998)

Performance Comparison for EMOA 13

32. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.d.: Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Transactions
on Evolutionary Computation 7(2), 117–132 (2003)

