
Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: www.elsevier.com/locate/entcom

Procedural feature generation for volumetric terrains using voxel grammars

Rahul Deya,b,⁎, Jason G. Doiga, Christos Gatzidisb

a Sony Interactive Entertainment Euro R&D, 13 Great Marlborough Street, London W1F 7HP, UK
b Bournemouth University, Poole House, Talbot Campus, Poole, Dorset BH12 5BB, UK

A R T I C L E I N F O

2010 MSC:
00-01
99-00

Keywords:
Procedural generation
Terrain
Voxels
Grammar

A B S T R A C T

Terrain generation is a fundamental requirement of many computer graphics simulations, including computer
games, flight simulators and environments in feature films. There has been a considerable amount of research in
this domain, which ranges between fully automated and semi-automated methods. Voxel representations of 3D
terrains can create rich features that are not found in other forms of terrain generation techniques, such as caves
and overhangs. In this article, we introduce a semi-automated method of generating features for volumetric
terrains using a rule-based procedural generation system. Features are generated by selecting subsets of a voxel
grid as input symbols to a grammar, composed of user-created operators. This results in overhangs and caves
generated from a set of simple rules. The feature generation runs on the CPU and the GPU is utilised to extract a
robust mesh from the volumetric dataset.

1. Introduction

Generation of terrains can be a particularly important process when
creating realistic representations of virtual worlds, as found in com-
puter graphics simulations, feature films and computer games with
outdoor environments. So far, there has been a considerable amount of
research in this domain, which ranges between fully automated and
semi-automated methods.

While it is now feasible to create massive virtual worlds, the tasks of
designing the terrain, populating the world with content, and, finally,
ensuring it does not feel empty or barren, continue to be very time
consuming processes. Procedural content generation (PCG) has many
applications and has proven valuable to designers due to its ability to
algorithmically produce content such as the generation of textures,
geometry and animations [1] so it can greatly improve the cost effi-
ciency of populating a virtual environment. PCG will be used in this
research to assist designers and shorten the length of time to create
large scale landscapes.

Traditionally, terrains are defined by their surface details using a
texture-based approach representing a top-down, two-dimensional
view, called a heightmap. However, the details beneath the terrain
surface have a significant impact on how the terrain is formed and its
eventual appearance. This research uses volumetric data to represent
terrain. This is important as it provides meaning to the details that are
not visible to the user. Various factors, such as soil type and material
density, govern how terrains are created in the real world. This can be
modelled accurately when a voxel-based approach is utilized. A further

advantage of this approach is that both constructive and destructive
methods to terrain creation can be adopted without being concerned
about real-time polygon mesh editing, i.e. a surface can be extracted
from the voxel data after the data has been constructed to the designer’s
liking.

This article proposes a procedural, voxel-based approach to assist
users in the generation of key terrain features, such as overhangs and
caves. The presented method expands the concept of shape grammars to
a volumetric space and explains the process employed to create terrain
features. We develop specific rulesets that are applied over a voxel
dataset in order to create such features on the CPU. We also describe
some good practices to be utilised when developing these rulesets. The
final terrain mesh is generated at real-time frame rates by using our
GPU-based surface nets algorithm. Furthermore, we present timings
and memory usage from our results for the generation of the voxel data
using different rulesets plus the performance statistics of our GPU
surface extraction algorithm.

This research has been carried out in collaboration with Sony
Interactive Entertainment Euro Research and Development (SIE Euro R
&D), working with their proprietary game engine PhyreEngine™ [2]. We
also thank NVIDIA Corporation for their hardware donation of a Titan X
GPU.

2. Related work

In this section previous work related to the formation of volumetric
terrain is briefly reviewed. The proposed method involves aspects of

https://doi.org/10.1016/j.entcom.2018.04.003
Received 7 December 2017; Received in revised form 11 April 2018; Accepted 24 April 2018

⁎ Corresponding author at: Bournemouth University, Poole House, Talbot Campus, Poole, Dorset BH12 5BB, UK.
E-mail address: rahul.dey@bournemouth.ac.uk (R. Dey).

Entertainment Computing 27 (2018) 128–136

Available online 05 May 2018
1875-9521/ Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/18759521
https://www.elsevier.com/locate/entcom
https://doi.org/10.1016/j.entcom.2018.04.003
https://doi.org/10.1016/j.entcom.2018.04.003
mailto:rahul.dey@bournemouth.ac.uk
https://doi.org/10.1016/j.entcom.2018.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.entcom.2018.04.003&domain=pdf

multiple domains, including terrain creation, data structures to manage
voxel datasets and rule-based procedural generation methods.

2.1. Terrain

3D games and simulations set in an outdoors environment often
need to represent terrain. Terrains for these applications need to be
rendered at real-time frame rates as the user should be able to navigate
the virtual world without waiting for the terrain to draw to the screen.

Modern GPU architectures have been designed to handle processing
polygons quickly and, as such, most terrains are rendered using polygon
meshes. However, terrain data can be represented in multiple ways,
including the manipulation of vertices of a grid mesh directly (which
this article refers to as polygonal terrain) and as volumetric terrain by
storing and editing the type of terrain present at specific points in 3D
space. It should be noted that volumetric terrain is still commonly
rendered as a set of polygonal meshes generated by applying various
surface extraction methods on the voxel representation of the terrain.
This is necessary as volumetric data can become inordinately large at
higher grid resolutions. A polygonal mesh that provides an accurate
representation of the surface of the data and falls within the constraints
of a GPU is important, especially for real-time rendering.

Heightmaps (and their extensions) have been used extensively to
represent terrains as they provide a very intuitive method of designing
outdoor environments. Heightmaps are two-dimensional textures that
store height values at each texel which are, in turn, used to displace
vertices on a pre-allocated polygonal grid mesh. A comprehensive
survey of such approaches can be found in [3].

While heightmaps are relatively straightforward and intuitive to
create terrains, some features of real-world landscapes can be more
complicated to generate using heightmaps alone. Features such as caves
and overhanging cliffs cannot be represented by single height values
and thus call for a different method of creation. One workaround was
presented by [4], where an existing heightmap was warped using a flow
field. This resulted in overhanging terrain being generated in a simple
manner. However, the main limitation of this method is that a specific
vector field needs to be defined before the deformation takes place and
this can be a complex process.

Volumetric terrains can remove the requirement for workarounds to
create caves and overhangs and recreate these features effectively with
greater control over the final result. Many volumetric terrains are
stored and accessed as chunked data structures, seen in [5]. Storing the
data in this way splits it effectively and allows for parallelism between
generation of chunks, dividing the workload of terrain generation
among several threads.

The work of [6] presents a method of combining the voxel-based
terrain as well as storing a signed distance field. This means that
sculpting and approximating erosion can be trivially and efficiently
implemented to model more realistic terrains. The authors also in-
troduce a highly user-directed process, where procedural methods (i.e.
the erosion algorithms) are applied based on initial user input. Another
hybrid approach is presented in [7] which combines voxels and
heightmaps. This approach creates a coarse voxel grid that can re-
present caves and overhangs and splits the entire voxel grid into pat-
ches. The authors then extract the surface to form the polygonal geo-
metry required for rendering. The resulting geometry is subsequently
displaced by heightmaps assigned to each patch. The process allows
them to represent terrains with volumetric features, whilst maintaining
a low voxel grid resolution.

Signed distance functions (SDFs) can also be used for volumetric
rendering by storing functional representations of geometry at points in
3D space. This can offer a wide degree of flexibility and can scale well
due to its resolution independence. The work of [8] decomposes vo-
lumes into a hierarchical tree data structure containing partial SDFs at
each tree node. Constructing a suitable SDF for complex volumetric
features requires either the use of well-developed tooling solutions or

mathematically proficient users. Furthermore, constructing robust me-
shes from SDFs can be a difficult and slow process to perform on GPUs
[9]. Due to these complexities, we represent terrains using voxels and
have the advantage of direct and fast access to the underlying data.

2.2. Voxel management

A typical method of representing volumetric data is by utilising a
dense grid of voxels. However, terrains tend to model large scale
landscapes and representing them with a dense grid quickly becomes
prohibitively expensive in terms of memory usage. Therefore, it is
prudent to make use of data structures designed to ameliorate this
limitation. There are several sparse data structures available, which
have been successfully used in a variety of applications, such as fast
global illumination approximations [10] and fluid simulation [11].

A simple, sparse grid structure is found in [12] that separates a large
voxel grid into a set of blocks containing a fixed number of voxels.
When a voxel is inserted into the grid, the corresponding block is in-
spected. If the block is empty, then the algorithm allocates memory for
the entire block of voxels before inserting the voxel data. This scheme
can substantially save memory, particularly when the majority of the
voxel grid consists of empty space. However, this can also needlessly
allocate large amounts of memory when voxels are very sparsely dis-
tributed within the entire voxel grid, i.e. there are very few voxels re-
quired per block. This method is highly dependent on the type and
distribution of the input volumetric data and therefore requires some
experimentation to achieve optimal block sizes to minimize wasted
space.

A data structure for voxel storage that has come into fairly common
usage is the Sparse Voxel Octree (SVO). SVOs are used by [13] to create a
fast approximation to global illumination in real time scenes by con-
structing a two-part octree consisting of a node pool and a brick pool. The
node pool linearly stores the structure of the octree in contiguous
memory in order to maximize cache coherency when querying the data
structure. The brick pools contain bricks of voxels (sets of 33 voxels)
stored in 3D textures. Storing the voxel data in GPU texture resources
enables the algorithm to make use of hardware filtering on the voxel
data to improve lighting quality. However, as the construction of the
data structure can be a somewhat slow process, scenes that require
considerable dynamic movement or regeneration are not handled par-
ticularly well with this method. As such, it is primarily suitable for
static scenes.

There are also a number of variations for SVOs, including a different
decomposition of the resulting structure. The work of [14] achieves this
by storing child descriptors that contain index offsets to memory lo-
cations in order to allow for quick access to each node’s children. The
final memory footprint of an SVO has also been reduced by [15], by
removing redundant relationships between nodes in the tree and con-
structing the data as a directed acyclic graph. However, both of these
methods still have costly construction times and are therefore not sui-
table for scenes containing regeneration of geometry or other dynamic
properties.

A different sparse data structure that can be used to store volumetric
data is the brickmap. Brickmaps have been used for raytracing, in both
offline renderers [16] and, more recently, real-time rendering [17].
Brickmaps contain a sparse list of bricks where each brick contains
volumetric information for a small set of voxels. The key difference
between an SVO and a brickmap structure used for real-time raytracing
is that there are only two discrete levels used in a brickmap, a sparse
map for looking up bricks and a finer resolution voxel grid, found in
each brick’s dataset. It is an efficient data structure that can be quickly
rebuilt and is therefore useful for more dynamic scenes. This design
however does not save as much memory as a standard SVO.

Recently, a new sparse data structure, named VDB (Volumetric,
Dynamic B+) trees, was introduced [18]. It offers a number of key
advantages to volumetric representations, such as good cache

R. Dey et al. Entertainment Computing 27 (2018) 128–136

129

coherence and fast random access capabilities, including insertion,
traversal and deletion operators. These features in particular render it
appropriate for dynamically changing volumes.

2.3. Rule-based procedural generation

Procedural content generation (PCG) refers to the process of com-
putationally constructing assets in games and simulations, either from
the ground up or by offering variations on an existing template. Many
PCG methods are noise-based and utilise predictable pseudorandom
number generation to produce varied results [1,19,20]. However,
noise-based PCG is usually a fully automated process which offers de-
signers little control over how the generated terrain is structured. Other
PCG methods make use of a rule-based approach that consists of using
an initial input and a ruleset to generate diverse content, whilst still
constrained within the user defined parameters. Rule-based systems can
be used to counteract the diminished control present in noise-based
methods.

Existing methods use the concept of grammars to govern the gen-
eration of content. A formal grammar consists of a set of axioms and
rules that recursively rewrite the initial state until a termination con-
dition is met. This may be until the generation reaches a predetermined
terminal state or runs for a set number of iterations. This results in a
structured and deterministic result so long as the initial state, ruleset
and random seed (for rule selection) remain the same. Variations can be
generated by either altering the input state or the rules.

Lindenmayer systems (L-systems) have been frequently used to
generate smaller objects such as trees and foliage [21]. They have since
been extended to generate road networks for urban environments and
entire cities [22]. Further research into L-systems investigated a more
efficient design by utilising multithreading. Multi-threaded applications
require threads to be synchronised well to prevent errors such as race
conditions. Synchronisation can be achieved by introducing locks, such
as mutexes, as part of the algorithm’s execution. However, locks tend to
come with performance implications. Thus, [23] introduced a multi-
threaded L-system that is completely lock-free. This extension can
therefore be deployed to massively parallel architectures, such as GPUs,
so a result using a large ruleset can be generated quickly and efficiently.

Shape grammars are another form of grammar that has been
adopted for procedural generation [24]. Shape grammars function by
recursively applying rules that govern transformations to an initial
shape. An extension to this introduced the concept of a split grammar,
where rules are composed of basic shapes and more detailed decom-
positions of the basic shapes [25]. This has been used for the generation
of procedural architecture [26]. Shape grammars have also been
modified to run on massively parallel architectures. A GPU-based shape
grammar algorithm was created by [27] in order to create infinitely
large cityscapes. They utilised the parallel algorithm found in [28] and
a set of rules to generate geometry for realistically planned cities. When
rendering scenes, the visibility of geometry can be handled by frustum
culling, occlusion culling and the use of spatial databases, such as oc-
trees or binary space partition trees. This makes the assumption that the
entirety of the geometry data is available for rendering, if it is required.
One of the concepts [27] introduced was their method of visibility
pruning. This completely skipped evaluation of any rules that would
create buildings outside the view frustum of the current camera,
eliminating the generation of any redundant geometry and reducing
GPU memory usage.

3. Voxel grammars

This section describes how the concept of voxel grammars was
formulated in this article. The individual components that comprise a
grammar are detailed, as well as the process of how they are used
during the generation phase. Voxel grammars have been inspired from
voxel space automata [29], where voxels are generated via a set of

predefined rules. Greene primarily uses this method to simulate plant
growth. However, adding detail to existing geometry is a further ap-
plication of this approach. Our method extends the concept of recur-
sively manipulating volumetric data governed by a set of rules to the
formation of specific features found in real-world terrains. The method
operates on a voxel grid that defines the terrain boundary. Each voxel is
represented by a density value of the terrain material contained within
it. Voxels are generated within the grid to create an initial state. The
initial state in this work was constructed by voxelizing a heightfield
generated with 3 octaves of 2D Perlin noise, as it is a common way of
generating plausible procedural heightmap-based terrain. We use
multiple octaves at differing frequency values to ensure the initial ter-
rain contains a sufficient balance between low-frequency and high-
frequency details so that it is not too smooth or too noisy, respectively.
The populated voxel grid is then derived using a sliding window ap-
proach, checking whether the subset of voxels within the window sa-
tisfies any rule criteria. If a matching rule is found, then its respective
transformation is performed on the voxels. The window is subsequently
repeatedly offset by a user-defined stride parameter. The derivation
process is then repeated for a number of iterations (exposed as a
parameter to the user). Furthermore, the user can define a start and end
position within the voxel grid to determine which section of the grid the
grammar is applied to. The combination of bounding values, the sliding
window stride and symbol grid sizes can reduce the state space for a
large voxel dataset.

3.1. Rules

The rules within the class of grammars that we have developed
consist of three components – symbols, transformations and weights.
Symbols consist of a list of predicates to satisfy and transformations
contain a list of mutations to apply to a subset of voxels. This can be
seen as akin to a rudimentary programming language to a certain ex-
tent, as symbols and transforms are, respectively, analogous to condi-
tional statements and intrinsic functions. Rules also possess a priority
value that governs the probability that the rule will be selected for
execution in the rule matching stage of the algorithm.

This can be formalised using L-system notation as follows: Let voxel
grammar = 〈 〉V ω PG , , , where ω is the initial state of the voxel grid and
P is a set of rules that transform subsets of voxels in the form s t(,). ∈s V
is the list of predicates, which we refer to as a symbol and t is the
transform to apply to the subset of voxels. V is the set of all tensors of
size × ×I J K of predicates. The predicates operate over the domain of
real values and thus effectively enable the use of a theoretically infinite
alphabet. As the values in a voxel grid in our implementation are stored
as a single 32-bit floating point value, realistically the expressive range
of the grammar is subject to the size and precision of the voxel values
stored by the underlying voxel engine.

3.1.1. Symbols
A rule’s symbol is a list of conditions in the form of an × ×I J K

array that determines whether the rule’s transformation will be exe-
cuted. Each symbol entry in the array consists of an operator and a data
value. The operator refers to the type of condition being checked and
uses the data value as a comparator to the input voxel value. In order to
ensure flexibility, there are a number of operators that have been im-
plemented and their descriptions can be found in Table 1.

3.1.2. Transforms
A transformation consists of a list of manipulations in an array with

the same dimensions as the rule’s symbol and is only applied to the
voxel grid when the symbol’s criteria have been fulfilled. Similarly to
symbols, transformations also consist of an operator and a data value.
The selected voxel’s density is manipulated in a way determined by the
type of operator being used plus the data value. Descriptions of the
operator types can be found in Table 2 and Fig. 1 demonstrates a simple

R. Dey et al. Entertainment Computing 27 (2018) 128–136

130

example of a transformation.

3.1.3. Rule selection
As grammars become larger and more complex, there can be times

where a set of input voxels can satisfy the conditions for multiple rules.
In our implementation, each rule contains a priority value as part of its
parameters. When there are multiple matching rules, the priorities are
sorted and the rule with the highest priority value is selected. If the
priorities match, the selected rule is chosen stochastically from the
matches. The greatest priority is used in order to simplify the creation
of grammars, as this allows designers to create rules using a more in-
tuitive approach by introducing more control in the variations, instead
of relying on a probabilistic method.

3.2. Grammar construction

During the course of constructing grammars, some observations
were made about the effects that certain components of rules had on the
resulting voxels. When some rules were matched with the voxel grid, an
issue that arose was the repeating, uniform patterns. For natural
looking terrains, this symptom is usually undesirable. One method of
alleviating this is to introduce some variance to the rules. This can be
achieved by creating a rule with the same symbol values and the same
rule weight, but with a transformation consisting entirely of NoOp op-
erators. This method exploits the mechanisms of our rule-matching
system: as the weight remains the same, when the appropriate symbol is

matched, the rule selector will either apply a transformation or do
nothing based on a random probability.

When developing grammars, it is also prudent to be wary of overuse
of the Ignore symbol operator. A symbol consisting entirely of these
operators should almost always be avoided, as it matches with the
entire voxel grid. This can result in severe consequences, where trans-
formations are applied globally to the entire voxel grid and is typically
not what the designer intended.

3.3. Derivation process

The final grammar processing method occurs in two stages: rule
matching and replacement. The rule matching stage iterates through the
ruleset and checks whether the rule’s symbol matches the group of
currently selected voxels. Firstly, the rule with the largest dimension
symbol is found and a sliding window of this size is passed along each
axis. The voxels contained within this window are the currently se-
lected voxels. These are used to compare against the symbol of all rules
that have the same symbol dimensions. If there are matches, then the
replacement stage occurs. This process continues until all rules have
been queried. Pseudocode for this process can be found in Fig. 2. Re-
placement is simply the process of transforming the set of matching
voxels with the selected rule’s transformation.

4. Method and implementation

This section discusses how grammars were designed for use with the
proposed method. Explanations are provided as to why each rule was
constructed. The topologies resulting from cave and overhang forma-
tion tend to be very different and, as a result of this, two grammars were
constructed with different rulesets to enable the creation of these ter-
rain features. Each rule in both rulesets is given the same priority
weight as all of their respective symbols are different. Thus, there are no
other rules to choose between when the rule selection portion of the
derivation process takes place.

4.1. Cliffs and overhangs

A feature found in rich terrains is the formation of naturally oc-
curring cliffs and overhangs. Similar to caves, they are formed due to
erosion from water and weathering effects. Assuming an input of a
solid, vertical wall of voxels, the ruleset contains one rule to remove
voxels towards the base of the wall and another to add some detail. On
their own, these rules produce some unnatural looking features (reg-
ularly spaced voxels) and some impossible features (floating segments
of terrain). In order to mitigate this, another rule was added that acted
as a “clean up” action. The overhang ruleset can be found in Table 3.

4.2. Caves

The formation of caves is governed by the erosion of the different
types of rock. Existing fractures already within the terrain structure are

Table 1
List of symbol operators.

Symbol Operator Description

IGN Ignore – Always returns true
PRES Present – Passes if voxel density value is greater than 0
ABS Absent – Passes if voxel density value is 0
EQ Equals – Passes if voxel density value is equal to the symbol

value
NEQ Not Equals – Passes if voxel density value is not equal to the

symbol value
LT Less Than – Passes if voxel density value is less than the

symbol value
LEQ Less Than or Equal – Passes if voxel density value is less than

or equal to the symbol value
GT Greater Than – Passes if voxel density value is greater than

the symbol value
GEQ Greater Than or Equal – Passes if voxel density value is

greater than or equal to the symbol value

Table 2
List of transform operators.

Transform Operator Description

NOP Does nothing to the value of the selected voxel
SET Sets the selected voxel value to the transform value
ADD Adds the transform value to the selected voxel value

Fig. 1. Example of a simple two dimensional transformation. Rule transform (left), input voxels (centre), output voxels (right).

R. Dey et al. Entertainment Computing 27 (2018) 128–136

131

eroded by groundwater. In speleological literature, cave topology can
be defined as vadose or phreatic and is determined by the proximity to
the groundwater source [30]. This research emulates the formation of
such types of cave by finding a suitable approximation that can be
decomposed into a grammar. The resulting grammar can be found in
Table 4. The first rule is designed to create an initial starting point for
the cave to be generated, which emulates the initial entry point for
groundwater to begin creating caves within a section of the terrain.
Gravitational forces and further groundwater erosion are emulated
using the second and third rules, which lower the density of the lowest
vertical point within a cavity in the terrain. The fourth rule is designed
to widen existing cavities in the terrain in order to provide the resulting
cave with more internal space, as well as offer some variation to the
cavern’s internal structure.

4.3. Surface extraction

The polygonal mesh is extracted from the voxel data using the

surface nets method [31], where the global energy minimization
strategy used for creating the surface is defined by the centre of mass of
each voxel’s edge intersections. This is more commonly referred to as
the naive surface nets variant [32].

This article utilises a version of the naive surface nets algorithm that
executes entirely on the GPU. The algorithm is capable of high paral-
lelism, therefore executing compute shaders on the voxel data can be
greatly beneficial in terms of performance, as a large number of threads
can be launched to work on individual segments of the data con-
currently. The method we have developed executes several compute
shaders:

1. Compute the centres of mass (ComputeCOM).
2. Construct a vertex buffer (ConstructVertexBuffer).
3. Construct an index buffer (ConstructIndexBuffer).
4. Calculate the vertex normals of the mesh (ComputeNormals).

The ComputeCOM shader writes to a linear array of 3D position
vectors. This array represents the dual mesh of the input voxel grid.
Each thread in the shader reads a section of voxel data in 23 groups. It
then sets the initial position to be the centre of this group and inter-
polates the position using the direction and densities for each voxel,
which is written to the final centre-of-mass buffer.

Construction of the vertex and index buffers are relatively
straightforward. Each vertex in the vertex buffer corresponds to each
individual element in the centre-of-mass buffer. When an element is
added to the vertex buffer, its array index is written to a 3D array of
integers that is used as a lookup table. After this process has completed,
the construction of the index buffer takes place. The index of the thread
in the ConstructIndexBuffer shader is used as an index into the lookup
table. The thread subsequently queries the neighbours of this index to
see if values exist in the table to create a triplet of indices. The triplet is
then added to the index buffer. Pseudocode of the process is shown in
Fig. 3.

The vertex normals of the mesh are computed as a separate shader
after the GPU buffers have been constructed successfully. The
ComputeNormals shader uses the index buffer and a cross product op-
eration to calculate the normals for each vertex in the vertex buffer.

5. Results

This section discusses the results obtained using the proposed
method. Its effectiveness is demonstrated by the examples of caves and
overhangs generated by the process. The results have been obtained by
deriving voxel grids of several resolutions (323, 643, 963 and 1283). The

Fig. 2. Pseudocode for deriving the voxel data.

Table 3
Ruleset for generating overhangs.

R. Dey et al. Entertainment Computing 27 (2018) 128–136

132

final surface meshes are rendered using a deferred renderer in DirectX
11 [33] on a PC equipped with a 3.20 GHz quad-core Intel® CPU, 16 GB
of RAM and an NVIDIA® Titan X GPU.

When rendering the mesh, triplanar texturing is used to effectively
blend multiple textures [34]. The weighting of each texture used at a
point on the surface is determined by the dominant axis of the surface

Table 4
Ruleset for generating caves.

Fig. 3. Pseudocode for extracting the surface of the voxel data.

R. Dey et al. Entertainment Computing 27 (2018) 128–136

133

normal and the texture coordinate is calculated by the fractional part of
the point’s world space coordinate.

Examples of overhangs generated with the voxel grammar can be
seen in Fig. 4. The first example demonstrates an overhanging ledge
protruding from the terrain with a plateau which appears naturally
embedded within the terrain. In a heightmap-based approach a ledge
such as this would either have to be stitched to the mesh to make a
single mesh, or be rendered as a separate object. As our method in-
tegrates the features directly into the mesh it avoids both of these op-
tions, so that the terrain can be treated as a unified entity. The second
example shows multiple overhangs being created within a region of
space in the terrain by increasing the range of the generation bounding
box and offers a flexible option of being able to generate repeating
volumetric features within a space. The third example presents another
single overhang, this time without a plateau.

Caves generated with our method can be found in Fig. 5. The first
example shows a wide-mouthed cave constructed with our grammar,
further demonstrating the benefits of editing volumetric data directly.
Achieving this effect in a heightmap-based terrain would be a difficult
task, as many surfaces would have to be edited to recreate the concavity
presented in this image. The second example shows the grammar being
applied to a smaller region of the terrain, where the surface on the side

has been eroded to present a small network of caverns. The third image
shows two medium-sized caves that have formed next to each other.
This has been achieved by modifying the stride of the sliding window in
the grammar generation parameters.

Table 5 shows the timings to generate cave and overhang examples
in different voxel grid resolutions. When timing the data, the voxel
grammar was set to derive the entirety of the voxel grid and the stride
of the sliding window was set to 1×1×1 to ensure that the worst-case
performance statistics were recorded.

The generation of voxels is the most expensive operation in the
process and this is to be expected as it currently does not utilise the
GPU. Instead, the voxel grid is derived on a single thread by the CPU
and passed to the surface extraction functions. However, even at the
largest resolution the grid was derived and voxels were generated in
under a second. Generating voxels for overhangs was consistently faster
than for caves (between 2.6 and 2.9 times faster). The cave grammar’s
last rule derives groups of 16 voxels at a time and this would account
for the increase in processing time.

Our compute shader variant of the surface nets algorithm has been
able to extract the surface of the volumetric data at satisfactorily fast
rates. Meshes were created within 1ms and this makes it particularly
suitable for dynamic editing of the voxel data, as the meshes can be

Fig. 4. Examples of generated overhangs using the ruleset found in Table 3 (Voxel Grid Resolution: 1283).

Fig. 5. Examples of generated caves using the ruleset found in Table 4 (Voxel Grid Resolution: 1283).

R. Dey et al. Entertainment Computing 27 (2018) 128–136

134

regenerated at real-time rates. Mesh construction for overhangs and
caves both perform at similar speeds as the algorithm is primarily
bound by the voxel grid resolution and is independent of the type of
features being created in the terrain.

There is little difference between the time taken to render the me-
shes of overhangs or caves and, as is expected, render times increase as
the resolution of the grid becomes larger. This is due to the dual mesh
grid required for the surface extraction increasing in resolution and,
therefore, increasing the vertex count of the final mesh. However, this
could be reduced by utilising various mesh simplification methods since
the size of the polygons all over the mesh is uniform. By simplifying the
mesh, the triangle count of the final mesh would be reduced and the
GPU would have less work to execute. Furthermore, level-of-detail
methods can be applied to the mesh that would make polygons distant
from the camera larger, so that the GPU does not spend time on ras-
terizing many small polygons far away from it that would produce no
discernible visual difference. It should also be noted that the surface
extraction creates the polygons in the index buffer in a non-determi-
nistic manner. While the resulting mesh is correctly produced, it may
benefit from some form of vertex cache optimization, such as in [35], in
order to try and ensure that the data is in a more GPU-friendly format.

6. Conclusions

This article presented a method for generating complex terrain
features using voxel grammars. Furthermore, it presented approaches
on how such grammars can be created and what considerations should
be taken into account when developing them.

The described methodology is effective in manipulating groups of
voxels to create topologies of interesting terrain features. However, the
main limitation of this method is the substantially manual nature of
designing new grammars. While there are several aforementioned fac-
tors that can be taken into account when creating rulesets, the approach
requires some considerable effort and experimentation. Symbols and
transforms in rules are concretely defined as a set of operators, but it
would be beneficial to create rules in more abstract terms to be more
intuitive to use. For example, this could be achieved by defining a
symbol in terms of the slopes and material types found in a region of
voxels, instead of being composed of a specific permutation of voxel
densities. Similarly, defining transforms to create a cliff or a cave at a
location, instead of operating on individual voxels, would be more
useful for generating desired features more quickly. As such, we have
reserved future research to create more abstract methods of defining
rules in a grammar.

Furthermore, many terrain features such as caves can be formed in a
recursive manner, by modifying transform operator values at each re-
cursion. Currently, it is difficult to design grammars that perform such
operations effectively. In order to enable this functionality to the voxel
grammar approach, rules that execute other rules with parameter deltas
would need to be added.

As this approach works on singular density values found within the
terrain, this implies the terrain is composed of a single material.
However, real terrains consist of multiple materials at multiple den-
sities and ideally these varying densities should be taken into account

by adding a check for the material type as a symbol operator.
The presented method is a single-threaded CPU implementation.

This will detrimentally impact on performance as the voxel grids the
grammar is applied to increase in resolution. Therefore, it would be
prudent to design a GPU-based method of executing the grammar on
the voxel grid to maintain high performance in terms of time. For future
research, we will fully utilise the massively parallel nature of modern
GPUs. The algorithm presented for terrain generation is highly paral-
lelizable as it has very few inter-resource dependencies, so we expect to
obtain substantial improvements in performance with the addition of
GPGPU methods.

The size of the voxel data also needs to be monitored so that it does
not grow to too large a magnitude. We will also adopt a sparse data
structure for voxel storage in order to scale to much larger dimensions
of volumetric grids with limited memory resources. Sparse Voxel
Octrees (SVOs) [10] and brickmaps [16] are two methods optimized for
GPU usage that are appropriate for this task. Furthermore, support for
terrains consisting of several materials would require multiple density
values denoting the amount of each material. Extending this level of
detail to a voxel increases its size and it would be prudent to use the
work of [36] to compress the data further.

Another direction we will explore is a more automated process for
generating the grammars themselves. In this regard, machine learning
technologies, such as deep convolutional neural networks and evolu-
tionary algorithms, appear to suit the underlying training requirements
of generating a grammar. As there are multiple parameters per rule, this
can form a high-dimensional problem which could be resolved using
methods from approximate dynamic programming [37] and reinforce-
ment learning literature [38].

References

[1] D.S. Ebert, F.K. Musgrave, D. Peachey, K. Perlin, S. Worley, Texturing and
Modeling: A Procedural Approach (The Morgan Kaufmann Series in Computer
Graphics), Morgan Kaufmann, 2002.

[2] SIE R&D West, Phyreengine, 2017.< http://develop.scee.net/research-
technology/phyreengine/> (Online; accessed 02-January-2017).

[3] R.M. Smelik, K.J. De Kraker, S.A. Groenewegen, T. Tutenel, R. Bidarra, A survey of
procedural methods for terrain modelling, 3AMIGAS - 3D Advanced Media In
Gaming And Simulation (June 2015) (2009) 25–34. http://dx.doi.org/10.1145/
1814256.1814258.

[4] M.N. Gamito, F.K. Musgrave, in: Procedural Landscapes with Overhangs, vol. 2,
2001, p. 3.

[5] A. Santamaría-Ibirika, X. Cantero, M. Salazar, J. Devesa, I. Santos, S. Huerta,
P.G. Bringas, Procedural approach to volumetric terrain generation, Visual Comput.
30 (9) (2013) 997–1007, http://dx.doi.org/10.1007/s00371-013-0909-y.

[6] A. Peytavie, E. Galin, J. Grosjean, S. Merillou, Arches: a framework for modeling
complex terrains, Comput. Graph. Forum 28 (2) (2009) 457–467, http://dx.doi.
org/10.1111/j.1467-8659.2009.01385.x.

[7] Ç. Koca, U. Güdükbay, A hybrid representation for modeling, interactive editing,
and real-time visualization of terrains with volumetric features, Int. J. Geograph.
Inform. Sci. 28 (9) (2014) 1821–1847, http://dx.doi.org/10.1080/13658816.2014.
900560.

[8] L. Wang, Y. Yu, K. Zhou, B. Guo, Multiscale vector volumes, ACM Trans. Graph. 30
(6) (2011) 1, http://dx.doi.org/10.1145/2070781.2024201.

[9] M. Swoboda, Advanced Procedural Rendering in DirectX 11, 2012.< http://www.
gdcvault.com/play/1015455/Advanced-Procedural-Rendering-with-
DirectX> (Online; accessed 05-January-2017).

[10] C. Crassin, F. Neyret, S. Lefebvre, E. Eisemann, Gigavoxels: Ray-guided streaming
for efficient and detailed voxel rendering, in: Proceedings of the 2009 Symposium
on Interactive 3D Graphics and Games, ACM, 2009, pp. 15–22.

[11] R. Setaluri, M. Aanjaneya, S. Bauer, E. Sifakis, SPGrid, ACM Trans. Graph. 33 (6)
(2014) 1–12, http://dx.doi.org/10.1145/2661229.2661269.

[12] M. Wrenninge, Production Volume Rendering: Design and Implementation, CRC
Press, 2012.

[13] C. Crassin, F. Neyret, M. Sainz, S. Green, E. Eisemann, Interactive indirect illumi-
nation using voxel cone tracing, Comput. Graph. Forum 30 (7) (2011) 1921–1930,
http://dx.doi.org/10.1111/j.1467-8659.2011.02063.x.

[14] S. Laine, T. Karras, Efficient sparse voxel octrees, IEEE Trans. Visual Comput.
Graph. 17 (8) (2011) 1048–1059.

[15] V. Kämpe, E. Sintorn, U. Assarsson, High resolution sparse voxel DAGs, ACM Trans.
Graph. 32 (4) (2013) 1, http://dx.doi.org/10.1145/2461912.2462024.

[16] P.H. Christensen, D. Batali, An irradiance atlas for global illumination in complex
production scenes, in: Proceedings of the Fifteenth Eurographics Conference on
Rendering Techniques, EGSR’04, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 2004, pp. 133–141. http://dx.doi.org/10.2312/EGWR/

Table 5
Times taken to generate voxels from rulesets, extract surfaces and render the
meshes (in ms).

Grid Resolution Generation Surface extraction Rendering

Overhang Cave Overhang Cave Overhang Cave

323 3.477 9.204 0.125 0.117 0.778 0.777
643 32.008 89.059 0.271 0.281 0.915 0.919
963 111.331 314.384 0.578 0.604 1.126 1.129
1283 269.121 770.208 1.072 1.130 1.434 1.441

R. Dey et al. Entertainment Computing 27 (2018) 128–136

135

http://refhub.elsevier.com/S1875-9521(17)30134-9/h0005
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0005
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0005
http://develop.scee.net/research-technology/phyreengine/
http://develop.scee.net/research-technology/phyreengine/
http://dx.doi.org/10.1145/1814256.1814258
http://dx.doi.org/10.1145/1814256.1814258
http://dx.doi.org/10.1007/s00371-013-0909-y
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
http://dx.doi.org/10.1080/13658816.2014.900560
http://dx.doi.org/10.1080/13658816.2014.900560
http://dx.doi.org/10.1145/2070781.2024201
http://www.gdcvault.com/play/1015455/Advanced-Procedural-Rendering-with-DirectX
http://www.gdcvault.com/play/1015455/Advanced-Procedural-Rendering-with-DirectX
http://www.gdcvault.com/play/1015455/Advanced-Procedural-Rendering-with-DirectX
http://dx.doi.org/10.1145/2661229.2661269
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0060
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0060
http://dx.doi.org/10.1111/j.1467-8659.2011.02063.x
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0070
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0070
http://dx.doi.org/10.1145/2461912.2462024
http://dx.doi.org/10.2312/EGWR/EGSR04/133-141

EGSR04/133-141.< https://doi.org/10.2312/EGWR/EGSR04/133-141> .
[17] M. Swoboda, Real Time Ray Tracing Part 2, 2013.<http://directtovideo.

wordpress.com/2013/05/08/real-time-ray-tracing-part-2/ > (Online; accessed 02-
April-2016).

[18] K. Museth, Vdb: high-resolution sparse volumes with dynamic topology, ACM
Trans. Graph. 32 (3) (2013) 27:1–27:22, http://dx.doi.org/10.1145/2487228.
2487235.

[19] S. Gustavson, Simplex Noise Demystified, Linköping University, Linköping, Sweden,
Research Report.

[20] S. Worley, A cellular texture basis function, in: Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, ACM, 1996, pp.
291–294.

[21] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants, Springer
Science & Business Media, 2012.

[22] Y.I.H. Parish, P. Müller, Procedural modeling of cities, in: 28th Annual Conference
on Computer Graphics and Interactive Techniques (August), 2001, pp. 301–308.
http://dx.doi.org/10.1145/383259.383292.< http://portal.acm.org/citation.cfm?
doid=383259.383292> .

[23] M. Lipp, P. Wonka, M. Wimmer, Parallel generation of L-systems, Vision, Model.,
Visual. (2009) 205–214.

[24] G. Stiny, Introduction to shape and shape grammars, Environ. Plann. B: Plann. Des.
7 (November) (1980) 343–351, http://dx.doi.org/10.1068/b070343.

[25] P. Wonka, M. Wimmer, F. Sillion, W. Ribarsky, Instant architecture, ACM Trans.
Graph. 22 (3) (2003) 669, http://dx.doi.org/10.1145/882262.882324.

[26] P. Müller, P. Wonka, S. Haegler, A. Ulmer, L. Van Gool, Procedural modeling of
buildings, ACM Trans. Graph. 25 (3) (2006) 614, http://dx.doi.org/10.1145/
1141911.1141931.

[27] M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, D. Schmalstieg, On-the-fly

generation and rendering of infinite cities on the GPU, Comput. Graph. Forum 33
(2) (2014) 105–114, http://dx.doi.org/10.1111/cgf.12315.

[28] M. Steinberger, M. Kenzel, B. Kainz, J. Müller, W. Peter, D. Schmalstieg, Parallel
generation of architecture on the GPU, Comput. Graph. Forum 33 (2) (2014) 73–82,
http://dx.doi.org/10.1111/cgf.12312.

[29] N. Greene, Voxel space automata: modeling with stochastic growth processes in
voxel space, Siggraph 23 (3) (1989) 175–184, http://dx.doi.org/10.1145/74334.
74351.

[30] J.H. Bretz, Vadose and phreatic features of limestone caverns, J. Geol. 50 (6) (1942)
675–811 <http://www.jstor.org/stable/30060299> .

[31] S. Gibson, Constrained elastic surface nets: Generating smooth surfaces from binary
segmented data, Medical Image Computing and Computer-Assisted Interventation-
MICCAI’98 (1998) 888–898.

[32] M. Lysenko, Smooth Voxel Terrain (Part 2), 2012.< https://0fps.net/2012/07/12/
smooth-voxel-terrain-part-2/> (Online; accessed 30-August-2016].

[33] Microsoft, DirectX 11.< https://www.microsoft.com/en-gb/download/details.
aspx?id=6812> .

[34] R. Geiss, Generating complex procedural terrains using the GPU, GPU Gems 3
(2007) 7–37.

[35] T. Forsyth, Linear-speed Vertex Cache Optimisation, 2006.
[36] B. Dado, T.R. Kol, P. Bauszat, J.M. Thiery, E. Eisemann, Geometry and attribute

compression for voxel scenes, Comput. Graph. Forum 35 (2) (2016) 397–407,
http://dx.doi.org/10.1111/cgf.12841.

[37] W.B. Powell, Approximate Dynamic Programming: Solving the Curses of
Dimensionality, John Wiley & Sons, 2007.

[38] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction vol. 1, MIT Press,
Cambridge, 1998.

R. Dey et al. Entertainment Computing 27 (2018) 128–136

136

http://dx.doi.org/10.2312/EGWR/EGSR04/133-141
https://doi.org/10.2312/EGWR/EGSR04/133-141
http://directtovideo.wordpress.com/2013/05/08/real-time-ray-tracing-part-2/
http://directtovideo.wordpress.com/2013/05/08/real-time-ray-tracing-part-2/
http://dx.doi.org/10.1145/2487228.2487235
http://dx.doi.org/10.1145/2487228.2487235
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0105
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0105
http://dx.doi.org/10.1145/383259.383292
http://portal.acm.org/citation.cfm?doid=383259.383292
http://portal.acm.org/citation.cfm?doid=383259.383292
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0115
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0115
http://dx.doi.org/10.1068/b070343
http://dx.doi.org/10.1145/882262.882324
http://dx.doi.org/10.1145/1141911.1141931
http://dx.doi.org/10.1145/1141911.1141931
http://dx.doi.org/10.1111/cgf.12315
http://dx.doi.org/10.1111/cgf.12312
http://dx.doi.org/10.1145/74334.74351
http://dx.doi.org/10.1145/74334.74351
http://www.jstor.org/stable/30060299
https://0fps.net/2012/07/12/smooth-voxel-terrain-part-2/
https://0fps.net/2012/07/12/smooth-voxel-terrain-part-2/
https://www.microsoft.com/en-gb/download/details.aspx?id=6812
https://www.microsoft.com/en-gb/download/details.aspx?id=6812
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0170
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0170
http://dx.doi.org/10.1111/cgf.12841
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0185
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0185
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0190
http://refhub.elsevier.com/S1875-9521(17)30134-9/h0190

	Procedural feature generation for volumetric terrains using voxel grammars
	Introduction
	Related work
	Terrain
	Voxel management
	Rule-based procedural generation

	Voxel grammars
	Rules
	Symbols
	Transforms
	Rule selection

	Grammar construction
	Derivation process

	Method and implementation
	Cliffs and overhangs
	Caves
	Surface extraction

	Results
	Conclusions
	References

