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Abstract The reliability of any given structure or machine subjected to dynamic loads is mainly dependent on the 

detailed fatigue study of the applied materials. As the demand for higher life cycles with more complex stress 

applications increases, so does the necessity for new and more complex fatigue testing methods. Since it was proven 

before that a fatigue limit should no longer be considered, ultrasonic fatigue tests were developed for the study of the 

life beyond that point. This is now known as the Very High Cycle Fatigue (VHCF) regime. In these tests, specimens 

are subjected to stress cycles in frequencies as high as 20 kHz. Most ultrasonic fatigue tests apply uniaxial stresses, but 

it is important to be able to apply complex multiaxial loading since most components are subjected to a complex stress 

state when under cyclic loading. In this work, cruciform specimens are used in an ultrasonic fatigue machine. Two 

different geometries, capable of inducing in-plane biaxial stress combinations (in-phase and out-of-phase) in the VHCF 

range, are studied. The geometries are subjected to both numerical analysis and experimental testing to understand if 

they are working as intended. For those who do so, a test until failure was carried through to observe and evaluate the 

fracture surface. 
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1. Main text  

The study of material damage in dynamic systems or structures is necessary to ensure their safety and 

reliability, since fatigue is one of the main causes for material failure [1]. As more complex and 

demanding machines and systems (in both reliability and performance) are required, more thorough 

fatigue studies are required.  

Since the realisation that the fatigue limit in the classical sense is no longer applicable [2], the 

corresponding fatigue regime needs to be fully comprehended and characterised. This corresponds to life 

beyond 10E07 cycles, the Very High Cycle Fatigue (VHCF) regime Because conventional fatigue 

machines would take an unreliable time to achieve cycles between 10E06 and 10E09 (VHCF regime) a 

new type of machine was developed capable of inducing high frequency cycles: the ultrasonic fatigue 

testing machine. Mason in 1950 was the first to build successfully such machine establishing the standard 

frequency of 20 kHz [3]. In ultrasonic testing the components’ set are excited in resonance in order to 

apply high enough stresses in such a high frequency. The specimen is then excited at a specific resonance 

mode that applies higher stresses in only a single and well-determined section for the fatigue study. 

With the development of ultrasonic fatigue testing, new trends capable of applying different stress 

combinations than the first uniaxial tension/compression were created, like bending [4], torsion [5] or 

even multiaxial tension/compression and torsion [6].  

In this work, two specimens, based on the ones from [7] and [8], were adapted following the guidelines 

from [9], so that they could be tested under ultrasonic fatigue loads in the uniaxial tension-compression 

test machine developed at Instituto Superior Técnico (University of Lisbon) [10]. The specimens have a 

cruciform shape and both induce in-plane axial-axial stress combinations, although in one design the 

stresses are in-phase while in the other they are out-of-phase. This specific geometrical shape is already 

in use in the conventional way of applying loads with actuators [11]. 

For the transformation from the conventional to the ultrasonic fatigue testing the base shape is kept but 

the dimensions are altered for the specimens to have a specific resonance mode of interest around the 

working frequency of 20 kHz. The dimensions are dependent on the material of choice and the resonance 

mode of interest; thus, two geometries are created for tension-tension (T-T) and compression-tension (C-

T) stress induced combination. 
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2. Methodology 

There are two cruciform specimens in study that are excited in two different resonance modes. Both 

specimens follow a certain geometry with special relations between the dimensions showed in [12]. In order 

to achieve a working specimen several dimension combinations are numerically tested until they have the 

resonance mode of interest within the working frequency. The two specimens are the T-T (in-phase) and 

C-T (out-of-phase). A representation of the deformation along both resonance modes is shown through the 

software Abaqus in the Figure 1. 

Figure 1: Representation of the displacements of resonance modes of interest for: (A) T-T; (B) C-T 

The material used for the initial testing of these specimens’ shapes was the 6082-T651 Aluminum alloy. 

Before performing any test, a frequency analysis of the component set with each of the machined specimens 

was made using the transducer’s software. This analysis helps to understand if it is possible to excite in 

resonance any specimen and at what frequency. 

Both T-T and C-T specimens dynamic behaviours were analysed using a two-channel Polytec Laser 

Doppler Vibrometer (LDV) measuring axially (at the extremities of the arms) and transversely (along the 

longitudinal length of the arms) in pairs. This allowed determining the phase and amplitude differences 

between channels. From the measurements at the extremities, this helps understanding if each specimen is 

being excited as intended. By measuring transversally along the length of the arms, this helps understanding 

if the displacement had any discrepancies to the supposed motion of the arms.  

In resonance, the material’s damping has a large influence on the amplitude of the obtained resonance 

frequency of a given geometry and the resulting stress, as the results with finite element analysis showed 

in [8]. The damping effect is also responsible for the generation of heat, this means that where the material 

is deforming (in the sense of strain) the most (highest stress region) the heat generated is the highest. With 

the use of a thermal camera, all specimens were observed in order to view if the centre showed generation 

of any heat, since it is the expected area of highest stress. To obtain the thermal response on the camera the 

specimen's side on film was painted mate-black beforehand.  

3. Results and discussion 

The frequency analysis performed to all machined specimens showed that all C-T and T-T could be 

excited within the working frequency range of the transducer.  

The Laser measurements at the extremities are shown in Figure 2 for each type of specimen. It is clear 

that, even though both type of cruciform specimens proved to have the correct and expected phase, only C-

T showed to have similar amplitudes on both extremities. All T-T specimens produced showed to have the 
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displacements at the extremities in phase, but with a considerable shift in amplitude, being systematically 

larger in the transversal arms. 

Figure 2: Displacement measurements of the specimens’ extremities; (A) T-T; (B) C-T  

 

From the Laser measurements and numerical analysis, it is observed that the T-T specimen has a 

considerable undesired vertical movement in the transversal arms. There are a few reasons why this may 

be happening, a nearby resonance mode (at approximately 19.8 kHz) that alters the specimen’s deflection 

shape and desired operation could be one possible reason. A more detailed study is being conducted to 

understand and correct the T-T geometry for a functioning one. However, the C-T geometries proved to 

have an acceptable performance. Thermal imaging also helps to reinforce the latter statement as Figure 3 

shows a higher heat generation at the centre of a C-T specimen. The T-T specimens did not show a heat 

generation at their centres. 

 

 
Figure 3: Thermographic image of a C-T specimen under an ultrasonic fatigue test. 

 

Knowing that the C-T specimen was being excited in the resonance mode of interest with a correct 

displacement, a power-controlled test was performed until failure. In this test, an estimated power was 

applied to the specimen with temperature control. The number of cycles was counted from the waveform 

measured through the Laser mentioned before. After more than a million cycles the specimen “lost” its 

resonance at around 20 kHz due to the appearance of a fatigue crack at its centre (the stiffness decreased, 

hence the natural frequency decreased as well until it reached the lower operating frequency of the machine 

at 19.5 kHz). In order to expose the fatigue crack surface for observation, the specimen was introduced to 

a hydraulic machine for a tensile test until complete failure. Figure 4 shows the crack before and after 

applying total failure to the specimen. 

 

 
Figure 4: (A) Amplification of the crack after ultrasonic testing (B) C-T specimen after tensile test with the showed crack (C) 

Microscopic image of the fatigue crack surface of the C-T specimen 
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The created fracture showed two different types of crack surface zones. One with a more regular and shinier 

surface, showed in figure 4.C, and a rough dark surface which dominates most of the crack surface area. 

The former appears to be where the fatigue initiated and propagated, the latter appears to be ductile fracture 

due to the big enough fatigue crack size, it just didn’t break in all specimen’s length due to the sudden 

increase of thickness, and also due to the sudden “loss” of frequency which made the test come to a stop 

(due to limitations of the machine with regards to its operating bandwidth). The fatigue induced crack 

surface shows to be at around 45º with respect to the induced stresses directions. This angle seems adequate 

for the applied biaxial state considering that uniaxial tension/compression specimens have a crack surface 

normal to the specimen’s length. Thereby having a in plane axial-axial with a 90º degree relation with 

similar induced stress, it is a fair assumption that the fracture angle should be in between the applied stress. 

The 45º degree angle of the fatigue crack is showed in Figure 5. 

 

 
Figure 5: Fatigue crack angle in relation to the arms in a C-T specimen. 
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